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ABSTRACT 

EXPLORING THE POTENTIAL OF KNOWLEDGE ENGINEERING AND 
HYPERCARD FOR ENHANCING THE TEACHING AND LEARNING IN 

MATHEMATICS 

SEPTEMBER, 1991 

DONNA E. LALONDE, A.B., COLGATE UNIVERSITY 

M.A., UNIVERSITY OF KANSAS 

Ed.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Richard J. Clark 

This study adapted the knowledge engineering process from expert 

systems research and used it to acquire the combined knowledge of a 

mathematics student and a mathematics teacher. The knowledge base 

acquired was used to inform the design of a hypercard learning environment 

dealing with linear and quadratic functions. 

The researcher, who is also a mathematics teacher, acted as both 

knowledge engineer and expert. In the role of knowledge engineer, she 

conducted sixteen sessions with a student-expert. The purpose of the 

knowledge engineering sessions was to acquire an explicit representation of 

the student's expertise. The student's expertise was her view of 

mathematical concepts as she understood them. The teacher also made 

explicit her understanding of the same mathematical concepts discussed by 

the student. A graphical representation of the knowledge of both student 

and teacher was developed. This knowledge base informed the design of a 

hypercard learning environment on functions. 
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CHAPTER 1 

INTRODUCTION AND CONTEXT 

"For want of a nail, the shoe was lost; 
For want of a shoe, the horse was lost; 
For want of horse; the rider was lost; 
For want of rider; the battle was lost; 

For want of a battle; the kingdom was lost!" 
[Gleick, 1987, p. 23] 

1.1 Introduction 

This dissertation describes the process used to design and implement 

an interdisciplinary hypercard learning environment for improving 

mathematics education. Aspects of the knowledge engineering process 

were used to develop a knowledge base which represented the combined 

expertise of a student and a teacher. The commercially available hypercard 

application was used to represent this knowledge of linear and quadratic 

functions and graphs in precalculus mathematics and introductory science. 

The central purpose, of this research, was to document the process of 

constructing a knowledge-based system which: 

a. is informed by knowledge engineering sessions 
with a student-expert and a teacher-expert; 

b. represents heuristic and published knowledge; 

c. responds to the National Council of Teachers of 
Mathematics guidelines; and 

d. employs technology which is widely accessible to 
teachers at all levels. 

To accomplish these goals, the researcher worked with a college student 

who had recently completed the second semester of a two semester 

precalculus course at a four year public University. 
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The role of the student was to help elucidate the differences between a 

teacher's mathematical knowledge and the student's mathematical 

knowledge. 

1.2 Researcher's Starting Conditions 

Viewed as a dynamical system, the research presented in this 

dissertation is partly explained through a discussion of the initial or starting 

conditions. The bit of folklore introducing this chapter was also used by 

James Gleick to begin a discussion of the Butterfly Effect. In the study of 

dynamical systems, the Butterfly Effect is used to explain the system's 

dependence on initial conditions [Gleick, 1987]. In the fable, the initial 

conditions, a description of the system at its conception, is simply the lack of a 

nail. The dynamical system in this project and its initial conditions are more 

difficult to describe because it is in large part a result of the my evolution as 

an educator. Thus, some knowledge of the me and an understanding of this 

work, in the context of the current research on the impact of technology on 

education, is required. 

The system is interdisciplinary because my approach to the study of 

mathematics and science has been to make connections. As a Master's 

project in theoretical Biochemistry, I completed calculations which supported 

the study of photosynthetic systems. Since completing this work, my focus 

has been teaching chemistry and mathematics at the college level and 

working in secondary mathematics and science teacher education with an 

emphasis on technology in teacher education. These foci represent starting 
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conditions which influence my desire to evolve a system toward an increased 

understanding of appropriate representations of mathematical knowledge, 

narrowing the expert-novice gap. In addition, the development of this system 

involves an effort to deal with more global issues of technology and its place 

in education. Questions related to this topic are the basis of the other set of 

initial conditions which influenced this work. 

As an instructor of precalculus mathematics at the University of 

Massachusetts at Amherst, the only technology I use in my classes is an 

overhead projector. An informal survey of my colleagues shows that I am not 

unique; the most sophisticated technology used is a piece of chalk or a 

transparency pen and overhead projector.. There are notable exceptions. A 

special calculus sequence, "Calculus in Context", requires some of the 

homework assignments be done using the computer. Special sections of 

courses, for example "Differential Equations", require extensive 

microcomputer laboratory work using commercially available software 

packages like "Derive". This is juxtaposed with my role as co-instructor of a 

course for first-year secondary school teachers entitled "Impact of Computers 

on Schools and Society" which encourages the teachers to integrate 

technology into their teaching. 

1.3 Technology and the Curriculum 

Why use technology to facilitate learning in the curriculum? Because 

for the most part we have concentrated on the trivial answers to this question, 

we have not been able to encourage large scale changes in the curriculum. 
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Trivial answers imply that real math and science are only possible with 

computers. Learning to evaluate an integral no longer is necessary since 

numerous software packages (and even calculators) exist to do it for you. 

Students today are a part of a video generation, and they won't be motivated 

to learn in a technologically "dull" environment. 

Trivial answers are the wrong justification because they do not focus 

our attention on what we can accomplish with computers, which is different 

from the traditional paper and pencil approach. A stronger justification for the 

redesign of the curriculum to include computers is that the technology allows 

exploration of exciting open-ended problems from subjects like chaos or 

evolution. Problems, particularly those involving interesting mathematics, are 

often not as easily accessible without the use of computers. Part of the 

motivation for undertaking the work described in the following chapters was 

to push beyond the trivial reasons for including technology in the curriculum. 

As a researcher, educator, and citizen, I was heavily influenced, in 

pursuing this study, by my continuing effort to become comfortable with the 

educational and societal consequences of an impending Information Age. I 

agree with B. A. Sheil who wrote: "most previous major technological 

innovations, like the introduction of the automobile, although they may be 

profound changes in artifacts, did not require a change in any basic patterns 

of thinking" [Sheil, 1988, p. 86]. As I developed the present work, it was with 

the goal of contributing to the development of a new set of thinking skills 

which will be required of all citizens. A goal of this work was to stretch the 

boundaries of mathematics education to encompass education for life in the 

21st Century. 
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The driving force in curriculum development should not be the training 

of a productive work force; however, we cannot be so removed from our 

students that we not pay attention to the real concern of being able to find 

jobs. As we think about teaching, we have to understand how technology is 

changing the work environment. Shoshana Zuboff reports in her book In the 

Age of the Smart Machine that "the new technology signals the transposition 

of work activities to the abstract domain of information; toil no longer implies 

physical depletion. "Work" becomes the manipulation of symbols, and when 

this occurs, the nature of skill is redefined." Zuboff relates peoples' 

description of work in factories and other settings where smart machines 

controlled production processes: "Accomplishing work came to depend more 

upon thinking about and responding to an electronically presented symbolic 

medium than upon acting out know how derived from sentient experiences" 

[Zuboff, 1988, p. 95]. Given this new definition of the nature of work, survival 

in our society depends on having the new skills necessary to do work. This is 

motivation for developing learning environments which foster the 

development of this new set of "intellective skills". Putting Zuboff's notion of 

"intellective skills" in the domain of the classroom, consider the words of one 

English educator, William Costanzo: "As teachers we ought to think about 

the ways our students may be influenced by these machines - not just as 

vehicles of information, but also and primarily as models of how to see and 

think, to read and write and reason" [Costanzo, 1988, p. 28]. 

Richard Dawkins in his book the Blind Watchmaker also makes the 

argument that technology changes the way in which we think. He writes "the 

computer can be powerful friend to the imagination" [Dawkins, 1987, p. 74]. 
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Dawkins and Zuboff are exploring related areas, but Dawkins's framing of the 

implications of the technology is less centered on work. I recognize the 

power of the workplace to influence educational reform but am more 

comfortable with Dawkins's focus on imagination, almost a plea for life long 

learning. It is this sense that technology will foster the development of new 

insights and be one part of the starting conditions for this work. 

Whatever the prevailing view, technology is changing the way people 

think. For the benefit of our students, educators need to grapple with these 

changes even if doing this forces us into new territories. As Costanzo writes: 

''I venture this far into the language of computer science and cognition 

because, I think, our profession has not gone far enough to understand the 

new technology and what its doing to our language" [Costanzo, 1988, p. 32]. 

1.4 Artificial Intelligence 

One of the most engaging areas of research is the nature of human 

intelligence. Questions considered under this rubric include: What is the 

nature of memory, how do we solve problems, and what is learning? Clearly 

these questions cut across traditional boundaries and are investigated by 

cognitive science, psychology, philosophy, and artificial intelligence. 

Education should not be left out of this list. Regularly educators struggle with 

the issues of human intelligence; they are, but could more directly be, 

contributing to the discourse in the research community. 
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The artificial intelligence community has contributed enormously to our 

understanding of human intelligence. Contributions from the community will 

continue to be significant. This is, in part, due to a shift in focus of some 

members of the artificial intelligence community away from the purely 

computational. Luc Steels, for example, writes: 

"Textbooks talk about different computational formalisms such as 
rules, frames, and knowledge programming. They assume that 
knowledge can be translated more or less directly into 
computational structures from observations of the expert's 
problem solving or from verbal reports about this knowledge. It 
is true that at some point in the process of developing a working 
application, we have to face decisions on which implementation 
medium to use; however the computational answer is only partly 
satisfactory. The gap between the implementation level and the 
knowledge and problem solving that we observe in the human 
expert is too wide" [Steels, 1990, p.29]. 

As the artificial intelligence community becomes more interested in 

narrowing this gap by probing human intelligence, teachers need to be 

aware of this research. Teachers need mechanisms by which they can learn 

about research and contribute actively to research projects. This means 

being familiar with the language and substance of existing research. As I 

started work on the present project, I viewed it as a potential mechanism to 

introduce teachers to the field of Artificial Intelligence and encourage them to 

begin asking questions and recording their findings. If there is going to be a 

partnership between the Al and teaching communities, the teachers cannot 

be viewed as receptacles for information. Their roles must involve more 

active participation in all aspects of the research process. 
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1.5 Teachers and Technology 

Introducing technology into the curriculum can either be done for 

reasons supported by pedagogy and sociology or, because in the search for 

the "quick fix", technology is the current candidate. The introduction and the 

curriculum developed will obviously be more powerful if it is the former 

reasons which motivate us to change. Whatever the motivation, some 

modification of curriculum seems likely. It is important to raise some of the 

issues which must be dealt with as we modify what is taught. This provides 

yet another initial condition, a sensitivity to the culture of schools and the 

need for the teacher to play a central role if effective change is to occur. 

Power On!, the study completed by the Office of Technology 

Assessment, showed that access to technology is not sufficient to generate 

enthusiasm for redoing the curriculum [U.S. Congressional Office of 

Technology Assessment, 1988]. Sarason describes the culture of schools: 

"The dominant impression one gains is that school personnel 
believe that there is a system, that it is run by somebody or 
bodies in some central place, that it tends to operate as a never 
ending source of obstacles to those within the system, that a 
major goal of the individual is to protect against the baleful 
influences of the system, and that any one individual has and 
can have no effect on the system qua system" [Sarason, 1982, 
p. 163]. 

Teachers will use what they understand and feel invested in, so it is critical to 

provide the teacher with ample opportunity to contribute to the design 

process. A computer scientist would not consider building a medical expert 

system without medical practitioners as contributors to the design process. It 

only makes sense that software, to be used in the schools, be designed by a 

team including teachers. 
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The National Council of Teachers of Mathematics has concluded that it 

is critical for educators both in methods and domain courses to model good 

teaching behavior for their prepracticum students. The way in which 

mathematics is taught, in large part, determines success or failure on the part 

of the student and establishes positive or negative feelings about the subject. 

This is not meant to take discussions of mathematics education to the popular 

psychology level. It does mean that if our concerns about the mathematics 

competency of students in the United States are genuine, we have to be 

willing to consider that attitudes developed at an early age have a significant 

impact on the students carrying on in mathematics. 

The current work fits within the general rubric of teaching and learning 

in mathematics; technology and artificial intelligence provide the context. 

The teachers' responsibilities need to include active involvement in the 

development of new technology, planning, implementation, and evaluation of 

new technology in the classroom, and contributions to the research effort 

endeavoring to understand human thinking and learning. As Dede states: 

"Using cognition enhancers {e.g. hypermedia}, however, requires more than 

learning how to activate the machines and issue commands; the style of 

working must change" [Dede, 1989, p. 24]. The same could be said of the 

style of teaching. This project explores one area where it is possible to 

involve teachers actively in a research agenda while supporting necessary 

changes in style. 

One avenue toward better teaching is to study the differences between 

experts and novices to elucidate the differences in order to facilitate the 

development of expertise. Teachers engage in this exploration on an almost 
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daily basis as they encourage their students to develop some new skill or to 

discover a new concept. Teachers have not been encouraged to frame their 

activities as research questions, and they have not been provided with a 

mechanism to organize their data. 

Rather than attempting to establish a distinct set of technological skills 

appropriate for all teachers, this work will explore one mechanism for linking 

exploration of technology to research on teaching. Through the use of 

applications like hypercard, teachers will be able to explore issues of 

teaching and technology. 

There is some historical support for the proposition that developing 

knowledge-based systems is a productive learning experience. This work is 

in part about discussing a new conceptualization of the teacher's role, that of 

the teacher as knowledge engineer. Allowing teachers to see themselves in 

this role moves us in the direction of including teachers as part of the 

research team involved in the development of intelligent learning 

environments. It introduces the vocabulary and some of the ideas without 

being overwhelming. Working in the HyperCard environment focuses the 

work at a level of technology which is accessible to most teachers. It 

encourages the teachers to generate their own applications based in large 

part on their experiences. This serves to validate their experience as well as 

to ensure that the software reflects their perspective which will contribute to it 

being utilized. It also encourages the teachers to begin developing the 

intellective skills necessary for survival in the information age. One of the 

most effective ways for students to develop these skills is to have role models 

to follow. 



