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ABSTRACT 

KNOWLEDGE-BASED TUTORS: 

AN ARTIFICIAL INTELLIGENCE APPROACH TO EDUCATION 

FEBRUARY, 1990 

BEVERLY PARK WOOLF, B.A., SMITH COLLEGE 

M.S., UNIVERSITY OF MASSACHUSETTS 

Ph.D., Ed.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Howard Peelle 

A vehicle is suggested for bringing information technology into education. Knowledge- 

based systems are proposed as a way to explore, reason about, and synthesize large knowl¬ 

edge bases. These systems utilize resources such as artificial intelligence, multimedia, and 

electronic communication to reason about what, with whom, and how they should teach 

in order to tailor knowledge and communication to individual students. Teaching mate¬ 

rial does not consist of a repertoire of prespecified responses; rather, reasoning about the 

student and the complexity of the subject matter informs the system’s response so that 

inferences made by the machine become key features of the system’s response. Currently, 

such systems can reason about a student’s presumed knowledge, can solve the problems 

given to the student, and can begin to recognize plausible student misconceptions. 

This document provides a practical hands-on guide for people who are considering 

building knowledge-based systems. It identifies the requisite resources, personnel, hard¬ 

ware and software and describes artificial intelligence methodologies and tools that might 

become available. The document is directed both at increased production of knowledge- 

based systems and also at improving the dialogue among computer scientists, educators, 

researchers, and classroom practitioners around the issue of information technology in 

the schools. 
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Chapter 1 

Challenges to Education in an Information Society 

1.1 The Information Society 

Issac Asimov once said that the important thing to predict about an innovation is its 

impact on society. For technologies related to the computer, and the increased amount of 

information they generate, the important assessment to make is how the changing need for 

information impacts on the structure of society. The computer has already increased our 

dependence on information. Societal changes related to information are now beginning 

to decrease the need for conventional educational practices. This document describes the 

information revolution and its impact on society, particularly education. It investigates 

ways to restructure education inorder to point the way to a fully developed information- 

based society. 

More information is now available to more people at more locations. Increased in¬ 

formation at home, school, work, government buildings, military sites, and academia 

institutions requires new learning skills. People need to know how to store, access, and 

reason about larger amounts of data. Nearly instantaneous and world-wide communica- 

tion, via electronic networks, requires that people select from large storehouses of data, 

not only the appropriate data, but also an appropriate medium for communicating that 

data and a way to organize it. 

As information becomes more prevalent, people become more independent and free 

to explore distant knowledge bases. Education then moves away from being a local insti¬ 

tution where knowledge supposedly resides, and becomes instead a number of processes 

1 
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which are centered on the individual. Knowledge becomes available beyond books and 

beyond time- and space-bound classrooms. It can be gleaned from networked humans, 

distant encyclopedias, remote archives, and on-line systems. Human behavior and inter¬ 

actions around information have already changed. In the workplace, people are already 

required to handle more information, faster communication, and increasingly complex 

syntheses about data [ZubofF, 1988]. 

To take advantage of increased information and to continue to be prosperous in the 

information age, our society needs a basic restructuring of education. Currently teachers 

use computers only rarely for instruction purposes and few can exploit the enormous po¬ 

tential offered by interactive technologies [U.S. Congress Office of Technology Assessment, 

1988]. 

This document motivates a restructuring of education inorder to bring information 

technology into the classroom and to look at the teacher’s role in that process. A vehicle 

is proposed to streamline the process: knowledge-based systems. These systems are 

computer programs that use technology, such as artificial intelligence methodology, high¬ 

speed communication networks, and multimedia, to improve people’s ability to handle 

and reason about large amounts of information. 

Advanced technology can only be introduced into education within a rejuvenated 

institutional framework. This document argues that education must be restructured, and 

further, that the introduction of information technology in education is essential for full 

realization of an information-based society. This chapter focuses on societal issues that 

provide the intellectual opportunities and challenges. It describes factors that constrain 

traditional educational practices. Later chapters describe knowledge-based systems and 

elucidate how they might offer a solution. The final chapter returns to the societal issues 

raised here and offers a possible solution for restructuring education. 
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1.2 Challenges to Education 

To achieve a greater use of technology, especially information technology, requires a 

state of mind that allows information to be changed into knowledge for the purpose of 

problem solving [Quinn Patton, 1987]. Educators and others concerned with teaching 

need to develop a sense of how technology impacts the classroom, how the expanded 

nature of communication affects the teaching of basic skills, and how the changing rela¬ 

tionship between people and information impacts educational practices. Education has 

always been critical in humanity’s attempt to handle change and to pass on its knowledge 

from one generation to another. In this age of abundant information, education plays 

an even more critical role as information is created, multiplied, and disseminated in far 

larger quantities. 

Many educational issues are raised: How will information cause changes in schools? 

What role does technology play? How should teachers prepare for the information age? 

Clearly schools need to provide responses. They need to respond to changes brought 

about in society and to provide students with skills that prepare them for life and, in 

the short term, for the workplace. For example, basic skills such as low-level arithmetic, 

bookkeeping, or typing might once have guaranteed a life time of employment. These 

same skills today are not as valuable if the applicant can not also edit, format, “pub¬ 

lish,” and communicate this information electronically. The information age demands 

knowledge which was not available even a single generation ago. 

This document suggests that knowledge-based systems provide a way to bring the 

information age into classrooms. Such systems use a large internal representation of 

knowledge to provide assistance for users accessing and reasoning about knowledge. When 

specifically designed for education, such systems provide interactive environments that 

support individualized learning. Working with knowledge-based systems helps students 

master new cognitive skiUs. Rich in knowledge, such systems can organize and index 

information and support dynamic, context-sensitive selection of material. They provide 
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a vital link in the filtering, modeling, and sharing process whereby massive amounts of 

data and information, available through multimedia and electronic networks, are passed 

on to the next generation. They can also provide behavior approaching that of a human 

engaged in one-on-one tutoring and can be used to teach a new body of knowledge or to 

review one previously presented. 

Knowledge-based systems are distinguished from conventional computer systems, in¬ 

cluding Computer-Aided Instruction (CAI), video, or CD-ROM media, which are struc¬ 

tured for direct access. These latter systems require machine or user to search through 

extensive indices, menus, numbering systems, or list of topics to access information. Infor¬ 

mation may be virtually unlimited, yet the problem becomes one of appropriate selection. 

The average student cannot effectively use the indexing methods and cannot achieve a 

reasonable plan for learning [Suthers, 1989]. 

On the other hand, knowledge-based tutors reason about student actions, discourse, 

or pedagogical goals before providing a new environment, piece of data, or response. 

By using extensive knowledge, these systems employ more complex and fine-grained in¬ 

dexing mechanisms and can surpass the richness of structure available in conventional 

systems. They become an active as well as an interactive medium, responsible for their 

own decisions about how and when to propose new material for a student s consideration. 

One goal of this document is to enlist more people in the process of building such 

systems. Obviously, the availability of more trained participants will increase product ion 

of the systems. Moreover, the very exercise of building them will enhance the use of tech¬ 

nology and knowledge in education. Increased numbers of systems will further improve 

the dialogue between researchers and practitioners, computer scientists and educators, 

and psychologists and domain experts. 
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1.3 Societal Factors that Obstruct Education 

The combined information and communication revolutions contribute to an obfusca¬ 

tion of education. Factors such as rapid technological advances, discontinuous change, 

the knowledge explosion, and information overload provide obstacles to achieving effec¬ 

tive education. Conversely, these same factors provide great educational challenges and 

opportunities for increased human intellect. This section discusses the constraints placed 

on education as a result of these revolutions. 

The amount of information needed by workers and students alike is increasing, and 

the relevance of schooling, especially with outdated curriculum, continues to decrease. 

Complex and abundant information threatens to make skills and knowledge out-dated 

before workers get a chance to use them. Even today, people need to be retrained fre¬ 

quently, and businesses to be restructured regularly, to take advantage of newly acquired 

on-line data and automated facilities. 

The “knowledge explosion” is already here and with it innovations related to infor¬ 

mation storage and access, such as computer networks and multimedia facilities. Even 

in 1962, Fuller [1962] argued that technological change was already beyond the ability of 

most people to comprehend, let alone master. A New York Times advertisement puts it 

this way: 

“Yesterday we called it science fiction. Today, we call it news.” (New York 

Times [1988]). 

Before the 20th century, the rate of change of society and technology was relatively 

slow and not detectable in the average lifetime [Postman & Weingartner, 1969]. Until a 

hundred years ago, a well-educated person could manage throughout his/her life using the 

skills passed down by grandparents. Rapid change, however, is a product of this century. 

In communication, transportation, medicine, and writing, more innovations have emerged 

in the last 50 years than in the whole history of each field. 
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For example, almost the whole history of medicine until 50 years ago is the history 

of the placebo effect [Postman & Weingartner, 1969]. Then 50 years ago antibiotics 

arrived, and more recently, open-heart surgery, and invitro fertilization. Communication 

and media follow in a similar way; few technological innovations existed before 200 years 

ago. Then the printing press came into use about 150 years ago, then the telegraph, 

the photograph, the telephone, rotary press, motion pictures, radio, talking pictures, 

television, and now computers and video. 

Change is not new in our society. What is new today is the rate of change. There 

has been a “qualitative difference in the character of change” [Postman & Weingartner, 

1969]. That rate of change has increased so that pre-established criteria and norms 

become ineffective within a single lifetime. In the past, a person could grow up in a 

town, be educated by local teachers, become employed in a local industry, function as an 

adult, and suffer no dramatic redefinition of values or knowledge during her/his lifetime. 

“Natural cycles,” stability and predictability, were characteristic of the time [Postman & 

Weingartner, 1969]. Today, however, this is frequently impossible. Easy communication, 

e.g., television, air travel, overnight mail, conference calls, and fax services, provide views 

of other possibilities and other working conditions that were not possible in the last 

century. 

This situation has serious repercussions for education. Today’s workers could not have 

learned the information they needed 10 or 20 years ago. Jobs involving text processing, 

robotics, bio-engineering, clerical skills, molecular-biology, and automated controls, to 

name a few, demand skills unknown when the current workers were in school. These jobs 

require life-long learning. Technological advances for specific fields now need to be taught 

by the employer, whether in industry, military, academia, or government. This process 

will probably repeat itself for several generations and with greater rate of change. 

Currently, information is a primary source of industry for the technologically devel¬ 

oped world [Naisbett, 1984]. In fields susceptible to scientific inquiry, information is al¬ 

ready a major technology and a primary industry. Creating, processing, and distributing 
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information “is” the job in professions such as law, engineering, architecture, journalism, 

library science, and medicine [Naisbitt, 1984]. Information has virtually replaced money 

as the new power source in our society. Unlike other resources, information is not subject 

to the law of conservation; it can be created, destroyed, and most importantly, it can be 

synergistic—that is, the whole is usually greater than the sum of its parts. 

Accessing this amount of information, let alone mastering it, can be overwhelming. 

Just indexing it provides a challenge. At least 40,000 scientific journals are estimated to 

roll off presses around the world [Broad, 1987]. About 7,000 articles are written each day, 

and that number is expected to double every 5.5 years [Naisbitt 1984]. The knowledge 

we use, the context in which we learn it, and nearly every human behavior is affected by 

issues of information access and retrieval [Postman & Weingartner, 1969]. 

Uncontrolled and unorganized information is a problem of our society. Users need 

to locate information quickly and accurately and will pay for the privilege of doing so. 

The emphasis in an information society shifts from supply to selection and reliability. 

“Being without [general] computer skills is like wandering around a collection the size of 

the Library of Congress with all the books arranged at random with no Dewey Decimal 

System, no card catalogue, and of course no friendly librarian to serve your information 

needs” [Naisbitt, 1984, pg. 27]. 

The Need for Educational Change. Technology may help manage information over¬ 

load in particular jobs; however, that same technology typically requires more training to 

enable workers just to comprehend the job. As sophisticated communication skills become 

increasingly important, our education system has increasingly turned out graduates with 

weaker reading and writing skills [Carnegie Council, 1979], Teaching people to handle 

complex and abundant information presents difficult problems. Looking for solutions 

in the public elementary/secondary school system seems reasonable because schools are 

primary among those institutions that prepare our species for survival. Or, from another 

perspective, school is the one institution that is "inflicted" on everybody [Postman k 

Weingartner, 1969]. 
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Unfortunately, schools do little to enhance our chances for survival. Schools have been 

characterized as irrelevant [McLuhan, 1973], as shielding children from reality [Weiner, 

1954], as educating for obsolescence [Gardner, 1968], as being based on fear [Holt, 1964], 

and as designed to induce alienation [Goodman, 1970; Kozol, 1967]. 

A brief list of major problems in education includes written and scientific illiteracy, 

limited student involvement in classes, inappropriate curriculum, lack of complexity in 

curricula, teacher unpreparedness, and lack of customized teaching. Current levels of il¬ 

literacy and lack of skills cost business and government billions in welfare and prison costs 

[Naisbitt & Aburden, 1985]. Corporations pay nearly $60 billion per year for education 

[Naisbitt, 1984]. 

How are schools solving these and other problems that result, in part, from the com¬ 

bined revolutions in communication and information? Several federally commissioned 

studies graphically illustrate our current status. 

• . . because of deficits in our public school system, about one-third of our 

youth are ill-educated, ill-employed, and ill-equipped to make their way in American 

society.” (The Carnegie Council of Policy Studies in Higher Education as reported 

in the Washington Post, November 28, 1979.) 

• Most Americans are moving toward “virtual scientific and technological illiteracy” 

(U.S. Department of Education and the National Science Foundation report, 1980 

as reported in U.S. Report, the New York Times, October 23, 1981.) 

There exists a “rising tide of mediocrity” in our education system. ( National Com¬ 

mission on Excellence in Education, in its report A Nation at Risk, April 1983.) 
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• We have raised a generation of scientific illiterates while many other nations have 

moved in the opposite direction. We have effectively committed technological dis¬ 

armament through failure to adopt rigorous standards of science and mathematics 

education. (The National Commission on Excellence in Education, April 1983) 

• The average Japanese student scores 100% better in mathematics at all levels than 

the top 10% of American students [Walberg, 1983]. Swedes, Australians, Britons, 

Canadians, and the French all do upwards of 50% better than U.S. students. The 

Soviets graduate six times as many engineers annually as the U.S. even though the 

populations of the two nations are roughly equal; the Japanese produce about twice 

as many scientists and engineers as the U.S. from about half the population base 

[Walberg, 1983]. 

The generation graduating from high school today is the first generation in American 

history to graduate less skilled than its parents [Naisbitt, 1984]. 

1.4 The Role of Education in an Information Society 

One purpose of education is to train people to function productively in society. But, 

in a society undergoing rapid change, this becomes increasingly difficult. Students learn 

behaviors or skills with potential applicability to their work and then those skills might 

become irrelevant in a short time. 

A fixed curriculum, commonplace in schools today, is no longer acceptable for ed¬ 

ucating people in our complex and changing society. For example, the natural science 

curriculum of the turn of the century is out of date; language/grammar taught from that 

vintage is under siege; and history and social science, as described 20 years ago, is open 

to serious question. 
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Irrelevant curriculum is most apparent in science education. Students might read and 

hear about advances such as quarks, quantum mechanics, test-tube babies, or black holes. 

Yet their basic classroom activities reflect science as it was taught decades ago. New 

technology and instructional innovations have upgraded physics education considerably; 

however, it is said that if Issac Newton (circa 1650) were to return to the physics classroom 

today, he would feel very much at home; indeed, the same topics are taught in the same 

order and accompanied by the same laboratory assignments for the past 75 years. 

Elementary mathematical skills, including addition, subtraction, multiplication, and 

long division are handled effectively in the information age by $5.00 calculators. Some 

schools systems now freely distribute calcultors to all their students. Should basic arith¬ 

metic skills be routinely practiced in the classroom? Obviously, mathematical concepts 

should be taught, but the tools of advanced technology should also be made available so 

that students can focus on the principles and abstract concepts of mathematics, not the 

rote skills. 

Old standards, such as calculus and statistics, are under fire because numerical analy¬ 

sis and statistics computer packages provide more complete solutions than does the closed 

form of calculus. For example, the National Science Foundation has awarded a grant of 

nearly a million dollars for the redesign of the calculus curriculum [Callahan, 1988]. As 

pointed out in this research proposal, the teaching of calculus has remained grounded in 

practices and viewpoints more than a century old despite the large impact of computer 

technology in areas where calculus is used, such as physical as well as biological and social 

sciences. 

Certain new technologies threaten to change the nature of long-standing curriculum 

items. For example, hand-held language machines, on-line spellers, tliesauruses and dic¬ 

tionaries, will alter how foreign languages, language composition, and language grammar 

are taught. 
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The Need for Life-long Learning. Given rapid change and unclear specifications of 

skills, how can schools best prepare students for the future? Primarily by moving away 

from concerns about what to teach and by focusing on how to learn, (see for example 

Toffler [1980] and Papert [1980]). Education should prepare children for life on their 

own as autonomous learners. No one can predict the future; rather education should 

become part of a process that prepares students for lifelong learning—to become lifelong 

consumers of education. 

The Need for Distributed Education. This mandate impacts both on traditional 

classrooms and out-of-the-classroom education. In classroom education, the curriculum 

needs to be updatable, modularly replaceable, and designed so that new topics and 

appropriate teaching strategies can be inserted to teach new curriculum. No curriculum 

should be finite, bounded, and regulated in part by large publishing houses. 

Out-of-the-classroom education has already begun to be distributed to other agents, 

such as families, communities, employers, and media. In fact, non-traditional education 

is growing in industry, military, and the private sector [Perelman, 1987]. For example, 

families within a given school community now spend two to ten times the amount of 

money spent by that school on computer education programs [Wakefield, 1986]. Industry 

has taken responsiblity for education beyond that of their own employees and, in part, as¬ 

sumes the role as educator for future workers. For example, General Electric contributes 

$1 million for Saturday tutoring sessions for secondary students and has put $20 million 

into a program aimed at doubling the number of students from selected inner-city public 

schools entering college by the year 2000 [Teltsch, 1988]. Xerox Corp has donated $5 mil¬ 

lion dollars to establish the Institute for Research on Learning, which researches methods 

by which technology can be applied to education in order to improve industrial produc¬ 

tivity. Beginning in 1986, Exxon has spent at least $1.5 million annually for pre-college 

education [Teltsch, 1988]. 

Current educational institutions cannot work alone. Contributions from industry, 

academics, and government are sorely needed. Existing problems within schools make it 
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all too clear that schools will change or might be eliminated. For instance, one desperate 

school board in Chelsea, Massachusetts, a suburb of Boston, has turned over the daily 

operation and long-range planning of their entire school system for 10 years to the School 

of Education of Boston University [The New York Times, 1988]. 

Skills Needed in an Information Society. How can skills needed in the year 2000 

or beyond be known? How’ will technology redefine future work skills and reshape the 

public’s need to access information? How can students prepare today to work with 

future technology? We do not know the answers to such questions. However, technology 

itself does not define nor obviate skills such as these questions suggest. In some cases, 

technology creates jobs; in others, it eliminates them. For example, robots and intelligent 

control systems require specially trained workers. 

Although machine control systems may eliminate unskilled jobs, these same systems 

increase the demand for highly skilled maintenance and service workers, both creating or 

eliminating jobs at all levels of skills. Attentive and competent operators are essential for 

smooth operation of robots and sophisticated control systems. Information technology 

and office automation, including the advent of word processors and spread sheets, have 

already necessitated mastery of new skills. For instance, some secretaries now handle 

tasks previously reserved for bookkeepers, such as predictive budget planning, or for 

information managers, such as electronic and worldwide network communication. 

Technology does not define jobs; rather, the way that technology is used determines 

which skills will be needed [Clarendon, 1986]. Technology reshapes the nature of the work 

carried out. Some businesses create new jobs by taking advantagp of data unavailable a 

few years ago. For instance, on-line stock quotes, global market prices, and easy access to 

research and library material aU create a need for human skills in accessing and organizing 

information more efficiently. Jobs that previously required rote skills now require more 

evaluative reasoning and more sophisticated judgement. In general, fear of job losses 

stemming from the introduction of new technologies to the workplace have proven ill- 

founded [Clarendon, 1986]. Sophisticated reading, writing, and communication skills are 
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clearly required in an information-based economy whereas lack of such skills seriously 

penalizes a worker s productivity, jeopardizing a nation’s economy. 

As education expands to become a life-long activity, and as community and industry 

contribute to provide training, the student-as-consumer becomes the center of a “school” 

which is no longer a building or a time period, but rather a daily process [Perelman, 1987]. 

Within this context, knowledge-based systems have emerged and offer the potential of 

supporting people in becoming autonomous lifelong learners. 

1.5 The Role of Knowledge-based Tutors in an Information Society 

The information society exacerbates existing education problems. This section pro¬ 

poses solutions to those problems that might be provided by knowledge-based tutors. 

Examples of such tutors are given in Chapter 2. In brief, knowledge-based tutors are 

proposed as platforms upon which students can explore knowledge, ask questions, gener¬ 

ate hypotheses, become more autonomous learners, and test concepts. 

1.5.1 A Classroom Problem 

One educational problem that knowledge-based systems immediately address is the 

limitations placed upon learning by narrative teaching, including lecture-based classes 

which promote inactive and uninvolved students. In classrooms that focus on narrative 

teaching, topics such as arithmetic or writing are taught in an isolated, insulated, and 

disconnected way. In narrative teaching, curriculum is based on stopping and organizing 

a spontaneous process to make it palatable to students. Thus mathematics is taught 

separately from literature and each topic of science is disjoint from every other. Lack of 

student experimentation and involvement contributes to student inactivity and promotes 

discussions of objects and processes as if they were motionless and predictable, providing 

a mechanistic view of the world. For example, memorized equations and preformulated 



data facilitate only rote learning; problem solving devoid of explanations and qualitative 

reasoning results in rote memorization of procedures and formula. This kind of narrative 

teaching establishes and maintains irrelevancy in the classroom and turns children into 

‘ containers” to be “filled” by teachers. The primary role of teachers within this paradigm 

is to try to regulate the way the world enters the student. 

In fact, life flows within a creative and complex process; entities move and impact on 

each other. People who learn from life, rather than from classes, interact with entities 

and become involved in their own learning process. They can exercise native creativity 

and learn to transform processes around them. Many educators have suggested bring¬ 

ing this interactive form of learning into the classroom. It has been called variously 

dialectic teaching [Freire, 1982] or constructivism [Piaget, 1971] (see Section 5.6.6). This 

pedagogical approach encourages students to experiment with and to learn from complex¬ 

ity. It supports students in selecting their own information, creating new environments, 

generating hypotheses, and becoming involved through inquiry or discourse. A dialec¬ 

tic interaction asks students to examine two apparently opposing views and to openly 

inquire, experiment, and test in order to achieve a resolution. 

The alternative approach, or narrative education, according to Freire [1982] persists 

because it is politically effective. In countries where poverty and oppression dominate, this 

form of education seems to ensure that the poor remain passive and unquestioning. Such 

an approach and its embodiment serve to obviate thinking: lectures, reading assignments, 

methods for evaluating “knowledge,” even the physical distance between teacher and pupil 

in the classroom (e.g., one teacher for 30 students). Neither the teacher nor the student 

is involved in authentic thinking, which involves questioning and problem solving, since 

thinking is concerned with reality and takes place mostly in communication. People 

perpetuate narrative teaching according to Friere because they care neither to have the 

world revealed nor to have the poor become powerful. Such a disjoint teaching approach 

makes people less human, because humanity is only defined in terms of intelligent beings 

interacting and transforming reality. 
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1.5.2 One Promise of Knowledge-based Tutors 

Advanced technologies, proposed later in this document, offer a dialectic or construc¬ 

tivist approach to teaching. Admittedly, they are not intended to solve all the problems 

confronting education. For example, the number one health problem in the United States 

is mental illness; more Americans suffer from mental illness than from all other forms of 

illnesses combined [Postman & Weingartner, 1967]. At least 7.5 million American chil¬ 

dren suffer from mental problems severe enough to require treatment—that is 12% of all 

the children under 18. Suicide is the second most common cause of death among adoles¬ 

cents. Also, parental beating is the most common cause of infant mortality in the United 

States. These and other problems can only partially be dealt with through education. 

However, knowledge-based tutors can address problems resulting from narrative edu¬ 

cation and accentuated by the communication and information revolution, such as infor¬ 

mation overload, complex retrieval of knowledge, and working with rapid change. 

The goal of these systems, as described in the rest of this document, is to 

• be nearly as effective as human tutors, which are nearly 200% more effective than 

classroom lecturers [Bloom, 1984]; 

• provide consistent, modifiable, and affordable industrial training; 

• produce a clearer understanding of 

- human reasoning, learning skills, and process models, 

- tutorial strategies and principles; 

- subject area knowledge. 

Progress has been made in each area. Tims, for example, the process of building 

knowledge-based tutors has led to a clearer understanding of human reasoning and learn¬ 

ing skills in several domains. Anderson [1985] described his cognitive studies of geometry, 
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which were made during the two years before he developed the geometry tutor (see Sec¬ 

tion 2.2.1). Woolf described the task analysis that preceded building of the Recovery 

Boiler Tutor ([Woolf et al., 1986], see also Section 2.1.1) and the Physics Tutor ([Woolf 

et al., 1988], see also Section 2.1.3). Building these systems has produced a clearer eluci¬ 

dation of tutorial strategies and an identification of related work in instructional science. 

Such strategies, for example, were researched before the physics tutors were built (Sec¬ 

tion 2.1.3). Acquiring and representing subject area knowledge is a key component of 

building any knowledge-based system. This process, and the representation of subject 

area knowledge, is described in detail in Chapter 3. Many educators and instructional de¬ 

signers have commented that the process of building such systems has produced a clearer 

understanding of the subject area knowledge. 

1.5.3 New Roles for Teachers 

Knowledge-based systems have the potential to redefine the roles of students and 

teachers: students become the explorers and teachers the advisors; students present new 

hypotheses and teachers counsel them; and students define information for the purpose 

of later testing it, while teacher monitor their behavior. This new paradigm advocates 

a view of teaching as a collaborative exploration. Given vast amounts of available infor¬ 

mation, the new role of the teacher will be to explore, along side of the student, distant 

knowledge sources, remote experts, and intelligent knowledge bases. Can knowledge- 

based systems help classroom teachers harness the power made available through the 

knowledge revolution? One goal of this document is to provide guidelines for building 

such systems to test this proposition. 
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1.6 Changes to Education in the Information Age 

The consequences for society are serious if innovations to improve education in the 

information age do not become practical in the next several decades. The change to 

a fully information-based society will occur. The question is: llow many nations and 

what percent of their citizens will participate in that society and how competitive can 

any nation remain as the world becomes more dependent on information? For example, 

unless schools in the United States are radically transformed and become part of the age 

of technology, we will spend decades catching up with more enterprising countries, such 

as Japan [Perelman, 1987]. 

Citizens who cannot pass basic reading and writing proficiency tests at the high- 

school level will remain technologically backward. The basic school design needs to be 

reworked; education will not be improved by more “add-ons,” such as the addition of a 

few computers or videodisks placed in selected (and likely affluent) communities, while 

leaving the basic structure unchanged. 

One goal of this document is to describe the process of building knowledge-based sys¬ 

tems, including the requisite knowledge, resources, personnel, and development stages. 

It is expected that exploration of issues around building these systems will, in part, pre¬ 

pare educators for entry into the information-age classroom. The intention is to provide 

enough material for a reader to make reasoned choices from among a variety of tools 

and methodologies. The document does not promote a specific design approach or im¬ 

plementation architecture. Rather, it prompts educators to learn about knowledge-based 

systems and to begin to cultivate an approach to information which renders information 

useful for problem-solving. 

As Issac Asimov suggested, any powerful innovation will leave its mark on society. The 

computer and information revolutions have already impacted society. They have changed 

how people relate to and think about information. These same revolutions are about to 

change education. As concerned citizens and educators, we need to guide that impact 
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and to manage planning and policy decisions to assure that such changes contribute to 

the health and vitality of our educational system. 

The remainder of this document focuses on the effect of applying knowledge-based 

systems to education. The next chapter describes several knowledge-based systems in 

detail, as examples of how information can be used for problem solving. The next four 

chapters then focus on development of these systems: Chapter Three looks at epistemo- 

logic issues identifying the knowledge to be encoded; Chapter Four presents the steps of 

the implementation processes defining the resources, personnel, and time commitments; 

Chapter Five describes artificial intelligence tools and methodologies; and Chapter Six ex¬ 

amines hardware and software considerations. The seventh and final chapter summarizes 

some theoretical issues and makes long range predictions while returning to questions of 

classroom practices and the educational questions posed in this chapter. 



Chapter 2 

Knowledge-based Tutors 

The last chapter presented a view of the information society and highlighted a number 

of societal problems which exasperate an already bankrupt educational system. Scientific 
* 

illiteracy, limited student involvement, irrelevant curriculum, and narrative teaching, in 

which predominantly lecture-style teaching produces uninvolved and powerless students, 

are all aggravated by the information society. This chapter explores solutions to those 

problems and proposes knowledge-based tutors as a way to establish a partnership among 

students, teachers, and machines. Systems are described that organize and disseminate 

information, teach a variety of subjects, and help students reason about complex issues. 

These systems promote an inquiry interaction in which students are prompted to propose 

hypothetical, explore large knowledge bases, and become critics of their own work. 

The example knowledge-based systems described here are admittedly narrow in scope. 

Many long- and short-term goals remain to be achieved before technology such as that 

described here becomes generally available (see Chapter 7). However, anecdotal evidence 

of systems placed in schools, industry, and military sites suggests that these systems are 

useful, enjoyable, and effective. Some systems have been shown to teach more effectively 

and efficiently, others to engage students in real-world problems, provide complex com¬ 

munication to networked data banks, and still others to move students toward a greater 

sense of competency at an earlier stage. 

19 
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2.1 Three Example Systems 

This section describes three knowledge-based tutors in detail. Several other systems 

are described later in relation to the type of educational problem they address. The 

first three systems include the Recovery Boiler Tutor, which teaches a complex industrial 

process, Caleb, which teaches a second language; and the Physics Tutor, which teaches 

statics and thermodynamics. The first system is finished and now being used in more 

than 60 sites throughout the United States. Because it is complete, it is presented in 

greater detail than the second and third systems, which have been developed only to the 

prototype stage. 

2.1.1 Recovery Boiler Tutor for Teaching Complex Industrial Processes 

The Recovery Boiler Tutor (RBT) [Woolf et al., 1986] trains control room operators 

to operate a Kraft recovery boiler, a type of boiler found in paper mills throughout the 

United States.1 The goal is to challenge students to solve new problems with the boiler 

while monitoring and advising them. The system discriminates between optimal, less 

than optimal, and clearly irrelevant student actions. Students can continue freewheeling 

or purposeful problem-solving behavior while the tutor offers help, hints, explanations, 

and tutoring advice when needed or requested. Students are expected to observe the 

impact of their actions on the simulated boiler and to react before the tutor advises them 

about potential problems. Students can change setpoint controls and request information 

about the boiler while the tutor selectively discusses the optimality of their actions and 

suggests how the student might better focus his/her actions or better utilize the data. 

‘RBT was built by J. H. Jansen Co., Inc., Steam and Power Engineers, Woodinville (Seattle), Wash¬ 

ington and sponsored by The American Paper Institute, a nonprofit trade institution for the pulp, paper, 

and paperboard industry in the United States, Energy Materials Department, 260 Madison Ave., New 

York, NY, 10016. 
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Figure 1 Sectional View of the Recovery Boiler 

The tutor is based on a mathematical model of the boiler and provides an interac¬ 

tive simulation complete with help, hints, explanations, and tutoring customized to the 

individual user (Figures 1 to 6). Students can initiate any of twenty training situations, 

emergencies, or operating conditions, or they can ask that an emergency be chosen for 

them. They can also accidentally trigger an emergency as a result of their actions on the 

boiler. Once an emergency has been initiated, the student is encouraged to adjust meters 

and perform actions on the simulated boiler in order to solve it. 

A sample interaction between the student and tutor is shown in Figure 2.2 An im- 

portant feature to note about the dialogue is that at any point during the simulated 

emergency there are a large number of actions an operator might take and, as the prob- 

■Th. dialogue of Figure 2 was not actually produced in natural language, student input was handled 

through menus, and tutor output ».s produced by cutting text from emergency-specific text files loaded 

when the emergency was invoked. 
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lem worsens, an increasing number of actions that should be taken to correct the operating 

conditions. Thus, an immediate and correct response might require only one action, such 

as to clean the primary air ports by using a rod, but a delayed response might cause the 

situation to worsen and require the addition of auxiliary fuel. 

Students are able to interact with the tutor through a hierarchy of menus, which 

allow them to check for a tube leak, clean the smelt spout, select the alarm board or 

control panel board, or perform other activities (see Figure 1). While the simulation of 

the recovery boiler is running, the operator can view the boiler from many directions and 

can focus on several components, such as the fire bed in Figure 4. The tutor provides 

assistance through visual clues, such as a darkened smelt bed, acoustic clues, ringing 

alarm buzzers, textual help, explanations, and dialogues, such as the one in Figure 2. 

The operator can request up to thirty process parameters on the complete panel board 

(Figure 5), view an alarm board (not shown), change twenty setpoints, and ask questions 

from a menu, such as “What is the problem?”, “How do I get out of it?”, “What caused 

it?”, and “What can I do to prevent it?”3 The operator can request meter readings, 

physical and chemical reports, and dynamic trends of variables. All variables are updated 

in real time (every 1 or 2 seconds). 

In addition to providing information about the explicit variables in the boiler, RBT 

provides tools designed to help students reason about implicit processes in the boiler. One 

such tool is composite meters (left side of Figures 1 and 4 through 6) that record the 

state of the boiler using synthetic measures for safety, emissions, efficiency, and reliability 

of the boiler. The meter readings are calculated from complex mathematical formulae 

that would rarely, if ever, be used by operators themselves to evaluate the boiler. For 

instance, the safety meter is a composition of seven independent parameters, including 

steam pressure, steam flow, steam temperature, feedwater flow, drum water level, firing 

liquor solids, and combustibles in the flue gas. Meter readings allow students to make 

3RBT answers these four questions by cutting text from a file loaded with the specific emergency. The 

tutor does not “reason” about its own knowledge to answer these questions. The tutor does, however, 

have knowledge about the domain as described in [Woolf et al., 1986]. 
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[Note: A partial blackout is in progress and it will lead to deterioration of the combus¬ 

tion process if no action is taken. Meters indicate that C02, S02, and O2 readings are 

abnormally high.] 

[An alarm buzzer sounds.] 

Tutor: What action are you going to take? 

Student: Check smelt spout cooling water. [Student’s action does not result in a change 

in the boiler.] 

Tutor: It looks as though the liquor isn’t burning . . . 

Student: Help. What is going on? [Student requests help.] 

Tutor: A partial blackout is occurring and this causes TRS, CO2, SO2, and O2 to 

increase. Steam flow and steam temperature are dropping. I think part of the bed is not 

burning. 

Student: Rod the primary air ports. [A small improvement in the boiler readings can 

be observed.] 

Tutor: Your action is correct; however, at this time rodding alone is not effective . . . 

Student: Raise the liquor temperature. [Student’s action does not reverse the emergency 

and a new alarm buzzer sounds.] 

Tutor: Rodding the air port apparently was not enough to undo the blackout. 

Student: Increase the oil fuel supply. [Student’s action reverses the emergency.] 

Tutor: That solved the problem alright. Good thinking. 

Analysis of the Problem: You had a partial blackout caused by plugged primary air 

ports and a cold bed. Partial blackout can be effectively treated through a combination 

of rodding the primary air ports and adding more heat. The problem can be avoided by 

keeping the air ports clean. 

Figure 2 Dialogue Between Tutor and Student 
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Figure 3 Tasks Performed on the Boiler 

Figure 4 Focused View of the Fire Bed 
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Figure 5 The Complete Control Panel 

inferences about the effects of their actions on the boiler using characteristics of the 

running boiler. 

Other reasoning tools display trend analyses (Figure 6), and animated graphics such 

as those shown on boiler figures. Trend analyses show how essential process variables 

interact in real time by allowing an operator to select up to ten variables, including 

“liquor” flow, oil flow, and air flow, and to plot each against the others and against time. 

Animated graphics provide realistic and dynamic drawings of several components of the 

boiler, such as steam, fire, smoke, black liquor, and fuel. 

Each student action, be it a setpoint adjustment or a proposed solution, is given an 

accumulated response value, which reflects the operator’s overaU score, how successful 

or unsuccessful his/her actions have been, and whether the actions were performed in 

sequence with other relevant or irrelevant actions.4 

♦These meters are not yet available on 
existing pulp and paper mill control panels. If they prove 

effective as training aids, they could be added to the panels. 
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Figure 6 Trends Selected by the Operator 

The overall operator’s score might be used to sensitize the tutor’s future responses 

to the student’s record. For instance, if the operator has successfully solved a number of 

boiler emergencies, the accumulated value might be used to temper subsequent tutoring 

so that it is less intrusive. Similarly, if a student’s past performance has been poor, the 

accumulated value could be used to activate more aggressive responses from the tutor. 

RBT has been well-received as a training aid in the control rooms of pulp and pa¬ 

per mills throughout the United States.5 Informal evaluation suggests that operators 

enjoy the simulation and handle it with extreme care. They behave as they might in 

actual control of the pulpmill panel, slowly changing parameters, and examining several 

meter readings before moving on to the next action. Both experienced and novice op- 

6RBT was developed on an IBM PC AT (512 KB RAM) with enhanced graphics and 20 MB hard 

disk. It uses a math co-processor, two display screens (one color), and a two-key mouse. The simulation 

was implemented in Fortran and took 321 KB; the tutor was implemented in C and took 100 KB. 
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erators engage in lively use of the system after about a half-hour introduction. When 

several operators interact with the tutor, they sometimes trade “war stories,” advising 

each other about rarely seen situations. In this way, experienced operators frequently be¬ 

come partners with novice operators as they work together to simulate and solve unusual 

problems. 

