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1. Introduction 

 The tumor microenvironment plays an important role in providing a niche to nurture the growth of 

cancer cells [1]. Recently, stromal cells, growth factors, cytokines, and ECM proteins in the tumor 

microenvironment have been implicated in promoting resistance to chemotherapeutics as well [2, 3]. 

Specifically, certain stromal growth factors mediate cell proliferation in the presence of otherwise powerful 

chemotherapeutic drugs. For example, hepatocyte growth factor (HGF) imparts resistance to vemurafenib 

in melanoma [4, 5], and TGF-β induces the expansion of cancer stem-like cells, which are responsible for 

chemotherapy-resistance and relapses [6]. These growth factors are generally thought to be released by 

local stromal fibroblasts, which upon DNA-damage from treatments with a combination of mitoxantrone 

and docetaxel, or radiation stimulate prostate cancer cell proliferation and invasion through β-catenin 

signaling [7]. In addition to soluble growth factors, a change in adhesive ECM proteins in the tissue can 

confer resistance to chemotherapeutics via integrin-mediated signaling [8-11]. 

 This evolution in the microenvironment during tumor progression is mediated by stromal 

fibroblasts, which differentiate into myofibroblasts [12] and cancer-associated fibroblasts (CAFs) [13], and 

remodel the ECM by breaking down the basement membrane and depositing fibril forming collagens [14-

16]. The increase in crosslinked fibrous collagens results in tissue stiffening [17, 18], which stimulates cell 

proliferation [17, 19], invasion and intravasation [20, 21], disrupts cell-cell adhesion [22], and alters cell 

sensitivity to growth factors [23], while simultaneously limiting the diffusion of therapeutic agents into the 

tumor [24]. 

We hypothesized that these mechanochemical changes in the ECM during tumor progression 

may induce drug resistance in carcinoma. Testing this hypothesis required that we develop a new drug 

testing platform that included not only human cell lines and appropriate growth factors, but also tailored 

control over integrin-binding and ECM stiffness.  Many groups are spurring the development of novel cell 

culture platforms for more rational and predictive drug discovery [25-27], however, we found that existing 

systems are either cumbersome to use, or have limited adaptability. In response, we adapted our 

previously published PEG-PC hydrogel system, an easy to use biomaterial, which is optically transparent, 

forms gels ranging from 1-10,000 kPa in Young's modulus, can be coupled with any protein or peptide of 
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interest, and rapidly polymerizes within 96-well plates [28].  This new method allowed us to quantify drug 

response in a high-throughput manner across a range of stiffness and integrin-binding conditions.  

The role of stiffness in regulating drug response was explored by Schrader et al., who observed a 

reduction in apoptosis of cells on stiff substrates when treated with cisplatin [29]. Also, Zustiak et al. 

reported cell line-dependent stiffness sensitivity to paclitaxel [30].  Sorafenib was developed as a Raf 

kinase inhibitor [31], and unlike these previously tested drugs, there is no obvious link between this 

signaling pathway and ECM stiffness. Phosphorylation of ERK, a downstream effector of Raf kinase, has 

been implicated in controlling cell proliferation during ECM stiffening [19, 32], so we hypothesized that 

sorafenib efficacy could be hampered in stiff environments, contributing at least partially to sorafenib's 

modest clinical efficacy [33]. 

To capture the evolution of the tumor microenvironment during disease progression, we formed 

hydrogel environments with a range of stiffnesses, including either basement membrane-like ECM 

proteins [34], or a collagen-rich inflammatory ECM [21]. We examined whether stiff environments 

protected carcinoma cells from sorafenib treatment, and if this drug resistance was mediated by the 

canonical Rho-ROCK and β1 integrin signaling pathways. Motivated by a targeted phospho-proteomic 

screen, we also quantified the role of ERK, Akt, JNK and p38 signaling during cell response to sorafenib 

on stiff substrates. Our results demonstrate the utility of our tunable, high-throughput PEG-PC biomaterial 

platform in drug screening, and identify an exciting new mechanism to increase the efficacy of sorafenib 

in stiff tumor environments.   
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2. Materials and methods 

2.1. Cell culture 

All supplies were purchased from Life Technologies (Carlsbad, CA) unless otherwise noted. 

