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ABSTRACT 

THE EFFECTS OF DIMENSIONALITY AND ITEM SELECTION METHODS 
ON THE VALIDITY OF CRITERION-REFERENCED 

SCORES AND DECISIONS 

MAY 1993 

MOHAMED AWIL DIRIR, B.Sc., SOMALI NATIONAL UNIVERSITY 

M.Ed., UNIVERSITY OF MASSACHUSETTS 

Ed.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Hariharan Swaminathan 

Many of the measurement models currently used in 

testing require that the items that make up the test span a 

unidimensional space. The assumption of unidimensionality 

is difficult to satisfy in practice since item pools are 

arguably multidimensional. Among the causes of test multi¬ 

dimensionality are the presence of minor dimensions (such as 

test motivation, speed of performance and reading ability) 

beyond the dominant ability the test is supposed to measure. 

The consequences of violating the assumption of 

unidimensionality may be serious. Different item selection 

procedures when used for constructing tests will hav eunkown 

and differential effects on the reliability and validity of 

tests. 

The purposes of this research were (1) to review 

research on test dimensionality, (2) to investigate the 

impact of test dimensionality on the ability estimation and 

the decision accuracy of criterion-referenced tests, and (3) 

to examine the effects of interaction of item selection 

methods with test dimensionality and content categories on 
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ability estimation and decision accuracy of criterion- 

referenced tests. 

The empirical research consisted of two parts: in Part 

A, three item pools with different dimensionality structures 

were generated for two different tests. Four item selection 

methods were used to construct tests from each item pool, 

and the ability estimates and the decision accuracies of the 

12 tests were compared in each test. In Part B, real data 

were used as an item bank, and four item selection methods 

were used to construct short tests from the item bank. The 

measurement precision and the decision accuracies of the 

resulted tests were compared. 

It was found that the strength of minor dimensions 

affect the precision of the ability estimation and decision 

accuracy of mastery tests, and that optimal item selection 

methods perform better than other item selection methods, 

especially when test data are not unidimensional. The 

differences in measurement precision and decision accuracy 

among data with different degrees of multidimensionality and 

among the different item selection methods were 

statistically and practically significant. 

An important implication of the study results for the 

practitioners are that the presence of minor dimensions in a 

test may lead to the misclassification of examinees, and 

hence limit the usefulness of the test. 
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CHAPTER I 

INTRODUCTION 

Criterion-Referenced Tests 

Criterion-referenced tests are used to assess examinee 

performance on prespecified and well defined content 

domains, or tasks. These tests are extensively used by 

school districts, professional organizations, and state 

departments of education (Hambleton & Rogers, 1989). 

Hambleton and Rogers (1989) stated that 48 out of the 50 

states in the U.S., and more than 900 licensing agencies use 

criterion-referenced tests. The tests are mainly used for 

two purposes in schools: to describe students, and to 

assign students to mastery levels. Subsumed by these two 

purposes are such goals as evaluating training programs and 

instruction, diagnosing student weaknesses and progress, and 

assessing student mastery levels of content domains 

(Hambleton & Jurgensen, 1990). 

The essential components in criterion-referenced test 

construction, are the definition of the objectives measured 

by the test, the match between the items and the objectives 

they measure, and a standard or cut-off score to sort 

examinees into mastery states. Criterion-referenced tests 

usually measure more than one objective, and test items are 

arranged in distinct subsets that reflect the objectives the 

test measures. In test score reporting, it is desirable to 

report the scores by objective. In the test construction 

1 



process, item statistics do not play as important a role as 

they do in norm-referenced tests. Instead, they are used to 

detect flawed items which might be revised in the future. 

Intended uses of the test, objectives to be measured, items 

for each objective, and item-objective correspondence are 

central in criterion-referenced test development. 

Reliability and validity of test scores are critical in 

criterion-referenced tests as they are with any test, and 

are addressed in ways different from the methods used in 

norm-referenced tests. The reliability indices of norm- 

referenced tests are not applicable to criterion-referenced 

tests partly because criterion-referenced test scores are 

more homogenous than norm-referenced test scores, and mainly 

because these indices do not provide important information 

about the scores, namely? the precision of domain score 

estimates, and the decision accuracy of scores (Hambleton & 

Jurgensen, 1990). The acquisition of these two pieces of 

information, which are the basis of test score reliability 

and validity, is important to criterion-referenced test 

score uses. 

Since many criterion-referenced tests are used to 

classify examinees into masters and nonmasters, test 

reliability is often indexed in terms of test-retest or 

parallel forms decision consistency (see, for example, 

Hambleton & Novick, 1973? Swaminathan, Hambleton, & Algina, 

1974? Huynh, 1976? Subkoviak, 1976?). The decision 

consistency, which was first introduced by Hambleton and 
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Novick (1973), is the proportion of examinees consistently 

classified as masters or nonmasters in repeated measurements 

of one form or parallel forms of the same tests. 

Swaminathan, Hambleton, and Algina (1974) recommended the 

use of coefficient kappa in which the decision consistency 

is adjusted to account for chance agreement. Decision 

consistency estimates based on test-retest or parallel forms 

need two test administrations, a design that is difficult to 

implement in practice. Decision consistency indices based 

on single administrations were separately introduced by 

Huynh (1976) and Subkoviak (1976). Many factors affect the 

decision consistency of criterion-referenced tests. Among 

them are the selection of a cut-off score, and the 

composition of the examinee population. 

The validity of criterion-referenced test scores can be 

partially addressed in terms of content validity, a process 

in which content specialists assess the item-objective 

congruence. Lately, it has been legitimately argued that 

content validity is not enough to represent the validity of 

test scores ( Messick, 1975; Linn, 1980; Hambleton, 1984). 

Construct validity, criterion-related validity, and content 

validity are all important in criterion-referenced tests. 

The investigation and assurance of each type of validity is 

equally important. 

Hambleton (1984) discussed several procedures in which 

these test score validity investigations could be 

undertaken. In content validity investigations, the item- 
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objective match is assessed by content specialists. In 

construct validity, what the test is and is not measuring 

are examined. In criterion-related validity, the accuracy 

of the test scores in domain score estimation and in 

assigning examinees into mastery levels are assessed. It 

should be stressed that, in all types of validity 

investigations, the intended use of the test scores is an 

important factor. 

IRT Uses in Criterion-Referenced Testing Practice 

Item response theory (IRT) has applications that are 

useful in addressing many of the practical problems in 

criterion-referenced tests (for a review, see Hambleton & 

Rogers, 1989). Test score reporting, test length 

determination, and item selection are among the areas in 

which IRT has been found to be valuable in criterion- 

referenced tests. 

The benefits from IRT are realized when its assumptions 

are met and one of its models fits the data (Hambleton & 

Swaminathan, 1985). In classical test theory, item 

statistics are used for test construction purposes. But 

these item statistics (p's & r's which are obtained by field 

testing items) are group-dependent, and the examinees scores 

are dependent on the sample of items administered. These 

dependencies undermine the equivalence of test forms and 

their use across groups of examinees. IRT provides item 

statistics that are independent from the examinee 

population, and ability scores that are independent from the 
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particular sample of items. These features are potentially 

valuable in criterion-referenced test construction and uses, 

particularly in developing item banks, selecting items for a 

test, and comparing examinees to a common standard though 

they may have taken different forms of the same test. 

In test score reporting, IRT test characteristic curves 

can be very useful. The ability scale and item parameters 

are used to obtain the item and test characteristic curves, 

and each examinee*s score can be estimated using these 

curves. Predictions can also be made about the performance 

of examinees with certain abilities on any set of items in 

an item pool. The scores could be reported in any metric, 

at school levels, at district levels, or at any other 

desired level. The standard error of measurement for each 

score can also be added to the reports to enhance accuracy 

of ability score interpretations. In other words, IRT 

enables the reporting of the measurement error for each 

examinee. 

In choosing appropriate test lengths for criterion- 

referenced tests, practitioners often worry about imprecise 

domain score estimation and incorrect mastery classification 

of examinees. That often leads to the preference of long 

tests when classical test theory is utilized. In an IRT 

framework, the relationship between test length and decision 

consistency can be formulated (see Hambleton, Mills, & 

Simon, 1983), and short tests with reasonable decision 

consistencies and accuracies can be constructed by using 
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suitable item selection procedures. This is accomplished by 

selecting items that provide most information and hence 

provide least errors of measurement at any ability of 

interest-often at the cut-off ability score. Hence, the 

domain score estimation problem and the decision consistency 

and accuracy problem are both addressed by using a suitable 

item selection method. 

In test construction, item selection methods based on 

IRT are generally superior to classical approaches (see 

Hambleton, Arrasmith, & Smith, 1987? Green, Yen, & Burket, 

1989). When constructing tests within a classical 

measurement framework, items with high biserial correlations 

and moderate difficulty values (.3 to .8) are selected 

during the test construction process. The objective that 

each item measures, and the technical qualities of the items 

are also considered. Item and test information functions, 

which stand the place of test reliability in classical test 

theory, are used in IRT-based methods of item selection. 

Items are selected on the basis they provide desired 

information at specified points along the ability scale, and 

the information function is inversely related to the 

standard error of measurement at any ability (Hambleton & 

Swaminathan, 1985). With criterion-referenced tests, 

usually the number of specified points of interest is one; 

i.e., the point where the cut-off score is located. A good 

feature of the item information function is its additive 

property. The test information function is given by adding 
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up the information functions of the constituent items (Lord, 

1977? Hambleton & Swaminathan, 1985). 

In constructing tests, one may begin with specifying 

the standard error of estimation that one can tolerate at a 

particular ability range or point. Suppose we need to 

measure a normally distributed ability range of +2 to -2 

with standard error of .35. The information at this ability 

range should be 8.16 or higher. Consequently, items are 

selected from the pool which contribute to the test 

information up to the desired level at this ability range. 

Lord (1977) provides a heuristic procedure for selecting 

items from an item pool: (1) Decide on the desired test 

information function; (2) select items that will cover the 

hard-to-fill areas under the chosen information curve; (3) 

calculate the resulting test information each time an item 

is added to the test? and (4) continue until the test 

information satisfactorily approximates the target 

information. Content composition, and other psychometric 

properties of tests that are developed through the use of 

item information are not neglected but regarded during test 

construction (see, for example, Ackerman, 1989). 

There are several methods of item selection some of 

which are based on classical test theory and some of which 

are IRT-based. These methods include the random method in 

which items are selected randomly from item pools, a 

classical method in which items with high biserial 

correlations and moderate difficulties are selected, an 
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optimal method in which items that provide the most 

information at ability level of interest are selected, and 

"content-optimal" methods in which items that provide the 

most information at the ability level of interest are 

selected while other requirements on the resulting test such 

as content composition are considered too. 

The choice of an item selection method will have an 

effect on the reliability and validity of the resulted test 

scores (Hambleton, Arrasmith, & Smith, 1987; Hambleton, 

Dirir, & Lam, 1992). In criterion-referenced tests, the 

item selection method has effects on the decision 

consistency and accuracy. That is especially true when the 

items in the bank differ in properties that have a notable 

impact on the results of the test, and when the presence or 

absence of certain group of items affects the test scores. 

Currently, automated item selection methods are 

receiving more attention among test developers and 

practitioners. The development of powerful computers has 

played an important role in the case of automated test 

development procedures, and many test publishers are using 

or considering these 

approaches to-day (Green, Yen, & Burket, 1989? Stocking, 

Swanson, & Pearlman, 1990). The automated item selection 

methods, which use IRT-based item parameters to compute item 

and test information functions, utilize linear or integer 

programming procedures and optimization algorithms. Some 
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literature related to this topic will be reviewed in the 

next chapter. 

The advantages of IRT in solving practical problems in 

criterion-referenced tests are fairly well established, but 

the advantages do require that model assumptions are 

satisfied. One of the critical assumptions of several 

popular IRT models is that test data should be 

unidimensional. This assumption is not always met; and 

hence, it is important to investigate the robustness of the 

IRT models to the violation of this assumption. In the next 

three sections an overview of test dimensionality, how it is 

assessed, and how the unidimensionality assumption is often 

violated in practice will be discussed. 

Background on Dimensionality 

The number of traits a test measures is one of its 

critical aspects. A comprehensive review on the evolution 

and indices for assessing test dimensionality was done by 

Hattie (1985). He reported that interest in the issue goes 

back as far as 1940s, and that more than 80 indices were 

proposed to assess test dimensionality. These indices vary 

from those based on answer pattern and test reliability to 

those based on nonlinear factor analysis and nonparametric 

approaches. Mislevy (1986) and McDonald (1989) both 

discussed approaches that are recently being used for 

dimensionality assessment. These methods include 

generalized least-squares solutions, and maximum likelihood 

solutions. 
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Despite the widespread attention in the topic, several 

contrasting definitions has been proposed for test 

dimensionality, and it is sometimes confused with such 

concepts as homogeneity, reliability, and internal 

consistency. In common practice, whether a test is 

unidimensional or not is often assessed, and hence the 

definition of dimensionality is often based on the 

unidimensionality of a test. Hattie (1984) distinguished 

unidimensionality from other terms or methods which do not 

define it but are used to determine it. He contended that 

unidimensionality is not defined in terms of unit rank, 

percent of variance explained by first factor, deviation 

from perfect scale, type of correlation, or the number of 

common factors. Dimensionality is the number of abilities 

that influence the performance of examinees on test items. 

Hattie (1985) asserted that unidimensionality is "the 

existence of one latent trait underlying the data" (p.157). 

McDonald (1982) insisted that if only one trait 

influences the distribution of the response patterns of 

items, then the set of items is unidimensional. His 

definition is based on the principle of local independence 

which states that for any fixed ability, the examinee 

responses to binary items are mutually statistically 

independent. He claimed that the principle of local 

independence is basic for the definition of latent traits, 

and that unidimensionality could not be explicated without 

the definition of the latent traits. Other methodologists 
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do not agree with this argument. Goldstein (1980), for 

example, contended that the dimensionality of a test could 

be specified regardless of the state of the assumption of 

local independence. He wrote "we can have one-dimensional 

model such as the logistic either with or without local 

independence" (p. 239). 

The interest in test dimensionality stems from the fact 

that many measurement models are based on the assumption of 

test unidimensionality. In other words, measurement 

practitioners and test users assume that all items in a test 

measure one trait. Stout (1987) argued that test 

unidimensionality is important because: (a) it is essential 

for accurate test interpretation? (b) many measurement 

models assume it? and (c) we cannot measure individual 

differences without it (pp. 589-590). However, there are 

multidimensional test models that are currently in use, but 

these models have not received nearly as much publicity and 

usage as compared to the unidimensional models. There is no 

question about the desirability of unidimensional test 

models, and the measurement of one ability leads to sound 

judgement on the performance of examinees. An earlier 

statement by McNemar (1946), which is related to attitude 

tests, and which is quoted by many researchers, is as 

follows: 

Measurement implies that one characteristic at a 
time is being quantified. The scores on an 
attitude scale are most meaningful when it is 
known that only one continuum is involved. Only 
then can it be claimed that two individuals with 
the same score or rank can be quantitatively and. 
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within limits, qualitatively similar in their 
attitude towards a given issue. As an example, 
suppose a test of liberalism consist of two 
general sorts of items, one concerned with 
economic and the other with religious issues. Two 
individuals could thus arrive at the same 
numerical score by quite different routes. Now it 
may be true that economic and religious liberalism 
are correlated but unless highly correlated the 
meaning of scores based on such a composite is 
questionable (p. 268). 

According to this argument, even two correlated traits 

cannot be trusted to measure individual differences in a 

test score. 

In a way close to the above assertion, and also related 

to rank ordering of examinees, Hattie (1985) insisted: 

to make psychological sense when relating 
variables, ordering persons on some attribute, 
forming group on the basis of some variable, or 
making comments about individual differences, the 
variable must be unidimensional? that is, the 
various items must measure the same ability, 
achievement, attitude, or other psychological 
variable (p. 139) . 

From this viewpoint, a test must measure just one trait to 

foster valid conclusions about examinee performance, and 

optimal rank ordering of examinees might not be attained 

when the test is not unidimensional. Test unidimensionality 

is an issue not only for tests intended to measure 

individual differences and rank order examinees, but also 

for tests intended to measure whether examinees mastered 

specific tasks. In other words, the dimensionality of tests 

affects both criterion-referenced and norm-referenced tests. 

It seems test specialists have usually been concerned about 

how the violation of the unidimensionality assumption may 

affect norm-referenced tests. Less attention has been paid 
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to the impact of the number of dimensions in a test on the 

psychometric properties of a criterion-referenced test. In 

short, the effects of test dimensionality on decisions based 

on mastery tests are no less important than the effects of 

test dimensionality on rank-ordering examinees. 

Assessment of Dimensionality and Related Research 

Many methods are currently available for the assessment 

of dimensionality of a set of test items (see, for example, 

Hattie, 1984? Hambleton & Rovinelli, 1986; Mislevy, 1986? 

Knol & Berger, 1991). Some of the widely utilized 

techniques are linear factor analysis, hierarchical factor 

analysis, nonlinear factor analysis, and nonparametric 

approaches. The classical factor analysis and its 

variations have dominance over the other approaches in use 

if not in practical value. In this method, a conventional 

procedure of assessing the dimensionality of binary item 

pools is to obtain the tetrachoric correlations among the 

items, get the principal components or common factors, and 

examine the eigenvalues of the correlation matrix. This 

examination could entail the inspection of the percent of 

variance explained by the first factor, the magnitudes of 

the eigenvalues, and/or the differences of successive 

eigenvalues. 

Full-information IRT models and associated contingency 

tables and likelihood ratio goodness of fit (Bock, Gibbons, 

& Muraki, 1988), partial-information factor analysis models 

(Christofferson, 1975? Muthen, 1978), nonlinear factor 
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analysis (McDonald, 1967a), models that test the hypothesis 

of unit dimension in nondecreasing monotonic item response 

functions (Rosenbaum, 1984), and methods that use examinees 

scores on subset of items to test the dimensionality of the 

test (Bejar, 1980; Stout, 1987) are other methods which are 

all currently in use. These models are based either on IRT 

formulation or common factor analysis formulation. The 

equivalence of the two formulations has attracted the 

attention of some researchers, and it was concluded by many 

that the two approaches are equal (McDonald, 1982, 1985; 

Takane and De- Leeuw, 1987). McDonald (1985) and Takane and 

De Leeuw (1987) separately proved that the two-parameter 

normal ogive model and the factor analysis of dichotomized 

variables as discussed in Christofferson (1975) and Muthen 

(1978) are in fact equivalent. 

Christofferson (1975) introduced a factor analytic 

approach for dichotomous items using the marginal 

distributions of single and pairs of items. The loss of 

information in this procedure compared to full-information 

maximum likelihood methods is compensated for the less 

computations it requires. In this model, a set of 

continuous variables, which are fitted by common factor 

model, are dichotomized by using threshold values to get 

binary item responses. The threshold values and the factor 

parameters are then jointly estimated. 

The proportion of examinees passing each item are 

obtained, and the proportion of examinees passing each pair 
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of items is approximated. Finally, estimates of sample 

proportions are used to fit the model by generalized least 

squares (GLS). The GLS estimator is asymptotically 

distributed as a chi-square with known degrees of freedom, 

and it could be used to test the number of significant 

factors in the data. A computer program based on this model 

was developed, but up to now more than 25 items could not be 

used on it. Otherwise, the model was rated as promising and 

adequate (see Hattie, 1984; McDonald, 1985). Muthen 

modified this model and made it computationally faster by 

using sample tetrachoric correlations instead of sample 

proportions passing pairs of items, but the limitation in 

the number of items has yet to be solved. 