2.1.2 Caleb for Teaching a Second Language 

Caleb is an intelligent tutoring system for teaching languages [Cunningham, 1986]. It 

is based on a powerful pedagogy called “The Silent Way,” a method developed by Caleb 

Gattegno [1970] which uses nonverbal communication within a controlled environment 

to teach second languages. This directed discovery environment is designed to engage a 

student in an active learning process. 

The tutor teaches Spanish by using graphic representations of Cuisenaire Rods6 to 

generate linguistic situations in which new words, nouns, verbs, and adjectives are given 

meaning by the actions of the rod. For example, a rod might be shown playing various 

roles: as an object to be given or taken by the student, or as an instrument used to 

brush teeth. As each new rod is presented, students theorize about what situation is 

encountered, type in replies to the machine tutor, and revise their hypotheses as needed. 

After the computer presents a visual situation using the rod, the student types a 

phrase to describe the situation in the text window. For example, if a picture of a rod 

appears while the words “una regleta” are displayed, the student types “una regleta,” as 

seen in Figure 7A. If the student theorizes that a newly presented word such as “blanca” 

describes the size of the rod, the new word can be added to the definition. Meanwhile, the 

student will have learned to write the word, spell it, and place it correctly in a sentence 

(Figure 7B). The student will also have classified the word as a descriptor and will have 

invented phrases using it. However, if the student’s assumption is wrong and this word 

is not a descripton, the tutor will correct him/her. Malting and correcting hypotheses is 

central to language learning and many other areas. By refining the meaning of a word, 

the learner approaches mastery of the word by approximation. 

8Originally developed by Gattegno for teaching arithmetic. 
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Figure 7 Caleb: A System for Teaching Second Languages 



20 

Figure 7 shows the student’s interaction with the tutor. In Figure 7A, the tutor 

presents a new piece, a rod located in the center box. The student responds by typing 

the word for the new piece at the cursor. In Figure 7B the student invents a new phrase 

by combining old pieces with the new one. Figure 7C shows how the tutor corrects a 

student who places the adjective before, rather than after, the noun. 

The tutor doesn’t repeat new words over and over as in traditional language training 

classes. Rather, it mentions each new word once, and only once. It provides minimal 

pieces of the new language, a piece being defined as a phoneme, syllable, word or phrase 

(Figure 8). Pieces are aspects of the language that the student can’t invent, such as 

vocabulary and pronunciation. The tutor communicates silently using gestures, edit 

signals, pantomime and the rods, only “speaking” to provide words that the student 

has not yet heard. Icons used to represent these gestures, edit signals, and pantomine 

are presented in Figure 9. These icons are used by the tutor, who plays the role of 

orchestrator and monitor rather than information giver. 

With the introduction of verbs, action becomes possible. For example, the tutor 

prompts the student to ask the tutor to take the rods by indicating a hand taking two 

white rods in the graphics window. The student types the command, “Toma dos regletas 

blancas” (“Take two white rods”), and the tutor removes the rods from the screen. 

The student uses both word-oriented responses typed at the keyboard and action- 

oriented responses performed with the mouse and pictured objects. For example, when 

the tutor gives the command, “Toma dos regletas blancas” (“Take two white rods”), the 

student responds by using the mouse to take two pictured white rods with a grasping- 

hand-shaped cursor. 

The nonverbal communication of a human Silent Way tutor (the gestures, nods, hand 

signals, pantomime) are represented on the computer screen. Students learn to interact 

with the tutor and to recognize, for example, when it is their turn to produce a sentence, 

when the tutor is about to say something, when the tutor expects more than the student 

has produced, when an error needs correcting, or how to get help when they are stuck. 

Errors are indicated as the student tests and revises his/her theories about the lan¬ 

guage. When an error does occur, the student is neither deluged with entire sentences 
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—-EM^ £JECES. POTENTIAL MISCONCFPTIONS 
1 ‘ noun a rod una regletaword order/agreement 

example response: una regleta 

2. adj white blanca word order/agreement 
grey g ris 
striped listada 

dotted punteada 
example response: una regleta blanca 

3. conj and y word order/use in series 
example response: una regleta gris y una regleta blanca 

una regleta gris, una regleta blanca, y una regleta negra 

4. numbers two dos -s word order/agreement 
three tres -s 
one una 

example response: dos regletas blancas . . .y tres regletas negras 

5. noun one blank use in series/agreement 
deletion ones 

example response: una regleta roja y una blanca 
dos regletas blancas y tres negras 

6. verb + take toma word order/agreement 
direct object 

example response: toma una regleta gris 
toma una regleta gris y tres blancas 

7. verb + give me dame word order/pronoun use/agreement/case 
indirect object 
example response: dame una regleta blanca 

dame tres regletas negras y dos blancas 

8. pronoun it, them la, las word order/pronoun use/agreement/case 

example response: toma una regleta blanca y damela. 
toma tres regletas negras v damelas. 

Figure 8 Themes and Pieces in the Spanish Curriculum 
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Label Idea to net across Icon 

go 
wait 

attention 
signal OK 
signal error 
puzzled/ 

repeat 
more 
help 
dictionary 
throw out 
stop 

it is your turn to Co something 
tutor busy, do not worry about 

nothing happening 
tutor about to do something new 
let student know his response is OK 
let student know he has error 
say/do again (unintelligible 

response) 
say/do more (incomplete response) 
help is available 
list of words already covered 
extra stuff, do not need 
save and quit - good bye 

pause 
take 
give 
pacing 

regulator 
frustration 

guage 
error 

correcting 

take a break / stop timer 
icon for mouse action 
icon for mouse action 
slow down or speed up 

student emotional state 

word processing techiniques 

blinking cursor 
Mac watch 

sound 
happy face 
sad face/Mr. Yuk 
puzzled face 

/again sign 
hand pull 
? 
book shape 
Mac trash can 
hand waving bye 

/stop sign 
coffee cup 
grasping hand 
open hand 
speedometer 

thermometer 

highlight 
blinking cursor 
placement arrows 
fade in line 

Figure 9 Communication Icons in Caleb 

nor provided a correct model to imitate. Instead, the precise location of the error is 

pointed out, as in Figure 7C, with underlining so that the student may correct it. The 

goal is to allow students to develop their own sense of correctness or inner criteria for 

the new language. 

The tutor monitors student input for correctness. A fault tolerant parser filters 

“noisy” (inconsistent or incoherent) input so that some errors are ignored and some are 

treated depending upon the situation. This is done to reduce the amount of corrective 

feedback received by the student. When the tutor treats an error, only the piece that 

requires correction (noun, verb, or adjective) is pointed out; secondary pieces or those 

pieces studied earlier are ignored. Students edit their own input. Caleb uses typical 

word-processing techniques such as highlighting to indicate words, syllables, and parts of 

syllables that need correcting. Figure 7C shows how the tutor indicates a misplaced word 

error; the student is then expected to move the highlighted word to the correct place. 

The tutor bases its decisions about correcting student work or the order of presen¬ 

tation on its current goal, e.g., to teach a new piece or old theme (Figure 10). It uses 

five contexts to determine the number of times the student should practice the piece. 
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INTTTO PRACTICE ncreproctce REVEW 

MSPLACEDPECE 

WRONGFECE 

CP 

MISSING PECE °P 

EXTRA PIECE 

SPELLNG 

Cp 
OP 
O.t. 

CP 
op 
O.t. 

cp 
op 
o.t. 

cp 
Op 

_ treat _ treat treat _ treat 

_ treat 
_ treat 

iqnore 
_ treat treat _ treat 

_ treat 
_ treat 

iqnore 

_ treat 
_ treat 

ignore 
_ treat _ treat 

_ treat 
_ ignore 

iqnore 

_ treat 
_ treat 

ignore 

treat _ treat 

ignore 
_ treat 
_ ignore 

iqnore 

_ treat 
_ treat 

Iqnore 
_ treat 

c p • current p.ece 

op -ok)piece 

o l. • OK) theme 

cp 

MISSING ACTION °P 
o.t. 
cp. 

WRONG ACTION 

cp 

EXTRA ACTCN °QP 

_ treat _ treat __ treat _ treat 

__ treat 
__ treat 

ignore 
_ treat treat _ treat 

_ treat 
_ ignore 

iqnore 

_ treat 
— treat 

iqnore 
_ treat _ treat 

Figure 10 Error Therapy for the Silent Tutor 

For example, in the intro context the tutor simply presents the first example on the list 

of examples associated with each piece. When the tutor is in the practice context, the 

example source remains the same, and the tutor moves down the list in a fixed order. In 

the more practice context, examples are chosen randomly from the piece example list. In 

the review context, examples are taken from an example pool of the current theme or of 

old themes. In the error context, examples come from the list associated with the error 

itself. 

2.1.3 Physics Tutor 

Another group of tutors has been built in cooperation with the Exploring System 

Earth (ESE) 7 consortium for teaching elementary physics at the high-school and college 

levels. These tutors are based on interactive simulations that encourage students to 

TESE is a partnership of academic, industrial, and government institutions dedicated to the develop¬ 

ment and dissemination of learning environments to supplement introductory science instruction in lugh 

schools, colleges and universities. The schools include the University of Massachusetts, San Francisco 

State University, and the University of Hawaii; the industries include Hewlett-Packard Corp. 



33 

work with elementary concepts of physics, such as mass, acceleration, and force. The 

goal is to help students generate hypotheses as necessary precursors to expanding their 

own intuitions. We want the simulations to encourage students to “listen to” their own 

scientific intuition and to make their own model of the physical world before the tutor 

advises them about the accuracy of their choices. Cognitive research results help us to 

identify and encode knowledge about how students work in physics. This allows the 

system to track the student’s cognitive processes as he/she develops such hypotheses. 

These tutors have been described in Woolf and Cunningham [1987] and Woolf and Murray 

[1987]. 

Figure 11 shows a simulation for teaching concepts in introductory statics. In this ex¬ 

ample, students are asked to identify forces and torques on the crane boom, or horizontal 

bar, and to use the mouse to construct regions on the screen or force vectors on top of 

the boom and cable. When the boom is in static equilibrium, there will be no net force 

or torque on any part of it. Students are asked to solve both qualitative and quantitative 

word problems about several positions of the boom. For example, they are asked if the 

force on the cable is less than or greater than the force when the angle of beam to wall 

is less than 90°, 90°, or greater than 90°. 

If the student had specified the forces for the crane boom shown in Figure 11A and 

had left out a force vector located at the wall and pointing upwards, there are many 

possible tutorial responses depending on the particular strategy in effect. The machine 

might present an explanation, a hint, provide another problem, or demonstrate that 

the student’s analysis leads to a logical contradiction. Still another response would be to 

withhold explicit feedback concerning the quality of the student’s answer and demonstrate 

the consequence of omitting the “missing” force; i.e., the end of the beam next to the 

wall would crash down. Such a response would show the student how his/her conceptions 

might be in conflict with the observable world, and it might help him/her visualize both 

his/her internal conceptualization and the scientific theory. 

A second physics tutor is designed to improve a student’s intuition about concepts 

such as energy, energy density, entropy, and equilibrium in thermodynamics (see Fig- 

ure 12). It makes use of an over-simplified but instructive simulated world consisting of 
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Figure 11 Statics Tutor: Simulation 
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Figure 12 Thermodynamics Tutor: Simulation 

a two-dimensional array of identical atoms to teacli the second law of thermodynamics.8 

This law is taught at the atomic level [Atkins, 1982] within a rich environment for observ¬ 

ing and testing the principles of equilibrium, entropy, and thermal diffusion. The student 

is shown, and is also able to construct, collections of atoms that can transfer heat to one 

another through random collision. 

Like the statics tutor, the thermodynamics tutor monitors and advises students about 

their activities and provides examples, analogies, or explanations. In this simplified world, 

the atoms have two states: grounded and excited. The excitation energy is transferred to 

neighboring atoms through random “collisions.” Effectively, any excited atom will give its 

high energy to a neighboring atom if that second atom is grounded and has been selected 

by our random number generator routine. Students can specify initial conditions, such 

as which atoms will be excited and which are grounded. They can observe the exchange 

of excitation energy between atoms, and can monitor, via graphs and meters, the flow of 

energy from one part of the universe to another as the system moves toward equilibrium. 

•Thf second law states that heat cannot be absorbed from a reservoir and completely 
converted into 

mechanical work. 
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In this way, several universes can be constructed, each wilh specific areas of excitation. 

For each system, regions can be defined and physical qualities such as energy density 

or entropy can be plotted as functions of time. Variously shaped regions within each 

universe can be analyzed and monitored. Several universes can be constructed, each with 

specific areas of high energy and associated observation regions. For each observation 

region, concepts such as temperature, energy, and energy density, can be plotted against 

each other and against time. Thermodynamic principles can be observed in action; for 

example, heat transfer can be observed through random collision, and entropy can be 

observed as a function of initial system organization. 

At any time the student can modify the temperature of the system, the number of col¬ 

lisions per unit time, and the shape of the observation regions. These parameter changes 

cause changes in the system. All student activities, including questions, responses, and 

requests, are used by the tutor to formulate its next teaching goal and activity. Each 

student action is used by the tutor to reason about whether to show an extreme example 

or a near-miss one, or to give an analogy or ask a question. 

2.2 Additional Examples 

Other knowledge-based tutors, in addition to those described above, have been brought 

into classrooms and training sites. They have been shown to teach more effectively and 

efficiently than traditional lecture-style classes [Anderson & Reiser, 1985; Woolf et al., 

1987], to engage students in real-world problems, to provide complex communication to 

other networked students and data, and to move students toward greater competency at 

an earlier stage in their education [Pollack, 1987]. Each type of result is detailed below. 

A variety of knowledge-based systems are described providing evidence for these results. 

Additional systems are described in Chapter 5 in more detail in connection with a specific 

tool used or issue addressed. Although each system was tested with only a small sample 

and used for limited time, results appear promising. 
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2.2.1 More Effective and Efficient Teaching 

A programming course at Carnegie-Mellon University used an intelligent tutor and 

showed a 43% improvement in test performance at the end of the semester and 30% 

reduction in learning time [Anderson et al., 1984; Anderson et al., 1985; Anderson & 

Reiser, 1985]. Using traditional lectures, students spent about forty hours covering the 

first six lessons of a LISP course; whereas, with the intelligent tutoring system and the 

lectures, students were able to complete the same lessons in only 15 hours. 

SOPHIE, a Sophisticated Instructional Environment for electronic troubleshooting, 

was able to reason about whether a student’s solution was appropriate, given previous 

information [Burton & Brown, 1982]. SOPHIE reasoned about a student’s attempts 

to debug a simulated electrical circuit. The system used a complex simulation of an 

electronic circuit to test hypotheses. For example, it could test a student’s conjecture 

about the cause of a problem and “refuse” to carry out probes that the student proposed 

tests that were unimportant to the solution of the problem (see Section 2.6.2 for more 

discussion of SOPHIE). 

As part of the Athena project at M.I.T., language instruction combines video and 

computers to provide more efficient teaching, by using foreign language as it was in¬ 

tended, i.e., to solve problems connected with real world activities [Pollack, 1987]. For 

example, one program places a student in a simulated walk through Bogota, Columbia 

accompanying a Spanish-speaking scientist. The scientist has lost his memory and is 

trying to discover where he left a vial of virus that imperils Latin America. Success in 

finding the vial is directly related to the student’s understanding of the scientist’s con¬ 

versation and that of other people he/she may encounter. The students ask questions 

in Spanish by typing sentences into the computer. The particular video segment shown 

depends on the instructions and questions typed by the student. The program is based 

on goal-directed language learning and experiential training and encourages students to 

experiment, hypothesize, and employ language to solve real problems faster and earlier 

than they would otherwise in the classroom [Pollack, 1987]. 



2.2.2 Engaging Students in Real-World Problems 

Other knowledge based systems, though not “intelligent” in the sense that they don’t 

employ AI principles, still provide the student with complex real-world problems and 

tools. Students have access to complex scientific data or engage in complex activities 

communicating through an electronic medium. The goal is to improve a student’s rea¬ 

soning ability by placing him/her in relevant and interesting situations. For example, one 

system at Stanford University enables students of French history to become involved in 

social issues and actions of the 17th century [Pollack, 1987]. The program, developed by 

Carolyn Lougee, Professor of French history, uses rich simulations to provide a taste of 

life in the time of Louis XIV. Students play the role of male landowners and attempt to 

increase their wealth and status by making proper investments and by properly choosing 

a woman to court. The program helps them visualize the fact that life during that time 

revolved around the annual harvest. Such an issue rarely comes across in textbooks, but 

in the simulation, students can see that good harvests and clever politics will affect a 

person’s wealth, prestige, and ability to propose marriage. 

Another system provides a rich framework for solution of physics problems [Bork, 

1987]. The simulations and computer-derived questions serve as the basis of an entire 

introductory physics course. This course has been chosen over a traditional lecture-style 

course by every 3 out of 4 students for their first-year physics course at the University 

of California, Irvine [Bork, 1987]. The course provides simulations of physics topics, 

demonstrating, for example, how “thrown” bodies behave under the action of various 

force laws. Students are free to change the intial conditions, constants in the force law, 

or scale of plotting. These simulations are supplemented with associated material that 

gently guides the student to explore different simulated situations. “Bare” simulations 

do not seem to work well with many students, particularly unmotivated ones. 

The course is organized around a set of on-line exams with problems generated at 

random or selected from a pool of stored items. Problems are generated to address the 

difficulty a student might be experiencing. The generator produces a widely varying 

collection of problems of a given type. Multiple choice is never used, and the same test 

is never given twice under any circumstance. If a student has trouble with a problem, a 

detaUed learning aid is presented. Although teachers like to think that students use tests 



39 

Figure 13 Electronic Networks Connecting People with Information 

as a learning experience, few students would agree. However, in evaluative studies of this 

course, 80% to 90% of the students identified the tests as the major source of (though 

perhaps not motivation for) learning. 

2.2.3 Complex Communication Networks 

Electronic networks place students in long-distance communication with other stu¬ 

dents who cooperate on real problems (see Figure 13). Computer networks are an impor¬ 

tant educational technology which enable scholars from around the world to communicate 

with others and to access information from vast computer data banks. Networks provide 

a model of how science can be accomplished in the real world by enabling teams of people 

to share results and to critique the work of others. Such systems do not necessarily use 

Artificial Intelligence, yet provide a powerful complement to systems that do. 

Teams of experts in widely scattered locations already use electronic networks to 

work closely together on similar problems. Papers are co-authored globally, conferences 

planned, and proposals submitted—all without the authors leaving home. At least one 

programming “language” and one book, Common Lisp by Guy Steele [1984], have been 

designed and written entirely on an electronic network in which more than 50 people 

. 



participated. Except for two one-day face-to-face meetings, all t he discussions and designs 

about the Common Lisp language and the book over more than two years were done 

through the computer network. Authors sent files and discussions to each other for editing 

or critique. Each author had access to shared references and clerical and stenographic 

services. Automatic storage of the discussion produced more than 1100 pages which 

proved invaluable in the preparation of the book. 

A national program called KIDNETWORK establishes networks between schools and 

enables children to produce and communicate significant scientific results [Tinker, 1987]. 

Using networked microcomputers, students from nearly 300 high-school classes make 

scientific measurements that are evaluated, synthesized, and reported nationally. One 

system measures acid rain. Each classroom, on a prearranged date, makes external 

measurements of rainfall. Data is directly entered into a microcomputer and then into a 

central data-bank. The results are then tabulated and returned to the students, who can 

view their own and national results through color graphics. In this example, students 

perform a real activity with important scientific results. Their statistics provide better 

data than currently available through the Department of Environmental Health as a 

result of the vast number of sites. This project is sponsored by the National Geographic 

Society and Apple Computer Corporation. 

Electronic networks allow students to have a real audience for their work, namely 

other students from other regions and other countries. Southworth [1988] has set up 

communication between students in Hawaii, California, and the Soviety Union. In one 

exchange, students described their family, schools, and pets. Telecommunication capabil¬ 

ity coupled with local area networks allows students to extend their influence and “voice” 

across significantly large distances. 

Other sources of information are available through networks. Recorded knowledge 

from libraries and museums can be transferred to more universally accessible machine- 

readable data-banks. The contents of central files are retrievable by anyone at any time. 

These files contain data such as daily stock-market closings, or production figures for tin 

in Bolivia. Home computers, including video and acoustical two-way electronic equip¬ 

ment, already place people in contact with research results, translations, and facsimiles 

of current literature such as newspapers, advertisements, and library material. Through 
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computer networks, the isolated student or the small-college student can access the same 

material as that available to students at larger universities. 

2.2.4 Complex Information Management 

Several computer features facilitate a student’s ability to think about complexity. 

One example is hypermedia, which allows students to wander through massive amounts of 

electronically stored information to retrieve complete texts, stories, biographies, graphics, 

animation, sound, movies, motion video, or audio as needed and to arrange them in terms 

of their own priority (Figure 14, also see Section 5.6.2). The complex hypermedia system 

at Brown University shows that words and pictures need not be organized sequentially 

into hierarchies [Yankelovich et al., 1985]. The system, called Intermedia, is used to 

teach literature, biology and other topics. Students retrieve complete text or graphics 

as needed and arrange them on the screen in terms of their own priority. Documents 

have arbitrary beginnings and endings and can be explored rather than read sequentially. 

Such systems provide for non-sequential reading and writing and enable users to browse 

through networks of information, to sample bite-sized pieces of information, and to add 

to this living data-base by inserting their own information and links. Any document can 

be annotated in this way and will contain programmable links to other documents or 

files. Links can lead to pictures, video sequences, or music. In a system produced at 

Harvard University and Boston University, Greek classics are stored on computers along 

with English translations, commentaries, lexicons, and illustrations [Pollack, 1987]. A 

student coming across the name of an unfamiliar character or god in the “Iliad,” for 

instance, can immediately jump to biographical information about the character or to a 

sketch of that character. The system has already been used in teaching part of a course 

at Harvard. Such systems provide virtually instant access to all kinds of data-historical 

papers, museum archives, reference books, business data-bases, and on-line educational 

resources. New documents can be created by chaining existing ones together. Data and 

graphics can be programmed to allow users to set their own course through islands of 

information. A good hypermedia system encourages browsing and hunting, rather than 

reading from beginning to end. Several dozen hypermedia systems can be purchased such 

as HyperCard for the Mac and the Intermedia system for any Unix-based Macintosh. 
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Figure 14 Screens from Intermedia Project [Yankelovich et al., 1985] 



Studies report that using a computer to store and retrieve information influences 

younger students to reason about complexity. For example, the learning and thinking of 

eighth-graders were tested after they wrote a science term-paper in which half the students 

used regular print media as source documents and half used computerized encyclopedias 

which could be searched superficially across several topics by simply entering additional 

key words [Krendl & Fredin, 1984]. The study predicted that students provided with 

computerized information would improve their “horizontal knowledge” (knowing a little 

bit about a wide variety of topics) over those students using only print media. The control 

students, it was suggested, would have higher levels of “vertical knowledge” (knowing a 

great deal about a few topics) since they were more likely to focus in-depth on a few 

topics and to read one complete article before retrieving a new volume from the shelf. 

Suprisingly, students who used the electronic encyclopedia scored significantly higher on 

measures of both horizontal and vertical knowledge. This result is explained in part by the 

availability of printers which recorded electronic encyclopedia entries and allowed st udents 

to read complete entries in depth. The students noted that the electronic encyclopedia 

and the printer eased the process of information gathering and the process of writing the 

paper. 

Other programs allow students to visualize complex phenomena that would be phys¬ 

ically impossible or prohibitively expensive to experience outside of the classroom. A 

series of physics simulations gives students an appreciation of topics such as relativity, 

electromagnetic theory, and waves [Carbrera, 1987]. Students can use simulations to 

“experience” travel in a spaceship at the speed of light or to see the path of electrons 

responding to different forces. 

GUIDON made complex medical knowledge accessible to a medical student [Clancey, 

1982; Clancey, 1986b; Clancey, 1987]. It used a mixed-initiative dialogue and a case- 

method paradigm to tutor information from an expert system. The primary expert, 

system used was MYCIN [Shortliffe, 1974], a rule-based system which contains approxi¬ 

mately 1,000 rules for solving medical problems about infectious disease, diagnosis, and 

therapy. NEOMYCIN, a later version of GUIDON, was based on making some of the 

design changes discussed in Section 4.3.1 [Clancey & Letsinger, 1982]. 
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2.2.5 Individualized Teaching 

Several systems monitor a student’s behavior and advise him/her about possible mis¬ 

conceptions and common errors. Systems at Yale University can “look over the shoulder” 

of a novice student-programmer, somewhat understanding his/her intentions and provid¬ 

ing tutorial advice [Johnson & Soloway, 1984]. The system detects semantic errors in a 

programming assignment and understands between 70% and 80% of all student programs 

written to solve a particular simple problem. Semantic errors are mistakes in the code 

which cause inconsistent behavior of the running program, but are not severe enough 

(i.e., not syntactic errors) to keep the program from working. The running program is 

inconsistent with the student’s intentions. To understand the student’s intentions, the 

system first identifies the goals of a given assignment and then determines how the student 

achieved each goal. Then it determines how the student solved, or failed to solve, each 

of the goals required by the assignment. The system’s identification of bugs is derived 

from a process model of programming. 

In another system, BUGGY replicates the errors individual students make on subtrac¬ 

tion problems. It demonstrates that subtraction errors are explicit, systematic deviations 

from correct procedures [Brown & Burton, 1978], The system was not built to teach, 

rather to train teachers to recognize and classify individual subtraction errors. It encoded 

both correct and incorrect processes of simple arithmetic in a procedural network and 

could automatically produce 330 “bugs” for subtraction. 

BIP was able to individualize its advice to students of elementary programming and 

to provide custom-tailored exercises at a level appropriate to the individual programmer 

[Barr et al„ 1976]. The system inferred the student’s ability by testing him/her, evalu¬ 

ating the written programs, and selecting new exercises consistent with a model of the 

student’s presumed skill. 

WEST provided an individualized coaching environment for a game which ex 

elementary-level arithmetic skiUs (see Figure 15) [Burton & Brown, 1982], The object 
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Figure 15 “How the West Was Won” [Burton & Brown, 1982] 

of the game was to move a player across an electronic gameboard by an amount equal 

to the value of an algebra expression that the student constructed from values produced 

randomly by three dials on the screen. The coach individualized its description of better 

moves and missing skills based on a model of the student’s skills. 

2.3 Knowledge-Based Tutors versus Computer-Aided Instructional Systems 

The knowledge-based systems described above, which utilize Artificial Intelligence 

methodologies, are intended to “understand” what, whom, and how they teach and then 

to tailor their content and method to the individual student. Teaching material does 

not consist of a repertoire of prespecified responses; rather, the system reasons about the 

student, the complexity and size of the information, and then it determines its response. 

In part, a good tutor, whether machine or human, engages a student in communication 

either for the purpose of presenting new material or for clarifying a body of knowledge 

to which the student has already been exposed. To do this effectively, a system must 

probe a student’s knowledge, understand difficult conceptual issues, and know what mis- 
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conceptions might exist. Such systems require artificial intelligence (AI) techniques. In 

this section, we briefly describe these techniques and clarify how these systems can be 

distinquished from traditional CAI, or Computer-Aided Instruction. 

The basic role of a knowledge-based system is to work with a student to solve real 

problems. Ideally, the system should 

• answer hypothetical questions posed by students; 

• recognize a student’s problem-solving methods; 

• comment on the closeness of a match between the student’s solutions and that of 

the expert; 

• provide assistance during a student’s possibly incomplete problem-solving activities; 

and 

• explain an expert’s solutions and inferences. 

In directing technology toward such ends, the first priority must be to build practical 

problem-solving knowledge into the tutor. This priority precedes that of generating fancy 

graphics or natural language discourse. Advances in the interface, feedback, discourse 

management, and curriculum design can follow once problem-solving has become a clear 

focus. 

Knowledge-based tutors are distinguished from typical written, printed, video, and 

even CD-ROM educational media in that the latter are structured for direct access and 

thus require the machine or the user to search through an extensive table of contents, 

index, numbering system, or list of references, indices, numbering systems, etc. [Suthers, 

1989]. In traditionally written, printed, video or CD-ROM media, the amount of infor¬ 

mation may be virtually unlimited, and the problem becomes one of selection rather than 

one of storage. The average student can not effectively use the indexing methods and 

cannot achieve a reasonable plan for learning the information. Similarly, the presentation 

style for existing systems is fixed. Once a sequence of material is created, the emphasis, 

choice of viewpoint, approach, and terminology used are unchangeable by the student. 

Knowledge-based tutors, however, surpass the riclmess of structure available in these 
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other media. They have the potential for dynamic, context sensitive organization and 

selection of material [Suthers, 1989]. They use more complex and fine-grained indexing 

mechanisms and can be active as well as interactive. 

The most salient structured difference between knowledge-based systems and more 

traditional teaching machines is that the latter encode an expert’s decision about how 

to respond to a student, whereas AI systems typically encode the reasoning that allowed 

the teacher or domain expert to make the decisions in the first place. Thus an Al system 

encodes knowledge which allows it to dynamically generate new decisions about problem¬ 

solving or pedagogy; it reasons about its decision process rather than using predefined 

actions. Al-based tutors contains knowledge about how and when to use domain, student, 

or pedagogical models, but do not contain the explicit decision within its data-base. 

One impact of the shift from CAI to knowledge-based systems lies in what is trans¬ 

ferred from expert to system [Wenger, 1987].9 While traditional systems encode actions 

and the resulting system displays those actions, AI workers transfer knowledge about 

how to teach and the resulting system generates exercises, responses, and examples— 

dynamically adapting its actions based on the encoded knowledge. 

Recent systems can make decisions not anticipated by experts, and, like other artificial 

intelligence systems, may differ greatly from their human counterparts and may eventually 

outperform them in certain respects [Wenger, 1987]. After all, books have outperformed 

people for centuries within the narrow perspective of their ability to record information 

precisely and permanently. The ideal intelligent tutoring system has the potential to 

perform entirely autonomous reasoning. For example, such systems might engage the 

student in a discussion to find out what he/she knows and how he/she reasons about that 

knowledge. The ideal tutor does not appear to be impossible to create. Limitations stem 

from the state of the art in artificial intelligence and holes in our own knowledge about 

teaching, learning and communication (see Chapter 7), not from any basic limitations in 

the conceptual design. 

9 At this point only a one-way transfer (from human expert to system) is being considered. Sometime 

in the future we might begin to train teachers and domain experts to learn about the wealth of knowledge 

in an intelligent tutoring system. 



48 

An ideal tutor, whether human or machine, should understand both the knowledge to 

be taught and how a student might learn that knowledge. Traditional Computer-Aided 

Instruction (CAI) systems do not reason about the student or the domain. Typically, 

they cannot solve the problem given to the student; rather, they check a student’s answer 

against a stored response and produce a “canned” statement. Some authors argue that 

there is a continuum of activities, such that adding “intelligence” to an existing CAI 

system can make it intelligent. This is not true as the following section indicates. 

2.3.1 Comparing Two Instructional Systems 

Compare an imaginary CAI and a knowledge-based system designed to teach about 

oceanography. The goal might be to reproduce a learner’s visual experience and oppor¬ 

tunity for scientific experimentation provided by a visit to the ocean itself. Obviously, a 

visitor face-to-face with the ocean is at a distinct advantage over either a student using 

one or the other system; the visitor can jump waves, experience the turbulence of the 

water, and run in the sand. Neither system will reproduce the sensations and tactile 

experiences of a day at the beach. However, the ideal system should enable students 

to simulate and surpass some of the learning opportunities, for example, to conrl water, 

wind, and temperature in order to test dependent parameters, such as sand and waves, 

and to observe how independent parameters affect dependent ones. 

A knowledge-based system might allow the student to vary and control multiple wave 

patterns superimposed on a video sequence of waves. By using a video disk, it might 

make the motion of the wave and the contours of the coastline available for the student 

to test. Computer graphics defined by natural language might enable the student to 

propose hypothetical wave configurations and complex interactions between the water 

and the sand. Meanwhile the system might observe the student’s interactions, recognize 

mistakes in his/her responses, and suggest repairs to possible misconceptions. 

Traditional CAI systems offer less interaction and less reasoned intervention because 

they typically present static scenes, be it ocean or beach, and preprogrammed facts and 

formulas about the relationship between parameters, such as the effect of temperature 

and wind on waves. They typically ask questions and expect precise and inflexible an¬ 

swers. Even with interactive video or speech synthesis, a traditional CAI system does 
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not respond to the idiosyncracies of the student, allowing him/her to define scenarios, 

generate hypotheses, or to engage in dialogue. Such systems typically present a narrative 

or a sequence of videos using pre-established data and do not allow a student to reason 

about the unpredictability and changeability of a situation. 

2.3.2 The Technology Behind Knowledge-based Tutors and CAI systems 

Because intelligent tutors make inferences and ask questions before generating their 

own response, they are not “mechanistic” in the sense of CAI systems. Rather, they 

represent a variety of information and reason about that informat ion. Figure 16 provides a 

simple comparison at the structural level between knowledge-based tutors and traditional 

computer-aided instructional systems (adapted from Wolfgram et al. [1987]). Obviously 

only a stereotypical view of each system is presented, especially since many of the features 

listed for knowledge-based tutors are not yet fully developed. 

CAI systems often require huge static data-bases and define planned excursions through 

such a curriculum. Canned comments or stored tasks are often explicitly encoded and 

triggered by explicitly anticipated student answers. They respond the same way, whether 

the student is knowledgeable or confused. Simulated environments, such as microworlds, 

might allow a variety of student behavior, permitting student experimentation and explo¬ 

ration. However, such simulations are often unmonitored and thus not very effective as 

teachers or as vehicles for knowledge transfer to other domains. At worst, CAI systems 

are “electronic page turners.” At best, they are precursors of knowledge-based tutors. 

Because they do not recognize anything beyond the “expected” student action, their 

repertoire of responses is often rigid, shortsighted, and tedious. Two things are clearU 

missing: knowledge about the student’s ability and the ability to enact good, flexible 

pedagogy. 

CAI systems are similar to books in that ideas and concepts acquired from experts are 

pre-organized by the author and written down explicitly for presentation to the student 

[Wenger, 1987]. Like books, they cannot dynamically access an expert’s knowledge about 

the domain, nor do they “know” how to teach independent of that explicit data. For 

instance, they cannot answer unexpected questions from students, draw inferences about 

a student’s knowledge, nor dynamically modify their own presentations. 
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KNOWLEDGE-BASED TUTORS COMPUTER-AIDED INSTRUCTION 

Data Characteristics 

Uncertain and incomplete data Exact and factual data 

Dynamic and static variables Static variables 

Reasoning 

Heuristic Mechanistic, monotonic 

Inferencing 

Predictive Simple if-then statements 

Dynamic Static 

Bottom-up/data driven Control driven 

Multiple solutions Single solution 

Symbolic manipulation Numeric and alphabetic 

manipulation 

Uncertain reasoning Yes/No decisions 

Extensive search techniques Little search 

User Interface 

(Possible) Natural language dialogue Menu/Command interface/Multiple 

choice 

Quantitative and qualitative Quantitative discussion 

discussion 

Maintained by knowledge engineer Maintained by programmer 

Figure 16 Features Behind Knowledge-Based Tutors and CAI Systems 
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Researchers in CAI, like authors of good textbooks, produce new course material by 

placing new topics within a predetermined framework. They transfer branching decisions 

and actions from one domain to another. Under such a paradigm, software tools such 

as authoring systems are appropriate both to build and to use. There have been good 

CAI solutions which introduced sophisticated graphics (including PLATO [Bitzer, 1961] 

and TICCET, [MITRE, 1972]), employed a variety of interface mechanisms (e g., touch- 

sensitive screens), and taught a variety of domains (e.g., elementary arithmetic, reading 

readiness, chemistry, history, and language). 

Jaime Carbonell built SCHOLAR in the late 1960s, thus making the first application 

of AI technology to teaching systems [Carbonell, 1982]. His system is considered the 

forerunner of modern knowledge-based tutors. It distinguished between knowledge of 

the subject matter and knowledge of teaching (see Section 5.2.1) and reasoned about 

the student, responded opportunistically, and, for the first time, was able to parsed and 

answered student questions. It provided the first example of a “mixed-initiative dialogue” 

in which either the student or machine could initiate the interaction. 

Solid results have accumulated since the late 1960s when researchers were content to 

build illustrations that showed ideas at work on toy domains, such as geography. Slowly 

these ideas were shown to be powerful enough to handle practical teaching problems 

(e.g., tutors in electronics [Brown et al., 1982] and Pascal Programming [Johnson & 

Soloway, 1985]). Now researchers are building systems in part as experiments to answer 

truly difficult questions about cognitive processes and learning (e.g., Anderson’s LISP 

and Geometry tutors were built in part to test his cognitive theory of learning, ACT 

[Anderson et al., 1984; Anderson et al., 1985], see Section 2.2.1 above). 