Human breast cancer cell lines (MDA-MB-231, BT549, and SkBr3) were generous gifts from Dr. Shannon 

Hughes at the Massachusetts Institute of Technology, and were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (P/S) 

at 37ºC and 5% CO2.  Human hepatocellular carcinoma (HCC) cells (HEP3Bs, American Type Culture 

Collection, Manassas, VA) were cultured in modified Eagle's medium (MEM) supplemented with 10% 

FBS and 1% P/S at 37ºC and 5% CO2. 

2.2. 96-well hydrogel platform 

Glass-bottom 96-well plates (no. 1.5 coverslip glass; In Vitro Scientific, Sunnyvale, CA) were 

plasma treated (Harrick Plasma, Ithaca, NY) and subsequently methacrylate-silanized with 2 vol% 3-

(trimethoxysilyl) propyl methacrylate (Sigma-Aldrich, St. Louis, MO) in 95% ethanol (adjusted to pH 5.0 

with glacial acetic acid) for 5 min, washed 3 times with 100% ethanol, and dried at 40 °C for 30 min. 

PEGDMA (Mn 750, Sigma-Aldrich), from 0.6-9.1 wt%, was combined with 17 wt% 2-methacryloyloxyethyl 

phosphorylcholine (PC) (Sigma-Aldrich) in phosphate buffered saline (PBS). These PEGDMA crosslinker 

concentrations tune the Young's moduli of the resulting gels from 6 to 400 kPa [28]. Solutions were 

sterilized with a 0.2 μm syringe filter (Thermo Fisher Scientific, Waltham, MA) and degassed by nitrogen 

sparging for 30s. Free-radical polymerization was induced by addition of 0.05 wt% ammonium persulfate 

(APS) and 0.125 vol% tetramethylethylenediamine (TEMED, Bio-Rad Laboratories, Hercules, CA). 

Hydrogels of 40 μL per well in the 96-well plates were polymerized under nitrogen for 10 min.  

Post-polymerization, hydrogels were allowed to swell for 24 hours in PBS, then treated with 100 

μL of sulfo-SANPAH (ProteoChem, Denver, CO; 0.6 mg/mL in pH 8.5 HEPES buffer) under UV light for 

20 min, rinsed twice with HEPES buffer, and followed immediately by incubation with protein mixtures 

overnight. ECM protein mixtures were defined as either “basement membrane” composed of 46% human 

collagen IV (Neuromics, Edina, MN), 46% human fibronectin (EMD Millipore, Billerica, MA), and 8% 
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mouse laminin at 5 μg/cm2, buffered in pH 7.0 PBS, or “collagen rich” composed of 65% rat tail collagen I, 

33% human collagen III (FibroGen, San Francisco, CA), and 2% fibronectin at 5 μg/cm2, buffered in pH 

3.8 PBS. Post-protein coupling, the gels were rinsed twice with PBS, UV-sterilized for 1 h, and rinsed with 

sterile medium before cell seeding.  

2.3. Quantification of drug resistance 

Cells were seeded onto gel surfaces at a density of 31,000 cells/cm2 in serum-free medium 

supplemented with 20 ng/mL of platelet-derived growth factor (PDGF-BB, eBioscience, San Diego, CA) 

and 20 ng/mL of epidermal growth factor (EGF, R&D Systems, Minneapolis, MN). After 24 h, cells were 

treated with sorafenib (LC Laboratories, Woburn, MA) from 0 to 120 μM, diluted in growth factor-

supplemented serum-free medium. After 24 h, we measured cell proliferation with CellTiter 96 AQueous 

One Solution Cell Proliferation Assay (Promega, Madison, WI) at 490 nm (BioTek ELx800 microplate 

reader, BioTek, Winooski, VT). The concentration of sorafenib that reduced cell proliferation by 50% (IC-

50) was calculated with Prism v5.04 (GraphPad Software, La Jolla, CA). In some experiments, sorafenib 

was also co-administered with: an anti-β1 integrin antibody (clone P5D2, R&D Systems, 0.5 μg/mL), 

p160ROCK inhibitor (Y-27632, R&D Systems, 10 μM), EGF receptor (EGFR) inhibitor (AG1478, AG 

Scientific, San Diego, CA, 1 μM), JNK inhibitor (SP600125, LC Laboratories, 20 μM), p38 inhibitor 

(BIRB796, LC Laboratories, 1 μM), or ERK inhibitor (FR180204, Sigma-Aldrich, 20 μM). Dimethyl 

sulfoxide (Sigma-Aldrich) was used as a vehicle control in all experiments. We also verified that cell 

proliferation measurements approximately linearly correlated to cell count (Suppl. Fig. 1). 

