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OUTLINE 

This thesis is concerned with an attaint tc gather 

under one heading several diverse theorems dealing with 

electric circuit problems the postulation of which are at 

present scattered through many technical journals and texts, 

with the aim of aiding Instructional processes now in 

practice in courses dealing with this subject# 

The Problems;* (1) Can these theorems be expressed in a 

more simplified and concise manner? 

(2) Are any of these theorems, as now 
* 

» * 

classified under diverse names, of a 

singular origin? 

(3) Are any of these theorems adaptable to 

concise lecture demonstration exhibits? 

Reason for Interest:** As a Professional Engineer Interested 

In educational methods and as a college 

instructor with three years experience in 

teaching Physics and Mathematics,I have 

been interested in all projects which 

attempt to present complex material to 

the student in a more vivid and concise 

manner with little or no loss in accuracy# 

I am also Interested in this problem as a 



means of Increasing my educational 

background in the subject of electri¬ 

city with which I have had little 

experience# 

Limitationsj- Because of the numerous theorems available I 

have limited myself to those more popular 
r x ' » 

theorems dealing with direct current and 

simplified alternating current circuit theory* 

Procedure:••(a) I have made a diligent search through the 

journals of the electrical engineering societies 

and the trade magazines of leaders in the 

electrical devices manufacturing field, as well 

as texts available in the surrounding college 

and municipal libraries. 

(b) X have compiled statements of theorems dealing 

with this subject tracing the historical develop¬ 

ment in as many cases as possible. 

(o) I have attempted to present a more concise 

and simple statement of these theorems from a 

college student!1 point of view. 

(d) Under each of the circuit theorems which I 

have discussed, X have presented sample circuit 

problems as solved by the theorem. 



(e~) I have designed and constructed a piece of 

lecture-laboratory demonstration apparatus to 

show the application of two of the theorems 

discussed* 



*Th© mmm Of this thesis Is natelng 0** ttt&qpt 

to clarify a situation ousting in the field of eloetricol 

circuit prbblonsa tthoroln a nunbor of theorems dealing with 

the solution of those problem© have boon postulated in 

taany diverse end sundry manners* The difficulty often 

ertoes* tlii.it oithin the field of electrics! circuit ftn&ly* 

els* tho mtticnatical solution of the problem often become© 

so complex end involved that tho erlglttaX theory intended 

to be absorbed by the student is lost* In. an attempt to 

remove scao of this nathoraaticml drudgery* research men 

have ox orndod theorem© whleh &oy be used to solve difficult 

circuit problems with a rdntmwm of labor* thus allotting a 

student more tin© for further research* if these theorem© 

can bo pieced at hi© oomamA in an adequate manner* tt 

is at this point whore tho difficulty arises* ‘losonreh 

non hove as cm outlet for their writings* mny trad© and 

tommies l Journals within htloh to dioacalmt© their 

theorens# t^or tho student interested in tho theorem©* 

this moans considerable library rosonroh nsr©Xy to gain 

tools vith 3hloh to ply his trade* 

On© 



The student at this point is faced with another 

problem because when he consults the articles found In the 

journals or in some texts which have ^tempted to make 

"brief, concise statements" of the theorems he finds a 

variance in terminology - often unexplained and with 

symbols which are not standardized - as well as a variance 

in the statement of the theorem* Here again he has 

difficulty "seeing the tree because of the woods.” 

It was with these problems of the student as 

well as attendant problems of the professors conducting 
✓ 

such courses in mind, that the author has made a search 

of leading technical journals and texts in the field of 

electric circuit theory and presents herein some of the 

more popular theorems* An attempt is made to clarify 

through schematic drawings and standard symbols the word¬ 

ing of the theorems presented* An attempt is also made 

to present in graphical manner the advantage of the 

theorem over the ordinary analytical or statistical methods 

of solution* 

The author set out with the further purpose of 

adapting one or more of the theorems to concise lecture 

demonstration exhibits and succeeded to the point where he 

includes within this treatise schematic drawings of a 

device which will illustrate two of the more important 

theorems, i*e* the Delta Wye theorem and the Thevenin - 
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ot Helmholtz Theorem. This device has been constructed by 

the author in the Physics laboratory at Massachusetts State 

College and can be constructed in most other college labora¬ 

tories equipped for the instruction of courses in electrical 

circuit analysis. 

Such exhibits as described herein will aid the 

lecturer in demonstrating to the student the adaptability 

of such theorems to ordinary problems thus aiding in pre¬ 

senting complex material to the student in a more vivid 

and concise manner. Such methods are in the belief of the 

author to be encouraged as aids to the educational develop¬ 

ment of the student. 

Electric circuit theorems may be defined as 

statements which indicate definite relationships existing 

between the component parts of an electrical circuit if 

certain imposed conditions are fulfilled. Many textbooks 

dealing with the subject of electric circuits present at 

least four theorems which have been found to be of value 

to the student in the computation of quantities in various 

branches of the circuit. As most frequently found in the 

textbooks which the author has surveyed the following four 

theorems are used or quoted for the students reference. 

(1) The Superposition Theorem: - 

Each E.M.P., in a complex circuit acts inde¬ 

pendently of all others in pnoducing network current. 