2.4 Components of a Knowledge-based Tutor 

Figure 17 illustrates the components typically associated with a knowledge-based 

tutor: domain model (or expert knowledge), student model (also including misconception 

knowledge), tutoring model (with teaching strategies), and the environment and interface 

(providing an envelope through which the student interacts with the system). These 

models interact very closely with each other in a working system, as wiU be described in 
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INTERFACE 

Thp face' put forth to the student — 

e q . textual, visual, simulation, videodisk 
ENVIRONMENT 

The envelope of tools through which a student 

Interacts with the system— 

e g, graphs, meters, dials, reports 

Student Model 

Representation of the student's 

knowledge-- eg , Is coherent, fragmentary, 

Interpretable, consistent 

Teaching Module 

How to advise this 

particular student-- 

e g, frequency of 

Interuptions, topics 

to discuss, examples 

or analogies to 

present 

Domain Model 

Expert knowledge of the domain— 

e g, how are concepts related, 

problems solved, data analyzed, and 

situations diagnosed 

Figure 17 Components of a Tutoring System 



r,3 

the next three chapters. This section serves to introduce them and to describe only the 

environment and interface models. The other models (student, domain, and tutoring) are 

described in Chapters 3, 4 and 5 along with a treatment of some Artificial Intelligence 

techniques and knowledge engineering methodologies needed for their implementation. 

Interface. The interface of a knowledge-based system provides the “face” that is put 

forward to the student. It provides the visual, acoustical, or textual mode of the tools 

that will be used in dialogue with the student. It instantiates the conversation—whether 

providing help, assistance, coaching, or tutoring. 

For example, the primary interface mode in SOPHIE [Brown, Burton & de Kleer, 

1982] was textual conversations (see Section 5.6.4 ). The nature of the communication was 

reactive tutoring or challenging the student through hypothesis evaluation. Providing 

a coaching interface for an experiment in electronics implies that the tutor provides tools 

for the student to perform the measurements in electronics. This was accomplished in 

SOPHIE through a mathematics simulation of an electronic circuit. It also implies that 

the system makes some assumptions about the student’s presumed knowledge and informs 

the interface, which can then provide coaching advice as needed. 

A variety of interface types are available to the developer of knowledge-based sys¬ 

tems. These are mentioned here briefly as an indication of the diverse ways in which a 

system might communicate with the student. Interface types can be used separately or 

in conjunction with other interfaces, e.g., a combined simulation and tutor. 

Types of interfaces are as follow: 

• Modeling 

• Simulation 

• Reaction 

• Tutoring 

• Coaching 

Interface considerations can be divided into two categories: the mode and nature of the 

communication [Burton, 1987]. Under mode of communication, hardware-related issues, 



such as the use of video disk, speech understanding, or natural language are considered 

(see Section 5.6). Under the nature of the communication, tutoring and coaching might 

be discussed. 

The Environment. The environment provides tools and operators that the student 

uses while solving a problem or engaging in learning activities. For example, the student 

activity supported in SOPHIE was to find a fault in a piece of electronic equipment 

(see Sections 5.2.2 and 5.6.4) [Brown et al., 1982]. The primary tools available were 

textual the student asked for measurements and hypothesized faults. The environment 

that supported these activities provided a simulation of the circuit, a limited natural 

language process, and routines to set-up contexts, keep histories, etc. The environment 

does not necessarily include forms of help that one would classify as intelligent. 

As stated above, all components of a tutoring system interact strongly with each other. 

This is especially true for the environment. For example, if a system asks a student to 

record measurements for an experiment in optics, the interface certainly should supply 

measuring devices so the student may make such measurements. Environments provide 

a wide variety of tools and activities. Several are described here. 

The Historian’s Microworld provides students with a chance to discover what a his¬ 

torian does [Copeland, 1984]. The system is used by teams of students who are trying to 

find answers to perplexing historical situations. The teams brainstorm to arrive at hy¬ 

potheses for historical action based on data provided by the computer based on key-word 

analysis students’ questions. They use data from the system to reject, refine, or expand 

possible hypotheses. Ultimately, they “publish” their results so each team can see what 

data was used and what conclusions were arrived at. Below is a typical example provided 

by Burton [1987] and paraphrased from Copeland [1984]: 



From 1565 until 1769, the “Manilla Gallean,” laden with rich cargo, sailed 

from Manilla to Acapulco. Prevailing winds forced the ship to sail north, con¬ 

tact the California coast north of San Francisco and then sail down the coast 

to Acapulco. Because of the great distance traveled and the poor weather 

conditions, this nine-month voyage was very difficult. For more than 200 

years, with passengers and crew weak or dying from starvation and vitamin 

deficiency, the galleons on this route did not stop but sailed past what is today 

one of the most fertile and inviting coastlines in the world. Why? 

In this case, teams of students suggested reasons such as fog, hostile natives, and 

rocky coast. 

Another example environment is provided in Anderson’s Geometry tutor [Anderson 

et al., 1985; Anderson et al., 1981], It makes explicit several properties of geometry (see 

Figure 18) and enables a student to visualize three features of the problem-solving domain 

that are left implicit in traditional textbooks: graphic effects the figure that the proof is 

referencing, the tree-structured nature of geometric proof; and movement between two 

possible problem-solving strategies, forward and backward reasoning. 

Traditional text-bound geometry problem-solving treats theorems as verbal and log¬ 

ical chains from premise to conclusion. Typically, the proof is non-graphic, involving a 

sequence of textual statements starting with premises and using theorems and applica¬ 

tions of modus ponens on previous statements. Traditionally, graphic effects of the proof 

are “left up to the reader”. This approach hides the fact that the goal of a geometry 

proof is to act on and transform a geometric figure. Geometric reasoning is often not 

a simple linear logical chain, but rather a bushy tree, including possible, and frequently 

not optimal logical paths. Students sometimes work from the goal backwards and at 

other times from the premises forward. These alternative paths are clearly articulated in 

Anderson’s geometry tutor. 

In the Smithtown Economics Tutor [Sliute & Bonar, 1986] (Figure 19), students are 

provided with scientific inquiry tools that enable them to collect, organize, and under¬ 

stand data in the domain of economics. These data should allow the student to explicitly 

state such laws as those of supply and demand. The environment allows a student to set 
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Figure 18 The Geometry Tutor [Anderson et al., 1985] 
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Figure 19 The Economics Tutor [Shute & Bonar, 1986] 

values such as population and income, to choose goods and services, such as tea, coffee, 

or creamola, and to make predictions about changes in the entities such as prices, supply, 

and demand as a result of changes in such entities as the available quantity or number of 

outlets. 

The coach suggests” strategies that enable the student to be more effective in his/her 

exploration of the factors which influence economic theory. The coach evaluates the 

number and amount of variables modified and compares them with other variables. The 

student might have generalized a concept across goods by changing the commodity, e.g., 

move from coffee to tea, and keeping the same independent variables, e.g., population and 

number of outlets. The student explicitly expresses his/her hypothesis and then rejects 

or modifies it on the basis of additional data. 

Several themes are apparent in the design of knowledge-based tutoring environments 

[Burton, 1987]. One is that, in most cases, development of the environment resulted 

from extensive research into the cognitive nature of the task (see, for example, Anderson 

[1981] for research leading up to the geometry tutor, and Woolf [1986] for research into 

the knowledge of a boiler operator). A second theme is that the environment was based 

on isolation of key “tools” required for attaining expertise in the domain. Thus, the 

economics tutor fosters experimentation and scientific inquiry and the geometry tutor, 



through visualization, fosters both forward and backward reasoning in the development of 

geometry proofs. Thus, each environment would be a valuable aid to motivated learning, 

even without help from any on-line tutor. A third theme is fidelity to the world that is 

modeled [Hollan et al., 1984]. Fidelity is a measure of how closely the simulated environ¬ 

ment matches the real world. High fidelity means the situation is almost indistinguishable 

from the actual environment. 

2.5 Summary and Discussion 

This chapter presented several knowledge-based tutors as examples of systems that 

addressed some educational issues presented in Chapter 1, including scientific illiteracy, 

limited student involvement in classes, inability of education to respond to rapid change, 

and the need for the acquisition and organization of complex data. Preliminary tests with 

knowledge-based tutors reveal that students find them effective and enjoyable. They make 

teaching more efficient, are able to relate to real-world problems, allow more relevance in 

the curriculum, and show some hope for improving science literacy. Clearly a lot remains 

to be done. These systems do not provide a panacea for education, even if they were 

easy to build and generally available, which they are not. Clearly, education has not been 

turned upside down. However, results are promising and when methodologies and tools 

such as described in Chapters 3, 4 and 5 become plentiful and inexpensive, evaluation 

of these systems will become possible to either support or refute the claims being made 

here. The distinction between knowledge-based tutors and computer-aided instructional 

systems was also described in terms of the information, control, and knowledge needed 

for each system. The flexibility of each system was compared. 

The next few chapters describe epistemological issues and artificial intelligence (AI) 

principles underlying the building of such systems. These chapters might require more 

technical background; however, new terms are explained at length and references for 

both AI concepts and knowledge-based systems techniques are given at the end of the 

document. Case studies are included to illustrate AI principles in use. 



Chapter 3 

Epistemological Issues 

3.1 Introduction 

In order that computers be of real benefit to education, they should solve real prob¬ 

lems, comment upon a student’s abilty to solve problems, and respond to student in¬ 

quiries. This requires a large amount of knowledge which is difficult both to acquire 

and to encode in a machine. Issues of assessment, design, and implementation need to 

be addressed. This chapter describes how to represent the needed knowledge. It pro¬ 

vides models of reasoning for using tutoring, domain, and cognitive knowledge along 

with examples of knowledge acquisition techniques for encoding concepts, procedures, 

and problem-solving heuristics in the subject of physics. 

A structural description of a knowledge acquisition interviewing process is presented, 

based on the need to listen to how domain and teaching experts actually help students to 

understand difficult concepts. A framework is presented which constrains the acquisition 

processes and provides a structural design for acquiring the knowledge. This work con¬ 

tributes toward the ultimate goal of developing an authoring system for knowledge-based 

tutoring systems. 

The next chapter shifts the focus to describe processes and stages involved in actu¬ 

ally building the systems. Chapter 5 describes tools and methodologies that might be 

used for implementing the system. These three chapters are distinguished by whether 

the reader is interested in evaluating the knowledge needed (epistemological issues), has 

already accumulated the knowledge and needs an organizational plan (development is- 
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sues), or has begun to use tools and methodologies and is exploring alternative designs 

(implementation issues). 

3.2 Knowledge Engineering 

At the beginning and for some time into development of a knowledge-based tutoring 

system, knowledge engineering is the cornerstone of the process. Knowledge engineering 

involves identifying and encoding that knowledge used by the machine to reason the sub¬ 

ject matter and to make inferences. It involves extracting, documentating, and analyzing 

knowledge as well as determining howthat knowledge will be encoded in the system. This 

process includes several other activities, such as designing and analyzing code, and orga¬ 

nizing and coordinating large numbers of people who need to transfer their knowledge in 

a consistent and organized manner. Obviously then the knowledge engineer, who directs 

this process, needs to have experience in working with people. He/she should be a good 

student as well as a talented teacher in order to first understand the domain and then 

transmit it. Such multifaceted peple are difficult tofind and hold onto in a long-term 

project. Thus, we propose that four specialists be enlisted to support the knowledge 

engineer and share the workload (see Chapter 4). The tasks of these four specialists 

are delineated in the next chapter. In addition, we suggest that the information to be 

encoded by these specialists be clearly identified adn teased out to make the process of 

knowledge engineering more clearly defined. The remainder of this chapter offers such 

an identification and clarification of the requisite knowledge. 

A framework for extracting knowledge is suggested in Section 3.3. Primitives are 

identified along with specific information that would then be tailored for inclusion in 

each tutor module. This chapter explicitly enumerates questions to ask and provides 

some clarification of the expected answers. The next two chapters clarify how to encode 

the resultant information. Each primitive identifies information for a particular module of 

the system. For example, the student model might contain data about how students learn 
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Domain Primitives 

Information 

breakdown: 

Information 

assumed known: 

Information type: 

Generate map of the (sub)topics of the domain. 

Identify topics that students are assumed to know. 

Fact, process, system, descriptive, or prescriptive; 

Relationship 

between primitives: 

Things to do: 

first principles or meta-knowledge. 

Prerequisite, generalization, specialization, or analogy 

of each primitive. 

Things students can manipulate in the environment 

Heuristics: 
(e.g., moving a fulcrum, redistributing mass). 

Rules of thumb about solving a problem in the domain 

(e.g., examine an extreme case; look at the simplest 

case, break problem into parts . . .). 

Domain examples: 

Tutoring Primitives 

Easy (“start-up”) examples, standard textbook 

(“reference”) examples, counter-examples; strange, 

hard-to-grasp anomalies; general fill-in-the-blanks 

template-like examples. 

Identify the qualitative (e.g., What 

students can ask: is the direction of movement of the particle?) and 

quantitative (e.g., What is the mass of the 

object?) questions. Indicate the complexity of the question— 

number of variables, math level, and relevance to the 

Questions 

tutor can ask: 

domain (e.g., irrelevant). 

Same as “Questions students can ask” above, but for the tutoring system. 

Tutor responses (e.g., definitions, descriptions, hints, 

Instructional 

design: 

congratulations). 

Teach descriptive knowledge and explicit procedures for 

interpreting concepts. 

Teach self-diagnosis and self-correction. 

Teach how to interpret knowledge in a variety of special 

cases. 

Figure 20 Knowledge Engineering Tasks, adapted from Rissland and 

Schultz [1987] 
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Cognitive Primitives 

Underlying 

student view: 

Problem-solving 

knowledge: 

Ideal behavior: 

Knowledge state: 

Indicate how the student might view the domain (e.g, as fragmentary 
or coherent, interpretable, etc.). 

Indicate whether novices can process this knowledge on their 

own or do they typically ask for definitional knowledge. 

Indicate steps students should take for each task. 

Describe various student states to make 

Self-diagnosis: 

tutoring response decisions (e.g., confused, bored, 

knowledgeable). 

Do students recognize their own cognitive difficulties 

in this domain or are they typically insecure or uncertain about how to 

apply knowledge? 

Common errors and 

misconceptions: 

Identify errors and ways to diagnose them. 

Identify misconceptions and ways to correct them. 

Interactive 

graphics: 

Screen elements 

Communication Primitives 

List system components that the student can manipulate, such as 

simulations or animations. 

Describe icons, menus, windows available to student, mouse 

Input/output 

conventions 

activations, tools available (e.g., clocks, 

calculators, help tools, dictionaries). 

Describe methods used for gaining input from student and output 

from system 

Figure 21 Knowledge Engineering Tasks, Part 2 
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Figure 22 Models of Reasoning in an Intelligent Tutoring System (after 

Clancey[l987]) 

and differences between novice and expert problem solvers. Building the student model 

might require that a system make assumptions about the student, hold beliefs about 

his/her knowledge, and impart propaedeutic principles (the knowledge needed before 

learning about a domain, such as learning vector analysis in order to study mechanics) 

[Halff, 1988]. 

3.3 Tutoring as Qualitative Modeling 

Clancey has suggested that intelligence is a process of modeling reasoning [Clancey, 

1986]. This implies that building an intelligent tutor requires modeling reasoning about 

a domain, about learning, and about the act of tutoring. Figure 22 shows some of the 

requisite models. To build each model requires probing the relevant experts with specially 
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designed questions. In this section, we focus on how to elicit that knowledge for three of 

these models, cognitive processes, domain (in this case science), and tutoring knowledge. 

We describe techniques used to build the tutors described in Section 1.1.3 and indicate 

how successful we have or have not been working with experts to transfer their knowledge. 

As an illustration of the kind of primitive knowledge we try to elicit from research 

literature and experts, we list some components of cognitive processes that we hope to 

acquire: 

Student’s Underlying Knowledge: 

Is the domain seen by the student as fragmentary, coherent, or interpretable? 

Is the student confused, bored, or knowledgeable? 

Do novices ask for definitional information or can they process 

the task using their own knowledge? 

Heuristics used by a Student: 

Rules of thumb used to solve problems in the domain 

(e.g., examine an extreme case; look at a simple case). 

Ideal Behavior: 

Steps taken by an expert to solve each problem for each task. 

Self-diagnosis: 

Does student recognize his/her cognitive difficulties? 

Is student insecure or uncertain about how to apply knowledge? 

Common Errors and Misconceptions: 

Identify ways to correct misconceptions. 

Identify errors and ways to diagnose them. 

Identify misconceptions and ways to tease misconceptions apart. 

For instance, a knowledge-based tutor ought to be able to infer goals and intentions 

of the student from observed behavior. For tutoring especially, it is important that an 

evolving “mental state” be made explicit during the course of the dialogue. Thus a rep¬ 

resentation of the student should contain not only explicit recorded knowledge, but also 

implicitly updated knowledge as the dialogue continues [Kass & Finin, 1987]. This kind 

of dynamic modeling might be less necessary in other intelligent computer systems, such 

as an expert system. 
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AI modeling methodology allows us to identify primitives for reasoning about tutoring 

and student knowledge (see also Chapter 5). Control and knowledge structures need to 

be made explicit, reusable and generative [Clancey, 1987]. They need to be general 

at the domain level; i.e., structures should be usable for several tutors and transferable 

to new domains. They need to be generative in that they can show generality at the 

case level; i.e., procedures can be used again and again to solve new problems in a single 

domain. The resulting mechanisms should also promote experimentation in that 

continued testing should allow the author to learn more about the applicability of an 

individual model and about how to fine-tune its reasoning mechanism. 

The models we describe below fit into a framework which begins with primitive in¬ 

formation extracted from experts. For each model, we identify questions whose answers 

fit specific areas of our system s knowledge or control mechanism. In this section we 

enumerate those questions and provide some clarification of the expected answers. In 

later chapters, we indicate how and where we stored the answers (see Chapter 5). 

The description in this section is concerned with physics teachers and our attempt to 

encode their knowledge about teaching and learning physics. The operational knowledge 

of the field includes many principles, rules, and formulas used to analyze problems in 

physics. However, these principles do not completely define the problem-solving knowl¬ 

edge in the domain. Rather, new conceptual issues need to be addressed such as how to 

classify problems by their deep structure and which principles apply and when. Some ex¬ 

perts, when questioned about how they solve statics problems for instance, regurgitated 

formulas. Yet, we need to uncover the rules behind the formulas. We need informa¬ 

tion about how to identify variables, how to choose equations, and how to reason about 

situations. 

We suggest that modeling the problem-solving processes requires focusing on how 

and why a scientist asks questions, proposes experiments, or uses heuristics solving prob¬ 

lems. Acquiring such knowledge is not easy. For example, in building the statics and 

thermodynamics tutors (Section 2.1.3) we worked with cognitive scientists, physicists, as- 



tronomers, and potential users of the system, such as high-school and college teachers, for 

more than 18 months. We produced over 100 pages describing processes, screen designs 

(including help activities about physics), and cognitive studies (identifying educational 

goals, potential errors, and misconceptions) before any code was built [Rappleyea, 1987], 

3.3.1 Modeling Cognitive Processes 

We prefer that cognitive research results from previous studies be made available to us 

before we design intelligent tutors. These studies require years of effort from psychologists 

and domain experts. They provide information about how students learn in the domain, 

the differences between novice and expert problem-solvers, and key parameters of the 

student model (e.g., Anderson [1981] and Woolf et al. [1986]). For example, before the 

statics tutor (Section 2.1.3) was built, we perused more than a decade of research into 

physics misconceptions in mechanics (e.g., McDermott [1984] and Clement [1982]). This 

knowledge was reviewed and some of it included in the tutor described in this section. 

Identifying Heuristics. Cognitive knowledge is not easily identified, nor quickly pro¬ 

vided by experts. For instance, we asked physics experts to provide heuristics for solving 

physics problems. Heuristics are not the actual steps used for solving problems.1 Rather, 

heuristics are the “rules of thumb” that any person, expert or novice, uses to approach a 

problem. In the simulation environment, heuristics include “first try a simpler version” 

and “relate to your everyday experience.” Such rules are not guaranteed to work; they are 

only intended to reduce the search for a correct solution. For a novice the search might 

include testing a vast number of equations. For an expert, heuristics and clustering of 

problem types reduces the number of viable equations. 

'For example, to solve a typical problem in statics, one identifies forces acting in the situation, rep¬ 

resents these in vector diagrams, writes algebraic expressions based on these diagrams and the physics 

principles (e.g., vector sums of the forces and the torques are each zero), and then solves the equations 

for the unknown quantities. 



fi7 

To facilitate teaching these heuristics, the machine tutors allow the learner to: 

1. inspect systems in action; 

2. manipulate parameters, such as size of universe, density of excited 

states vs. those at ground state; 

3. answer qualitative questions using 

(a) prediction 

(b) comparison 

(c) modification; 

4. focus on one topic at a time, figure out which parameters to change and what to 

look for; 

5. incrementally change the system to compare cases that are similar in all but one 

respect. 

The system encourages use of such heuristics by allowing students to manipulate ele¬ 

ments of the simulation. In the thermodynamics simulation (Section 2.1.3), for instance, 

students can manipulate the size of the universe, the number of atoms at excited or 

grounded state, and the number of observation windows. In the statics tutor, they can 

manipulate elements such as the size of the boom, the mass of the weight, and the angle 

of the boom. 

The tutor can lead the learner through tactical steps to experiment with these pa¬ 

rameters or it can engage him/her in a kind of “Socratic” dialogue. A Socratic dialogue 

might allow a student to continue an errorful problem-solving approach, such as using 

overgeneralization, until he/she reveals the error by making obviously unreasonable con¬ 

clusions. Regardless of whether the initiative rests with the tutor or the learner, such 

heuristic capabilities should be explicitly built into the tutoring system. 



nt Misconceptions. Research into cognition, particularly into learning phys¬ 

ical concepts, has yielded much information about misconceptions (McDermott, 1984; 

Clement, 1982, 1983). “Misconceptions" is the technical term used to describe student 

conceptions rooted in students' intuitions and everyday experiences, but which are at 

variance with standard current understanding of science. Many such misconceptions are 

very persistent even in the face of very good and very focused teaching of the correct 

conceptions and are very common even in students who achieve well in standard science 

courses. Fortunately, these common and “deep” misconceptions are finite in number. 

Research has begun to identify ways to help students overcome them (Clement Sr Bran, 

1984; Murray et ah, in press]. One domain in which much work has been done is classical 

mechanics, of which statics is a part. We have used these research results in the design 

of our statics tutor. 

When a student makes an error, this need not be due to a misconception; errors may 

be due to oversight or failure of memory, lack of necessary information, failure in the 

mechanics of equation-solving, uncertainty in how to apply “known” principles in the 

particular example, as well as to genuine misconceptions. An intelligent tutor should 

make suppositions as to the cause of an error, test these, and respond accordingly. Some 

examples from the statics or crane boom problem. 

• A student may fail to include, in a listing or diagram of forces acting on the boom, 

the force exerted by the wall on the boom. This may be an indication of a common 

misconception, the belief that static, rigid objects such as walls cannot exert contact 

forces-they can only “be in the way” and prevent the other object from moving. 

• A student may include a force at the point where the boom touches the wall, but 

draw the force vector into the wall rather than away from the wall. This may indi¬ 

cate a confusion between forces exerted on the body in question and forces exerted 



• A student may correctly include the force of gravity on the boom, but place the 

effective point where this force acts not at the center of mass but at the end of 

the boom. This may indicate that the student lacks knowledge about the effective 

point of action of gravity on an extended body, or that the perceptual salience of 

the end of the boom is strong enough to overcome what he/she has “learned” in a 

general way about gravitational forces. 

3.3.2 Modeling Tutoring Expertise 

A system s evaluation of student behavior, common errors, and plausible misconcep¬ 

tions precedes and informs its generation of appropriate responses—be that giving correct 

answers, elaborating on a student’s answer, or providing new information. Rules that 

enable the system to mimic conventional classroom teaching strategies are not neces¬ 

sarily appropriate. For instance, classroom teachers often avoid talking about student 

misconceptions. However, misconceptions should be dealt with in knowledge-based tu¬ 

tors. Rich example-based simulations might engage misconceptions as active concepts to 

be expressed and acknowledged by the learner. These misconceptions can be discussed 

along with more formal physics concepts being taught. 

One goal might be to encourage students to entertain as “felt conflicts” the disparity 

between their conceptualizations and the more formal science [Claxton, 1985]. Machine 

responses might be geared toward supporting students who are engaged in conflict res¬ 

olution. In fact, rather than provide correct answers, such a tutor should increase the 

student’s articulation, exploration, and expression of alternative conceptions, so that the 

disparity and overlap between the two concepts becomes clear enough for the student to 

resolve. Examples, questions, and consequences should support this process and show 

students how their conceptions are in conflict with the observable world in terms of 

descriptions, predictions, actions, and explanations. 
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Toward this end, we asked experts to provide teaching primitives that would facili¬ 

tate satisfactory resolution of conflict. A teaching primitive is an action or presentation 

provided by a machine in response to a student. How and when to use each primitive is 

determined by mechanisms based on common teaching strategies (see Section 5.5). Such 

mechanisms might include an example generator (Woolf et al., 1989] or discourse network 

[Woolf & Murray, 1987]. The teaching primitives provided by our experts are repeated 

from Figure 20. 

Questions: 

Qualitative and quantitative questions asked of the student or the system, 

(e.g., What is the direction of movement of the particle? 

What is the mass of an object? Identify the variables, math level, 

relevance of each question.) 

Examples: 

Easy (“start-up”) examples. 

Standard textbook (“reference”) examples. 

Counter-examples, strange, hard-to-grasp anomolies. 

General fill-in-the-blanks template-like examples. 

Presentations: 

Provide explicit procedures for explaining topics. 

Support self-diagnosis and self-correction. 

Present descriptive knowledge. 

How and when each primitive is invoked is described in Section 5.5. A few such 

techniques are outlined here. 

If a student’s error is suggestive of a deep, yet imprecisely identified misconception, a 

general approach is to teach by demonstrating the consequences of his/her misconception. 

For example, the system might simulate the results of missing forces on the crane boom. 

If the specific misconception is known and multiple evidence manifested, then the tutor 

might propose a new example. The generated response might be a simple anchor, or 

extreme example. If the error is considered a simple oversight, as in the case when a 

similar question was handled correctly in previous examples, then the machine might 

teach by guidance and perhaps provide a hint. 
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These general rules apply to interactive simulations for any topic. Specific rules for 

the statics tutor are outlined below [Woolf et al., to appear]. 

• The statics tutor demonstrates the consequences of incorrect action in several ways; 

it might ask him/her to consider the resulting equations (which would show a 

contradiction), or ask a qualitative question about the balance of force or torque 

vectors (which could also show a contradiction), or cause the physical system to 

move according to the forces indicated by the student. 

• The tutor asks the student about analogous cases, simple cases in which the stu¬ 

dent s intuitions are valid, or extreme cases in which an unphysical outcome is clear 

on qualitative grounds. The tutor follows up by asking the student to describe 

similarities and differences between analogous examples. 

• The tutor leads the student through a kind of mental check-list, e.g., by asking 

the student, for each force indicated, what body exerts that force, or by asking the 

student to list each of the bodies in contact with the boom. 

• The tutor asks leading questions, or gives a more-or-less direct hints. 

• The tutor informs or reminds the student of a relevant fact or principle and asks 

him/her how that fact applies in the present case. 

• The tutor simply informs the student of the right answer or method and then 

proceeds. 
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3.3.3 Modeling Reasoning in Science 

In this section we highlight the extent to which experts provided topics and domain 

knowledge consistent with building knowledge-based tutors. We asked experts to provide 

the following: 

A map of the (sub)topics of the domain. 

Concepts and topics assumed known by students. 

Type of knowledge for each topic: 

Facts, processes, system, descriptive, or prescriptive knowledge. 

First principles or meta-knowledge. 

Relationship between topics: 

Prerequisite, generalization, specialization, or analogy knowledge. 

For example, the topics shown in Figure 23 were used to build the knowledge base for 

the thermodynamics tutor. However, having elicited this knowledge from the expert, we 

recognized that we needed additional attributes about topics. Thus, each of the following 

attributes for each of the topics was also requested and represented in the arcs of the 

semantic network: 

importance of the topic 

complexity of the topic 

prerequisite topics 

supports provided for other topics 

causes other topics 

temporal relations to other topics 

evidence for the existence of other topics 
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Figure 23 Topic Breakdown for Thermodynamics 
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Interactive Graphics: 

Components a student can manipulate: e.g., dials, meters, icons. 

Available simulations and animations. 

Things a Student Can Do: 

Modify objects such as a fulcrum, a valve, a mass. 

Screen Elements: 

Menus, windows available to student. 

Mouse activation. 

Available Tools, such as clocks, calculators, help tools, dictionaries. 
Input/Output Conventions: 

Methods by student to input response or action: menu, icon, text, speech. 

Methods used by system to output response or action: menu, icon, 

text, speech. 

Figure 24 Communication Primitives 

3.3.4 Modeling Communication Knowledge 

A student’s ability to interact with the system is determined in part by the commu¬ 

nication facilities provided. The kind of issues to be resolved here are listed in Figure 24. 

In addition, issues about the inclusion of multi-media—video, sound, movies, and images 

should be discussed and choices made. Such issues and decisions are discussed in Section 

5.6. 

3.4 Indexing Information to be Taught 

The previous section described epistemological issues to be resolved after a domain 

focus has been chosen. However, selecting the domain focus and indexing it presents an 

additional set of epistemological constraints. This section discusses some of those issues 

and suggests how to refine a choice once the basic domain has been selected. 
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The process of selecting a focus is frought with hidden problems and considerations. 

At first, the primary problem appears to select a set of topics. However, very soon the 

problem becomes one of distilling the proposed set into a small enough subset to enable 

the large amount of knowledge to be encoded. Information to be taught can range from 

qualitative statements such as “The force exerted by gravity is inward,” to more factual 

data such as “F = -mg.” It can range from meta-knowledge about processes, such as “Use 

gravitational forces only when describing an earth-bound body,” to synthetic knowledge 

about how to put information together such as “Add force lines after recording weight 

and distances of the structure. Section 5.2 provides a detailed discussion about how to 

represent this information, while this section describes several ways to refine and classify 

the proposed domain in order to 1) pare down expectations of what a machine can teach 

and 2) utilize tools and methodologies developed by other researchers in similar domains. 
\ 

The knowledge to be taught might be organized by type and use. For instance, it 

might include: 

• Facts: structural relations and recurrent process (e.g., geography facts, laws of 

weather); 

• Procedures: how to operate a device (e.g., steam engine, recovery boiler tutor); 

• Systems: structure of large systems (e.g., electronic circuit, economic system); 

• Meta-knowledge: how to learn the domain knowledge (e.g., principles for solving 

algebra word problems); 

• Diagnostic problem-solving knowledge: hypotheses to consider and data to clarify 

before making a diagnosis (e.g., which lab evidence to explore when diagnosing a 

patient’s disease); and 

• Formal reasoning: axioms, inference rules, and derivation methods (e.g. mathe¬ 

matics, logic, programming). 
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Figure 25 Dimensions of a Topic to be Tutored 

Current tutoring systems cannot teach certain information and thus the newcomer to 

this field should avoid certain approaches. The fringe of what current systems can tutor 

is currently: 

• Naive Science: commonly understood yet typically mistaken laws of science (e.g., 

elastics can be used for pulling, but not for pushing); 

• Causal Modeling: effect of actions on objects (e.g., heat causes moist air to release 

moisture as rain); 

• Envisionment: simulating an image or effect before it happens; 

• Analogical problem-solving: intuitive understanding of analogous events. 

Figure 25 shows three dimensions or indexes along which to consider the informa¬ 

tion to be tutored. The first index (Domain Coverage) describes the extension of the 

information and identifies whether the tutor will examine an entire system (ecological 
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or economic system), or an individual topic (force or acceleration). The second index 

(pedagogy) indicates the nature of assistance to be provided and can include provid¬ 

ing declarative (descriptive and factual) data, procedural (prescriptive) data or complex 

problem-solving methods. Teaching declarative knowledge usually involves providing de¬ 

scriptions or classifications of objects, whereas procedural knowledge (prescriptive) usu¬ 

ally includes providing rules or features to observe while problem solving in the domain. 

The third index (perspective) describes the level at which the domain information will be 

communicated. This varies from discussing primitive first principles knowledge, or the 

underlying rules and laws responsible for the domain, to met a-cognitive knowledge, or 

descriptions of how to organize and learn material in the domain. It is instructive to place 

the proposed domain along the dimensions of this figure to both identify its indices and 

to relate the proposed system to existing tutors built to teach comparable information. 

Example topics which can fit along the indices include: 

Individual Topics: (e.g., force, acceleration, emergency shutdown proce¬ 

dure 

• Declarative first principles knowledge, e.g., gravity exerts a force towards the 

center of the earth. 

• Declarative meta-knowledge, e.g., calculate acceleration as a function of veloc¬ 

ity. 

• Procedural first principles knowledge, e.g., begin an emergency shutdown 

procedure by first draining the super heaters. 

• Procedural meta-knowledge, e.g., if you need to calculate force on a body, first 

draw the vector diagram and then write the equations. 
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Entire System: (e.g., electronic, economic, or boiler systems 

• Declarative first principles knowledge, e.g, a break in an electrical circuit 

interrupts the flow in the circuit. Parallel electronic circuits exhibit characteristics 

similar to those in simple circuits. 

• Declarative meta-knowledge, e.g, parallel electronic circuits can be viewed as 

circuits with separate energy sources. 

• Procedural first principles knowledge, e.g., the law of supply and demand 

emerges from variable and competitive pricing of commodities. 

• Procedural meta-knowledge, e.g., to observe the interaction of steam pressure 

and steam flow in a boiler, plot the variation of each parameter against time and 

against each other. 

Additional Knowledge to be Represented. In addition to the above information, an 

intelligent tutor often represents other information not included in the domain. Thus, 

a tutor might need to know about mathematics in order to solve certain problems. For 

instance, to perform medical diagnoses the expert system MYCIN relies on principles 

of integral and differential calculus. This extra information serves as foundational and 

primitive information separate from the specific problem being solved [Wolgram et al., 

1987]. 

Domain-independent knowledge needed to teach physics problem-solving provides 

some difficulty for a designer, because though such additional information must be in¬ 

cluded, it is difficult to know how much or how little the student can be presumed to 

know. Thus, physics might be taught assuming or not assuming prior knowledge of cal¬ 

culus. Certainly, the ability to manipulate algebraic expressions might be assumed to 

be known by a student, yet this might also, during the tutoring session, be shown to be 

false. 
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3.5 Summary 

Th,s chapter began with a practical assessment of epistemological issues to be resolved 

in building a knowledge-based tutor. It suggested ways to question experts in order 

to elicit such knowledge from them and focused on the nature of the knowledge to be 

identified, specifications to consider, and methods to use for acquiring knowledge. The 

knowledge includes how a tutor comprehends a student’s solution of problems, tutoring 

strategies, and how a knowledge engineer builds domain, tutoring, and student models. 



Chapter 4 

Development Issues 

4.1 Introduction 

This chapter provides a second practical view of how to implement a knowledge-based 

tutor. Whereas Chapter 3 provided a general view of the knowledge needed, this chapter 

describes the implementation process from an organizational perspective delineating the 

people, places, and tasks needed to encode knowledge. Goals, priorities, stages, and 

time commitments are defined with special attention paid to the work of the knowledge 

engineer, whose effort, as shown earlier, precedes and in some cases defines the work of 

other specialists. 

A framework is proposed for uncovering such knowledge from experts. This framework 

assumes collaborative efforts among several specialists, including computer scientists, do¬ 

main experts, cognitive scientists, and educators. The need for several people to work on 

intelligent systems has been well documented [Bobrow et al., 1986; Mittal & Dym, 1985]. 

Multiple experts are needed because much of the knowledge is subjective, unorganized, 

and misunderstood. No one person, whether computer scientist or teaching specialist, can 

supply the wide variety of knowledge required. In building the framework, the strengths, 

weaknesses, and communication style of each expert should be considered. (The specific 

responsibilities of each are described in Section 4.4.) However, since specialists often 

view the world differently, computer scientists should be trained in educational theory 

and practice, and educators trained in computer science and Artificial Intelligence, etc. 

80 
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This document is directed at training specialists in the methodologies of computer 

science and AI. 

Anecdotal evidence is presented here about collaborations toward building such sys¬ 

tems. We have been involved in four ongoing projects: (1) Exploring System Earth 

project [Duckworth, 1987]; (2) a tutor based on the Silent Way [Cunningham et al., 

1986]; (3) various projects pursued by the Knowledge Communication System Group at 

the University of Massachusetts; and (4) the Recovery Boiler Tutor [Woolf et al., 1986]. 

In each case, educators, computer scientists, and domain experts collaborated over not 

less than 18 months to design and build intelligent tutors. Anecdotal reports from these 

projects suggests that formal organizing mechanisms are helpful for learning to avoid 

obstacles and stumbling blocks. 

Further, given the complex and heterogeneous nature of the knowledge to be encoded, 

tools that transfer teaching, learning, and domain knowledge to a system should be very 

helpful. Currently, few such tools exist, but where they do, they ought to be considered 

for inclusion during the building process. Such tools are described later in Chapter 5. 

4.2 Organizing the Development Process 

Building an intelligent tutor requires six stages as outlined in Figure 26 and elaborated 

in Figure 27. These stages are similar to those required for development of any expert 

system [Wolfgram et al, 1987], yet they show additional remodeling and redefinition 

steps beyond those needed for a traditional software engineering project. Whereas the 

latter typically has clearly defined program specifications, an AI system is often defined 

in terms of “reasonable” and “intelligent” behavior. That is, a knowledge-based tutor 
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FEASIBILITY STAGES: 

1: Problem Identification and Definition 

FORMULATION STAGES: 

2: Paper Design and Prototype Development 

REFORMULATION STAGES: 

3: Implementation 

4: Test, Evaluate, and Revise Cycles 

MAINTENANCE STAGES: 

5: Integration 

6: Evaluation and Maintenance 

Figure 26 Stages in Building a Knowledge-Based Tutor 

might be specified to generate sensitive and custom-tailored responses. Such behavioral 

specifications are not easily achieved. Several cycles of redesign and revision are clearly 

needed to produce such results; thus the life-cycle of a knowledge-based tutoring project 

includes several cycles of evaluation and remodeling. 