2.4. Immunofluorescent imaging 

18 mm glass coverslips (Thermo Fisher Scientific, Waltham, MA) were plasma treated, 

methacrylate-silanized, and dried at 120 °C for 15 min. 80 μL PEG-PC hydrogels were polymerized with 

APS and TEMED between a methacrylated-silanized coverslip and an untreated coverslip for 20 min on 

the bench. After polymerization, the hydrogels were allowed to swell in PBS, and the non-treated 

coverslips were removed easily with fine forceps.  Swollen gels on coverslips were transferred to 12-well 
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tissue culture dishes, coupled with protein mixtures as described above, rinsed 3 times with PBS, and 

UV-sterilized for 1 h prior to cell seeding. 

Cells were seeded at a density of 10,000 cells/cm2 in growth factor-supplemented serum-free 

medium and allowed to adhere for 24 hours.  Cells were rinsed three times with warm PBS, fixed with 4% 

formaldehyde, permeabilized with Tris-buffered saline (TBS) containing 0.5% Triton X-100 (Promega), 

and blocked with AbDil (2 wt.% BSA in TBS with 0.1% Triton X-100, TBS-T). F-actin was labeled with 

Alexa Fluor 555-conjugated phalloidin for 1 h. Vinculin was labeled with a monoclonal mouse anti-vinculin 

antibody (Sigma-Aldrich) for 1 h, followed by an anti-mouse FITC secondary antibody (Jackson 

ImmunoResearch Laboratories, West Grove, PA) for 1 h. Cell nuclei were labeled with DAPI (MP 

Biomedicals, Santa Ana, CA) for 5 min. Each sample was treated with ProLong Gold antifade reagent for 

5 min before imaging on a Zeiss Axio Observer Z1 microscope with a 63x oil immersion objective (Carl 

Zeiss AG, Oberkochen, Germany), and images were compiled in ImageJ (NIH, Bethesda, MD). 

2.5. Multiplex phospho-protein quantification 

MDA-MB-231 cells ('231s') were seeded at 50,000 cells/cm2 on 6 and 400 kPa 18 mm diameter 

coverslip-mounted gels in 12-well plates. Immediately after seeding, at 0 min, 30 min, 1 h, 2 h, 4 h, 6 h, 

and 24 h time points, coverslips were transferred to a new 12-well plate on ice, the gels were washed 

once with ice-cold Bioplex cell wash buffer (Bio-Rad, Hercules, CA), and lysed with ice-cold lysis buffer 

(Bioplex cell lysis buffer, Bio-Rad) containing protease (EDTA-free Protease Inhibitor Cocktail Tablets, 

Roche, Indianapolis, IN) and phosphatase (2x phosphatase inhibitors cocktail-II, Boston Bioproducts, 

Boston, MA) inhibitors. Separately, cells were allowed to adhere for 24 hours, treated with sorafenib, and 

lysates were collected at 0 min, 1 h, 5 h, 15 h, and 24 h time points after sorafenib treatment. Total 

protein concentration was quantified with a BCA protein assay (Thermo Scientific, Rockford, IL). Lysate 

concentrations were adjusted to 100 μg/mL, and the phosphorylation levels of ERK1/2, Akt, JNK, and p38 

were quantified with a MAGPIX (Luminex, Austin, TX) with Bio-Plex Pro™ phospho-ERK1/2, phospho-

Akt, phospho-JNK, and phopho-p38 magnetic beads (Bio-Rad), according to the manufacturer 

instructions. 
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2.6. Statistical analysis 

A one-way analysis of variance (ANOVA) with a Tukey post-test was performed with Prism v5.04 

(GraphPad Software). Data are reported as mean ± standard error. p ≤ 0.05 is denoted with *, ≤ 0.01 with 