Three 



Illustration: - (See sketch next page) 

If current Ia flows in branch (a) due to e.m*f* 

(Ea), and an additional e*m*f* (E^) is inserted in branch 

(b) producing a current 1^ which is equal to the current 

which Efc would send through branch (a) in the absence of 

any other E, then the current in branch (a) is equal to 

I wr*r lb 

(2) The Compensation Theorem*- 

If any change is made in the resistance of a 

branch, the effect on all of the mesh currents is the same 

as if an E*M.p# equal to the- negative of the product of the 

change in the resistance multiplied by the branch current, 

had been inserted* 

Illustration:- (see sketch) 

In circuit (a) we have a current i^ equal to 

the E*M*P. (E) divided by the sum of the resistances* 

In circuit (b) a resistance (dR) is added to 

(R2) and the current is correspondingly reduced* However, 

if, as in circuit (c), an E*M#p* equal to the product of 

(ij) and (dR) and of opposite sign Is introduced into the 

circuit the total current flowing in the ciruuit remains at 

its original value (1^)* 

(3) The Reciprocity Theorem of Green* - 

Where a resistance is common to two meshes the 

effect of the resistance from one mesh to another is reversible* 

Fdur 





Illustration:- (See Sketch used to illustrate Superposition 

Theorem) 

The resistance (R3) is common to both meshes (a) 

and (b)# that is » Rfca. because the determinant used to 

solve for the current is the same as effected by (R3)* the 

transfer conductance from mesh (a) to mesh (b) is the same as 

from mesh (b) to mesh (a) and an E.M*F. in branch (a) pro¬ 

duces the same current in branch (b) as it woujd produce in 

branch (a) if placed in branch (b)* 

(4) The fourth theorem usually quoted is the.Thevenin 

Theorem in cne form or another* The author in this treatise 

begins at this point with an attempt at clarification cf this 

Theorem and then presents additional theorems# The above 

theorems have been rather adequately discussed in most modern 

texts and therefore the author does not discuss them further 

but would refer the interested party to texts listed in the 

bibliography of this treatise* 

As an aid to clarity and simplicity each theorem 

is discussed under a separate heading complete with summary 

and conclusions which can be drawn* 

Since this treatise is intended as a collection 

of theorems as well as a discussion of their origin there 

has been included also a section of illustrative examples 

abstracted from leading authoritative texts and research 

papers* This section appears under a separate heading at 

end of treatise. 
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THE THEVENIN-HELHHQLTZ THEOREM 

In the discussion of this theorem, the author 

has been forced to use within the title the name of L.Thevenin 

whose name through popular misinformation has become 

associated with a theorem originally expostulated by the 

German physicist, mathematician and philosopher H,von Helmholtz 

who enunciated the theorem thirty years prior to the date 

when Monsieur Thevenin first published his statement apparently 

without knowledge of Helmholtz^ research. 

This theorem has been chosen as the first to be 

discussed also because of its popularity in present day 

analysis of communication circuits involving both direct 

and alternating current. 

Before discussing the theorem Itself, a brief 

historical background showing the confusion which exists 

regarding the origin of this particular theorem seems 

appropriate* 

H,Von Helmholtz in a paper appearing on Page 21 

In the "i&nnalen der Physlk and Chemle" for the year 1853 

entitled nWeber einige Gesetze der Vertheilung elektrisher 

Strome In korperlichen Leitem mit anivendung ans die thierlsch- 

elektrishen Versuche" (On some laws of the distribution of 

electric currents and their application to experiments In 



Animal Electricity) set forth the theorem which has come 

to be known as Thevenins* Theorem* Helmholtz first cites a 

law of Klrchhoff which states that if in any system of 

conductors, the Electromotive Forces exist at various points, 

the potential at every point In the system is the algebraic 

sum of the potentials which would be produced by each of the 

E*M*F*s acting alone* He then applies this law to a linear 

network and sets forth the following statement of a theorem* 

”If two points of a linear network are connected 

to other conductors, it behaves as a conductor of certain 

resistance, the magnitude of which can be calculated by the 

ordinary rules for branched networks, and of an E*M.F*equal 

to the Potential Difference that existed between the two 

points before they vsere connected by the other conductors*” 

In 1883, L* Thevenin published a note of little 

more than two pages in length in the ”Comptes Rendus,” Vol* 

97, pg. 159*161” on a new theorem of dynamic electricity*” 

The statement of Thevenin wa3 a simple and plain statement 

of the Helmholtz theorem with which he was apparently un- 

acq uainted* Thevenin*s statement is as follows** 

”A current through any branch of a circuit is 

equal to the current through the same branch when an open 

circuited E*M*F* acts in the same branch and all other 

E*M*F**s are replaced by their internal impedances*” 

Seven 



As will be shown in later analysis of these two 

statements - essentially equaik - as well as other statements 

of a more recent origin, there should be no doubt as to the 

origin of the theorem nor to the fact that the name of 

Thevenin applied to the theorem gives a wrong implication 

as to its founder* 

Pleijel, an engineer of the Swedish Telegraphic 

Department, in an article appearing in the "Rewe Gen.do 

1*Elect.", 16, Ap. 1919 written by Pomey, is described as 

offering a proof of "Thevenin Theorem" which in fact followed 

the theorem of Helmholtz. 

Helmholtz* s theorem was applied to alternating 

current networks in 1925 by Dr.P. T.Chapman and so reported 

by him in a paper appearing in Electrical Review (50th March) 

entitled "The Calculation of D.C. and A.G.networks." 

The theorem was published under the name of Helm¬ 

holtz in a paper by F.Wenner, who restated the theorem and 

applied it to a number of bridge problems, appearing in the 

"Pros.mys.Soc." for 1927. Wenner does not even mention 

Thevenin. 

The same theorem has appeared in other works 

under different names. V.Jenkin (Revue Gen .del* Elect for 

1938) called the theorem a "method of superposition." 

