University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service Activities

4-25-2019

2019 Pesticide Safety - Fruit Color Research

Giverson Mupambi

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension Part of the <u>Agriculture Commons</u>

FRUIT COLOR RESEARCH

HISTORICAL BACKGROUND AND FUTURE PERSPECTIVES

Giverson Mupambi, Extension Assistant Professor UMass Pesticide Safety Training 04-25-2019

Changing fruit color specifications

Depending on your handler:

- •Optimum TAcy range
- min TAcy
- •% uncolored allowance

Factors influencing fruit color

- •Genetics: cultivar ability to synthesize anthocyanin
- •Environmental: light and temperature
- •Crop load
- What can we do?
- •No cultural practices to improve color

 Devlin (1967) evaluated 2 plant growth regulators (PGRs) and 2 pesticides to improve color on 'Early Black'

	Concentration	% 个 anthocyanin**
Indole-3-acetic acid 2 WBH	10 ppm	37
	50 ppm	57
	100 ppm	50
Gibberellic acid*	100 ppm	-5
	300 ppm	-13
Silvex (preharvest)*	5 ppm	11
	10 ppm	11
	20 ppm	24
Malathion (preharvest)*	800 ppm	30
	1600 ppm	48

WBH~ weeks before harvest, *Timing not specified, ** Units not given

- PGRs can be inconsistent (Devlin et al. 1969)
- Timing of application every important
- Recommendation: 1600 ppm malathion, 2 weeks before harvest, within label restrictions

	Concentration	3 WBH	2 WBH	1 WBH
Indole-3-acetic acid	30 ppm	- 2.60%	0	0
	50 ppm	0	0	0
Malathion	800 ppm	24%	9%	6%
	1600 ppm	23%	22%	7%
	2400 ppm	25%	30%	8%

WBH~ weeks before harvest, *mg anthocyanin / g cranberry

- Alar, Malathion and Ethrel on 'Early Black' (Eck, 1969)
- Cranberry industry avoided the Alar scare of 1989
- Cranberry of 1959

Control	0.154* a	
Alar 2000 ppm	0.140 a	
Alar 4000 ppm	0.149 a	
Malathion 2.5 lb/acre	0.173 ab	
Ethrel 6000 ppm	0.189 b	

2 weeks before harvest, *mg Congo red / g fruit

• Ethrel on 'Early Black' (Devlin & Demoranville, 1970)

	Concentration	BB	FB	2 WBH
Ethrel	100 mg/L	0	0	49%
	500 mg/L	0	0	65%
	1000 mg /L	0	0	64%

WBH~ weeks before harvest BB~Before bloom FB~Full bloom *mg anthocyanin / g cranberry

- Farag et al. 1992
- 'Searles', large scale study (12 x 50 m plots)

	1988
W	28.2 a*
E + T (0.5%)	30.2 a
T + EtOH	27.9 a
E+ T + EtOH (10%)	37.8 b

1 gallon Ethrel/acre 1-2 gallon Alcohol (Ethanol)/ acre 1 pint Tergitol/ acre 6lbs urea/acre

W=Water, E= Ethephon, T= Tergitol, EtOH = Ethanol Sprayed 14 days before harvest *TAcy mg / 100 g fresh weight

Future perspectives

- Natural formulations: PGRs & biostimulants
- Manipulating canopy to improve light penetration
- Ethylene based sprays \rightarrow fruit firmness
- Pesticides → too close to harvest, residues!!

Future perspectives

ORIGINAL RESEARCH published: 26 March 2018 doi: 10.3389/fpls.2018.00323

Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in *Vitis vinifera* × *Vitis labrusca* Table Grapes in a Subtropical Region

Renata Koyama¹, Sergio R. Roberto¹⁺, Reginaldo T. de Souza², Wellington F. S. Borges¹, Mauri Anderson², Andrew L. Waterhouse³, Dario Cantu³, Matthew W. Fidelibus³ and Barbara Blanco-Ulate⁺⁺

Figure 1. 'Crimson Seedless' grapes that received no PGRs for color improvement (left column), or increasing concentration of ABA (middle and right columns). *Photo by Cecilia Peppi, University of California.*

- Right concentration
- Right timing

(Fidelibus and Vasquez, 2012)

Future perspectives

Manipulating the canopy to increase light penetration whilst still maintaining yield

Thank you

gmupambi@umass.edu, (508) 295-2212 ext. 24