1.6 Overview of the Study 

This introduction has focused on the initial conditions, that is my 

preconcerns. In the next chapter, I will review the literature which supports 

this research. Descriptions of the knowledge engineering process as it 

followed in the development of expert systems and of the modified 

knowledge engineering process used in this research process followed 

during the course of the research and the results are contained in Chapter 

Three. A summary of the knowledge engineering sessions conducted during 

the course of this research and a knowledge representation developed 

based on these sessions are also presented in chapter three. An 

introduction to hypercard and a description of the hypercard application 

implemented as a result of this work are found in Chapter Four. Design 

decisions made as a consequence of the knowledge engineering sessions 

are presented in Chapter Four. Conclusions and implications for future work 

are discussed in Chapter Five. 

Since the remainder of this document concentrates on what this work 

is, it is important to be explicit about what this work is not. This work used 

software applications and hardware currently available in most secondary 

schools. This equipment is not necessarily state of the art, but it is 

appropriate to the current culture of most schools. This work was not 

exhaustive in its investigation of the understandings of the student, as it 

involved only one student and one teacher. 



CHAPTER 2 

REVIEW OF THE LITERATURE 

2.1 Introduction 

The major challenge of this project is to explore the implications of the 

knowledge engineering process for mathematics education. The context for 

this work is the design and implementation of a hypercard application which 

represents the views of two participants, both expert, of selected topics in 

precalculus and their relationship to the natural sciences. One expert, a 

teacher and knowledge engineer, has subject area expertise; the other, a 

precalculus student provides the perspective of the learner. This work is 

informed by literature in three areas: (1) expert systems; (2) hypertext and 

hypermedia applications; and (3) mathematics education. 

2.2 Expert Systems 

To provide a foundation for this work, I will describe an expert system 

and briefly discuss some of the most significant work in expert systems 

research. This will be followed by a survey of the more promising 

applications of expert systems to education. The section will conclude with a 

discussion of current research on knowledge acquisition and knowledge 

representation which are relevant to this research project. 

An expert system is a computer program, capable of solving problems 

which requires significant knowledge of the problem domain. A typical expert 

system is composed of three parts - the knowledge base which is the explicit 

representation of expertise in a particular area, the inference engine, which 

provides direction to the system as to how use the knowledge in the 



knowledge base to accomplish a specific agenda, and the user interface, 

which allows for human machine interaction [Buchanan and Shortliffe, 1984]. 

Since the mid-sixties research in the area of expert systems has 

contributed to the field of Artificial Intelligence. Historically, most notable are 

DENDRAL, a system which assists chemists in the interpretation of mass 

spectroscopy data, MACYSMA, a system which solves problems in 

differential and integral calculus, and MYCIN, a system which diagnoses and 

suggests treatment for infectious blood diseases [Hayes-Roth, Waterman, 

and Lenat, 1983]. Although expert systems research is only a small part of 

the field of artificial intelligence, the early work in expert systems provided the 

foundation for other research areas. Of particular importance is the work on 

Intelligent Tutoring Systems (ITS) which directed the attention of the 

research community to issues of tutoring and the components of an effective 

tutor namely, the teacher, the student, and the domain expert [Clancey, 1987- 

a]. More recent work on the development of Intelligent Learning 

Environments extends the ITS research and keeps active the investigation 

into learning [White and Frederiksen, 1990]. Researchers in this area while 

working to develop computer systems address issues which grapple with the 

nature of knowledge. For example, there is Anderson and co-workers ACT* 

theory of cognition [Anderson, Boyle, Corbett, and Lewis, 1990], and the work 

by Laird, Newell and colleagues to build a system capable of general 

intelligent behavior (SOAR) [Laird, Newell, and Rosenbloom, 1987]. Steels 

and co-workers are studying the "components" of expertise which has the 

potential to contribute to the teacher education community's understanding of 

what constitutes expertise in teaching [Steels, 1990]. 



In the previous paragraph some of the implications of expert systems 

and related research for the education community were presented. It is worth 

recognizing the interesting work which has been accomplished. Knox-Quinn 

has reported on a successful summer course during which junior high 

students used expert system shells (the shells consist of the user interface 

and an inference engine; the designer constructs the knowledge base) to 

build their own expert systems. Engaging in this activity allowed the students 

to gain insight into their decision making process [Knox-Quinn, 1988]. In the 

work reported by Knox-Quinn the students did not design systems in a 

traditional academic area; Morelli reports on a summer workshop during 

which junior high school students built an expert system in the domain of 

botany [Morelli, 1990]. Trollip and Lippert report on a college course for 

education students where the class project was to build an expert system. 

The course was on Intelligent CAI so the students developed expert systems 

which would be useful to CAI developers. This work supports the idea that 

building expert systems is a productive endeavor [Trollip and Lippert, 1987]. 

The Trainee Teacher Support System (TTSS) is an expert system designed 

to provide advise novice teachers on classroom practice. TTSS is an 

example of research which joins education and artificial intelligence [Wood, 

1988]. 

The expert systems literature describes in great detail the work 

involved in the development of a system [Hayes-Roth, et. al, 1983]. Of 

particular importance in this work is the phase of expert system development 

referred to as knowledge engineering. During this process a knowledge 

engineer, typically a person with computer science background, and a 

domain expert, work together to enable the knowledge engineer to formulate 
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the expert's knowledge in machine usable form. This machine usable form is 

the knowledge base of the expert system. 

Construction of the knowledge base or knowledge acquisition is time 

consuming and is identified as the rate limiting step. Much current research 

is involved with methods of facilitating this process. Of interest are efforts to 

design knowledge acquisition tools which are "aware” of and capitalize on 

the expert's representation of knowledge [Gruber and Cohen, 1987]. 

Although not of direct relevance to this project, it supports the proposition that 

it is beneficial to focus on better understanding of the expert's representation. 

Of more direct importance to this project is work which provides specific 

techniques for knowledge acquisition. Davies and Hakiel have written a 

general article which outlines in some detail the steps of the knowledge 

acquisition process with advice on how to accomplish the task [Davies and 

Hakiel, 1988]. 

Clancey has written extensively about the role of the knowledge 

engineer. He supports the concept that the knowledge engineer is an 

excellent model for a good student because it is critical for the knowledge 

engineer to be able to ask good questions [Clancey, 1987-b]. Therefore by 

studying the knowledge engineering process, we will learn something about 

asking good questions. The process as well as the product has value. 

In addition to providing the system with expertise, studying the 

knowledge base provides insights into the nature of the domain and supports 

the transition from expert to novice. Clancey has detailed an argument for 

viewing the knowledge base as a qualitative model of the domain [Clancey, 

1989]. This is important because often new teachers and students lack a 

model of the domain they are attempting to understand. Without an 
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appropriate model, it is difficult to be successful in learning. In addition, as 

Kolodner asserts: "the evolution from novice to expert requires introspection 

and examination of the knowledge used in solving problems" [Kolodner, 

1984, p. 96]. Part of this evolution is comes from experience which Kolodner 

claims "turns unrelated facts into expert knowledge" [Kolodner, 1984, p. 96]. 

She continues: "It implies that even if a novice and an expert had the same 

semantic knowledge (i.e. knew the same facts), the expert's experience 

would have allowed him to build up better episodic definitions of how to use 

it" [Kolodner, 1984, p. 87]. Part of the work described in this document 

involves exploring computer based applications which might support the 

introspection necessary for the development of expertise. There are 

examples of this introspection in the teacher education community. A 

number of researchers have documented improvements in the teaching 

environment when teachers consciously monitor and reflect on their behavior 

[Kounin, 1970, Good and Brophy, 1984, and Canning, 1991]. One method of 

reflection proposed by Mannin and Payne is the Cognitive Self-Direction 

Methodology for Teacher Education. A significant part of this methodology is 

"self-talk" where master teachers record and transcribe their ideas and 

responses to various classroom occurrences [Manning and Payne, 1989]. 

Previous work has demonstrated the potential for knowledge based 

systems. It is clear that the knowledge engineering process and the process 

of determining an appropriate representation for knowledge has the potential 

to inform the research in numerous domains. As Gammack and Anderson 

write: "Knowledge is not simply a static organization of facts, but must also 

acknowledge the dynamic context in which it is applied" [Gammack and 

Anderson, 1990, p. 19]. This is a powerful statement when considered from 
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the perspective of an educator and a student. In addition to providing our 

students with both surface and deep knowledge we have to think about the 

framework or context in which the knowledge is applied. 

Consideration of the nature of knowledge raises perplexing questions. 

Of particular interest is casting the question in terms of the Heisenberg 

Uncertainty Principle: "In classical physics we do not have to take into 

account the fact that in answering the question-doing an experiment-we alter 

the state of the object. We can ignore the interaction of the apparatus and the 

object under investigation. For quantum objects like electrons this is no 

longer the case. The very act of observation changes the state of the 

electron" [Pagels, 1982, p. 74]. Clancey has begun exploring the 

implications of the "Uncertainty Principle" view of knowledge for artificial 

intelligence [Clancey, in press]. This current project will explore the 

implications for mathematics education. 

2.3 Hypermedia 

Hypermedia has already had an impact on education. 

Numerous successful projects involving hypermedia exist including: 

The Perseus Project, a collaborative effort, has the goal of 
implementing a hypermedia system to assist in the study of 
Greek Civilization [Crane and Mylonas, 1988]; 

Particles and interactions HyperCard Software, developed by 
scientists and secondary school educators at Lawrence Berkeley 
Laboratory [Fundamental Particles and Interactions Chart 
Committee, 1989]; 

The Enriched Learning and Information Environments (ELIE), an 
effort by researchers at Indiana University, to design hypermedia 
learning environments which will contribute to workplace and 
university productivity [Schwen, et. al., 1990]; 

17 



Exploring the theory of intertextuality using a PC based hypertext 
system which allowed students to generate their own 
applications to support the study of Milton's Paradise Lost 
[Havholm and Stewart, 1990]; and 

Neuro Syllabus a project at the University of Arizona which uses 
hypercard to allow students to explore the material covered in a 
course, supporting user addition of information [Louie and 
Rubeck, 1989]. 

These applications as well as the hypertext literature support the work of this 

project by demonstrating the applicability of HyperCard and other 

hypermedia systems as appropriate development tools for educational 

applications [e.g. Freidler and Shabo, 1989 and Raker, 1989]. In addition to 

these examples of hypermedia, teacher educators at Vanderbilt University 

are using hypermedia in their elementary teacher education program. 

Goldman and Barron write: "We believe that hypermedia technology has the 

potential for creating a new type of teacher education program-one that 

moves traditional college and university courses away from a teacher 

directed lecture format and into a problem solving/analytical mode" [Goldman 

and Barron, 1990, p. 29]. 

A discussion of scale is important to this project since many of the 

successfully hypermedia projects involved significant commitment of 

resources. It is important to point to successful examples which used limited 

resources. The work of Havholm and Stewart is relevant. This work involved 

incorporating the development of hypertext applications into the required 

work of an undergraduate literary theory course. The applications were 

developed by the literature students and three student programmers working 

with the class. The instructors report on the the results: "Finally, however 

crude or partial the models, their examination as a kind of deductive "result" 

of the theory made it possible for students to be unusually clear about the 
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powers and limitations of the theories themselves [Havholm and Stewart, 

1990, p. 48]. 

The knowledge base segment of the expert systems literature focuses 

our attention on the need to make knowledge accessible for exploration and 

introspection if expertise is to evolve. The opportunity to browse a hypercard 

environment promotes this exploration and introspection. Traversing a 

network, constructed out of an expert's experience, will encourage the 

novice's evolution to expert. Research supports the proposal that hypercard 

is a good tool for developing knowledge-based systems and learning 

environments [Harris and Cady, 1988, Marchionini, 1988, Tsai, 1988-89]. As 

Evans writes: "HyperCard can be ideal for implementing several types of 

knowledge-based applications. Many learning, reference, and diagnostic 

systems already have been created using only the simple associative links 

that HyperCard provides. Interestingly, this form of knowledge representation 

is so intuitive that many of the domain experts who authored these stacks did 

not realize they were actually creating knowledge-based systems" [Evans, 

1990, p. 317]. 

A new technology which combines hypertext with expert systems is 

Expertext. Barlow and co-workers describe their view of expertext systems 

as systems which will promote a "sharing of intelligence between the user 

and the expertext system' [Barlow, et al., 1989, p. 117]. This linking of expert 

systems with hypertext is interesting because it has the potential to address 

some concerns about the navigability of large hypertext systems. Endeavors 

to develop intelligent hypertext systems will present additional opportunities 

to address the questions of the nature of knowledge. 
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2.4 Mathematics Education 

"Mathematicians have a naive idea of pedagogy. They believe that if 

they state a series of concepts, theorems, and proofs correctly and clearly, 

and with plenty of symbols, they must necessarily be understood. This like 

an American speaking English loudly to a Russian who does not know 

English, in the belief that his increased volume will ensure understanding 

[Kline, 1977, p. 117]. Kline was considering the question "why the professors 

can't teach?" points out the problems in undergraduate mathematics 

education. The National Council of Teachers of Mathematics (NCTM) have 

issued curriculum guidelines for teaching secondary mathematics which 

address similar problems to those seen by Kline in undergraduate education. 

According to the NCTM, all mathematics curriculum should demonstrate 

mathematics as problem solving, mathematics as reasoning, mathematics as 

communication, and mathematical connections. In addition the curriculum 

should promote an understanding of the historical and cultural context of the 

material [NCTM, 1989]. This project is an attempt to integrate Kline's and the 

NCTM's recommendations into knowledge-based learning environments. 

Cognitive studies in mathematics education is an active area of 

investigation. A comprehensive review of this literature is not appropriate, 

but it is informative to summarize the widely accepted modes of inquiry. A 

number of researchers have examined areas in an effort to both characterize 

"mal-rules" and to contribute an understanding of learning is accomplished in 

mathematics [e.g. Matz, 1983, Brown and VanLehn, 1980, and Payne and 

Squibb, 1990]. Another area of inquiry is to concentrate on problem solving 

[e.g. Reed, Dempster, and Ettinger, 1985, Riley, Greeno, and Heller, 1983, 

and Sweller and Cooper, 1985]. Finally Perkins and Simmons have 
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attempted to characterize misunderstandings that are both within a particular 

domain and interdisciplinary between science, math, and computer 

programming [Perkins and Simmons, 1988]. 