Van den Meershe("Revue Gen.del*elect for 1935) restated the 
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theorem in practically the original words of Helmholtz and 

called it "A theorem deduced from the generalized reciprocity 

theorem of Maxwell#” Since Helmholtz,himself, attributed much 

of the basis for his theory to Kirchhoff and Green, there is 

no need to bring Maxwell into the discussion# 

Applications of the Helmholtz theorem either undo? 

the name of Thevenin or Helmholtz are very numerous with some 

of the more recent being articles by Freeman in "Phil Mag#” 

for Sept# 1942; by Wall in the "Elect#Rev." Nov.7,1941; 
• 

by A taka in the Phil# Mag, April 1938; by Wigge in "Arch# 

f#Elektrol", Nov# 1936; and by Lee and MacDonald in 

”Wir#Eng#" Nov#1935# Most of these articles are extensions 
0 

of the theorem to some particular network and, depending on 
0 

the author, the theorem is attributed to either Thevenin or 

Helmholtz with no mention of the other# In Wigge1 s article 
0 

in the "Archiv# for Elektrotechnik" for November 1936, for 

example, he referred to Helmholtz* s theorem as applied to 

alternating current circuits and then proceeded to state a 

new theorem called the "Dual Theorem” in which he arrived at 

a formula for solution of these problems which is in reality 

a reciprocal formula of the original Helmholtz formula# 

Little wonder is experienced after such a hetero¬ 

geneous historical career that this theorem should come 

down to us, less than one hundred years later, with about 
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as many forms In the statement thereof as there have been 

authors dealing with the subject. Therefore, let us consider 

no more than five selected statements of the theorem and 

examine them to note the similarity or differences. After 

examination let us recommend one statement and proceed to 

show its applications and values to various of the more pre¬ 

valent problems. 

First, returning to the statement of Helmholtz 

which as you may recall is that 11 if two points of a linear 

network are connected to other conductors, it behaves as a 

conductor of certain resistance, the magnitude of which can 

be calculated by the ordinary rules for branched networks, 

and of an E.M.F. equal to the Potential Difference that 

existed between two points before they were connected by 

the other conductors*w 

As the simplest possible example of this seemingly 

complex statement, we will examine a circuit illustration as 

presented by Helmholtz^ (see sketch I on the next page)ftIn 

this simple circuit,there is an electromotive force (E) and 

two points (a) and (b), which divide the circuit into two 

parts of resistance rQ and r^ , the former part containing 

the source of the electromotive force. The potential difference 

across E-b is then 

Erl 
V = ___ 

ro4^ ri 

Ten 
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which becomes the electromotive force required for the 

equivalent system which is to be connected across a-b# 

!3he resistance of this circuit as measured bet¬ 

ween points (a) and (b) becomes 

■bfc.fi 
A resistance rg is now connected between these 

two points (see sketch I)# Then Helmholtz states that 

according to his theorem the currents in each branch are as 

indicated in formulas 1, 2$ and 3 shown accompanying sketch I* 

Helmholtz obtains i0 and i^ by using a device (see 

Sketch III) of sliperimposing ficticious E.M.pis equal to V 

and -V in with • The current due to E and to -V is then 

the first term of the currents i^ and i^ since no current 

flows at that time through r2# The second term in each 

equation is the current due to V acting alone# 

The minus 3ign in formula (1) is due to Helmholtz 

taking the positive direction fef 1Q in opposition to 5 so that 

at point (a) the sum of all of the currents equals zero$ 

following the law of Klrchhoff • 

NOTE*~ 

It should be noted that If the two points (a) and 

(b) are short-circuited, the current will obviously be equal 

to the open-circuit voltage divided by the resistance of the 

Eleven 
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network as measured between (a) and (b)* This is sometimes 

useful because the short-circuit current and the network 

resistance can sometimes be calculated quite simply and the 

open-circuit voltage thus calculated* Th*s two other theorems 

which often appear under either the tifcle "the short-circuit 

link theorem” or "the break or cutting point theorem" are seen 

to be in reality only slightly different statements of the 

Helmholtz - Thevenin Theorem* 

Having presented Helmholtz’s original work and 

thus established the priority of his theorem over that of 

Thevenin let us now consider four selected statements of the 

theorem appearing under the name of Thevenin taken from three 

authoritative textbooks on electric circuit analysis and from 

a paper published in the Philosophical Magazine and Journal 

of Science* These will demonstrate the diversity of statement 

as well as the complexity of terminology which has been intro¬ 

duced • 

For the detailed proof as presented for each of 

these statements see the Abstract Section under the appropriate 

heading* 

From the textbook entitled "Electrical Circuits”$ 

a volume of the Principles of Electrical Engineering Series 

by the electrical engineering staff of the Massachusetts 

Institute of Technology (See Bibliography) at page 146 we 

have the following statement* 
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"Any network of resistance elements and voltage 

sources kt viewed from any two points in the network may be 

replaced by a voltage source and a resistance in series between 

the points# " 

Prom the textbook entitled "Electrical Circuits 

and Wave Filters" by A#T#Starr (See Bibliography) we have an- 
/ 

other statement# 

"Any system with two accessible terminals may be 

replaced by an E#M#F# acting in series with an impedance# 

The E#M.p, is that between the terminals when they are un¬ 

connected externally and the impedance is that presented by 

the system to the terminals when all of the sources of E#M#F* 

in the system are replaced by their internal impedances#" 
* 

Prom a paper by Hickosabura A taka of the Heidi 

College of Technology in Tobaka, Japan published in the 

Philosophical Magazine and Journal of Science (See Bibliography) 

we have the following statement of the theorem. 