McDonald (1967a, 1967b, 1985) developed a nonlinear 

approach of factor analysis which he suggested would improve 

upon the usual linear factor analysis that is used in 

assessing test dimensionality. McDonald (1982) classified 

common factor models into three categories: 1) those that 

are linear in both their coefficients and latent traits; 2) 

those that are linear in their coefficients but non-linear 

in the latent traits; and 3) those that are non-linear in 

both coefficients and latent traits (p. 380) . 

Examples of cases 1 and 3 are Spearman's general factor 

and IRT logistic model, respectively. He contended that the 

popular logistic and normal ogive models are nonlinear 

transformations of the Spearman's general-factor model that 

are specific for dichotomous items. He further noted that 
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linear approximations could be employed to fit such 

nonlinear models to datasets. McDonald (1982, 1985) 

advocated the case in which the functions are linear in the 

coefficients but not in the traits to be fitted to datasets. 

He also showed that by harmonic analysis, the normal ogive 

model can be approximated as closely as desired by 

polynomial series, and recommended that up to the cubic term 

would provide good approximations. 

Currently research on dimensionality of tests mainly 

focus on three areas: (1) robustness of IRT unidimensional 

models to the violation of the unidimensionality assumption; 

(2) assessment of the performance of various indices of 

unidimensionality, and (3) the effect of multidimensionality 

on test uses such as parallel test construction and test 

scoring. Fewer studies are undertaken in the area of the 

performance and uses of multidimensional models. In the 

first category, the original (true) item parameters of the 

test and the item parameters estimated by the model under 

investigation are compared. The central question in these 

studies is: Does the model estimate the item parameters 

properly when the data is not unidimensional? The 

relationship between the estimated and true parameters is 

often examined; mainly by using correlational techniques, 

and the relationship of the two sets of parameters is used 

to evaluate the robustness of the model to the violation of 

the unidimensionality assumption. 
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In the second approach of dimensionality research, the 

strengths of various indices to detect multidimensional 

tests are studied and/or compared. However, these indices 

differ in their assumptions, uses, and limitations, and each 

is intended to highlight the dimensions of a test in its own 

way. Most of the indices are based on judgmental, 

subjective decision making approaches in which the number of 

dimensions are determined. Many of them do not have 

associated statistics, and many of them do not assess how 

dominant the dimensions in a test data are relative to each 

other. Each index has its own rules of detecting 

multidimensionality, and there might not be clear cut 

criteria for comparing all of the different indices. 

The last line of research, the effect of dimensionality 

on test use, is not as well developed as the other two. 

Since it is known that there are no strictly unidimensional 

tests, it is reasonable to probe how dimensionality might 

influence test score interpretations and subsequent 

decisions based on it, and address issues like its effects 

on test construction, results, and uses. Then guidelines 

can be developed for avoiding or minimizing the effects of 

multidimensionality. In criterion-referenced tests, it is 

important to know how test dimensionality affects the 

reliability and validity of mastery classification 

decisions, for example. 
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Some Causes of Test Multidimensionalitv 

Tests are supposed to conform to the unidimensionality 

assumption required by most of the currently used 

measurement models (see, for example, Hambleton, 

Swaminathan, & Rogers, 1991). However, since tests are 

constructed to meet other criteria such as the presentation 

of different domains focused on different abilities of 

examinees in a single test, the presence of different topics 

of the same subject matter, the satisfaction of targeted 

test and item statistics, and not to meet specific factor 

structure, unidimensionality can be violated in different 

ways and for many sound reasons. Traub (1983) discussed 

three possible causes of test multidimensionality: 

Differences in instruction and educational effects among 

test takers, test speededness, and examinees' tendency to 

guess. He cautioned against the effects of multi¬ 

dimensionality on test results that might be caused by using 

IRT models with achievement tests. 

Tests could be multidimensional for other reasons too. 

It has been noted by many researchers that tests could be 

multidimensional because of presence of minor and unintended 

traits beyond the major trait the test is purported to 

measure (Drasgow & Parsons, 1983; Nandakumar, 1991? Stout, 

1987? Harrison, 1986). Stout (1987) introduced the concept 

of essential unidimensionality in which he suggests that 

tests often have one dominant trait and one or more minor 

traits. He added that the potency of the minor trait(s) 
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determine the test dimensionality, and that test are 

essentially unidimensional as long as the minor dimensions 

are less potent. 

For instance, besides the ability the test is intended 

to measure, a test may be affected by a second trait which 

might have less influence on the test items, and could 

affect all or part of the items. For example, reading could 

be a minor trait in a physics test where the major ability 

to be measured is physics knowledge. In some situations, 

there are even more than one minor ability beyond the major 

trait, and these minor abilities could affect all items of 

the test or each could be influencing different clusters of 

items. Mathematics knowledge and reading proficiency could 

be minor abilities that may affect all items in a physics 

test. In other instances, different parts of a test may 

require different strategies of test taking or different 

abilities for the examinees to answer test items correctly. 

In yet other situations, different topics of the same 

subject may require disparate minor abilities in addition to 

the major trait needed for the mastery of the subject. 

The arrangement of tests into different sections, and 

its composition of different content areas might introduce 

lack of unidimensionality in the strict sense used in IRT. 

Each section of a test may require, albeit minor different 

abilities in responding to the test items. Similarly, each 

content category may load on a different minor dimension in 

a testing situation, and the presence, representation, or 
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absence of certain content areas may have an effect on the 

dimensionality of the test. In all the above mentioned 

cases, the degree of departure of the test from 

unidimensionality is related to how "minor" are the minor 

abilities. The degree of departure could be influenced by 

such factors as the potency of the major ability, the number 

of items affected by each minor ability, and the number of 

minor abilities. 

Tests are usually developed by choosing items from 

large item banks, and it can be argued that the items in 

these item banks are not strictly unidimensional. In the 

process of test construction, especially when IRT-based 

techniques are used, many attributes of items are 

considered? e.g., their information functions, content, 

format, the frequency of their use, dependencies among 

items. Item information functions and item content 

categories are often used more than the other 

characteristics in item selection. When both attributes are 

considered, "content-optimal item selection" results, and 

items are selected according to the amount of information 

they provide at the ability levels of interest and according 

to their content. If item information alone is used in the 

test design process, it may lead to an unbalanced test in 

terms of content, and may also lead to a multidimensional 

test when the item pool is not unidimensional. The reason 

is that when sampling items in this manner, one is seeking 

items with desirable properties? that is, items providing 
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most information at the ability level of interest, and these 

items may load on a specific trait, and hence may affect the 

dimensionality of the resulting test. 

Imagine a test development situation in which items are 

being selected from an item pool which has many content 

categories, and which is believed to be a relatively 

unidimensional item pool. Suppose the content categories 

represent minor dimensions. If specific content categories 

are oversampled or selected more than the other categories 

during the test construction process, the dimensionality of 

the resulting test might be affected, and this might 

subsequently reduce the reliability and validity of the test 

scores. 

Purposes 

Criterion-referenced tests are being used by many 

educational and professional organizations for a variety of 

purposes. Item response theory provides a useful framework 

and models for the development and use of criterion- 

referenced tests. The merits gained from using IRT are 

fully realized when its assumptions are met and the model of 

choice fits the test data. One of the crucial assumptions 

that is difficult to meet in practice is the assumption of 

test unidimensionality. The IRT-based item selection 

methods used for test construction might even contribute to 

the problem of multidimensionality because items influencing 

specific minor traits might be selected through a particular 

item selection method. In test design processes, the 
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dimensionality of an item pool, the item selection method, 

and the interaction effects of the two are expected to 

affect the reliability and validity of criterion-referenced 

test scores and decisions. 

In view of the previous research on test 

dimensionality, and its central importance to the 

reliability and validity of criterion-referenced test scores 

and decisions, this research study has been designed to 

investigate several important questions: 

1. What are the current methods of choice in investigating 

test dimensionality? 

2. How do various amounts of test dimensionality impact on 

the ability estimation and decision accuracy of 

criterion-referenced tests? 

3. How do item selection methods interact with test 

content to influence the reliability and validity of 

criterion-referenced tests? 

The first question addresses some essential background 

information for the study and will be addressed by a 

comprehensive literature review. The second question will 

be addressed via a number of carefully designed simulation 

studies. The third and final question will be addressed 

using some real data provided by one of the national 

credentialing organizations. 

The study was based on a hypothetical situation where a 

test was being constructed from an item pool. The examinee 

responses to items in the pool were assumed to be accounted 
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for by a general ability, and in addition, some minor traits 

exist which were specific to specific clusters of items. 

The relative potencies of the general ability and the minor 

abilities is what constitutes the dimensionality of the 

test, and that was manipulated in the study. 

Both simulated and real data were used in this study. 

In the simulation part, examinee response data with known 

degrees of departure from unidimensionality were generated. 

The computer program used for this purpose was based on the 

concept of essential unidimensionality developed by Stout 

(1987). The real data comes from a national credentialing 

examination administered in December 1988. The exam 

consists of over 200 items, several content categories, and 

over 5 item formats. The content categories were treated as 

minor traits that were tapping different abilities even 

though the whole test was measuring a general ability. 

Significance of the Research 

Criterion-referenced tests, which have not received 

attention equal to that of norm-referenced tests when it 

comes to the issue of dimensionality, was the focus of this 

study. Of special interest was how dimensionality affects 

the decision accuracy of tests? that is, passing masters and 

failing nonmasters. In criterion-referenced tests, 

dimensionality might be caused by different objectives or 

content categories reflected in the test, different 

cognitive levels, or different item formats. Whichever it 

might be, these differences might correspond to different 
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abilities, and hence might influence the dimensionality of 

the test. 

One of the main uses of criterion-referenced tests is 

to assess whether examinees have mastered specific 

curriculum objectives or tasks. These objectives or tasks 

covered by the test are often assumed to measure just one 

ability by those models used for scoring, decision making, 

and for other testing purposes. What could happen if the 

objectives or items of the test are measuring several 

abilities? Are our pass/fail decisions accurate in these 

cases? Or more generally, are our decisions in passing or 

failing examinees equally accurate in unidimensional and in 

multidimensional tests? 

If we desire to report the scores of the different 

dimensions in a multidimensional criterion-referenced test, 

would it lead to decisions more consistent than aggregating 

the whole scores and basing our decisions on the average 

score? Would the relative strengths of the different traits 

in the test be a factor in our decision making? On the 

other hand, when a test is constructed by selecting items 

from an item bank, does the utilized item selection method 

contribute to the multidimensionality problem? Do the item 

selection methods have effects on decision accuracy? 

Answers to these questions were addressed in this research. 

In the next chapter, literature related to test 

dimensionality, applications of IRT to criterion-referenced 

tests, and optimal test designs will be reviewed. The data 
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simulation and data analysis procedures will be fully 

discussed in Chapter III. Results and discussion follow in 

Chapter IV, and the summary and conclusions in Chapter V. 
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CHAPTER II 

LITERATURE REVIEW 

In this chapter, studies related to dimensionality, 

studies on IRT approaches to item selection methods in 

criterion-referenced tests, and studies on automated item 

selection methods will be reviewed. Studies on 

dimensionality will be grouped into four categories: a) 

studies on the robustness of unidimensional models to the 

violation of the unidimensionality assumption; b) studies on 

comparisons of different indices proposed for dimensionality 

assessment? c) studies that present the item parameters of 

multidimensional data in polar coordinates and address 

different issues in testing? and d) studies that use a 

nonparametric approach in investigating test dimensionality. 

Model Robustness Studies 

Drasgow and Parsons (1983) studied the robustness of 

the widely used IRT program LOGIST to the violation of the 

unidimensionality assumption. They addressed the problem in 

a classical hierarchical factor analytic approach, and used 

a model developed by Schmid and Leiman (1957). The model is 

set in such a way that the test (all items) is influenced by 

a single general latent trait, while some clusters of items 

are affected by specific factors. They asserted that the 

first-order common factors in the examinee responses are 

correlated, and their correlation is accounted for by a 

second-order general factor which is the underlying general 
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trait measured by the test. In addition, second-order group 

factors that are specific to certain clusters of items 

exist. This approach is attractive and has practical 

appeal? the second-order general factor could be general 

mathematical ability, for example, while the second-order 

group factors are related to specific mathematics topics 

such as algebra, calculus, and geometry. 

Drasgow and Parsons (1983) generated five data sets 

with varying degrees of dimensionality. These degrees, 

which were set in terms of the correlations among the first- 

order common factors were controlled by the parameters of 

the second-order general and group factors. They formed a 

matrix of factor loadings of items on the first-order common 

factors, which was simple structure, loadings of first-order 

common factors on the general factor, and loadings of the 

first-order common factors on the second-order group 

factors. The data sets varied from strictly unidimensional 

in which factors were perfectly correlated to five¬ 

dimensional data in which factors were almost uncorrelated 

(.02 to .14). The researchers found that as the potency of 

the general factor decreases the accuracy of the LOGIST 

estimation decreases. They recommended that LOGIST would 

provide accurate estimates when the first-order common 

factors have correlations of .46 to .6. When the 

correlations among the factors are smaller than .45, they 

insisted, one may find inaccurate item and ability 
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estimates, and LOGIST will be drawn to one of the common 

factors instead of the general ability. 

One limitation of this study was that a fixed number of 

traits were used, although a reasonable number was chosen. 

The number of items per factor which ranged from 5 to 15 was 

somewhat restricted, and one may wonder what could have 

happened if wider ranges were used. No replications were 

made in the study, and the number of items was fixed at 50. 

The data generation method was chosen to fit a factor 

analysis model to the data instead of an IRT logistic model, 

and a relationship between the parameters obtained from the 

normal ogive model and the parameters obtained from the 

factor analysis was used in the study. But this 

relationship is especial for unidimensional data, and 

whether it holds in multidimensional cases is doubtful. 

Finally, this study was close to real testing situations in 

the sense that a test usually measures one general trait and 

a number of minor abilities. The unidimensionality 

assumption is often violated through the presence and 

potencies of the minor abilities. 

Harrison (1986) investigated the robustness of IRT 

parameter estimation in LOGIST to a violation of the 

unidimensionality assumption. He followed an approach 

similar to that of Drasgow and Parsons (1983). He further 

varied test length (30, 50, 70), number of common factors 

(4, 8), and distribution of items loading on each factor 

(uniform, or highly skewed). The design he used, in terms 
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of correlations among abilities, was similar to that of 

Drasgow and Parsons (1983). The estimation of the 

discrimination parameter was better for the longer tests, 

the stronger general factor, the uniform distribution of 

items among factors, and the larger number of factors. The 

estimation of the difficulty parameter was affected in a way 

similar to that of the discrimination by all factors. The 

trait estimates followed the same trend? better estimation 

was obtained for longer tests, stronger general factor, and 

uniform item distribution. LOGIST was drawn to the stronger 

group factor (the one loaded on by most of the items) in the 

case of the skewed item distribution, and difficulty in 

estimation was reported in the 30-item, four-factor case. 

But that is not surprising since the three-parameter 

logistic model requires around 50 items to provide adequate 

estimates. The shortcomings of the study were similar to 

those of the study by Drasgow and Parsons (1983). 

Furthermore, tests that measure as many as eight traits may 

not be found in practice. 

Drasgow and Lissak (1983) used modified parallel 

analysis to investigate its effectiveness in assessing 

dimensionality of binary items. In this procedure item 

responses were generated using a method similar to that of 

Drasgow and Parsons (1983). The item and ability parameter 

estimates of the data were then used to generate artificial 

data. The plots of the eigenvalues of the corresponding 

datasets were compared. The ith factor extracted from the 
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original data was considered to be real if its eigenvalue 

exceeded that of the ith factor of the second set of data. 

The results of this study matched those reported in the 

Drasgow and Parsons (1983) research. One expects that 

corresponding factors have close eigenvalues since the two 

datasets are so related or the artificial data depends upon 

the first data. The equivalent item parameters in the two 

datasets is of concern in comparing the eigenvalues of the 

extracted factors, and how this will affect the results is 

not clear. 

Reckase (1979) utilized linear factor analysis in 

investigating the estimation of the 1- and 3-parameter 

logistic models when used with multidimensional data. The 

question of interest was how these models perform when used 

with multidimensional data. Four datasets were generated: 

(1) One-factor dataset with loadings of 0.9 on each item; 

(2) two-factor dataset with randomly distributed loadings of 

0.9 on items? (3) nine-factor dataset in which there was a 

dominant factor of 0.7 loadings on all items, and items 

randomly distributed to other eight factors with 0.6 

loadings? and (4) nine-factor dataset with items randomly 

distributed to the factors with either 0.9 or 0.0 loadings. 

For the two-factor case, Reckase found that the 3-parameter 

model was drawn to the second factor, and the 1-parameter 

model was measuring the sum of the two factors. For the 

nine-factor simple structure case, he found that the three- 

parameter model estimates were highly correlated to factor 
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nine, and the one-parameter estimates were highly correlated 

with the raw scores. 

In the data with the one dominant factor and number of 

specific factors, both models estimated the first dominant 

factor. Even when used with classroom tests, the first 

factor was measured in most of the cases. Reckase also 

addressed the question of how strong should the first factor 

be in order to get reasonable estimates. He insisted that 

the first factor should have an eigenvalue of 10 or greater, 

or account for at least 20 percent of the variance of a 50- 

item test. He also added that good ability estimates might 

be found when the variance explained by the first factor are 

less than 10 percent, but that the item parameter estimates 

will be unstable. Besides the first unidimensional case 

which was used as baseline, all of the factor structures in 

the study have weaknesses. In case two, two orthogonal 

factors may not be found in real live testing situations, 

and in case three as many as nine factors in one test data 

is not common. In the close-to-reality case of a dominant 

first-factor, it is reasonable that the first factor is 

loaded on by all items, but the magnitudes of the chosen 

loadings for the dominant and minor factors were not that 

different (0.7 and 0.6). In situations like this, one may 

argue that each item is explained by two factors. Moreover, 

the data were generated to fit a factor analysis model and 

not an IRT model. 
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Ansley and Forsyth (1985) studied the IRT 

unidimensional estimates derived from two-dimensional data. 

They generated two abilities with correlations of .0, .3, 

.6, .9, and .95. Their study was different from those of 

many others; they used a noncompensatory model while other 

researchers used compensatory models. In the 

noncompensatory models, if an item is measuring two 

dimensions, an examinee with low ability in one dimension 

and high ability in the other will have low probability in 

answering the item. The high ability in one dimension will 

not compensate for the low ability in the other dimension. 

The reverse is true for compensatory models. They used 

sample sizes of 1000 and 2000, and test lengths of 30 and 

60. With the exception of the 30-item test length, all the 

other variables and values are suitable for the use of the 

three parameter logistic model estimation, and so we would 

not expect these factors to affect the outcomes of the 

study. 

Ansley and Forsyth (1985) chose the item parameters to 

reflect test data that has two dimensions with one of them 

slightly more dominant than the other. They reported that 

the mean of the estimated discrimination values were between 

the means of the two discrimination values of the two 

dimensions, and that it approached the value of the first 

dimension as the correlation between the dimensions 

increased. The estimated b- values have means and standard 

deviations that were higher than those of the difficulty 
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values used to generate the data when the correlations 

between the traits were low. Both mean and standard 

deviation decreased as the correlation increased. The 

correlations between the estimated mean b-values and the 

true b-values (bx and b2) were all high compared to those of 

the discrimination parameter. 

For the ability parameters, the correlations between 

the estimated and generated abilities increased as the 

correlation between the traits increased. At low 

correlations between the two dimensions, the estimated 

ability was correlated with the first trait, and at the 

highest correlation between the two dimensions, the 

estimated ability has equal correlations with the two 

abilities. In the latter cases, the estimated ability was 

most highly related to the average of the original 

abilities, and the design became close to unidimensional. 