The expert systems and mathematics education literature encourages 

the study of expert novice differences [e.g. Larkin, et al., 1980 and Leinhardt, 

1989]. Much work has been done on these differences as they appear in the 

domain of mathematics, specifically in regard to algebra, of which functions 

and graphs are a part. Wenger states: ’’students can perform the required 

symbolic manipulations correctly, but they have difficulty knowing which 

approach to select. This observation suggests that students' difficulties result 

not so much from the content of their mathematical knowledge but from its 

organization" [Wenger, 1987, p. 220]. Wenger feels textbooks that often 

present topics as discrete units contribute this deficiency in organization 

[Wenger, 1987]. A strength of the hypercard system is that it links concepts 

together which support the development of an appropriate mathematical 

organization. 

Kaput argues for the development of environments which encourage 

connections between representations. He states: "Ongoing ETC work 

suggests that appropriate experience in multiple, linked representation 

environment may provide webs of referential meaning missing from much of 

school mathematics and may also generate the cognitive control structures 

required to traverse these webs and tap the real power of mathematics as a 

personal intellectual resource" [Kaput, 1989, p. 180]. This project is 

responsive to Kaput's recommendations. It will provide the opportunity for 

the novice to explore the representations of an expert thereby supporting the 

development of expertise. By taking advantage of the inherent hypercard 
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structure to link various representations, it will encourage the user to develop 

a sense of meaning not just of symbol. 

As stated previously, this project will implement an environment to 

allow the user to realize the connections between topics in mathematics and 

the sciences. Senk reviews the literature which supports the need for this 

type of tool: 

Weiss (1987) reports that secondary mathematics teachers 
generally have little formal coursework in applications of 
mathematics. Furthermore, the University of Chicago School 
Mathematics Project (Usiskin, 1986/1987) has consistently 
found that, although mathematics teachers are generally willing 
and interested in using realistic applications, few know where to 
find examples within the grasp of secondary school students 
(Hedges, Stodolsky, Mathison, and Flores, 1986) [Senk, 1989, 
p. 216]. 

Kline supports the need for interdisciplinary work at the undergraduate level: 

"What should a college course in mathematics for liberal arts students offer? 

The answer is contained in the question. The liberal arts values of 

mathematics are to be found primarily in what mathematics contributes to 

other branches of our culture" [Kline, 1977, p.129]. 

The use of technology in the teaching and learning of mathematics is 

an area of inquiry related to this work. Some examples have been previously 

discussed, and it is worth citing others which are of interest. Word Problem 

Assistant (WPA) developed by Thompson encourages the student to pay 

attention to relationships between parameters involved in the problem not on 

formulae [Thompson, 1989]. Cornu and Dubinsky propose educational 

software development based on a cognitive theory. In their view 

"mathematical knowledge consists of constructing objects and processes and 

the methods of construction, called reflective abstraction, include: 
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interiorization, coordination, encapsulation, reversal, and generalization" 

[Cornu and Dubinsky, 1989, p. 75], They are using a programming language 

called ISTEL to assist their students in reflective abstraction [Cornu and 

Dubinsky, 1989]. 

Although there are many research areas in mathematics education, it 

is clear that the nature of knowledge in mathematics is a priority [e.g. Davis, 

1989, Larkin, 1989, and Lampert, 1990]. This research project will contribute 

to the discourse in this area. 
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CHAPTER 3 

DESIGN AND CONDUCT OF THE KNOWLEDGE ENGINEERING 
COMPONENT OF THE STUDY: ACQUIRING THE KNOWLEDGE BASE 

3.1 Introduction 

This chapter describes both the design and the actual process 

followed in constructing the knowledge-base from which the hypercard 

application described in Chapter Four was formulated. This chapter is 

organized in two major sections. 

Section 3.2 focuses on design, starting with the research from expert 

systems and, particularly knowledge engineering. It then presents a 

rationale for hypercard as the selected tool for building the implementation, 

and for functions and their graphs as the content to be explored. It includes a 

description and rationale for the "novice-expert" employed in the study, and 

the planned roles of both the novice-expert and the knowledge engineer- 

researcher. This section concludes with the projected (and actual) plan of 

knowledge engineering sessions held. 

Section 3.3 reports the process of, and insights gained through, the 

knowledge engineering sessions and concludes with a graphical 

representation of the knowledge-base. Rather than reporting interactions 

sequentially for each of the sixteen sessions, the researcher reports results 

topically, emphasizing those interactions which underscored expert-novice 

and knowledge engineer-expert differences and which particularly informed 

the knowledge-base representation. 
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3.2 The Design 

3.2.1 Expert Systems and Knowledge Engineering 

The foundation for this work comes from expert systems research, 

particularly the process of knowledge engineering. In conceptualizing this 

work, I planned to act as knowledge engineer with a student as expert and 

use these interactions to design and build a hypercard application. 

Essentially I planned to follow a standard knowledge engineering program 

which I will describe here. 

The knowledge acquisition process or the "mapping of expertise" to 

the expert system progresses through five major stages. The first stage 

entails the identification of the problem the expert system will be expected to 

solve. During the first stage the domain of the expert system is established, 

making it possible to identify human experts. For example the domain of 

MYCIN, one of the first expert systems, is the diagnosis and treatment of 

infectious blood diseases; DENDRAL, a project begun at Stanford in 1965, is 

used to assist chemist in the interpretation of mass spectroscopy data. 

Experts for the former, thus, were physicians; Implicit in identifying the 

problem is assuring that the problem is significant enough to warrant the 

effort of development and implementation. 

Stage two is the conceptualization, which involves making explicit the 

knowledge identified in the first stage. It is during this stage that the 

knowledge engineer works with the human expert or experts to develop the 

knowledge base of the expert system. Using the DENDRAL project as an 

example, chemists who were expert in the field of mass spectroscopy would 

be interviewed by the knowledge engineer. Both published and heuristic 

knowledge would be acquired. The knowledge engineer would engage the 
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experts with the goal of ascertaining the knowledge which distinguished 

them in their field. 

During the third stage, formalization, a structure is determined for the 

knowledge. Early systems were rule based. Formalization involved 

transforming the expertise into if-then rules which would be manipulated by 

the system's inference engine to solve problems. Other formalizations 

include frames and schemes. The formalization focuses the attention of the 

researchers on the nature of knowledge, and this is currently an important 

research topic [Clancey, in press]. 

Having accomplished these three stages, a prototype system is 

implemented and tested during the fourth and fifth stages [Buchanan, et. aL, 

1983, pp. 140-147]. Testing provides the opportunity for the expert and 

perhaps other appropriately identified individuals to evaluate the system for 

validity and usefulness of the expertise as ii is represented. It is worth noting 

that in expert systems development, as with any development process, the 

stages are not discrete. Rather they form a set of interacting activities which 

result in the completed product. For example, it may be the case that parts of 

stage one and stage two occur simultaneously or that as a result of 

discussions nominally in stage two, stage one is modified or it may be that 

parts of implementation and testing occur while stage two is still in process. 

In the present project, some of the decisions normally made during 

stage three were made prior to beginning the knowledge acquisition process 

[Gruber and Cohen, 1987]. Because a goal of this project was to investigate 

the applicability of hypercard, I began the process knowing that the 

knowledge would be represented in a hypercard system. The formalization 

that would take place during stage three would involve designing cards and 
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constructing the hypercard links to represent the knowledge obtained during 

stage two. Although I would not be making the traditional decisions about 

representations, I would still have to grapple with the critical issue in expert 

system design, that the system representation match the expert's 

representation. This is important because research has shown that a 

correspondence between the system's representation and the expert's 

facilitates the knowledge acquisition process. Part of this work was to 

explore the extent to which hypercard would support the development of an 

application which did match the expert's representation thus making it an 

appropriate tool for learning environments. 

3.2.2 HyperCard 

The choice of hypercard as the environment for the implementation of 

this work was motivated by the current research involving hypercard systems 

and my observations that this environment was useful, based on having 

worked with it in other contexts. My experiences included working on a 

hypercard application to help undergraduate tutors of language minority and 

culturally diverse secondary school students. The TEAMS tutoring program 

at the University of Massachusetts places undergraduates as tutors in local 

elementary and secondary schools and alternative education programs. I 

worked on a hypercard application which would provide information about 

the schools and strategies for tutoring. The positive reception of the tutors to 

the prototype was encouraging and strengthened my inclination to use 

hypercard for this project. The tutors liked the prototype because it accurately 

represents knowledge they have and find useful. In addition to my positive 

experience with hypercard, there are the successful applications in the 
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education community which I discussed in Chapter 2. Thus, I adopted as a 

working theory that the education community was beginning to recognize the 

usefulness of the hypercard environment. 

The potential for a general acceptance of the application by the 

education community is an essential part of this current work. The many 

examples of software, foisted upon the community as "save the world" stuff, 

which are now collecting dust in classrooms across the country, made me 

carefully consider my choice of application. Since an essential part of my 

theory asserts that teachers must be comfortable using the software, and they 

must feel that meaningful support is available, I wanted my implementation to 

be consistent this theory. 

Secondly, the implications from much of the hypercard research is 

that the hypercard environment stimulates learning. This is another 

significant component of my theory. Essentially any hypercard application is 

a graph so even tentative explorations result in the user making connections 

between pieces of information. With every use of a system, the potential 

exists for making new connections or for fortifying existing connections. 

Finally, there is a practical reason for using hypercard as an 

environment. It is readily available and relatively straightforward to use. The 

education community has been forced to deal with applications that were 

either prohibitively expensive or prohibitively difficult to learn to use. As with 

most computer applications, levels of sophistication will vary, and some users 

will be able to build amazing applications while others may not vary from the 

simple model. Our goal is not to train computer scientists, but to develop a 

technological way of thinking (a "high tech state of mind") [Quinn Patton, 

1987, p. 15]. 
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As I stated in the introduction, the emphasis should be on how technology 

will change the way we teach, not just to automate our curriculum. 

3.2.3 The Domain 

The first stage of the knowledge engineering process was the 

identification of the problem that the expert would be expected to solve. This 

came directly from my experience as a teacher. For the past four years, I 

have been teaching precalculus mathematics to undergraduates at the 

University of Massachusetts. Prior to this I taught chemistry and mathematics 

at a community college. I have always been interested in the applications of 

mathematics to science. My dissatisfaction with the way much of precalculus 

is taught and the recent report from the National Council of Teachers of 

Mathematics on the teaching of mathematics provided the basis for stage one 

[NCTM, 1989]. 

It obvious from the performance of my students and other students that 

they are not able to transfer their knowledge from math class to chemistry or 

physics class. As a chemistry teacher, I often felt if the students could do the 

mathematics, teaching chemistry would be easy. In fact one of the reasons I 

am now teaching mathematics is to gain some insight into mathematics 

education and to simultaneously improve the teaching of mathematics and 

the teaching of science. For the present study, I wanted to work on a topic in 

Precalculus which I felt was critical to success in science and a topic which 

was essential to further success in mathematics. The topic of functions fit 

both these criteria, so it was selected as the problem area. Secondarily, I felt 

work in this area would help my expert, Beth, in future math and science 

courses, and I wanted work on this project to be beneficial in this way. 
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The study of functions is usually the way a calculus course is 

introduced. It was not my goal to attempt to construct a calculus course, so 

the final part of stage one was to narrow the topic sufficiently to ensure a 

reasonable chance of success. I finally decided I would concentrate on 

linear and quadratic functions at the level of sophistication of precalculus 

students. The topic was of interest to me, and it was one appropriate to the 

level of my expert. 

3.2.4 Identifying the Expert 

Crucial to the development process of an expert system is identifying a 

human expert or experts in a particular domain. The human expert will work 

with the knowledge engineer to construct the knowledge base. The project 

will depend on the knowledge engineer and the expert being able to sustain 

a productive working relationship. With this awareness, I asked Beth to work 

on this project. Beth had been a student in one of my classes during the Fall 

1989 semester and the Spring 1990 semester. Both semesters the classes 

were large lectures with approximately 200 students. In this environment the 

student must show a great deal of initiative to establish a relationship with an 

instructor. Early during the Fall Semester, Beth started making regular 

appointments to work with me outside of class. She is a "nontraditional" 

student in that she is 28 years old and works full-time while attending school 

part-time. She is pursuing a degree program in environmental science, a 

field different from her current work which is occupational therapy. She 

obtained an Associates Degree in Occupational Therapy. Beth reports being 

successful in mathematics in high school, but she did not take courses 

beyond the minimum requirements. All new students at the University of 
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Massachusetts take a placement exam and performance on this exam 

determines the level of mathematics into which the student will be placed. 

Beth began with the slowest paced Precalculus class. She is a diligent 

student, and she earned an A both semesters. 

Since Beth and I had worked together for two semesters prior to 

beginning this project, we had established a good relationship. We were 

comfortable with each other, and it was easy for her to discuss what she did 

not understand. Beth is a highly motivated person; she is thoughtful about 

how her learning is progressing and works at articulating any difficulties she 

is encountering. These are essential qualities for a project like this. In 

addition our relationship was substantial enough to sustain the hard work 

necessary to complete the project. Of course, the other expert participant in 

the study was me. 

3.2.5 Conceptualization 

Having accomplished the two identification parts of the process, the 

second stage, the conceptualization stage, was started. In my mind this is 

both the most difficult and the most interesting. It is during this stage that the 

teacher will learn a great deal about her knowledge and about how students 

understand a particular topic. In beginning this stage, I was inclined to divide 

the topic into several parts based on my knowledge of the domain and on 

how I had previously taught the topic. In this way the process differed from a 

typical knowledge engineering session. The knowledge engineer (KE) is not 

usually an expert in the domain although the KE may have some familiarity 

with the domain. This difference is important because it points to the dual 

role the teacher plays in the development process. The teacher is both KE 

and expert. 
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3.2.6 Meeting Plans 

At the beginning of this work, I planned our meetings to be about 2.5 

hours in duration, and I expected we would have 15-20 sessions. This could 

be altered if problems arose during our discussions. We would work as long 

as was necessary to address any problems. More sessions could be 

scheduled if the project demanded them. Although knowledge engineering 

sessions are often videotaped or audiotaped, I decided not to record our 

sessions. Two factors influenced my decision: I did not want to encumber 

the process since I was developing a model which could be easily 

implemented by teachers, and I wanted to avoid any discomfort taping might 

cause. I felt that I could keep adequate written records; the experience of the 

initial sessions supported this feeling. 

