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ABSTRACT 

A STUDY OF CHILDREN 

LEARNING MULTICOLUMN ADDITION 

WITH MICROCOMPUTER SOFTWARE SUPPORT 

FEBRUARY 1990 

HYMAN S. EDELSTEIN, B. S. , UNIVERSITY OF MASSACHUSETTS 

Ed. D. , UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Howard A. Peelle 

Three computer-aided tutoring procedures were 

devised to teach multicolumn addition according to the 

standard school algorithm, one procedure to each of three 

groups of 2nd-grade children. The key differences 

between groups were the demands placed on short term 

memory and the amount of conceptual understanding the 

procedures attempted to teach. Each child solved a 

sequence of two-digit problems on a computer screen by 

touching each digit with a light pen in the correct 

sequence. 

The control group did not receive on-screen number- 

fact assistance. One treatment ("assisted") group did 

receive on-screen number-fact assistance, testing the 

hypothesis that the algorithm is learned more effectively 

when learned first as a sequence of procedural steps 

alone, without subjects’ need to recall number-facts. A 

second treatment ("simulation") group received the same 

on-screen assistance along with an additional display of 
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simulated blocks which, like concrete manipulative 

materials, represented symbol manipulations. The 

simulation group tested a second hypothesis that a 

concurrent display of the meaning of procedural steps 

contributes to even more effective algorithmic learning. 

T-tests (one-tailed, 5% level) applied pair-wise to 

pretest/posttest difference scores indicated support for 

the first hypothesis but not for the second, an 

indication that 2nd-grade children learn the addition 

algorithm more effectively if demand on short term memory 

is temporarily lifted. 

A descriptive framework called "superposition of 

frames" is proposed to account for anomalies in findings 

and for the rich diversity of errors generally manifested 

by children in multidigit addition. Drawing on current 

concepts in cognitive psychology and mathematics 

education, this description suggests that children’s 

mathematical knowledge is fragmented into isolated, 

unstable, and sometimes entrenched frames of knowledge. 

When a child finds appropriate correspondences between 

frames and initiates a superposition of frames, the 

child’s procedural and conceptual knowledge, previously 

in disarray, may then become integrated. Implications 

for elementary mathematics instruction are discussed. 
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GLOSSARY 

Algorithm 

A rule-driven, computational procedure which 

automatically generates a desired transformation of a 

mathematical expression or achieves a solution to a 

problem. 

Algorithmic behavior 

The act of implementing or performing an 

algorithm, which involves recall of the procedural 

schema, that is, the rules and proper sequencing of the 

steps in the procedure; perception of the symbols, their 

arrangements and transformations, implying some sort of 

perceptual organization or gestalt; and motor activity in 

physically manipulating or recording the symbols being 

processed. 

Light pen 

An input/output device in the shape of a 

conventional pen, which allows direct communication 

between the subject and a computer screen, by-passing the 

keyboard. When the tip of the pen is held against the 

screen, a photocell embedded in the tip detects the 

passage of the cathode ray beam scanning across the 

inside face of the cathode ray tube. The scanning 

process is precisely timed; consequently, the position of 

the pen tip cam be determined by software calculation of 

• • 
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what point in time in the scanning cycle the passage of 

the beam is detected by the pen’s photocell. 

Mapping instruction 

A term used by Resnick & Omanson (1987): 

instruction that requires the learner to perform the 

algorithm both with manipulative blocks and in writing, 

maintaining a step-by-step correspondence between the 

blocks and written symbols throughout the problem 

designed to help children link their knowledge of the 

principles [of regrouping, place value, etc.] to written 

subtraction". In this study, mapping instruction takes 

the form of showing or representing the quantities and 

their manipulations as simulated blocks on the screen, 

rather than requiring physical manipulations of blocks or 

writing. 