"A current throu^i any branch of a circuit is equal 

to the current through the same branch when an open circuited 

E#^#P# acts in the same branch and all other E#M.Pfs are re¬ 

placed by their original impedances#" 

Prom the textbook entitled "Basle Electricity for 

Communications" by W.H.Timbie (See Bibliography) we have the 

following detailed "statement" of Thevenin*s Theorem# 

Thirteen 



"Any two terminal network containing any number 

of D.C. sources and any number of resistances can b© replaced 

by a single series circuit of one voltage source and one re¬ 

sistance* This equivalent series circuit will deliver to a 

given load the same power at the same voltage, and the same 

current that the original circuit will deliver to the same 

load* 
* 

(a) The voltage source of the equivalent circuit 

is equal to the open circuit voltage of the original circuit. 

(b) To find the series resistance of the equiva¬ 

lent circuit*- 

(1) Remove the voltage sources of the original 

circuit and replace them with short circuits. 

(2) Compute the resistance between the two open 

terminals of this modified circuit. 

(•) The two circuits are equivalent only as far 

as their terminals are concerned. They do not necessarily con¬ 

sume the same power internally.n 

By inspecting the circuit diagramed on the next 

page it will be found that each of the above statements of 

the theorem will explain the transposition of current, power 

and voltage which can be supplied to a given resistance (R) 

by the method of replacing the original circuit with an 

electromotive force equivalent to that existing between the 
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terminals (a) and (B) In series with a resistance equivalent 

to that of the original circuit* It will be noted that the 

power used between (A and (B) remains constant* This theorem 

does not state that the power used by the equivalent circuit 

is the same as that of the original circuit, i*e* the Helmholtz- 

Thevenln Theorem is not an "equivalent power" theorem* 

In each of the statements the principle is set forth 

that, where we have an electrical circuit of any number of 

voltage sources and any number of resistances and are interested 

in the electrical properties between any two terminals, we 

may replace the entire network exclusive of the two terminals 

by a simple series circuit of one voltage source and one 

re si stance of a size calculated to deliver the same voltage, 

current and power to the two terminals as was delivered by the 

more complex circuit* 

Thus referring again to the general circuit diagram, 

we see that In our simple series circuit, the electromotive 

force E must be equal to the voltage across the terminals under 

consideration* i*e. E s Vat>* The resistance of the simple 

circuit Re must be such as to supply the same current Ic 

(the current supplied by the original circuit) to the load R 

between terminals A and B# Or by Ohm’s Law 

Vab 
Re Z i where Ic may be calculated by 

Maxwell’s equation or from the Wye-Delta Theorem as presented 

Fifteen 



later In this treatise. 

If I Is not known then E may be calculated by 

computing the open circuit voltage drop and may be 

calculated from the series parallel relationships of the 

original circuit replacing the voltage sources of that circuit 

by short eirouits* This replacing of the original E*M.F» s 

by connections of zero resistance in order to determine R 
© 

seems to be inherent in the Helmholtz theorem. This method 

will be at best, however, only a close approximation which 

neglects the internal resistance of the voltage sources#but 

it may be used to advantage where the resistance values of the 

circuit are large compared to the resistance of the voltage 

sources* 

In the discussion of this theorem the author has 
* 

used Direct Current terminology to avoid confusion, but the 

entire theorem can be applied as well to alternating current 

circuits with the substitution of the term "impedance” for 

resistance”* The theorem is applicable also for capacitance 

circuits* 

Since to attempt to make a new statement of the 

theorem would in this author1 s opinion only add to rathea than 

subtract from the confusion existing by the present multitu¬ 

dinous array of ”statements”, the statement of the theorem as 

appearing in the text "Principles of Electrical Engineering” 
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by the staff of M*I.T* is presented with a slight addition and 

a suggested change in title as the most concise and accurate 

statement of the theorem* 

This author would use for a title 

The Heftmholtz - Thevenin Equivalent Circuit 

and state the theorem thuss- 

Any network of resistance or impedance elements 

and voltage sources, if viewed from any two points in the net¬ 

work, may be replaced by series circuit consisting of a single 

voltage source and a single resistance equivalent to the open 

circuit voltage and resistance across the points* 

While it might be wise to present an illustrative 

problem at this point, the author, in the interest of greater 

clarity has deferred discussing this theorem further until he 

presents a second circuit theorem which will aid in the 

mathematical computation needed in the sample problem* 
* # ' • 0 » 

It is interesting to note, however, at this point 

that Ataka, in his paper on T,An Extension of Thevenin* s Theorem 

applies the theorem to an alternating current circuit and sets 

up a new statement of the theorem in \diich he combines the 

Thevenin Theorem with the compensation theorem and shows that 

each of these theorems are merely special cases of his extended 

theorem* An abstract of Ataka* s work is presented in the 

special section of this treatise reserved for that purpose* 
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In this abstract Ataka^s special proof and his results are 

adequately portrayed for the use of a student particularly 

interested in this phase of the work. 

i ■ 

V 
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THE DELTA- WYB THEOREM 

The Delta -Wye theorem attributed to A.E.Kennelly 

in an article first published in 1899 in Volume 34 of 

"Electrical World" has not had the diverse expression which 

has been noted in connection with the Helmholtz-Thevenin theorem. 

The theorem has been known by such other names as the "Star-Mesh 

{transformation" and the "Delta-Tee Transformation" but the 

statement of the theorem is not subject to confusion. 

Many times in the computation required to apply 

the Helmholtz-Thevenin theorem* conditions arise wherein the 

net resistance between two points in a circuit cannot be com¬ 

puted by series - parallel relationships. Where we have three 

resistances forming a triangular shaped figure (Delta)* we may 

substitute a wye (Y) shaped group of resistances with absolute 

equality. Similarly a wye shaped circuit section may be re¬ 

placed by a delta. To all intents and purposes this is the 

statement of the theorem which we will now discuss by means of 

an Illustration. 