I planned to begin our sessions by suggesting a topic and asking Beth 

to talk about her understanding and knowledge of a particular topic. I would 

also ask her to write down how she thought about a particular topic. My 

decision to begin this way came from the substantial literature exploring 

expert/novice differences and expert systems. For example we began our 

first session with the word "function". I asked Beth to talk about what she 

connects to this mathematical concept and to write down examples. 

From my previous work with Beth, I was aware that she had practiced 

the different types of problems a great deal, so I didn't anticipate she would 

have difficulties with the arithmetic. Therefore, I wanted to focus our 

sessions on identifying the source of her difficulties, and what could 

eventually be a part of the application to support overcoming the difficulties. 
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Although much about Beth is atypical, my expectation was that much of my 

work with her would be generalizable to many other students. 

Stage three is the formulation stage. In the traditional expert system 

development this would involve constructing if-then rules compatible with the 

inference engine or developing appropriate frames or schemes. Since I had 

already decided to use hypercard, I was viewing formulation in terms of 

designing the system's cards and buttons. An important part of the 

formulation process would be deciding which cards to link together and how 

much information to include in each card. For this work, the formulation 

process would also address issues of how the text should be displayed. I 

planned to work on this part of the project independently from Beth. My work 

between meetings would involve making my knowledge explicit, integrating 

my knowledge with Beth's, and planning for the next sessions. 

The final stages of expert system development involve building a 

prototype system and testing the prototype. I planned to have Beth 

experiment with each piece of the prototype system and give me feedback as 

she used the system. This would allow me to make changes, as appropriate, 

and have Beth continue to test the hypercard implementation. 

3.2.7 The Design Process 

In this part of the discussion I will move from the theoretical to the 

design level. This is the most concrete and will include a description of the 

design process and implications of the process for my teaching and thinking 

about mathematics. 

The initial phase of this work followed the fairly traditional format of any 

expert system development. As I indicated in the beginning of this chapter, 
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the knowledge engineer, having identified an expert, would develop a plan of 

action for the first interaction with the expert. It should be noted, that even at 

this early stage this work differs from a traditional expert systems project. The 

knowledge engineer would not, in all likelihood, have interacted with the 

expert before. In addition the knowledge engineer is not expected to 

contribute domain expertise to the project. For the present work it was not 

necessary, as part of the planning, to consider how to establish a working 

relationship, and it was important to be aware that during the sessions with 

Beth my role was primarily that of knowledge engineer, not expert. As 

important as our previous working relationship was to establishing a 

productive environment for this project, I was aware that I needed to carefully 

monitor my responses to avoid making assumptions about Beth's knowledge 

based on past interactions. My ability to be the knowledge engineer, building 

a system, would be central to the success of this project because it would 

allow me to remove myself from the role of teacher and take on a new role. In 

fact, this new role provided me with many insights which I will discuss 

throughout the next section. 

Initially I viewed the project as having three major phases, each 

dealing with a major topic: phase one, definition of functions; phase two, 

linear functions; and phase three, quadratic functions. As knowledge 

engineer and expert, I had decided that an integral part of my mathematical 

knowledge base was the connections I made to the uses of mathematics in 

other domains. In the beginning of the project, I was not able to be 

completely explicit about this aspect of my knowledge, but I began the project 

aware that "applications" would be an essential part of the system. Initially 

applications were the fourth phase; however, it became clear that integrating 
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applications into the other phases was more appropriate. This approach was 

a more accurate representation of my knowledge base. Based on my 

teaching experiences, I felt the majority of the sessions would be devoted to 

quadratic functions and linear functions. Table 1 gives an overview of the 

sixteen knowledge engineering sessions. 

In preparation for each session, I made some notes about the topics 

we would be discussing. Much of what I wrote down was similar to material I 

would present in an introductory class on each of the topics. For example, 

included in the initial material on functions was a working definition, several 

of the more generally used representations, and several applications of the 

concept in the physical sciences. In part, my motivation for beginning this 

way was to provide me with some means of comparing and evaluating my 

understanding of the topic with Beth's. 
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Table 1 Overview of Knowledge Engineering Sessions 

DATE DURATION TOPIC 

July 6, 1990 2 hours discussion of the project; definition 
of functions; introduction to 
Macintosh computers 

July 13, 1990 2.5 hours linear functions; graphing linear 
equations 

July 20, 1990 1 hour graphing and graphs 

July 27, 1990 2 hours applications of linear functions; 
discussion of unfamiliar terminology 
(from applications); interaction 
with the system 

August 10, 1990 2.5 hours connecting math to other subjects; 
focus on Beth's tendency to have a 
narrow piecemeal view of each topic 

August 22, 1990 2 hours quadratic functions 

Sept. 16, 1990 4 hours graphing 

Sept. 23, 19901 3 hours word problems - applications 

October 6, 1990 2 hours applications dealing with quadratic 
functions 

October 21, 1990 3 hours interaction with system; behavior of 
functions 

Nov. 4, 1990 3 hours exploring issues of context 

Nov. 11, 1990 3 hours applications 

Nov. 18, 1990 2 hours connecting math to other 
disciplines 

Dec. 2, 1990 3 hours graphing functions; problem 
solving 

Dec. 9, 1990 2 hours connecting to other math classes 

Jan. 8,1991 3 hours review of system; wrap-up 
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For each new topic we began our sessions with my suggesting a topic 

and Beth talking about her understanding and knowledge of the particular 

topic. As I noted earlier, Beth had developed significant skill with the 

algebraic manipulations involved in most problems, and she was certainly 

capable of doing the arithmetic associated with these problems so we did not 

concentrate on this aspect of the problem solution. 

3.3 Knowledge Engineering Sessions 

In preparation for a knowledge engineering session the knowledge 

engineer would probably develop a script which contained useful questions 

to be asked of the expert. It usually facilitates the process if the knowledge 

engineer is familiar with the language used by the expert and is able to ask 

the questions using the appropriate "buzz words" of the domain. To prepare 

for the first session with Beth I made the decision to use our first meeting to 

explore the general concept of functions and developed questions which I felt 

would allow us to explore her knowledge in this area. I wanted to determine 

the following: 

a. was she able to define a function, 

b. was she able to define terms like domain and 
range, 

c. was she able to describe several 
representations of functions, and 

d. did she use examples in her discussion? 

These questions provided the boundaries for the territory that I wanted to 

cover. In this case the issue of using the language of the expert was very 
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significant. I did not want to use language that was unfamiliar to Beth or that 

would be suggestive of the way she should respond. As the sessions 

progressed it became clear I would have to suggest a direction for us to 

proceed, or we would be stalled. Before doing this I waited to establish that 

Beth was not able to contribute anything further on a particular topic. My 

cues for this were comments like "it makes me mad I don’t remember this 

stuff or "I can't think of anything else." 

We met for our first meeting and throughout the summer in my office in 

the School of Education a place were Beth and I had spent time together 

throughout the previous semester. The office has a table which allowed us to 

spread papers out and work without feeling confined. Beth came to the 

meetings from work so we took time to talk about how work was going, the 

summer weather, general conversation to establish a comfortable 

environment before beginning the knowledge engineering sessions. 

To begin our first meeting, I explained the project and expressed my 

appreciation for her willingness to participate. After about fifteen minutes we 

were ready to begin work. We started the first session with the word 

"function" which I wrote on a piece of paper. I asked Beth to talk about the 

concept of function in mathematics. She struggled to formulate a definition of 

a function and was not able to state a definition. She did remember the 

notation f(x) was associated with functions because she said "I think it has to 

do with f(x) = something". She gave a number of examples like f(x) = 3x + 2; 

all her examples involved linear functions. 

She remembered that the vertical line test existed: "I think there is a 

vertical line test". Most introductory discussions of functions present a tool for 

recognizing the graph of a function referred to as the "vertical line test”. 
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A function assigns each member of the domain to one and only one member 

in the range therefore a vertical line drawn through any x in the domain of a 

graph representing a function must intersect the graph at one and only value 

of y. Beth, like most students, did not have difficulty applying this 

straightforward test to successfully distinguish graphs representing functions 

from graphs representing relations. I sketched several graphs, and she 

identified the graphs of functions. I probed to determine if looking at the 

graphs helped Beth to construct a definition. Studying the graphs 

representing functions and those representing relations was not enough for 

Beth to be able to develop a definition of a function. 

Since she had suggested that functions have "something to do with 

f(x)", I asked her to evaluate several functions. We used her examples, and I 

suggested let x = 3. She described evaluation as replacing the x in the 

equation with a 3 and carrying out the appropriate operations, i.e. multiply by 

3 and add 2 to the product. As she completed the calculation she asked "is 

this correct?", and I confirmed that it was. 

At this point it seemed clear that Beth did not remember the formal 

definition of a function. As final confirmation of this, I asked her if the terms 

"domain" and "range" were familiar. Her response was "I think they're 

connected, but I can't remember". She followed this with "It makes me mad 

that I can't remember this". I did not want her to feel frustrated, so I tried to 

reassure her that she would remember as we proceeded. 

To end this part of the first session, I presented a definition of a 

function which stated that a function is a one to one correspondence between 

the members of one set, the domain, and the members of another set, the 

range. I related the vertical line test to the definition. She seemed to be able 
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to make connections between the special nature of a function as conveyed 

by the vertical line test. I introduced some other commonly used 

representations for functions and we talked about how the representations 

were all connected. Her comment was "Oh, yeah, I see now, but I didn't think 

about it before." 

We finished the first session with an introduction to the Macintosh 

computer. Beth's experience with computers had been limited to word 

processing, so I wanted her to have a chance to play with the Macintosh. I 

had obtained some shareware from the Boston Computer Society which I 

thought Beth would enjoy. The particular shareware is a hypercard 

application which "finger spells" words and phrases which the user inputs. 

Using this application gave Beth a brief introduction to hypercard and initial 

experience with the mouse. 

After only one session, we were both aware that knowledge 

engineering sessions are hard work. It is easy to get discouraged because 

the pace can be excruciatingly slow and the session can be made up of 

many false starts. One session was also enough to fortify the inclination that 

my knowledge about mathematics education would be enhanced and 

strengthened from these sessions. The most general example of this is the 

effect that our meetings had on my teaching. Beth and I began meeting in 

July, so we had been meeting on an almost weekly basis for two months prior 

to the beginning of the Fall 1990 semester. During the Fall semester I taught 

three classes, one large lecture section of the one semester Precalculus and 

two sections of Essential Algebra. The summer's meetings with Beth made 

me less likely to make assumptions about the connections students were 

able to make. I was much more careful to be explicit about connections 
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which are critical for complete understanding of a topic. This perspective was 

particularly beneficial in the large lecture. In a class of over 200 people, it is 

easy to become removed from the students, but mindful of the expertise 

contributed by Beth, I was more careful to view the class from the learner’s 

side of the overhead. In fact throughout the Fall and Spring semesters, the 

knowledge engineering sessions influenced my teaching and events from my 

classes influenced questions I would ask during the knowledge engineering 

sessions. A symbiotic relationship quickly developed. 

Following the traditional knowledge engineering scheme, part of my 

job as knowledge engineer involved transforming the expertise shared 

during each session into a useful representation for the system. As I have 

preciously discussed, the selection of hypercard as the tool in large part 

determined the how knowledge would be represented. I wanted to capitalize 

on the ability to link pieces of information to alleviate confusion and 

misconceptions about topics. To accomplish this I paid careful attention to 

the questions which Beth asked throughout the process. I used her 

questions as indications of what links needed to be built into the system. For 

example, we were discussing the idea of "domain convention” to identify the 

domain of a function. The domain convention states that if the domain of the 

function is not explicitly stated then the domain is all real numbers for which 

the function is defined and is real. Beth wanted assurance on what 

constitutes the set of real numbers. In response to this I linked explanatory 

text under the term "real numbers". In addition, during the Fall semester 

when we discussed functions in my Precalculus Class, I was careful to be 

explicit about the set of real numbers. 
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As I thought about what should be included in this first section, of the 

hypercard application, which I have classified as the introduction, I was 

inclined to include representations which are widely accepted. For example, 

a figure showing the domain of a function as a collection of numbers and the 

range as a collection of numbers with each number in the domain connected 

to a number in the range is commonly used. Figure 1 illustrates this 

representation. I included this representation in my application since a part 

of learning mathematics is becoming comfortable with numerous 

representations. In addition, one goal of this work was to provide an 

environment which encouraged people to make connections and part of 

making connections is familiarity with the various representations for the 

same concept. The hypercard system allowed me to explicitly link the two 

most often used representations of functions, mapping of one set to another 

and f(x). An early indication that even successful students were not making 

connections between the various representations and the definition was 

Beth's difficulty formulating a definition of a function.. Although she was not 

able to define a function, she was able to easily evaluate, for example, f(2) 

given that f(x) = 3x + 2. 
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1 

DOMAIN RANGE 

Figure 1 A Commonly Used Representation of a Function 
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The knowledge engineering sessions with Beth were not the only 

sessions informing the design of the system. I was attempting to integrate her 

expertise and my expertise. Her difficulty with the definition of functions 

forced me think about my own knowledge. In part this was easy. I was more 

familiar with the terms and the symbols so the formal aspects of stating the 

definition were less intimidating for me. There was a more significant 

difference, however; I could think of a number of examples from physical 

systems which illustrate the dependence which is the critical component of 

the definition of a function. Domain and range were not abstract labels for 

sets of unconnected elements. The domain was the set of concentrations of 

a certain amino acid in a solution, and the range was the absorbance of the 

solutions as predicted by Beer's Law. Beth lacked this sense of context so I 

needed to include examples which would help provide this for her. 

In preparation for our second knowledge engineering session, I 

decided to concentrate on applications which were linear functions and 

would, I thought, address the issue of providing a context. Two main 

concerns guided my choice of examples. The first was an issue of 

terminology; I did not want to confuse Beth with jargon from other domains. I 

tried to think of examples which would not be trivial but would would not 

require a side trip into the study of the particular domain. The second 

concern was centered around the existence of misconceptions in science 

[e.g. Clement, 1983]. I did not want to include an example which would 

support an erroneous view of the world. I decided on an example from 

chemistry involving the Ideal Gas Law and one from forensic science 

involving predicting the height of a woman. In addition to deciding on these 

examples, I thought about the concepts and notation which we would need to 
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cover in our discussion of linear functions. I planned to deal extensively with 

slope, intercepts and the slope intercept form of the equation of a line. 