Disparate results, however, were reported for these datasets 

and unidimensional data. The correlations of estimated and 

true parameters of the unidimensional data were higher than 

those found for the two-dimensional data, and their average 

absolute differences were smaller. One limitation of this 

approach was that the choice of the noncompensatory model 

was not justified, and we may question whether the LOGIST 

program is equally suitable for compensatory and 

noncompensatory approaches. Another limitation was that no 

check was made to insure the dimensionality of the data, and 
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the number of abilities was only two in the multidimensional 

cases. 

Studies on Dimensionality Indices 

Hattie (1985) classified the indices proposed for 

unidimensionality assessment as those based on answer 

pattern, those based on reliability, those based on 

principal components and factor analysis, and those based on 

latent traits. These indices were developed with the other 

developments of the testing field, and have been replaced by 

subsequent indices after their flaws had been discovered. 

In addition to these indices, there are nonparametric 

indices that are currently in use such as Stout's T 

statistic and Bejar's method of correlation. Yen's Q3 is 

also used by some researchers to assess the 

unidimensionality of test items, and indices based on 

residuals after fitting a model to the data are getting more 

attention and applications. Many more indices may be 

developed in the future as well. 

Hattie (1984) used the classical factor analysis 

approach to assess the relative merits of various indices 

used for testing unidimensionality. Despite the fact that 

he used small number of items, his approach was beneficial. 

He simulated 1-factor, 2-factor, and 5-factor datasets in 

which the factors in the multifactor cases had correlations 

of either 0.1 or 0.5. The three-parameter logistic, 

compensatory model was used for the data generation. The 

study was based on the notion that factor loadings and item 
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discrimination values are related, although the relationship 

was not mentioned in the study. For the two- and five- 

factor cases, the simulation was manipulated in such a way 

that factor intercorrelations of .1 or .5 were produced. 

First, discrimination values of 1 were formed into a simple 

structure pattern, and then postmultiplied by a triangular 

matrix decomposition of factor correlation to provide actual 

factor loadings to be used in the simulation. Abilities 

were normally distributed with mean zero and unit variance, 

and the difficulty values were uniformly distributed between 

-2 and 2. 

Four stage analysis was made to assess the 

effectiveness of 87 indices in distinguishing between 1- 

factor and more than 1-factor data. The first criterion was 

the means of the indices in which it was expected that the 

mean of each index for one-factor case should be larger or 

smaller than the mean indices for the multifactor datasets. 

The second criterion was a three-way MANOVA in which it was 

evaluated whether the values of the indices calculated from 

the one-factor cases were significantly different from the 

values calculated from the multifactor cases. In the third 

criterion, the number of times the one-factor mean for each 

index was greater or smaller than the corresponding mean of 

the two- or five-factor case was inspected. Finally, the 

number of times the value of an index in one-factor data 

overlapped the values in the two- and five-factor data was 

counted. Indices which did not pass each hurdle of the 
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four-stage analysis were excluded from the subsequent 

analysis, and four indices in two programs (FADIV, and 

NOHARM) that utilize either the number of residuals greater 

than .01 or the sum of residuals were reported to be 

effective in testing unidimensionality. Both programs are 

based on the two-parameter latent trait model, and both use 

residual analysis. 

The number of items in the Hattie study was small. The 

correlations among the dimensions in the multifactor cases 

were restricted; factors or latent traits that have 

correlations of .1 are almost orthogonal, and it is not 

unusual to find ability correlations higher than .5 in real 

tests. How these factors may or may not affect the various 

indices was not discussed in the study. 

In another study, Hambleton and Rovinelli (1986) 

compared four methods of determining test dimensionality: 

linear factor analysis, nonlinear factor analysis, residual 

analysis, and a method developed by Bejar (1980). They used 

1500 examinees and 40 items, and two traits with 

correlations of .1, or .6. They varied the percent of items 

measuring each trait (50% for each trait, or 75% for the 

first trait and 25% for the second). One-dimensional data 

were also used as a baseline, and different criteria were 

used in assessing the effectiveness of the different 

methods. For the linear factor analysis, eigenvalue plots, 

and the matrix of residuals after fitting the factor model 

to the data were used. For the nonlinear factor analysis, 
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residuals after the model was fitted to the data were used. 

In residual analysis, the discrepancies between expected and 

observed probabilities at various ability levels are usually 

computed. The average absolute-valued residuals, the 

average absolute-valued standardized residuals, and the 

distribution of the absolute-valued standardized residuals 

were examined. Finally, in the Bejar method the correlation 

coefficients between two difficulty values of a subtest of 

items? values obtained when the subtest is analyzed 

separately and values obtained when the subtest is analyzed 

with the rest of the test, was used. 

Hambleton and Rovinelli (1986) found that the linear 

factor analysis overestimated the number of factors in the 

datasets, that residual analysis failed to detect test 

dimensionality, and that the Bejar method was not adequate 

in illuminating the multidimensionality in the data in most 

of the cases. For the nonlinear factor analysis, they 

reported that the number of dimensions in the test data was 

accurately determined. They mentioned, however, that there 

were no guidelines to follow in determining the number of 

factors and polynomial terms to retain. But McDonald (1985) 

has recommended that the cubic term is sufficient, and there 

are computer programs such as NOHARM which could be used in 

fitting nonlinear factor models to binary data. The number 

of abilities in this research was limited to two, which 

were moderately correlated or almost orthogonal. In the 

two-dimensional data, the first trait was used to generate 
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some of the item probabilities while the second trait was 

used to generate the rest of the data. How and whether this 

approach of data generation would affect the results of the 

study is not clear. 

Knol and Berger (1991) investigated the relative 

effectiveness of traditional factor analysis models and IRT 

multidimensional models to assess the dimensionality of 

tests. They grouped the IRT models into those which use 

full—information in the data and those which use partial 

information contained in the response data. Specifically, 

they studied the models implemented in TESTFACT, MAXLOG, 

NOHARM, and those in traditional factor analytic methods 

such as MINRES and iterative principal factor analysis. 

Knol and Berger (1991) simulated data of three sample sizes 

(250, 500, 1000), and three 15-item tests and one 30-item 

test of varying numbers of dimensions (1, 2, and 3). The 

number of items was small, but many of the programs they 

used could not handle large tests. 

The criteria they used to compare the programs were in 

terms of mean squared differences between the true and 

estimated item parameters, and they divided the criteria 

into factor analytic and IRT. In the 1-dimensional data, 

they reported that TESTFACT performed best in both factor 

analysis and IRT criteria, and NOHARM performed adequate in 

both criteria. They also reported that the common factor 

methods performed well with the IRT criteria. In 

multidimensional data, NOHARM did better than TESTFACT with 

38 



factor analysis criteria, and factor analysis models did 

better than TESTFACT with IRT criteria. The researchers 

concluded that factor analysis methods performed the same or 

better than IRT full-information models, and that NOHARM did 

better than its IRT counterparts. Other multidimensional 

IRT models such as LISCOMP and MIRTE were not included in 

the study, and the number of items in the study were 

restricted. The main conclusion of the study was that 

classical factor analysis are not less effective than the 

theoretically sound IRT full-information models in detecting 

the number of dimensions in test data. 

Roznowski, Tucker, and Humphreys (1991) compared three 

indices of unidimensionality: index based on local 

independence, index based on second-order loadings, and one 

based on eigenvalues. None of the indices was reported to 

be satisfactory, but the local independence index was found 

to be better than the other two, and the eigenvalues index 

was rated to be the worst. What values would make these 

indices satisfactory were not mentioned, and recommendations 

for alternative indices were not made. 

Polar Coordinate Studies 

Reckase (1985) and others developed another approach of 

looking at test dimensionality. They introduced 

multidimensional models in which the item parameters are 

represented as a vector in the latent space. Three 

assumptions of these models were: a) probability of 

answering an item correctly increases monotonically with 
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each dimension being measured; b) assumption of locating 

each item at a single point in a multidimensional space? and 

c) the most reasonable point in defining the difficulty of 

an item in the multidimensional space is where the item is 

most discriminating, or most informative. 

The item difficulty and item discrimination are 

represented in a polar coordinate format where the direction 

cosines of the angles of multidimensional difficulty (MDIF) 

determine the item characteristics as a vector in the latent 

space. The angle is a measure of the composite of abilities 

which the item measures, the signed distance from the tail 

of the vector to the origin is the magnitude of the MDIF, 

and the length of the vector is the item discrimination. 

Items with same direction cosines measure the same composite 

of abilities, a fact that may lead to conclude that items 

with same direction cosines fulfill IRT unidimensionality 

requirement although more than one ability is measured. In 

this modelling, orthogonal abilities are assumed, a fact 

that will unfortunately limit its use. Add also that more 

than two abilities were not addressed in the studies that 

used this model so far, and one may question if the method 

can handle more than two latent traits, or oblique traits. 

To demonstrate the effectiveness of this procedure, 

Reckase (1985) analyzed a 40-item mathematics test using a 

program based on a multidimensional two parameter model 

(M2PL), and the resulted item statistics were compared to 

results obtained by analyzing the same data with LOGIST and 
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by classical item analysis. An interesting feature in this 

study was that the first ability mostly measured easy items 

and the second trait measured the relatively difficult 

items. Obviously, the item difficulty and dimensionality 

were confounded. In a correlation analysis of the 

parameters, the a-parameter from LOGIST was highly related 

to the second a-value of the two-dimensional analysis, 

indicating that LOGIST estimated ability of the second 

dimension of the M2PL. All difficulty parameters of the 

three analyses were highly related, indicating that the 

difficulty estimation of the M2PL is adequate. However, the 

correlations among the discrimination parameters were low, 

and the high correlations among the b-values could not 

provide much information about the dimensionality of the 

test. 

Reckase, Ackerman, and Carlson (1988) showed that a 

two-dimensional test can be robust to the unidimensionality 

assumption. Both real and simulated data were used to prove 

this argument. In the simulated part, data with two 

orthogonal dimensions were generated by using M2PL. The 

real data consisted of responses of 2738 examinees to 68 

multiple-choice items composed of 40 mathematics items and 

28 social studies reading items. In the simulated data, the 

first 20 items measured Qlt the second 20 items measured e2, 

the third 20 items measured both traits, and the 

multidimensional difficulty of the last 20 items had 

directions equally spaced between 0 and 90 degrees with the 
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first trait. Two analyses were made of these data: 

multidimensional analysis using M2PL and specifying two 

dimensions, and unidimensional analysis using LOGIST. Yen's 

Q3 statistic (Yen, 1984) was used to determine the violation 

of the unidimensionality assumption. Clusters of items that 

measured the same composite of abilities (approximately same 

alpha-vectors) were identified in the real data, and these 

clusters were reanalyzed as unidimensional subtests, again, 

computing the Q3 statistic for each subtest. 

In the multidimensional analysis of the simulated data, 

the four subtests separately analyzed by LOGIST, and the 

subtest that measured equally both abilities when analyzed 

with the rest of the test using LOGIST did not violate the 

unidimensionality assumption as determined by Yen's Q3. In 

the real data, the subtest that had almost equal alpha- 

vectors but measured both mathematics and social studies did 

not violate the unidimensionality assumption when calibrated 

with LOGIST either. The rest of the datasets or subtests 

did violate the unidimensionality assumption. These results 

led the authors to conclude that items measuring the same 

composite of abilities could meet the unidimensionality 

requirement although different traits would be needed for 

answering the items in the test. 

This study was restricted by its use of two orthogonal 

abilities. In the LOGIST analysis, although the 3-parameter 

model was used in the real data, test lengths of 16 items 
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were used, and this is not consistent with what is often 

recommended for the 3-parameter model. 

The vector representation modelling has attracted many 

researchers, and several studies based on this approach have 

been conducted. Findings of three of these studies are 

noteworthy. Luecht and Miller (1991) suggested that more 

accurate parameter estimates can be obtained by clustering 

multidimensional data and analyzing the clusters by using 

unidimensional IRT models. They argued that estimates from 

unidimensional models are more interpretable and stable than 

estimates obtained from multidimensional models. Ackerman 

(1991) studied the effect of multidimensionality on parallel 

forms construction when items are selected by using 

unidimensionally estimated parameters. He reported that 

parallel test forms could be constructed by using 

unidimensional parameter estimates and derived information 

functions even when the test is multidimensional. Davey and 

Hirsch (1991) recommended that test scoring by using 

unidimensionally estimated parameters provide more adequate 

results than their multidimensional counter parts. 

Nonoarametric Approach Studies 

Stout (1987) introduced a nonparametric approach with 

an index to assess the dimensionality of test items. The 

index measures the degree of departure of the test from 

unidimensionality. The method is based on the notion of 

essential unidimensionality which Stout contends to be 

different from the strict unidimensionality used in IRT. 
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Basic assumptions for this approach are : a) local 

independence? b) random sampling of examinees from a 

specific population? c) independence of the response 

patterns of different examinees? d) a set of fixed items, 

possibly selected from a large item pool? and e) 

monotonically increasing item response functions. 

The method of computing the index is straight forward. 

Successive steps of splitting the test into assessment and 

partitioning subtests, grouping examinees, computing, 

normalizing, and combining subgroup variance estimates, and 

other smoothing steps are undertaken. A basic assumption 

for the statistic is that when there is local independence, 

and the test is unidimensional, examinees with approximately 

equal test scores should have approximately equal abilities 

(Stout, 1987, p.591). The statistic is based on the fact 

that the theoretical variance of examinee scores on the 

"assessment subtest” is equal to the unidimensional variance 

estimate for a fixed, equal ability subgroup. Almost any 

binary test data could be applied to the model, no matter 

how large. A minor limitation is the factor analytic or 

subjective selection of the "assessment test" in which it is 

required that the subtest be "more homogenous" relative to 

the rest of the test. What would happen if the assessment 

subtest is not more homogenous than the rest of the battery, 

or how effective the procedure would be if there is no 

homogenous subtest? The selection and nature of the 

assessment subtest is a source of concern. One may 
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construct a test that measures two traits and when one tries 

to use this model the assessment subtest could be all the 

items from one of the traits. The effects of the selection 

of assessment subtests on the performance of the index need 

investigation and clarification. 

To highlight how the procedure works, Stout (1987) 

simulated five unidimensional tests that were close in terms 

of psychometric properties to five widely used real tests, 

and assessed their dimensionality by using his statistic. 

Although two of the tests were less than 40 items in length, 

he used the three parameter logistic model and what he 

called "three parameter piecewise linear" to generate the 

item responses. The number of assessment subtest items, the 

examinee sample size, and the nominal level of significance 

were all varied (not to many levels though). The three 

parameter piecewise linear model was included to show that 

the model works under nonlogistic models as well. In the 

one-dimensional case, the statistic was powerful in not 

rejecting the null hypothesis that the data is essentially 

unidimensional in both types of models. 

To assess the power of the statistic with two- 

dimensional data, two normally distributed and correlated 

abilities were generated. An additional factor in the two- 

dimensional case was that each test consisted of nx pure 

items measured by one ability, n2 items measured by the 

other ability, and n3 items measured by both abilities. 

Five two-dimensional tests that had item parameters similar 
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to those of the five unidimensional tests were simulated. 

The correlation between the abilities, and the number of 

items measured by each ability, were varied with cases n!=n2 

and cases n1»n2+n3. The value of the guessing parameter was 

set at either 0.0 or 0.2. In the piecewise linear model the 

items were either measured by one ability or the other. The 

statistic exhibited good power in all cases with two- 

dimensional data, and the power increased as the correlation 

between the abilities decreased and the number of examinees 

increased. Under both models, the rejection rates were 

high. 

The design was limited by the fact that only two traits 

were used in the case of the multidimensional data, and only 

two moderate correlations were used. One may also wonder 

why rejection rates as low as 17 percent were obtained in 

some cases with the multidimensional data. Another concern 

is why the rejection rates in the two-dimensional test with 

the two abilities affecting equal numbers of items was not 

different from the rejection rates when one ability was 

measuring most of the items. Finally, comparison was not 

made between the index and other methods used for 

dimensionality assessment? this would have highlighted how 

the index is superior or similar to other indices already in 

use in the testing field. 

Nandakumar (1991) did another simulation study that 

addressed the effectiveness of Stout*s index. In the 

unidimensional model she used, each item was influenced by 

46 



one dominant ability and one minor ability. In one case 

there were several minor abilities each influencing small 

number of items, and in another case there was just one 

minor ability influencing all items. Due to the fact that 

the index is designed to be sensitive to the deviation from 

essential unidimensionality due to the joint variation of 

discrimination parameters ax and a2, an index of the degree 

of deviation from essential unidimensionality based on a1 

and a2 was developed. Test length, number of examinees, and 

the strength of minor abilities relative to the major 

ability were varied, and all these parameters and the degree 

of deviation from unidimensionality influenced the 

performance of the statistic. As the number of items 

influenced by the minor abilities increased, the rejection 

rates went up, and in some cases reached above the nominal 

level. The rejection rate also increased with the degree of 

deviation from unidimensionality and sample size, and 

decreased with test length. However, many of the tests used 

were less than 50 items, a fact that may prompt questions of 

model fit since the three parameter model was used. 

In the case of one dominant trait and one minor trait, 

the rejection rate increased with sample size, number of 

items (25 and 50), and the degree of deviation from 

unidimensionality. It also increased with the relative 

strength of the minor ability, and as the value was set at 

.4, all rejection rates were very high. Nandakumar also 

assessed the performance of the index in two-dimensional 
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data and shoved that the index is sensitive to these cases, 

and the rejection rates were very high. 

In this study, no baseline data were used to highlight 

the dimensionality of the tests. Other methods of test 

dimensionality assessment were not compared to this 

approach, and there is no evidence that this procedure 

worked better than the other techniques. It is not normal 

to find a test with more than ten minor abilities each 

having the same influence on corresponding items relative to 

the major ability. Also, tests having as many as 26 minor 

abilities might not be realistic, and if they exist at all, 

these tests might be expected to be multidimensional. 

Finally, the degree of departure from dimensionality could 

be influenced by many factors, not only the variations of 

the discrimination values. The relationship among the 

abilities, and the number of items measuring each ability 

could be factors too. 

Summary of Dimensionality Studies 

Some findings in the studies in the previous sections 

are noteworthy, and will be summarized in the following 

paragraphs. The studies were categorized into those that 

(1) focused on robustness of unidimensional IRT models to 

violation of the unidimensionality assumption, (2) presented 

the item parameters of multidimensional data in polar 

coordinate form and addressed different issues of testing 

when the data are not unidimensional, (3) investigated and 

compared different indices of unidimensionality assessment. 
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and (4) studies which used a nonparametric approach to 

dimensionality assessment. 

In the studies addressed the robustness of 

unidimensional IRT models to the violation of the 

unidimensionality assumption, it was found that the 

robustness mainly depends on the extent to which the test 

dimensions are correlated. If the correlations among the 

traits are high the parameter estimation of unidimensional 

models are adequate. If the correlations are low, on the 

other hand, the parameters are poorly estimated. If there 

is one dominant factor in multidimensional data, the model 

is drawn to that factor. The relative potencies of major 

and minor abilities were also found to have remarkable 

effects on the dimensionality of the tests. The 

discrimination parameter is found to be harder to estimate 

than the difficulty and ability parameters. One weakness in 

these studies is that in many cases the data were fit to a 

factor analysis model and later calibrated in an IRT model. 

In doing so, a relationship between factor analysis 

parameters and IRT parameters, which is especial to 

unidimensional data, is often used. 

The models that utilize polar coordinate 

parametrization have some advantages. They introduce vector 

representation of item parameters in multidimensional space, 

and enhance the visualization of multidimensional data by 

spatial representation of the item parameters. These 

studies also shed light on a way in which the unidimensional 
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assumption is not violated by multidimensional data; for 

example when items are equally measuring two abilities. One 

of the shortcomings of this modelling is that two orthogonal 

abilities are often assessed in the multidimensional cases. 

If more than two traits are examined, the graphical 

presentation could be difficult, and the effectiveness of 

the models could become questionable. 