The building process also requires a lengthy preparation stage before construction 

can actually begin. The initial stage is jointly directed by the knowledge and domain 

and tutoring experts. Its aim is to synthesize and prepare information for inclusion into 

the system. Middle stages are characterized by the actions of teachers and programmers 

who help design and reconfigure a prototype system before molding it into an integrated 

system. The final stages require collaboration of evaluators, teachers and programmers 

who redefine and build the system readying it for inclusion in an educational community. 

Also, students should be involved early on and periodically invited to use, evaluate, and 

contribute to the system. 

Leadership and Management Issues. In addition to organizing development of the 

system, several issues related to managing this process should be addressed at the outset. 

These issues include, but are not limited to: 
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FEASIBILITY STAGES 

Stage 1: Problem Identification and Definition 

Principal participants: knowledge engineer, teaching and domain expert 
Key Tasks: outline teacliing goals and key topics, identify questions student can ask of syste 
Duration: 4-6 months, overlaps with Stage 2 

FORMULATION STAGES 

Stage 2: Paper Design and Prototype Development 

Principal Participants: knowledge engineer, programmer, teachers and students 
Key Tasks: design prototype knowledge base, inference engine, teaching strategies 
Duration: 2-4 months, overlaps with Stages 1 and 3 

REFORMULATION STAGES 

Stage 3: Implementation 

Principal Participants: programmer, teaching expert 
Key Tasks: Enlarge and refine knowledge base, elaborate tutoring questions and responses 
Duration: 6 months, overlaps with Stages 2 & 4 

Stage 4: Test, Evaluate, and Revise Cycles 

Principal Participants: domain and teaching experts 
Key Tasks: tape record students using system, evaluate teacher’s use of system, 
integrate new results into system’s design 
Duration: 4 months, overlaps with Stage 3 

MAINTENANCE STAGES 

Stage 5: Integration 

Principal Participants: teachers and programmers 
Key Tasks: redesign curriculum and teaching activities to include 

in system further results of Stage 4 
Duration: 6 months, overlaps with Stage 6 

Stage 6: Evaluation and Maintenance 

Principal Participants: teachers and students, programmers 
Key Tasks: Implement additional versions based on formal evaluation of system 

Duration: ongoing 

Figure 27 Detailed Stages in Building a Knowledge-Based Tutor 
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• Curricular Focus should initially be on several small topics, processes, or laws to 

tutor. The system should be modular so that new topics can be added during the 

construction stage (see Section 3.4). 

• A large number of potential users should exist, i.e., an ongoing need should 

exist for training in the chosen area. Ideally, the system should be useful for both 

initial training to explain and teach new information, and for ongoing training and 

retraining. In addition, there should be areal need for the training, possibly because 

of a large turnover in students, a requirement for repeated on-going training, or a 

failure of existing training. 

• The effort required should be realistically assessed. A great deal of time, money, 

and effort will be required to assemble experts, perform the knowledge acquisition 

tasks, and build and ultimately test the system. The duration of project effort 

should be realistically measured in person-years, not in person-months [Bobrow et 

al., 1986]. 

• Hardware and software cost estimations should be made. Cost, availability 

of equipment, and local programming expertise often determine the particular mix 

of hardware and software chosen for the job (see Chapter 6). Acquiring these 

resources might require several months lead time. For these reasons, the selection 

process should be started early during the feasibility or formulation stages of the 

project (see Figure 27). 

• A team of experts should be assembled. At least four experts should be available 

to the project: a computer scientist, a domain expert, a teaching expert, and a 

cognitive expert (see Section 4.4 below). Long-distance experts, linked by phone, 

network mail, and jet plane, are acceptable. Each of these people should be invited 

to participate and be evaluated as to ability, availability, and commitment. 

• Resources should be committed. A knowledge-based tutor requires the serious 

commitment of management or institutional leaders. Appropriate time and re- 



sources must be allocated and reaUocated during the life of the project. For many 

companies or universities, building a knowledge-based tutor is a separate research 

and development project. As such, it must be properly approved and integrated 

into the direction and focus of the organization. 

The resulting product will need to be integrated into existing training or teaching 

practices. Thus separate workshops might be required to facilitate the teachers, 

administrators, and students in using the new product. This integration period 

might begin before the final product is complete, using only a prototype system. 

4.2.1 Knowledge Engineering 

At the beginning, and for some time into development of the tutor, the knowledge 

engineer is the key member of the development team and must perform the lion’s share 

of the work. For that reason, the role of the knowledge engineer should be discussed 

separately. 

Knowledge engineers need to be multi-talented individuals— “Jacks/Jills of all trades.” 

They are responsible for eliciting the knowledge used by experts and for identifying the 

sources of knowledge primitives, or actions to be performed by the tutor. They work with 

people, taped protocols, questionnaires, and reference literature. They perform extrac¬ 

tion, documentation, and analysis of information and determine how it will be encoded 

in the system. This process of defining and acquiring knowledge is called “knowledge 

engineering.” 

Knowledge engineers should be capable workers in several disciplines. Since they 

often implement code, they should be designers and analysts trained in computer science 

and programming. They should also be good organizers and coordinators since their 

job is to co-ordinate many people and to transfer their knowledge in a consistent and 

organized manner. They should be good students as well as talented teachers in order 

to first understand the domain and then transmit it. Finally, it is helpful if they have 
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experience or training as psychologists so that they can manage the large number of 

experts. Obviously, such multi-talented people are hard to find. Therefore, we propose 

the use of a team of four people who support the knowledge engineer and help perform 

all these tasks (see Section 4.4 below). 

After a team has been found, knowledge engineering begins. This phase is very time 

consuming. For example, in building the statics and thermodynamics tutors (Section 

2.1.3) we worked with cognitive scientists, physicists, astronomers, and potential users 

of the system, such as high-school and college teachers and students, for more than 18 

months. The group produced over 100 pages of rules, processes, screen designs (includ¬ 

ing help activities about physics), and cognitive analysis (identifying educational goals, 

potential errors, and misconceptions) before any code was written. 

The knowledge engineer should document the reasoning processes included in the 

domain and teaching modules. She/he should keep a record of how key concepts, sub- 

problems, examples, and questions are mapped out. Such data are then made consistent 

for inclusion in the chosen knowledge representation. The knowledge specification doc¬ 

ument becomes a reference for researchers as well as a guide for prospective users and 

workers. 

During the organization and compilation of data, several problems might arise. For 

example, domain specialists frequently resist attempts by computer scientists to clarify 

algorithms and rules that they use. This is because they have “compiled” their knowl¬ 

edge and it has become virtually unconscious. Often the specialist becomes overwhelmed 

by the difficulty of teasing apart his/her own knowledge; typically a specialist has diffi¬ 

culty analyzing his/her own knowledge when the complexity of that information becomes 

computationally dense. At such a time, several solutions are available; for example, the 

domain specialist might read literature based on a different approach to the problem. 

Researchers from one discipline might investigate another view of the problem; thus, a 

physicist might investigate how psychologists study physics learning or a cognitive scien¬ 

tist might be shown research into the structure of the domain from a physicist’s viewpoint. 
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Such collaboration helps correct the academic “myopia” of some experts. Working alone, 

for example, one expert might not be able to crystallize the utility of a contribution 

from another domain because he/she is unaware of the efforts made in that other field. 

Thus a computer scientist working alone might not be aware of complementary research 

performed by cognitive scientists to understand how to teach programming concepts. In¬ 

formation about the categorization of topics or the availability of a wealth of tutoring 

strategies in each domain is vital to making reasoned judgements about the design of a 

tutoring system. 

4.3 Stages of Development 

This section describes the stages required to design and build a knowledge-based 

tutor. The process was outlined in Figure 27. That figure will be briefly described here 

and pointers given to other sections where a more complete treatment of the requisite 

activities can be found. These activities and processes are further elaborated in Figures 28 

and 29. 

4.3.1 Stage 1: Problem Identification and Definition 

The first stage is assessment of the scope of the project and identification of the 

primitives involved in representing that knowledge. This task requires a domain expert, 

or expert in the field who can participate fully in the project for about a year. At this 

time, the focus is on a topic or set of topics to be taught by the tutor (see Section 3.4). 

Building a Storyboard. After the topics and general tutoring strategies have been 

identified, the domain expert, working with the knowledge engineer, should produce a 10- 

ply storyboard [Rissland & Schultz, 1987]. (Ten-ply is defined as 10 interactions between 

user and machine, or one response from the system, one from the user, etc., until 10 

exchanges have occurred. Ten is chosen so as to force the expert to explore an extended 



range of possible machine/user interactions.) This process allows the experts to judge 

the dimensions of the dialogue as well as the need for flexibility and responsiveness of 

the system. Eleven sheets in all (one for what the system looks like initially and ten for 

user/system exchanges) should be produced. Example storyboards and design documents 

are provided in Appendix B. 

A simulation or animated drawing will add power to the system. The student should 

be able to change several components of the figure. Such simulations and animations 

should be described in the storyboard along with all available menus, windows, buttons, 

and icons be illustrated. Options and parameters that are available to the student should 

also be outlined at this time (see Section 5.6 and the examples storyboards in Appendix 

B). 

4.3.2 Stage 2: Paper Design and Prototype Development 

Once the knowledge primitives and storyboards have been resolved, prototype de¬ 

velopment can begin. This stage includes building a knowledge base, tutoring manager, 

primitive student model, and simple simulation. Knowledge-based programming is distin¬ 

guished from a more traditional “straightline” program in that knowledge is represented 

and an inference engine1 is built to pass through that knowledge (see Chapter 5). The 

specific path taken by the system through the knowledge is not predefined; rather the 

control structure, often represented as “if/then” rules, determines how and in what order 

the system will use the encoded knowledge. Knowledge representation is the first step in 

this prototype development stage. Knowledge can be represented as semantic networks, 

frames, scripts, if-then rules, and other available representation (see Section 5.2). 

i An inference engine is a function which searches through a knowledge base and makes inferences about 

that knowledge. An inference engine can come to believe new facts on the basis of other information. It 

can draw inferences. 
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Since knowledge-based programming often involves making machines do things that 

they have done before (such as understanding written documents or coordinating move¬ 

ment of cooperating robots), AI programmers are not always certain how to achieve these 

results. In fact, many knowledge-based programs are experiments in design that evolve 

only as the programmers’ ideas evolve. 

In a completed AI system, a control structure, typically in the form of antecedents 

and consequents, might trigger and branch in ways unanticipated by the programmer. 

This is not true for traditional software projects in which the goal, specifications, and ma¬ 

chine decisions are clearly indicated before coding begins. Rewriting code in traditional 

software engineering is often done while removing bugs or making the system perform 

more exactly according to specifications. Rewriting code in knowledge-based program¬ 

ming often reflects an attempt to refine system behavior which was not explicitly stated 

or to specialize knowledge so that the system can make more highly reasoned decisions. 

To do this, AI programming requires new tools, languages, and programming skills (see 

Chapter 6). Thus the term knowledge-based programming refers more to an approach to 

code production, a methodology for encoding knowledge and control, and a set of tools 

to expedite the process. It does not refer to a particular language or subject matter. 

4.3.3 Stage 3: Implementation 

Once a prototype system is built to demonstrate the reasoning power of the pro¬ 

posed tutor, the system’s knowledge and control structures should be firmed up and 

made more robust. During this stage, the prototype is made suitable for use by students 

and the experts who focus on elaborating and completing each system component. De¬ 

tailed knowledge about topics to be taught, the cognitive model, tutoring actions, and 

screen design are implemented; the prototype can be discarded as “throw-away code.” 

The most successful features of the prototype will be recoded in the final system. Addi¬ 

tional knowledge at this time may indicate a need to change data structures and control 

strategies. 
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Additional data gathering is needed to dramatically expand the knowledge base and 

complete the user interfaces. A special knowledge acquisition interface might be built 

to allow teachers and other workers to contribute to and modify information in the 

knowledge base. A knowledge-acquisition interface is a computer screen that requests 

components of the knowledge base and inference rules, but does not require the author 

to work in a low-level programming language. 

Domain Model. At this time, additional knowledge of topics, concepts, processes, 

and rules of inference is defined and entered into the knowledge base. There may be 

hundreds of these concepts or topics (see Chapter 2). 

Cognitive Model. At this time, a refined model of the student’s knowledge in the 

domain is encoded in the system. This model represents whether the student sees the 

domain as coherent or fragmentary and whether the knowledge is interpretable or defi¬ 

nitional (see Section 3.4.1). The knowledge base is expanded to include more errors and 

misconceptions and diagnostic procedures that might enable the system to both recog¬ 

nize those errors and clear up misconceptions. The parameters of the cognitive model 

are elaborated and finalized. 

Communications Interface. The interface must be engineered and made suitable for 

use by a variety of students. A system should not fail when a student produces unexpected 

input. Rather, it should gracefully acknowledge the input and recover. Critics should be 

asked to offer design suggestions for menus, buttons, and graphic elements (see Section 

5.6). 

Teaching Strategies. At this time all tutoring actions and rules should be refined, 

teased apart, and elaborated. The questions, answers, analogies, and examples should 

have been tested by students and refined during earlier stages (see Section 5.5). 
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4.3.4 Stage 4: Test, Evaluate, and Revise Cycles 

At this stage the knowledge-based system is ready to be tested by students. The 

system should be evaluated and modifications made based on these studies. This stage is 

time-consuming and may result in development time equivalent to the first three stages. 

Based on results found here, workers may completely redefine and rebuild portions of 

every module. 

Ideally, the system should be subjected to extensive testing by both students and 

expert teachers. One way to do this is to give problems to both the system and a teacher 

working with groups of students. Results of the two groups should be compared. The 

responses provided by the knowledge-based tutor should largely agree with that given by 

the expert. 

4.3.5 Stage 5: Integration 

An intelligent tutoring system should be integrated into the training or schooling 

site. This might include changing classroom procedures, curriculum, and protocol for all 

members of the educational community. Potential resistance to the system might need 

to be handled. Some of these issues, including evolutionary change in the classroom that 

might occur, are described in Section 7.2. 

4.3.6 Stage 6: Evaluation and Maintenance 

The environment in which the system is placed is dynamic: curriculum changes, teach¬ 

ers and students change. To remain useful and usable in a dynamic setting, the system 

must be flexible. Thus the system should be updated when new concepts, curriculum 

items, and related issues arise. Evaluation and maintenance contribute to this process. 
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FEASIBILITY STAGES 

Establish a knowledge engineering capability (see Section 4.2.0) (Time Required; 4-6 months 

dependent upon availability and skill of knowledge engineer and experts). 

A. Identify team members to conduct research: computer scientist/knowledge engineer, teach¬ 

ers/trainers, domain expert, and cognitive scientist. Anticipate the need for replacements and 

dynamic regroupings: find a solid core of principles and visiting participants (see Section 4.3). 

B. Define the problems, topics, knowledge, and dimensions of the knowledge to be taught (see 

Section 3.5). After the knowledge has been defined, reduce the scope of it by the approach below: 

1. Define the subproblems. 

2. Define a prototype. 

3. Estimate the complexity/feasibility of delivering such a prototype. 

4. Stop if the feasibility of a prototype is only slightly out of reach or within reach. 

5. Divide the subproblem into smaller problems and continue with 2 above. 

C. Describe a communications environment/interface. Identify the available hardware and 

software systems (Chapters 3 and 5). Indicate options available to the student and re¬ 

sponses/monitoring provided by the system. 

D. Define constraints. Consider hardware/software constraints, development issues, staffing, man¬ 

agement, and technological considerations. 

FORMULATION STAGES 

Identify research and development resources and build prototype (see Chapters 3 and 6). (Time 

Required: approximately 3-6 months, carried on in parallel with Feasibility Stages). 

A. Pedagogical and Cognitive Research. Acquire results of earlier pedagogical and cognitive re¬ 

search into the domain. Explore the availability of experts who might participate, on-going studies 

which might be adopted, and on-line knowledge bases. Avoid using text books—they typically 

describe a static and deterministic way to communicate information. Determine concepts, rules, 

and heuristics to be taught (see Section 3.5). Identify teaching strategies (see Section 3.4.2). 

B. Support Experts: Plan regular and structured interviews with domain experts. Establish 

interviewing procedures and ways to reward the whole team. Document this process, with notes 

and written summaries, for use during the next development project. 

C. Leadership and Management. Determine who is in charge of what; who reports to whom. 

Identify individuals responsible for knowledge acquisition, implementation, evaluation, redesign. 

Assign task leaders and communicate expected results. 

D. Build a prototype. 

Figure 28 Tasks to be Accomplished 
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REFORMULATION STAGES 

Reimplement and refine prototype using enhanced hardware and software tools (see Chap¬ 

ter 6). (Time Required: Approximately 6-12 months, depending on availability of equip¬ 
ment; carried on with Formulation Stages.) 

A. Reevaluate software/hardware issues (see Chapter 6). Consider a second implemen¬ 

tation. Again avoid sequential languages (e.g., COBOL and BASIC), standard software 

design methodologies, and restrictive or strict type definitions (e.g., C, and FORTRAN). 

Consider selection issues: portability, existing community, degree of support, ease of 

learning, size of language. Identify machine issues: keyboard, mice, displays, windows, 

editors, bundles, knowledge engineering shells. 

B. Evaluate hardware issues: single user operators, manipulation of objects, optimiza¬ 

tion for function calling. Consider dedicated machines: companies, price-performance 

statistics. Consider conventional machines: processors and microprocessors. Consider 

specialized processors: parallel processors. 

C. Explore and implement Artificial Intelligence techniques including, e.g., rules, frames, 

forward and backward chaining, hierarchical frame structures, procedural attachments, 

multi-legend and blackboard architectures (see Chapters 5 and 6). Work with knowledge 

representation scheme. 

D. Demonstrate new proof of concept system and accept feedback. 

E. Continue to integrate information from multiple-experts-based proof of concept sys¬ 

tem. Increase production of rules, screen designs, and information produced by team 

members, teachers/trainers, cognitive scientists and domain experts. 

F. Stabilize the iteration process. Release a version of the system for testing with stu¬ 

dents/trainees. 

MAINTENANCE STAGES 

Test and evaluate the system. (Time Required: allow a minimum of 9 months.) 

A. Integrate the system into classroom, training site, or community. Use test results in 

the next design, implementation and release of the system. 

B. Continue interviews with teachers/trainers and domain experts to clarify impact of 

system. Encode additional cases, concepts, rules, and heuristics as needed. Continue 

refinement of the learning model and elaborate encoded teaching strategies. 

Figure 29 Tasks to be Accomplished, Continued 
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4.4 Gathering a Team 

An important part of building a tutoring system is developing a “community mem¬ 

ory in which multiple experts contribute their knowledge of teaching in the domain. 

Building such a community memory requires realization of the fact that knowledge is of¬ 

ten distributed, incomplete, and acquired incrementally [Bobrow et al., 1986]. Thus, part 

of the administrative problem is to generate a team of persons dedicated to completing 

the project. 

This is especially true in tutoring systems where the domain expert, cognitive scientist, 

and teaching expert are typically not the same person. Experience with commercially 

successful expert systems, such as Rl [McDermott, 1982] and the Dipmeter Advisor 

[Smith, 1984], suggests that using knowledge from only a single expert can result in 

systems that are foreign to other users or ones that contain conceptual holes. In the case 

of the Dipmeter Advisor, the first expert solved problems in an uncommon way, creating 

blind spots in the knowledge base [Bobrow, 1986]. 

In order to develop a community memory for tutoring systems, a framework should 

first be created for recording teaching experience and domain knowledge. The discus¬ 

sion in this section elaborates the process of building such a framework and provides 

general criteria for developing tools to use in the framework. Complex and diverse tools 

are needed. For example, expert system shells might provide a framework for building 

expert systems, since they store concepts and rules for making inferences about those 

concepts [Anderson, 1985; Streibel et al., 1987]. However, such tools are often based on 

production rules and are limited in their ability to represent the history and dependency 

of the tutoring interaction [Woolf & Murray, 1987]. They are limited in many ways; they 

do not adequately represent multiple antecedents or consequences for an action; they fail 

to describe a logical stream of prior activities for a given state; they are not able to rep¬ 

resent complex tutoring and misconception knowledge, such as reasoning about teaching 

strategies, selecting paths through domain concepts, and validating and remediating mis¬ 

conceptions. Ideal tools to compile expert knowledge for building knowledge-based tutors 

have not yet been developed. This section looks at the responsibilities and contributions 

of each expert, in order to learn how to define and develop such tools. 
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4.4.1 En vironmen t a 1 Inp u t 

The computer scientist builds the envelope within which a student interacts with the 

system (see Section 2.4). This we call the “environment." Here tools and operations 

specific to solving problems or performing activities in the domain are encoded. Often 

most of the tutor s memory is used for the environment [Bobrow et al., 1986], Obviously, 

the contributions of the teaching, cognitive, and domain experts must interact with thj 

work of the computer scientist. For example, if the system asks a student to record the 

incident and resulting angles for light rays in an optics experiment, one would assume 

that the environment supplies appropriate tools for setting up an optics experiment and 

measuring angles. 

Existing environments suggest many desiderata for development of effective interfaces. 

Several are listed below: 

1. The environment should be intuitive, obvious, and enjoyable. The student ’s energy 

should be spent learning the material, not learning how to use the environment [Cunning¬ 

ham, 1986], For example, the visual activities of the second language tutor (see Figure 

2.7) mimic ways the human teacher uses gestures, mime, facial expressions, hand signals, 

and rods to indicate errors, express feelings, or convey meaning. Each icon is designed to 

be clear and unambiguous in order to make use of the student’s intelligence, experience, 

and resourcefulness. 

2. The environment should record not only what the student actually did, but what 

the student intended to do (the goal), might have forgotten to do, and was unable to 

do (Burton, 1988). The environment should provide a wide bandwidth within which 

multiple student activities can be analyzed. For example, the Pascal tutor developed by 

Johnson and Soloway [1984] analyzed an entire student program and diagnosed possible 

student misconceptions before it offered advice. This ability is contrasted with tutors 

that can only record and analyze individual keystrokes. 
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3. The environment should be grounded in teaching and cognitive knowledge about 

how experts perform tasks in the domain. For example, Anderson [1981] conducted ex¬ 

tensive research with geometry students before developing his geometry tutor’s interface, 

and Woolf et al. [1986] incorporated knowledge from experts with more than 30 years of 

experience working with boiler operations before building the RBT environment. 

4. The environment should isolate key “tools” for attaining expertise in the domain. 

For example, the economics tutor [Schute & Bonar, 1986] (see Section 2.4) monitored 

the student s ability to set parameters such as supply, demand, price, and distribution 

centers in order to observe the effect of economic principles. The RBT tutor provided 

graphs (trends) of process parameters over time (Figure 6) and abstract meters (left side 

of screens in Section 2.1.1) to facilitate an operator’s ability to reason about complex 

processes and to allow him/her to make inferences about the effects of actions taken. 

5. The environment must approximate physical fidelity 2 to the world that is modeled 

[Hollan et al., 1984]. The RBT tutor presented a mathematically exact duplicate of the 

industrial process. It modeled and updated over 100 parameters every two seconds. 

Visual components of the industrial process, such as an alarm board, control panel, dials, 

and reports were replicated from the actual control room. In the physics tutors (Section 

2.1.3), the student can test activities such as random collision in the physical world. 

6. An environment should be responsive, permissive, and consistent [Apple, 1985]; 

it should apply skills that people already have, such as moving a cursor, rather than 

requiring people to learn new commands. Responsive means that the student’s actions 

have direct results; the student should not need to perform a lengthy set of actions in 

a rigid and specified order before achieving a goal. Permissive means that the student 

should be allowed to do anything reasonable and that there should be multiple ways to 

achieve actions. Consistent means that moving from one application to another, e.g., 

from editing text to developing graphics, should not require learning a different interface. 

All tools should be based on similar interface actions, such as pull down menus and single- 

or double-mouse clicks. 

2Fidelity is a measure of how closely the simulated environment matches the real world. This mea¬ 

surement can be in terms of output of mathematical model or visual representation. High fidelity means 

that the system is almost indistinguishable from the real world. 
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No one environment is appropriate for every domain: each domain must be analyzed 

to determine how experts function in that domain, how novices might behave differently 

(see for example Larkin et al. [1980] and Chase and Simon [1973]), and what tools might 

help novices to attain expert behavior. Not all systems are aimed at novices and thus 

each system should be designed for and tested with its particular audience. 

4.4.2 Teaching Input 

Acquiring sufficient teaching expertise to build a tutoring system is a long-term pro¬ 

cess. In many domains, cognitive research has just begun which will explain how people 

teach and learn. Refinement of teaching knowledge in such machines has been made 

possible only recently. Decision logic and rules to direct a tutor’s intervention are just 

now being represented and must be cautiously tested and modified. For example, the 

framework in Figure 30 was developed for managing discourse in an intelligent tutor 

[Woolf & Murray, 1987]. It dynamically reasons about which discourse choice to make 

and provides custom-tailored feedback to a student in the form of examples, analogies, 

and simulations. This framework (described in Section 5.2.1 ) is currently being refined 

to improve a physics tutor’s ability to respond to idiosyncratic student behavior. The 

structure is designed to be rebuilt. A graphics editor can be used to modify response 

decisions. Appropriate machine responses can be assessed and, through the editor, con¬ 

tinuously improved. 

No single teaching strategy is appropriate for every domain; for example Anderson 

et al. [1984, 1985] built geometry and Lisp tutors that responded immediately to a stu¬ 

dent’s incorrect student answer, be it a small misplaced comma or an incorrectly spelled 

command. These authors argued that immediate computer feedback was needed because 

erroneous solution paths in geometry and Lisp might be so ambiguous and confusing 

that the student would not recognize delayed notification of an error. Thus the tutor 

intervened frequently to avoid fruitless student effort. 

However, the industrial and language tutors described earlier in Sections 2.1.1 and 

2.1.2 were passive, not intrusive advisors. Their strategy was designed to subordinate 

teaching to learning [Gattegno, 1970] and to aUow the student to experiment while de¬ 

veloping hypotheses about the domain. These two tutors encouraged students to develop 
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Figure 30 A Framework for Managing Tutoring Discourse 
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their own intuitions and did not correct them as long as t heir performances appeared to 

be moving closer to a precise goal. 

In an industrial setting, trainees must learn to generate multiple hypotheses and to 

evaluate their own performance based on the effects of their actions on the industrial 

process. No tutor is available during working hours. Thus, the teaching strategy in the 

industrial tutor was to encourage students to trust their own observations and to learn 

through animated simulations of the process, trend analyses, and meters dynamically 

updated in real tune. The textual dialogue provided added assurance that operators 

would extract as much information as possible from the data, and the system provided a 

mechanism to redirect them if they did not. 

4.4.3 Cognitive Input 

Cognitive science research provides the basis for selecting instructional strategies. One 

goal is to find out how people learn in a given domain. For example, cognitive science 

research is beginning to uncover common errors, probable misconceptions, and effective 

remediation in a number of domains. The importance of addressing common errors and 

misconceptions in physics is well-documented [McDermott, 1984; Clement, 1982], and 

the intelligence of a physics tutor depends greatly on making that knowledge explicit. 

A tutoring system should allow students to generate hypotheses necessary for expand¬ 

ing their intuitions. Students must use these hypotheses to develop their own models of 

the physical world and to uncover or listen to their own scientific intuitions. 

Cognitive scientists have had an implicit mandate to determine this knowledge. They 

now research how students reason about qualitative processes, how teachers convey pre¬ 

requisite knowledge needed for learning in the domain [Halff, 1988], how predictions ran 

be made about bug stability [van Lehn, 1988], and what tools are used by experts working 

in the field. For example, to build the thermodynamics tutor (see Section 2.1.3) required 

(1) investigation of the tools currently used by physicists, (2) studies focused on cognitive 

processes used by novices and experts to understand thermodynamics, and (3) research 

into novice physics problem-solving as compared with that of experts. 
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Cognitive science research elucidates actions taken by experts to make measurements or 

to perform transformations in the domain. This is called “heuristic knowledge” and is 

defined as knowledge about how to solve problems. (See Section 3.3 1 for a discussion 

about how to elicit this knowledge from experts.) This knowledge diners from procedural 

knowledge in that it adds neither content nor concepts to the domain, but rather describes 

actions taken by experts to use conceptual and procedural knowledge. This knowledge 

has rarely been included in tutoring systems, but must be included if tutors are to monitor 

their students’ problem-solving activities and experiential knowledge about how to work 

in a field. 

The Recovery Boiler tutor (Section 2.1.1) begins to articulate this kind of knowledge 

by recording explicitly the operations performed by trainees to solve emergencies. It 

shows students their false paths and gives some of the reasons behind rule-of-thumb 

knowdedge used to solve problems. A tutor might provide a student with a variety 

of examples from which she/he can explore a large space of problem-solving activities. 

Such tutors show students their own path, a preferred path, and perhaps, in time, their 

own underlying solution processes. Simply elucidating these operational components 

of problem-solving in a domain and the rules that apply is obviously not sufficient to 

understand how a person learns in a new domain. However, such traces can begin to help 

a student learn how to learn and help to clarify the processes behind problem-solving 

behavior. 

4.4.4 Domain Input 

An “in-house” domain expert is critical to building an intelligent tutoring system. By 

in-house, we mean that the domain expert must be part of the project team (available 

at least weekly) for anywhere from six months to several years while domain knowledge 

is acquired. Less commitment or a less active role would provide a less than adequate 

transfer of domain knowledge. 

In the tutors described in Sections 2.1.1-2.1.3 domain experts were integral in the 

programming effort. In RBT, the programmer, project manager, and director of the 

project were themselves chemical engineers. More than 30 years total of theoretical and 
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practical knowledge about boiler design and teaching strategies were incorporated into 

the system. Development time for this project would have been much longer than the 

actual 18 months if these experts had not already identified the chemical, physical, and 

thermodynamic characteristics of the boiler and collected examples of successful teaching 

activities. 

The second language tutor was developed by a person who holds a graduate degree 

in teaching English as a second language and who has spent more than seven years using 

the Silent Way to teach intensive language courses for people living in foreign countries. 

This programmer was able to perform knowledge engineering on herself to extract and 

encode the tutoring knowledge. 

The physics tutor was being built after months of part-time work with ESE Con¬ 

sortium members who were physicists and astronomers. Potential users of the systems, 

high-school and college physics teachers, contributed teaching and environment expertise. 

From this effort, more than 100 pages of rules, processes, screen designs (including help 

activities about physics), and cognitive studies (identifying educational goals, potential 

errors and misconceptions) were produced before any code was written. 

Sometimes domain knowledge can be encoded through the use of expert shells which 

frequently use rule-based systems to record topics and rules that impact on those topics 

in the domain knowledge base. Anderson et al. [1985] used GRAPES [Sauers & Farrell, 

1982] to represent the rules programmers use for solving problems, to describe LISP 

functions, and to represent higher level programming goals. He used buggy rules to 

represent misconceptions that novice programmers often develop during learning. Streibel 

et al., [1987] used OPS5 to write rules for genetic problem-solving and to encode teaching 

strategies. 

Desiderata for acquiring domain knowledge include the following: 

1. Domain experts should be very good and, if possible, the best in the field [Bobrow 

et al., 1986]. For example, Dendral [Lindsay et al., 1985], an expert system for the 

generation and testing of hypotheses about chemical structures and spectroscopic data, 

was built with a team that included Joshua Lederberg, a Nobel-prize winning geneticist, 

Carl Djerassi, a world-class expert on mass spectral analysis, and several professional 
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chemists and computer scientists. Perhaps coordinating with a university professor, even 

via long distance, is a viable option. 

2. Domain experts are expensive. Using knowledgeable people in the domain is 

expensive and time-consuming. However, their willingness and availability to participate 

is critical to the knowledge engineering process. Assigning the task to a person of lesser 

ability, or worse, to a person “with time on their hands,” might doom the project to 

failure. Enthusiastic support from funders and supervisors, including sufficient allocation 

of resources, human and otherwise, is a prerequisite to success of the project. 

3. Domain experts might have incomplete knowledge or conceptual holes in their 

knowledge. For this reason, several experts are needed to test and modify domain knowl¬ 

edge throughout the life of the tutor. 

4. Similarly, domain knowledge might be distributed [Bobrow et al., 1986; Mittal 

& Dym, 1985]. This means that knowledge can be spread so diffusely among different 

research projects and experts as to leave any system unfinishable by a single expert, or 

sometimes even several experts. Thus, domain knowledge must be acquired incrementally 

and must be prototyped, refined, augmented and reimplemented. This means that the 

time needed to build a tutoring system “should be measured in years, not months, and 

in tens of worker-years, not worker-months” [Bobrow et al., 1986]. 

5. Domain knowledge as found in textbooks is typically incomplete and idealized 

[Bobrow et al., 1986]. Thus, textbooks might be inappropriate as a primary source for 

either domain or teaching knowledge in a knowledge-based tutor. They rarely contain 

the common-sense knowledge that expert tutors or professionals in the field use to choose 

the next teaching strategy or to solve a difficult problem. Books tend to present clean, 

uncomplicated concepts and results. To solve or to teach real-world problems, a tutor 

must know messy but necessary details of real or perceived links between concepts and 

unpublished rules of teaching and learning. 
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4.5 Summary and Discussion 

Construction of a knowledge-based tutor requires a good deal of planning, organizing, 

and management. The process is typically long and complex. A developmental method¬ 

ology was presented here which included task lists, questions to be asked, activities to 

be performed, and issues to be considered. This chapter suggested that a community 

memory be developed to encode and organize such teaching and learning information. 

The process of gathering this information from teaching, learning, domain and computer 

specialists is currently hampered by lack of a common vocabulary. This chapter provided 

initial steps toward establishing such a vocabulary by outlining the criteria experts should 

use in making their contributions. The community memory itself would provide a focus 

for articulating such knowledge about thinking, teaching, and learning and thus would 

contribute to communication among experts. The chapter also dealt with the logistics 

and pragmatics of constructing a large knowledge-based tutoring system. It suggested 

specific prerequisites for each of the four major players: domain, teaching, cognitive, and 

communication expert. Goals, tasks, and criteria upon which job completion is defined 

were listed. An administrative time table presented goals for each expert in terms of 

feasibility studies, formulations, and maintenance of the system. 

An extended methodology for developing these tutors began in Chapter 3 which 

provided a classification of the knowledge needed to be encoded. This chapter then 

described some of the administrative issues to consider and the following chapter will 

continue with a view of available artificial intelligence tools to facilitate building these 

systems. 
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Implementation Issues 

5.1 Tools for Representing Knowledge and Control 

Authors of knowledge-based tutors might some day purchase off-the-shelf Artificial 

Intelligence (AI) tools to develop their systems. They might choose from semantic net¬ 

works, natural language interfaces, planners or explanation systems. Today, however, few 

such AI tools exist outside of laboratories. When they can be purchased, they are often 

incompatible with the language, software package, or hardware already in use. 

Chapter 2 outlined an epistemology for identifying the knowledge needed in a knowledge- 

based tutor. This chapter focuses on how to encode that knowledge. It suggests tools and 

methodologies that might become available and evaluates advantages and disadvantages 

of each. Thanks to active researchers and a wealth of recently formed companies, we 

expect that such software as described here will in fact become available in the short 

term. The next chapter describes issues about software and hardware selection, such 

as alternative programming languages, software tools, knowledge engineering tools, and 

hardware choices. 

Cycle of Development in Artificial Intelligence Systems. Development of intelligent 

tutors, like development of any AI system, requires several iteration cycles: computer 

scientists and instructional designers first collaborate on the design; a prototype is imple¬ 

mented and evaluated; and the prototype is modified and refined based on information 

gained through testing (see Chapter 4). This cycle is repeated as time permits. AI 

programming frequently involves creating machine behavior that has not been seen be- 
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Figure 31 Representation and Control in a Tutoring System 

fore; programmers need to experiment with designs that evolve only as their ideas and 

experience evolve [Brattle Corp., 1984]. Thus AI programming requires skills and tools 

that allow a developer massage a program until it exhibits the sought-after behavior (see 

Chapter 6). 

Representation and Control. Artificial Intelligence programs require a representation 

of knowledge and control structures which define the way an interpreter traverses that 

knowledge (see Figure 31. Knowledge representation refers to how knowledge is stored 

and may include knowledge bases to hold concepts, activities, relations between topics, a 

variety of the lessons, topics, presentations, and response selections available to the tutor. 

Control refers to selection of appropriate pieces of knowledge for making a diagnosis, a 

prediction, or an evaluation. For tutoring, control structures might be specified at the 

I 
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Figure 32 Tools for Reasoning about Tutoring Knowledge 

four levels indicated in Figure 31, separately defining control for selection of lesson, 

topic, presentation, and response selection. Control structures might be motivated by 

specific instructional and diagnostic goals; thus, for example, one control structure might 

produce a predominantly Socratic interaction or another might produce incrementally 

generalized new problems to solve or concepts to explain. Control structures are specific 

to a particular level of representation and uniquely define the reasoning to be used for 

that knowledge base. 

Encoding this large amount of knowledge is difficult and time consuming. The tools 

described in this chapter facilitate representation of and reasoning about such knowledge 

(see Figure 32). For each knowledge base shown in the figure (lessons, topics, presenta¬ 

tion, or response), tools facilitate reasoning about or representing that knowledge. For 

example, if the tutor is about to motivate or teach a topic (from the TOPICS knowl¬ 

edge base), it can choose to provide examples or questions (from the PRESENTATION 

knowledge base). Several tools are available at each step. Only a few will be described 
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Tho face put forth to the student — ENVIRONMENT 
- 9 . textual, visual, simulation, videodisk 

I tie envelope of tools through which a student 
interacts with the system— 
e 9 • granhs, meters, dials, reports 

Student Model 

Representation of the student's 
knowledge— eg. Is coherent, fragmentary, 
Interpretable, consistent 

Teaching Module 

How to advise tin - 
particular studer.t- 
e g . frequency of 

Interuptions, topics 
to discuss, examples 
or analogies to 
present 

Domain Model 

Expert knowledge of the domain— 
e g, how are concepts related, 
problems solved, data analyzed, and 
situations diagnosed 

Figure 33 Four Models in a Tutoring System 

here, namely TUPITS, Exgen, Response Matrix, and DACTN. We divide the discussion 

into two parts, separately describing tools for representing tutoring knowledge and those 

for representing control of search within that knowledge. 