Prohibition learning 

A term used by Resnick & Omanson (1987): 

learning that occurs by practicing an algorithm under 

conditions in which no incorrect steps are permitted; 

that is, the instructor cautions the learner whenever an 

incorrect move is made. The way the light pen is used in 

the proposed study is a form of prohibition instruction 

but with minimal intervention by the instructor. The 

subject can progress through the algorithm only by making 

the correct moves; incorrect moves elicit a quiet beep. 

xm 



CHAPTER 1 

INTRODUCTION 

Among the many difficulties elementary school 

children encounter in arithmetic is learning to master 

basic algorithms such as multicolumn addition, where 

children are required to process numeric symbols 

according to well-defined procedural schemes. These 

tasks are generally regarded as relatively easy 

mechanical manipulations of symbols, a low level rote 

skill which can be performed with little understanding of 

mathematical principles (Davis, 1988; Stein, 1988). The 

superficial ease with which an algorithm may ultimately 

be performed masks both the automatization laboriously 

achieved over a long period of practice and the 

complexity of concepts and subroutines underpinning the 

algorithm. 

For a novice, difficulties of learning an algorithm 

should not be so lightly dismissed. The memory demand is 

not inconsiderable. The child needs to recall number 

facts, sequences of operations, conditions triggering 

particular sequences of operations, proper placement of 

the numerals generated by the algorithm as well as 

various explanations, purposes, and meanings for all 

these, with or without full understanding. To embark on 

the long complex undertaking of doing mathematics, even 

1 
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at an elementary level, is to endure countless little 

failures, and perhaps in the end, overwhelming failure. 

Success is beset in general with misconceptions, 

imperfectly remembered and inappropriately applied 

operations, disorientations, and in particular with lack 

of fundamental understanding about place value, lapses of 

memory for number facts, and the distractions of having 

to reconstruct number facts by counting. A child 

learning the symbol manipulations of an algorithm and 

their meanings is facing a significant cognitive 

challenge. 

Performing an algorithm would seem to be a rote 

exercise of procedural knowledge requiring little 

conceptual knowledge. A closer examination of the 

process reveals other cognitive processes at work such as 

perceptual organization, concept formation, and planning. 

Total cognitive demands may very well exceed the 

student’s capacity in a first encounter with a new 

algorithm. This raises a number of general questions: 

How successfully does a student manage limited 

processing capacity while assimilating a new algorithm? 

Would an algorithm be learned more effectively if some of 

the demand on short term memory (STM) capacity were 

lifted temporarily? Or put another way, would an 

algorithm separated into distinct but parallel 

sub-processes, each of which is learned separately and 
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automated to some degree, then combined, result in more 

effective learning? 

May understanding and the ability to manipulate 

symbols proceed independently of one another, at least 

for a time? To what extent does having an understanding 

of mathematical principles facilitate learning an 

algorithm? Conversely, does the learning of an algorithm 

facilitate understanding mathematical principles? 

What aspects of an algorithm tend to emerge as 

buggy procedures? 

In order to address these questions in this study, 

computer software was designed that permitted a student 

to learn the procedural steps of multicolumn addition 

without having to recall number facts. The intention 

here is to alleviate possible short term memory overload 

at the initial stages of learning an algorithm. A 

treatment group having this kind of software support was 

compared with a control group which used the same 

software but was required to recall number facts 

initially. 

One hypothesis to be tested is that multicolumn 

addition is learned more effectively when learned first 

as a sequence of procedural steps alone and without 

initial recall of number facts than when the algorithm is 

learned along with required recall of number facts. 
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To address the question of the role of understanding 

mathematical principles in algorithmic performance, a 

second group was treated with an additional feature in 

the software. The second treatment group proceeded in 

the same way as the first treatment group but 

additionally saw displayed on the computer screen a 

concrete representation of the numbers (in the form of 

arrays of simulated blocks) as they were being 

manipulated. 

A second hypothesis to be tested is that this 

simultaneous concrete display of the "meaning" of 

procedural steps contributes significantly to the 

effectiveness of learning the algorithm. Effectiveness 

is defined here as the fewest errors made with a maximum 

of understanding of the mathematical principles involved, 

as indicated in posttesting at the end of instruction. 