**, and ≤ 0.001 with ***. 
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3. Results 

3.1. Carcinoma cell response to sorafenib on PEG-PC hydrogels 

We created a high-throughput biomaterial platform to rapidly assay cell responses to 

chemotherapeutic drugs in different mechanochemical environments (Fig. 1). In particular, we focused on 

how these changes perturbed the efficacy of sorafenib, a Raf kinase inhibitor approved for thyroid, kidney 

and liver cancer, but which has had limited clinical success [33, 35, 36].  One potential cause of 

chemotherapy evasion by carcinoma cells might be the stiffening of the tumor environment itself, and so 

we quantified the responses of a liver cancer cell line and three breast cancer cell lines to sorafenib on 

PEG-PC of increasing stiffness.  In all cell lines, we consistently observed a significant increase in 

sorafenib IC-50, the concentration at which the proliferation was dampened by half, with increasing 

substrate stiffness (Figs. 2A-B).  We observed this phenomenon on both the basement membrane-like 

ECM (Fig. 2A), and the collagen-rich ECM (Fig. 2B), demonstrating that this stiffness-induced drug 

resistance is maintained even with alterations in integrin binding. Two of the breast cancer cell lines we 

tested, the SkBr3s and 231s, were the most drug resistant cell lines on the basement membrane ECM 

(Fig. 2A). When we normalized the IC-50s within each cell line to the softest condition, we observed that 

these two cell lines also showed the most stiffness-induced resistance to sorafenib, with 3.7 and 3 fold 

increases in IC-50 on the stiffest gels when compared to the softest condition, respectively (Suppl. Fig. 

2A). On the collagen-rich mixture, again the 231 and SkBr3s were the most drug resistant cell lines (Fig. 

2B), but, interestingly, the HEP3B cell line was the most stiffness sensitive (Suppl. Fig. 2B). Altogether, on 

the collagen-rich ECM, the SkBr3 and 231 cell lines are more sorafenib resistant across all gel conditions. 

Stiffness increases their sorafenib resistance, but they appear less stiffness sensitive than the HEP3Bs 

because the HEP3Bs are, overall, less resistant to sorafenib. 

Neither initial cell adhesion to the gels, nor proliferation at 24 hours showed the same consistent 

trends as drug resistance, ruling them out as significant contributors to sorafenib resistance (Figs. 2C-D, 

Suppl. Fig. 3). We also cultured the 231 cells for five days prior to sorafenib treatment and found that the 

cells responded to sorafenib in the same manner as compared to dosing 24 hours post-seeding, but with 

larger IC-50s due to cell proliferation in the days prior to drug treatment (Fig. 2E). This result 



8 
 

demonstrates that the observed stiffness-mediated drug resistance is maintained at longer time points of 

culture. 

3.2. Cytoskeletal tension and sorafenib resistance  

Given the known role of substrate stiffness in influencing cell proliferation via the canonical Rho-

ROCK pathway [19, 32], we hypothesized that intracellular tension was the most probable mechanism by 

which increasing stiffness protected cells from sorafenib. We quantified cell area and imaged F-actin 

organization in response to increasing substrate stiffness for the two most drug resistant cell lines (231 

and SkBr3, Figs. 3A-D). Interestingly, on the collagen-rich ECM, cell spread area had a biphasic 

dependence on substrate stiffness, whereas cell spread area increased with stiffness on the basement 

membrane proteins. This result does not match the observed drug resistance results (compare Figs. 3B 

and D with Figs. 2A-B), and implies that intracellular tension does not exclusively explain the observed 

stiffness-mediated resistance on collagen-rich ECM.  Figs. 3A-D also demonstrate that integrin binding 

(via ECM proteins) influences the sensitivity of cell area to substrate stiffness. 

We further examined the potential role of intracellular tension in mediating stiffness-induced 

sorafenib resistance via ROCK activity. ROCK is a downstream effector of RhoA, a GTPase that 

regulates cell contractility and actin stress fiber formation [37]. We co-administered sorafenib with a 

ROCK inhibitor (Y27632) in both the 231 and SkBr3 cell lines on the collagen-rich ECM (Figs. 3E-F). 