Let us consider the Wheatstone Bridge circuit as 

illustrated in Sketch (t) on the next page. By Thevenln1 s 

theorem we might want to compute the galvanometer current and 

thus it will be necessary to compute the net resistance between 

X and Y. By eonsidering the resistances above (sketch 2) and 

Nineteen 
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rearranging as in sketch (3) we can see the delta arrangement 

from which the theorem derives its name* If one of these 

deltas can be replaced by a wye as in sketch (4),it would be 

possible to have a series - parallel circuit as in sketch (5) 

which would be relatively simple to compute# 

In order for a wye to be equivalent to a delta, the 

resistance viewed from any pair of wye terminals must be the 

same as the resistance viewed from the corresponding pair of 

delta terminals# Thus as viewed in sketch (4) the series re¬ 

sistance totals of the wye (R^ f Rg)} Rg f Rg); and f R^) 

must equal the respective parallel resistances of the delta 

circuit# 

Accompanying the circuit sketches, we have the 

formulas which are used in the respective transformations from 

a delta to a wye and from a wye to a delta circuit# 

Thus we are now equipped with six equations which 

will enable us to solve any complex circuit where we can break 

down the original circuit into its component delta or wye forms 

and thus resolve the entire circuit into a series - parallel 

relationship which may be solved by use of the series and 

parallel rules for the sum of the resistances in a circuit# 

Before making use of this theorem to aid in the 

demonstration of the application of the Helmholtz-Thevenin 

Theorem let us first by an illustrative problem show the value 

of the application of the delta-wye theorem to a complicated 

clmoult problem in Direct current# 

Twenty 



The following plates in order of appearance show 

a circuit of eight resistances (See Plate I) in which the 

problem is to determine the current being drawn from the battery 
• . ' * ' ' . • . * • •> i 

source* The Plates in order show first the solution of the 

problem by us© of Maxwell* s Equations Involving a long tedious 

determinant solution which is susceptible of many errors* 

Secondly a solution by means of the so-called 

”Doolittle” Statistical method of multiple corelation vfoich 

is in reality a statistical solution of the same five simulta- 
. r ” - «*• 

neous equations as are used in the first method* 
,* , • 7 4 . 

Third, the author has presented the solution by 

the application of the Delta-Wye theorem* An examination of 

each of these solutions will conclusively show the comparative 

ease with \diich a complicated circuit can be solved by means 
. 1 * - ‘ • * * . ’ • . » » • • • . If; ’ ' 1 

of this Delta-Wye Theorem* * 
. , ' » 

» . V > » 

' ‘ * * V , » • • 
‘ \ .v •> l.i \ \ \ 1 • 1 

\'t 
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ILLUSTRATION OF THE HSUflHO LTZ-THEVENIN THEOREM 

To illustrate the Helmholtz-Thevenin theorem a 

bridge circuit has again been chosen# In this case the entire 

circuit problem has been based upon a piece of demonstration 
/ < l Wk- . 

■ , . . • : ' ' i 

apparatus constructed by the author In the Physics Laboratory 

at Massachusetts State College# This apparatus was designed 

for the prime purpose of illustrating to a class or laboratory 

group the practicality of using both the Delta-Wye Theorem 

and the Helmholtz Theorem for equivalent circuits where 

knowledge of the properties of a particular portion of a 

given circuit are required# 

Let us say that, in the bridge circuit as illus¬ 

trated on the next page, we are Interested in the properties 

of the circuit between terminals C and D or in other words 

we would like to know the current flowing through resistance 

R5 which Is representative of a galvanometer of 200 ohms 
* w 4 ‘ \ 

resistance* 

Since the resistance of equivalent circuit by the 

Helmholtz-Thewwnin theorem must be such as to supply the same 

current to resistance Rg a& was supplied by the original 
* 

\ 

circuit, it is necessary to compute the voltage drop across 
— 

c - d. Instead of using the circuit formulas of Maxwell and 

the resultant determinant solution, we will first transform 

the delta ACD Into Its equivalent wye and derive a series - 
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parallel circuit which can be solved then for the voltage 

drop across c-d# This value obtained will be the required 

E for the Helmholtz circuit# 

By replacing the voltage of the original source 

by a short circuit a - b and neglecting the internal battery 

resistance and the resistance between (c) and (d) we compute 
i 

the equivalent resistance of the circuit# By use of Ohm* a Law 

for the relationship between voltage, resistance and current, 

the calculation of the current through Rg (or through a galvan¬ 

ometer) would then be the equivalent voltage found above 

divided by the resistance of the equivalent circuit as found 

above# 

A calculation of the currents by the Maxwell 

equations plus a statistical solution of the three equations 
t *, , , . 

indicates that the current as found by the Helmholtz-The venln 

circuit Is equal to the current calculated by the ordinary 

means# 

An adaptation of this same bridge cirouit where the 

characteristics of the circuit between points (B) and (D) are 
, . \ ■% 

desired is also illustrated in the following pages# 

’ i 
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A REACTANCE THEOREM FOR A RESOHATOR 

HWM& ' . / A ' 

A theorem, which was first stated by G*A.Campbell 

in the Bell System Technical Journal for November 1922 and 

later restated by Ronald M#Foster in the Bell Journal,April 

1924 and which has come to be known as Poster1 s Theorem gives 

the driving point impedance (- the ratio of an impressed electro¬ 

motive force at a point in a branch of a network to the result¬ 

ing current at that point -) of any network composed of a 

finite number of self -inductances 9 mutual Inductances, an 

capacitances* It shows that the impedance is pure reactance 

with a number of resonant and anti-resonant frequencies which 

alternate with each other* It shows also how any such im¬ 

pedances may be physically realized by either a simple 

parallel-series or a simple series-parallel network of 

inductances and capacitances, provided the resistances can be 

made negligibly small* 

Poster*s Theorem in effect states that the driving 

point reactance of any non-dlssipative network is an odd 

rational function of the frequency with an always positive 

slope* Poster worked out his proof based upon a solution of 

an analogous dynamical problem of the small oscillations of 

a system about a position of equilibrium with no frictional 

forces acting* 
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, W* R. Maclean in a paper published in "Proc. 