A more general question may be raised about the 

necessity for studying multicolumn addition; after all, 

by the end of the third grade, most children have 

mastered addition. Multicolumn subtraction, on the other 

hand, continues to be difficult for many children 

throughout the elementary grades and has been the object 

of many studies. See particularly the seminal studies by 

Brown & Burton (1978) and Brown & VanLehn (1980). The 

reasons for the interest in subtraction are likely due to 

the relatively greater complexity of the subtraction 
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algorithm. In contrast to subtraction, in multicolumn 

addition, digits in a column may be commuted; a carry 

does not change the value of any other digit; and zeros 

may be safely ignored. None of this applies to 

subtraction. 

There are, however, several reasons why studies of 

multicolumn addition should be pursued: 

First, it is typically the first formalism a child 

encounters that embodies the power of abstraction. 

Adding by recall of number-facts is limited to single 

digits; adding by counting-on becomes tedious, error- 

prone, and virtually impossible in practice when large 

multidigit numbers are to be added together. In 

multidigit addition, a child may acquire for the first 

time a sense that mathematics is a powerful tool. 

Second, the relative success in learning the 

mechanics of the multidigit addition algorithm may 

obscure lack of understanding, especially place-value 

understanding, that may linger on, impeding a child’s 

progress and generating hostile attitudes towards 

mathematics. 

Third, there is only a fleeting time when addition 

bugs are as diverse and frequent as they are at the 

introduction of the algorithm. In this study of only 36 

children, nearly 50 different kinds of errors in 

multicolumn addition were found, which provide a 
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possibility of furthering our understanding of children’s 

thinking processes. 

And fourth, a study of multicolumn addition should 

contribute to helping resolve on-going debate in 

mathematics education over the relative emphasis placed 

on acquiring procedural knowledge or rote skills vs. 

conceptual knowledge or understanding of mathematical 

relationships. 

An overriding reason for studying any aspect of 

elementary arithmetic at this time lies in the decline of 

children’s mathematics performance in recent years 

reported by the National Assessment of Educational 

Progress (Kouba, Brown, Carpenter, et al., 1988) and by 

comparative studies indicating that American children are 

lagging behind children of other countries (Stevenson, 

Lee, & Stigler, 1986). 



CHAPTER 2 

REVIEW OF LITERATURE 

An algorithm is defined by Suydam (1975) as "a 

method consisting of a finite number of steps taken in a 

preassigned order and reproducible, specifically adapted 

to the solution of problems of a particular category " 

The implication is that the method can be applied 

successfully without understanding. This review of 

literature begins with this major theme in mathematics 

education: rote skills versus understanding. It is 

followed by reviews of areas relevant to the hypotheses 

being tested in this study — hypotheses concerning skill 

acquisition, memory research, educational studies of 

addition algorithms — and ends with a review of the 

methodologies employed. 

2.1 Skills and Understanding in Mathematics 

Ever since Brownell (1935) called for learning with 

understanding in mathematics as a corrective to the 

prevailing rote associationist approaches of his day, 

mathematics education has been somewhat polarized between 

these two views. A study of algorithmic behavior would 

seem to fall into the camp of associationism, a 

psychological theory that was very influential in the 

early decades of this century. The theory justified the 

7 
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attention paid to learning algorithms and to drill and 

practice (Resnick & Ford, 1981). The teacher’s task was 

to strengthen the bonds (stimulus-response chains) 

between the material to be learned (the stimulus) and the 

correct responses to the material presented. 

Thorndike’s Law of Effect, a precursor of Skinner’s 

principles of reinforcement, stated that when a response 

to a stimulus was rewarded, a ,,bond,, or association was 

formed. The bond was strengthened by continued reward 

when the desired response continued to be made to the 

same stimulus. Thorndike’s 1922 book, "The Psychology of 

Arithmetic” set forth the detailed bonds and habits which 

were needed to be formed if arithmetic were to be learned 

properly. The proper amount of practice was to be 

provided in the proper order in each class of problems. 

