University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and	International Conference on River Connectivity
Ecohydrology for Fish Passage	(Fish Passage 2018)

Dec 13th, 3:40 PM - 5:20 PM

A trap-and-haul fishway for multi-species upstream fish passage at a challenging site

Steve O'Brien *AECOM*

John Harris *Tinonee*

Brent Mefford Wildfish Engineering LLC

David Roberts Seqwater

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

O'Brien, Steve; Harris, John; Mefford, Brent; and Roberts, David, "A trap-and-haul fishway for multi-species upstream fish passage at a challenging site" (2018). *International Conference on Engineering and Ecohydrology for Fish Passage*. 21. https://scholarworks.umass.edu/fishpassage_conference/2018/December13/21

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@libraryumass.edu.

A trap-and-haul fishway for multi-species upstream fish passage at a challenging site Steve O'Brien, John Harris, Brent Mefford and David Roberts

Hinze Dam Stage 3

-Raise Main Embankment By 15m

> Raise and Modify Spillway

Spillway Chute

Upstream of Hinze Dam

Little Nerang River

Nerang River

Downstream of Hinze Dam

Environmental Flow 7.25ML/day

Upstream Fish Passage Requirements

- Upstream fish passage be implemented to rehabilitate the Nerang River's biological diversity and fisheries values
- All non-spilling flows (7.25ML/d) are available for fish transfer.
- The fishway's design and operation are to be flexible to accommodate variation in biomass.
- Fish passage to be available in floods up to the 1 in 20 AEP flood.

Downstream Fish Passage Requirements

- Continuous downstream fish passage is not required beyond spill events.
- Not enough flow in Nerang River downstream of the dam
- Minimal attraction flows to guide fish
- More likely to be transferring stocked fish
- Spillway design is to consider opportunities to minimise adverse effects on fish during and immediately after spill events.

Upstream Passage Options Considered

- Fishlift
- Series of Locks
- Fish Ladder
- Trap and Haul

Approach Pool

Frankissi.

Barrier Weir

Fishway Design – Plan View

Section Through Fishway – Normal Operations

AECOM

Section Through Fishway – Spill Events

AECOM

Fishway Operation

- Can be operated by a single person
- Non Spill periods: operates between 1 to 4 times a week
- Spill periods: Up to 4 times per day.

Fishway Statistics

- Commissioned 2011
- Transferred 185,000 fish
- 23 fish species plus turtles
- Removed 45,000 pest species
- Highest 24hr catch of 13,700 fish

Successes

- Design and Construction
 - Fishway type suited the site conditions
 - Economical
 - Independent of the dam and upgrade works
 - Could be constructed and commissioned early in the project
 - Allows multiple release sites to manage predation

Successes

Operation

- Simple system with minimal maintenance requirements
- Suitable for the full range of fish sizes and species
- Flexible operation
- Buy-in of operators
- Operated up to 1 in 20 AEP flows

Improvements / Learnings

- Implemented:
 - New Cone-Trap arrangement
 - Minor modifications to the sorting facility

Improvements / Learnings

- Future:
 - Low flows reduce the effectiveness of attraction flows under normal operating conditions
 - Limited ability to increase flows would be good to revisit release requirements
 - Upgrade of intake pipework could allow 'flow banking'

Conclusions

- Developed an innovative trap and haul system that:
 - Meet all the key project requirements
 - Is an economical solution
 - Suits site conditions
 - Operates from standard low flow conditions up to 1 in 20 AEP flood
 - Provides flexibility
 - Ability to manage pest species
 - Capacity to manage predation
 - Future improvements could be provide by increasing flow capacity