I.R.E." for August 1945 has applied the reactance theorem of 

Poster to a Resonator and has in effect extended the theorem 

to any configuration, not necessarily with a finite number of 

degrees of freedom as in Poster’s theorem, as long as the con¬ 

figuration fulfills the one requirement that it must have a 

driving point impedance. It is with this theorem of Maclean* s 

that we will deal since it is a more general theorem than that 

of Poster although MacLean does call his discussion "an 

extension of the Poster reactance theorem* 

To have an impedance in the first place, it is 

necessary to have a definable voltage and current whose ratio 

can be taken. In the completely general cane, since no scalar- 

potential function exists, there is no such thing as voltage 

and hence no impedance. Therefore the in-put to the system 

must be so arranged that a voltage exists at some point, or 

the theorem has no meaning. Also, if the system is to have 

no resistance component of input impedance, it must not only 

be non-dissipative but also non-radiative. Hence, it must 

be considered to be made of perfect conductors and to be 

completely surrounded with a perfectly conducting shield. 

Suppose then, that one has such an enclosure whose 

internal configuration is any whatever, but which is fed 

through an attached concentric transmission line, or simply 

Twenty-five 



a grounded, shielded, and uniform line* If the frequency is 

below that required for the propagation of higher modes within 

the line, and if the line is of sufficient length and fed in 

any manner whatever at the far end, there will exist at any 

point which is some diameter distant from the resonator and 

also from the far end, a field pattern which is purely that of 

the principal mode* For this mode, the curl of the electric 

field lies in the transverse planes, and hence in these planes 

a scalar potential exists* This defines a difference of 

potential between the outer and the inner conductor which is 

the ordinary "voltage in the line*" 

A value of current can be defined as the net flow 

through the center conductor toward the resonator that crosses 

the same transverse used for the voltage* The ratio of these 

two gives the input impedance to the resonator at a fixed 

point in the transmission line vdiich needs only to be a few 

diameters distant from the resonator* This "definition” is 

valid from direct durrent up to frequencies whose wavelengths 
*r 

become comparable with the diameter of the transmission line, 

and coincides with the usual concept of impedance* 

Since with a given apparatus there is a limit to 
* 

the region of frequency in which the impedance is defined, we 

cannot hope to be able to evaluate the function by a knowledge 
% 

of its poles and roots* But it is possible to show that. 
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within the range of definition, the reactance function is odd, 

and has a positive slope# 

To show that the reactance function i3 odd we may 

proceed in the following manner# Having decided an a certain 

connective feeder, and having picked a transverse plane (0) 

(See sketch on the next page) through this line at which the 

impedance is to be determined, one considers the cavity bounded 

by the perfectly conducting metal surfaces and by the annular 

ring cut out of (0) by the transmission line# Within this 

region, the theorem can be applied in the following way# 
* 

In formula (1), (H) is the complex poynting vector, 

(T) is the total (time averaged) magnetic energy, and (XT) is 

the total (time averaged) electric energy# The integral is 

taken over the bounding surface with outwardly directed normal • 

Due to the perfectly conducting metal, the integral vanishes 

except over the annular ring# If (it) is less than the value 
# 

of (wQ) at which the impedance definition breaks down, the 

integral can be evaluated over the ring since the mode is 

known to be the principal one* A little computation leads to 

formula (3) where (V) and (I) are the complex voltage and 

current at (0)# Instead we could write formulas (3) and (4) 

where (x) is the input reactance# 

Substituting (~ w) for (w) will produce no change 

in the energies since there is no physical change involvedf 

therefore we derive formula (5) and we see that the function 

is odd# 
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To demonstrate that the slope is always positive, 

we first Imagine the concentric feeder extended indefinitely 

behind the plane (0) and finally closed with a frictionless 

plug at a distance (1) from (0)* This Is shown schematically 

on the sketch page. We than pick a starting frequency (v) as 

low as we please and determine the reactance (x) at (0) of the 

resonator for this frequency. (1) Is then adjusted so that we 

have formula (6) where (R0) is the characteristic resistance 

of the concentric line# As a result* there is a conjugate 

match at (0) at this frequency. Consequently the system, 

resonator, and line out to the plug has a natural mode at 

this frequency and if started in oscillation would continue 

indefinitely since there is no dissipation. 

We now start it oscillating at this lowest fre- 

quency, and then move the plug with infinite, uniform slowness 

toward the resonator. This movement will take place against 

a radiation pressure. Hence it will increase the energy of 

the mode, but it will also change the frequency. The 

frequency will always be such that a conjugate match exists 

at every position on the line where an impedance exists. By 

this principle the impedance of the resonator at (<0) will be 

given by formula (6) even when (v), (x), and (1) have been 

modified from their starting values. 