Our work on linear functions was introduced in much the same manner 

as was our work on functions. I wrote down an example of a linear equation, 

y = 3x + 2 and asked Beth what she thought about in relation to this equation. 

She recognized that it was a linear equation so I asked her to sketch the 

graph of this equation. She constructed the graph by building a chart of 

ordered pairs which she plotted on an rectangular coordinate system. She 

asked for confirmation that this was an appropriate approach. As she was 

plotting points, I noted that faced with the same task, I would have sketched 

the graphs using the information presented in the equation. In this form the y- 

intercept and the slope is easily identified, and this is sufficient information to 

make a sketch. In the situation where a function is described by an equation, 

the equation, for me, identifies general characteristics of the behavior of the 

function and therefore the shape of the graph. Beth did not have this same 

view of the function. She needed to build the sketch ordered pair by ordered 

pair. Although we both could sketch the graph, my view was more global and 

Beth's more narrow. 

Continuing with the same example, I asked Beth about the concept of 

slope. She immediately told me how to calculate slope. Asking for some 

encouragement she selected two points on the line and calculated the slope. 

She commented that she remembered in the slope intercept form of the 

equation the coefficient of the "x" term was the slope. Beth's approach was 

correct but emphasized the specifics of this example. As I thought about 

slope, what was important to me was the concept of change. Viewed this 

way; slope communicates about the behavior of a linear function. The slope 
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of a line, being positive or negative, can be used to distinguish linear 

functions. 

One of the points that Beth plotted was the y-intercept. She did not 

seem to attach any particular significance to this point so I asked if she knew 

what it was called. She correctly identified it as the y-intercept. When I think 

about using linear functions to describe a physical system, the intercept is an 

important part of the description. Back to the amino acid example, if the 

concentration of amino acid is zero then absorbance is zero. For this system 

a function with y-intercept of zero is required. This is a "context" which is part 

of my knowledge and not part of Beth's knowledge. 

Our third knowledge engineering session was brief and spent 

reviewing graphing. We talked about coordinate systems and reviewed the 

terminology used to describe graphs like quadrant. We looked at graphing a 

continuous line as compared to graphing points. Most of this meeting 

centered on surface knowledge, and there were no major discrepancies 

revealed between Beth's and my knowledge. 

Part of our fourth session involved Beth working with the hypercard 

system. Following the knowledge engineering scheme, the expert would 

have an opportunity to experiment with a prototype of the system providing 

feedback on the integrity of the expertise. Traditionally this testing of a 

prototype would occur after the knowledge engineer has had sufficient time 

to develop the knowledge base and integrate into a system with some form of 

an user interface and an inference engine. This part of the process can be 

difficult because the expert is confronted with an explicit representation of her 

expertise. In the case of this work, I did not have to worry about the 

development of an inference engine and the interface was somewhat 
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determined by hypercard and the system I had available. I did have to 

discuss my representation of her expertise with the expert. Realistically, I 

could not expect Beth to evaluate the system in terms its potential impact on 

learning. She did evaluate text in terms of her ability to read and understand 

their content. Her overall reaction to the first part of the system was positive. 

Even on the small scale, she commented that it was helpful to be able to 

move around and yet to easily be able to read the definition of functions 

again. 

We were able to use the system as the catalyst for our continued 

discussion of linear functions. In addition to the chemistry and the forensic 

science example, I was considering adding an example involving the Celsius 

and Fahrenheit temperature scales. My first concern, especially in terms of 

the chemistry example, was one of language. I asked Beth if this example 

was too difficult. Her comment was that seeing even the unfamiliar 

applications was beneficial because it forced her to make connections and 

provided a broader perspective of the mathematics. She said: "f(x) is still my 

favorite but it is good to see other examples". Beth enjoyed the forensic 

science example, describing it as fun. 

During our fifth and sixth sessions aspects of previous discussions 

emerged again and new insights developed. Since success in science and 

mathematics centers on problem solving, I asked Beth how she approached 

problems. She commented that she worried about getting the "correct 

answer". Describing test situations she said: "sometimes my mind goes 

blank". When she sketched the graph of the line, her approach was point by 

point. She did not seem to be thinking about the overall behavior. This was 

reiterated as she discussed a very narrow view of problem solving. 
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Our next sessions dealt with quadratic functions. We started our 

discussion of quadratic functions with the function f(x) = x2 and Beth's first 

comment was that she remembered the graph representing this function 

would be a parabola. Beth commented: "there is another type of parabola, 

one that opens down; isn't there?". I confirmed that there was and asked if 

she could give an example of the equation. Even though she had all the 

pieces: the equation should involve an x2 term and f(x) should be negative, 

she was not able to generate the equation. This indicated to me that she was 

not making a connection between the equation, one representation of the 

function, and the graph, another representation of the function. We looked at 

another quadratic function, f(x) = x2 + 4x - 3. In Beth's precalculus class, we 

had used the technique of "completing the square" to determine the vertex of 

a parabola. Beth approached this example by attempting to complete the 

square to find the vertex of the parabola to begin to construct the graph. She 

found the vertex so I asked her what her next step would be. She said: "to 

make the graph I would construct a table of values". I encouraged her to do 

this and she picked several points and began to generate the table. She did 

not immediately choose 0 as either an x or y coordinate so I asked about 

intercepts. This was enough prodding, and she correctly determined the 

x-intercepts (with the help of a calculator) and the y-intercept. 

Beth had remembered that there were two "types" of parabolas, but 

she did not attach as much significance to this as I did. As was the case 

during our discussions of linear functions with positive and negative slope, 

she, again, did not attempt to make explicit a classification of quadratic 

functions. 
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We spent two sessions dealing with word problems and applications 

involving quadratic functions. For example, in introductory physics a 

significant amount of time is spent studying classical mechanics. One of the 

topics and associated class of problems which are discussed has to do with 

parabolic motion. The problems require students to manipulate the equation 

s = ~2 at2 + vot where s, is vertical distance of some object from a starting 

point (usually a ball and the ground), t is time and vq is initial velocity and a is 

the acceleration due to gravity. If this equation is graphed on a rectangular 

coordinate system, the graph is a parabola opening down. A typical question 

is: how long does it take for the ball to return to the ground? To answer this 

question involves determining the x intercepts of this graph. Beth had 

difficulty with this question even though she could determine the x intercepts 

of similar graphs. She could carry out the manipulations, but her 

manipulations were not connected to any theory and could not be evaluated 

in terms of the conditions set by the problem. From questions I am often 

asked in class like "how do you know where it crosses the axis", some 

students do not know what calculations are relevant to finding the intercepts. 

Another part of this class of problems deals with determining the 

maximum height reached by the projectile and the time at which it reaches 

this maximum. The solution to this problem, for me, is trivial because my 

knowledge of quadratic functions includes the information of a maximum or 

minimum point. This critical point is the vertex of the parabola described by 

the equation representing the function. Beth was not able to make this 

connection. Although she was familiar with parabolas, she did not 

immediately recognize the vertex as the solution. Beth does not have context 
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for her knowledge; she lacks a history which would facilitate the development 

of a problem solving strategy that would make use of the available 

knowledge. Again comparing Beth's knowledge to mine, the discrepancies 

seemed to be explained by the connections I make and my more global view. 

We spent the next several sessions graphing and solving word 

problems. The sessions were important in part for the opportunity to interact 

for uninterrupted period of times and for the opportunity to further elucidate 

how context for knowledge is communicated. Knowledge is dynamic and for 

me to be able to construct a representation of Beth's knowledge and my 

knowledge we need multiple opportunities to work together. Watching Beth 

solve problems even when she obtained the correct answer provided insight 

into her knowledge base. She repeatedly demonstrated a narrow view of the 

problem. Each step was a separate piece not generally connected to a 

broader problem solving scheme. 

At this point in the process, we had covered the topics which would be 

represented in the system. Our last sessions were less directed. They were 

opportunities to try out some examples (based on Beth's reaction I decided 

not to include several of these examples and to focus on the examples 

already a part of the system), to explore further the connection of 

mathematics to other disciplines, to talk about how math classes connected 

(since Beth was currently taking Calculus 127, the first semester of a calculus 

for course for the life and social sciences), to extend our work to more 

complicated functions, and to review the system. 

When I first conceptualized this work the focus was on the 

implementation. The early insights gained shifted the focus to the process 

and what could be contributed to mathematics education by viewing a novice 
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mathematics student as expert. In this case, the expertise which was to be 

acquired was significant because it would make explicit what was not known 

to the student. Although not the traditional casting, the novice mathematics 

student is expert on what he or she does not know. Beth was not the only 

expert; the role of knowledge engineer was extended to include work with 

myself as expert. In the case of self as expert, the meaning of expert is a 

more traditional one. Based on study in the field and experience, I had 

attained a level of competence ability which usually characterizes an 

"expert". Over the course of the project, the insights about mathematics and 

mathematics education were significant enough to change the focus of the 

work to exploring the knowledge engineering process. 

In the preceding discussion, I have reported my use of the knowledge 

engineering process with a novice mathematics student and myself. It, 

therefore, seems appropriate to summarize this chapter using the expected 

end product of the knowledge engineering session, an explicit representation 

of the knowledge-base. 

3.3.1 Representation of the Knowledge Base 

A representation of the knowledge base constructed as a result of our 

knowledge engineering sessions is presented in Figure 2. Figure 2 is a 

graph. The choice of representation is important and warrants explanation. 

There are two major reasons for this choice of representation: (1) as will be 

discussed in the next chapter, the computer based implementation of this 

work is a hypercard application and a graph is an appropriate representation 

of a hypercard application; (2) one of the most important results that emerged 

from this work is the idea of viewing knowledge in a context; this 
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representation, at least in part, allows for this view. The graph is composed 

of vertices and edges. The vertices are mathematical information and the 

edges, the connections, represent the context. Viewed as a graph, it is a 

representation of knowledge. 

The vertices and the edges are not equivalent. In an effort to show 

both Beth's knowledge and mine, I have adopted a notation which is 

summarized on the figure. Beth and I shared some information and given our 

different levels it was not surprising that some information was more equally 

shared than other information. For example, I could give an explicit definition 

of a function and Beth could not. I classified this as "weakly shared" 

information. She had learned "the vertical line" test so she was able to 

differentiate between a graph representing a function and a graph 

representing a relation. She was also able to give some examples of 

functions, but she had difficulty formulating a definition. For these reasons, I 

made the definition vertex, weakly shared. In contrast, she had no difficulty 

with evaluation, when asked directly: if f(x) = 3x + 2, what does f(2) = ? This 

showed an ability to perform the manipulation without an understanding of 

the meaning of the manipulation. Thus, in terms of the representation, the 

evaluating vertex is strongly shared but the connections between definition 

and representation and between representation an equation are weak. Her 

ability to evaluate functions did deteriorate as the functions became more 

complicated. She was much more comfortable with linear functions than with 

quadratic functions. She graphically represented a linear function with more 

confidence than exhibited with quadratic functions. Although, she did 

present a local view, she graphed by plotting points. A typical comment was: 

"I know its a line, but I'll plot points to see what it looks like." This was in 
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contrast to my more global approach. Except for attention to intercepts, I 

sketched the line as a "whole". 

In the case of quadratic functions, she had more difficulty both in terms 

of the manipulations involved in evaluation and the connection to the graph. 

As is shown in Figure 2, there are vertices which are labelled as "not shared". 

These vertices represent information which I had and Beth did not. An 

important vertex is labelled "dependence". Viewing functions as a means of 

describing dependence in nature is important in understanding the 

applications of mathematics to the natural sciences. 

One of the problems Beth found difficult involved projectile motion. In 

part, I believe her difficulty is explained by the missing vertices of 

dependence and those labeled maximum and minimum and the edges 

connecting these vertices. Because Beth lacks the context for her 

information, she has a difficult time solving problems which involve quadratic 

functions. 

Other vertices represented as "not shared" are set theory, elements, 

applications, inverse, and direct. At Beth's level, one would not expect a 

sophisticated understanding of set theory, but some sense of a function being 

the the connection between two collections of objects is important. Without 

this information and information of dependence, it will be difficult for Beth to 

recognize a function outside of the mathematics class. If in an application 

problem she does not recognize the functional relationship, she will not be 

able to apply the skills she does have. 
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=> not shared 

- => strong connections 

=> weaker connections 

_- - => no connections by Beth 

Figure 2 A Graphical Representation of the Experts’ Knowledge Base 
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In summary, Figure 2 is derived from the application of the knowledge 

engineering process and seems a reasonable description of both experts' 

knowledge bases. The process which led to Figure 2 also informed the 

implementation which is described in the following Chapter. 
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CHAPTER 4 

HYPERCARD APPLICATION 

4.1 Introduction 

In this chapter I will describe the hypercard application which was 

constructed based on the work presented in Chapter 3. This chapter is 

organized in three parts. The first part of the chapter is a description of 

hypercard and the programming language hypertalk including an 

explanation of the means of representing information. The second part of this 

chapter is an overview of the prototype system concentrating on the domain 

content which is presented. Specific details of the system and design 

decisions which were made, based on the knowledge engineering sessions, 

constitutes the final part of this chapter. 

4.2 A View of HyperCard 

Numerous descriptions of hypercard exist throughout a growing body 

of literature. For the purpose of this work, hypercard can be viewed as a 

computer application which allows the user to construct a directed graph (or 

digraph). A definition of a directed graph is: 

a finite nonempty set V together with an irreflexive 
relation relation R on V [Chartrand, 1977, p. 16]. 