Tools are described along with a system that initially demonstrated the power of these 

tools and the implementation issues raised. Authors of these systems should consider 

similar issues before selecting a tool for a specific implementation. An attempt is made 

to define criteria by which such tools might be judged. The knowledge to be encoded 

is discussed in four sections, detailing domain, student, tutoring and communication 

knowledge as shown in Figure 31 and described in Section 2.4. 

5.2 Encoding Domain Knowledge 

One of the first tasks facing the knowledge engineer is to represent domain knowledge, 

including that knowledge used by the system to perform problem solving in the domain 
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Figure 34 A Portion of SCHOLAR’S Semantic Net [Carbonell, 1970] 

and to evaluate the student s solutions to the same problems. In some cases domain 

knowledge encodes problems for the student to solve or topics to discuss; sometimes it is 

responsible for solving those problems (e.g., SOPHIE [Brown et al., 1982]), or contains 

the processes that first translate a student’s input into usable form for evaluation against 

system knowledge. Sometimes, as a result of adding heuristics to this component, a 

system is able to explain itself and to talk about its own problem-solving reasoning (e.g., 

GUIDON [Clancey, 1982], SOPHIE [Brown et al., 1982]). In such a case, a system is 

said to be “aware of its own knowledge.” Heuristics enable the system to comprehend a 

broader range of input (e.g., WHY [Burton et al., 1982], SCHOLAR [Carbonell, 1970]). 

It results in flexibility in the system’s understanding of a student’s response and its ability 

to interpret the nontraditional response, i.e., responses couched in actions or words that 

differ from the norm. It also enhances the system’s ability to express its own knowledge 

of the domain. 
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5.2.1 Knowledge Representation 

Knowledge representation, as will be demonstrated in the several examples in this 

section, is critical in any tutoring system. Defining a knowledge representation scheme 

means establishing symbols and defining how these symbols will be arranged to reason 

about and produce meaningful descriptions of particular concepts. The representation 

itself is simply a set of syntactic and semantic conventions or symbols that make descrip¬ 

tions of elements or procedures possible. It is a stylized version of the world [Cherniak 

& McDermott, 1985]. Experience with AI systems has show’n that designing a good 

representation is often the key to transforming a hard problem into a simple one. The 

existence of an underlying or internal representation provides a template upon w’hich the 

AI system is built. 

Net works that Represent Topics. One popular way to represent knowledge is through 

semantic networks, as did Carbonell [1970] in his SCHOLAR program. He suggested 

that semantic nets were a feasible model of the way people store and access information 

and assumed that systems could hold mixed-initiative dialogues (i.e., interactions that 

might be initiated by either the student or the system) by traversing such a network and 

asking students questions about the information. Objects and concepts were represented 

as nodes in a semantic network (see Figure 34), and SCHOLAR discussed the subject 

of South American geography (see Figure 35) by traversing the network to answer the 

student’s questions. The system used hierarchical links to define super concepts and 

could perform simple inferencing through propagation of inherited properties. Thus, the 

system knew that Santiago is in South America since it is in Chile and Chile is in South 

America. 

Networks that Represent Curriculum. Semantic networks can also represent a cur¬ 

riculum, or the tasks and skills to be taught. By continually refining the network path 

in response to deficiencies, the system can tailor each teaching sequence to an individual 

student. Such a network can continually undergo refinement and testing as the instruc- 
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tional design research proceeds. BIP (Basic Instructional Program) was an early example 

of such a system teaching introductory programming in Basic [Barr et ah, 1975]. It se¬ 

lected tasks from a semantic network and related tasks in the curriculum to issues to be 

taught Figure 36. In this system, curriculum was represented as techniques, skills, and 

tasks to be presented to the student. The network representation allowed the system to 

teach about complex hierarchies and from non-linear traversal between issues. In deter¬ 

mining the next curriculum topic, the tutor constructed two sets of skills: those needing 

to be exercised and those that were sufficiently mastered to be assumed in a new exercise. 

The objective of this tutor was to select problems that would train the student in new 

skills without including any skills beyond the student’s reach. In teaching a new skill, 

the tutor wTould recognize known materials as skills that were sufficiently mastered. A 

second version of BIP [Wescourt et al., 1977] ordered each skill as a network. Skills wrere 

represented along wdth requisite relations and pedagogical information, such an analogy 

to present to the student. 

BIP did not have much information to relay to the student beyond the brief exercise 

stored in the semantic network. It did not have as one of its goals to understand Basic 

programming beyond the originally stored tasks, and it could not offer feedback beyond 

the simple hints stored with each task. Thus, it wras unable to diagnose students’ logical 

errors, to troubleshoot programming designs, or to suggest new solution plans. The 

system simply advised the student about programming constructs that should or should 

not be used. 

Tutoring Primitives. We define tutoring primitives as those elements needed for 

tutoring, such as topics to be taught, specific tutoring responses, and possible student er¬ 

rors. Thus a domain knowledge base might hold a variety of examples, types of knowledge, 

tasks to be given to the student, and discourse states describing various human-machine 

interactions. For example, we used a network of Knowledge Unit Frames to represent the 

topics, examples, explanations, and possible misconceptions used in the tutors described 

in Section 2.1.3. The frames explicitly expressed relationships between topics such as 
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/equilibrium / 

Figure 37 Hierarchy of Frames 

prerequisites, corequisites, and related misconceptions (Figure 37). An important notion 

about the network is that is declarative—it contains a structured space of concepts, but 

does not mandate any particular order for traversal of this space. The network describes 

tutorial strategies in terms of a vocabulary of primitive discourse moves. It is imple¬ 

mented in a language called TUPITS1 which was used to build both the tutors described 

in Section 2.1.3. It is object-oriented and provides a framework that the tutor uses to 

reason about its next action. 

As shown in Figure 37, each object in TUPITS is represented as a frame and each 

frame is linked with other frames representing prerequisites, co-requisites, or triggered 

misconceptions. The primary objects in TUPITS are: 

TUPITS (Tutorial discourse Primitives for Intelligent Tutoring Systems) was developed by Tom 

Murray and runs on a Hewlett-Packard Bobcat and an Apple Macintosh II. 
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• Lessons which define high-level goals and constraints for each tutoring session (see 

[Woolf et al., 1988]); 

• Knowledge Units (KUs); 

• MIS-KUs, which represent common misconceptions, wrong facts or procedures, and 

other types of “buggy” knowledge; 

• Examples, which specify parameters that configure an example, diagram, or simu¬ 

lation to be presented to the student; 

• Questions, which define tasks for the student and how the student’s behavior during 

the task might be evaluated; and 

• Presentations, which bind an example and a question together. 

MIS-KUs, or Mis-Knowledge Units,” represent common misconceptions or knowl¬ 

edge bugs’ and ways to remediate them. These are inserted opportunistically into the 

discourse. The tutoring strategy parameterizes this aspect of Knowledge Unit selection 

by indicating whether such remediation should occur as soon as the misconception is 

suspected, or wait until the current Knowledge Unit has been completed. 

Acquiring Tutoring Primitives Knowledge. Knowledge acquisition means accessing 

and encoding the questions, examples, analogies, and explanations that an expert might 

use to tutor a particular domain, as well as the reasoning he/she might use to decide 

how and when to use tutoring primitives. The TUPITS system has a graphical editor 

which is used by the instructional designer to encode and modify both primitives and 

the reasons why one primitive might be used over another. The graphical editor allows a 

teacher to generate and modify primitives without working in a programming language. 

The system lists a series of primitives; the user chooses a primitive object, bringing it 

into an edit window, from which he/she can modify it or build new ones. 



114 

5.2.2 Issues Related to Encoding Domain Knowledge 

As shown by the examples above, researchers have used a variety of knowledge repre¬ 

sentations, such as semantic networks and frame-based systems, to encode domain knowl¬ 

edge. The choice between these and other representations should be based on reasoning 

about several issues. Several issues are presented below. 

Grain Size. A knowledge representation “divides up the world” according to a metric 

knowm as grain size, often measured along an epistemological continuum beginning w'ith 

bits-and-pieces” and ending with “chunked elements.” At the bits-and-pieces extreme, 

distinct and unconnected elements are used to represent elements in the subject area 

(as in WHA [Burton et al., 1982]), wThereas at the chunked extreme, relations and mor- 

phisms between elements indicate temporal, logical, or pedagogic connections between 

the elements (as in GUIDON [Clancey et al., 1982]). The chunked representation uses 

connectedness or layers of importance and logical precedence of elements to help create 

groupings for tutoring the knowledge. 

The grain size measurement indicates more than a passive concern for epistemology 

or implementation style. It seems to establish a limit on the flexibility of the system’s 

ability to teach, in that the bits-and-pieces approach can only teach elements indepen¬ 

dently of each other, wrhereas the chunked approach might use the clustering of domain 

connections to structure its tutoring. Moreover, the chunked approach, when modeling 

the abstractions and relations uncovered by cognitive scientist concerned writh how a hu¬ 

man learns the subject area, is better suited to capture generalizations and strategies of 

learning. 

For example, psychological studies suggest that experts chunk their knowledge in a 

number of fields: chess [Chase & Simon, 1981], story understanding [Bower et al., 1979], 

physics [Larkin et al., 1980], and programming [Gerhart, 1975; Soloway et al., 1983; 

Bonar, 1985]. These studies suggest that experts use plans, abstractions or templates to 

understand a domain. Computational chunking of mathemetical knowledge has been de- 
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scribed [Rissland, 1978], and Minsky has suggested that the computer’s ability to “learn” 

and “understand” knowledge is ultimately connected with its ability to “chunk” knowl¬ 

edge [1983]. Minsky recognizes the pedagogical importance of connectivity information: 

I think it s bad psychology when teachers shape our children’s mathe¬ 

matics into long, thin, fragile definition tower-chains instead of robust, cross- 

connected webs. Those chains break at their weakest links, those towers 

topple at the slightest shove. . . . Perhaps, instead, we ought to help them 

build more robust networks in their heads. In real life, the best ideas are as 

cross-connected as can be. 

The secret of what something means lies in the ways it connects to all the 

other things we know. The more such links, the more a thing will mean to us. 

. . . Rich, multiply-connected networks provide enough different ways to use 

knowledge that when one way doesn’t work, you can try to figure out why. 

When there are many meanings in a network, you can turn things around in 

your mind and look at them from different perspectives; when you get stuck, 

you can try another view. That’s what we mean by thinking [Minsky, 1983]. 

In terms of implementation, the bits-and-pieces approach implies, but is not lim¬ 

ited to, a small number of loosely connected nodes or production rules which are then 

sparsely interwoven. A chunked system, on the other hand, is often implemented in 

frames, scripts, or layered and richly linked semantic networks. Most tutoring systems 

lie somewhere between the two extremes. Some even combine the two approaches. For 

example, GUIDON used both approaches. Originally, it was built from hundreds of not 

too well-connected production rules (see next section), and later was reconstructed as a 

richly connected network system modeling the abstractions and generalizations used by 

medical interns. It performed better using the hybrid system. 

Example Grain Sizes. The WHY system [Stevens & Collins, 1977] is an example of a 

bits-and-pieces representation. It used a semantic network of sparsely connected nodes to 
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WHY Do you think the Amazon Jungle has heavy rainfall or 

light rainfall? 
(Rule 1: Ask for a prediction about a particular case.) 

Student: Heavy rainfall 

WHY: Why does the Amazon have heavy rainfall? 
(Rule 2: Ask for prior causeJ 

Student: Because it’s near the Atlantic 

WHY Yes, the Amazon Jungle is near the equatorial Atlantic. 
How does that affect rainfall in the Amazon Jungle? 

(Rule 3: Ask for intermediate cause J 

Student.* The water in the current ie warm 

WHY: Do you think that any place with mountains has heavy 
rainfall? 

(Rule 6: term a general rule for an insufficient cause.) 

Student: Yes 

WHY. Southern California has mountains. Why doesn’t Southern 
California have heavy rainfall? 

(Rule 7. Pick a counterexample for an insufficient cause, and Rule 2- Aik 
for prior causes) 

Figure 38 A Conversation with WHY [Stevens & Collins, 1977] 

describe information about rainfall. Based on a Socratic teaching paradigm, it explained 

data at the point in the knowledge base where the student’s error could be mapped and 

then moved to the point where the correct knowledge was located, eventually questioning 

the student about every intervening topic. However, because the system was inflexible 

about its responses, it tended to badger a student about each detail of the intervening 

topics when it could have generalized over incorrect or missed topics. By assuming that 

tutoring can begin at any point in a network and can continue to any connected point, 

the WHY system attempted to “feed” data to students in a piecemeal fashion. 

The WHY system could have chunked its domain knowledge. In fact, psychological 

studies accompaning the implementation effort uncovered extensive data on how people 

think about rainfall and how common misconceptions tend to cloud people’s reasoning. 

If these data had been included, the system might have predicted student behavior or 

avoided repetitious questioning by, for instance, exploring the student’s knowledge of fac¬ 

tors such as ocean currents or wind direction and predicting from that his/her knowledge 

about rainfall. The system might gloss over, or briefly mention, additional remaining 

factors and not ask the student to elaborate so much detail. 
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hen data are multiply connected, common variables can be taught as units, allowing 

them to be abstracted and explained in terms of their common causal factors. This 

dependency would improve the student’s ability to deal in generalities and help focus the 

machine dialogue on key concepts. 

GUIDON [Clancey, 1979] is an example of a large teaching system in which the bits- 

and-pieces approach failed and a later implementation, based on chunked knowledge, 

succeeded. MYCIN, the large medical expert system from which GUIDON taught, is 

nov used by doctors to diagnose and treat infectious diseases. However, doctors work 

at the so-called ‘ compiled” level where they use rules stripped of the causal reasoning 

and cross-links needed by a student to learn the same rules. In order to teach from these 

rules, GUIDON had to “decompile” and cross-index the stripped down rides and provide 

the student with generalizations and references between the rides. 

GUIDON was originally implemented by “reversing” the rules of MYCIN. The original 

system faded, Clancey said, because medical diagnosis is not taught “cook-book” style 

[Clancey, 1979a]. That is, medical practictioners do not diagnose diseases using perfect 

recall on a huge number of medical facts and rules. They use common variables to 

abstract their knowledge. For example, “yellow coloring is suggestive of liver disorders.” 

To quote Clancey and Letsinger [1981]: 

A psychological model of diagnostic thinking cannot be represented by 

simply rewriting MYCIN’s rules. Instead, the representation and interpreter 

must be augmented, and the rules organized by multiple, orthogonal struc¬ 

tures. 

For example, a simple interpreter change is to allow incoming data to 

cause new subgoals to be set up and pursued. When a physician hears that 

the patient has a stiff neck, the association to meningitis might come to mind, 

prompting him to determine if the patient has a headache as well. To bring 
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about this effect in NEOMYCIN, a new type of antecedent rule had to be 

allowed, and a local change made to the . . . control structure. 

Clancey’s experience suggests that the original GUIDON system was ineffective ex¬ 

actly because inferences between possibly connected elements of the domain were not 

made b) the system. After he added layers of meta-knowledge to include generaliza¬ 

tions and common variables on which the system could draw, the system became more 

effective. 

Multiple Representations. A second issue in the design of domain knowledge is the 

choice of representations. At least two roles are played by the chosen representation. 

One is to solve the problem given to the student (e.g., SOPHIE and GUIDON). A second 

is to use the representation to communicate with the student. The first role suggests 

that the representation should be powerful for problem-solving (e.g., predicate calculus 

or production rules). The second suggests that the representation should be useful for 
\ 

description and explanation of problem solving knowledge. Possibly it should contain a 

subset of terms he/she uses to think about problems, e.g., spatial or temporal relations 

between topics should be expressable in the representation. For instance, if a system 

solved problems in predicate calculus, it should also represent its solutions in a language 

other than predicate calculus in order that the solution be communicated to the student. 

Most systems fail to do both; their representation either solves the problem or explains 

it, but not both. Goldstein [1977] used the term opaque experts to refer to systems 

that cannot explain their reasoning and contrasts these with articulate experts, which 

can explain their problem-solving activities. 

The two roles of representation raise some complex issues. Can the same repre¬ 

sentation be used for both problem-solving and communication? Conversely, could a 

representation that constitutes an expressive language in which to talk to the student 

have enough logical consistency for problem-solving behavior? What is to be done with 

rules and concepts that are expressible only in the more efficient problem-solving repre- 
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sent at ion and are not directly translatable into a language accessible to the student? How 

important is it to make the mechanics of problem-solving at least theoretically accessible 

to the student? For instance, if a system used powerful inference routines to represent 

domain knowledge, should these routines be explainable to the student? How can the 

inferencing mechanism and the rules be conveyed to the student in terms of his /her own 

language? These issues remain active as the development of tutoring systems continue. 

Example Domain Representations. SOPHIE was a landmark effort in the develop¬ 

ment of domain representations [Brown & Bell, 1977]. It used multiple representations 

of knowledge to reason about its domain of electronic circuits and to discourse with 

the student about circuits. It reasoned about the student’s input by using syntactically 

meaningful categories such as “resistors,” “transistors,” and “measurements,” which were 

associated with grammar rules used to parse the student’s input. Each category also spec¬ 

ified the appropriate electronics rule to use, e.g, Kirkoff’s Law, which gives the value of 

the current component when other terminal component values are known. SOPHIE could 

answer the student’s hypothetical questions about circuit values or generate explanations 

about possible faults in the circuit. SOPHIE had knowledge about the rules it used to 

solve problems. It described this knowledge to the student and reasoned about a stu¬ 

dent’s partial solutions. It was able to suggest that a student’s hypothetical test on the 

circuit was superfluous in light of existing data that the student had about the circuit. 

By careful translation of its reasoning into natural language explanations, SOPHIE pro¬ 

duced information that might otherwise have been unavailable to the student because of 

the discrepancy between its problem-solving and its communication representation, see 

Section 5.6.4. 

WEST [Buxton & Brown, 1982] used an embellished rule-base language to reason 

about a student’s skill acquisition in a game playing environment. It coached the student 

by modeling pieces of his/her skills and expressing these, along with explanations and 

suggestions about the “optimal” move, given the conditions of the game. 
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GUIDON [Clancey, 1982] provided an example of the tension produced by the two 

roles of the representation chosen for the domain knowledge. GUIDON consisted of nearly 

1,000 rules to diagnose diseases, yet this representation alone was not adequate to use in 

conversation with the student. The rules were sufficient for problem solving and enabled 

the diagnosis and suggestion of a treatment for diseases. However, the student’s needs, as 

a learner, required a more complex representation, one wrhich included logical relations, 

generalizations, and associations that the original rule set was missing. This discrepancy 

led to a reconfiguration of the domain knowledge into a new system, called NEOMYCIN 

[Clancey & Letsinger, 1981]. 

5.3 Encoding Control Knowledge 

In an AI system control defines search through the knowledge structures in order to 

select appropriate information for making a diagnosis, a prediction, or an evaluation. In 

knowledge-based tutor systems, control enables the tutor to select responses and to tailor 

them for the individual. This section describes two such control structures. The first has 

been built in conjunction with the TUPITS system described in Section 5.2.1 above, and 

the second facilitates generation of examples from a “seed” example base. 

Control in the TUPITS system. Control in TUPITS (see Section 5.2.1), is achieved 

through information associated with each object which allows the system to respond 

dynamically to new tutoring situations. For instance, Knowledge Units, or topics repre¬ 

sented as objects, have procedural “methods” associated with them that: 

• teach their own topic interactively; 

• explain knowledge didactically; 

• teach their own prerequisites; 

• test students for knowledge of that topic; 
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Figure 39 Reasoning About Examples 

• summarize themselves; 

• provide examples of their knowledge (an instantiation of a procedure or concept); 

• provide motivation for a student learning the topic; and 

• compare this knowledge with that of other Knowledge Units. 

A specific tutoring strategy manifests itself by parameterizing the algorithm used 

to traverse the knowledge primitives network based on classifications of and relations 

between knowledge units. Several major strategies have been implemented thus far. 

For example, the tutor might always teach prerequisites before teaching the goal topic. 

Alternatively, it might provide a diagnostic probe to see if the student knows a topic. 

Prerequisites might be presented if the student doesn’t exhibit enough knowledge on 

the probe. These prerequisites may be reached in various ways, such as depth-first and 

breadth-first traversal. An intermediate strategy is to specialize the prerequisite relation 

into “hard” prerequisites, which are always covered before the goal topic, and soft 

prerequisites, taught only when the student displays a deficiency. 
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Control and Reasoning about Examples. Another example of reasoning about tutor¬ 

ing primitives is shown by the actions of ExGen [Suthers & Rissland, 1988; Woolf et al., 

to appear]. ExGen takes requests from the various components of the tutor and produces 

an example, question, or description of the concept being taught. A “seed” example 

base contains prototypical presentations of each type. ExGen’s modification routine ex¬ 

pands this into a much larger virtual space of presentations as needed. The goal is to 

enable the tutor to have flexibility in its presentation of examples and questions/tasks 

that accompany those examples, without needing to represent all possible presentations 

explicitly. 

Requests given to ExGen are expressed as weighted constraints called requests (see 

Figure 39). The constraints are written in a language which describes logical combinations 

of the desired attributes of the example, and the weights on them represent the relative 

importance of each of these attributes. The returned example generally meets as many 

of the constraints as possible in the priority indicated by the weights. 

ExGen is driven by example generation specialists, or knowledge sources, each of 

which examines the current discourse and student models and produces requests (weighted 

constraints) to be given to ExGen. These example generation specialists may be thought 

of as tutoring rules, encoding such general prescriptives as “when starting a new topic, 

give a start-up example,” or “ask questions requiring a qualitative response before those 

involving quantities.” 

The tutoring strategy impacts on this layer of presentation selection by prioritizing the 

relative importance of the recommendations produced by each of the example generation 

specialists. Within a strategy, each specialist has a weight multiplied by the weight of the 

requests produced by the specialists. Altering the behavior of the presentation control 

involves changing the weights on the specialists by selecting a new strategy. 

For instance, one specialist requests that presentations describing the current Knowl¬ 

edge Unit be given, and another requests that the student be questioned. These com- 
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peting requests are ordered by the current tutoring strategy. We are also examining 

strategies for temporal ordering of the presentation of examples, such as Bridging Analo¬ 

gies [Clement & Brown, 1984; Murray et al., to appear] and Incremental Generalization. 

5.4 Encoding Student Knowledge 

A good human teacher knows how a student organizes his/her information, recog¬ 

nizes common learning problems, and distinguishes a student who organizes data in an 

unusual way yet has the correct information. Such a teacher is familar with behavior 

that demonstrates both correct and incorrect rules. 

A machine tutor should also have this kind of knowledge. It should reason about a 

student who solves a problem incorrectly and should gracefully try to remediate miscon¬ 

ceptions. Machine reasoning about a student’s thinking resides in the “student model.” 

Early systems had no student model. At best, they used a stereotypic representation of 

domain knowledge tagged with those topics presumed known and unknown. Few effective 

student models exist today. This section describes several student model types, including 

overlay, skill, and bug modeler. An overlay modeler is a knowledge base which is a subset 

of the domain model; a skill modeler is an overlay modeler in which the domain knowl¬ 

edge is represented as skills; and a bug modeler is a knowledge base (not necessarily a 

skill modeler) in which student errors and misconceptions are represented. 

Overlay and Skill Modelers. The WUSOR student model was designed as an ax¬ 

iomatic base of rules or topics overlaid on the domain knowledge [Carr & Goldstein, 

1977]. The student’s knowledge was seen as a subset or overlay of domain knowledge; 

items were tagged as “known,” “unknown,” or “insufficient data to know.” Other sys¬ 

tems used the overlay model and represented domain knowledge as skills or a proficiency 

gained through experience [e.g., BIP], rules [e.g., WEST], or preferred tutoring styles 

[e.g., WHUMPUS]. When skills are used to model domain knowledge, learning is mea- 
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Figure 40 The Genetic Graph [Goldstein, 1982] 

sured in terms of the student’s ability to use the skill appropriately [e.g., BIP and WEST] 

or to explore the skill. The BUGGY research project [Burton, 1982] provides evidence 

that disputes the validity of using overlay knowledge to represent student knowledge. 

WUMPUS was a skill modeler, which originally used a bits-and-pieces representation 

to model its domain, a simulated warren of 20 or more randomly connected caves, replete 

with dangers and warnings of a dragon [Goldstein, 1982]. The coach monitored a user’s 

attempt to slay the dragon and advised about its location based on reasoning about 

bats, pits, and smells. A Genetic Graph mapped out procedural knowledge in the form 

of reasoning about analogy, specialization, generalization, of information gleaned by the 

user (see Figure 40). This evolutionary epistemology divided the set of rules into phases 

of increasing skills. It indicated the relation between current skills and prior ones and 

provided an indication of the kind of explanation to provide. The coach advised about 
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Figure 41 “How the West was Won” [Burton & Brown, 1982] 

these procedural skills and recognized missing skills, such as a user’s failure to generalize 

from multiple evidence about the existence of a pit. The tutor customized its advice 

based on whether the user failed to generalize, specialize, or use an analogy. However, 

the tutor failed to recognize the relative difficulty of particular skills and thus was rather 

insensitive to the player’s ability to comprehend its advice based on present knowledge. 

It had no mechanism for mixed-initiative dialogue. 

BIP [Barr et al., 1976] was an example of a tutor that used both an overlay and a 

skill modeler to represent student knowledge. It represented the skills of Basic program¬ 

ming in nodes of a branching tree, called the “Curriculum Information Network” (see 

Figure 36). Each node contained the skill, the exercises needed for testing the achieve¬ 

ment of that skill, and correct and incorrect example programs tested a student’s skill 

at each node. Additional information was represented, such as fine-grained knowledge 

about the evolution of the skill, such as analogies to the skill, generalizations from and 

specializations of the skill, and relative difficulty of learning the skill. The tutor searched 
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the curriculum network, through links that expressed the relationship between the skills 

and was enumerated by the nodes. It used inferences to move the tutor through the syl¬ 

labus, making assumptions and evaluations about the student’s weaknesses or strategies 

by evaluating his ability to perform the exercises. One limitation of BIP was that its skill 

modeler was used as the basis of all its tutoring activities: it could neither understand nor 

engage in activities beyond those represented on the nodes of its syllabus. It could not, 

for instance, reason about a misconception which arose from a student overgeneralizing 

about a programming concept or attributing power to a construct that it did not have. 

W EST was another example of a tutor that used an overlaj' modeler. It demonstrated 

how the overlay methodology can break down. WEST coached students wTho solved 

algebra problems and the object of the game was to move a player across an electronic 

gameboard, see Figure 41. Movement of the player was geared to the largest algebraic 

value a student could construct from the value randomly provided by three electronic dice 

on the screen. The system moved the student’s pieces a distance equivalent to the value 

constructed. A simple overlay modeler was used to project the student’s recent choice of 

algebra operators on top of those that would have been chosen by an expert in the same 

situation. The tutor recognized the student’s moves or missing skills and described these 

to him/her along with an example of the optimal strategy. 

However, the system often misunderstood the student’s problem-solving steps and 

reasoned that an error had been made, when in fact the student chose a move wrich didn’t 

lead to a win. For example, the students often did not take advantage of features that 

might improve their performance. Often they might not use special features that would 

lead them to gain advantages such as “bumps” to remove an opponent’s icon and place 

it several positions behind and “shortcuts” to reduce the normal pathway to the goal. 

Also, because the student enjoyed watching the icon move more slowly across the board, 

he/she might not take advantage of these moves. Yet, the system evaluated failures to 

use “bumps” as a lack of knowledge on the student’s part, then “missing bumps” were 

incorporated into the student model in terms of missing skills. The system recorded that 
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the student was not capable of writing the preferred algebraic equation, when, in fact, 

the student’s failure to do so was predicated on other goals. The original WEST system 

did not understand this situation, though a later implementation did. 

W EST could have either included the bug in its student model or could have ques¬ 

tioned the student about his motives before accusing him of not being able to write the 

requisite equation. However, the system was designed to entertain as well as to educate 

and the designers chose not to question the student’s goal. Its methodology was to remain 

unobtrusive and to interrupt as little as possible. 

Bug Modelers. Though the systems described thus far could present a variety of 

information to a student, they could not deal effectively with student errors. In order to 

do so, the system would need to include bugs in its student model and would need to 

bias the tutor’s knowledge toward recognizing inconsistencies in the student’s reasoning. 

Several systems exist which are able to recognize a subset of errors [e.g., BUGGY]. Such 

systems are called bug modelers. 

BUGGY wras a system that resulted from an extensive study of student errors in the 

area of simple arithmetic exercises [Brown and Burton, 1978]. BUGGY represented both 

correct and incorrect procedures of simple exercises and developed a methodology for 

reproducing the errors people make in a procedural skill. For instance, the system could 

produce 330 “bugs” for subtraction. The correct or incorrect procedures of the same 

skill were represented and applied for solving substraction problems. Passage through 

the procedures resulted in the application of correct procedures; insertion of incorrect 

procedures in the network led to an incorrect solution. 

BUGGY was not built to teach students; it was designed to illustrate the power a 

system would gain if it could automatically generate all possible incorrect student answers. 

But the implications of BUGGY are great. It provides computational evidence that 

student behavior is not a subset, nor a simplification, of expert behavior. Rather, errors 
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can be explicit and systematic deviations from correct procedures. As such, BUGGY 

provided evidence against the use of an overlay model of student knowledge. 

5.5 Encoding Tutoring Knowledge 

The tutoring component contains strategies, rules, and processes to govern the sys¬ 

tem s instructional interactions with a student. It holds knowledge about how to teach 

and determines, for instance, what instructional tool will be tried, when, and how1 often 

(e-S-j provide a hint or ask a question). Some of the reasonableness or intrusiveness of a 

system is determined by this component. 

Decisions made here are informed by reasoning done in the domain and student mod¬ 

els. This component is not responsible for language processing, discourse management, 

or input-output behavior of the system. Communication activities, similar to those re¬ 

quired of any interactive discourse system, rightly belong in the communication model, 

which determines the syntactic and rhetorical features of the interaction. The tutoring 

component itself handles only how to act based on the tutoring objectives of the system. 

It makes decisions about which goal to pursue, problems to present, questions to ask, 

hints to provide, and how to further interact with the student. 

For example, GUIDON had a most sophisticated tutoring and dialogue model (see 

Section 5.2.2 above and [Clancey, 1982]). It included knowledge of discourse patterns and 

the means for varying strategies that the tutor used to guide the dialogue. Tutoring rules 

decided when a remark might be appropriate, whether to take the option, and what to 

say. One rule, for instance, used “entrapment” to force the student to make subsequent 

answers that will reveal some aspect of his understanding (or misunderstanding). Other 

rules explicitly defined how a subgoal would be discussed; e.g., suggest a subgoal, then 

discuss the goal, and finally, wrap up the discussion of the rule being considered. The 
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system was able to carry on a flexible dialogue by switching its discourse at any time 

to portions of an AND/OR tree, which represents the domain knowledge. It used state 

variables in addition to the rules and rule sets, to keep track of context. Thus GUIDON 

had dynamically updated the view of the student and the discouse history. 

Tutors can represent and reason about alternative responses to the student. Choices 

being made are concerned with how much information to give and what motivational 

comments to make. For instance, the machine must decide whether or not to: 

• talk about the student’s response; 

• provide hints, leading questions, or counter-suggestions; 

• provide motivational feedback about the student ’s learning process; 

• say whether an approach is appropriate, inappropriate, correct, or incorrect, and 

say what a correct response is. 

Motivational feedback may include asking questions about the student’s interest in 

continuing or providing encouragement, congratulations, challenges, and other statements 

with affective or prelocutionary content. Control is modulated by which tutoring strategy 

is in effect, which in turn places constraints on what feedback or follow-up to generate. 

The strategy may also specify that system action be predicated on whether the student’s 

response was correct, or even that no response is to be given. 

5.5.1 Tools for Reasoning about Discourse 

This section describes several tools which enable a tutor to reason about and generate 

tutoring response. For example, Figure 42 displays one such tool which guides a system s 

ability to elaborate, give reasons and congratulates the student. The tool advises about 

strategies such as Socratic tutoring which would include being brief and not giving away 

the answers. For each approach primitive responses are available m TUPITS for the 
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Figure 42 Reasoning about Discourse Level 

machine to perform the requested tactic. The tool defines a priority ordering for selecting 

each response tactic; thus to be Socratic, the machine must place highest priority on the 

tactic called “coy” and a secondary priority on the tactic “be informative.” If there is a 

conflict between tactics, the one with the highest priority will win. 

We realize that a more flexible and responsive discourse management technique than 

that shown in Figure 42 is critical to a tutoring or consultant system. By discourse 

management, we mean the system’s ability to maintain interactive discourse with the 

user and to tailor its responses beyond the generalized discourse level suggested above. 

Ideally, the system should customize its response to the idiosyncracies of a particular 

user. 

Ideally, the system should ensure that an intervention relates directly to an individ¬ 

ual’s personal history, learning style, and on-line experience with the system. It should 

dynamically reason about a user’s actions, the curriculum, and the discourse history. In 

doing this, the tutor should make each user feel that his/her unique situation has been 



Figure 43 Discourse ACtion Transition Network: DACTN 
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responded to, appropriately and sensitively, i.e., it should simulate one-on-one human 

tutoring behavior. 

The mechanism we use to do this is called a DACTN, Discourse Action Transition 

Network,2 which represents primitives in human-machine dialog. Figure 43 is a DACTN 

for responding to a user about the inventory test of questions that he/she took in the 

system described in Section 5.2 below. This graphic is taken directly off the screen of 

that system. Sometimes the intervention steps designated by a DACTN are based on a 

taxonomy of frequently observed discourse sequences which provide default responses for 

the tutor ["Woolf & Murray, 1987]. The discourse manager might also reason about local 

context when making discourse decisions, where local context is taken to be an aggregate 

of the user profile and response history. 

PHASE PHASE 2: 
Initial Client Intervention/ 

Assessment Evaluation 

Figure 44 Two Phases of the Consultant 

A DACTN represents the space of possible discourse situations: Arcs track the state 

of the conversation and axe defined as predicate sets while nodes provide actions for the 

tutor. The discourse manager first accesses the situation indicated by the arcs, resolving 

2Rhymes with ACT-IN. 
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any conflicts between multiply- satisfied predicate sets, and then initiates the action 

indicated by the node at the termination of the satisfied arc. 

Arcs represent discourse situations defined by sets of predicates over the client profile 

and the state of the system. For instance, the value of the arc “CLIENT-IS-AVOIDING” 

(top half of Figure 43) is determined by maing inferences over the current state of the 

profile and recent client responses. Placing actions at the nodes rather than on the arcs, as 

was done in the ATN, allows nodes to represent abstract actions which can be expanded 

into concrete substeps wrhen and if the node is reached during execution of the DACTN. 

For example, the node “EXPLAIN RESULTS” (middle of Figure 43) expands into yet 

another complete DACTN (recursively) to be executed if this node is evaluated in the 

course of the intervention. 

5.5.2 Example of a System That Manages Discourse 

The discourse action network presented in the previous section is part of a consultant 

tutor [Slovin & Woolf, 1988] which first tests a user’s knowledge and skills in the area 

of time management and then enters into a discussion about techniques to promote 

awareness of a variety of time perspectives. Each user response causes the user model, or 

in this case the personality profile, to be updated, which in turn affects the interpretation 

of the current discourse situation. DACTNs allowT discourse control decisions to be based 

on a dynamic interpretation of the situation. In this wray the mechanism remains flexible, 

domain-independent, and able to be dynamically rebuilt—decision points and machine 

actions are modifiable through a graphical editor, as explained in this section. DACTNs 

have been implemented in two domains, one of which is described below. 

TEV (Time, Energy, and Vision) presents interventions directed at improving an 

individual’s personal time perspective [Slovin & Woolf, 1988; Blau et al., to appear]. 

The system moves through two phases which model the human-to-human consultation 

process: 1) Initial Client Assessment, and 2) Intervention/Evaluation (see Figure 44). 



134 

Figure 45 Evaluation of a Present-Oriented Time Perspective 

Phase I: Initial Client Assessment. During the first phase, TEV gathers infor¬ 

mation about the person’s attitudes, knowledge, and skills using an assessment instrument 

which, in a non-computerized version, has been tested with 11,000 individuals. The client 

is presented with a series of statements which focus on attitudes, knowledge, and skills re¬ 

lated to time perspective (Stanford Time Perspectives Inventory [Gonzales & Zimbardo, 

1985]). For each statement, the client is given a choice of five ratings ranging from very 

characteristic to very uncharacteristic and is asked to indicate “How characteristic is this 

of you?” Example statements include the following: 

• Thinking about the future is pleasant to me. 

• H things don’t get done on time, I don’t worry about them. 

• I do things impulsively, making decisions on the spur of the moment. 

• I try to live one day at a time. 

Responses are evaluated according to the established interpretation of the instrument 

and then used in two ways. First they are shown to the client in a graph form based on 
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the client’s rating among his age-group peers (see Figure 45). Then an explanation of 

the results is provided along with an opportunity for the client to react (see Figure 46). 

The evaluation and the client’s response are used as the initial database to form an 

internal client profile. The profile is used to help determine the future direction of the 

consultation process and to generate expectations about client responses. It becomes 

the primary determining knowledge base for designing the consultation and is constantly 

updated to provide a moment-to-moment view of the client. 