As a result of the infinitely slow deformation (v) 

will be a function of (1), and (x) will be a function of either 

(v) or (1). Thus we determine the slope as shown in formula 
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To prove the stated proposition, we must show that 

the right hand side of equation (7) is positive. 411 quantities 

are intrinsically positive except the negative sign and the 

final bracket# Information concerning the sign of the final 

bracket can be obtained by relating the change in the frequency 
% 

to the change in energy of the mode# 

Such a relation is given by the fact that the action 

of a resonator is an adiabatic invariant, i.e# if (W) is the 
0 

energy and (r) the period, the product of (rw) cannot be 
*• > 

changed by a deformation# We thus can write formulas (8) and 

Since one is putting energy in moving the plug 

towards the resonator, the frequency is thereby continually 

increased, (vl) is hence monotonic and l(v) is single valued. 

Uow, however, the radiation pressure gives informa- 
9 r' , 

tion concerning the change in energy and leads to the desired 
* V 

result* , 

First it can be shown by a variety of means that the 
$e* 

electromagnetic tforee (F) in the plug is equal to the linear 

density of the time averaged energy (w) along the line - see 

formulas (9) and (10). 

Combining formulas (9) and (10) with(8a) and then 

stibstituting in (12$) we get formula (13) where(wl) is only 

the energy contained in part of the transmission line, whereas 

(W) is the entire energy of the oscillating cavity. Hence the 
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deriative of (x) with respect to (v) Is always positive yfoile 

the plug moves from its original position up to (())• When the 
r 

plug has reached (0), the frequenty has risen to a value say 

(vx). We then stop the oscillating and move the plug back 

some large ishole number of wave lengths of this new frequency* 

In this new position, the system has a mode of the same frequency 

since the conjugate match principle at (0) is maintained* 

We create this mode and again push the plug toward the 

resonator* Hence it is seen that the slope of the reactance 

curve is always positive up to those frequencies for which 

the impedance is no longer fixed or defined* 
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ALTERNATIVE EQUIVALENT CIRCUIT FOR THE THERMIONIC VALVE 

An important theorem dealing with the advantages 

of an equivalent circuit for the thermionic valve is stated 

In its most general form as followss- 

”It can be shown that any constant voltage generator 

of voltage (E), having an internal series resistance (R), is 

equivalent to a constant current generator of current equal to 

(E) divided by (R) with an internal shunt resistance equal 

to (R)«" 

1316 classic deriviation of an equivalent circuit 

for the anode circuit of a valve has been set forth at great 
» 

length by H.W*Kichol in his article in the Physical Review 

(She Bibliography) and consists of a voltage (me) in series 

with a resistance (r), where (m) is the amplification factor 

of the valve, (c) is the applied grid voltage and (r) is the 

A.C* resistance of the valve* 

Thus accepting this equivalent circuit, another can 

be obtained consisting of a constant? current generator of 

current equal to (ke)with a shunt resistance (r). (k) is equal 

to the mutual conductance of the valve and can be found by 

dividing (m), the amplification factor, by (r). 

Pointing out the advantages of this circuit, N*R*Bligh 

states that the valve capacities fall as usual between the 
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points representing the grid* anode, and filament of the 

valve and he represents the two equivalent circuits as shown 

in Figures I and II on the next page* 

The great advantage of the method of representa¬ 

tion shown in Figure II is that all of the external impedances 

of the anode circuit are thrown in parallel with (r) and(C ) 
o 

and the combination of series and shunt Impedances is avoided* 

If all the impedances are expressed as admittances, the case 

becomes still simpler* 

For Instance, in the case of a resistance coupled 

amplifier, the anode and grid coupling resistances and the 

valve resistance can all be considered in parallel over the 

range where the reactance of the coupling condenser is small* 

Thus it can be seen that It is advantageous to use a valve of 
* 

\ 

high A*0* resistance, consistent with good mutual conductance, 

since coupling impedances are generally limited from the point 

of view of frequency characteristics* 

Another example is afforded by the use of a tuned 

circuit as the coupling impedance. Using the constant current 

circuit the effect of the shunt resistance (r) on the resonance 

curve can easily be seen and for the greatest selectivity (r) 

should be large* 

The input Impedance of the valve can be obtained by 

using this circuit* If we call the Impedance other than that 
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due to the grid filament capacity the Additional Input 

Impedance. this can be evaluated by using the circuit of 

Figure III. 

The vector impedance of the grid anode capacity 

is shown as (a), the vector impedance of the anode filament 

^agppaclty and (r) in parallel as (b), and (z) as the external 

load. 

Then from Figure III, since (e) is equal to the 

sum of the voltages across (a) and across (b) and (z) in 

parallel and since the sum of the currents (by Kirchhoff) 

arriving at (A) is zero we determine equations (1) and (2) 

from which we can solve for the current In the first branch 

(Equation 3)* The Additional Input Impedance is then deter¬ 

mined by dividing (e) by this current (Equation 4). 

The voltage amplification may be obtained by 

considering the combined impedance of (b) and (z) together 

with the current (Ig) (Equation 5) flowing into them. The 

voltage across (z) is shown by equation (6) and the resultant 

magnification by equation (7). 
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OH AN EXTENSION OP THEVENiy* S THEOREM 

BY HIKOSABtJRO A TAKA 

This note deals with some properties of electrical 

circuits, consisting of any number of linear Impedances and 

any number of generators of the same frequency, connected in 

any manner, whatsoever. 

Theorem!- A current Im through any branch (m) is 

equal to the sum of the current IM through the branch (m) 

when any branch (n) Is open circuited, and a current I'm through 

the branch (m) when an open circuited E#M.F#, Eno acts in 

the branch (n) and all other E#M#F#fs in the circuit are re¬ 

placed by their internal Impedances# 

. The theorem is expressed by the formulas listed 

under (3.) on the next page. 

Proofs- The branches (m) and (n) are supposed to be 

drawn out of the circuit, then there will be formed an active 

four terminal circuit as represented in Figure I. 