A graph is often represented by a picture. As shown in Figure 3 the set V is 

the set of vertices and the vertices are connected by directed edges or arcs 

determined by the relation R. When used in mathematical modelling, the 

vertices of a graph often represent a state of the system and the directed 

edges the connections between states. In the hypercard application, the 

designer builds hypercard stacks. The stacks are a collection of electronic 

index cards. 
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V = {Vi, V2, V3, V4, V5} 

R = {(Vi, v2), (v1s V3), (V2, Vi), (v2, v4), (v2, V5), (V3, Vi), (v3, v4), 
(V4> v2), (v5, v4)} 

Figure 3 A Directed Graph with Five Vertices 
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Figure 4 shows an example of the starting form. The cards are the vertices of 

the graph. As in a graph, the cards are connected, or in the terminology of 

hypercard "linked". The links are the directed edges of the graph. Consider 

Figure 3 again. Select a vertex and traverse the graph by travelling along the 

directed edges. This is analogous to what is accomplished in an hypercard 

system. In the hypercard system rather than using your finger or some other 

object and tracing the directed edges, a mouse would be used to allow 

navigation of the system. 

Linking is accomplished by placing buttons on the the cards. Figure 5 

shows an example of card with three buttons. Using the mouse to select a 

particular button and clicking on the selected button results in moving 

between cards, the electronic version of a directed edge. There are two 

primary means of attaching a particular action to a button. A "hard link" 

utilizes the button info screen and a system provided "link to" command to 

connect a button to a particular card. The other method requires scripting. A 

script is the instructions which result in a specific action when a button is 

"clicked". This is represented in Figure 6 and Figure 7. 

The developer is provided with a variety of tools to display information 

on the cards. In addition, other applications like MacDraw can be used to 

design graphics, and the graphics can be imported into the hypercard 

application. Although information can be placed directly on the cards, it is 

possible to divide the cards into distinct parts called fields. There are several 

types of fields available; examples are shown in Figure 8. Following the 

graph theoretical description, fields are classified as vertices. 
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This is an example of a card in a hypercard stack. 

Figure 4 A Blank Card the Template for HyperCard 



Figure 5 Examples of Buttons Used in a HyperCard Application 
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Figure 6 A Button and the Script Associated with this Button 
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Figure 7 The Action Which Results from the Button in Figure 6 



Figure 8 Field Types Available in HyperCard 
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This classification is made because the fields are used to represent 

knowledge. Buttons are also used to control access to the fields. An 

example of this process is given in Figure 9 and Figure 10. 

The scripts are written in hypertalk, the programming language 

associated with hypercard. Hypertalk is a structured language with much in 

common with more traditional languages like Pascal or Basic. The unique 

aspect of hypertalk is that it was designed to work with the hypercard 

environment. In this regard it has as objects cards and buttons. 

4.3 Domain Knowledge 

As discussed in Chapter 3 the major concepts which were covered in 

this system were linear and quadratic functions and their graphs. The 

concept of functions may be a part of the 5th or 6th grade mathematics 

curriculum and is likely to be discussed at least at a surface level in Algebra 

II. Any precalculus or college algebra course will devote significant time to 

the study of functions and related topics because these topics are essential 

for Calculus and higher level mathematics. 

My own teaching experience and a survey of the most widely used 

precalculus (or college algebra) texts established the surface knowledge to 

be included. In presenting any topic at the introductory level, I am aware that 

the presentation must be formulated so that it is simultaneously mathematical 

correct and understandable. 
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This is the card before clicking 
on button 1. 

/■-\ 

button 1 
\S 

Script associated with button 1: 

on mouseUp 
hide card button 1 
show card field 2 

show card button 1 
end mouseUp 

Figure 9 A Card and Associated Button Action 
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This is the card after 
clicking on button 1 

( button 2 ) 

Script associated with button 2: 

on mouseUp 
hide card field 2 
hide card button 2 
show card button 1 

end mouseUp 

Figure 10 Card after Button 1 is "Clicked" 

66 



A mathematician might give as a definition of a function: 

A function is a relation R such that, for every x in the 
dom(R) and every y and z in codom(R), 

xRy A => y = z [Foulis and Munem, 1988, p. 116]. 

This definition although mathematically correct would not communicate much 

to the typical precalculus of college algebra student. A definition, more 

appropriate for the college algebra or precalculus student is: 

A function / from set D to set E is a correspondence 
that assigns to each element x of D a unique 
element y of E [Swokowski, 1986, p. 128]. 

This definition will be more meaningful and is sufficiently rigorous for a 

student at the introductory level. It is essential that the initial presentation of 

concepts provide the learner with a foundation which will support the 

application of the concepts in other domains and will prepare the intellectual 

path to further work in mathematics. In determining what to include and how 

to present mathematical knowledge in this particular application 

consideration was given to these questions: 

a) is the presentation mathematical correct and 
will it support further study both in 
mathematics and other domains? 

b) is the presentation at a level which is 
understandable to the majority of students? 

c) for any given concept have the most widely 
used definitions, notation, representations 
been used? 

These questions served as guidelines to me in my role as expert in this 

process. Beth's contributions as expert influenced the answers. 

The other topics represented in the system are linear functions, 

quadratic functions, and graphical representation of these classes of 
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functions. In addition to the concepts, since the successful student must be 

familiar with commonly used notation related to functions, the notation 

associated with functions was presented. Topics related to the study of 

functions and their graphs, for example definition of real numbers, slope, 

rectangular coordinate systems, and intercepts were also included. 

4.4 Description of the Prototype System 

The description of this system and the design decisions made as the 

system was being constructed is essentially a discussion of the knowledge of 

two experts, a teacher and a student. There were, however, design decisions 

made based on information reported in the hypercard literature and on 

existing hypercard stacks like the Interactive Particle Physics Stack. For the 

most part, these resources influenced card design and overall system 

organization. Since these issues are relevant to the system as a whole, I will 

begin with a discussion of them and conclude with a discussion of the more 

specific issues. 

One of the goals of this application was to present an environment with 

very few rules with the view that increased benefit to the user would result 

from uninhibited exploration. To this end the user is introduced to the 

application by a card which explains the use of the use of buttons and the 

minor number of conventions which will be followed throughout the system. 

Since exploration is accomplished primarily with buttons, an understanding 

of buttons and their use is an essential skill. 

A concern reported in the hypercard literature is that large systems will 

not be effective because it is to difficult to maneuver within the system. The 

user gets lost and frustrated and no learning occurs. The Interactive Particle 
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Physics Stack deals with this problem by including a system overview which 

can be accessed at any time. This overview represents the various topics 

covered in the system. Although the system of this current work is not large, 

an overview card was developed and included. The overview card consists 

of six buttons labelled: introduction to functions, linear functions, applications 

involving linear functions, quadratic functions applications involving 

quadratic functions, and bibliography. At any time, a user can move to this 

card by using the navigate button which is a part of each card. 

From the overview card a user moves throughout the system by 

selecting the button labelled with the desired topic. When a particular topic is 

selected, the user moves to the introductory card of the particular topic area. 

This card is not meant to be a map of the system so it does not show all the 

connections. It is a representation of the major concepts of the system, and 

an anchor for the system users. 

Each major section is introduced with cover card containing a 

definition button. The first section is functions. This section is intended to 

provide the user with a definition of functions and an introduction to some of 

the most important conventions. The definition is given with the words 

"function", correspondence and sets highlighted. If the user chooses the 

word "function" he/she discovers that the word was first used by Leibinz in 

1687. Selecting the word "correspondence" relates the idea of 

correspondence to different temperature scales, using the Celsius and 

Fahrenheit scales to show the correspondence between 0 Celsius and 32 

degrees Fahrenheit as the normal freezing point of water. Choosing the 

word "sets" provides a brief definition of a set. 
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The definition card also has a button labelled "examples". The first 

example shows one of the more traditional representations of functions and 

introduces the concept of real functions as being those where the domain is 

the set of real numbers or some subset of the set of real numbers. The term 

real numbers is highlighted and at the first level several examples of 

elements of the set of real numbers are provided. If this is not sufficient 

another level can be accessed via the button labelled "more". At this next 

level an overview of the various sets of numbers is depicted. This overview 

shows the set of complex numbers and the subsets of this set. Additional 

information about any of these sets is obtained by selecting the set of interest. 

The information provided is a combination of examples and some history of 

the numbers. 

The next card in this introductory portion deals with notation which is 

commonly used to refer to functions. A key word on this card is "notation". By 

choosing the "notation", the user is provided with some history associated 

with the use of various representations used to identify functions. There is 

also an examples button on this card which again allows access to the other 

representations for functions. 

The next topic area which is dealt with is linear functions. This area is 

also introduced with a cover card which is followed by definition card. Since 

the graphical representation of functions is important both to this system and 

to mathematics and the sciences, graphing is introduced in connection with 

the definition of a linear function. The next card deals with the concept of 

evaluating a function. The function f with f(x) = 2x + 2 is used as the example. 

Using the introduced idea of mapping elements in the domain to elements in 

the domain, the method of evaluating the function is given. To reinforce the 
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difference between f and f(x), the f is also given as the set of ordered pairs 

consisting of an element in the domain and the corresponding element in the 

range. 

An understanding of the concepts which follow the introduction to 

linear functions depends on knowledge of the rectangular coordinate system 

and graphing lines, so a card dealing with the critical aspects of graphing 

lines is included. Represented on the card is a rectangular coordinate 

system. The line y = x is graphed with the points (4, 4) and (-4, -4) labelled. 

The x-axis and y-axis are labelled with buttons when selected give more 

information about the axis and the notation used. There are three other 

buttons on this card; selecting any of these buttons presents the user with 

more information about the terms. The buttons are "more info", "slope" and 

"y-intercept". 

The first level of the "more info” button gives a brief summary of the 

coordinate system. If this is not sufficient there is another level. At the 

second level the user is given more detail. The four quadrants of the 

rectangular coordinate system are labelled. In addition four points are 

graphed showing the sign of both the x and y coordinate in each of the 

quadrants. 

The "slope" button also divided the information about slope into two 

levels. The first level provides a brief definition of slope. Since there is some 

skill involved in calculating slopes, the next level asks the user to calculate 

slopes for various lines. It is easy to make arithmetic errors, so the user is 

cautioned about this. 
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The final button on this card is the "y-intercept" button. The concept of 

intercepts is important not only to the discussion of linear functions but to 

quadratic functions and to interpreting graphs in the solution of problems in 

other domains. This presentation is also divided into two levels with the brief 

discussion being linked to other contexts. 

A series of cards develops the idea of generating the graph of a 

function. The previously introduced function f such that f(x) = 2x + 2 is used in 

this part. As the user proceeds through this section more details are added to 

the graph. Selected points on the graph are related to the previous 

representation of this function. This series of cards is followed a graph of 

another linear function. This function was also previously introduced; it is the 

function with f(x) = 9/5x + 32. In the introductory portion of the system, the 

example of Celsius and Fahrenheit temperature scales was used to explain 

the idea of correspondence as it relates to functions. This example is 

presented again in the context of linear functions. On this card it is presented 

as an example of an application which can further explored by choosing the 

application button. 

The application button is linked to a card which explores methods for 

ascertaining information about a physical system. The methods are 

graphical and algebraic. There are numerous examples from chemistry and 

physics where the experimenter is required to determine some quantity from 

a graphical representation of data. The example given in the system is 

based on Beer's law which allows for the determination of the concentration 

of a solute based on spectroscopic data. The same information can be 

determined using the algebraic method, and this connection between 

equation and graph is represented on this card. 
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Two other examples of linear functions are presented. The first is from 

forensic science. Based on substantial data, forensic scientist have 

developed a function which relates the length of a human female’s humerus 

to her height. In this function, the domain is bone lengths reported in 

centimeters and the range is heights reported in centimeters. In addition to 

presenting the function, the user is given the opportunity to test her skill as a 

forensic scientist and calculate the height of a woman given the length of the 

humerus. 

The final example in the linear functions section deals with ideal gas 

law from chemistry. For this example it was necessary to provide some 

information about the chemistry involved. The first card summarizes the 

important terms in the ideal gas law. The following cards explore the 

correspondence between volume and temperature. Under conditions were 

the ideal gas law is a reasonable model, the volume of a gas can be 

expressed as a linear function of temperature, and a constant (assuming 

pressure and amount of gas are kept constant). This example is a more 

complicated linear function but relates the concept of linear functions to a 

physical system. 

As with the previous sections, the quadratic functions section begins 

with a cover card which connects to the definition. The introduction of 

quadratic or second degree functions also requires an explanation of the 

term degree and the introduction of exponential notation. The first card in this 

section presents this introductory material. 

The format of the first card provides the definition of second degree 

functions with the words "degree" and "notation xA2" highlighted. Choosing 

"degree" provides the user with a more elaborate definition of degree and 
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relates this concept back to linear or first degree functions. The other 

highlighted term deals with exponential notation. At this level, the use of 

exponents is not a new concept. However, the format used in the system may 

be unfamiliar. The explanation provided deals with the format and also gives 

a brief history of exponential notation. 

The critical part of this section is the discussion of graphs which 

represent quadratic functions. Graphs of quadratic functions are parabolas 

opening up or down. The first function considered is the function f, such that 

f(x) = x2. On this graph, the points (-4, 16) and (4, 16) are highlighted. If 

either of these points is selected, the user is return to the linear functions 

section and the graph of f(x) = x. On this graph the points (4, 4) and (-4, 4) 

are highlighted. In addition to connecting this section to the linear functions 

section, there is a button labelled "domain convention" which reminds the 

user that the domain convention applies for second degree functions. An 

important feature of the graphs representing second degree function is the 

existence of a maximum or minimum point. On this card, the user is made 

aware that functions of this type have minima. The next card in this section 

reviews the previous discussion but in the context of the second degree 

function such that f(x) = -x2. Functions of this type are essential for 

understanding classical dynamics. The connection to physics is made 

through this card. The example used to establish a physical context 

describes the the height (measured from the ground) of a baseball as it 

relates to time. 

The final part of the quadratic section deals with another application 

involving second degree functions. The application domain is biology and 

relates the birth of bear cubs in New England to time with 1980 being the 
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starting point. The function is more complicated but the same interpretation 

as was accomplished with linear functions is possible. In this case, the 

question of maximum number of births is presented. As with linear functions 

the graphical method and the algebraic method of arriving at the answer are 

both presented. The user may return to the linear functions section which 

dealt with a graphical method and an algebraic method of answering 

questions concerning linear functions. 

The final section of the system is a bibliography. The bibliography 

provides a user with sources of information for the topics dealt with in this 

system. The references in the bibliography are also useful for further 

exploration of other topics in mathematics and deeper investigation of 

functions. 