In the studies comparing the existing models, programs, 

and indices for dimensionality assessment, it was found that 

procedures based on residual analysis are the most 

effective. It was also found that traditional factor 

analysis methods are not less effective than IRT approaches 

in assessing the number of dimensions in a test. These 

studies often used short tests and small number of traits. 

Nonparametric approach to dimensionality assessment has 

received attention lately. Stout's procedure (Stout, 1987) 

is based on sound theoretical background, but has not 

enjoyed wide applications yet. More research is needed on 

this procedure, especially studies comparing the procedure 

with other approaches. 

IRT Approaches to Item Selection 

Criterion-referenced tests benefit from IRT. In test 

construction, for example, IRT provides item selection 

methods that are superior to classical methods (see 

Hambleton & de Gruijter, 1983). These methods are based on 

item and test information functions. The relative merits of 
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the item selection procedures in developing criterion- 

referenced test is well documented. 

Hambleton, Mills, and Simon (1983) used simulated data 

to investigate the effects of item pool heterogeneity, test 

length, discrimination values, and two methods of item 

selection on the decision consistency of parallel tests. 

The two item selection methods they used for constructing 

the parallel forms were random and strictly parallel. In 

the strictly parallel method, items for the first form were 

randomly selected from the pool and the items for the second 

form were selected by matching their statistics to those of 

the items in the first form. Hambleton et al. found that 

the strictly parallel method was better in leading to more 

consistent decisions when the item pool was heterogeneous. 

They also found that decision consistency increased with 

test length, item pool homogeneity, and item discrimination 

values. Their study was limited to short test lengths (2 to 

20 items) though short criterion-referenced tests are common 

in practice. 

Hambleton (1983) compared the one-, two-, and three- 

parameter logistic models in the area of mastery/non-mastery 

determinations. He investigated the performance of the 

models in estimating domain scores and making 

mastery/nonmastery decisions. Hambleton found that the 

three models were relatively comparable in domain score 

estimation, and that scores were overestimated at the lower 

abilities and underestimated at higher abilities. In 
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decision consistency, Hambleton found that the one- and 

three-parameter models provided the same rates of decision 

consistency at average and high ability levels, while the 

one-parameter model provided less decision consistencies at 

the lower ability levels. 

Pozel and Wise (1991) studied the effects of model 

choice, test length, and sample size on decision consistency 

and accuracy. They used the content-optimal method to 

select either 50 items or 100 items from a pool of 142 

items. The pool was a national certification examination 

which was fitted to the one-, two-, and three-parameter 

logistic models. The decision consistency and accuracy of 

the 50- and 100-item tests were compared for all models. 

Reliabilities even higher than that of the full test were 

obtained for the 50- and 100-item tests in nearly all 

models. The decision accuracy was the highest for the 3- 

parameter model for both tests, and moderately low for 1- 

parameter model and 50-item test (93.6%). These results 

highlight the benefits that can be gained from using IRT 

item selection for criterion-referenced tests; a long test 

can be cut to 30% without compromising the test score 

reliability and validity. A classical solution is possible 

and gains would accrue but it would be considerably more 

difficult to implement. 

Hambleton and de Gruijter (1983) examined two item 

selection methods; random and optimal, for constructing 

criterion-referenced tests. The goal was to minimize the 
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probabilities of misclassification (passing nonmasters or 

failing masters), using the smallest possible number of 

items. For 13 test lengths (8 items to 20 items), the 

researchers found that optimal item selection gave lower 

misclassification probabilities in all cases. They also 

found that substantially less classification errors resulted 

when both difficulty and discrimination values were used 

rather than using difficulty values alone. 

Haladyna and Roid (1983) studied the effects of random 

and adaptive item selection methods on domain score 

estimation. In the adaptive method, the difficulty level of 

selected items were either close or substantially different 

from the examinee ability scores. Using either the random 

or one of three variations of the adaptive method 

(difficulty of selected items match the examinee ability, 

selected items are too easy for the examinees, or selected 

items are too hard for the examinee), tests of varying 

lengths (10, 20, 30, and 40) were constructed from an item 

pool. The errors in domain score estimation were compared 

among the item selection methods and test lengths. Haladyna 

and Roid found that the on-level adaptive method performed 

best, and the off-level methods gave the largest errors. 

They also found that test lengths of 20 to 30 items can 

provide satisfactory precision. 

Hambleton, Arrasmith, and Smith (1987) compared four 

item selection methods in providing accurate decisions and 

higher information functions. The four methods were random, 
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classical, optimal, and content-optimal. The researchers 

used a 249-item credentialing examination as an item pool, 

and as a criterion test. Using each method, a 20-item test 

was selected from the pool, and its decision accuracy and 

information function were compared among the methods. 

Hambleton et al. found that the optimal method provided the 

most information, followed by the content-optimal, and that 

these two methods provided better decision accuracies than 

the other non-IRT methods. This was true for both the total 

examinee population and a constrained sample which consisted 

of those examinees who scored near the cut-off point, and 

who were the most likely to be misclassified. 

There is substantial evidence that optimal methods of 

item selection are useful for test construction in 

criterion- referenced testing. These methods lead to the 

development of short tests that are optimal in domain score 

estimation and classification of examinees into mastery 

levels. With the help of computers, the methods could be 

easily and flexibly implemented, and, in fact, automated. 

Automated Test Development Studies 

Item and test information functions are among the 

special features of test construction in using IRT. 

Computer technology further empowered the test development 

procedures, and made possible the inception of computer 

based test construction methods. These methods, which have 

emerged in the last decade, mainly use mathematical 

optimization algorithms. Linear and integer programming 
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algorithms, which are famous in operations research, are 

utilized. In these algorithms, the aspects of the items to 

be selected for the test are often optimized subject to 

constraints. These constraints are some properties of the 

items in the pool or the test, and it could be any of the 

item parameters or attributes such as content, format, 

difficulty, discrimination, information function, and so on. 

The automated test construction techniques are 

flexible, and are formulated to optimize some objective 

function which could be the minimization of test length, 

maximization of test information, minimization of deviations 

from the target information, minimization of administration 

time, or combinations of some of these objectives (van der 

Linden & Boekkooi-Timminga, 1989). The decision variable is 

always the selection of an item, and it takes the value of 1 

or 0 for selected and not selected items, respectively. 

Hence, integer programming is the suitable option for the 

item selection problems. However, an integer programming 

solution can be very time-consuming (Stocking, Swanson, & 

Pearlman, 1990; van der Linden & Boekkooi-Timminga, 1989), 

and some approximations to it are recommended in the 

literature. These options include the following: 

1. Linear solution in which the decision variables are 

allowed to take noninteger values, and the obtained 

values are rounded to zero and one. 

2. Improved linear rounding in which the decision 

variables are ordered in descending order, and the 
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first n of them are rounded to one where n is the 

desired number of items. 

3. Optimal rounding in which a linear solution is sought 

first, and an integer solution is sought for those 

variables with fractional values. 

4. First 0-1 solution in which the first integer solution 

is considered although it is not the optimum. 

5. Second 0-1 solution in which the second integer 

solution is considered although it is not the optimum 

solution. 

The linear and improved linear solutions do not always meet 

the constraints, and the first and second 0-1 solutions need 

more computer time (van der Linden & Boekkooi-Timminga, 

1989? Stocking, Swanson, & Pearlman, 1990). The optimal 

rounding method is the most favorable in terms of constraint 

fulfillment and computer time (ibid). The behavior and 

performance of automated item selection algorithms have been 

investigated by many researchers. 

Theunissen (1985) studied the effects of the size of 

the item bank, target information function, IRT logistic 

model, and the addition of content constraints on the 

automated test development. He particularly investigated 

the effects of these factors on computer time. Theunissen 

used an integer solution, and reported that CPU-time 

increased with the size of the item bank. He also found 

that the location of the peak and the height of the target 

information affected the number of items selected. More 
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items were needed for a highly peaked target information 

function, and more items were needed for targets that were 

peaked at points away from the mean difficulty of the item 

bank. As expected, the addition of the content constraint 

increased the CPU-time. The integer solution, however, was 

the slowest among the methods used for optimization 

problems. 

Van der Linden and Boekkooi-Timminga (1989) discussed a 

maximin (maximizing the minimum) model in test development. 

They introduced a model which can accommodate the selection 

of items subject to several constraints such as target 

information, test composition, test administration time, 

upper and lower limits of certain item parameters or 

features, inclusion or exclusion of individual items, and 

inter-item dependencies. They mentioned the difficulty 

encountered in 0-1 programming in automated test 

construction which needs excessive CPU-time. They also 

mentioned the inaccuracy in linear programming which result 

in items with fractional values, and might lead to lack of 

satisfaction of some constraints. They recommended a model 

in which a linear solution is sought first, and the number 

of items with fractional values are considered as a 0-1 

problem. The authors compared four different methods; 

optimal 0-1 solution, linear solution, optimal rounding, and 

first 0-1 solution. They showed that the optimal rounding 

solution is the most effective in terms of time, fulfillment 

of constraints, and finding the optimal solution. 
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Adema (1990) studied the effectiveness of integer 

programming in constructing two-stage tests. He focused the 

placement of constraints in developing two-stage tests, and 

compared when constraints are formulated for the two stages 

at one time and when the stages have separate constraints. 

Adema constructed a 20-item test from a pool of 3 00 items 

using both methods, and reported that imposing constraints 

on each stage at a time is easier to implement. He argued 

that imposing constraints for the whole test at one time may 

raise some difficulties, but these difficulties were not 

discussed in his paper. The CPU-times needed for the two 

types of models were not that different; 11.2 seconds for 

the stage level constraints and 8.274 seconds for the test 

level constraints. 

Baker, Cohen, and Barmish (1988) investigated the 

characteristics of items selected through linear 

programming. The variables of their study were (a) IRT 

model (3 logistic models), (b) target information 

distribution (uniform & normal) , (c) peak of the target 

information, and (d) the range of the ability of interest. 

Baker et al. reported that the one-parameter model requires 

more items to reach the desired target information than 

required by the more general models. Relatively large 

discrepancies between obtained and target information curves 

occurred in the middle range of the ability for the 

uniformly distributed information functions, and at the ends 

for peaked information curves. The number of items selected 
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and the discrepancies between realized and target 

information curves both increased with the range of the 

ability of interest. Difficulty was reported in the case of 

the 3-parameter model and uniform target; the items in the 

pool (500) were not enough to provide the required 

information at the extremes of the target information. 

The difficulty of the selected items were clustered at 

the extremes for all models when the uniform target was 

used. When normal targets were used, the b-values were 

clustered at the center for all models. When the two- and 

three-parameter models were used, the mean discrimination 

value of the selected items was higher than the mean 

discrimination value of the item pool, and the range of the 

values was small. The researchers observed that the linear 

programming solution focused on the "worst” areas of the 

target information; extremes for the uniform target and the 

peak for the normal target. Baker et al. also compared the 

linear and optimal rounding methods, and argued that the 

latter did not significantly contribute above the former 

although it needed extensive computer time. That finding is 

not consistent with the findings of other researcher (see 

Stocking et al., 1990; van der Linden & Boekkooi-Timminga, 

1989). 

Stocking, Swanson, and Pearlman (1990) reported that 

the optimal rounding approach did not give them satisfactory 

solutions when they used it in automated item selection. 

They introduced a model that enabled them to come "as close 

59 



as possible to all constraints simultaneously" rather than 

not fulfilling any one of them (Stocking, Swanson, & 

Pearlman, 1990, p. 8). They used weights to reflect the 

relative importance of the constraints, and minimized the 

weighted sum of deviations from fulfilling all constraints. 

They named their model the ’successive item replacement 

algorithm', and it replaced items until the least deviation 

from satisfying all constraints is attained. Using a 480- 

item bank, they built 25-item tests by each one of the 

following item selection methods: (a) crude linear 

rounding, (b) improved linear rounding, (c) optimal 

rounding, (d) first 0-1 solution, (e) second 0-1 solution, 

and (f) their model. The researchers reported that their 

algorithm performed better than the other methods in terms 

of CPU-time and/or satisfying the desired constraints. 

Green, Yen, and Burket (1989) discussed a computer 

program they use for test construction. The program uses 

item and test information functions, and allows the test 

constructor to manipulate the process in many ways. There 

is a feature in which content constraints can easily be 

added to the selection process. There is an option in which 

all selected items, the objectives they measure, their 

parameters, and the amount of information they provide at 

any specified ability could be seen. There is another 

program that displays the features of the selected items, 

such as standard error of measurement, the test 

characteristic curve, and the number of poorly fitting items 
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used. Green et al. concluded "we are impressed with the way 

[the program] enables us to capitalize on the strengths of 

an item pool and to build a test rapidly ... we believe that 

it gives us very good control of the construction because of 

its basis in IRT" (Green, Yen, & Burket, 1989, p.308). 

In automated item selection methods, precalibrated item 

banks that are fitted to one of the IRT models are always 

needed. The computer time and the realization of target 

features mainly depend on the size of the item bank, the 

number of constraints, and the programming solution. The 

optimal rounding method is more effective than integer and 

"strictly" linear solutions. The desirability of automated 

item selection methods is well understood, and it is hoped 

that the method will receive wide applications in the near 

future. 

Computer Programs 

In this section three computer programs that are 

suitable for this study will be reviewed. 

TESTSIM 

This program was developed by Stout and his 

associates (1991), and builds on the concept of essential 

unidimensionality introduced in Stout (1987). The program 

generates examinee binary responses from multidimensional or 

unidimensional IRT logistic models. It can create data with 

any of four models: 

1. Strictly unidimensional model. Generates strictly 

unidimensional data. The examinee abilities are 
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normally distributed with mean zero and unit variance, 

and the item parameters are sampled from normal 

distributions, with user specified means and variances. 

2. Essential unidimensional model with two abilities. 

This model generates tests with one dominant and one 

minor dimension. Both traits influence all items but in 

different degrees. The influence of the minor trait 

decreases with the number of items. Abilities are 

bivariate normal with zero means and unit variances, 

and they are uncorrelated. The b- and a-values are 

generated from normal distributions with specified 

means and variances. 

3. Essential unidimensional model with many traits. This 

model simulates tests with one dominant trait and 

several minor traits. Each minor dimension influences 

a subset of items, while the major ability affects the 

whole test. Two parameters chosen by the user are 

essential in this model; the number of minor traits and 

the strength of the major ability relative to the minor 

abilities. The examinee abilities are generated from 

N(0,1), and the item parameters are normally 

distributed with user specified means and variances. 

If the test is desired to be unidimensional, both the 

number of minor traits and relative strength of minor 

traits should be small. 

4. Two dimensional model. In this model, tests with two 

dimensions are simulated. As before, the user 
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specifies means and variances of the a and b 

parameters. The user also specifies in this case the 

correlation between the two traits. 

For all models, the guessing parameter is set to a constant. 

The program simulates situations that are close to real 

data, especially model 3. It is flexible, and the user is 

provided many options to generate data. One limitation is 

that the program generates normally distributed item and 

ability parameters only. 

NOHARM 

This program, which is written by Fraser (1983), fits 

the multidimensional normal ogive IRT model to binary data. 

It is based on a theory developed by McDonald (1967a, 1982), 

and approximates the normal ogive model by a polynomial 

series. The output of the program contains residual 

covariances obtained after fitting the model to the data. 

The user would search relatively large residuals which would 

be seen if the model does not fit the data, but how large 

the residuals need to be is not known. Originally, there 

was no fit statistic for the model, however, Gessaroli 

(personal communication, March 1992) has added a fit index 

to the program. This program is getting more attention and 

use, and many researchers who use IRT prefer NOHARM because 

of its strong theoretical basis. NOHARM can handle large 

datasets, and is user friendly. 
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OPTIMAL TEST DESIGN (OTP) 

This program, which was written by Verschoor (1991), 

uses a linear programming algorithm to select items from 

item banks. The user prepares three input files; item bank 

file which contains item parameters and other item 

characteristics, specifications file which contains target 

information and other constraints, and a third file that 

contains the names of any item categories (the names are 

coded as numbers). The target information function is 

important in the specifications file, and many other 

constraints, such as number of items from each content or 

item format, can be imposed on the item selection process. 

Some of the error messages in the program are not helpful, 

and there is no option to request the exact number of items 

needed for test. Improvements can be expected in subsequent 

releases of the software. 

Summary 

Studies on test dimensionality, IRT approaches to item 

selection in criterion-referenced tests, and automated item 

selection methods, have been reviewed in the preceding 

sections. It has been seen in the dimensionality studies 

that IRT unidimensional models are robust to less severe 

violations of the unidimensionality assumption. But the 

effects of the mild violations of the assumption on test 

score validity and reliability were not addressed in any of 

the dimensionality studies. In the studies on item 

selection methods, it has been documented that optimal item 
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selection methods provide higher decision consistencies and 

accuracies than non optimal methods. But these studies 

mainly used unidimensional tests. What could have happened 

to decision consistencies and accuracies of the constructed 

tests if the item banks were not strictly unidimensional has 

not been studied? 

None of the studies addressed the effects of 

multidimensionality on criterion-referenced tests. The 

accuracy of mastery/nonmastery decisions based on criterion- 

referenced tests when the test data are multidimensional and 

the test model is unidimensional has not been investigated. 

The performance of optimal item selection methods when the 

test is multidimensional was not studied. A comprehensive 

Monte Carlo study in which these situations are examined 

seems timely. This is the focus of this study, and the 

methodology will be outlined in Chapter III. 
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CHAPTER III 

METHODOLOGY 

Introduction 

The procedures followed in this study are based on the 

assumption that unidimensionality is violated through the 

presence of minor traits beyond the major trait or ability 

the test is intended to measure. The situations simulated 

or investigated reflect cases in which tests are being 

constructed from item pools. Multidimensionality exists and 

is being assessed at the item pool level, and its effect on 

tests developed from the pool will be examined. A common 

dominant ability underlies the examinee responses on items 

in the pool, and minor abilities that are specific to 

particular sections of the test are operating too. In many 

situations, a test may have a dominant trait and some minor 

traits. For example, it could be true that reading ability 

is one minor factor in the examinee performance on a physics 

test. Another cause of the presence of minor abilities 

might be the presentation of test items in different formats 

that require different techniques from the examinees to 

answer the items. Another possibility is that different 

sections of a test may require different minor abilities to 

get correct responses, because the sections usually measure 

related but different aspects of the same content domain. 

When a test is constructed from a multidimensional item 

pool, the item selection method used may influence or have 

66 



impact on the dimensionality of the resulting test. If 

items that tap a specific trait are sampled more than the 

items tapping other traits, the resulting test may not 

reflect the item pool in terms of dimensionality. The 

results might look different if items are selected equally 

from the different dimensions. Imagine the case where a 

pool of 100 items has 4 dimensions, each dimension 

influencing 25 items. If a 20-item test is constructed from 

this pool by selecting items at random, the dimensionality 

of the resulting test might be similar to that of the pool, 

but may not be certainly known. If the 20 items are sampled 

from the four dimensions proportionally, on the other hand, 

the resulting test may have dimensionality equivalent to 

that of the item pool. If all 20 items are chosen from one 

dimension, the resulting test might be unidimensional. In 

short, the item selection method may have an impact on the 

dimensionality of the resulting test when the item pool is 

not unidimensional, and some item selection methods might 

work better than others. 

This study addressed three issues: (1) Violation of 

the unidimensionality assumption by the presence of minor 

traits besides the major ability; (2) test development in 

situations where items are selected from item pools that are 

not strictly unidimensional? and (3) the performance of some 

item selection methods in such situations. The study began 

with a data simulation in which item pools with different 

amounts of multidimensionality were simulated. Preliminary 
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analyses were made to assess if the data was being generated 

as expected. The seeds of the random number generator were 

changed to see if they have effects on the generated item 

and ability parameters. The factor structures of the 

generated data were examined using both linear and non¬ 

linear factor analysis. The generated test data were then 

calibrated by using the IRT program BILOG (Mislevy & Bock, 

1986). 