When compared to the sorafenib alone condition (black lines), ROCK inhibition (red lines) dampened 

sorafenib resistance across all moduli, except for the stiffest condition; however, even in the presence of 

ROCK inhibitor, the IC-50s still increased with stiffness in both cell lines. Going further, we attempted to 

block cell adhesion to the collagen-rich ECM by co-administering sorafenib with a blocking antibody to the 

β1 integrin subunit (blue lines). Blocking β1 integrin was significantly effective in the 231 cells at all 

stiffnesses, but had no effect on sorafenib resistance in the SkBr3s, perhaps implying that SkBr3s can 

survive sorafenib treatment in low adhesive environments. Finally, we treated cells with an inhibitor to 

EGFR, given the known role EGFR activation in promoting resistance of several HCC cell lines to 

sorafenib [38], and given the fact that all these experiments are supplemented with EGF. EGFR inhibition 

(green lines) increased the efficacy of sorafenib modestly in both cell lines, but the trend of stiffness-
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induced drug resistance remained. Taken together, neither ROCK nor EGFR appears to regulate 

stiffness-mediated sorafenib resistance; however, β1 integrin antibody may be a candidate for co-

treatment with sorafenib in triple negative breast cancer (the subtype of the 231 cell line), but not HER2 

overexpressing breast cancer (SkBr3 subtype).  

3.3. Signaling pathways activated during ECM stiffening 

Given that β1 integrin antibody was the only effective co-treatment with sorafenib in the 231 cells, 

we investigated a subset of candidate signaling pathways, downstream of β1, which might be interfering 

with sorafenib efficacy. We used a multi-plex MAGPix system to quantify the phosphorylation of three 

members of the MAPK family (ERK1/2, JNK, p38), and Akt of the PI3K pathway at multiple time points 

post-adhesion to the softest and stiffest substrates tested in the 231 cell line (Figs. 4A-D). On both the 

collagen-rich and basement membrane ECMs, we observed an early peak in phosphorylation of ERK1/2 

and Akt post-adhesion, but there was no difference when comparing between the soft and stiff gel 

conditions. JNK phosphorylation was delayed on the basement membrane ECM when compared to the 

collagen rich ECM, and the activity of JNK and p38 was higher on the stiffer gel at all time points on the 

collagen-rich ECM. Therefore, changes in JNK signaling could partially explain differences in cell 

behavior on the two protein mixtures, and both JNK and p38 are promising candidates to explain 

sorafenib resistance on stiff substrates. 

3.4. Combinatorial treatment of a JNK inhibitor and sorafenib on stiff substrates 

To determine whether sorafenib treatment perturbed the activity of these signaling proteins, we 

allowed 231 cells to adhere to the two stiffness gels coupled with collagen-rich ECM for 24 hours, and 

performed the MAGPix assay at various time points directly following a 15 µM sorafenib treatment. Upon 

sorafenib treatment, ERK1/2 phosphorylation on the stiff substrate remained significantly higher than that 

on the softer gel at early time points post-dosing (Fig. 5A). Akt phosphorylation also peaked in the first 

hour after sorafenib treatment; however, there was no difference in Akt phosphorylation between the soft 

and stiff substrates, which further confirmed that Akt signaling was not involved in stiffness-mediated drug 

resistance (Fig. 5B). The observed peak in Akt might be due to the ability of Ras to mediate signaling 
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through PI3K/Akt pathway [39], while sorafenib inhibits the Ras/Raf/MEK/ERK pathway. JNK 

phosphorylation was highest on the stiff substrate, and, unlike ERK and Akt, did not change over time 

(Fig. 5C). Sorafenib treatment also reduced the stiffness sensitivity of p38 phosphorylation (Fig. 5D).  

When considering the results in Figures 4 and 5 together, ERK, p38, and JNK were all potential 

candidates for involvement in stiffness-mediated sorafenib resistance. We co-administered sorafenib with 

inhibitors to each of these molecules (Fig. 5E), and found that JNK inhibition (blue line) both significantly 

increased sorafenib efficacy, and eliminated the impact of substrate stiffness. In hindsight, this result 

could have been anticipated, as JNK was the only signaling molecule both enhanced by substrate 

stiffness during cell adhesion (Fig. 4C), and unaffected by sorafenib treatment (Fig. 5C). With an 

expected synergistic effect in mind, we then co-administered sorafenib with JNK inhibitor, and either ERK 

or p38 inhibitors (Fig. 5F). Strikingly, we found that combining either p38 or ERK inhibitors alongside the 

JNK inhibitor and sorafenib treatment reversed the effect of co-administering the JNK inhibitor alone.   