Let % and be the impedances of the branches 

(m) and (n) respectively, and Eno be the open circuited E#M#P# 

of the branch n# Two E*M,F«s are supposed to be placed 

oppositely in series In the branch (n). Then by the principle 

of superposition, the current 3^ can be considered as being 

made up of two parts# 
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(A) a current Imo when the branch (n) is open 

circuited and all E.K.p.tg jn the oircuit are present, and 

(B) A current X*m when the E.M.P., is placed 

in the branch (n) and all other E.M.F.i s in the circuit are 

absent* See Figure II* 
* t i, 

In the case (B) all E*M*F*s are absent In the rect— 

angular frame, and it may be taken to be a passive four 

terminal circuit* 

Denoting the constants of the four terminal circuit 

by A,B,C, and D, we have the foim&tlas appearing under number 

(2). 

The transfer impedance between branches (m) and (n) 

can then be calculated and we arrive at formulas (3) and (3A)* 

The theorem which is expressed by formula (3A) will 

be found to be an extension of Thevenin1 a theorem* Two special 

cases as applied to this formula will be of Interest* 

Case It* In this case, we will let (m) equal (n), 

in which event the four terminal network degenerates Into a 

two terminal circuit, the relationships of which are expressed 

under formulas (4)* The values of the current in branches (m) 

and (n) will then be given by formula (5), which we can then 

restate as Thevenin* s Theorem* T,A current through any branch 

is equal to a current through the same branch when an open- 

circuited E*M*F. acts in the same branch and all other E*M*F**s 

are replaced by their internal impedances •" 
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Case II;- Here we let the Impedance of the branch 

(n) be varied by a small increment and thus we will have a 

variation in the current due to this change which will be a 

small increment of the original current* 

We can restate formulas (1) by formula (6) and then 

the now current with its additional increment will be given by 

formula (7) and solve for the additional current increment as 

in formula (8)# We can apply Thevenin* s Theorem to get the 

value of Ija as in formula (9) and by substituting (9) in (8) 

we get an expression (formula 10) which can be stated as 

follows* 
* 

* *' 

”If the circuit is altered by making a small change 

in the impedance of a branch, the change in current in the 

other branch is equal to that which will be produced by an 

equivalent E*M.P* acting in series with the modified branch*” 

Thus it will be found that "Thevenin Theorem” and 

the above Compensation Theorem”, which have been treated 

hitherto almost independently, can be wholly covered by an 

extension of Thevenin* s Theorem* 

t 

i 

v 
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TIIEVENIK1 S THEOREM 
-Wvom- 

"ELECTRICAL ClSStftTS" - M.I*T* 
(see cl tat Ion In Bib II ography) 

Theoremj- Any network of resistance elements and 

voltage sources if viewed from any two points in the network 

may be replaced by a voltage source and a resistance in series 

between these two points* 

In figure (A) any network is represented, and (a) 

and (b) are any two points in it* Figure (B) represents the 

equivalent of the network as viewed from (a) and (b) 

In order to use the equlvalent, Rj* and E must be 

determined, which requires two conditions* The conditions of 

open and short-circuit across (a) and (b) serve as well as any* 

For the open circuit, (E) is equal to the voltage 

drop across (a) and (b) of the original network (Vat>)* 

For the short-circuit (I) is given by formula (1), 

where Rn is the resistance measured at the terminals of the 

original network with all of its voltage sources replaced by 

connections of zero resistance* If a resistance (R) is 

connected across a-b the current In it is then given by 

formula (2)# 

It must be remembered that Vab Is the voltage 

across a-b when (R) is absent* If the resistance (R) is in 

series with a voltage source E* the current then Is found by 
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formula (5) or If the two networks are inter-connected, the 

Interchange current Is then shown in formula (4)* 

An illustrative example is presented on the following 

pages to show the advantage of the theorem when the current in 

one element of a network is particularly desired or when the 

current in an additional element is desired* 

t 

# ' 
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THEVENIR* S THEOREM 
-Prom- 

"ELECTRIC CIRCUITS0 BY A, T# STARR 
(See citation in Blbliograpyyl 

Application to an Aerial Circuit 

If we wish to know how the input Impedance of a 

radio receiver affects the magnitude of the received signal, 

we can replace the signal and aerial systems as shown in the 

accompanying Figure (1) by an E.M.F. equal to (V) and 

impedance (Z), which are independent of any frequency, in a 

straight forward manner. 

The receiver signal is then given by the formula 

(1) and its variation with ZT can be computed# 

Example 2g- 

In figure (2) we have an E.M.F# acting in series 
\ 

with a condenser (Cx) and a resistance (R) in parallel 

(representing an aerial, say) with a tuned circuit (L,r,d)# 

The voltage across (C) which is (v). Is put on the grid 

circuit of the receiving circuit. It is required to see how 

(v) varies with (0), (C^) and (R). 

The arrangements to the left of AB may be replaced 

as in figure (3) by (c«) In series with the parallel combina¬ 

tion of (C), (Cx), and (R)* (c* )can then be calculated by 

means of formula (2). 

If we are considering a reasonably narrow band of 
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frequencies the (0) (Cl) and (R) may be replaced by a 

capacitance and resistance of values shown in formula (5) 

resulting in a circuit as pictured in Figure (4)* 

The voltage (v) is a maximum when the reactance 

(1) neutralizes the reactance of (G) plus (Cx) • When this 

happens the current and voltage are approximately equal to 

the values as shown in formulas (4) and (5). 

The influence of the aerial resistance and capaci 

tance on the amplitude of the received signal as well as the 

effect on selectivity can thus be observed# 
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