Opposing these behaviorist methods, Brownell (1935) 

advocated instruction that stressed understanding of 

mathematical relationships: "One needs a fund of 

meanings, not a myriad of * automatic responses ’ . " 

A study of any aspect of algorithmic learning would 

be significant if only for the fact that much of the time 

spent in elementary school mathematics is devoted to 

acquiring algorithmic skills. Such compulsive emphasis 

may result in piecemeal understanding of mathematics and 

an inability to solve problems other than textbook 

exercises (Carpenter, 1985). Rote learning alone is 
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clearly inadequate for progress through mathematics 

(Biebert & Lefevre, 1986), although it may be adequate 

for progress through a school system. Then it becomes a 

means of last resort by students who do not quite 

understand what they are doing but believe they are able 

to produce "correct' answers. Davis (1988) pronounces 

such behavior as ritualistic: 

Is mathematics really a matter of learning to 
perform a few meaningless rituals? _ What’s 
wrong with teaching mathematics as a collection of 
meaningless rituals? - students do deal with 
meanings; and when instructional programs fail to 
develop appropriate meanings, students create their 
own meanings which are sometimes not appropriate 

All of us use some rituals (or if you prefer, 
procedures that we don ’ t think about and may not 

understand") - Is it inevitable that students 
will develop at first a ritual point of view? 
(Davis, 1988) 

His concerns are amply supported in the literature. 

Morris (1981) found that a symptom of math anxiety is 

"memorization replaces understanding". Fremont (1971) 

described rote learning as one of the "time-honored 

enemies of effective mathematical learning". Allardice & 

Ginsburg, (1983): "Algorithms are learned in rote, 

meaningless ways and are easily forgotten .... Were the 

conceptual framework made available, then forgetfulness 

would be reduced." Stein (1988) paraphrases Gresham’s 

law in economics (bad money drives good money out of 

circulation) for mathematics education, that "cultivation 

of algorithms replaces concern for thinking and writing : 
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Aigorithuns of course are good and must be taught. 
.... Hut the temptation to emphasize drill over 

easier^tod+D^ i,S,®lmost irresistible. It is much 

the ^bf^°+te?Ch th? executlon of an algorithm than 
can be dlt7 h 2na y7:e- Furthermore, an algorithm 
can be described in just a few minutes, and skill 

(itein.'S1011 CaD te teSt6d aDd SC°red 6aSily- 

Executing an arithmetic algorithm correctly may be 

an end in itself, as in adding up a list of purchases, 

but generally it is employed in the larger context of 

solving a problem. As such it is seen to play a very 

important but supporting role as syntax (rules of symbol 

manipulation) to aspects of the problem that are charged 

with semantics (the meaning of the symbols). Romberg 

(1982) sees problem-solving as a semantic/syntactic 

process: first, comprehend the problem statement, then 

quantify the elements of the problem, express the 

semantics of the problem syntactically, carry out the 

procedural steps, and finally express the results of 

these operations. Dealing with syntax separately from 

semantics may lead to mere symbol manipulation without 

meaning. In the process of learning formal arithmetic 

procedures, many children stop analyzing problems and 

mechanically add and subtract without regard for the 

meaning or content of a problem (Carpenter & Moser, 

1982). 

Wearne & Hiebert (1988) offer a theory of how 

students become competent with the written symbols of the 
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decimal fraction system. Symbols and rules take their 

meaning from real world referents but attain their power 

by becoming separated from these referents. Competence 

results from a cumulative and sequential mastery of four 

cognitive processes, two of them semantic and two 

syntactic: 

Semantic processes 

1. Connecting processes: learning to construct 

links between symbols and familiar referents, followed 

by: 

2. Developing processes: learning procedures used 

to manipulate symbols, followed by: 

Syntactic processes 

3. Elaborating/routinizing process: learning to 

transfer syntax to other similar contexts by means of 

drill and practice and automating procedures. 