4. Discussion 

Several groups have demonstrated a link between substrate stiffness and cell proliferation across 

a variety of cell types [30, 40-43], and many of these studies have linked stiffness sensing, the actin and 

microtubule cytoskeleton, and the classic Rho-ROCK pathway. This foundation of work has propelled us 

and others to determine if this pathway, which is known to control cell growth and survival, might also be 

responsible for drug resistance in stiff tumor environments.  For instance, Zustiak et al found that 

paclitaxel, a cytotoxic microtubule stabilizing agent, eliminated stiffness-induced drug resistance in most 

tested cell lines [30].  However, chemotherapies that induce apoptosis via non-cytoskeletal pathways, are 

also affected by substrate stiffness. Schrader et al. showed that stiff substrates reduced HCC cell 

apoptosis when treated with cisplatin, which causes apoptosis by crosslinking cellular DNA [29].  These 

studies motivated us to look at how stiffness might perturb the efficacy of a common chemotherapeutic 

within another class of drugs, specifically, sorafenib, a Raf kinase inhibitor that targets the Raf/MEK/ERK 

pathway. We also observed a clear stiffness-induced resistance to sorafenib across multiple cell lines. 

Consistent with Schrader et al., the HCC cell line (HEP3B) was the most stiffness-sensitive cell line 

tested, and showed a positive correlation between cell proliferation (at 24 hours) and drug resistance 
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(Suppl. Fig. 3A). However, cell proliferation did not correlate with drug resistance in any of the other cell 

lines tested, which were all from breast carcinoma; thus the simplest explanation for our results in Figure 

2, that cell proliferation on high stiffnesses was responsible for sorafenib resistance, does not hold. The 

IC-50s for most cell lines are higher on collagen-rich proteins than on basement membrane proteins, with 

the exception of the SkBr3 cell line, which has similar IC-50s on both protein mixtures (Figs. 2A-B). Yang 

et al. also found that binding of SkBr3 cells to laminin, which is a component in our basement membrane 

mixture, causes substantial resistance to anti-ErbB2 agents [11], possibly agreeing with our results in the 

SkBr3 cells. These results point to maximum possible sorafenib resistance in stiff, collagen-rich 

microenvironments, which represent highly progressed tumors. These results implicate tumor stiffening as 

a cause for the lack of success for sorafenib, which boasts a paltry 3-month survival increase in 

comparison to placebo in HCC [33]. 

Integrin binding can mediate cellular responses to substrate stiffness via RhoA activity, leading to 

stress fiber formation, focal adhesion assembly, actomyosin contractility, and cell spreading [37, 44, 45]. 

Although we did observe cell spread area changes in response to both stiffness and ECM protein (Figs. 

3A-D), we quantified no change in stiffness-induced resistance trend when co-administered sorafenib with 

ROCK inhibitor. Instead, we examined whether integrin-binding mediated this stiffness-induced drug 

response via some other pathway. β1 integrin has a high affinity for collagen [46], and increased signaling 

through β1 integrin binding protects cancer cells (MDA-MB-231 and MDA-MB-435) against paclitaxel [8] 

and small cell lung cancer cells against doxorubicin, cyclophosphamide, and etoposide [47]. Reducing β1 

integrin binding with an antibody sensitized the 231 cells to sorafenib, but did not affect the SkBr3s (Figs. 

3E-F). Park et al. also observed that SkBr3 cells were not responsive to β1 integrin inhibition as compared 

to MDA-MB-231, likely because of their inherently low β1 integrin expression [9].  

Ezzoukhry et al. observed that inhibiting EGFR sensitized several HCC cell lines to sorafenib 

treatment [38]; however, we found that co-treatment of a pharmacological EGFR inhibitor with sorafenib 

in both MDA-MB-231 and SkBr3 cells only affected sorafenib efficacy on soft gels (Figs. 3E-F). Given that 

integrin binding to the ECM can enhance EGFR phosphorylation in the absence of ligand binding [48], it 



12 
 

is possible that, at lower stiffnesses, β1 integrin predominantly mediates signaling through EGFR 

phosphorylation in the absence of ligand binding [49], but not at higher stiffness.   