4.5 Design Decisions Based on Knowledge Engineering Sessions 

The traditional approach to presenting the concept of functions is to 

state the definition and provide some examples of functions. The examples 

are usually abstract in the sense that the elements of the domain and range 

are not related to events or quantities from the student's experience. It 

became clear from work with Beth that establishing this context was critical 

both to the initial understanding of the mathematical concepts and to the 

application of the concepts outside of the mathematics course. Recall that 

Beth was not able to define functions, she had not connected the concept of 

domain and range to any other knowledge. At another point, she was able to 

find the x-intercepts of a parabola but could not use this knowledge to answer 

a physics problem which required finding the x-intercepts. Each 

mathematical concept was introduced with a definition utilizing the hypertext 
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capabilities to layer additional information with the critical terms and parts of 

the definition. For example, in the definition card the word "correspondence" 

is hooked to further information. In the case of this application, commonly 

used representations which indicate correspondence are presented. This is 

included because it allows unfamiliar concepts to be investigated. A user 

thus has the opportunity to explore the meaning of an unfamiliar term. As an 

additional potential benefit, hypertext enabled me to draw attention to terms 

which might be familiar because they are used in common speech and 

therefore might be misunderstood because they have very specific meanings 

in this mathematical context. For example, the dictionary defines 

correspondence as "the agreement of things with one another". The 

mathematical definition of correspondence is a mapping of members of one 

set to members of another set; in a mathematical context, the definition is 

more specific. The term is perhaps familiar enough that a student would 

encounter the word and not be motivated to check his or her understanding 

yet in a hypercard system it stands out providing the impetus to investigate. 

The capability to utilize hypertext to provoke additional investigation of 

familiar terms was one part of the strategy to make knowledge of the concept 

of function more shared so linking explanatory text under familiar terms like 

correspondence would challenge the user's view of the terms. In addition to 

this strategy, I included several commonly used representations for functions 

emphasizing on that these were all representations of the same concept. It 

was clear from our discussions that Beth was very focused on the rule 

f(x) = something as the important component of what constitutes a function. 

Including the other representations was an effort to broaden her sense of the 

concept. It is easy for the beginning mathematics student to get caught up in 

76 



the mechanics and lose sight of theory. Beth exhibited this by concentrating 

on the evaluation of functions not on formulating a working definition. 

Related to her inability to articulate a definition of a function, she did 

not distinguish between f and f(x). I adopted several features in response to 

this problem. When presenting the notation associated with functions, I 

included a historical perspective to enforce the idea that notation was 

developed and is distinct from the concept. As part of the introductory card, I 

included the button with f and f(x) which reinforced the distinction. 

As a result of the sessions with Beth, several parts were included in 

this introduction section. She wanted confirmation of what constituted the set 

of real numbers, so this was included. This is important because the 

applications encountered are most likely to involve functions over the reals. 

One theme which was repeated during almost every interaction with 

Beth was her inability to connect the mathematics to other areas. She 

expressed concern that she would learn a body of knowledge during a 

semester and not retain the knowledge. Her description of her learning 

comes from her world as an occupational therapist; she described herself as 

having "splinter skills". The implication of this was she was able to bring 

together enough of the concepts to solve some problems, but she was not 

confident in her ability to explain the theory underlying her solution or her 

long term ability to solve problems. This is not a trivial issue to respond to; 

however, one part of the response I believe is to frame the mathematical 

theory in a context outside of mathematics. One of the dangers of selecting 

examples is to obfuscate the concepts in some new domain's complicated 

terminology. The initial example of temperature scale was chosen because it 
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did not require significant domain knowledge to understand. It was also an 

example which could be referenced in the linear functions part of the system. 

In this system the discussion of linear functions is tied to the graphical 

representation of linear functions. Two factors influenced the development of 

the graphing portion of the system. It was important to provide an overview of 

the terminology used in describing graphs and to represent the rectangular 

coordinate system. In addition, making the connection between the graphical 

representation of functions and the previously presented representation was 

essential. Initially Beth viewed the representations as distinct, and this 

makes it less likely she would be able to appropriately apply her 

mathematical knowledge in another setting. 

A significant portion of our discussions of graphing concerned the 

concept of slope. Several ideas emerged which influenced the system. First, 

it was worth reviewing the definition of slope; Beth found it useful to be able 

to confirm knowledge even that in which she had confidence. As I have 

indicated she constructed a table of values when asked to sketch a graph. It 

was clear that she did not associate with a positive slope a line where as x 

increases y increases. This global view is important so I made an explicit 

statement of the implication of positive slope and referred back to the 

temperature example to connect the idea of positive slope to a physical 

example. Success in science is in part determined by the ability to recognize 

whether or not a graph or an equation is a reasonable description of the 

physical system. This example and the connections made were designed to 

encourage the development of this ability. 

My discussion of slope with Beth influenced my design of the 

presentation of y-intercept in the implementation. By linking the discussion of 
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intercept to a system with which Beth was familiar, I was attempting to 

encourage her to expand her view of intercept. The goal was to present the 

mathematics but to present multiple scenarios of the concepts, so the user 

would develop a broader perspective of the concepts. 

In selecting the applications to be included in the system, my initial 

choices involved concepts which would be familiar to a most students. Since 

one of the goals of the project was to make connections, I included an 

example from forensic science and a chemistry example. Beth viewed the 

forensic science example as fun and was intrigued by the possibility that she 

new some "useful" mathematics. In our discussion of the Ideal Gas Law 

example, she indicated it was very helpful in expanding her sense of the 

applicability of the mathematics she was learning. 

Much of what was included in the quadratic functions section of the 

system was influenced by my previous work with Beth. Many of the 

weaknesses in Beth's knowledge base were confirmed in our discussions of 

quadratic functions. Since new notation was required, the introductory card 

presented the exponential notation, and the concept of degree. To 

encourage the integration of this knowledge into the already existing 

scheme, I related the definition of degree back to linear functions. 

Graphing quadratic functions was more difficult for Beth in part 

because the functions are described by more complicated equations. I linked 

the the points (0, 0), (4, 16), and (-4, 16) on the graph of f(x) = x2 to the points 

(0, 0), (4, 4) and (-4, 4) on the graph of f(x) = x so Beth would view graphing 

this functions in terms of previous knowledge. When asked to graph this 

function, she was not confident generating a table of values and plotting 

points was an appropriate way to proceed. By linking these points, I wanted 
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to reinforce that knowledge learned in one context was applicable in other 

contexts. Related to this was the idea of viewing the graph more globally. 

Graphing these three points is enough to show that the graphs are different, 

and this is important in terms of developing a global view of the behavior of 

functions. It is also a significant component of the ability to apply 

mathematical knowledge to the solution of problems in science and other 

domains. Clearly a quadratic function is not appropriate to describe the 

correspondence between Celsius and Fahrenheit temperature scales, and it 

is important to cultivate an awareness of this. This theme was continued 

throughout the section on quadratic functions by connecting parts of the 

graphs of quadratic functions to parts of the graphs of linear functions. 

Beth was able to carry out the computation necessary to determine the 

vertex of a parabola, but she did not associate any particular significance 

with this point. Recognizing that the existence of a maximum or minimum 

point is important in describing the behavior of a function and in the solution 

of many problems, I emphasized this aspect of the quadratic functions. 

Given the emphasis that is placed on classical dynamics in any 

introductory physics class, it seemed useful to include as an example the 

function which describes the position of a classical projectile, near the 

surface of the earth, as a function of time. The other example is from biology 

and relates the number of bears cubs born as a function of time with the 

starting time being 1980. As with the examples included in the linear 

functions section, the functions included in this section were designed to be 

relevant in terms of further study and also interesting. 

The applications presented another opportunity to encourage thinking 

about what characteristics are important in the mathematical description of a 
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physical state or behavior. For example in the case of the projectile, a linear 

function would not be adequate but a quadratic function is. Again, this type of 

analysis is essential and develops by making connections. 

In this chapter I have presented a description of the system which was 

developed as a result of applying the techniques of knowledge engineer with 

the student as one expert and the teacher as a second expert. The design 

decisions which were made based on this expertise. As described in the 

preceding section, the system is an explicit representation of this combined 

expertise. 
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CHAPTER 5 

SUMMARY AND IMPLICATIONS 

5.1 Introduction 

A friend who runs a learning center for adults in a Basic Education 

Program recently commented that if we provide people with a supportive 

learning environment and throughout the learning process ask what they are 

learning, they will articulate what they don't know or seem not to understand. 

A student in my precalculus class talked about being in the Chemistry 

Department Resource Center when the professor of the large lecture course 

she was taking sat down and asked what she was working on. The student 

was having difficulty with a problem so she began explaining to her professor 

how she was approaching the solution of the problem. The professor was 

intrigued and surprised at her approach. He commented that he would never 

have suspected that way of thinking about the particular problem. 

This research concerns asking students about their understanding of 

concepts and their approaches to problems, and developing an explicit 

representation of the student knowledge obtained, to improve teaching. It is 

about seeing the learner as an expert just as the teacher is an expert. The 

learner is an expert in the world of her own experience. Seeing students as 

experts transforms teaching. 

In the first part of this chapter I will summarize the major findings of this 

work. In the next section I will discuss extensions of the system that was 

developed as part of this work. I will conclude with a discussion of the 

implications of this research for teaching and teacher education. 
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5.2 Summary of Findings 

Based on the substantial experience of the artificial intelligence 

community in building expert systems, this research project involved using 

the knowledge engineering process to investigate a teacher’s and a 

student's knowledge of functions and their graphs. Building an expert system 

requires identifying an expert in the domain of the system. A knowledge 

engineer works with the expert to construct the knowledge base of the 

system. The present study required the teacher to take on the role of 

knowledge engineer with a student as expert. The expertise the student 

provides is what she doesn't know. In addition the teacher is knowledge 

engineer with herself as expert. The outcome is to develop an explicit 

representation of the teacher's knowledge in a framework which makes it 

accessible to the student. Although this process does not demand building a 

knowledge base for a computer based system, this work explored the 

feasibility of developing a hypercard system based on the knowledge 

engineering sessions. 

During the course of this project, the researcher conducted sixteen 

knowledge engineering sessions with a student and, based on these 

sessions, developed a hypercard system dealing with linear and quadratic 

functions and selected applications in the natural sciences. HyperCard was 

chosen as the environment for the implementation for several reasons: the 

implications from much of the hypercard research is that the hypercard 

environment is one that stimulates learning; it is an environment which is 

accessible and gaining acceptance in the education community; and it is 

relatively straightforward to use. 
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As the expert systems literature confirms, knowledge engineering is 

difficult work. This was affirmed in the course of this project. The process 

was facilitated by the relationship which existed between the researcher and 

the student. The commitment of the student to the project was an important 

aspect of its success. It is often difficult for people to share expertise; so 

willingness on the part of the expert to work at this process is essential to 

productive knowledge engineering sessions. 

In addition to my role as knowledge engineer, I was also an expert and 

in both these roles I had the opportunity to view my knowledge of 

mathematics from a fresh perspective. As I was cataloging Beth's responses 

to questions, I was also cataloging my own. After teaching an introductory 

course for a number of years, it is easy to become removed from the 

mathematical significance and beauty of the ideas presented. During this 

work, as an expert, I was able to appreciate and renew my enthusiasm for the 

ideas discussed in the precalculus course. As a knowledge engineer, I was 

relieved of the burden of having to answer the questions and provided with 

the opportunity to ponder the questions. In fact as this project progressed, I 

realized that the role of teacher and knowledge engineer are not mutually 

exclusive. 

Once adopted the role of knowledge engineer is not easily 

relinquished. Over the course of the Fall and Spring semesters, my work on 

this project influenced my interactions with students in my classes. Students 

who came to my office for extra help were more likely to find themselves 

involved in quasi knowledge engineering sessions. Questions used with 

Beth, like what are you thinking about here? or why did you approach the 

problem this way? became a more prevalent part of my tutoring. 
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As was anticipated, differences existed between my knowledge of 

functions and graphs and Beth’s knowledge of the domain. These 

differences were both in terms of knowledge of particular concepts and the 

connections between knowledge units. As a result of the knowledge 

engineering sessions, I was able to construct a graphical representation of 

my knowledge and Beth"s knowledge. This representation, presented in 

Chapter 3, showed the differences which existed in our knowledge bases. 

Identification of these differences informed the design of the hypercard 

system. Multiple representations of concepts were presented and links were 

made between applications of the concepts and the concepts. 

In a classroom setting, when I use examples to introduce a particular 

concept, my implicit goal is to help students make connections that ultimately 

provide the context for knowledge. Beth and I discussed her view of 

examples, and how she uses examples in her learning. What emerged from 

these discussions is that her approach is to try to learn techniques applied to 

the specific examples and, when encountering a new problem she tries to fit 

the problem into a familiar situation. She admits that she sometimes does 

not understand the motivation for a particular approach. Beth’s comments 

are not surprising, and from my experience she is not alone in this approach 

to learning mathematics. Based on the knowledge engineering sessions 

with Beth, I realize that as mathematics educators we have to be more explicit 

about the connections we want our students to make. Students lack a history 

which would facilitate the development of a broader view of a particular 

example. 
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The knowledge engineering sessions informed the content of the 

hypercard application, and my goal was to minimize the need for computer 

expertise informed the technical design decisions. Through use of the 

hypercard objects of cards, fields, and buttons, I was able to build a modest 

system which explored linear and quadratic functions. In the system the 

mathematical concepts were placed in a broader context linking them to 

examples from the natural sciences. For example, the ideal gas law from 

chemistry was used to connect the concept of linear functions to an scientific 

application. Throughout the application the power of hypertext was utilized to 

provide multiple levels of explanation and encourage exploration of the 

system. 

HyperCard was an appropriate and promising application for 

representing the knowledge base developed during this work. The most 

significant aspect of the application is the ease with which hypertext is 

created. Since one of the goals of this project was to minimize the 

requirements in terms of programming expertise, I used the simplest 

structures for creating hypertext and these were sufficient to accomplish the 

desired outcome. Although I am not a novice programmer, in my judgement 

it is possible to acclimate quickly to the hypercard environment and quickly 

begin productive system development. 