4. Abstracting process: learning to construct a 

more abstract system on familiar rules and symbols. 

Wearne & Hiebert conclude that it is preferable to 

develop meanings for symbols before practicing syntactic 

(algorithmic) routines. 

Other researchers claim that a reverse sequence 

occurs in these processes. Without first automating 

procedures, without committing to memory commonly used 

facts and procedures, progress through mathematics may 
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also be retarded (Gagne, 1983; Anderson, 1982, 1987). 

Even when algorithms are learned "with understanding", 

the understanding may be flawed. A student may 

misunderstand a procedure, or misapply a procedure that 

elsewhere is valid, and consistently introduce a "bug" 

(Brown & Burton, 1978). 

In the 50 years since these debates began, cognitive 

psychological theories have become increasingly 

influential in mathematics instruction (Bowson, Keitel, & 

Kilpatrick, 1981). More research is directed now towards 

how a student develops cognitively, or in information 

processing terms, how knowledge is represented, stored, 

and retrieved, as well as what metacognitive strategies 

and plans are used in problem-solving. Instructional 

programs are claimed to be more effective when they are 

designed around developing cognitive abilities and around 

the ways by which students construct their own knowledge. 

An effective instructional program would be defined as 

one by which a student not only acquires accurate 

algorithmic or computational skills quickly but also 

comes to understand the mathematical relationships 

required to solve problems beyond standard drill-and- 

practice exercises. 

Recent expressions of these views are found in the 

literature on procedural and conceptual knowledge 

(Carpenter & Moser, 1982) and expert/novice problem- 
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solving (Larkin, McDermott, Simon, & Simon, 1980). 

Mathematical procedures and concepts are not isolated 

skills and bits of knowledge but are related to other 

procedures and concepts. Capable students focus on this, 

the mathematical structure of a problem. 

Expert problem solvers tend to organize their 
knowledge in large related chunks on the basis of 
fundamental mathematical properties. Novices store 
their knowledge in more isolated bits or sort it on 
the basis of superficial characteristics that have 
no mathematical significance. (Carpenter & Moser, 
1982) 

There was, in fact, a brief time when the term 

algorithmic learning" had more currency than it does 

today, at a time when information processing algorithms 

were enthusiastically regarded as models of cognitive 

processes. Today such models are competing with non- 

algorithmic connectionist models. For example, Suydam 

(1975) claimed that algorithmic learning involved more 

than just the learning of specific algorithms. It 

involved "learning-how-to-learn", generalizing from 

specific skills to broader process applications. 

In summary, from an information-processing 

perspective, algorithmic performance cannot be regarded 

as purely associationist/behavioristic. The traditional 

controversy in mathematics education has been primarily 

the difference in emphasis placed on rote learning, skill 

acquisition, drill and practice, procedural knowledge, on 
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the one hand, versus conceptual knowledge and 

understanding mathematical relationships, on the other 

hand. These are not categorical distinctions but matters 

of emphasis, since few educators today would deny the 

importance of both skill acquisition and understanding in 

mathematics. 

2.2 Skill Acquisition 

Schneider &. Shiffrin (1977) found in their studies 

of controlled and automatic human information processing 

that consistent practice leads to automated processes 

where an input triggers a response sequence operating 

independently of the operator’s control. This requires 

no attention or conscious processing as opposed to 

controlled responses that are not yet adequately 

practiced. The controlled responses require attention, 

use limited short term memory, and tend to be serial. 

Anderson (1982, 1987) theorizes that a developing 

skill proceeds in two stages: a declarative stage in 

which facts about a skill domain are recalled and 

interpreted, and a procedural stage in which such 

declarative knowledge is embodied or compiled into 

procedures for performing the skill directly without 

having to recall and interpret facts. Declarative 

knowledge is encoded in a propositional network and 

procedures are encoded as "productions (condition- 
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action statements). Within these encodings are two 

subprocesses: proceduralization, which embeds factual 

knowledge into productions, and composition, which 

collapses sequences of productions into single 

productions. Further learning processes - 

generalization, discrimination, and production 

strengthening — operate on a skill to make the 

productions more selective in their range of operations. 