The robustness of the maximum likelihood estimation 

procedure, as implemented by the widely used computer 

program LOGIST, to the violation of the unidimensionality 

assumption has been studied (see, for example, Drasgow & 

Parsons, 1983; Harrison, 1986? Ansley & Forsyth, 1985? 

Reckase, Ackerman, & Carlson, 1988). In assessing the 

robustness of MLE, i.e., LOGIST, researchers often compare 

the true and estimated item and ability parameters? they 

assess the estimation accuracy of the program when the data 

is not strictly unidimensional. They do not, however, 

examine the model-data fit using residual analysis or some 

other fit statistics. The goodness-of-fit assessment is an 

important step for the subsequent analysis of the test data. 

If an IRT model does not fit the data, the estimation of 

ability and item parameters might not be accurate, and the 

conclusions derived from these estimates might be 

inadequate. 

It has been found in several studies that LOGIST is 

robust to "minor" violations of the unidimensionality 
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assumption, although the model-data fit was not addressed in 

many of the studies. The robustness of BILOG to the 

violation of the unidimensionality assumption does not 

appear to have been studied, and it is hoped that it is not 

less robust than LOGIST. BILOG provides item and test fit 

statistics which LOGIST does not provide, and which help in 

examining the model-data fit. In this study, the model-data 

fit was insured by examining the fit statistics provided by 

the program, and by performing residual analysis after 

fitting IRT models to the data. The estimated parameters 

were also correlated with their true values to assess how 

well the parameters in each dataset were estimated. 

Short tests were constructed from each generated item 

pool using each of four methods of item selection. The 

tests were then analyzed and scored using BILOG (Mislevy & 

Bock, 1986). The estimated abilities were correlated with 

the true abilities for each dataset and for each item 

selection method. The decision accuracies of these tests 

were compared among item pools, and among item selection 

methods. Analysis of real data followed. First, the 

dimensionality of the test data was examined. Second, the 

data were calibrated with BILOG. Finally, short tests were 

constructed from the test data by using each of four item 

selection methods. The measurement precision and decision 

accuracies of the resulting tests were then compared by item 

selection method. 
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PART A: Simulation 

Purposes 

One purpose of this part of the study was to 

investigate the effect of item pool dimensionality on 

ability estimation and decision accuracy. To do so, test 

data with different degrees of multidimensionality were 

simulated. Another purpose was to study the influences of 

item selection methods on decision accuracy, and their 

interaction with item pool dimensionality. 

Data Simulation 

A FORTRAN program similar to the IRT program TESTSIM 

discussed in Chapter II was used for the data simulation. 

The program is a modified extension of the simulation 

program DATAGEN (Hambleton & Rovinelli, 1973). It is based 

on the concept of essential unidimensionality introduced by 

Stout (1987) and simulates test data with one major 

dimension and several minor dimensions. It uses a bivariate 

extension of the two-parameter logistic model which can be 

written as 

1 

Pf = - 
1 + expt-DOxC^-b!) + a2(0k-b2)]} 

(1) 

where: 

Pi is the probability of answering item i correctly 
ex is the dominant ability 
ek is the kth minor ability 
D is an scaling factor equal to 1.7 
ax is the discrimination of item i in the major dimension 
a2 is the discrimination of item i in the minor dimension 
bx is the difficulty of item i in the major dimension 
b2 is the difficulty of item i in the minor dimension. 
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In dimensionality assessment, the guessing parameter 

usually cause some problems (see, for example, Carroll, 

1945? Carroll, 1983? Bock, Gibbons & Muraki, 1988). That 

might be the reason many dimensionality researchers set the 

parameter to a constant value, and why many IRT computer 

programs such as NOHARM, TESTFACT, and TESTSIM constrain it 

to be constant or treat it differently from the other item 

parameters. To avoid problems that the c-parameter may have 

caused in this study, it was set equal to zero. 

The data were simulated in a way such that the major 

trait influenced all items in the pool, and each minor trait 

affected a cluster of items. Each item was affected by the 

major trait and one of the minor traits. All minor traits 

influenced equal numbers of items in the pool, because if 

any minor trait influenced more items than the other minor 

traits that minor trait might become more significant than 

the others. It is not known, however, how many items a 

minor trait would need to influence in order to become 

dominant. This issue was not addressed in this study. The 

number of minor dimensions was set equal to 4? i.e, each 

item pool was divided into four parts, each part being 

influenced by the major trait and one of the minor traits. 

Strength of minor dimensions. The variation of the 

potency of each of the minor dimensions could be attained by 

varying the relative means and variances of the a-parameters 

of the major and minor traits (Ansley & Forsyth, 1985? Way, 

Ansley & Forsyth, 1988). In simulating two-dimensional data 
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with one of the traits stronger than the other, Ansley and 

Forsyth (1985) used a mean of 1.23 and standard deviation of 

.34 for the discrimination of the dominant ability and a 

mean of .49 and standard deviation of .11 for the 

discrimination of the minor ability. 

For the same purpose, Stout (1987) introduced an index 

of lack of unidimensionality which controls the means and 

variances of the a-parameters in the major and the minor 

traits. The index, £, represents the influence of each 

minor trait relative to the major trait, and the means and 

variances of the a-parameter in the major and minor traits 

could be related as follows: 

N((1 - OM, 71 - £ o) (2a) 

N(£M/ JT or) (2b) 

a1 + a2 “ N(ji, o) (2c) 

where a, - discrimination parameter for dimension 1 (major) 

discrimination parameter for dimension 2 (minor) 

mean of discrimination parameter for the whole 

a2 " 

M - 

test 

o - standard deviation of the a-parameter for the 

test 

£ - Strength of minor trait relative to the major 

trait. 

The index £ varies from 0.0 which means the test is 

strictly unidimensional to a value of 0.5 which reflects 

that the minor traits are not less potent than the major 
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trait. A value greater than 0.5 for the index implies that 

the dominant dimension is not dominant any more; a case that 

goes beyond the concept of essential unidimensionality. If 

we choose, for example, a value of .2 for £ and wish to 

generate two-dimensional discrimination of mean 1.0 and 

standard deviation 0.4, we will get a mean of 0.8 for ax and 

a mean of 0.2 for a2. The standard deviations will be 0.358 

and 0.179, respectively. £ controls the values of the a- 

parameters for the respective traits, and hence, the 

potencies of the traits. Nandakumar (1991) studied the 

effect of the index on the dimensionality of a test and 

reported that tests might not be essentially unidimensional 

if the index is set as high as 0.4. In this study, £ took 

the same value for all minor traits in each item pool. 

In choosing the distributions and descriptive 

statistics of the ability and item parameters for the 

simulation process, two strategies were utilized. Real data 

were analyzed and the resulting descriptive statistics 

(distributions, means, variances, and ranges) were examined. 

Secondly, other studies were reviewed and the distributions, 

means, variances, and ranges of model parameters were 

examined. The values obtained in the two cases were 

considered in choosing the means and variances of the 

ability and item parameters in the data generation process. 

Two facts were kept in mind: Test scores are more 

homogeneous in criterion-referenced tests, and most of the 

reviewed research concerns norm-referenced tests. 
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Ability. In criterion-referenced tests, the latent 

trait score distribution is often negatively skewed. In 

analyzing one national credentialing examination, skewness 

of -.25, a mean of .094, and a variance of 1.127 were found 

for the ability distribution. Minimum and maximum values 

were -4 and +4 respectively because the analyses were made 

with BILOG which restricts the ability parameters to this 

range. To simulate ability scores close to these values, a 

beta distribution with parameters 5 and 3 was used. These 

parameters will provide a mean of 0.6 and standard deviation 

of 0.2. The scores were then rescaled to have a mean of 

zero and variance of 1. 

Discrimination. The discrimination parameter is 

important in dimensionality assessment because it represents 

the factor loadings in factor analysis. In analyzing test 

data, Lord (1968) found a range from .4 to 1.7 with a mean 

of 1.07 and standard deviation of .4. Ree (1979) 

determined that discrimination usually varies from .5 to 

2.5. He used a range between .65 and 1.61 with a mean of 

.95 and standard deviation of .28. In simulating test data, 

Swaminathan and Gifford (1983) used a mean of 1.28 for 1000 

examinees for an 80 item test. In a simulation study, 

Hambleton and Cook (1983) used a mean of 1.12. In analyzing 

a credentialing exam, values lower than the values found in 

the literature were obtained (mean of .642 and standard 

deviation of .212). 
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In this study, two sets of values were used for 

generating the discrimination parameter: (1) A mean of 1.0 

and standard deviation of 0.4 to reflect achievement test 

data that have a-parameters close to those reported in the 

above cited research studies, and (2) a mean of 0.6 and 

standard deviation of 0.2 to reflect a licensure test such 

as the above mentioned credentialing exam. The intention 

was not to compare the two types of tests but merely to 

assess the effect of the presence of minor dimensions on the 

decision accuracies in both types of tests. The first test 

(mean of 1.0 and standard deviation of 0.4) will be called 

Test 1 and the second test (mean of 0.6 and standard 

deviation of 0.2) will be called Test 2 in the remainder of 

the study. Each generated a-value will be broken down into 

two components as will be discussed shortly. 

Difficulty. For the difficulty parameter, values 

obtained in the literature and values obtained in analyzing 

real data were compared. Lord (1968) reported a range of - 

1.5 and 2.5 with a mean of .58 and standard deviation of 

.87. Ree (1979) contended that values typically fall 

between -3 and +3. Swaminathan and Gifford (1983) used a 

mean of .15 for 80 items and 1000 examinees. Hambleton and 

Cook (1983) and Hambleton (1983) used uniformly distributed 

difficulty in the interval [-2,2]. In one credentialing 

exam, normally distributed b-values with a mean of -.534 and 

standard deviation of 1.09 were found. The difficulty 

parameter is not as critical as the discrimination in 
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dimensionality assessment, and it was deemed that one value 

for both types of tests would be sufficient. Normally 

distributed b-values with mean of -.53 and standard 

deviation of 1 were chosen to be used in simulating both 

Test 1 and Test 2. 

Simulation. When the descriptive statistics for the 

item and ability parameters were chosen as discussed above 

for the major trait, the statistics of the parameters for 

the minor dimensions were calculated by the generating 

program according to equation 2. Six item pools (three for 

each test), each consisting of the binary responses of 1000 

examinees on 200 items, were generated as follows: 

1) Five independent ability scores were generated from a 

negatively skewed beta distribution for each examinee, 

corresponding to the major and four minor abilities. The 

ability scores were rescaled to have zero means and unit 

variances. 

2) Two b-values and one a-value were generated from a normal 

distribution with the above discussed means and variances 

for each of the 200 items and for Test 1 and Test 2. The 

few a-values that turned out to be less than zero were 

set to zero, and the b's were independent. 

3) The value of £ (see equation 2) was chosen as 0, .3, or 

.5 for the 3 item pools for each type of test. 

4) By equation 2, the magnitudes of the a-parameters in the 

major and minor traits for each item were controlled. 

The a-value generated for each item was broken down into 
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two components, one for the major trait and one for the 

minor trait. If a is high, both ax and a2 will be 

relatively high. 

5) Each minor trait was affecting 50 items. The first minor 

trait was affecting the first 50 items, the second minor 

trait was affecting the next 50 items, and so on. 

6) The probability of getting an item correct by an examinee 

with certain abilities was obtained by equation 1. 

7) Uniform random numbers in the interval [0,1] were 

generated for each item and compared with the probability 

of each examinee getting each item right. If the 

probability was less than the random number, the examinee 

is scored 0 for that item, and 1 otherwise. 

The descriptive statistics of the item and ability 

parameters used to generate the data are highlighted in 

Table 1. This process resulted in a 1000x200 matrix of 

binary responses for each of the six datasets. 

Table 1 

Description of the Parameters 
Used to Simulate the Data 

Test Statistics e b' s a1 + a2 

Mean 0.0 -.53 1.0 
1 

Std. Dev. 1.0 1.00 0.4 

Mean 

o
 • 

o
 -.53 0.6 

2 
Std. Dev. 1.0 -.53 0.2 
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Assessing the program. It was deemed necessary to 

insure that the program was generating the expected data. 

To obtain a thorough analysis with reasonable variables, the 

number of examinees and the number of items were reduced to 

500 and 40, respectively. Two extra levels of £ were also 

included at this stage; 0.2 and 0.4. The performance of the 

data generating program was examined in three analyses. The 

seeds of the random number generator were changed, and the 

descriptive statistics of the generated item and ability 

parameters were examined. This analysis was intended to 

probe whether the starting values of the random numbers had 

effects on the generated data. 

Second, linear factor analyses were performed on the 

five datasets (with minor dimension strengths of 0, .2, .3, 

.4 and .5) with one to five factor solutions. The 

eigenvalues of the matrices consisting of the tetrachoric 

correlations of the binary data, and the variances explained 

by each factor were compared among the datasets. This was 

expected to highlight if the generated datasets had 

different factor structures. Finally, nonlinear factor 

analysis, using the program NOHARM (Fraser & McDonald, 

1988), was undertaken. A unidimensional solution was fitted 

to each dataset, and the results provided for the five 

datasets were examined. The sum of the squares of residuals 

and the percent of standardized residuals in the variance 

covariance matrix greater than 1.96 were compared among the 

datasets. This was expected to highlight whether different 
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results would be obtained when an IRT model is fitted to the 

five datasets with the different dimensionality structures. 

These three analyses were used to probe whether the 

simulation program was working as expected. 

IRT analysis. After satisfactory results were obtained 

from the data generation step, an IRT analysis was performed 

in each dataset. The datasets were six? two tests (Test 1 & 

Test 2) with three levels of minor dimension strengths (0.0, 

0.3, & 0.5). Each dataset for each type of test had a 

different dimensionality structure as determined by the 

relative strengths of the dominant and minor traits. The 2- 

parameter model of the BILOG program was used to calibrate 

the item and ability parameters. 

It was not possible to calibrate 200 items in one run. 

So the items in each dataset were grouped into three 90-item 

sets with overlapping items, and each group was calibrated 

separately. To justify the calibration of the data in three 

sections, the equivalence of the parameter estimates of the 

common items were assessed by a) plotting the two sets of 

values against each other, and b) using linear regression 

analysis with the two estimates. It was expected that the 

values would almost be the same to justify the calibration 

of each dataset in three parts with BILOG. If they were 

not, the presence of common items provided a basis for 

statistical adjustments (i.e. equating). The data-model fit 

was assessed in two ways: 1) by looking at the item and test 

fit statistics provided by the program, and 2) by carrying 
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out a residual analysis of the item and ability parameters 

provided by the program using the RESID computer program 

(Hambleton & Murray,1983). The data-model fit was necessary 

for the rest of the data analyses, and if it were not 

attained for any dataset, another dataset that fit the model 

would have been generated. 

The estimated ability, difficulty, and discrimination 

parameters were correlated with their true values. The 

purpose was to examine if the strength of the minor 

dimensions affected the estimation of the parameters, 

especially the estimation of the ability scores. The item 

parameters and examinee true ability scores were kept for 

further use. The dominant true ability scores 

(uncontaminated by the minor factors) were used as a 

criterion. The intended use of the simulated item pools and 

constructed tests was assumed to be classification of 

examinees along one ability; the major ability. The item 

parameters were used to create item banks from which items 

were later selected, and which of the four minor dimensions 

influenced each item was also shown in the banks. 

Variables 

Degree of lack of unidimensionalitv. This variable 

which reflects the factor structure of the item pools was 

varied to three levels in the main analyses of the study, 

and up to five levels during the evaluation of the data 

generation process. These levels stand for the influences 

of the minor traits relative to the dominant trait. In the 
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main analyses, three tests of 200 items each with different 

factor structures in terms of dimensionality were generated 

for Test 1 and Test 2. Building on studies by Nandakumar 

(1991) and Stout (1987), the relative influences of the 

major and minor abilities for the item pools were 0, 0.3, 

and 0.5. These values were chosen to vary from data that 

had no minor dimensions to a test data that had relatively 

strong minor dimensions (equal values for ax and a2) . 

Item selection. In developing tests by selecting items 

from each item pool that corresponded to the six datasets (2 

types of tests and 3 levels of £) four item selection 

methods were used: 

1. Random method: items were chosen from the item banks at 

random, and the item statistics were not used. This 

method is usually used in situations where item 

statistics are not available, or items are considered 

to be equally useful. 

2. Optimal method: items that provide the most information 

at the cut-off score were selected. The other item 

properties? that is, which minor factor influences each 

item were not considered in this method, and were not 

considered to be important in the resulting test. This 

method focuses on the measurement precision near the 

cut-off score. 

3. Optimal-balanced method: items that provide the most 

information at the cut-off score were selected, and the 

items influenced by the four minor factors were equally 
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represented in the resulting test. This method insures 

the content validity, and measurement precision near 

the cut-off score of the resulting test. It has been 

recommended for practical test development (see, for 

example, Hambleton, Dirir, & Lam, 1992). 

4. Optimal-unbalanced method: test items were selected to 

provide maximum information at the cut-off score, and 

the number of items from each of the four minor factors 

that were included in the resulting test was not 

balanced. Approximately 63 percent of the selected 

items were from one of the minor traits, and the rest 

were equally distributed among the other minor traits. 

This approach reflects cases in which most of the items 

in an item bank load on one trait, and cases where most 

of the selected items tap a single dimension. The 

Optimal Test Design computer software (Verschoor, 1991) 

was used to select items in methods 2, 3, and 4. 

Test length. Using each method of item selection, a 

test of 40 items was constructed from each of the six item 

banks (200 items in each bank). This test length is typical 

of many tests. Also, shorter tests may result in inaccurate 

parameter estimation, and longer tests might not easily be 

handled with the available computer facilities. As 

mentioned earlier, the number of minor traits was four, and 

each was influencing 10 items for item selection with method 

3 (optimal-balanced), 63 percent or 13 percent of the items 
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for method 4 (optimal-unbalanced), and any number of items 

for methods 1 and 2. 

Number of examinees. In all simulated test data and 

constructed tests, the number of examinees was fixed at 

1000. This was also chosen having in mind the accuracy of 

the item and ability parameter estimation and the available 

computer capabilities. 

Cut-off score. Two arbitrary cut-off scores on the 

ability scale were used: (1) A point along the ability score 

where around 75 percent of the examinees passed the tests 

(i.e, 0=-.685), and (2) the mean of the ability 

distribution; i.e, 0.0. Figure 1 shows the simulated 

examinee ability distribution, and the location of the two 

cut-off scores. The first cut-off score represents tests 

with high pass rates, and the latter was chosen to reflect 

tests with passing scores at the middle of the ability 

distribution, and with comparable numbers of failures and 

passers. 

Evaluation 

From each of the six item pools (three for Test 1 and 

three for Test 2), four tests were constructed using each of 

the four item selection methods. For the 24 tests 

constructed, the BILOG program was used to obtain the 

examinee ability scores. The scores were correlated with 

the true dominant ability scores of the examinees. The 

pass/fail decisions for each of the 1000 examinees in each 

test were compared with the pass/fail decisions based on the 
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criterion scores (dominant ability) to obtain the decision 

accuracies of the tests at both cut-off scores. At a cut¬ 

off score of 0.0, five replications were made in generating 

each of the six datasets, constructing each of the 24 tests, 

obtaining the examinee scores on each test, computing the 

correlation coefficients of the abilities, and computing the 

resulting decision accuracies for each test. 

