University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering andInternational Conference on River ConnectivityEcohydrology for Fish Passage(Fish Passage 2018)

Dec 13th, 3:40 PM - 5:20 PM

Proof of concept for an innovative pump fishway design to move fish upstream over dams

John H. Harris *UNSW*

William L. Peirson UNSW

Brent Mefford UNSW

Richard T. Kingsford *UNSW*

Stefan Felder *UNSW*

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Harris, John H.; Peirson, William L.; Mefford, Brent; Kingsford, Richard T.; and Felder, Stefan, "Proof of concept for an innovative pump fishway design to move fish upstream over dams" (2018). *International Conference on Engineering and Ecohydrology for Fish Passage*. 22.

https://scholarworks.umass.edu/fishpassage_conference/2018/December13/22

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Centre for Ecosystem Science, School of Biological, Environmental and Ecosystem Sciences Water Research Laboratory, School of Civil and Environmental Engineering

Pump Fishway Project: Proof of Concept

John Harris, William Peirson, Brent Mefford, Richard Kingsford, Stefan Felder, Iain Suthers

Funded by NSW Recreational Fishing Trusts

The problem:

- ~50,000 high dams globally 500 in Australia
- Migration blocked to major habitat areas upstream
- Very few high fishways exist, <3% in Australia
- Very few mitigate barrier effects adequately
- High fishway costs impede mitigation
- Design innovation is an urgent priority

Commercial Fish Pump in Operation

Tassal Salmon Farm, Bruny Island, Tasmania

- Airlift pump relocating
 & grading Atlantic salmon
- 10,000 fish, 2–4kg moved without injury through 200mm pipe in 3 hours

• 2–4 kg Atlantic salmon passing through pipe

Pump Fishway Project Goals & Objectives

Design a better, cheaper upstream fishway

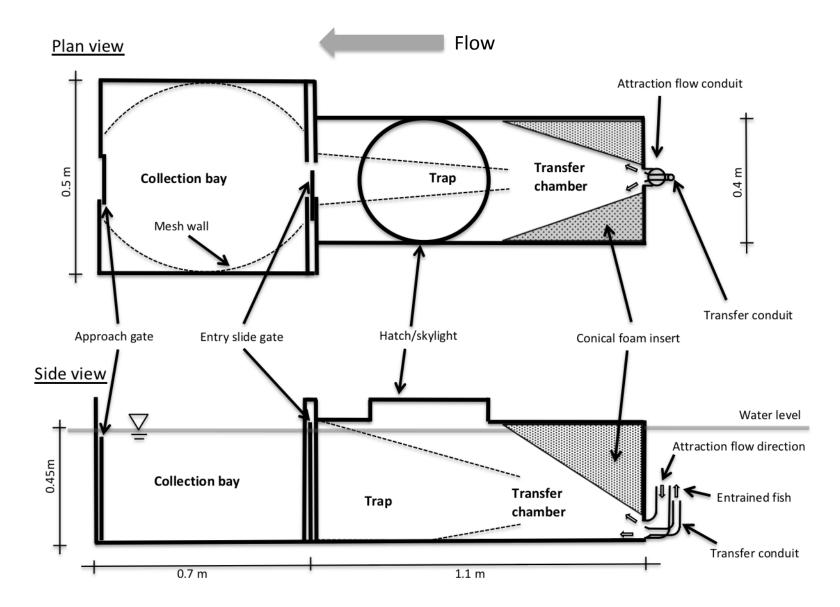
- Combine methods from fishways & aquaculture
- Attract and trap fish in chamber that can be pressurized for piped passage
- Use reservoir's hydraulic head to provide flow & energy
- Provide experimental proof of concept using models
- Refine and test full-scale prototype in the laboratory and the field
- Optimize all passage stages attraction, entry, passage, refuge
- Full range of migrating species and sizes

Initial vertical-cylinder model

Research conclusions

- Disturbed fish seek refuge at depth
- Escape reactions stimulate swimming into flows
- Curved structures reduce delays
 Eliminate sharp corners

Horizontal-cylinder model



Design responses

- Horizontal design allows fish to remain at bottom
- Input attraction flows at upstream limits

HORIZONTAL-CYLINDER FISHWAY MODEL HC3

Modified Pump Fishway model HC3

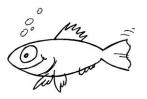
Transfer chamber Collection bay Attraction flow inlets Transfer conduit entrance

Transfer conduit Transfer conduit integrated Attraction flow conduit within attraction flow conduit

Performance summary: Horizontal cylinder models

Model	No. trials	Fish length (mm)	Percent fish through gate (min.)	Percent fish transferred (< 30 min.)	Model average transfer (%)
Original	4	83	100 (5.8)	80 (18.8)	
Original	4	64.2	90 (13.4)	10 (30)	
Original	4	60.3	100 (8.8)	15 (30)	35
Modified 1	5	54.4	88 (15)	72 (26)	72
Modified 2	9	50.3	100 (6.6)	98 (17.9)	98

Pump Fishway Features


- Combines four technologies:
 - Fish passage, aquaculture transfer, hydro energy, novel hydraulic pumping
- Compact, light-weight, modular construction
 - Floating –> independent of tailwater variation?
 - Barge-mounted & re-positioned –> optimal attraction?
 - Removable before floods?
- Constant operation, short cycling period
- Energy-independent
- Simple -> reliability, low maintenance
- Proof-of-concept established

Expected Pump Fishway Benefits

- Less limited by fish size, physiology & behaviour
- Versatile, adaptable to sites >~2m
- Low capital and operating costs
- Energy independent
- All critical fishway functions effective:
 - attraction, entry, passage, refuge