As stated previously, it is critical for students to view knowledge in 

multiple contexts so they are able to integrate new knowledge into a broader 

framework which supports their knowledge of mathematics and its 

applications. HyperCard is particularly well suited for allowing the linking of 
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multiple examples and thereby establishing a variety of contexts for 

knowledge. Since exploration is in some part determined by the user, it 

provides the opportunity to establish a variety of contexts just by choosing 

different routes through the system. 

5.3 Potential Additions to the System 

One of the most interesting aspects of the computer based system is 

the flexibility that it provides in terms of curriculum and presentation of topics. 

A hypercard system can remain a work in progress, and this may encourage 

thinking about the concepts and relationships. To capitalize on this aspect of 

the system and to support reflection, a useful modification of the system 

would be to build in the potential for users to leave notes at various points in 

the system. I envision the content of the notes ranging from comments on the 

usefulness of a particular part of the system, to suggestions for 

improvements, additional applications, and comments on each users' view of 

the knowledge. For example in the section on linear functions, user 

contributed information might be various formalizations of the definition of 

functions. 

The historical component of the system might be expanded and a 

multicultural component might be added. Since context plays such a central 

role in this work, such additions to the learning environment are important 

just to establish another connection for the mathematical knowledge. A 

secondary benefit of providing a cultural context is that in so doing 

differences in learning styles based on culture may be addressed. 
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The system could be expanded in terms of breadth of material so it 

could be used on a regular basis in a College Algebra or Precalculus class. 

This could be beneficial for a number of reasons. Integrating the modified 

system into a class would facilitate evaluation of the system in terms of its 

contributions to learning. Secondly, it would provide the opportunity to 

consider this system and other examples of technology as an essential part 

of the class rather than an ancillary to be used only casually. Finally, it could 

serve as a catalyst for cooperative learning between students and teacher if 

all viewed themselves as contributors to the class knowledge base. 

5.4 Implications for Mathematics Education 

To conclude this work, I would like to revisit the National Council of 

Teachers of Mathematics view of mathematics curriculum. The organization 

states that all mathematics curriculum should demonstrate mathematics as 

problem solving, mathematics as reasoning, mathematics as communication, 

and mathematical connections [NCTM, 1989]. I believe that the knowledge 

engineering process as a mode of inquiry and the construction of knowledge 

based learning environments can contribute to satisfying the mathematics 

education community's need to meet and perhaps surpass the standards. 

A substantial part of this work has been about connections. The goal 

of the knowledge engineering process is to represent the knowledge base of 

an expert or experts in a machine usable form. Researchers in knowledge 

engineering and related fields report that an important component of 

expertise is the ability to construct a framework for knowledge units which 

relates pieces of information and allows for the development of a deeper 

knowledge. A substantial part of the knowledge engineering process is 
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about making these connections explicit so the integration of aspects of the 

knowledge engineering process into mathematics education will assist in 

meeting the goal of encouraging the the development of connections. This 

work has shown that one of the strengths of the hypercard environment is the 

ability to link concepts to each other. 

Knowledge engineering encourages the teacher to be explicit not only 

about the existence of connections but also to consider the strength of the 

connections. Engaging students in knowledge engineering sessions will be 

useful not only in terms of curriculum modification but may provide new ways 

to think about evaluation. A recent study reported in the Journal of Chemical 

Education reported that students who were able to successfully complete a 

written test on chemical equilibria expressed a number of misconceptions 

when interviewed and asked qualitative questions about the same subject. 

The interviews revealed that the students were not able to make connections 

and, in fact, that their written solutions, although getting them correct answers 

were based on incorrect beliefs [Bergquist and Heikkinen, 1990]. This 

suggest that our focus on quantitative evaluation is a disservice to students. 

We need to explore other means of evaluation and some part of the 

knowledge engineering process may be useful as an evaluation tool. 

Although computer based learning environments are not the only 

route to exploring mathematics as the language of the natural sciences, this 

work has indicated they are one route. Studying a variety of applications 

simultaneous with the study of mathematical concepts supports the formation 

of the view that mathematics offers an efficacious representation for many 

principles of the natural sciences. Investigating a variety of applications is 
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one means of developing an understanding of how mathematics 

communicates scientific knowledge. 

The stages of the knowledge engineering process are similar to the 

steps often suggested for problem solving. A knowledge engineer is 

required to solve the very difficult problem of obtaining and representing the 

knowledge of an expert in a useable form. Taking on the role of knowledge 

engineer may augment the teacher's problem solving skills. If the teacher 

views himself as a better problem solver, he will be more comfortable and 

more likely to model appropriate problem solving behavior for his students. A 

significant part of effective education is modelling for our students sound 

learning techniques. 

Recently researchers have reported that increasing teachers' 

knowledge about their students' knowledge and problem solving abilities 

would encourage the development of curriculum which would promote 

learning and problem solving [Carpenter, et. al., 1989]. Central to the 

knowledge engineering process is expert's knowledge and problem solving 

heuristics. When the expert is a student and the knowledge engineer is a 

teacher, the teacher will become familiar with the student's knowledge and 

problem solving abilities. 

Finally, we can consider the potential for the process of knowledge 

engineering and designing computer based learning environments to affect 

teachers' and students' views of mathematics as reasoning. This work has 

attempted to show that the knowledge engineering process, coupled with the 

design of a hypercard environment, will help students and teachers construct 

a broad context for their mathematical knowledge. For the teacher, 

mathematical reasoning is required to judge the appropriateness of particular 
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applications and representations. As was suggested in the discussion of 

problem solving, it is important that the teacher model desired behavior for 

her students. For the student, participation in a knowledge engineering 

session requires him to be explicit about his knowledge and heuristics which 

forces an evaluation of mathematical reasoning used in problem solving. In 

addition the student who navigates a hypercard environment like the one 

presented in this work will be exploring the mathematical reasoning used to 

build the system. 

5.5 Implications for Teacher Education 

In the last part of this discussion I will focus on the implications of this 

work for teacher education. A recent report from the National Center for 

Research on Teacher Learning suggests an agenda for research on learning 

to teach based on three hypothesis. I believe that this current work 

addresses some of the issues raised in the report and is a rich mode of 

inquiry for continued contribution. This part of the discussion will be 

organized around the three hypothesis presented in the report. 

The first hypothesis addresses teachers' experience-limited beliefs 

about teaching, subject matter, and diverse learners: 

"We hypothesize that, in order for teachers to alter 
these resilient beliefs, they must be introduced to 
an idea that is plausibly better and must be 
provoked to question their own experiences and to 
question the beliefs that are founded in those 
experiences" [Kennedy, 1991, p. 21]. 

My own experiences throughout this project validate this hypothesis. When I 

began this project, I thought of myself as a good teacher. I was willing to 

work hard. I was flexible. I had empathy with students. My subject area 
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knowledge, enthusiasm for learning, and commitment to the educational 

process were all strong. But even good teachers can become complacent. 

Most good teachers cannot remain complacent, and in search of a means of 

removing the complacency they often leave teaching or commit their psychic 

energies elsewhere. This project has provided me with the opportunity to 

realize that teaching introductory classes is a rich environment for 

sophisticated thought about mathematics. As I tried to catalogue my 

knowledge, I had new insights into the nature of mathematics. 

As I have emphasized throughout this discussion, the focus of the 

knowledge engineering process is on the explicit representation of 

knowledge. Taken seriously it is impossible to engage in this process and 

not be reflective about one's subject area knowledge. This work goes 

beyond simple reflection because the representation of the knowledge base 

is the expected product. The knowledge engineering community is engaged 

in research about the appropriateness of current representations, but this 

does not negate the benefit of attempting to make knowledge explicit even if 

the representation is flawed. 

Viewing the student as expert and endeavoring to construct an explicit 

representation of student's expertise focuses the attention on the learner in 

an unique way. Although it is unrealistic to expect a transformation in the 

teacher solely as a result of taking on the knowledge engineering role, 

providing the teacher with a new window through which to look at learning 

will challenge existing beliefs. This is not suggest that there are ten easy 

steps to knowledge engineering and the reform of teacher education. The 

knowledge engineering process is difficult and often is not successful. 
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However, it is concerned with the issues of knowledge and beliefs and 

provides another mode of inquiry. 

In the realm of teacher education potential extensions of this work 

include expanding the number of participants. I envision a workshop where 

teachers are trained in the knowledge engineering process and work with 

learners to construct a computer based learning environment. The teachers 

would be asked to keep track of the evolution of their thinking about the 

subject matter and the nature of learners. If expertise, as Kolodner suggests, 

evolves based on introspection, this process is supportive of that evolution. 

In addition, working toward the goal of building a system provides the 

teachers and the learners the chance to develop a broader view of 

technology. By engaging in this process they would begin to develop the 

"intellective" skills essential for the 21st century. Finally constructing a 

computer based learning environment makes sharing of the work a more 

likely possibility. 

The second hypothesis proposes: 

"We hypothesize that, in order to enhance their 
subject matter knowledge, teachers need to 
encounter substantive ideas within the context of 
the domain as a whole and need to learn 
substantive ideas by participating in worthwhile 
academic tasks. We also hypothesize that, in order 
to learn how to connect subject matter to diverse 
learners, teachers need to learn about diversity in 
its cultural and community contexts" 
[Kennedy, 1991, p. 22]. 

It is difficult for me to think of more substantive ideas than those considered in 

a discussion of knowledge representation. A strength of this current work is 

that ideas are discussed in a context of building a product which is 

immediately useful. It is this union of theoretical and practical which will be 
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appealing to both the novice and experienced teacher faced with realities of 

school culture. In other parts of this discussion, I have already mentioned 

that a strength of the hypercard environment is that it encourages 

individualized exploration of topics. The issues of learner differences are 

complicated, and a hypertext based system cannot respond to all the issues. 

It is one area with some demonstrated success and some potential for further 

work. 

Initially I had planned to establish a cultural context for the topics 

presented in this current work. I believe the system would be strengthened if 

it included an expanded historical component and current examples of the 

contributions to mathematics from diverse cultural groups. As the work 

progressed, issues of process became the more central focus, but 

strengthening the cultural context is an important area of future system 

modification. A useful starting point for developing cultural awareness may 

be acquiring the knowledge necessary to construct a cultural component of a 

learning environment. 

Central to the knowledge acquisition process is the knowledge 

engineer's understanding of the context or framework the expert has formed 

for knowledge. In the learner's case culture is an important aspect of 

knowledge. It would be difficult to engage an expert in knowledge 

engineering sessions and not learn something about the influence of culture. 

If the development of cultural awareness is an established goal, the sessions 

would be even more informative. 
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The third and final hypothesis addresses teacher reflection: 

"We hypothesize that teacher learning can best 
occur when teachers have opportunities to stop 
action so that slower and more detailed 
deliberation is possible, opportunities to see 
explicit connections between relevant concepts and 
criteria and teaching situations, and opportunities 
to see connections between relevant concepts and 
criteria and their own behavior [Kennedy, 1991, p. 22]. 

I have reported that one of the benefits of this work was the opportunity for me 

to change roles from teacher to knowledge engineer. Not only was I able to 

engage in "slower and more detailed deliberation"; I was also able to 

remove, for the most part, the expectation of providing the answers. As a 

knowledge engineer I was focused on acquiring Beth’s knowledge; these 

sessions removed the influences of getting the homework done or preparing 

for the test. Time spent representing my own knowledge also supported this 

"more detailed deliberation". Again, I was not the teacher planning a lesson, 

constructing a test, or developing a problem set; I was attempting to represent 

my knowledge base. 

Because of my work on this project, I was less likely to make 

assumptions about connections students were able to make. In my classes 

during the Fall and Spring semester, I was much more careful to be explicit 

about connections which I viewed as critical for understanding a topic. This 

work reinforced for me that establishing a framework for knowledge is as 

important as providing the knowledge units. In this work I considered a small 

part of the domain. Exploration of other parts of the domain would contribute 

further to addressing the concerns expressed in this final hypothesis. 
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5.6 Conclusion 

"A common experience, when some colleague would try to 
explain some piece of mathematics to me, would be that I 
should listen attentively, but almost totally uncomprehending of 
the logical connections between one set of words and the next. 
However, some guessed image would form in my mind as to the 
ideas that he was trying to convey-formed entirely on my own 
terms and seemingly with very little connection with the mental 
images that had been the basis of my colleague's own 
understanding-and I would reply. Rather to my astonishment, 
my own remarks would usually be accepted as appropriate, and 
the conversation would proceed to and fro in this way. It would 
be clear, at the end of it, that some genuine and positive 
communication had taken place. Yet the actual sentences that 
each one of us would utter seemed only very infrequently to be 
actually understood! [Penrose, 1989, p. 427] 

In the above passage the mathematical physicist Roger Penrose describes 

from his experience how mathematical knowledge is communicated. He 

could be describing knowledge engineering sessions. Although knowledge 

engineering is about "genuine and positive communication", it is also about 

developing an explicit representation of the knowledge which has been 

communicated. As an individual teacher I benefitted from the 

communication. It provided me with an opportunity to view a student's 

knowledge and my own from a fresh perspective. As a teacher interested in 

contributing to the improvement of the teaching and learning of mathematics, 

I benefitted from the opportunity to develop an explicit representation of a 

student's knowledge and my knowledge. Before beginning this work, I 

considered myself a good teacher in part because I believed that I used 
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examples effectively. As a knowledge engineer acquiring expertise I became 

more aware of the need to weave the examples into the existing knowledge. 

Context is more than a "real world situation". It is about connections which 

are continually being changed, often made stronger but sometimes made 

weaker. 

Knowledge engineering is also about collaboration. Although, under 

the best of circumstances, teacher-student interactions are about 

collaboration, this project allowed me to work with a student in a new 

environment. We shared our expertise. We were able to focus our attention 

on knowledge and not on the chapters to be covered or the next test. 

The personal rewards of this research encouraged me to explore other 

avenues for the using the knowledge engineering process. For example, I 

integrated some aspects of the process into my tutoring sessions with 

students, and I encouraged colleagues to think more explicitly about their 

students' expertise and the ways to tap this expertise. 

The tough questions remain. We will continue to debate the nature of 

knowledge and issues of teaching and teacher education. I believe the best 

conclusion for this project is that it was part of the debate and an interesting, 

challenging, and motivating experience. I want to continue to contribute to 

the debate. 
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