The mean correlation coefficients, and the mean 

decision accuracies for the 24 cases were then obtained, and 

compared. Analysis of variances (ANOVA) were conducted, 

separately for Test 1 and Test 2, to assess if the 

correlation coefficients of the abilities were different 

among the item selection methods, whether the coefficients 

were different among the datasets with the different degrees 

of lack of unidimensionality, and whether there was 

interaction between the two effects. Before undertaking the 

analysis of variance, the correlation coefficients were 

transformed by using Fisher's r to z transformation which 

can be written as: 

z = (3) 

Another set of analysis of variances were made, again, 

separately for the two tests, to examine whether the 

decision accuracies among the dimensionality structures were 

significantly different from one another, whether the 

decision accuracies among the item selection methods were 
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significantly different from one another, and if the two 

effects had interactions in influencing decision accuracy. 

The proportion agreement was also transformed prior to 

analysis by using the equation 

x = Sin'1 /"p (4) 

where x is the transformed decision agreement, and p is the 

decision agreement of the test and criterion. 

Part B: Real Data 

Purposes 

The general purpose in including real data in the study 

was to examine if similar results would be found in real and 

simulated data. The second purpose of this part of the 

study was to examine if content categories in a particular 

credentialing exam represented different traits. A third 

purpose was to examine the performance of item selection 

methods in affecting the decision accuracies of short tests 

developed from a credentialing exam. 

Data 

Candidate item response data from one of the national 

credentialing examinations were available for use in this 

part of the research. The exam, which was administered in 

1988 to 3965 candidates, consists of 250 items. Twenty 

items were not included in the analysis because of low 

biserial correlations (less than 0.2). The test has six 

content categories, ten item formats, and three categories 
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of cognitive levels. The 230 items were divided into the 

following content categories: 

Content Category Number of Items 

1 
2 
3 
4 
5 
6 

27 (11.7%) 
78 (33.9%) 
31 (13.5%) 
30 (13.0%) 
27 (11.7%) 
37 (16.1%) 

Procedures 

The variables in this part were essentially the same as 

those in Part A. There were differences between the item 

selection methods compared in this part and in the previous 

part. In this part, an optimal method, a content-optimal 

method, a content-random method, and a classical method were 

compared. The optimal method and content-optimal method 

were parallel to the previously defined optimal and optimal- 

balanced methods except that the content categories of the 

item pool were balanced in developing the 40-item tests. In 

the classical method, the content specifications were 

considered while items with high biserial correlations and 

moderate difficulty (between 0.3 and 0.8) were selected. In 

the content-random method, the content was also balanced in 

the resulting test, but the items were selected from each 

category at random. The optimal-unbalanced method used in 

the simulation part seemed unimportant since it would not be 

much different from the other optimal methods used with 

unidimensional data. The cut-off score of the exam, which 

was 70%, was used for item selection and decision accuracy 
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computations. Due to computer limitations, the number of 

examinees was reduced to 2000. 

Dimensionality investigation. In dimensionality 

assessment, the content categories were considered as 

possible causes of lack of unidimensionality, or to put it 

in another way, the content categories were treated as minor 

dimensions in the test while one major trait was being 

measured by the examination. 

In order to get an idea about the factor structure of 

the data, linear and non-linear factor analysis were 

undertaken. For the purpose of these analyses, 40 items 

that represented the 230 items in terms of percent of items 

from each content category were selected. The tetrachoric 

correlations of the items were factor analyzed, then the 

eigenvalues of the correlation matrix were examined. The 

difference between the first and the second eigenvalues were 

compared to the difference between the second and the third. 

If the difference of the differences is large, this implies 

that the test data are unidimensional. The differences of 

the successive eigenvalues were also examined, as well as 

the magnitudes of all eigenvalues. 

In the non-linear factor analysis, the NOHARM program 

(Fraser & McDonald, 1988) was used to fit the normal ogive 

model to the data. One-, two-, three-, and four-dimensional 

solutions were investigated in the binary data to provide 

some additional clues about the dimensionality structure of 

the test data. 
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IRT calibration. The next analysis of the data was IRT 

item and examinee calibration. The BILOG program (Mislevy & 

Bock, 1986) was used to analyze the data, and provide item 

and ability parameters. The one-, two-, and three-parameter 

logistic models were fitted to a representative sample of 65 

items. The purpose was to examine if any of the IRT models 

fits the data, and which model provided the best fit. The 

item parameter estimates from the IRT analysis were kept in 

an item bank together with content information for further 

use. 

The next step was dividing the test into two equal 

parts. One part was used to provide a criterion measure, 

and the other part served as an item pool from which items 

were selected later in the test construction process. The 

odd-numbered items between 1 and 200 and items 201-230 of 

the data were placed in the item bank, and the even items 

between 1 and 200 were used as the criterion. The choice of 

the odd and even items of the test as item bank and 

criterion, respectively, was arbitrary, and the last 30 

items were added to the bank to create a larger pool. 

Item selection. The four item selection methods 

compared in the real data were: (1) Optimal in which items 

provide most information at the cut-off score were selected; 

(2) content-optimal in which items provide most information 

at the cut-off score were selected and the content balance 

of the resulting test was considered; (3) classical in which 

test content was balanced while items with high r's and 
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uoientf r s were selected; and (4' content-random in which 

itejts vers selfected from the different content categories to 

reflect the content specifications of the test, but item 

statistics were not used. Content categories replaced the 

xtner traits in the simulated data, and the OTD program was 

used to select items from the pool (odd items) in the 

optimal methods. 

Test length. Like the simulated data, test length was 

set at 40 items. Each method of item selection was used to 

select 40 items from the item bank. 

Evaluation 

For the four tests developed, the information functions 

in the ability range -3 to +3 were computed. The errors of 

measurement at a selected range near the cut-off score were 

also computed by using the relationship 

SE(J) = (1(0)"* (5) 

where SE(f) is the standard error of ability estimates at 6, 
I(#) is the test information at ability 6. 

The percent of pass/fail decision agreements between 

each test and criterion was calculated. These percents were 

compared for the four methods of item selection. The 

improvement in decision accuracy by the item selection 

methods over a baseline decision accuracy level was also 

examined. The content-random item selection method was 

chosen as the baseline. 
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CHAPTER IV 

RESULTS 

Part A: Simulated Data 

The Performance of the Computer Software 

Before any analyses were made, the accuracy of the 

computer software was examined. The seeds of the random 

number generator used to simulate item and ability 

parameters were changed five times. For this purpose, the 

abilities and binary scores of 500 examinees on 40 items 

were simulated. The means and standard deviations of the 

generated parameters were examined, and compared with their 

true values (i.e, the means and standard deviations chosen 

to generate the parameters). In all five runs, the true and 

simulated means and variances for the ability and item 

parameters were almost identical. This is an indication 

that the program was performing as expected, and changing 

the seeds values of the random number generator had only a 

small random effect on the performance of the software. 

Another investigation on the performance of the 

software regarding the factor structure of the generated 

datasets was conducted. For five datasets (5 levels of £) 

generated using the parameters for Test 1 (achievement 

tests), the binary responses of the 500 examinees on the 40 

items were factor analyzed using linear factor analysis. 

The eigenvalues of the first five factors, and the variance 

explained by each factor are shown in Table 2. The 
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Table 2 

First Five Eigenvalues and Variances Explained by 
the Factors for the Five Datasets 

(N=500, n=40) 

Factor 

o
 •
 

o
 0.2 

Level of 

0.3 0.4 0.5 

A 10.44 7.67 6.28 4.0 4.2 
1 

% 26.1 19.2 15.7 10.0 10.6 

2 
A 1.46 

vo 
00 • 

00 • 2.3 1.4 

% 3.7 2.1 2.2 5.7 3.4 

3 
A .47 .53 .65 .90 1.0 

% 1.2 1.3 1.6 2.2 2.5 

4 
A .44 .52 .55 .70 .84 

% 1.1 1.3 1.4 1.8 2.1 

5 
A .37 

o
 

in • .49 

co 
in • 

00 • 

% .9 1.3 1.2 1.4 1.2 

eigenvalue for the first factor and the variance explained 

by the first factor decreased as £ increased. The 

difference between the first and second factor also 

decreased with an increase in £ (one slight exception is at 

0.4 and 0.5). The factor loadings were also examined for 

one, two, three, four, and five factor solutions. 

92 



The factor loadings changed as the strength of the 

minor dimensions (£) in the data changed. Almost all items 

highly loaded on the first factor at £ of 0.0 in all factor 

solutions, and items loaded and were divided among the 

factors as expected at { of 0.5. In the latter case, the 

first 10 items highly loaded on one factor, the next 10 

items on another factor, the third 10 items on a different 

factor, and the last 10 items on a different factor when a 

four factor solution was requested. These results support 

that the software was generating datasets with the expected 

factor structures. 

Another step was taken to ensure that the generated 

data had the expected dimensionality structures. This time, 

non-linear factor analysis was performed using the IRT 

program, NOHARM (Fraser & McDonald, 1988) . The sum of 

squared residuals of the variance-covariance matrix after 

fitting each dataset to a unidimensional solution was 

examined. The percent of the standardized residuals of the 

variance-covariance matrix that were greater than 1.96 was 

also examined for each dataset. Both indices were expected 

to increase as the potency of the minor dimensions 

increases. The sum of squared residuals (SSR) and the 

percent of standardized residuals (PERZ) greater than 1.96 

(expected to be not more than 0.05 if the data fits a 

unidimensional model) for each of the five datasets are 

shown in Table 3. Multidimensional data were also generated 

to highlight how large these two indices could be when a 
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Table 3 

Sum of Squared Residuals and Percent of 
Standardized Residuals Greater Than 1.96 

(N = 500, n = 40) 

Data £ SSR PERZ 

1 

o
 • 

o
 0.032 0.010 

2 o
 

• to
 

0.041 0.015 

3 0.3 0.050 0.031 

4 0.4 0.079 0.068 

5 0.5 0.121 0.117 

6 

*--:-1— 

MD* 0.339 0.295 

*Four-dimensional data 

unidimensional solution is fitted to a four-dimensional 

data. It can be seen that both indices increased 

systematically as the potency of the minor dimensions 

increased. The intention was not to determine whether each 

dataset was unidimensional, but merely to show that the 

misfit statistics are in the expected order and highlight 

the departure of datasets from unidimensionality as f is 

increased. 

IRT Analysis 

After satisfactory results were observed in examining 

the performance of the software, three datasets were 

generated for each type of test (Test 1 and Test 2) . 

Responses for 1000 examinees on 200 items were simulated as 

discussed in Chapter III. IRT data calibration followed to 
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obtain item and ability parameter estimates. The main 

purpose of the data calibration was to develop item banks 

for the six datasets (three for Test 1 and three for Test 

2). A secondary purpose was to examine if the two-parameter 

logistic model could adequately fit the two-parameter data 

which were generated. Hence the next step was to analyze 

the binary datasets using the two-parameter IRT logistic 

model. 

The IRT program BILOG (Mislevy & Bock, 1986) was used 

for this purpose. A whole dataset (200 items and 1000 

examinees) could not be handled in one run or even two runs 

with the available computer facility. It was found that 

more than 90 items could not be calibrated in one run 

because of computer memory limitations. Hence each set of 

data was divided into three sets of 90 items with 

overlapping items. The sets were items 1 to 90, items 61 to 

150, and items 111 to 200. In that arrangement, sets 1 and 

2 had 30-item overlap, and sets 2 and 3 had a 40-item 

overlap. Three separate analyses of 90 items each were 

performed for each dataset. 

An invariance analysis was undertaken in which the fa- 

values of the common items were plotted against each other. 

The plot of 40 b-values obtained from calibrating the items 

separately and calibrating them with 90 items is shown in 

Figure 2. As can be seen from the figure, the plot is 

almost a straight line; an indication that the values are 

almost the same. Second, a regression analysis on the 
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Figure 2. Plot of Difficulty Values for 40 Items Calibrated 
at Two Runs 
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discrimination and difficulty parameters was conducted. An 

intercept of 0.011 and an slope of 0.995 were found for the 

difficulty parameter, and the correlation between the two b- 

values (estimated in the two analyses) was .995. For the 

discrimination parameter, an intercept of -0.006 and an 

slope of 0.992 were found, while the correlation coefficient 

of the a-values was 0.958. These results indicate that 

values obtained for the item parameters in the two analyses 

were quite close, and hence support that the data could be 

run in separate sections. Then, the IRT data analyses 

proceeded, calibrating each dataset three times. Three item 

pools for Test 1 and three item pools for Test 2 were 

formed; one for each dataset. For the items with multiple 

parameter estimates, the average of each parameter was taken 

and used in the item banking process. 

The goodness-of-fit of the data was assessed by 

computing the residuals using the computer program RESID 

(Hambleton & Murray, 1983). For each level of 67 items 

were sampled from the bank of 200 items. The items were 

selected so that each set of 50 items that might be affected 

by a particular factor were equally represented in the 

selected set. The two-parameter logistic model was fitted 

to each of the 67-item sets. The resulting standardized 

residuals provided by the IRT program RESID (Hambleton & 

Murray, 1983) are shown in Table 4. The last column 

contains the expected normal distribution of standardized 
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Table 4 

Distribution of Standardized Residuals From Fitting the 
Two-Parameter Logistic Model to a Sample of 67 Items 

for the Three Levels of f1 

Standardized 
Residuals 

Level of 
0.0 0.3 

in • 

o
 Normal 

< - •3 0.14% 0.27% 0.15% 0.2% 
-3 to - •2 1.90% 2.04% 2.09% 2.1% 
-2 to - •1 10.99% 16.28% 17.91% 13.6% 
-1 to 0 36.91% 29.58% 30.90% 34.1% 

0 to 1 35.82% 36.64% 28.66% 34.1% 
1 to 2 12.62% 13.16% 16.87% 13.6% 
2 to 3 1.63% 2.04% 3.43% 2.1% 

> 3 0.00% 0.00% 0.00% 0.2% 

AASR2 0.747 0.829 0.919 0.790 

JThe number of residuals was 804. 

2Average of the Absolute-valued Standardized Residuals. 

residuals under the null hypothesis (see, Hambleton, 

Swaminathan, & Rogers, 1991). The fit was reasonably good 

at the first two levels of f, and was not adequate at the 

last level. At f of 0.5, the fit was relatively poor. 

Correlations of Ability and Item Parameters 

The parameter estimates for each dataset were 

correlated with their true values. The goal was to examine 

how the strength of the minor dimensions influence the IRT 

parameter estimation, and to probe how close the estimates 

would be to their true values at each level of £. Table 5 

shows the correlation coefficients of the true and estimated 

parameters. The correlation coefficients of all parameters 

used in unidimensional cases (9, a, b) with their true 
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Table 5 

Correlations of Estimated and True Parameters 

z r&2 r6b2 

o
 • 

o
 .986 .982 — .988 

0.2 .960 .974 .974 .733 -.017 

0.3 .927 .974 .974 .616 .075 

0.4 .871 .969 .969 .519 .185 

in • 
o

 .781 .946 .946 .397 .311 

values (9, alf kl, a2 / b2) decreased as the strength of the 

minor dimensions increased. The most substantial decrease 

was observed for the difficulty parameter (decrement of .591 

from dataset 1 to dataset 5). This decrease is very high, 

and not even close to what is reported in other 

dimensionality studies. The correlation coefficients of the 

discrimination parameters decreased but not as much as the 

other parameters. They decreased from .982 in data 1 to 

.946 in data 5. The ability parameter, which is more 

important than the other parameters for the purpose of this 

study, had decreased significantly as the index £ increased 

from 0.0 to 0.5. It had decreased from .986 at £=0.0 to 

.781 at £=0.5. 

The correlation between the second discrimination 

parameter a2 with the estimated a-values was always equal to 

the correlation between a^ and estimated a-value (it does 

not exist at £=0.0), and that was expected because ax and a2 
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were generated to be proportional. The difficulty values 

were generated randomly and unrelated to a common 

difficulty, and that is why the correlation between b2 and b 

is very different from the correlation between a2 and a. 

The correlation coefficients in the table indicated that the 

estimation procedure, which was based on unidimensional 

model, became less accurate as the minor dimensions became 

stronger. It was also apparent that the accuracy of the 

ability parameter estimation decreased as the 

multidimensionality of the data increased. 

Item Selection and Ability Estimation 

The four item selection methods discussed earlier 

(optimal, optimal-balanced, optimal-unbalanced, and random) 

were used to select items from the item pools in 

constructing 40-item tests. The tests were then calibrated 

with BILOG, and the estimated abilities were correlated with 

the true dominant abilities. Five replications were made in 

generating each dataset, developing item pools, constructing 

tests, calibrating the test with BILOG, and computing the 

correlation coefficients and decision accuracies. The 

number of replications were limited because of the high 

computer costs and limitations of the computer space. The 

replications were made by using as cut-off point at an 

ability score of 0.0 (which is the mean of the ability 

distribution and at which roughly 50 percent of the 

examinees pass the test) in selecting items and computing 

decision accuracies. 
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In Table 6, the mean correlation coefficients of the 

estimated and true ability parameters, displayed by item 

selection method, are shown for Test 1 and Test 2. These 

coefficients are the correlations between true and estimated 

scores, and hence the average validity indices of the tests 

developed by each item selection method. The terms 

correlation coefficient and validity index will be used 

interchangeably in the rest of the study. As in Table 5, 

the coefficients decreased as the strength of the minor 

dimensions increased for each item selection method, and for 

both types of tests. The decrease was systematic for all 

item selection methods as the dimensionality increased, but 

differed among the item selection methods. Test 1 seemed to 

have higher indices in all cases. 

Table 6 

Mean Correlations Between 
Estimated and True Abilities 
(number of replications = 5) 

Item 
Selection 
Method 

o
 • 

o
 

Test 1 
0.3 

Level of f 

0.5 0.0 
Test 2 

0.3 0.5 

Optimal .970 .935 .830 .962 .916 .812 

Balanced .968 .937 .846 .961 .917 .823 

Unbalanced .969 .921 .770 .957 .902 .763 

Random .969 .925 .806 .941 .878 .763 

The coefficients or validity indices dropped more in 

optimal-unbalanced method (a decrease of .199 in Test 1 and 
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£ decrease of .194 in Test 2 from £ of 0.0 to £ of 0.5). 

The second highest decrease was for the random method (a 

decrease of .163 in Test 1 and a decrease of .178 in Test 2 

from i of 0.0 to £ of 0.5). The smallest decreases of the 

indices were at the optimal-balanced method; 0.122 and .138 

in Test 1 and Test 2, respectively. The correlation 

coefficients vere close in all item selection methods when 

the data was strictly unidimensional; the largest 

differences vere 0.002 in Test 1 and 0.021 in Test 2. 

However, as the potency of the minor dimensions increased, 

the differences among the coefficients for the item 

selection methods increased, and it was highest at £ of 

0.5. 

Analysis of variance was conducted to assess whether 

the correlation coefficients were significantly different 

from one another among the levels of £, whether they were 

significantly different from one another among the item 

selection methods, and whether there was an interaction 

effect between item selection and strength of minor factors. 

The coefficients vere transformed into z-scores using 

Fisher's z to r transformation as mentioned earlier in 

Chapter III (see equation 3). The ANOVA tables for the 

results in Test 1 and Test 2 are shown in Table 7. The main 

effects and their interactions were all significant, and led 

to a rejection of the null hypotheses of no differences 

among levels of f and among item selection methods. The 

result indicates that the strength of the minor dimensions 
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Table 7 

Analysis of Variance of the Validity Coefficients 

Test 
Source of 
Variation SS df MS F Sign. 

Strength 8.68 2 4.34 2431.6 <.01 
1 Item Selection .12 3 .036 19.9 <.01 

Interaction .08 6 .014 7.60 <.01 

Strength 6.75 2 3.38 3289.4 <.01 
2 Item Selection .36 3 .119 115.9 <.01 

Interaction .04 6 .006 5.98 <.01 

in an item pool, and the choice of the item i selection method 

in test development have effects on the ability estimation 

in the resulting tests. It also indicates that some item 

selection methods work better than others when test data are 

not strictly unidimensional. 