 We found that JNK was the key mediator of sorafenib resistance on stiff substrates (Figs. 4-5). 

Activation of JNK has been reported to mediate either pro-apoptotic or anti-apoptotic signaling pathways 

depending on stimuli [50, 51], with parallel contradictory roles in vivo, either supporting tumor growth [52-

55] or suppressing tumorigenesis [56-59]. Our results indicate a role for JNK in enhancing cell survival 

during sorafenib treatment, and for the first time we show that JNK activation is regulated by substrate 

stiffness. The high activity of JNK on stiff substrates implicates high Rac1 activity and low RhoA activity 

[49, 60], and low RhoA activity is consistent with the overall lack of stress fiber formation observed in 231 

cells [61], regardless of stiffness (Fig. 3A). Further, ROCK inhibition did not affect the stiffness-induced 

drug resistance. Finally, RhoA/ROCK can activate ERK [32], and indirectly activates PI3K-Akt pathway 

[62], supporting our observations of a lack of stiffness-dependent ERK or Akt phosphorylation (Figs. 4A-

B). 

 Conversely, when we quantified phospho-protein activity in the presence of sorafenib and PDGF 

and EGF, we observed that ERK phosphorylation was higher on the stiff substrate.  This is consistent 

with other observations that cells on stiff substrates are more sensitive to EGF stimulation in comparison 

to those on soft substrates (Figs. 5A-B) [19, 23]. However, this transient ERK activation on stiff substrates 

did not prolong cell survival in the presence of sorafenib treatment (Fig. 5E). Combining both p38 and 

JNK inhibitors alongside sorafenib reversed the effect of inhibiting JNK alone, suggesting negative 

crosstalk between JNK and p38. Other studies have reported this antagonism between p38 and JNK 

before [63, 64]. We observed this same rescue of stiffness-mediated sorafenib resistance when we co-

administered JNK and ERK inhibitors, which is also supported by reports of JNK and ERK antagonism 

[65, 66]. 

Overall, these results elucidate a role for JNK in mediating resistance to sorafenib through β1 

integrin binding to collagen-rich environments (Fig. 6). β1 integrin activation leads to Src-mediated 

phosphorylation of EGFR [49, 67], which activates Ras/Raf/MEK/ERK and PI3K/Vav2/Rac1/JNK. 

Inhibiting EGFR improved the efficacy of sorafenib on soft gels (Fig. 3E), which we attribute to low β1 
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integrin affinity [49]. At high stiffness, however, EGFR inhibition had no effect, as integrin clustering 

increases, recruiting the FAK-Cas complex and activating Ras/Rac1/JNK [68-70]. 

In sum, the ability to capture the cell-matrix interactions present in the in vivo tumor 

microenvironment could profoundly influence our ability to understand true drug efficacy in vitro. Others 

have created similar high-throughput biomaterial platforms including ECM microarrays [71], contact-

printed microarrays [72], PEG microwells [73], and 2D biomaterials in 96-well plates [30, 41]. The most 

promising of these approaches have each used polyacryamide (PAA) gels, but require either a 

complicated plate insert [41], or manually placing gels into individual wells [30]. Our method of casting 

PEG-PC gels allowed us to quickly make multiple uniform gels of varying stiffnesses in multiple 96-well 

plates at the same time, and does not require fabrication of any special devices (Fig. 1). Our high-

throughput PEG-PC platform allowed us to identify β1 integrin, and its downstream effector, JNK, as 

mediators of tissue stiffening-induced drug resistance. Co-administering sorafenib with inhibitors to either 

of these targets equally eliminated stiffness-induced resistance in the 231 cells (Suppl. Fig. 4).  

5. Conclusion 

We propose that systems like our high-throughput PEG-PC hydrogel platform are critical for 

future screening of potential chemotherapeutics, as well as for discovery of possible mechanisms for 

failed efficacy of previously promising targets. With our platform, we discovered that the efficacy of 

sorafenib in carcinoma could potentially be increased by co-administering inhibitors to β1 integrin or JNK, 

which could not have been appreciated on traditional tissue culture plastic plates. Our results highlight the 

importance of incorporating relevant tissue stiffness and integrin binding ligands into the high-throughput 

drug screening process to increase the success of drugs in the development pipeline.  
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