Tutor: Your scores indicate that you have a basically present oriented time per¬ 
spective. Do you agree? 

Person A: No, I think 1 also consider the future in my life. 

Tutor: Well, let’s look more closely at your scores, and see where you think they 
are wrong. 

Person A: OK. 

Tutor: Your score on the hedonism scale indicates that you may be extremely 
similar to people who are primarily interested in having a good time, taking risks, 
and who often act impulsively. Does that sound like you ? 

Person A: Mostly, but it sounds a little extreme. 

Tutor: OK, let’s look now at the fatalism scale; it indicates that you may be very 
similar to people who live one day at a time in order to avoid planning for a fututre 
they believe is determined by fate. Is that what you do? 

Person A: Yes, I guess so. 

Tutor: Let’s look at one more scale, Goal-seeking. Your score here shows that 
• you may not be similar to people who plan for the future and get satisfaction from 
setting and achieving their goals. Do you agree? 

Person A: It is true that I don’t do much goal setting. 

Tutor: It was mainly your scores on these scales that led me to view you as 
basically a present-oriented person. Since you disagree with the hedonism score 
slightly, why don’t we say slightly present-oriented ? 

Person A: Yes, that sounds more like me.3 

Figure 46 Dialogue about the Evaluation of Figure 45 

Phase II: Intervention/Evaluation. The second phase uses the profile to begin 

the consultation process. Here the goal is to create an ongoing dialog which leads the 

client to form and hold a more balanced time perspective. A second goal is to improve 

the client’s repertoire of useful time management behaviors. These goals are achieved 

2The dialogue is not generated through natural language processing, rather through menu input and 

canned text output. This might be a limitation of the system, however, prior work in the area of computer- 

based therapy [Servan-Schreiber, 1986] shows that clinically significant therapy can be achieved in spite 

of this limitation. 
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through dialogue consultation, specifically through the use of interventions, which are 

exercises or presentations designed to facilitate awareness of time perspectives or to pro¬ 

vide learning or practice of skills. Example interventions are “Learning to Say No,” “Life 

Goals, and Time Wasters.” Dialogue strategies are derived from a large repertoire of 

similar activities used in one-on-one and group counseling over the last 15 years by ex¬ 

perts in clinical psychology. These strategies and interventions have proven effective in 

improving time management skills for a large number of people. TEV’s orientation as a 

consultant tutor has led to a view of interventions as dialogs. Each intervention is seen as 

a distinct segment of an ongoing dialogue between TEV and the client which is extended 

by presentation of the next intervention. The consultation experience for each client 

is uniquely defined by the composite of high-level interventions and low-level discourse 

actions resulting from his/her responses to the system. 

Representing Discourse as Alternative Plans. Discourse knowledge is represented as 

alternative plans. Knowledge of alternative curriculum activities is stored as predefined 

plans and alternative discourse moves are stored as different plan contingencies in these 

prestored plans (see Figure 47). The consultant has limited planning ability to manage 

these plans and plan contingencies. Pedagogical activities and discourse knowledge have 

been articulated by a clinical psychologist and are used to generate the lesson plan in 

response to client input during the lesson. The DACTN described in the previous section 

manifests one characteristic aspect of the computational model of didactics. It is referred 

to as the plan of action or lesson plan that enacts didactic operations [Wenger, 1988]. The 

local context in which a particular plan of action is triggered was described in the previous 

section. The plan of action is a unit of decision in the didactic process that manages 

knowledge about the curriculum, the available teaching resources, and the client’s needs. 

In the case of a consultant, the curriculum consists of a prioritized overlay of skills, 

behaviors, and concepts which the client should be able to understand, demonstrate, and 

integrate into his/her life. (Example skills the tutor might discuss are how to keep a “to- 

do” list and how to state priorities for the next month.) The plan of action is controlled b) 
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Plan of Action 

Intervention Selection Mechanism: TISM 

[ 
Local Control: 

Execute DACTN 

i r 

Curriculum: DACTN: 
overlay model ot Individual Pedagogical 

skills,tasks, and behaviors Strategy 

1 

Figure 47 Levels of Control in TEV 
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the TISM (Tev’s Intervention Selection Mechanism) which models an expert’s ability to 

select appropriate interventions for a specific student. For each instructional objective, 

several pedagogical approaches (DACTNS) are indicated as being able to achieve the 

chosen objective (see Figure 47). Alternatively, for each pedagogical approach, or single 

DACTN, several curriculum objectives might be achieved. Our experts have developed 

a library of resources to teach alternative curriculum items, such as identifying time- 

wasters. During a one-on-one consulting session, TISM chooses among these resources 

based on an understanding of the needs and learning style of the client. 

These resources are represented in the consultant in the form of interventions. The 

system reasons about the current context in generating the next step in its plan of action. 

It is constrained by the client assessment, a record of the client’s state of knowledge, and 

system history. The TISM is responsible for establishing a globally coherent instructional 

objective and for ensuring that curricula items follow each other in a way that matches 

the client’s needs. 

Acquiring Discourse Knowledge. Knowledge acquisition for discourse knowledge in¬ 

volves encoding the reasons why an instructor makes decisions and how he/she decides 

when such interventions will take place. The TEV system facilitates knowledge acquisi¬ 

tion by use of a graphical editor in which the instructor selects interventions and modifies 

the dialogue “on-line.” The editor facilitates piecewise development and evaluation of the 

system, thus providing an opportunity for a wide circle of people, including psychologists, 

teachers, curriculum developers, and instructional scientists, to participate in the process 

of system implementation. 

Because DACTNs provide a structured framework for representing dialogs, we have 

been able to develop a visual dialogue editor which allows an expert to create new inter¬ 

ventions graphically. These interventions are automatically translated into LISP code. 

This allows the experts to work on knowledge acquisition without having to work with 

knowledge engineers. Thus we continue to elicit new interventions from our experts even 

as development and evaluation of TEV proceeds. By adding interventions to the libran 
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and by linking them to the curriculum we expand TEV’s repertoire without reworking 

the entire system. The dialogue editor allows an expert to directly manipulate a graph of 

the dialogue where each question, statement, or action is represented in an editable node, 

and each arc (also editable) represents a discourse situation that could result from the 

client s response. The expert adds a new question or statement and is led through a series 

of prompts designed to elicit the possible client responses. Each response has associated 

with it two pieces of information: a classification of the response, which is based on the 

current user profile, and the profile updates related to the choice of this response. Using a 

small set of classifications, i.e., EXPECTED, INDICATES-CONFUSION, AVOIDANCE, 

etc., the expert indicates his/her understanding of the meaning of this response. These 

classifications may depend on the current user profile, since this provides an indication of 

context. The profile modifications may include both updates based on the classification 

of the response and updates specific to this question and response. As each question is 

added the graph is updated so the expert always has a view of the current state of the 

intervention. The underlying DACTN is created dynamically so that at any point in 

the editing it can be executed against default profiles, allowing the expert to check the 

appropriateness of the machine’s responses. 

5.5.3 Issues Related to Encoding Tutoring Knowledge 

Tools for encoding tutoring strategies are being developed currently in research lab¬ 

oratories, see for example [McCalla et al., 1988; MacMillan & Sleeman, 1987; Woolf et 

al., 1988]. Few tools are available today for use in application systems. Several issues 

remain to be addressed before such tools become generally available, some of which are 

discussed below. 

Plan Recognition and Planning Systems. Recognizing the intentions of a student is 

very important to management of a tutoring interaction. A system should attribute to 

the student goals, planning abilities, and knowledge that a teacher might automatically 

notice, and it should match a student’s observable activities with its own stored plans. 
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Figure 48 Screen for Tutoring about Force [Duckworth et al., 1987] 

Where exceptions do occur, the system should generate plausible explanations of the 

student’s intentions. 

When a student’s actions are observed, the machine might reason, “Given this re¬ 

sponse, what belief or goal could it be in the service of?” This inverse of the planning 

problem, called plan recognition, involves observing the low-level responses and inferring 

the high-level belief or intention. The system might store plans of student actions and 

presumed goals used in problem solving, e.g., Johnson and Soloway [1984]. 

Additionally, a tutoring system usually has its own goal to perform (e.g., test a 

student’s knowledge of passive forces) and it should direct its actions to be in service of 

this goal (e.g., provide a graphic of a table with books on it and ask the student questions 

about the existent forces). 
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[plan_for: Force.experimentation 

objects: 

steps: 

boom (fixed boom cable) 

cable (fixed wall cable) 

weight (attach weight to 

crane) 

present .graphic 

experiment-task (allow 

free play) 

; the boom should be fixed to the cable 

; the cable should be fixed to the 

wall and boom 

; the weight should be attached to the crane 

; allow student to investigate graphics 

question-task (ask ; ask student to produce force vectors 

force lines) 

evaluate.task (compare ; compare student’s answer with that of expert 

with expert) 

remediate-tasks ; respond to student’s actions 

constraints: (allow’ experimentation 

before questioning) 

(respond to student 

questions)] 

Figure 49 Plan Schema for Tutoring about Force 
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Figure 50 Goal Tree for Tutoring about Force 
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Figures 49 and 5U suggest a plan for teaching statics. They show the fundamentals 

of planning and plan recognition notation, Figure 49 defines a set of actions taken by the 

tutor such as “present-graphic” or “question-task,” and Figure 50 defines a set of higher- 

level explanatory goals such as “provide force environment” or “explore knowledge.” 

Clearly the actions of the tutor provide a way of achieving tutoring goals. Thus, to go 

from observed action ‘question-task” to its abducted goal, we assume that the action 

was a way to achieve the goal, such as “explore a student’s knowrledge.” The action can 

be a wra> to do the goal, such as “question-task” or it could be a step in doing the goal, 

such as “ask for force vectors.” 

Thus, ask question” is both an item to be explained within an action, explainable 

by the goal to “explore a student s knowledge,” and it can be the explanation of the step 

ask for force vectors.” This is possible because explanation is an iterative process: once 

an explanation is found, a deeper explanation for that explanation can be found. 

Using the plan scheme from Figure 49 we infer w'hich choices have been made by the 

person teaching statics. The set of all plan selections gives rise to a goal tree such as 

shown in Figure 50. The nodes correspond to plans, broken down into steps, each of 

wThich must be executed. 

For example: 

(and(event provide-graphic) 

(event allow'.experimentation) 

(event explore_student’s knowledge) 

(event evaluate response) 

(event remediate)) 

The planner’s execution of the goal “provide experiments for force” explains the execution 

of the action “provide_graphics,” “allow.experimentation,” etc. A planner might start at 

the top of the goal tree (Figure 50 and work its way down, initiating actions to achieve 

a goal. A plan recognition system on the other hand starts from the bottom (from an 
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obser\able action) and works its way up the tree. So, if a student is involved in an 

experimental environment that allows him/her to manipulate elements of torque, the 

tutor might infer that the student is trying to learn statics. At each step, the system 

looks for a goal action such that the observed action is either a way of accomplishing the 

goal or a step of the plan for doing the goal. A plan recognition system works its way up 

the plan-schema tree until it gets to an action that is recognized as being the final (or 

highest) explanation provided. 

Learning Styles. A tutoring system has at its foundation a model of human learning 

such that design of the tutor is generally in service to a particular view of learning. In 

this section, W'e sketch three possible philosophies of human learning and the impact each 

has on the definition of rules and strategies for a tutoring model. Human learning is 

complex and as yet incompletely understood. Clearly it will not be reduced to the simple 

learning stereotypes or behavior patterns suggested below'. Nevertheless, stereotypes are 

helpful in defining a way to model learning and in providing a minimal basis for a learning 

philosophy. 

Behaviorist Learning. Behaviorist learning, perhaps best epitomized by rote learn¬ 

ing, suggests that people learn best by repetition and strong reinforcement [Pope, 1982]. 

According to this approach, bugs play an inconspicuous role; indeed, they are problems 

to be eliminated. Little time is spent understanding or repairing them. 

Most pre-AI systems utilized a variation on this approach for their tutoring (e.g., 

PLATO [Bitzer et al., 1961]). BIP [Wescourt et al., 1977] assumed that an error indicated 

that the user needed more practice, and provided new problems to solve. It ignored 

student errors. However, it did provide a sophisticated variation to drill and practice, 

when the student’s answers were wrong, it gave a more refined problem that exercised 

the presumed errorful skill. The system was not too effective, possibly because a student 

needs explanations and rich, supporting data to weave new knowledge into an existing 

and possibly errorful knowledge structure. 
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Constructivist Learning. The constructivist philosophy of learning suggests that hu¬ 

mans learn by assimilation, accommodation, and equilibration [Piaget, 1971], Assimila¬ 

tion is the process whereby an internal structure seeks activity by incorporating to itself 

some en\ ironmental data. Accommodation is the process whereby that internal structure 

is applied to a particular external situation. Since all external situations will contain some 

element of newness, accommodation leads to the differentiation of a previous structure 

and thus to the emergence of a new structure. Equilibration is the regulatory factor that 

unifies development and evolution. Intelligence makes explicit the regulations inherent 

in an organization. As a state, it is a continual balancing of active compensations. The 

implication of this philosophy is that a teacher should provide a rich “environment” and 

a wealth of extra information, including alternative views for the student to assimilate 

and accommodate. In order to learn, however, the student needs to constructively in¬ 

teract with the environment. He/she is fully responsible for the learning. He/she might 

assimilate information that is consistent with existing structures of knowledge and when 

the new knowledge is inconsistent with existing structures, accomodation might occur 

resulting in a restructuring of the knowledge. 

According to this philosophy, the onus to learn is upon the student. The teacher might 

facilitate the process by probing weak areas or by clarifying confusing concepts. A So- 

cratic dialogue, for instance, is an approach consistent with the constructivist philosophy 

[Plato, 1922; Collins, Warnock & Passafiume, 1975]. It uses techniques like overgeneral¬ 

ization of a student’s error or applying his/her results to illogical consequences in order 

to reveal the error in reasoning. 

Bugs play a central role in developing a tutoring approach based on this learning 

philosophy. Bugs identify the site of an error and make both the site and the nature 

of the knowledge around it explicit. They provide a window into the student’s beliefs 

and a way to begin the tutoring process. (See Sussman [1973] and Austin [1976] for a 

computational assessment of the importance of bugs in learning.) A teacher, whether 

human or machine, sometimes cannot easily locate student bugs. Nevertheless, one can 
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tr> to make bugs explicit and present enough information to repair and rebuild knowledge 

around them. 

^ EST [Burton & Brown, 1982] attempted to identify errors in a student’s game of 

arithmetic skills and to reveal them to the student (see Section 2.2.5). It described the 

issues and missing concepts and provided a concrete example of their correct use. The 

tutoring strategy wras aimed at providing enough information for the student to construct 

his/her own knowledge. 

Imitative Sponge Learning. The sponge approach to learning lies close to and per¬ 

haps overlaps the behaviorist learning approach. It is based on two assumptions: (a) the 

teacher has the requisite knowledge and (b) the student is both prepared and capable of 

absorbing” that knowledge—like a sponge—in much the same form as the teacher has 

structured it. This view of learning implies that tutoring includes, and might be limited 

to, correctly displaying knowledge to a student. 

A system that defines and essentially tutors from explicitly organized domain knowl¬ 

edge has as its premise that learning consists of imitating the teacher. However, psycho¬ 

logical studies suggest that experts and novices structure knowledge of the same subject 

area differently (see, for instance, Chase and Simon [1981]; Larkin et al. [1980]; Soloway 

et al. [1983]). Variations in the way a novice structures knowledge as compared to the 

way the expert does it must be addressed by a tutor, human or machine. Few machines 

can do this. 

5.6 Encoding Communication Knowledge 

The communication model provides the interface between human and machine. Its 

primary activity is to converse with the student. This does not mean through natural 

language processing; it can mean one of several forms of communication such as menus 

or graphics, some of which are discussed in this section. Tutors exist that parse natural 
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language input and generate natural language output. However, such natural language 

processing does not guarantee that either a student’s meaning or a machine’s objective 

will be understood. 

New media technologies provide a wealth of possibilities for this model. Technologies 

such as Compact-Disk Interactive (CD-I), Compact-Disk Read Only Memory (CD-ROM), 

and hypertext provide new ways to communicate knowledge to the user. Possibilities 

Presented by this new media include combining a knowledge-based tutor with television, 

audio, images, or film to illustrate new information. New methods of communication have 

already emerged as machines offer operations such as browse, annotate, link, elaborate, 

explore and integrate information. 

Knowledge-based tutors might some day act as gateways to encyclopedia-type clear¬ 

inghouses of knowledge, made possible by advanced media technology. Tutors might act 

like intelligent agents which learn a user’s preferences and prior knowledge. Intelligent 

technology such as described in this document, melded with new media technologies will 

enable people to access information easily in remote libraries, museums, data bases, or 

institutional archives. Given innovations in both knowledge-based and media techno- 

logues, the student will become an active learner, with the ability to manage, access, and 

manipulate vast quatities of information. Providing a wealth of communication materials 

requires computer-controlled videodisk and/or a CD-ROM (Compact Read Only Mem¬ 

ory) as discussed in this section. 

5.6.1 The Role of Communication Knowledge 

Communication knowledge should enable a machine both to unambiguously receive 

human input and to unambiguously express the system’s intent. As the planet comes on 

line [CasaBianca, 1988] and vast amounts of knowledge become available, the computer 

should be able to communicate more sensitively and to reason about the user as an 
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Figure 51 The Wired Society 
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intelligent tutor might reason about a student. Through personal computers vast amounts 

of information will become available, and the individual will become a node of a large 

electronic global communication network. However, the problem becomes one of indexing 

and searching large amounts of knowledge. 

A student even more than a typical computer user—cannot express what he/she 

does not know. It is counter-productive to ask a student what he/she would like to 

learn next. The student might not have a clear idea of the current topic or the prereq¬ 

uisite knowledge. Thus, a tutoring system—even more than a discourse system—must 

be equipped to recognize deficiencies in the student’s interaction with the knowledge and 

his/her articulation of knowledge. Intelligent information resources, such as Al-based tu¬ 

tors, might provide the framework for a new global “wrired society” in which the student 

gains access to knowledge and to a variety of media forms (see Figure 51). 

The communication model is informed by the discourse model (which analyzes student 

input), the tutoring model (which reasons about an appropriate tutoring strategy), and 

the student model (which analyzes unexpressed student beliefs and intent). Historically, 

this component has been the last to benefit from sophisticated A.I. techniques; today it 

increasingly includes AI heuristics and techniques to enable the system to manage the 

dialogue intelligently. 

For our purposes, communication amounts to “understanding the student’s deeper 

meaning.” The problem of understanding becomes acute if the student’s knowledge is 

organized in a way different from that stored by the system. In such a case, it is difficult 

for a system understand the student, which, in part, requires the ability to ask appropriate 

questions and focus on relevant issues. 

The communication model, for instance, is responsible for managing mixed initiative 

dialogue that allows either the student or the system to ask the next question. This kind 

of interaction is responsive on a local level; the student might be allowed to ask questions 

but eventually the system will take control and resume its topic (see Section 5.2 above 
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and Figure 35). Production rules are often used in this component to allow the student 

to pursue some subgoal while enabling the system to regain global control after a fixed 

number of interactions, or when the student relinquishes control (e.g., as in GUIDON). 

5.6.2 Examples of Communication Media 

This section describes recent innovations in the area of communication media for 

tutoring systems. It provides example systems that employ multi-media for training 

and teaching. Examples are drawn from projects in Compact Disk Interactive (CD-I), 

Compact-Disk Read Only Memory (CD-ROM), hypertext, and intelligent tutoring sys¬ 

tems. The next section describes some issues in the development of a communication 

model. 

Hardware and software innovations offer real-time digital, audio, and video education 

to schools, offices, and homes. The digitization of information is the driving force behind 

the merger of media and information. Compact disk and laser technology has enabled 

the digitization of sound, video, and 3-D graphics. Ultimately, CD and computer systems 

will interact by way of digital networks and fiber optic telephone systems that w?ill be in 

place throughout the United States possibly by the mid-1990s. 

Compact Disk Interactive (CD-I). Compact Disk Interactive (CD-I) technology al¬ 

lows a user to interactively direct the future visual sequences, sound, stills, and animation 

in a programmed disk. User interaction produces both the next sequence in a movie or 

the next visual screen and the next sound. Products that incorporate full CD-I have been 

released by companies such as AIM in 1989 [CD-ROM Conference, 1988]. 

The visual capability of CD-I is very high, including video resolution stills that are 

equal in quality to a TV studio picture. Red/green/blue computer graphics are available 

in various combinations of resolution and color depth. Audio stored on a CD-I disk is 

virtually indistinguishable from full CD digital audio. 
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An example of this technology is Dark Castle, an emerging CD-I product [Brewer, 

I988]-3 The product provides highly animated, full movie-like screens, believable sound, 

and an internal computer that allows the user to generate random sequences of audio, 

video, and combinations therein. 

The product is based on a highly interactive game by the same name which now runs 

on a Macintosh. Dark Castle allows the user to direct the travels of an adventurer hero 

who fights off dragons, monsters, and other enemies based on the directives given to the 

system bj the user. In the CD-I version, the user clicks a mouse to move various objects 

on the screen. Thus the hero can be manipulated to perform a variety of actions, such 

as enter a room or climb a ladder. A simple hypertext script (see below) ties together 

objects, such as a desk, a ladder, and a stone, as well as text on the screen, spoken 

narration, and visual illustrations. Objects or words are linked with corresponding audio 

or animated actions. The user causes the scene, the hero, and the situation to change 

based on his/her choice of the next scene or activity. 

The disadvantage of the present crop of emerging CD-I products is that there is no 

intelligence in the computer’s actions, no reasoning about the user’s activities, or ability 

on the computer’s part to problem solve. This will be handled when AI techniques are 

incorporated into CD-I (see Section 5.6.3). 

Compact Disk Read Only Memory (CD-ROM). A CD-ROM is a compact disk used 

as a computer storage medium. It stores data and other mixed media on a disk about the 

size of a traditonal 5-inch floppy (see Figure 52). The first CD-ROM product released for 

mass consumption was the Grolier Electronic Encyclopedia, which is a complete text of 

a 20 volume encyclopedia (with no pictures). Computer searches through the CD-ROM 

allow intersection of multiple words as well as use of AND, OR, and NOT operators. 

One problem with this technology is that other applications are not accessible to the user 

while he/she is in the middle of a CD-ROM product. Other CD-ROM products include 

3Dark Castle is being produced at America Interactive Media (AIM), Los Angeles, CA. 
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Figure 52 Compact Disk Technology 

textual compendiums such as a dictionary, almanac, zip code listings, Bartlett’s familiar 

quotations, and the World Almanac. 

Hypertext. 

“The written word has been sequential for the past 3,000 years. Suddenly we 

find that it doesn’t have to be that way” (Ted Nelson, as quoted in CasaBianca 

[1988b]). 

Figure 2.14 is from the Intermedia Hypertext System developed at Brown University 

[Yankelovich et al., 1985]. Such systems allow students to retrieve complete texts, stories, 

biographies, graphics, animation, sound, movies, motion video, microscope pictures, or 

audio as needed and to arrange them in terms of the students’ priorities. Intermedia 

shows that words and pictures need not organize into hierarchies. Documents can have 

arbitrary beginnings and endings and can be explored rather than read sequentially. 

Computers and rational databases give us this power, by permitting zig-zag motion based 

on information being examined along hyperpaths. Hypertext provides for non-sequential 

reading and writing. Users can browse through networks of information, sample bite-sized 
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Compact Disk Intelligent Tutoring Systems 

Figure 53 Merger of Compact Disk and Knowledge-based Tutors 

pieces of information, and add to this living database by inserting their own links and 

information. Any document can be annotated in this way and will contain programmable 

links to other documents or files. The links can also lead to pictures, video sequences, or 

music. 

Such systems provide virtually instant access to all kinds of data-historical papers, 

museum archives, reference books, business data-bases, and on-line educational resources. 

New documents can be created by chaining existing ones together. Multi-layered planes 

contain nodes of text. Data and graphics can be programmed to allow users to set their 

own course through islands of information. A good hypertext system encourages browsing 

and hunting, rather than reading from beginning to end. Several dozen hypertext systems 

can be purchased. HyperCard, by Apple Computer Company, is packaged with every 

Macintosh II and is a most popular first generation implementation of this technology. 

5.6.3 Issues Related to Encoding Communication Knowledge 

A variety of comunication interfaces can be used as communication modules for 

knowledge-based tutors. Several issues, some of which are described below, should be 

considered before a particular one is chosen. For example, communication media such 
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as described above are limited in their effectiveness when used without human teachers. 

\ ideo training systems have been shown to be rather ineffective without a teacher who 

Pr°'ides suggestions about paths to take through the material and questions to ask. A 

primary restriction of current media systems is their lack of smooth integration; systems 

which utilize CD-I, hypertext, or artificial intelligence techniques seem to do so to the 

exclusion of other techniques. Integration of all these techniques will produce a truly com¬ 

pelling tutor. Currently, systems exist wrhich demonstrate portions, but not the totality 

of such a merger. 

For instance, Grolier’s CD-I Dictionary takes advantage of hypertext and hyperme¬ 

dia capability wTithin a CD-I environment. It is one of the w'orld’s first CD-I products 

and allowTs multiple access, browning, and increasingly interactive journeys through the 

dictionary material. It does not have intelligence and thus cannot make decisions about 

what to present and how to best present it. It also has no graphics, which is a great loss 

given the power of current technology. 

Another system, being built by the United Nations for delivery to over 150 nations, in¬ 

volves both CD-ROM and hypercard production to teach about pest tracking, quarantine, 

and controls. Through donated computer systems, some of the poorest, most illiterate 

farmers in the world will be provided with specific agricultural strategies and knowledge 

and have access to the latest and best available medical and agricultural advice. 

The merger of artificial intelligence techniques and interactive video would allow a 

user to determine and guide his/her own learning. The following scenario will be possible: 

A learner faces a video screen, holding a pointed device. A video and au¬ 

dio sequence begins. From now to the end of the sequence, the learner can 

interrupt the program and enter into a discussion, asking such questions as, 

“What is actually happening now?” “Why was x before y?” “Tell me about 

.” The user can also point to objects and say “What does x stand for? 
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x, Show me some examples of x being used.” Parkes 
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A trulj interactive and intelligent video system will respond to student questions 

bj providing additional stills, movies, natural language explanations, generated graphic 

overlays, or audio; the system will decide which presentation is the most appropriate and 

how to respond to machine-perceived student misconceptions. 

All the standard concerns of intelligent tutoring systems have to be re-interpreted 

within video-based intelligent tutoring systems [Parkes & Self, 1988]. For example, a 

video sequence can be the subject of a tutorial discussion only if the tutor has access 

to symbolic descriptions of the video content. Such descriptions are totally lacking in 

ordinary interactive video. 

5.6.4 Tutors with Natural Language Processing (NLP) Capabilities. 

For the most part, researchers in intelligent tutoring systems have avoided the use 

of natural language interfaces. Rather, they have relied on menu or multiple choice 

input and canned or cut-and-paste output to provide communication interfaces. The 

reasons for this are many. Few natural language tools have become available as a result 

of slow research progress in both language understanding and language generation. In 

addition, intelligent interfaces,which employ menus, hypertext, and multiple windows 

provide enough variety and depth of communication to approximate that offered by a 

natural language interface [see Clancey, 1986]. 

One outstanding exception to this is the work done on a natural language interface 

for SOPHIE [Brown & Bell, 1982; Brown et al., 1982] (see Section 5.2.2 above). Their 

system used a semantic grammar to parse input and a context model to perform language 
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comprehension. The tutor was able to handle nearly all reasonable sentences generated 

by users (see Figure 54). This was because, as in most tutors, interactions between 

student and tutor were kept within a restricted domain; thus, the communication model 

only had to discuss a small and well-defined set of terms and concepts on the general 

topic of electric circuits. SOPHIE’s front end was unusual in that it was both efficient 

and effective. Its responses were versatile, being sufficient for a large range of questions 

and allowing for a wide range of possible student input. The semantic grammar in 

SOPHIE was designed to decompose sentences into their semantic, more than syntactic 

constituents. Thus, instead of parsing an input sentence into its syntactic grammatical 

components such as noun, verb, etc., it decomposed sentences into semantic categories 

associated with key words. For example, a sentence containing the word “voltage” was 

be parsed according to wrhether a voltage reading was proposed, asked for, measured, or 

provided as a hypothesis. Thus, the grammar represented the different ways elementary 

concepts could be expressed by the student. The grammar also took advantage of the 

fact that students typically interact with the system in twro ways. Students ask for 

existent measurements or they propose hypothetical scenarios. In each case, the student’s 

discourse with the tutor involved giving instructions to the system, represented internally 

as operations (e.g., take a measurement) with specific arguments (e.g., voltage reading at 

location V22). The parser allowed words to be skipped if they did not fit into the stored 

pattern. 

SOPHIE handled anaphoric references and ellipses, as shown in the second input 

sentence in Figure 54: “What is it in V22?” The it in this input sentence is not resolved 

by the parser, which handles only the current input sentence. Rather, a context model of 

prior sentences of the dialogue holds a number of semantically compatible values that can 

be substituted for missing functions and arguments in current sentences. Thus, the use 

of “voltage” in the previous sentence and syntactic parallelism in the first two sentences 

are used to recognize the “it” in sentence two as referring to voltage in the first sentence. 

Though the authors make no claim to cognitive validity for the grammar, the system 
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The instrument has a fault and Its present control settings are: 

CC = 1, CR = HIGH, LOAD = 20, VC = 1, VR = HIGH 

I 

»What is the output? 

The output voltage is 11.7 volts. 

a working instrument? 
In a working circuit the output voltage is 19.9 volts. 

usct nmoAc.1 e^ eLi+l*^ ^O*- t.eexSe*o*y s 

»What is the voltage between R8 and Q1? 
The voltage at Nl is 47.6 volts. 

»What is the base emitter voltage of the voltage limiting transitor? 
= transistor 

The base emitter voltage of Q5 is - .037 millivolts. 

»ls it possible that 06 is open? 

Is the complete fault mode EB/EC/BC = OP/OK/OP what 
»Sure 

you intended? 

C<JKsf*«ef s 
When the settings were: Couxttr* eyamj* 

CC-1.0, CR = HIGH, LOAD = 20, VC = 1.0, VR = HIGH / 

That fault conflicts with the following measurement. You observed that the 
output voltage was 11.7 volts. If 06 had fault mode EB/EC/BC = OP/OK/OP It 
would be 23.9 volts. In a working circuit it is 19.9 volts. 

/e 

That fault does not explain any of the symptoms you observed but it is 

consistent with the values for the base emitter voltage of 05 and the voltage at 
Nl. 

also olcttrmt<vf r U/kat IS 

U/irt tt<. . 

IS 

3 06 ( 

Figure 54 NLP Interface in the SOPHIE System [Burton et al., 1982] 
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does seem to take advantage of the fact that humans bring to any text a large amount 

of domain specific knowledge. 

Other early systems used a multitude of devices to handle communication. For exam¬ 

ple, HT [Stephens & Collins, 1977] had a strong communication model and accepted 

natural language input (see Figure 38). However, because the student model was so weak, 

it could only mildly understand the student’s intentions and couldn’t use the communi¬ 

cations model to focus on a specific topic within a particular subgoal. 

In the Genetic Graph (GG) (Section 5.4, Figure 40) Goldstein proposed modifications 

to the original WUMPUS coach which represented relations between skills of a game and 

thus produced more sophisticated utterances about skills which a student was learning 

to use [Goldstein, 1982] (see Figure 40). The GG encoded generalizations, analogies, 

deviations, and simplifications of each skill in a modified semantic network and guided 

the coach through these skills and relations between skills. First the GG suggested 

which skills to discuss, namely those on the frontier of the player’s knowledge. Then it 

supplied advice about expressing that skill in a natural language utterance, perhaps as an 

analogous instance of a previously learned skill (e.g., “Oh, Mary, you remember we had 

the same situation when you were in Cave 15. . . ”) or as a generalization of an earlier 

skill (e.g., “Mary, since you have two warnings about Cave 15, you can infer that it is 

more dangerous to enter Cave 15 than to enter another one with only a single warning. . 

. ”). The GG provided knowledge about how to discuss each skill and provided insight 

about which skills were premature to discuss given the player’s knowledge as represented 

in the GG. 



159 

5.7 Summary 

This chapter provided a view of the implementation issues involved in building a 

knowledge-based tutor. It suggested tools and methodologies available (or nearly avail¬ 

able) for authors of such systems. The tools were divided according to the four sources 

of knowledge in a tutor: domain, student, tutoring, and communication models. The 

tools included semantic networks, planning and plan recognition systems, multi-media, 

and natural language processing systems. 



Chapter 61 

Software and Hardware Considerations 

6.1 The Nature of Artificial Intelligence Programming 

This chapter describes hardware and software considerations to be made before em¬ 

barking on your project. We assumed throughout the document that the reader had a 

low-level understanding of the field of Artificial Intelligence. However, at this time, it is 

appropriate to explicitly define the field in preparation for clarifying these hardware and 

software considerations. 

Artificial Intelligence is the study of intelligent behavior and its replication in 

a computer. 

The field of Artificial Intelligence (AI) attempts to develop intelligent machine behavior. 

AI programmers frequently find themselves in the position of creating behavior that 

has never been seen before. Unique demands are placed on them as they represent 

large amounts of knowledge and generate clever ways to search through that knowledge. 

Frequently, AI programmers don’t know exactly how to generate more intelligent behavior 

‘Much of this section is based on an excellent, albeit now outdated, monogram called Artificial In- 

telligence Computers and Software: Technology and Market Trends written by David D. McDonald and 

John Clippinger, published by Brattle Research Corp., 215 First Street, Cambridge, MA 02142, 1984. 
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and need to experiment with designs that evolve only as their ideas and experience evolve. 

Thus, new tools, languages, and programming skills are required. 

As compared with conventional software systems, AI systems present many new prob¬ 

lems. Experimentation with programming design and implementation is possible only 

with a supportive programming environment. In conventional software engineering sys¬ 

tems goals and specifications are written out in great detail before coding begins. Con¬ 

ventional projects involve explicit tasks, such as “update personnel records” or “analyze 

data according to these functions.” Debugging such a system consists of refining the code 

to ensure that it achieves the stated goal. However, in AI programs, the goal is to gen¬ 

erate more intelligent behavior. For tutoring systems, this might mean generate more 

sensitive or more responsive one-on-one tutoring; it might also mean generate machine 

inferences about student actions, skill level, and possible misunderstandings. 

As described in Chapter 5, building a tutoring system requires representing knowl¬ 

edge and then building functions to traverse that knowledge. Knowledge representation 

refers to how knowledge is stored and how it models the domain, human thinking, learn¬ 

ing processes, and tutoring strategies, as shown in Figure 31. Knowledge bases might 

store concepts, activities, and relations between topics. Or they might store a variety 

of lessons, topics, presentations, and response selections. Control structures might be 

motivated by specific instructional and diagnostic goals, e.g., one control structure might 

produce a predominantly Socratic interaction or an incrementally generalized new prob¬ 

lem for a student to solve. Control structures might be specific to a particular level of 

representation and uniquely define the reasoning to be used for that knowledge base. 

AI programming, then, refers to an approach to representing knowledge and control 

structures to traverse that knowledge. It also refers to an approach for achieving code 

production and a set of tools to expedite that process. It does not refer to a particular 

subject matter, programming language, or type of hardware. Good tools and languages 

developed for AI should place a minimum of constraints on a programmer’s imagination 

and should provide a supportive environment for handling large amounts of knowledge. 



Figure 55 Representation and Control in a Tutoring System 
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Such tools and languages should allow programming operations to he tested more rapidly 

and more easily than has been possible with other languages, such as those with fixed 

data structures (e.g., Pascal), fixed control structures (e.g., Fortran), or those which 

are compiled (e.g., Fortran, Cobol, Forth). Trying to capture human behavior within a 

machine involves solving intensively demanding problems, both intellectually and com¬ 

putationally. These demands result in strong language requirements to hide mechanical 

details (e.g., as does A.P.L. for mathematical tails). The required mechanisms should be 

assumed automatically by the system, thereby allowing researchers to devote intellectual 

time to the problem itself. Such mechanisms are described in this chapter, along with 

sample software and hardware innovations that provide some solutions. 

AI programming is unique and has given rise to numerous tools which have had an 

enormous impact on conventional computing. Software and hardware that have been 

developed and nurtured in AI laboratories have become part of conventional computing 

environments, and now can be found in the marketplace. Example products include on¬ 

line traces, debuggers, bit-mapped displays, mice, windows, icons, and object-oriented 

programming. 

6.2 Choosing an AI Language 

A variety of languages can be used for AI programming. However, few are specially 

equipped with the language facilities required for AI programming. These facilities are 

described in this section along with details from several programming languages. AI 

“packages,” including expert systems shells, are described in the next section. Neither 

this section nor the next will provide an exhaustive list of languages; rather, each provides 

enough descriptive material about language features to advise the reader about how to 

select an AI language or package. 
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LISP. LISP is the traditional language of AI. Nearly 95% of the best-known AI 

programs written in the United States were built in LISP [Charniak & McDermott, 

1985]. Nearly all the knowledge-based tutors described in Chapters 2 and 5 were built in 

LISP. It is the oldest programming language next to FORTRAN in active use and was 

developed in 1957.2 Its use today is growing thanks to the advent of a standard framework 

(CommonLISP) and general purpose hardware that provide excellent LISP environments 

(e.g., Apple Macintosh II, Sun, IBM-RT, and Hewlett-Packard Bobcat Series). Four key 

properties of LISP set it apart from other programming languages: 

1. few syntactic conventions; 

2. programs treated as data; 

3. details handled automatically; and 

4. facility for working with character data. 

In LISP, all data is defined as either an atom (a number or a symbol) or a list (a 

collection of data surrounded by parentheses). All programs can be treated as functions 

and yet manipulated as data. Apart from these and a few other conventions, LISP has 

few strict syntactic rules. 