Decision Accuracy 

The decision accuracy for the 40-item tests constructed 

using each of the four item selection methods was computed 

in each item pool and in each of the five replications. The 

summary statistics of the decision accuracies for Test 1 are 

shown in Table 8. Obviously, the decision accuracies 

decreased as the value of £ increased, and that was a common 

trend to all item selection methods. The decrease ranged 

from 10.7 percent in the optimal-balanced method to 16.1 

percent in the optimal-unbalanced method. 
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Table 8 

Summary Statistics of the 
Decision Accuracies for Test 1 

* Statistics optimal 

Item Selection 

balanced 

Method 

unbalanced random 

Mean 93.7% 93.7% 94.3% 93.1% o
 •
 

o
 Std. Dev. 0.90 1.38 0.66 0.39 

Range 2.4 3.5 1.6 0.9 

Mean 89.8% 90.2% 88.5% 88.5% 
0.3 Std. Dev. 1.34 1.09 1.36 1.21 

Range 3.4 2.7 3.8 3.0 

Mean 81.9% 83.0% 78.2% 80.5% 
0.5 Std. Dev. 1.40 1.02 1.40 1.32 

Range 3.8 2.5 3.7 2.9 

The differences in decision accuracies among the item 

selection methods were very small when the item pool was 

strictly unidimensional. The optimal-unbalanced method 

provided a decision accuracy 0.6 percent higher than the 

other optimal methods and the random method provided a 

decision accuracy 1.2 percent less than the optimal- 

unbalanced method. The differences were largest when the 

minor dimensions were as strong as the major dimension; that 

is, when £ was 0.5. At that level, the optimal-balanced 

method provided the highest decision accuracy (83 percent), 

the optimal-unbalanced method provided the lowest (78.2 

percent), and the random method provided the second lowest 

(80.5 percent). At £ of 0.5 the differences in decision 

accuracies among the item selection methods was larger than 

when £ is 0.0. The decision accuracy in the optimal- 
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balanced method is 4.8 percent higher than that of the 

optimal-unbalanced. 

Similarly, the summary statistics of the decision 

accuracies in Test 2 are shown in Table 9. The decision 

accuracies was all lower than those obtained in Test 1, but 

the same trend of decrements were seen as £ increased. The 

largest drops in decision accuracy were seen in the optimal- 

unbalanced and the optimal methods? 14.8 percent and 13.6 

percent, respectively. In the random method, the drop was 

12.9 percent, and the smallest drop was seen in the optimal- 

balanced (12.3 percent). There were slight differences 

between the results reported in Tables 7 and 8. At £ of 

0.0, for example, the optimal-unbalanced method had the 

highest decision accuracy in Table 8 while the other optimal 

methods had higher decision accuracies in Table 9. Also, 

the random method had higher decision accuracy than the 

optimal-unbalanced method at £ of 0.5 in Table 8, while the 

decision accuracies of the two methods are comparable in 

Table 9. 

The results of the analysis of variance undertaken to 

test the effects of f and item selection method on decision 

accuracy for Test 1 and Test 2 are reported in Table 10. 

The computed proportion agreement statistics (i.e, decision 

accuracy) were transformed as discussed in Chapter III? 

taking the arcsin of the square root of the proportion. 

Clearly, both variables had significant effects on decision 
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Table 9 

Summary Statistics of the 
Decision Accuracies for Test 2 

* Statistics optimal 

Item Selection 

balanced 

Method 

unbalanced random 

Mean 93.0% 92.8% 92.4% 90.3% o
 • 

o
 Std. Dev. 1.12 0.62 0.61 0.74 

Range 2.6 1.5 1.5 1.8 

Mean 87.2% 87.3% 86.9% 84.3% 
0.3 Std. Dev. 1.18 0.96 0.83 1.15 

Range 3.1 2.2 2.0 2.8 

Mean 79.4% 80.5% 77.6% 77.4% in • 

o
 Std. Dev. 1.30 1.00 1.30 1.38 

Range 3.2 2.6 3.3 3.0 

Table 

Analysis of Variances for 

10 

the Decision Accuracy 

Test 
Source of 
Variation SS df MS F Sign. 

Strength 16.05 2 8.02 457.3 <.01 

1 Item Selection .24 3 .079 4.49 <.01 

Interaction .25 6 .041 2.36 <.05 

Strength 13.49 2 6.75 794.2 <.01 

2 Item Selection .61 3 .202 22.4 <.01 

Interaction .12 6 .019 2.15 .065 

accuracy. For the interaction of the effects, it was 

significant for Test 1 at 0.05 level but came short in Test 

2 (0.065). However, since the number of replications were 

small, one may argue that the latter interaction could have 
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been significant (0.05) had the sample size (number of 

replications) been increased. 

Effects at a Lower Cut-off Score 

The cut-off score used to construct tests and compute 

decision accuracies was lowered from 0.0 to -0.685 along the 

ability scale where approximately 75 percent of the 

examinees passed the test. That is typical of many mastery 

tests where high percent of the examinees pass the test, and 

where the middle of the ability distribution is higher than 

the cut-off score. The goal was to examine the effects of 

minor factor strength and item selection method on decision 

accuracy and ability estimation in a such situation. No 

replications were made at this time, and the decision 

accuracies and correlation coefficients for Test 1 are 

reported in Table 11. The indices are all higher than the 

corresponding indices for Test 1 in Tables 5 and 8 in all 

item selection methods and at all levels of £. But that is 

not unexpected since more classification errors are prone to 

be made at an ability level located at the middle of the 

ability distribution than at ability level where fewer 

examinees are located. 

In Table 11, at the lowest level of f, the optimal 

methods provided almost the same decision accuracies, and 

the random method provided a decision accuracy less than 

those of the optimal methods by more than 1 percent. For 

the correlation coefficients, the optimal and the optimal- 

unbalanced methods provided indices higher than the other 
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Table 11 

Accuracy and Correlation at a Lower 
Cut-off Score for Test 1 

(*c=-.685) 

Item Selection Method 

£ Optimal Balanced Unbalanced Random 

accuracy 95.8% 95.6% 95.4% 94.3% o
 • 

o
 

correlation .974 .969 .974 .969 

accuracy 92.3% 92.0% 91.5% 91.1% 
0.3 

correlation .938 .941 .931 .929 

accuracy 88.5% 88.7% 84.9% 85.2% 
0.5 

correlation .838 .849 .780 .797 

two methods. At the highest level of £, the decision 

accuracies and the correlation coefficients were ranked 

among the item selection methods in a descending order as: 

optimal-balanced, optimal, random, and optimal-unbalanced. 

This trend was seen in Tables 5 and 7 when the cut-off score 

was 0.0 and the five replications were made. The 

differences in decision accuracy among the item selection 

methods at the smallest £ was lower than when the minor 

dimensions were stronger. At f of 0.0, the largest 

difference was 1.5 percent, and at £ of 0.5 the largest 

difference was 3.5 percent. 

As £ went from the lowest to the highest levels, the 

decision accuracy and the correlation coefficients dropped 
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for each item selection method. The item selection methods, 

however, differed in the amount of drop of these indices. 

The optimal-unbalanced method resulted in the largest 

decrease of 10.5, while the optimal-balanced method resulted 

in the smallest decrease of 6.9. This trend was also 

similar to that reported in Table 8. 

The same analyses were repeated for Test 2 

(credentialing type) using an ability level of -0.685 as 

cut-off score. The results of these analyses are in Table 

12, and are quite close to those found in Tables 5 and 8. A 

little difference between the two results was that the 

decision accuracy of the optimal method was not as high as 

those of the other optimal methods at the lowest level of £. 

Another difference was that the decision accuracy provided 

by the optimal method at the highest f was 0.7 percent 

higher than that provided by the optimal-balanced method 

which was providing the best decision accuracies in all 

other analyses. Apart from these two cases, the results in 

Table 12 are equivalent to those in Table 9. 

Discussion of Part A 

In this section, the results found in analyzing the 

simulated data will be discussed. First, the results in 

examining the dimensionality structure of the generated 

data, and the IRT analysis of the data will be reviewed. 

Second, the findings for Test 1 will be discussed, followed 

by the findings for Test 2. The results obtained when the 

cut-off score was lowered will be discussed at the end. 

109 



Table 12 

Accuracy and Correlation at a Lower 
Cut-off Score for Test 2 

(0C=- .685) 

£ optimal 

Item Selection Method 

balanced unbalanced random 

accuracy 93.0% 93.9% 94.0% 92.5% o
 • 

o
 

correlation .963 .962 .961 .946 

accuracy 92.2% 91.3% 91.0% 90.6% 
0.3 

correlation .921 .914 .906 .891 

accuracy 87.5% 86.8% 84.7% 84.0% 
0.5 

correlation .810 .830 .768 .755 

Dimensionalitv and : IRT analvsis. The performance of 

the program in generating the data was adequate. In 

addition to the assessment made by changing the seeds of the 

random number generator and comparing the resulting 

descriptive statistics of the parameters, the linear and 

non-linear factor analysis have showed that the program was 

generating the data as expected. That can be seen by 

examining the results in Tables 1 and 3. In Table 2 the 

decrease of the eigenvalues for the first factor shows that 

the data was departing from unidimensionality as £ 

increased. The same interpretation could also be given by 

the decrease in the variance explained by the first factor. 

The ratios of the eigenvalues of the first and second 
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factors also revealed the same results. The ratio was large 

for the first three levels of Z while it was small at the 

last two levels. The last two levels also showed unexpected 

results? the first factor at level 0.4 was supposed to have 

A and a values higher than those at level 0.5. 

Linear factor analysis was not a good method in 

assessing the dimensionality of binary test data, but it 

provided a crude estimation of the test dimensionality. In 

this study, it actually provided an idea of how the factor 

structure of the generated data would look. The results 

were consistent with what other researchers found. 

Nandakumar (1991), for example, recommended that tests 

depart from essential unidimensionality as Z reaches 0.4. 

In the non-linear factor analysis, similar results were 

found (see Table 3). For one thing, the trend clearly 

showed how the dimensionality of the data changed with the 

change of the values of Z . The values of the percent of 

standardized residuals greater than 1.96 also showed that 

the data could qualify as unidimensional up to Z of 0.3. 

The two-parameter logistic model, which was used to 

generate the data, provided adequate fit of the data at the 

two lower levels of ( (0.0 and 0.3), but not when the 

strength of the minor dimensions was set at 0.5. That was 

not unexpected given the results found in the factor 

analysis step. Since it was possible to obtain real tests 

that fit the model as poorly as was found for the last set 
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of data (£ of 0.5), it was decided to accept the poor fit 

and proceed with the rest of the analyses. 

Test 1. The correlation coefficients of the ability 

scores and criterion (true ability scores) is often used as 

test validity, and the decision accuracy is often used as a 

validity index with criterion-referenced tests. The indices 

shown in Tables 5 and 8 were obviously high in all cases, 

especially when the data were strictly unidimensional. But 

that is not surprising since a good criterion (without 

errors) was used in the study. Apparently, both indices 

decreased as the strength of the minor dimensions increased. 

The results in Table 6 also highlighted that the optimal 

method and the optimal-balanced method are superior in 

selecting more valid tests than the random and the optimal- 

unbalanced methods as the test data departed from strict 

unidimensionality. Same claim could be made by looking at 

the decrease in decision accuracies in Table 8. 

One may wonder whether a small decrease in validity 

(correlation coefficient) or decision accuracy is important 

or practically significant. Lord (1963) showed that with a 

test of moderate validity (0.6), a decrease of 0.03 in 

validity could be obtained by reducing the test length by 

half. Let us take as an example the case of the optimal- 

balanced and optimal-unbalanced methods when £ is 0.3 in 

Test 1 (Table 6). The difference in validity mean is 0.016. 

Since the validity indices are all high, let us assume they 

are at their limits which are the square roots of the 
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corresponding reliability indices? that is, the mean 

reliability for each item selection method and level of £ 

will be the square of the corresponding validity index. 

Using the relationship between test validity and test length 

(see, for details, Gullikson, 1950), an increase in validity 

of a test constructed through the optimal-unbalanced method 

by 0.016 requires an increase of the test length by 30 

percent? that is, to add 12 more items to the test. 

In the case of the decision accuracy, let us take one 

of the replications, as an example, in which the optimal- 

balanced and optimal-unbalanced methods differ by 1.7 

percent when f is 0.3. The test needed to be increased by 

50 percent to increase the decision accuracy of the optimal- 

unbalanced method by 1.7 percent. That requires adding 20 

more items to the test? i.e, making the test and testing 

time longer, and increasing the test expenses. 

In short, validity and decision accuracy gains of the 

order seen in Table 6 and Table 8 are significant. For 

example, the average decision accuracy improved 1.7 

percentage points (from 88.5% to 90.2%) in switching from 

optimal-unbalanced to optimal-balanced at £ of 0.3. This 

improvement is about 15 percent of the maximum improvement 

possible in decision accuracy of the optimal-unbalanced 

method. On the other hand, a decrease in decision accuracy 

of 1.7 percent will misclassify 170 examinees if the test 

was taken by 10000 examinees, and it is common for many 

tests to be taken by as many as 50000 examinees per year. 
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Also important is the fact that these gains in decision 

accuracy and validity could be attained by using desirable 

item selection methods such as optimal and optimal-balanced 

methods instead of substantially increasing the test length 

and testing time. 

The statistical significance of the differences in 

correlation coefficients among the item selection methods 

and levels of f is clear in the analysis of variance results 

in Table 7. It is also clear that there is an interaction 

effect between item selection and strength of minor 

dimensions, which means some item selection methods reduce 

the decrease in validity more than others when the test data 

departs from unidimensionality. Similarly, the significance 

of the differences in decision accuracy among item selection 

methods, among strengths of the minor dimensions, and their 

interactions can be seen in Table 10. The significance of 

the interaction reveal that some item selection methods 

perform better than others in developing tests with high 

decision accuracies when the test is not strictly 

unidimensional; these are the optimal and optimal-balanced 

methods. 

The cut-off score was lowered from 0.0 to -0.685, a 

point where 75 percent of the examinees passed Test 1. It 

is not uncommon in many licensure tests to have similar cut¬ 

off scores where 70 percent or more examinees pass them. 

The decision accuracies and most of the correlation 

coefficients at this level of cut-off score were higher than 
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at the other cut-off score (ability score of 0.0). The 

validity increased for the optimal methods because the true 

item difficulties of the item pools were -0.53 and the 

estimates were even some times lower. Since many more items 

were available in the region of the cut-off score, the 

estimation of ability scores could have been better. As the 

cut-off score was moved away from that region where the item 

pool was concentrated, it was likely that the errors in the 

ability estimation would be increased near the new cut-off 

score. For the increments in decision accuracy, the effect 

could be attributed to the fact that the examinee population 

was concentrated at the other cut-off score (6 of 0.0), and 

hence more decision errors could result than in using this 

lower cut-off score where fewer examinees fail. At the 

lower cut-off score the optimal and optimal-balanced methods 

performed better than the other methods, and the difference 

was more profound as the data departs from 

unidimensionality. 

Test 2. Test 2 was generated to represent 

credentialing exams that have lower discrimination values. 

The decision accuracies and correlation coefficients in all 

cases and cut-off scores were lower than the corresponding 

values in Test 1. The effect could be attributed to the 

fact that lower a-values usually result in less accuracy in 

ability estimation, and hence will result in less decision 

accuracies and validity indices. The trends seen in Test 1 

were also seen in Test 2; that is validity and decision 
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accuracy decreased as data departed from unidimensionality, 

and optimal and optimal-balanced methods perform better than 

the other methods especially when the strength of the minor 

factors increased. The differences in validity and decision 

accuracy were also significant. For example, the mean 

validity of the tests developed by using the optimal- 

unbalanced at £ of 0.3 (0.902) was lower than the mean 

validity of the tests developed by using the optimal- 

balanced method (0.917) by 0.015. To obtain equal validity 

indices for the two tests, the former needs to be increased 

by 20 percent or lengthened to 48 items. As another 

example, the decision accuracies of the two tests developed 

by using optimal-balanced and random methods at f of 0.3 

differed in one of the replications by 3.0 percentage 

points. The test developed by the random method needed to 

be increased by 100% in order to attain equal decision 

accuracies for the two tests. 

The significance of the differences in correlation 

coefficients and decision accuracies is also supported in 

the analysis of variance results in Table 7 and Table 10. 

The interaction effect was also significant for the 

correlation coefficient, and close but not in the case of 

the decision accuracy. The latter finding was difficult to 

explain, but one may argue that this result could be a type 

2 error since all other results showed significance. 

Another argument could be that this interaction effect might 

become significant if the sample size was increased. 
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When the cut-off score was lowered to -0.685 in Test 2, 

the optimal method performed differently than how it 

performed in the other cases? i.e, in Test 1 and at higher 

cut-off score in Test 2. At £ of 0.0, it provided decision 

accuracy about 1 percent lower than the optimal-balanced and 

the optimal-unbalanced methods. At £ of 0.5, it provided 

decision accuracy 0.7 percent higher than the accuracy of 

the optimal-balanced method. Apart from these minor changes 

in the decision accuracies provided by the optimal method, 

all other results were similar to previously found results 

in Test 1 and Test 2. Those little changes might be caused 

by different, some times opposing effects? the lowered cut¬ 

off score, the low discrimination values, and/or the fact 

that the item pools were concentrated near the lower cut-off 

score. 

Conclusion. The linear and non-linear factor analyses 

of the datasets both provided results showing how the factor 

structure of the generated data changed when the strength of 

the minor dimensions was changed. Both dimensionality 

investigations showed that the datasets could be ranked as 

unidimensional up to £ values of 0.3. The goodness-of-fit 

analyses showed that the two parameter logistic model 

satisfactorily fit the datasets at lower two levels of £, 

and less adequately but acceptably fit the datasets at the 

highest level of £. 

The validities and decision accuracies of the 

constructed tests decreased as the strength of the minor 
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dimensions were increased for all cut-off scores and both 

simulated achievement tests and credentialing exams. Some 

item selection methods performed better than others, and the 

differences were more noticeable when the test data departed 

from unidimensionality. The optimal methods provided better 

tests in terms of decision accuracy and ability estimation 

when the item pool was strictly unidimensional, and the 

optimal and optimal-balanced methods performed better than 

the random and optimal-unbalanced methods when the test was 

not strictly unidimensional. 

It was shown that the choice of an item selection 

method matters in test construction, and that the choice is 

more important when the item pool is not strictly 

unidimensional. Small differences in validity and decision 

accuracy among the item selection methods appear to be 

practically significant. One might need to substantially 

increase the length of a test constructed with a random or 

optimal-unbalanced method to match its validity or decision 

accuracy to a test constructed with optimal or optimal- 

balanced method. In other words, the optimal and optimal- 

balanced item selection methods might cut the test length or 

the testing time in half without any loss of test validity 

and decision accuracy. 

Part B: Real Data 

Goodness-of-Fit Analysis 

As in the simulated data, linear and non-linear factor 

analyses were performed on the real data. In doing so, the 
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responses of 1000 examinees on 40 items selected to 

represent the content categories of the actual test were 

analyzed. Six items from category 6, 14 items from category 

2, and 5 items from each of the other four categories were 

selected. The first five eigenvalues of the tetrachoric 

correlation matrix of the binary data were 4.18, 0.55, 0.49, 

0.41, and 0.39. These values suggested that the test was 

unidimensional. In non-linear factor analysis, the same 40 

items were fitted to one-, two-, and three-factor solutions 

using the IRT program NOHARM (Fraser & McDonald, 1988) . The 

percent of the standardized residuals greater than 1.96 

were, respectively, 0.033, 0.026, and 0.017. The sum of the 

squared residuals of the variance-covariance matrix were, 

respectively, 0.025, 0.022, and 0.022. These results 

provide additional evidence that the test data was 

unidimensional. 

A sample of 65 items were selected from the 230 test 

items, and the one-, two-, and three-parameter logistic 

models were fitted to the sample test. Table 13 contains 

the standardized residuals after fitting the three models to 

the data. The results showed that the three-, and two- 

parameter models fit the data adequately, while the fit of 

the one-parameter model was not adequate. For the one- 

parameter model, for example, 25.32 percent of the residuals 

were greater than 1. Since the two-parameter logistic model 

was used in the first part of the study, it was decided to 

use it in this part of the study too. 
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Table 13 

Distribution of Standardized Residuals From Fitting the 
Three Logistic Models to a Sample of 65 Items1 

Standardized 
Residuals 

Logistic Model 
12 3 Normal 

< - ■3 1.82% 0.28% 0.46% 0.2% 
-3 to - 2 5.59% 2.24% 3.69% 2.1% 
-2 to - •1 13.71% 10.49% 14.00% 13.6% 
-1 to 0 24.20% 31.61% 26.62% 34.1% 

0 to 1 27.37% 36.22% 41.08% 34.1% 
1 to 2 20.14% 15.66% 12.77% 13.6% 
2 to 3 4.48% 3.08% 1.38% 2.1% 

> 3 0.70% 0.42% 0.00% 0.2% 

AASR2 1.092 0.849 0.847 0.790 

xThe number of residuals were 780 

2Average of the Absolute-valued Standardized Residuals. 

Measurement Precision of the Constructed Tests 

The four item selection methods discussed earlier in 

Chapter III (optimal, content-optimal, classical, and 

content-random) were used to select items from a pool of 130 

items and to construct 40-item tests. Items were selected 

in the optimal test development using the cut-off score of 

the test, which was 70 percent and equivalent to -0.215 in 

the ability metric. The information functions provided by 

the four tests are shown in Figure 3. The optimal method 

provided the highest information, the content-optimal method 

provided the second highest information, and the random 

method provided the lowest information. At high ability 

levels (greater than 1), the classical method provided more 

information than the optimal methods. 
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The measurement errors at selected ability levels in 

the range [-1.215,.785] were also computed for each test, 

and the results are shown in Table 14. These results were 

obtained by using equation 5 in Chapter III, and are similar 

to the results provided by the information functions. The 

table shows that the two optimal methods provided the least 

errors at all ability levels except at 0.785 where the 

classical method provided the least errors. Optimal methods 

Table 14 

Measurement Errors at Selected Ability Levels 
Near the Cut-off Score 

Item 
Selection 
Method -1.215 

Ability 

-0.715 -0.215* 0.285 0.785 

Content-Random 0.32 0.37 0.44 0.54 0.66 

Classical 0.35 0.33 0.33 0.36 0.40 

Optimal 0.25 0.25 0.28 0.33 0.41 

Content-Optimal 0.27 0.27 0.29 0.34 0.41 

Cut-off score. •' 

are usually focused at the cut-off points, and because of 

the location of the cut -off ability score (-0.215), they did 

not provide smaller errors at the higher ability levels. In 

this case, the optimal methods did not include many 

difficult items. 

Decision Accuracies of the Constructed Tests 

The decision accuracies could not be compared among 

dimensionality structures since the data had only one; and 
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it was unidimensional. Hence, the decision accuracies were 

compared among the item selection methods alone. After the 

four tests were constructed as described in the preceding 

section, the decision accuracy was computed for each of them 

using the other 100 items (even items) of the test as 

criterion and the cut-off score of the test (-0.215 in the 

ability metric). Since the dimensionality assessment had 

shown that the test was unidimensional, the relative 

performances of the item selection methods were expected to 

be comparable to those obtained when £ was 0.0 in the 

simulated data. The decision accuracies of the tests 

constructed with the four item selection methods are 

reported in Table 15. The content-optimal method provided 

the highest decision accuracy, the content-random method 

provided the lowest decision accuracy, and the optimal 

method produced the second highest decision accuracy. 

Table 15 

Decision Accuracies for the Four 
Item Selection Methods 

Item Selection 
Method 

Decision 
Accuracy 

Improvement 
Factor 

Content-Random 81.0% — 

Classical 83.9% 15.3% 

Optimal 84.2% 16.8% 

Content-Optimal 85.0% 21.1% 
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The method with lowest decision accuracy (content- 

random) was used as a baseline, and the percent improvement 

in decision accuracy over the maximum improvement possible 

in the baseline decision accuracy (19%) was computed for 

each of the other methods. The improvement factors of the 

optimal methods was quite substantial as can be seen from 

the table. 

Discussion of Part B 

The linear and non-linear factor analyses provided 

results showing that the data was unidimensional, and that 

the content categories or the other characteristics of the 

test do not constitute multidimensionality. That is not a 

general hypothesis for any test that may consist of 

different content categories but a particular aspect of this 

test. It could be true that the content categories of this 

particular test were measuring just one trait, while the 

content categories of another test could be measuring 

different but related traits. The IRT analysis showed that 

the data fit the two and the three parameter models, but did 

not adequately fit the one parameter model. The residual 

analysis revealed that the two-parameter logistic model 

provided a reasonable fit to the test data, and hence it was 

used in the rest of the analyses. 

The optimal and content-optimal methods provided tests 

with ability measurement precisions higher than those 

provided by the random and classical methods. In terms of 

producing tests with the least measurement errors at the 
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cut-off score, the item selection methods would be ranked 

(in a descending order) as follows: optimal, content- 

optimal, classical, and random. The content-optimal method, 

which is more desirable in terms of protecting the content 

validity of the resulting test, provided measurement errors 

reasonably close to those of the optimal method. The small 

differences in measurement precision among the item 

selection methods were still practically significant. At 

the cut-off score, for example, the test produced by the 

content random method would need to be increased by 153 

percent or lengthened to 101 items to provide information as 

high as the content-optimal test. The classical test also 

would need to be increased by 32 percent to provide same 

information as the content-optimal test. 

The decision accuracies were much lower than the 

previously reported values in the simulation study. The 

reason is merely that the two criteria are different; the 

criterion used for the real data analyses was part of the 

larger test while the criterion used in the simulation was 

the true abilities of the examinees. The latter criterion 

had fewer errors and closely matched the estimated ability 

scores. The decision accuracies of the tests constructed 

with optimal methods were higher than the decision accuracy 

of the random and classical methods. Between the optimal 

methods, the content-optimal method performed better than 

the optimal method. One explanation could be that in the 

real data, the representation of the content categories in 
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the criterion matched the representation of the content 

categories in the pool, and hence the representation of the 

content categories of the test constructed with the content- 

optimal method. 

The importance of the small differences among decision 

accuracies was discussed earlier in this chapter, and it is 

enough to restate that these differences are practically 

significant. The improvement factor of the item selection 

methods is another indication of the significance of the 

differences among decision accuracies. Even if the baseline 

was changed to the classical methods (since some testing 

agencies still use this procedure), the improvement factor 

of the optimal methods would be significant. The content- 

optimal method will have an improvement of 6.8 percent over 

the maximum improvement possible in decision accuracy of the 

classical method (16.1 percent). This improvement would be 

gained without a loss of content validity and from the same 

available item pool. In short, an item selection method in 

which the content validity of the resulting test was 

considered led the item selection methods in providing the 

highest decision accuracy. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

In this last chapter of the dissertation, the summary 

of the findings in the research will be outlined. Second, 

the conclusions that follow from the study will be 

highlighted. Third, some implications of the results for 

the practitioner will be pointed out. Finally, some 

limitations of the study, and some suggestions for further 

research will be introduced. 

Summary 

Item response theory is used in the testing field for a 

variety of applications, and it is hoped that it will enjoy 

more extensive usage in the future. It provides excellent 

models and a useful framework for many practical 

psychometric problems such as equating, item bias studies, 

adaptive testing, item banking, and test development. 

Perhaps the most valuable property of IRT is the invariance 

property of the ability estimates and item statistics. This 

property, however, may not be attained unless a satisfactory 

fit between one of the IRT models and the data is obtained, 

and the strong assumptions of the theory are fulfilled. One 

of the hard-to-realize assumptions of IRT is the assumption 

of test unidimensionality which requires that the test data 

measure one common trait. There is abundant literature on 

the issue of unidimensionality, and ample evidence that in 

practice this assumption is often violated. 
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The violation of the unidimensionality assumption is 

often unintentional? that is, tests are developed to be 

unidimensional in most situations. However, a multitude of 

factors may cause the departure of a test from being 

unidimensional. Among these factors are the test 

administration process, the mode of presentation of test 

items, and measurement of different aspects of one subject 

in one test. It has been noted by many researchers that 

ability and achievement tests often mildly violate the 

unidimensionality assumption, and it has been proposed that 

the root of test multidimensionality is often the presence 

of minor traits beyond the major trait the test is intended 

to measure (Drasgow & Parson, 1983; Traub, 1983? Stout, 

1987). Stout (1987) introduced, accordingly, the concept of 

essential unidimensionality, and many studies have been 

carried out along these lines (see, for example, Nandakumar, 

1991? Sykes, Ito, & Potter, 1992). The issue of 

dimensionality became as Nandakumar (1991) puts it "how 

effective the minor dimensions should be" to label a test as 

multidimensional or essentially unidimensional. Another 

related question is how minor the minor factors should be to 

affect the quality of the test. This leads to the more 

fundamental question of whether the presence of the minor 

dimensions affect the reliability and validity of ability 

and achievement tests. 

One purpose of this research was to examine the effect 

of the presence of minor dimensions on ability estimation 
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and decision accuracy of mastery tests. A second purpose 

was to examine the performance of different item selection 

methods at different levels of test dimensionality. The 

results of the simulation study show that the decision 

accuracy decreases as the strength of the minor dimensions 

increases, and that the accuracy of ability estimates also 

decreases as the minor dimensions get stronger. In two 

types of simulated tests? one intended to simulate an 

achievement test and the other to simulate a credentialing 

exam, the effect of departure from unidimensionality on 

decision accuracy and validity was significant. This was 

true when the cut-off scores were at the center of the 

ability distribution and at a point where 75 percent of the 

examinees pass the test. 

The optimal and content-optimal (optimal-balanced in 

the simulation) item selection methods did perform better 

than others in almost all situations. The differences in 

performance among the item selection methods, however, was 

more notable as the test departed from unidimensionality. 

Optimal item selection methods performed better than the 

random method of item selection in unidimensional item 

pools, and two optimal methods performed reasonably better 

when the strength of the minor dimensions was increased. 

One was the optimal method in which the items were selected 

according to the information they provide at the cut-off 

score regardless of which minor factor affects them. The 

other was the optimal-balanced method in which items were 
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selected on the basis of the information they provide at the 

cut-off score, and the representation of the minor factors 

in the resulting test was balanced. There was an 

interaction effect between item selection methods and 

strength of minor dimensions which means that some item 

selection methods were more suitable than others as the test 

became multidimensional. The optimal-balanced and optimal 

methods are preferable when the test data are not 

unidimensional. 

The differences in validity indices and decision 

accuracies among item selection methods and levels of lack 

of unidimensionality may appear small in magnitude but are 

significant in practice. Equalizing the decision accuracies 

of tests developed through two methods of item selection 

could mean increasing the test constructed with one method 

as much as 100 percent. Hence, from a practical point of 

view, the small differences in validity indices and decision 

accuracies among item selection methods and levels of minor 

factor strength are significant. 

One purpose in the second part of the research was to 

examine the effect of item selection methods on decision 

accuracy and measurement precision. A secondary purpose was 

to assess whether this particular data was unidimensional. 

The real data was found to be unidimensional. The 

significant finding in the analysis of the real data was 

that optimal item selection methods provide better tests in 

terms of decision accuracy and measurement precision. 
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Without loss of content validity, and without requiring 

additional information in the item pool, the IRT-based 

optimal methods provided tests with high measurement 

precision, and the content-optimal method provided the test 

with the highest decision accuracy. 

Conclusions 

Criterion-referenced tests are being used by many state 

departments of education, credentialing agencies, armed 

services, and many other institutions to assess the 

competence and achievement levels of examinees. Item 

response theory offers models that overcome the shortcomings 

of the classical test models in the applications of 

criterion-referenced tests. IRT, however, has assumptions 

that are sometimes hard to meet in real life testing 

situations. One of the most difficult to meet is the 

assumption of unidimensionality. Several studies have been 

carried out on the robustness of IRT estimation programs and 

models to the violation of the unidimensionality assumption, 

and it has been found that the models are robust to the 

violation of the assumption to some extent. What has been 

missing, however, is research on the effects of the 

violation of the unidimensionality assumption on the 

validity and the reliability of mastery tests. This study 

examined one aspect of that issue? namely the effect of the 

presence and the strength of minor, unintended factors on 

validity and decision accuracy. Whether some item selection 

methods perform better than others in the presence of minor 
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dimensions of different strengths was also investigated. In 

real data, the performance of several item selection methods 

in developing tests with high measurement precision and 

decision accuracy was also examined. Several conclusions 

can be derived from the results obtained in this study. 

First, the strength of minor dimensions in a test do 

affect the validity and decision accuracy of criterion- 

referenced tests. This could happen due to (1) less 

adequacy of model-data fit, and/or (2) the fact that one 

ability is being measured while the examinees need to use 

more than one ability to answer the test items correctly. 

Second, optimal item selection methods perform better 

in test development than the classical and random methods, 

and the optimal method and optimal-balanced method perform 

better than other methods especially when the test is not 

strictly unidimensional. Hence, the choice of item 

selection method will have an effect on validity, 

measurement precision, and decision accuracy of mastery 

tests. This effect is not unexpected since optimal methods 

select items that discriminate, and hence provide least 

errors of estimation, at the cut-off score of interest. 

What is not optimal, and will eventually lead to less 

decision accuracy, is to over sample one part of the test 

which is mainly affected by one minor factor when the test 

has several minor factors. 

Third, the differences among item selection methods 

become more notable as the minor dimensions become stronger. 
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In other words, there is an interaction between the choice 

of item selection method and strength of minor dimensions. 

The optimal method which selects items based on the 

information they provide at the cut-off score, and the 

optimal-balanced method in which items are selected on the 

basis of their information functions in addition to the 

balance of the minor dimensions in the resulting tests, 

provide higher decision accuracies and better ability 

estimation, especially as the test departs from 

unidimensionality. 

Finally, the methods that provide better tests in terms 

of decision accuracy, validity, and measurement precision do 

so without any additional cost or expenses. The other 

characteristics of the test such as content validity can be 

protected, and the methods use the same item pools that are 

available to all item selection methods. In other words, 

tests with higher validities, reliabilities, and decision 

accuracies can be developed easily without compromising the 

qualities of the required test. The optimal item selection 

process is made easier and simpler by the computer 

technology, and there are computer programs already 

available for these purposes such as OTD (Verschoor, 1991). 

Implications of the Research for the Practitioner 

Test data are not unidimensional in most practical 

situations, and the assumption is violated in a multitude of 

ways such as those discussed in Traub (1983) , Drasgow and 

Parsons (1983), and Stout (1987). It is not uncommon to 
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violate the unidimensionality assumption through the 

presence of minor dimensions beyond the major trait the test 

is intended to measure. The presence and the strength of 

the minor traits affect the validity of the mastery/ 

nonmastery decisions of the tests, and the test development 

process. The findings of this research have some 

implications for the testing practitioner which could be 

summarized as follows: 

1. Assessment of test dimensionality is important for the 

intended use of the test. Unintentional minor factors 

such as reading in a mathematics test may affect the 

reliability, validity, and decision accuracy of the 

scores. 

2. Goodness-of-fit investigations may not be sensitive to 

the presence of minor factors. A test with significant 

minor traits might well fit an IRT model as was the 

case in this study when £ was set at 0.3 and 0.5 (see 

Table 4). Linear and non-linear factor analyses appear 

to be more effective ways of detecting the presence and 

the strengths of minor traits. 

3. One way to detect the presence and the strengths of the 

minor dimensions could be to analyze the data with a 

multidimensional IRT program such as NOHARM (Fraser & 

McDonald, 1988) or MIRTE (Carlson, 1987), and examine 

the item discrimination indices for the different 

dimensions. Knowing the relative potencies of the 

minor dimensions will help the test developer decide on 
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whether to use the test as if it were unidimensional. 

If the mean discrimination of the minor dimension is as 

high as 30 percent of the total discrimination, 

unidimensional analysis and interpretation of the data 

is not a good choice. 

4. The presence and the strength of the minor traits do 

affect the ability estimation, validity, and decision 

accuracy of mastery tests. This may lead to 

misclassification of substantial number of examinees, 

and may undermine the usefulness of the test. The 

problem might be avoided by fitting a multidimensional 

model to any data with potent minor dimensions. 

5. Optimal item selection methods, which use IRT-based 

formulations, provide tests with relatively high 

validity indices and decision accuracies even when 

minor dimensions are operating in addition to the major 

trait the test is supposed to measure. These methods 

also provide relatively high levels of measurement 

precision. One exception is when there are several 

minor traits, and a high percentage of the items are 

selected from one of the minor traits. In that case, 

the ability estimation and decision accuracy might be 

lower than even the random method of item selection. 

The optimal item selection methods are not the best 

solution for the validity and decision accuracy of a 

test with strong minor dimensions, but are merely 

better than other methods of test construction. 

135 



Limitations of the Research 

This research has highlighted a practical problem which 

is common to many tests that are developed for examinee 

classification into mastery levels. However, several 

limitations should be noted. First, the number of 

replications performed for each type of test was small 

compared to what is often seen in many Monte Carlo studies. 

Second, the situations investigated might not always be 

found in real tests. The study design was built on other 

empirical research and real data in choosing its variables, 

the number of minor dimensions, the test length, the pool 

size, the choice of item parameter statistics for the 

simulation, and the potencies of the minor dimensions. 

These variables and parameters were chosen to fit many 

common situations found in practice but obviously could not 

match all situations. 

Third, the criterion used for the classification 

decisions in the simulation study was more valid than any 

criterion that might be used in testing practice. This has 

resulted in the high decision accuracies and ability 

correlations reported in this study. This could have been 

avoided, and these numbers could have been smaller, for 

example, if another variable which is correlated to the 

examinee dominant abilities was used as criterion. In the 

real data, the criterion (even items) may not be desirable 

since it is part of the original test. 
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Fourth, the guessing parameter was not included in 

either the simulation or the real data analysis. Chance 

success is common in testing practice, and it is not clear 

how this parameter could have affected the results of the 

study. 

Fifth, the ability score is only one of test scores 

reported in applied testing situations. Some practitioners 

prefer the number correct-score or transformation of it. 

Finally, the real data did not have minor dimensions to 

facilitate thorough analyses comparable to those performed 

in the simulated data. It represented the best case where 

the test is strictly unidimensional, and hence limited the 

value of real data analysis. 

Suggestions for Further Research 

In light of the results and limitations of the 

research, a number of suggestions for further research can 

be offered. The case where items are not equally divided 

among the minor factors is not addressed in this study. 

This is related to the number of items a minor factor needs 

to affect in order to be effective. Hence, an investigation 

is needed to assess the effect of number of items per minor 

dimension on decision accuracy, and whether this factor 

causes or interacts with the strength of minor dimensions. 

Item pools in some testing agencies are quite large, 

and pool size might have an effect on the performance of 

item selection methods. Further research in which the item 

pool size is varied, its effect on decision accuracy is 
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assessed, and its interaction with item selection methods 

and potency of minor dimensions is examined would also be 

useful. It is not uncommon for some items to be affected by 

more than two dimensions. It is possible for one item to 

measure one major ability and two minor abilities. A study 

investigating the effect of dimensionality on decision 

accuracy of test data in which items are affected by more 

than one minor dimension beyond the major ability could also 

be carried out. Finally, reliability of mastery tests is 

also important in practice. The effects of dimensionality 

on test reliability is an area where further investigation 

is needed. 
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