Many details are handled automatically. For example, a programmer can construct 

new data structures, such as arrays, and, should the structure outlive its usefulness, it 

will be taken apart and the memory used in another structure. This is called “dynamic 

storage allocation.” Construction and destruction of a data structure is done without 

programmer intervention. In addition, LISP programmers may change the structure of 

the language to suit themselves. If they don’t like a construct, they can invent a new one. 

Thus, a new command or data structure might be defined through a macro to be used 

2LISP, Lilt Structure Programming Languages, was developed by Prof. John McCarthy, in 1957, as a 

procedural formalism to express the newly evolving ideas of Artificial Intelligence. 



only for a given program. This new construct might simply change some feature of an 

existing construct, such as to evaluate arguments during run time. For languages such as 

Pascal, Logo, and Fortran, such freedom does not exist. Another example of construction 

freedom is in the use of arguments in functions. Most languages expect that functions 

will take arguments and will return exactly one value. However, in LISP a programmer 

can specify zero or more arguments, can indicate when they will be evaluated (e.g., at 

run time), can use any structure (data, functions, or programs) as arguments, and can 

define side effects that result in place of a returned result. 

LISP is also ideal for AI programming because it provides automatic facilities for 

associating information with alphanumeric characters. Instead of being oriented toward 

manipulation of numbers, as are APL, BASIC, C, Forth, and FORTRAN, LISP easily 

associates character strings, such as “elephant” with other symbols, such as “large ani¬ 

mal.” LISP is primarily an interpreted language, rather than a compiled language. (In 

this respect it is like APL.) Rather than translating an entire body of code into ma¬ 

chine language and then running it, LISP looks at a written line of code and executes 

it line-by-line. It also comes complete with an environment which performs debugging 

and editing. To use LISP you must use the entire environment. (LISP is similar to APL 

and Smalltalk in this regard.) One detail that is handled automatically is called dynamic 

memory management (see below). 

A particularly good example of LISP code which is easy to read and also hides imple¬ 

mentation details is provided in Brattle [1984], This code is excerpted from an animation 

program and deliberately selected for its clarity. 

(define character Cinderella 

(process initial description 

(physical (and beautiful shabby)) 

(personality (and good friendly hard-working shy)) 

(role-in-story most important))) 



This code hides procedural and data structure details needed to implement the larger 

function “define character,” a function which was defined earlier in terms of its three 

attributes, “physical,” “personality,” and “role-in-story, ” and connected with an ap¬ 

propriate piece of animation. By having set aside features of processes appropriate for 

each of its attributes, the associated features can be encapsulated in a construct, “define 

character,” which is placed at the same level, semantically (evaluated at nearly the same 

time), as the original attributes. The AI community believes that such code is easy to 

augment, modify, and debug because it is easy to read and understand (see section below 

on “Learning LISP”). 

A second mechanical detail that is hidden in LISP code is memory management, 

achieved through dynamic storage allocation. Data structures are freely created in LISP 

and can be ignored when no longer used. The underlying mechanism of the LISP envi¬ 

ronment handles all the decisions of allocating enough storage for new data structures, 

creating pointers to them, and later reclaiming their space when the program no longer 

refers to them. This process is handled by invisible (and ideally rapid) “garbage collec¬ 

tion” mechanisms. 

LISP programmers can develop programming aids that help them conceptualize and 

design large systems. Programming tools (such as the editors and debuggers described 

in Section 6.5 below) make LISP highly productive and capable of prototyping very 

large systems rapidly. According to a study completed by the MIT Air Transportation 

Laboratory on the cost of developing software for aerospace applications, LISP had a 

productivity score, based on useful code produced per unit time, of nearly twice that 

of its nearest competitor, PL/1, Multex, and nearly thirty times that of Cobol [Brattle, 

1984]. 

LISP can communicate to “foreign” languages such as FORTRAN, C, or Pascal. 

Extensive provisions are made for calling functions and passing arguments on general 

purpose machines such as Macintosh II, Sun, IBM-RT, and Hewlett-Packard Bobcats. 

Being able to caU foreign code is a great convenience, allowing a programmer to draw 



on established libraries of special purpose routines. These facilities also enable a user 

to develop interfaces to complex peripherals or to special shared-system services such as 

printers or massive external databases. 

Foreign language calls are also important because LIST is not committed to machine- 

level details (as are languages such as C or FORTRAN) and as a result, its code for 

simulations or graphics is less efficient, i.e., slower. Where LISP can call and pass argu¬ 

ments to foreign code modules, a common practice is to use LISP to handle high-level 

decision making, such as described in Chapters 3 and 5, and to call C or FORTRAN 

routines for rapid production of graphics and control of I/O devices. 

LISP and related tools reduce the programmer’s need to remember an enormous 

amount of details by taking on the predictable and mundane activities themselves. Three 

types of software development tools available in typical LISP systems are described in 

Section 6.5 below. The tools handle code and environment management, debugging, and 

analysis. 

These tools, derived from LISP software originally developed on special purpose LISP 

machine hardware, are available on general purpose hardware. Software is the key source 

of productivity gains, and new generations of programming power tools have continued 

to evolve. Popular vendors for Common LISP are Lucid at the high (expensive) end, 

GoldHill at the mid-range, including Allegro for the Macintosh II, and Texas Instruments 

at the low end for an IBM-XT. 

Learning LISP. LISP is not a hard programming language to learn. For instance, 

Scheme, a steamlined version of LISP, is taught as a first programming language at 

M.I.T., UC, Berkeley, and other colleges. One reason why LISP is taught as a first lan¬ 

guage, especially on special purpose hardware such as the TI explorer or Symbolics LISP 

machine, is because of the uniformity of conventions. All of the different subsystems- 

editor, mailer, font editor, debugger-are controlled in analogous ways, meaning that 

once you have learned it for one subsystem, you have (almost) learned it for all. Each 
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subsystem presents a visual appearance that is similar to every other; use of highlighting, 

techniques, and organization of mouse menus and click conventions are the same because 

of the uniformity of environment conventions used. However, general purpose machines 

such as Apple Macintosh II, Sun, IBM-RT, or Hewlett-Packard Bobcats do not tradition¬ 

ally have the environmental uniformity described above. LISP itself is also easy to learn 

because of its exceptionally clean semantics (as discussed above). It is particularly good 

for teaching fundamental concepts such as variable binding and scope, functions, control 

and data structures, etc. 

However, as a result of the large amount of available facilities and specialized code, 

becoming a good LISP programmer takes time. The “learning curve” for producing 

genuine results in LISP is steep (requires much time and attention). Both broad and 

deep knowledge of numerous LISP commands, the richness of the LISP development 

environment, the numerous control options, and the multiple representation paradigms 

must be mastered before significant results can be produced. Even the best programmers 

typically require several months of intense work to get high enough on the curve to employ 

all of a good LISP’s capability. 

LISP as a Social Phenomenon. The unique ability of LISP to undergo language 

extension and development makes it something of a “social” phenomenon. Since it can 

be transparently extended upon itself by the creation of new data and control structures, 

some LISP users become writers of “systems” code for the rest of the community to use. 

This “user-and-developer” individual is very important to the community. If he/she is 

sufficiently unhappy with the performance or style of any part of the LISP system, he/she 

is likely to design and build a better facility. When done, the facility will be usable by 

the rest of the community and can be ported to other communities, given a common 

hardware and software base. The use of CommonLISP has lessened this phenomenon 

somewhat. 

CommonLisp. CommonLISP is arguably the standard LISP today. It can be moved 

between hardware systems and will run consistently on aU of them. It is not a dialect of 



LISP, per se, but rather a specification of certain core functions and data types of LISP 

that should be included in any LISP running on any machine, along with a statement 

of how these functions should behave. Thus, there is no definitive implementation of 

CommonLISP. Rather, the intent of the standardization is that CommonLISP provided 

by any hardware vendor is restricted to facilities that are a part of the standard and 

will run on that hardware, as well as any other hardware produced by any other vendor. 

Vendors have agreed to adhere to the CommonLISP definition of these core facilities, 

adding to them those facilities that may be unique to a particular site or hardware. The 

addition of facilities is especially true for window-based display packages. The core of 

standard functions is quite large: several hundred functions. Nearly all the knowledge- 

based systems built since 1987 are built in CommonLISP, C, or Prolog. CommonLISP 

encompasses all of the LISP facilities that have been tested for several years. The intent 

is that as other facilities become less experimental, i.e., a uniform sense of how they 

should be used emerges, they will be added to this commonly agreed upon standard. 

The standard is not intended to remain fixed for all time; changes and extensions are 

expected as the thinking of the LISP community continues to evolve. 

In sum, LISP is quite popular for development of knowledge-based tutoring systems. 

It provides large functionality, flexibility, expressibility, and is designed for symbolic rea¬ 

soning. On the other hand, its very large repertoire of useful functions and auxiUiary 

features makes it time-consuming to learn and a difficult language in which to gain pro¬ 

ficiency. 

Prolog. Prolog is a high-level language specifically for defining relationships and their 

implications. In this sense, it is like an expert systems package: It allows a statement 

of facts that will be the basis of its inferencing, but does not allow the ready encoding 

of information about how reasoning should be carried out. LISP, on the other hand, 

is a systems development language and is intended to allow the rapid development and 

redesign of task-oriented languages such as those at the level of Prolog. Thus Prolog 

should be compared to other very high-level languages or expert systems shells that 
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hide control structures, such as OPS5 (see Section 6.3 below). It is a good choice for 

programming a task if the task fits into its framework as explained below. 

Prolog is the preferred language for development of AI systems in Japan and Eng¬ 

land. Most Prolog systems remain committed to a single control structure, a few data 

structures, and weak expressions of algorithms. The language performs a blind search via 

back-tracking through all conceivable candidate solutions until it finds one that works. 

Prolog is best suited for first-order relationships, where the programmer selects a set of 

names for the relationships and individuals and then uses depth-first search to satisfy a 

given request. Once all the facts of the problem are stated, Prolog’s implicit control struc¬ 

ture can be called to consider successive possible values for the variable and to test the 

data base for consistency against original facts, deriving new, intermediate facts where 

necessary. Prolog is derived from the technique of resolution theorem proving, which in 

the past has been known for its exceptional slowness. Yet, Prolog has returned to favor 

partly as a result of the increased speed of today’s computers. It typically supports only 

depth-first search with strictly chronological backup, and an exceptionally direct and 

uncomplicated control structure which can be implemented very efficiently. 

Where it is appropriate, Prolog will find its solution, will hide details and will let 

the programmer focus on the information he/she is trying to encode. If Prolog is used 

for something for which it was not designed, it can be exceptionally obscure and diffi¬ 

cult to read. For example, a Prolog system without arrays, records, or data clustering 

conventions remains quite deficient by comparison with LISP systems. By restricting 

the complexity and variety of choices in control and data structures, Prolog is able to 

provide extra optimization of the restricted set and thus make use of the speed of today’s 

computers. On the other hand, inappropriate use of Prolog results when one tries to 

enlarge the depth-first-with-backtracking control structure. Prolog typically provides no 

provisions for extending the notation of the language. 

Popular vendors for Prolog are Quintus at the high end, Arity Prolog at the nud-range. 

and Barland’s Turbo Prolog at the low end. 
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Smalltalk. Smalltalk is based on a metaphor of objects and methods to activate 

those objects. It passes “messages” between “objects.” An object can be an independent 

process that acts whenever it is sent a message. Each process is defined in terms of a set 

of procedure definitions that specify the messages it can receive and, thereby, determine 

the actions it can carry out. A Smalltalk program consists of a set of class definitions 

organized in an inheritance network, similar to the semantic network described in Section 

5.2. It has a primitive ability to create procedures by “instantiating” classes, or generating 

examples of an object, and then activating these examples by sending one of them a 

message. The class definitions are a set of messages and associated procedures. 

Smalltalk was a very exciting language when first introduced by Alan Kay at Xerox 

Parc around 1974. Smalltalk originally introduced a set array of “power tools” that are 

considered standard today. As implemented earlier on the Alto, Smalltalk sported the 

first widely used, large bitmapped screen, the first mouse, and was connected via the first 

local area Ethernet. Work done on the original LISP machines of Symbolics and Texas 

Instruments intended to pick up on the software and hardware innovations on the Alto 

and build a vehicle for LISP rather than Smalltalk. These Smalltalk ideas have ultimately 

found their way onto smaller general purpose machines and have become more readily 

available on machines such as Tektronics, Macintosh, or IBM-AT, where its compact 

encoding scheme can be very effective. Xerox’s Smalltalk 80 is currently very popular for 

people who want versions that run on IBM- PCs and on Macintoshes. 

However, there are some disadvantages to using Smalltalk. The worst is that it is 

an all or nothing language/environment - it requires the entire machine for itself. This 

characteristic may change as the language itself evolves. As currently implemented, it 

has total control of the display and the environment. Programmers cannot mix-in code 

written in other high-level languages or in assembly languages. This means that the 

programmer cannot call on code written in other languages, such as C or FORTRAN. 

For many programmers, the advantages of a uniform object-orientated language out¬ 

weigh the disadvantages. In addition to its unique way of organizing computations, it 



172 

allows programs to be built, used, and modified through a visual interface. The pro¬ 

grammer can refer to objects by selecting them from a visual display with a mouse rather 

than having to write an ad-hoc access program. He/she can keep both this editor and 

interaction stream present at the same time on the screen because I/O was organized 

into separate windows. This relieves the programmer of memory load and time lost due 

to switching contexts; the display screen becomes a kind of spatially organized memory 

with objects and the dynamic state of a program displayed as an iconic picture or a 

strategically placed string of text. 

Variant AI Languages. In addition to CommonLISP as the most available language 

for expert system development, several object-oriented languages, are now available, such 

as C + + [Harmon, 1987]. Object-oriented languages allow the user to develop good 

interfaces (from high-level primitives for constructing interface elements such as windows 

and pop down menus), generate rapid prototyping (through facilities which allow a system 

to be rapidly implemented and tested), and to develop reusable code (modules of code 

which can be built and reused in different projects). 

Object-oriented C is offered by Productivity Products International’s Objective-C and 

Bell Lab’s C + + . Kyoto LISP, which is written in C, is an interesting language for expert 

systems development. The object-oriented standard for CommonLISP has resulted in 

more attention paid to object-oriented programming [Harmon, 1987]. The trend to C 

and Unix based machines is indicative of the shift of expert systems development to 

more conventional general purpose hardware and software. 

6.3 Knowledge Engineering Tools 

Today one does not try to quickly build a new AI system in unaugumented Lisp 

because although it hides uninteresting implementation details, it still requires a great 

deal of low-level programming. Instead, one might use one of the several “packages” that 
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have been developed specifically for expert systems: 0PS5, KEE, ART, POPLOG. Many 

of theses systems were written in LISP or C or Prolog and many can run “on top of’ LISP, 

meaning that while using them, one can freely draw on the tools of the LISP development 

environment (see Section 6.5 below). Thus, LISP has become a systems programming 

language in which to write AI languages such as 0PS5, but is not necessarily a good 

first language in which to quickly develop a powerful and fast solution to an AI problem. 

On the other hand, such packages are not used extensively by research labs; indeed some 

of the most innovative users of expert systems still prefer to use an unaugmented LISP 

[Feigenbaum, 1989]. 

Knowledge engineering (KE) packages are representation systems that help capture 

and represent an expert’s knowledge. In as much as their methods and approaches are 

appropriate to the task, they save time and effort. The disadvantage of buying a partic¬ 

ular AI package is that it brings with it a set of unexpected and possibly inappropriate 

methodological assumptions that may be quite different from what a specific application 

requires. This may be especially true for the inexpensive (about $500) AI development 

software. If a specific application is similar to a program already developed, then there 

may be little problem. For example, you might obtain the Empty MYCIN (EMYCIN) 

knowledge base for a medical diagnosis problem. However, if your application is in a 

domain which has not yet been used in an AI system, then the problem is greater, and 

one might consider building the system from scratch; a competent AI programmer could 

reproduce these packages in about three to six months’ time. 

Shells. Expert systems “shells” provide a quick way to enter knowledge into a knowl- 

edge base and make inferences about it. Such systems typically provide a single fixed- 

knowledge representation, e.g., a framework of rules, and a few control structures, e g., 

forward and backward chaining through those rules. SheUs have become available at 

a variety of prices and for a variety of machines. SheUs are being purchased by op¬ 

erational and development departments of corporations and research labs for general 

purpose machines and for direct application. For knowledge-based systems, if the project 
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programmers can acquire LISP know-how, the project will be more productive using a 

primitive symbolic language. However, if such expertise is not available, then one might 

begin with a package. 

The commercial expert systems market has changed rapidly and is now so active that 

there is no question about its future [Harmon, 1987]. There are so many expert systems- 

building packages that choosing the appropriate package is frustrating. Several questions 

need to be answered by buyers of such systems, the first being about programming 

language. Packages built in a language that is designed for symbolic processing (such as 

LISP or Prolog) are more flexible, often providing better editing environments. Users who 

are doing both research and development and who are building large complex stand-alone 

systems are advised to select symbolic language knowledge engineering packages. 

On the other hand, packages built in conventional languages, e.g., FORTRAN, Pas¬ 

cal, or C, can be run on conventional hardware and can pass data to and from con¬ 

ventional programs and databases. Users from traditional management and information 

departments building direct applications that will interact with mainframe programs and 

databases need to either select these conventionally based packages, which may be less 

efficient, or move their entire operation into the more symbolic languages [Harmon, 1987]. 

Knowledge engineering systems can be purchased for various hardware systems, in¬ 

cluding specialized LISP machines, mainframes, Unix workstations, and personal com¬ 

puters. Several products continue to sell well in this volatile market [Harmon, 1987]. 

Neuron Data puts out an expert package that runs on all major microcomputers, includ¬ 

ing Sun, Macintosh, Hewlett-Packard, and IBM-AT. Si by Tecknowlcdge and KEE by 

Intellicorp are fighting for control of the high-end LISP machine market. Aion is the most 

visible product for mainframes, with IBM’s Expert System Environment/VM a possible 

contender. Aion is the only tool with both IBM-PC and mainframe versions that are 

completely compatible, making cost-effective development a real selling point. Systems 

for the AT market abound: Personal Consultant Plus, by Texas Instruments, KES, Guru, 

Ml, Object N Expert, and Acorn, etc. Other knowledge engineering systems have been 



designed for the low end of the PC market, such as Personal Consultant Easy, Exsys, 

Insight 2+4-, lst-Class, and VP Expert. The high-end market has moved from LISP ma¬ 

chines to Unix workstations and/or the 386 machine, and that has caused a redistribution 

of vendor attention. 0PS5 is a stable and robust shell for higher-end machines. 

Domain-specific tools have emerged tailored for specific applications, for example, 

developing process control systems. This type of tool should increase as more effective 

methods are developed for designing and building them. 

6.4 Choosing Hardware 

Knowledge-based tutors can most profitably be built on general purpose computers 

with symbolic programming capabilities. Development and delivery of tutors today does 

not require acquisition of dedicated LISP machines. Conventional hardware, such as 

DecVax and Mini-Vax machines, Unix workstations (especially SUN), and personal com¬ 

puters built around an Intel 80286 chip have been suitable hosts for AI development. The 

most active area for hardware is in LISP chips, of which Texas Instruments and Sym¬ 

bolics have been first vendors. The hardware market is rich. Both the TI Explorer and 

the Symbolics Lisp machines are available on a general purpose microcomputer through 

a board that can be inserted into an Apple Macintosh II. These upgraded systems are 

called MicroExplorer (a TI Explorer on a Mac) and Maclvory (a Symbolics LISP machine 

on a Mac), respectively. 

The market for expert systems on general purpose computers has exceeded most 

expectations. The primary reason for this is the ability of vendors such as Coral (now 

owned by Apple), Lucid, and Goldhill to produce LISP on conventional hardware to run 

as fast, or nearly as fast, as that on LISP machines. 

Mature LISP environments, whether on LISP or general purpose machines, provide 

rich, high quality hardware such as peripherals and interfaces that AI programmers have 
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come to expect as a part of the total development environment. These tools include a 

very high quality keyboard, with fast and definite action. The larger the display the 

better, with a high resolution and a bit-map display screen. This translates to at least 

a 60 Mhz monochrome monitor of about 800x1200 pixels. One expects that the bit-map 

can be used as a vehicle for the display of information that can be used as a “handle” for 

selecting a program object and manipulating it. 

An added feature of this large bit-map screen is the increased output of information 

and communication. As screens have become larger and redisplay faster, the need for 

hard-copy printouts of programs has rapidly decreased. Much time and efTort is saved 

by not having to continually print out fresh copies of a rapidly changing program. Given 

a bit-map display, the programmer can print a screen of information to a laser printer 

or can copy it to a file. This increases the directness and convenience of communicating 

information about complex program situations among members of a laboratory. 

Another desideratum of an AI environment is the ability to rapidly generate and 

modify windows. This provision for elaboration and novel redesign distinguishes good 

window systems from mediocre ones—it is not sufficient to have sophisticated window 

management facility. The best window interface might have a large number of primitive 

capabilities and be organized hierarchically as a message-passing system. Given a good 

window system, even novice programmers can bring up new configurations of windows 

and mouse-object interactions in a very short time—between one day and one week. Ease 

of use depends on two factors: well thought-out primitives (e.g., commands such as “open 

window”), and intermediate-level constructs (e.g., such as “insert function output into 

window”). Given such commands, only new parts of the user’s design need to be changed 

by using message passing. Standards in window systems have been achieved such that 

good window systems provide much of the following capabilities: 
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1. Every window is a separate, freely changeable entity with all its attributes readily 

available to the programmer, e.g., size, color, font, set, borders, labels, and relative 

position on the screen, and relative to other windows. 

2. Windows are independent entities whose display and input buffers can be dynami¬ 

cally associated and reassociated with multiple active processes under program and 

end-user control. 

3. Windows can display text, icons, or arbitrary bit patterns at any window—relative 

or absolute position—and can interpret keyboard and pointer mouse input with 

equal flexibility. 

In sum, a window package must 1) provide the programmer/designer with the capabil¬ 

ity to tailor windows to new applications, 2) must be in the same programming language 

as, and totally integrated with, the rest of the program development facilities, and 3) 

should be built around a detail-encapsulating device such as an object-oriented class or 

“flavor system,” i.e., a subset of functions that faciltiate the building of modularized 

objects, based on message-passing. 

Mice are considered standard as a means of directly selecting or “pointing” to positions 

on the screen. A mouse should provide stability while being clicked, accurate vernier 

movements, and ease of rapid movement, for which roller-based mice are presently best. 

Voice entry has made a slow and less than winning entrance into the marketplace. Other 

hardware innovations are related to the production and integration of multi-media with 

computers, e.g., video, CD-ROM (Compact Disk - Read Only Memory), television, and 

audio. These latter devices are discussed in Section 5.6.2. 

6.5 General Programming Tools 

b, previous sections we talked about software and hardware tools that facilitated 

The value of these tools depends in part on the success of general 
AI programming. 
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programming tools, such as described in this section. General programming tools are 

designed to faciltiate the examination, management, and debugging of code in general. 

Both AI specific and general programming tools should work together to allow a user 

to lift up the level of development activities from underlying programming languages to 

high-level designs. In this section we discuss general programming tools that facilitate 

code development. 

General programming tools typically work at one of three levels: code and environ¬ 

ment management, debugging, and analysis. These tools are designed for originating, 

examining, managing, and debugging code. They reduce the memory load and drudge- 

work performed by taking on the predictable and conventional activities, thus relieving 

programmers of having to carry out details and allowing them to focus on matters of 

design and on managing the unexpected. Program development tools are applicable 

to programming tasks of all sorts; they facilitate a programmer’s movement from the 

well-understood to the experimental. 

Editors. A good editor supports modification and manipulation of both code struc¬ 

ture and text. It “knows” LISP and supports organization through automatic indenta¬ 

tion, module balancing, and syntax checking, i.e., parentheses balancing. It also allows 

the manipulation of program text as simple characters and lines. The editor should be 

on-line and should share the display space with the program being tested so that the code 

and the behavior it produces are visible simultaneously. The editor (and the compiler) 

should be in the same virtual address space as the rest of the development system. It 

should be programmed in the same language as the rest of the system. The file system, 

which manages code and other data structures when they are not actively loaded and 

able to run, should be as transparent as possible. The access, printing, and automatic 

restorage of files after modification can all be left to the editor. 

Debugging. Good environments typically provide sophisticated debugging facilities. 

A program will be placed in an interactive loop at the point where an error occurs and 

allow direct inspection and modification of variable values, examination of the stack of 
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pending calls at various levels of detail, and simultaneous access to the editor. Facilities 

are provided for deliberate returns from the point of error, with a user-supplied return 

value so that the program can continue on as though the error had not happened. There 

is also a facility for “backing up” to a higher point in the calling sequence and restarting 

the process after interactively editing and reloading the module that caused the error. 

Without such a facility, a great deal of programming time is lost due to having to restart 

long programs from the beginning in order to continue testing. In mature development 

environments one expects to find: 

1. facilities for tracing calls to functions with a “breakloop” on specified input or 

output conditions, 

2. ability to “single-step” any program, function call by function call; and 

3. an “inspection” facility for displaying complex data-structures in a readable way 

and interactively examine their parts. 

Assistance in Analyzing Code. Writing a large amount of code requires analysis and 

organizational tools to lessen the programmer’s memory load and assure the burden of 

producing the “obvious” detail code from specifications. Such tools are only beinning to 

be available through “programmers” assistants, or systems that write code from detailed 

specifications. Facilities that are available and that one should expect are: 

1. Cross-indexing and cataloging of program objects that define variables within a 

program definition, the global variables referenced, and the functions it calls and 

what functions call it. 

2. Integration of cross-index catalogs with the editor so that one can, for example, 

change aU names of calls of “process-by-months” to “process-by-weeks,” by carrying 

out the editing, reloading, and refiling automatically. 



Programmers assistants,” when available, will provide automatic examination of code 

to check consistency and to offer corrections. Prototype assistants can now translate 

specifications into LISP Code [Waters, 1982] or advise a programmer about rewriting 

existing code that will be more efficient [Fischer, 1987]. The problem is that if one does 

not program in the style these facilities are tuned for, the “assistant” might convert correct 

code into incorrect code. Since assistants typically cannot be turned off, considerable 

ingenuity may be required to get around them. In general, the area of programming 

apprentice systems is a vigorous research area, and one should expect such systems to be 

included as parts of LISP system “bundles” sometime in the future. 

6.6 Summary and Discussion 

This chapter explored the availability of software and hardware systems for building 

knowledge based tutoring systems. Languages such as LISP, Prolog, and Smalltalk were 

described along with features that an author should assess before choosing a system. 

Knowledge engineering shells, such as KEE and Personal Consultant, were described 

along with general programming tools, such as editors and debuggers. Hardware, in¬ 

cluding special purpose LISP machines and general purpose machines, were discussed 

including specific features, such as memory size, screen and keyboard design, and the 

existence of bitmap display and windowing. 



Chapter 7 

The Future: Computer Partners in Education and Industry 

This document presented a guide for development of knowledge-based tutors. It de¬ 

scribed a number of problems and issues to be addressed and provided guidelines for 

educators involved in the development process. Examples showed how the computer can 

be used as a “trusted consultant,” “benevolent mentor,” “cognizant tool,” and “problem¬ 

solving partner” (Peelle & Riseman, 1975; Slovin & Woolf, 1989). In this chapter, predic¬ 

tions are made about future uses of such systems in education and industry as computers 

and humans begin to cooperate. This chapter also discusses current barriers that make 

building these systems difficult. It defines the type of breakthroughs needed in psychol¬ 

ogy, education, and computer science to achieve partner-like computer systems. Ethical 

and moral issues related to the impact of technology on daily life are acknowledged, since 

they will play an increasingly important role in the responsible design, implementation, 

and use of computer power. 

7.1 Impact of Knowledge-based Tutors 

Implications of this work go beyond the possibility of producing a few more knowledge- 

based tutors. The expectation is that as the process of building knowledge-based systems 

becomes clearer to a wider and more varied audience, additional development activity 

will stimulate the advance of information technology into the classroom. Not only will a 

larger corpus of authors, including instructural designers, teachers, administrators, and 

181 
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psychologists help produce a wider variety of tutors, but just the exercise of building 

such systems will generally enhance the communication of knowledge between domain, 

computer, instructional, and cognitive experts. 

Development of knowledge-based tutors will also contribute to several areas of Arti¬ 

ficial Intelligence. For example, prototype tutors might demonstrate how a machine can 

reason about a user’s knowledge and how it might flexibly communicate with him/her. 

Currently, AI systems are intolerant of their users. Even expert systems have little un¬ 

derstanding of the user’s knowledges, little expectation about how s/he communicates, 

and only a weak or stereotypic model of the user. Such systems cannot explain their 

own reasoning and cannot use discoursive acts, such as questions and answers, to clarify 

the user’s current needs. Development of knowledge-based tutors should help researchers 

in AI define how to build a user model, generate machine explanation, engage in ques¬ 

tion/answering, tailor discourse to an individual user, build large-scale machine-mediated 

communication systems, and encode more about human learning for use in long term in¬ 

teractive human/machine projects, such as process control. 

A final implication of this work is the realization that any system which communicates 

information to a user must have an AI model of that user, or an active agent that keeps 

track of the user’s knowledge, makes inferences about his/her goals, and considers which 

style of communication or sequence of discursive topics is appropriate. 

7.2 Impact of Knowledge-based Technology on Education 

We recognize that education is critical in a society’s attempt to increase and pass on 

knowledge from one generation to another. Intelligent tools are seen as vital—filtering, 

modeling, and sharing massive amounts of data and information that will become avail¬ 

able through multi-media and electronic networks. One might wonder how the existence 

of such intelligent tools will impact on education. 



Any new technology passes through several phases as it impacts society [Dede, 1988). 

These phases, for example, are visible in the case of the automobile. After a 50-year 

development period, the car has finally arrived, having generated societal changes that 

are now more consequential than the changes brought on by the invention of the car 

itself. These changes can be seen in roads, cities, and parking places (or lack thereof). 

Once the automobile fully entered the society, commuting distances were scaled up to 

take advantage of rapid, fairly safe and reliable transportation. The car, and later jet 

travel, provides a new model of reasonable travel for family life, e.g., commuter marriage 

became possible along with international tourism and multi-national companies. 

The advent of knowledge-based systems in education might generate a similar abun¬ 

dance of auxiliary societal and educational changes [Dede, 1988). Below we suggest 

four phases of evolutionary changes that might occur as a result of the introduction of 

knowledge-based systems: 

• Phase One: Knowledge-based systems, such as intelligent tutors, are adopted 

by affluent schools and training sites. These systems carry on limited one-on- 

one tutoring sessions with a limited number of students. This phase is curently 

underway, e.g., see Anderson [1985], Johnson and Soloway [1985], Woolf et al.[1987], 

and Psotka [1988]. 

• Phase Two: Schools and training sites begin to change internally to take better 

advantage of these tools. Knowledge-based tutors might become stand-alone teach¬ 

ing modules for small groups of students, thus reducing crowded classrooms and 

improving individualized teaching. Networked systems, distributed at a distance, 

learning, and non-school sites also become basic to schools. This phase has also 

begun, e.g., Tinker [1987] and Southworth [1988]. 

• Phase Three: Schools develop new functions and activities enabled by knowledge- 

based systems. For example, the number of lectures and their length might be 

reduced considerably, opening the way for teachers to assume the role of consultant 
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and advisor in conjunction with classroom computers. This has happened already 

in some computer classes.” Educational resources beyond schools, such as com¬ 

munities, families, industries, and the military will begin to assume educational 

leadership roles, possibly opening up competitive relationships between alternative 

institutions. This has already happened in industry training. For educational insti¬ 

tutions, this phase is about five years away, and thus planning and policy analysis 

should begin now. 

• Phase Four: The original role of schools may become radically transformed, dis¬ 

placed, or obsolete as goals, such as marketplace success of software, dominate more 

traditional educational goals. This phase is possibly a decade away, and again plan¬ 

ning should begin now. 

Planning and policy analysis will help assure that the continuing implementation of 

these four phases is not dominated by the self-interest of a few, as suggested in Phase 

Four above. The destructive side-effects of each phase should be carefully monitored 

and contained. For example, as computer systems play a more central role in education, 

government agencies and (software) publishing houses might seek greater control over 

what information is communicated. 

Knowledge-based tools might bring other changes to education [Dede, 1988]. For 

example, 

• Administrative changes. More data about students, classes, and teacher evaluation 

will become available, allowing more careful analysis of classroom activities. Expert 

systems might be used to offer diagnosis and evaluation. Middle management and 

administrative assistant roles could erode if based primarily on information filtering 

and simple statistical tasks. 

• Reduced class size. Smaller class sizes could result from use of knowledge-based 

tutors and non-human instructional agents. As more computers are introduced, 
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students will begin working in small groups. Education will become more dis¬ 

tributed. 

• Improved teacher status. Teachers will require more and different training as they 

assume a more personal relationship with students. Learning to be a counselor 

and advisor, and learning to work alongside machines with encyclopedic knowledge 

will become more challenging and more humbling. Only the best and most qualified 

teachers will survive. This should provide an impetus to upgrade the role of teacher 

in society. 

• Increased numbers of students. As more people assume the role of student in 

academia, industry, and government, the total amount of “adult education” will 

increase. 

• Increased educational equity. Since the entire economic society will be dependent 

on and benefit from education, each member of society would have a strong self- 

interest in promoting optimal educational opportunities by all learners. 

Machine-based tutors and coaches might be responsible for communicating basic con¬ 

cepts while human teachers act as counselors and focus on higher order skills and “com¬ 

plex occupational, citizenship, and ethical knowledge” [Dede, 1988]. Both teachers and 

students will learn from knowledge-based tutors, each pursuing independent instructional 

goals. This change in teacher role would result in lessening the monotony of rote teaching. 

7.3 Integration of Knowledge-based Tutors 

This document proposed that knowledge-based tutors be used as tools to help adopt 

a technology-intensive approach to classroom teaching. However, as shown above, the 

integration of technology in society will itself promote substantial changes in society. 

A technology does not determine its own effect on society. Rather, the form of its 
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implementation and integration provides a powerful societal impact. Thus, knowledge- 

based tutors might produce undesirable results if their implementation is not carefully 

monitored. For example, an author of these systems might be interested in gaining 

control over the knowledge communicated. S/he might limit the system so that the 

curriculum can not be modified or refined once installed. Such systems would contribute 

to a centralization versus a decentralization of education. Other less stringent systems 

might facilitate show-horning” multiple domains into a single framework, and might 

restrict the number of tools and interfaces available for teaching. Such a technology 

would serve to homogenize rather than diversify education. It would restrict thinking 

and serve to further trivialize the role played by students and teachers. 

The technology in this document has been described interms of a decentralized imple¬ 

mentation. It has been proposed as a way to tailor a variety of curricula to an individual 

and to using multimedia (video disk, audio, video, and film) to enrich and enliven the 

presentation. 

Current educational structure is based on centralized learning and a graded track 

system which reflects the industrial view of human society. Technology described in 

this document can facilitate a departure from this approach and can deliver decentral¬ 

ized education, achieved through distributed communication and knowledge-based sys¬ 

tems. Once artificial intelligence techniques for education are integrated with multi-media 

and hypertext systems, humanity might be poised to establish a global infrastructure of 

knowledge-based systems with the individual at its center (see Section 5.6). Achieving 

this multi-media communication network implies the ability to connect students to: 

• stores of widely available encyclopedias of information accessible through networks; 

• problem-solving expert systems designed for use by people or other machines; and 

• computational agents or interfaces that facilitate human-machine communication. 
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Once knowledge-based systems employing multi-media hardware and software are 

generally available and easy to build, artificial intelligence as discussed in this document 

will emerge as a core technology for educational multimedia. 

One potentially significant impact of intelligent and multi-media machines is to trans¬ 

form education from a “push” to a “pull,” in which people eagerly choose to work with 

machine tutors. For example, operators who used the Recovery Boiler Tutor (Section 

2.1.1), which used only simple computer graphics, reported working on it up to 76 hours 

in the first three months. We didn’t ask the operators to work that many hours, they just 

enjoyed playing with the system. Imagine what would happen if the tutor had employed 

multi-media! Teaching systems that attract people have an obvious and immediate ad¬ 

vantage over other non-attracting teaching tools. It is this kind of attraction between 

students and systems that we encourage in the design of knowledge-based multi-media 

systems. The challenge comes in focusing on a new definition of intelligence, which is not 

limited to information storage and retrieval but is defined by the use of cognitive skills 

and problem-solving methods. 

7.4 Needed Breakthroughs 

This section describes some specific breakthroughs required in the technology and in 

education before full integration of knowledge-based systems can be realized. It also looks 

at how knowledge-based systems might provide more interesting jobs in the workplace. 

We separate conceptual and physical material breakthroughs into two categories: those 

related to hardware/software changes, and those related to educational changes. 

Hardware/Software Breakthroughs. Breakthroughs and continuing developments in 

hardware and software will enable deployment of knowledge-based educational systems 

[Dede, 1988]. These include the following: 



1RR 

• The memory and speed of computer systems should continue to increase, and their 

size and cost should continue to dramatically decrease. Processing speed of micro¬ 

computers should increase by more than two orders of magnitude (to the equivalent 

of current supercomputers), and conventional micro-computers should be outfitted 

with workstation-like quality graphics (e.g., flexible window* managers, buttonable 

icons, menus, etc.) and be capable of networking. Powerful systems should be re¬ 

duced to desk or lap-top size, and their cost per student for ten hours/week usage 

reduced to around $1,000 per year by 1995. 

• Rapid advances should continue in the development of machine responses, not in¬ 

cluding natural language responses, to include improving a machine’s explanatory 

capabilities, its use of felicity conditions, and its theories of hints [van Lehn, 1983]. 

(Felicity conditions are those principles about pedagogy used by teachers and ex¬ 

pected by students. For example, a teacher will typically introduce a single topic, 

focus on it for a while, and then summarize it before moving on to a new topic.) 

• Ability to represent qualitative causal reasoning in domain knowledge should con¬ 

tinue and ultimately be expressible in clear and simple terms. Qualitative reasoning 

includes a machine’s ability to use non-numeric measurements (e.g., time and phys¬ 

ical characteristics) to model a domain and make decisions. Causal reasoning refers 

to a machine’s ability to represent and make decisions based on reasoning about 

cause and effect rules. 

• Cognitive processes of teaching and learning should continue to be made express- 

able, and ultimately representable, in the student model in terms of common bugs, 

possible misconceptions, and differential and perturbation models of errors. 

Artificial Intelligence Issues. The technology of artificial intelligence is instrumen¬ 

tal to the development of knowledge-based systems. However, AI currently has many 

limitations. In particular, current AI programming languages are inadequate for ex¬ 

pressing knowledge, and control structures are limited in their ability to handle complex 



contingencies of machine-person interaction. Better languages are needed for express¬ 

ing conceptual, procedural, heuristic, and simulation knowledge. Although software and 

hardware results are impressive, some AI problems have not moved ahead and do not 

seem solvable in the next two decades. For example, natural language processing systems 

have made little progress in the last 5 years. AI systems that incorporate common sense, 

peripheral “real world” understanding are still a long way off. However, machine learning 

has just begun to emerge as a potentially viable AI technology and recent advances in 

connectionist models of visual recognition and learning are very promising. 

Long-term AI research issues require a substantial effort before knowledge-based tech¬ 

nologies become generalizable and well-established. Researchers need to find a way to 

reduce the amount of time required to produce knowledge-based systems. Currently, 

tutoring systems require a sizable investment of time, much more than the 200 hours 

suggested for building a CAI system. Existing software support systems, such as shells, 

enable us to move more rapidly toward development of these systems (see Section 6.3); 

however, they are not entirely adequate given the requirments of a knowledge represen¬ 

tation systems, as discussed in Section 5.2.1. 

Other short-term AI goals include improving communication between workers in AI 

and education. For example, researchers in artificial intelligence should work with people 

in training and education to develop training systems. Hopefully the best and brightest 

people in teaching should be financed by government and private foundations to build 

knowledge-based tools for education. 

Knowledge Engineering Issues. Researchers must improve the process of transfer of 

expertise from humans to computers. Human knowledge is often distributed, incomplete, 

and acquired incrementally [Bobrow et al., 1986]. Therefore, part of the knowledge 

engineering effort should go toward creation of a “community memory” in which multiple 

experts contribute knowledge of teaching and learning into a central repository. This 

repository might contain all the topics, responses, presentations, analogies, and strategies 

for teaching specific curriculum. The path of the computer through the repository would 
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not be prespecified, as discussed in Section 5.1. Such a community memory would be 

very large, such as the knowledge base being built by Doug Lcnnt at MCC, Austin, Texas 

[Lenat, 1988]. In this 10-year project, researchers aim to encode “all” the knowledge held 

by an encyclopedia. It is estimated that it will hold half a million nodes when complete. 

Once such a framework is built, it should be applicable to many topics and many domains. 

A community of experts is obviously required here because a single expert might create 

a knowledge base that is foreign to others, has conceptual holes, or solves problems in an 

uncommon way due to blind spots in its knowledge base. Historically, where additional 

experts have been included in the knowledge engineering process, the resulting system is 

more successful (see Section 4.2). 

Basic cognitive research into teaching and learning must be developed alongside the 

building of knowledge-based tutors. For example, builders of tutors need to know whether 

a student’s view of that domain is interpret able, complete, or stored as “knowledge in 

pieces” [di Sessa, 1984]. Knowledge about what motivates a student and what is known 

by him/her should be included. Knowledge engineering cannot be successfully performed 

until we identify such features. 

For each new domain, tutoring primitives have to be reconceptualized (including the 

generation of topics, strategies, misconceptions, etc.). Knowledge and heuristics used in 

each domain have to be made explicit. This amount of formalization of problem-solving 

knowledge is not usually available. Textbook knowledge cannot supply it; formulas pro¬ 

vided in books are much too sanitized, neat, and incomplete. 

The technology of building knowledge-based tutoring systems is often driven by our as¬ 

sessment of how we teach. Currently we don’t know much about how teachers make deci¬ 

sions in organizing or communicating knowledge. Work in medicine [Clancey & Letsinger, 

1981] reveals that trained physicians and teachers of medicine often don’t discriminate 

precisely and consistently between cause and effect or between substances and processes. 

Without such clear distinctions, the physician’s most basic experiential knowledge about 

how to solve problems can’t be formalized in a computer. 
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Educational Breakthroughs. Several breakthroughs in education are needed to fully 

implement the technology described in this document: 

• Distributed Teaching: Education should continue to be moved out of the classroom. 

It should be disseminated equally in school, home, community, and workplace. For 

example, families in an average community spend two to ten times the amount 

of money spent by schools in that community on computer education programs 

[Wakefield, 1986]. Many industries now contribute large sums for teacher training 

and materials for primary and secondary education (see Section 1.4). 

• Cooperative Teaching: Education should involve groups of people working on prob¬ 

lems in concert with tutoring systems. It should focus on a dialectic form of teaching 

that stresses an individual’s progress through self-study, with help from machines, 

peers, parents, and teacher counselors. Learning should involve use of video tapes, 

computer databases, machine courseware, reference libraries, and neighborhood re¬ 

sources. 

• Constructivist Education: Both students and teachers need to learn by doing. The 

constructivist teaching paradigm suggests that students need to make hypotheses 

and evaluate their own internal model of knowledge. Section 5.5.3 provided reasons 

to use the constructivist philosophy in developing a machine tutors and Section 

3.3. provided examples of how to elicit constructivist reasoning about tutoring 

from experts. An information-based society is complex and requires the addition 

of powerful learning and teaching strategies to the current educational system. 

Constructivist strategies show evidence of being powerful and active students show 

evidence of learning more effectively than passive ones. 

Students should tutor each other, teachers should consult with students and machines, 

and each should participate in collective problem-solving. 
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A teacher is an expert on something, a guide and often a hero. To a six- 

year old, such qualities may be found completely in a 10 year old . . . and 

often with greater motivation than if supplied by a 28 year old [Bete, 1969]. 

7.5 Impact of Technology on the Workplace 

A new role for humans is evolving in the workplace; humans and machines are be¬ 

ginning to work as partners. Machines can already replace people in complex but 

well-structured tasks, such as factory scheduling, monitoring, diagnosing, and summa¬ 

rizing events in an electric power plant [Bruno et al., 1986], trouble shooting electronic 

equipment [Brown et al., 1982], and designing new copier machines [Talukdar et al., 1986; 

Mittal et al., 1986]. On the other hand, people are more adept at recognizing and learn¬ 

ing from analogical situations, solving unusual problems, and reasoning from incomplete 

and imperfect data. Using these complementary intellectual strengths, both computers 

and humans could work together in a partnership which emphasizes the strength of each 

participant [Peelle &: Riseman, 1975]. 

A knowledge-based workplace, where humans and computers share the learning and 

performance tasks, might require more human-worker intelligence. Humans will need 

to use machine intelligence to augment their own thinking, yet the job might become 

more complex as a result. Complex jobs require both structured and unstructured 

decision-making. Humans still supply sophisticated reasoning such as creativity, flexi¬ 

bility, decision-making, evaluation synthesis, and holistic tliinking. The cooperation of 

humans and machines in the workplace requires that machine intelligence use models of 

skiUed activities, intelligent tutors, and expert decision-aids to communicate with hu¬ 

mans. 

Basic cognitive skiUs such as computation, pattern matching, designing, and planning 

are becoming well-understood and being implemented into Al tools. As this occurs, 



103 

education should shift from teaching lower-level skills such as the stops for double-entry 

bookkeeping and move toward higher-order cognitive skills such as training for creativity 

and decision making. To continue to train people on lower-level skills would be as effective 

as “gr°°ming John Henry to compete with the steam engine” [Dede, 1988]. People will 

need a foundation of lower order concepts, i.e., steps necessary for long division, but will 

not need to be drilled on lower computational skills, which can be better performed by 

calculators and computers. Training should evolve toward helping humans understand 

how sophisticated problems are solved, how unusual cases are recognized, and how to 

communicate, either with humans or machines, to access information. Thus, educational 

assessment should shift from evaluation of a student’s ability to memorize topics and 

define concepts to evaluation of their higher-order cognitive skills. 

Workers will also have to be educated in affective abilities such as cooperation, com¬ 

promise, and group decision-making. This is necessary because industries that become 

decentralized and democratic as a result of knowledge-based tools require that humans 

communicate more often and in more depth [Dede, 1988]. Affective and interpersonal 

abilities will become an important measure of educational effectiveness in a future where 

person/machine partnerships dominate. Teaching affective skills requires altering class¬ 

room structures and goals. 

7.6 Living in the Knowledge-based Society 

The knowledge-based society, as described in Chapter 1, has already come to pass; 

i.e., we now live in a world where access to information is a prerequisite to increased 

knowledge, power, and wealth. Humanity needs to acquire the requisite long-range, 

global attitudes about using this information, communicating it, and distributing it in 

order to advance the economy. Appropriate use of such knowledge is vital to survival of 

a global economy. No country can remain prosperous in the current era by clinging to 

an industrial base when the global marketplace has become information-based [Dede, 
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1988]. Additionally, an economy based on partnership between workers and intelligent 

tools which does not also provide an adequate educational basis is ‘skating on thin ice.’ 

Such an economy does not provide an infrastructure needed for the weight that will be 

placed upon it. Trying to remain prosperous and democratic for two more decades using 

the traditional educational paradigm is bankrupt. 

Ethical and moral issues should also be considered as they relate to the impact of 

technology on daily life. We need to acknowledge and become responsible for the design, 

implementation, and use of computer power [Weizenbaum, 1976]. This section discusses 

some of these issues. 

Socio-educational Issues. We realize that an information society requires AI inno¬ 

vations, such as described in Section 7.4 above. Realization of a fully knowledge-based 

society will be slowed down if recent advances along the lines suggested above bog down 

or if barriers to improving the power/cost ratio are not overcome (physical constraints 

associated with quantum mechanical effects and the speed of light). Even if AI pro¬ 

ceeds rapidly and physical limitations are overcome, the information society may not 

completely emerge if the development of knowledge-based systems stagnates due to in¬ 

sufficient funding, lack of skilled human resources, or a failure to implement research 

initiatives. 

Another possible deterrent, in addition to the overarching problem of cost, is rejection 

by the educational community, including schools, universities, parents, and communities. 

Inertia, self-interest, and resistance to change have been known to undermine educational 

reforms in the past. To create a shift to a new instructional mode requires support from 

administrators and governing officials, extensive teacher training, and community aware¬ 

ness programs. The present dissention about proper goals, methods, responsibilities, 

and funding for education makes such a coordinated transformation very difficult [Dede, 

1988]. 



Moral Issues. Ethical and moral issues must be considered as they relate to the use 

of technology in education, the private consulting room, and the workplace. Concern for 

the responsible use of “computer power” should play a significant role in the development 

of the scenarios presented here [Weizenbaum, 1976; Slovin & Woolf, 1989]. Discussions of 

the social and ethical responsibilities encumbered upon individuals involved in the con¬ 

struction of high-impact technology should be encouraged. Questions of goals, motives, 

purposes and values are embedded in the design of knowledge-based tutors and should 

be made explicit by knowledge engineers and domain experts. Perhaps some statement 

regarding ethical considerations in design should be required of developers. 

Weizenbaum has been outspoken about the matter: 

The point is. . .that there are some human functions for which computers 

ought not to be substituted. It has nothing to do with what computers can 

or cannot be made to do. Respect, understanding, and love are not technical 

problems. ...Scientists and technologists have, because of their power, an 

especially heavy responsibility, one that is not to be sluffed off behind a facade 

of slogans such as that of technological inevitability. [Weizenbaum, 1976] 

Winograd and Flores offer the following cultural perspective: 

Computers, like every technology, are vehicles for the transformation of 

tradition. ... We can let our awareness of the potentials for transformation 

guide our actions in creating and applying technology. In ontological design¬ 

ing, we are doing more than asking what can be built. We are engaging in a 

philosophical discourse about the self—about what we can do and what we 

can be. Tools are fundamental to action, and through our actions we generate 

the world. [Winograd & Flores, 1986] 

Future collaboration with knowledge-based tutors will generate new problems and 

new possibilities in education, training, and consulting. We need to continually clarify 



the roles of both humans and machines and improve the competencies of each. Such 

an unfolding process provides for further innovation in the design and development of a 

promising partnership. 



APPENDIX A: Human Networking 

e ollowmg is a partial list of journals, periodicals, newsletters, conferences and 

workshops that might appeal to the reader. Some periodical listings include descriptive 

material as well as resource people to contact for more information. Publications are first 
categorized by focus and approach and then alphabetically. 

Summary of Publications by Focus 

Artificial Intelligence 
AI Magazine 

AI Expert 

IEEE Expert 

International Journal of Expert Systems: Research and Applications 

IEEE Transactions on Systems, Man, and Cybernetics 

Artificial Intelligence and Education 

Intelligent Tutoring Systems 

Interactive Learning Environments 

Journal of Artificial Intelligence in Education 

Computer Science 

Byte, 

Communications of the Association for Computing Machinery 

IEEE Computer 

Cognitive Science 

Cognition and Instruction 

Cognitive Psychology 

Cognitive Science 

Proceedings of the Cognitive Science Society 
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Computers and Education 
Academic Computing 

Hands On! 

Journal of Educational Computing Research 

Journal of Computing in Higher Education 

Machine-Mediated Learning 

Human-Computer Interface Issues 

Human-Computer Interaction 

International Journal of Man-Machine Studies 

IEEE Transactions on Systems, Man, and Cybernetics 

Bulletin: Special Interest Group in Computer Human Interaction 

Education 

Educational Researcher Harvard Educational Review 

Technology in Education 

Journal of Educational Technology Systems 

T.H.E. Journal: Technological Horizons in Education 

Technology and Learning 



Publications 

Academic Computing 

Focus: Computers and Education 

A free journal covering computer use in higher education. 
Kolbensvik, J. (Ed.), 

Academic Computing Publications, 
PO Box 804 

McKinney, TX 75069. 

Contact: Joel Kolbensvik (214) 548-2101. 

AI Magazine 

Focus: Artificial Intelligence 

Published quarterly, AI Magazine is the official publication of the American Association 

of Artificial Intelligence. Its purpose is to disseminate timely and informative articles 

that represent the current state of the art in artifical intelligence. 

Contact: 

American Association for Artificial Intelligence 

445 Burgess Drive 

Menlo Park, CA 94025-3496 

415 328 2123 

AI Expert 

Focus: Artificial Intelligence 

Byte, 

Focus: Computer Science 

Cognition and Instruction 

Focus: Cognitive Science 

Lawrence Erlbaum Assoc. 

365 Broadway 

Hillsdale, New Jersey 07642 

Cognitive Psychology 

Focus: Cognitive Science 

Academic Press 

Cognitive Science 

Focus: Cognitive Science 

Ablex Publishing Corp., 

355 Chestnut Street 

Norwood, N.J., 07648 



Proceedings of the Cognitive Science Society 
Focus: Cognitive Science 

Comm unicat ions of the Association for Computing Machinery 
Focus: Computer Science 

One of the oldest publications for the general computing community, 

eed articles of substance emphasizing concepts and principles, as well 
news, and conference information. 

Association for Computing Machinery 

11 West 42nd Street 

New York, N.Y., 10036 

212 869 7440 

IEEE Computer 

Focus: Computer Science 

IEEE Computer Science 

10662 Los Vaqueros Circle 

Los Alamitos, CA. 90720 

714 821 8380 

Educational Researcher 

Focus: Education 

Published nine times a year; contains news and features of general significance in educa¬ 

tion research. 

American Educational Research Association 

1230 Seventeenth Street, Northwest 

Washington, D.C., 20036 

202 223 9485 

Contact: 

Susan Wantland 

IEEE Expert 

Focus: Artificial Intelligence 

The Computer Society of the IEEE 

10662 Los Vaqueros Circle 

Los Alamitos, CA. 90720 

714 821 8380 

Hands On! 

Focus: Computers and Education 
A newsletter describing innovative uses of computers, especially micro-based teaching, 

for grade school. Published by TERC, Technical Education Research Center, Inc., 

Contact: 

Robert Tinker 

It publishes refer- 

as notices, general 



TERC 

1696 Massachusetts Avenue 

Cambridge, MA 02138 

201 

Harvard Educational Review 

Focus: Education 

A journal of opinion and research in the field of education. Published by an editorial 
board of graduate students at Harvard University. 

Editorial and Business Office 

Gutman Library Suite 349 

6 Appian Way 

Cambridge, MA 02138-3752 

Contact: 

Karen Maloney 

617 495 3432 

Human-Computer Interaction 

Focus: Human-Computer Interaction Issues 

Intelligent Tutoring Systems 

Focus: Artificial Intelligence and Education 

Learned Information (Europe) LTD 

Woodside, Kinksey Hill 

Oxford OX15AU 

United Kingdom 

Tele: Oxford + 865 730275 

Contact: 

Masoud Yazdani 

Department of Computer Science 

University of Exeter 

Prince of Wales Road 

Exeter EX 44PT 

United Kingdom 

Interactive Learning Environments 

Focus: Artificial Intelligence and Education 

Ablex Publishing Corporation 

355 Chestnut Street 

Norwood, New Jersey 07648 

201 767 8450 

Contact: 

Elliot Soloway 
Department of Electrical Engineering and Computer Science 

University of Michigan 
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1101 Beal Avenue 

Ann Arbor, MI. 48109-2110 

Editors: 

Eliot Soloway, Kurt vanLehn, William Clancey, Roy Pea, Tim O’Shea, 

International Journal of Man-Machine Studies 

Focus: Human-Computer Interaction Issues 

Describes human-computer interface issues and artificial intelligence approaches to the 
development of computing systems. 

Academic Press 

24-28 Oval Road, 

London, NW1 7DX, 

United Kingdom. 

Contact: 

B. Gaines (Ed.) 

Deaprtment of Computer Science, The University 

Calgary, Alberta, Canada T2N 1N4 

International Journal of Expert Systems: Research and Applications 

Focus: Artificial Intelligence 

Provides indepth reviews of expert systems applications. 

JAI Press, Inc. 

55 Old Post Road-No 2., 

P.O. Box 1678 

Greenwich, Connecticut 06836-1678 

Journal of Artificial Intelligence in Education 

Focus: Artificial Intelligence and Education 

Publishes articles that advance knowledge and theory on how intelligent computer tech¬ 

nologies can be used in education to enhance learning and teaching. Published quarterly 

for researchers, teacher educators, curriculum/product developers, etc. 

Association for the Advancement of Computing in Education 

P.O. Box 60730 

Phoenix, AZ85082 

602 952 2712 

Journal of Computing in Higher Education 

Focus: Computers and Education 
Scholarly essays, reviews, reports, and research articles that contribute to understanding 

the issues, problems, and research associated with instructional technology and educa¬ 

tional management information systems. Articles represent all aspects of academic and 

administrative computing. 

Paideia Publishers 

P.O. Box 343 
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Ashfield, Ma 01330 

Contact: 

Carol B. MacKnight 

University of Massachusetts 

Journal of Educational Technology Systems 
Focus: Technology in Education 

Investigates and reports on actual classroom experience in the use of technology - video 

disks, closed circuit television, audio and audiovisual programs and programmed instruc¬ 

tion. Purpose is to guide educators in the use and full range of available technology for 
the classroom 

Baywood Publishing Company, Inc. 

120 Marine Street 

Box D. 

Farmingdale, N.Y. 11735 

Contact: 

Dr. Thomas T. Liao 

Department of Technology and Society 

State University of New York 

Stonybrook, New York. 

Journal of Educational Computing Research 

Focus: Computers and Education 

Describes research on the application, effects, and implications of computer-based edu¬ 

cation. Contains critical analyses, reports on research in progress, as well as design and 

development studies. 

Baywood publishing Company, Inc. 

120 Marine Street 

Box D. 

Farmingdale, N.Y. 11735 

Contact: 

Dr. Robert Seidman 

New Hampshire College 

Graduate School 

2500 North River Road 

Manchester, New Hampshire, 03104 

603 485 8415 

Machine-Mediated Learning 

Focus: Computers and Education 

Taylor & Francis, Ltd., 

London, England. 

Contact: 

Friedman, E., & Resnikoff, H. (Eds.), 



T.H.E. Journal: Technological Horizons in Education 
Focus: Technology in Education 

A free journal covering the uses of technology to improve education 
Information Synegy, Inc., 

2626 South Pullman, 

Santa Ana, Ca. 92705 

Contact: Sylvia Charp 

39 Maple St. 

Upper Darby, Pa. 17082 

Technology and Learning 

Focus: Technology and Education 

A newsletter describing advanced technology in education and training. Published by 

Lawrence Erlbaum Publishers. 

Contact: 

Hollis Heimbouch 

365 Broadway 

Hillsdale, NJ 07642 

201 798 1913 

IEEE Transactions on Systems, Man, and Cybernetics 

Focus: Human-Computer Interaction Issues 

SIGART Newsletter: Special Interest Group in Artificial Intelligence 

Focus: Artifiical Intelligence 

Published by SIGART 

Association for Computing Machinery 

11 West 42nd Street 

New York, N.Y., 10036 

212 869 7440 

SIGCHI Bulletin: Special Interest Group in Computer Human Interaction 

Focus: Human-Computer Interaction Issues 

Published by SIGCHI 

Association for Computing Machinery 

11 West 42nd Street 

New York, N.Y., 10036 

212 869 7440 



Conferences 

A-A.AI, American Association for Artificial Intelligence 
Contact: 

Claudia Mazzetti 

AAAI Office 

445 Burgess Drive 

Menlo Park, CA 94025 

ADCIS, Association for the Development of Computers in Schools 

Contact: Tom Reeves 

AERA, Association of Edcuational Researchers 

Has dedicated several sessions to research in Artificial Intelligence and Education. 
Contact: 

Wally Feurzeig 

Bolt, Beranek, and Newman, Inc. 

10 Moulton St. 

Cambridge, MA 02238 

617 837 3448 

EDUCOM 

P.O. Box 364 

Princeton, NJ 08540 

(609) 520-3355 

Attracts around 2,000 educators, officers, software developers, networking specialists and 

industry, government and research laboratory representatives from 20 countries. Ex¬ 

plores research issues such as academic computing, coordinating libraries, and building 

computer networks. 

Conferences of the Cognitive Science Society 

Contact: 

John Anderson 

Psychology Dept. 

Carnegie-Mellon University 

Proceedings distributed by Lawrence Erlbaum Associates, Inc., NJ 07642 

International Conferences on Artificial Education and Education 

Contact: 
Al-ED-89 Secretary—telephone (31) 20-525-2073 



SWI, University of Amsterdam 

Herengracht 196 

1016 BS Amsterdam 

The Netherlands 

Covers recent work in architectures, cognitive research, domain representation, teach¬ 

ing strategies, student modeling and diagnosis, modeling worlds, Al-language learning. 

International Conferences on Intelligent Tutoring Systems 

Contact: 

Marlene Jones, Telephone: (403) 297-2666 

Alberta Research Council 

IJCAI, International Joint Conference on Artificial Intelligence 

Contact: 

Wolfgang Bibel, C.S. 

University of British Columbia 

6359 Agricultural Road 

Vancouver, BC 

V6T 1W5 

ICCAL, International Conferences on Computer-Assisted Learning 

Contact: 

Janet Harris 

Center for Continuing Education 

University of Texas at Dallas 

P.O. Box 830688, MS CN 1.1 

Richardson, TX 75083-0688 

NECC, National Educational Computing Conference 

Contact: 

NECC ’89 

International Council for Computers in Education 

University of Oregon 

1787 Agate Street 

Eugene, OR 97403-9905 
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Designs and Storyboards 

Example 1: Design for a Chemistry Tutor, by Patricia Corradino 

Phyllis Eisenberg, Donna Lalonde, James Scott. 

Funded by the National Science Foundation 

Summer, 1988, University of Massachusetts 

CHEMISTRY TUTOR FINAL REPORT 

*Understanding Dynamic Chemicai Equilibrium* 

BY! Patricia Corradino 

Phyllis Eisenberg 

Donna LaLonde 

James Scott 

Summer 1988 

OVERVIEW of STRATEGY 

I. Introduce concept of equilibrium with simulation of 

gold fish in a tank. Explore the students 

understanding of equilibrium by asking ueer to 

experiment with the simulation. 

II. Series of demonstration simulations developed to make 

the user familiar with the environment and to ascertain 

the level of understanding of auxiliary components i.e. 

graphs. 

III. Present the user with microworld be/she can experiment 

with to develop a theory about systems at equilibrium. 

The microworld is similar to the demonstration so the 

user is familiar with the devices that are available 

for investigation. 

IV. Address any misconceptions that are uncovered with 

particular examples and help. 

Overview of Program 
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Equilibrium Simulation Screen 

Basic Model 



Design for a Chemistry Tutor (Cont) 

SCRIPT 

NOTE: THE DESCRIPTION OF WHAT THE STUDENT SEES IS IN 
PARENTHESES. EVERYTHING ELSE IS THE TEXT THAT APPEARS ON 
THE SCREEN OF THE MONITOR. 

(The screen shows a tank with two labeled compartments that 
are equal In size. There are 20 fish in compartment B and 0 
fish in compartment A.) 

We're going to show you a model of a dynamic system that 
will reach a state of equilibrium. Our model is this closed 
tank in which fish can migrate from one compartment in the 
tank to the other. This is a closed system; the total 
number of fish within the tank will remain the same. 

Count the number of fish in the tank. When you examine this 
system, you see that there are 20 fish in compartment B and 
0 fish in compartment A. 

This system isn't dynamic right now. There is no motion. 
When you click the mouse on START, the fish will begin to 
move. Observe their random motion. Once this moving system 
reaches equilibrium, we'll ask you some questions about the 
conditions that exist in a 3tate of DYNAMIC EQUILIBRIUM. 
You'll probably be able to answer these questions based on 
your observations of the movement of the fish. 

Equlibrium Script 

Equilibrium Simulation Screen 

Four Simultaneous Models 
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A ^ 

Topics Covered in the Equilibrium Simulation 
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ick on START to begin* 

(When the student clicks on START, the solid partition 

3 bro*en llne» motion begins, and a counter 
tbe monltor'3 screen that records the number of 

r h compa*t,nent A ar)d the number of fish In compartment 

recorded* n“mbe** d° not disappear from the screen but are 
second ^ automatlcally at x second Intervals In a table. A 

sneedom1fbCl'i<? co?nter set®P that might look like two 

of flah thf? 13 8lS° °" thC screen- These record the number 

The ,Cr°S3 t5e*b2trler ln each dlrectlon per minute. 
Inmherl] * ?r? updated at the same Intervals as the 

umbers of fish ln each compartment are recorded.) 

while the fish are moving, you can click on PAUSE to 
temporarily freeze the motion If you want to take a closer 
look at the system. Try this and count the number of fish 
in each compartment and the number of fish that are crossing 
the barrier ln each direction. To return to the dynamic 
state, click on CONTINUE. 

(The changing of numbers continues until the equilibrium 
state Is reached.) 

Notice that the numbers being recorded are no longer 
changing although the fish continue to move. Since the 
numbers are no longer changing, the system has reached a 
state of DYNAMIC EQUILIBRIUM. At equilibrium, the number of 
fish ln each compartment Is constant; It no longer changes 
even though motion continues. Look at the speedometers. 
The number of fish moving across the barrier 
ln the FORWARD direction Is the same as the number of fish 
moving across the barrier ln the REVERSE direction. 

Let's see If you can answer some questions about the 
conditions that exist ln a system that Is at a state of 
DYNAMIC EQUILIBRIUM. Be sure that the system Is dynamic. 
If you have put the system on PAUSE, click on RESUME to 
return to motion. 

Are the particles of this system ln motion at equilibrium? 
(In our model the particles are the fish.) Click on YES or 
NO. 

(If the student clicks on NO then -) 
Look again! Those fish are moving! 

(If the student clicks on YES or If the student has clicked 
on NO and gone through the NO text then -) 
When a system Is ln a state of DYNAMIC EQUILIBRIUM, the 
particles are always moving. 

Are the number of particles ln each chamber changing at 
equilibrium? Click on YES or NO. 

Student Actions for the Equilibrium Simulation 
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Screen from Chemistry Tutor 
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Click on continue to advance to the next screen 

staJeVof°en?,M?K ? m^el °f a system that reached a 
This moL?qh!«lbK1Um 3 varlety of starting conditions. 
c^taTnd^Lrf%3h?',T,t at systetns at equilibrium exhibit 
certain characteristics. Some of these characteristics are: 

1. The equilibrium state is dynamic not static. At 
equilibrium something is still happening. Our 
model showed that at equilibrium the fish 
continued to move. 

2. The equilibrium state can be approached from a 
°£ startin9 conditions.. Our model showed 

that the system proceeded to equilibrium regardless 
of the conditions within the tank initially. 

3. Equilibrium can be approached from opposite 
directions. Equilibrium was achieved within the 
tank regardless of whether all the fish were 
initially In compartment A or compartment B. 

4. The system spontaneously proceeds to equilibrium. 
Once started, our model showed that the system 
proceeded to equilibrium on Its own. 

5. At equilibrium reversible opposing motions are 
occurlng at equal rates. Our model showed that 
at equilibrium the rate of the forward motion and 
the rate of the reverse motion were the 3ame. 

6. All components In a closed system are In contact 
and eventually reach a state of equilibrium, in 
our systems you observed that all fish were moving 
throughout the tank In both directions and 
eventually reached a state of equilibrium. 

7. At equilibrium, the concentration of the substances 
In the system is constant, when you looked at 
the fish model at equilibrium, you saw that the 
number of fish In each compartment of the tank 
remained the same. 

Click on CONTINUE to advance to the next screen. If you 
would like to repeat thi3 Introduction, click on RESTART. 

TRANSITION TO DEMONSTRATION IN WHICH STUDENT WILL MANIPULATE 
VARIABLES THEREBY APPLYING STRESS TO SYSTEMS AT EQUILIBRIUM 
AND NOTE THE CONSEQUENCES. 

(A screen appears In which three different types of balls 
are randomly moving and colliding Inside a chamber. The 

Discussion about the Chemistry Tutor 
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Summer, 1988, University of Massachusetts 

GENETICS 

KNOWLEDGE BASE DESIGN 

VERSION 1 

Cassandra Bacote-Capiga 

Susan S'. Haines 

He nod's Genetic* Tuto*- 

Prrr«04»iU 

Co-ct9*tjiU_ 

Ctpawnt 

Topics covered in the 

Genetics Simulation 

PRESENTATION OUTLINES FOR KNOWLEDGE UNITS 
1. Dominant/Recessive KU 
2. Hetero/Homozygous KU 

]. Genotype/Phenotype LU 

L Punnett Square 

Knowledge Engineering 

for the Genetics 
Simulation (an outline) 
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VOCABUI-ARV/TERMlNnr.nrv 

The Dominant gene manifests Itself 
masked when comDlnes with a dominant 
terms of specific traits: Tall peas 

The recessive gene 
gene. For example, 
brown eyes, etc. 

Is 
In 

Possible Question/Problems: 
The gene that manifests 

Itself is called_ 

b) Something has a dominant 
and a recessive gene, what 
does It look like? 

c> A creature's mother has 
brown X and his father has 
blue X. When brown X Is 
dominant.etc. 

NOTATION 

Capital letters are used to represent 
lower case for recessive. The aomlnant 
written first. 

dominant genes and 
trait Is a I ways 

Examples: An Individual with both genes dominant 
for tallness would be written TT. 

An Individual with both genes recessive 
for tallness would be written tt. 

Possible Problem: How would you represent an 

Individual with one dominant and one 
recessive gene for tallness? 

If student answers tT. see misconception M2. 

APPLICATION 

Explanation: How the concepts are used; why? 

-to predict offspring 

-to predict genotype (genetic 
makeup of offspring) 

Examples: Tt(mother) tt(father) 

v / 
Tt (baby) 

Problem: A baby Inherits the following genes from its 
parents when T stanas for Tallness. Would the 
baby be tall? 

Knowledge Unit 

for Teaching Concepts 

"Dominant and Recessive" 

S.U: 2 - HETERCCTGOUS/HOMaffGOlS 

yPCABUI. ARY/TERH i not ncv 

that'his^un ana hon’°2',9°u’ An Individual 
o v l h k! 9'n” <or a tr41t homozygous. An 

fo? I ^ , i! °"e aomlnant *"0 one recessive g.ne 
ror a trait Is heterozygous. 

Also Intrlouce pure and hybrid as synonyms. 

Examples: Tall Tall, short short. Tall short. 

Prop Iem/QuestI on: Slot machine example. Pull lever, 
state whether resulting combination Is hetero or 
homozygous (pure or hybrid). 

notation 

Description: homozygous - tt or TT 
heterozygous - Tt 

Examples: As above 

Questions: If tallness Is dominant, how ao you 
represent a heterozygous X? 

(Answer: Tt) 

application 

Description: Same as dominant/recessive with new 
termlnology. 

Examples - 

Oueston: Same problem as dominant/recessive but using 
new vocabulary. 

Knowledge Unit 

for Teaching the Concepts 

"Heterozygous and Homozygous" 
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VQCftCULARY/TCRHIunm,TT 

Explain Mining of terms' phenotype - appearance. „c. 

genotype - gene comblnAtlon 

ExmipI.o, Pictures of Individuals with visible genetic 

eno^nhlnnt®tIco eno descriptions of the genotype 
•no phenotype of eech. Compere end contrast ti”s. 

Problemsi Use pictures used In exemples. 

HOIMICN 

Explanation. Genotype represented by genetic symbols. 
* • rt or TtBB 

Lx*mp1 egi See Above 

Problems: Give a representAtIon. 
Describe the genotype of TtBB. 
Describe the phenotype of TtBB. 

&em cation 

Exp Iaha t1on t 

ExAmplesi 

Problems: SAme as OomlnAnt/recessIve Ano hetero/homo¬ 
zygous. Aaa new fActor Introaucea here. 

Knowledge Unit for Teaching the Concepts 
Genotype and Phenotype 

V0CABui-*BY/nri;n?ipT’n« 

Explanation! The punnstt square is * chart/tool used 

to aemonstrAte Ana AnAlyze genetic cross*! 
between PArent*. It sr\ow9 the dcirim, 
genotypes of the offspring Ana proportions. 

Ex amp I a i < Show this example In words ana symools 
on the chert Ana Incluae interpret At ion. 

_P x Tt • VI tt. I/a Tt 

— X r_ 
C Tt tf 

-t [tt- tt 

Problems: As Above. 

NOTATION 

APPLICATION 

Describe how to use the punnett Ana the purpose (or 
which It Is usea. 

ExAmples: 
Stock of proolems thAt cen be usea as 

both exAmptes Ana proolems. 
Problems: 

Knowledge Unit for Teaching How to 

Use a Punnett Square 
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Procedural Presentation on Notation - Dominant/Recessive 

1. Explain the 
notation using most 
current example 

_tor graphics. 

TDCT; Scientists use symbols to 
represent dominant and recessive 
traits: Capital for dominant. 

. lower case for recessive. The 
dominant symbol la always 
written first. 

2. Give an example. 

jj TT 1 
* i 
i -ft 

3. Give a problem. 

TEXT: Here are some examples. The 
first plant has two dominant genes 
for tallness, represented by TT. 
The second plant. 
The third plant... 

Summary of Presentation for Dominant/Recessive Notation: 

1. Explain using text for misconception 
Presentation: Order Doesn't Hatter 

2. Give Example ■. 

3. Give Proolem/Ouestion: D-R-N «l 

Various Screens for 

Teaching About 

Dominant and Recessive 

Genes 

DomiDaol/Recessive - Presentations *1 

Declarative Presentation 

1. Give a definition 

-TCcr if4 

The dominant gene' man I lasts Itself. 
The recessive gehe Is masked... 

2. Give an example 
from a collection of 
appropriate examples. 

Text J For example. In pea plants 
tallness Is the dominant and short¬ 
ness Is the recessive. 

Here Is a tall pea which contains 
both genes. You can't see the 
recessive character. To see the 
you'd have to cross It with 
another. y- 1 

3. Ask a question that 
prooes whether they 
understand the vocabulary. 

< from a •el nt examples/problems) 
.CflAUfN*' 

flCTtatf 
SHSuliM*- 
Mfvtr ot 

CMS 

a ff) 

Text: The guinea pigs shown carry the 
genes for both brown and white fur 
color. Which gene Is dominant? 

^Continue with notation 
Elaborate 

Congratulate L Encourage 
Follow up question 

Review a Summation 

?Vrong 
-^Glve a Hint • 

►Give the correct explanation 
—^>Glve another try 
—-^Prooe for misconception 

Screens for Presenting a Definition, 

Example, or Question 
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A Simple Question Presented by the Genetics Program 
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Problem Presented to Student Requesting 
the use of a Punnett Square 

-- 
\ <=>v | 

i To4l x-tr 

Ctoh 

6 
^1., P 

*'p t 

(ger*type ?) 

x p'-M 
etodc j TT tt Tt ? 

Problem: Do a cross experiment to determine the genetype 

of the plant (tall) shown on the screen, where 

Tall is the dominant trait. Choose from the stock. 

Task Given to Student Which 

Requires an Experiment 
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Steps in Solving the Problem 

on the Previous Page 

Steps in Solving the Problem 

on the Previous Page 
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