He believes that general problem solving skills 

(including what we have been referring to as 

"understanding" in mathematics) are forms of loosely 

organized declarative knowledge: 

The ACT* theory contains within it the outline of 

an answer to the epistemological question: How does 
structured cognition emerge? The answer is that we 

approach a new domain with general problem solving 

skills such as analogy, trial—and—error search, or 
means-ends analysis. Our declarative knowledge 
system has the capacity to store in relatively 

unanalyzed form our experiences in any domain, 

including instruction (if available), models of 

correct behavior, successes and failures of our 

attempts, and so on. A basic characteristic of the 

declarative system is that it does not require one 
to know how the knowledge will be used in order to 

store it. This means that we can easily get 

relevant knowledge into our system but that 

considerable effort may have to be expended when it 

comes time to convert this knowledge to behavior. 

(Anderson, 1987, p.206) 

Numerous experimental results may be predicted from 

this conception of skill organization and skill 

acquisition. These include predictions about 

transfer among skills, differential improvement on 

problem types, effects of working memory 

limitations, and applications to instruction. The 

theory implies that all varieties of skill 
acquisition, including those typically regarded as 
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inductive, 

(Anderson, 
?Qp£0rm '^his characterization. 
1987, p.192) 

Lesgold (1984) takes a similar tack towards what he 

calls acquiring expertise. During the learning of a 

complex procedure, pieces of the procedure become 

automated. If they execute in a fixed sequence, they can 

be composed into longer sequences, but if their sequence 

is not yet constrained, then thinking tends to be 

chaotic, somewhat like Selfridge’s (1959) "pandemonium" 

model; the pieces of the procedure compete for attention 

placement in the sequence. He believes that 

"complex tasks involve multidirectional flows of control 

between procedurally and declaratively driven components" 

in other words, skill acquisition does not always flow 

one way from declarative to procedural knowledge but that 

proceduralization of some subprocesses leads to new 

declarative knowledge. Related to this is his suggestion 

that a verbal plan can help in the composition of 

isolated procedures into a linear sequence. Building the 

correct procedural sub-sequences guides "the development 

of systematic procedures from incompletely organized 

pandemonia of fragmentary productions". 

Lesgold also believes that "representation 

construction" is needed for acquiring expertise, the 

ability to "see" relevant features in context, as would 

be required, for example, in expert interpretation of 



17 

X-ray plates in medical diagnosis. He makes another 

interesting distinction between the knowledge that comes 

from a variety of experiences (e.g. the chess master who 

seldom encounters identical game situations) and the 

knowledge that comes from repetition or practice (e.g. 

the long distance runner who traverses the same course 

again and again) . In the context of mathematics 

education this corresponds to solving novel problems 

versus drill and practice of exercises. "The ability to 

build mental representations of problem situations is a 

central capability that involves both variation and 

repetition." 

The views of Anderson and Lesgold may be 

characterized as a bottom-up perspective of knowledge 

acquisition, that is, knowledge is built up by an 

accumulation and integration of detailed, specific 

knowledge. Other researchers, particularly those who 

study problem solving in mathematics (Schoenfeld, 1985), 

believe that problem solving itself proceeds in a 

top-down fashion from general principles and concepts 

down to details. Schoenfeld acknowledges there must be 

fundamental resources available to the problem-solver, 

such as domain specific facts and procedures, algorithmic 

procedures that can be reconstructed, and other easily 

accessible competencies, but overriding these relatively 

low-level processes are the higher-level, top-down 
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processes of conscious control, strategies and plans 

(heuristics), and belief systems. Strategies and 

techniques for progressing through non-standard problems 

involve use of imagery such as drawing figures, 

representing a problem in some kind of notation, 

reformulating the problem or working backwards, testing 

and verifying solutions. High-level control implies 

global decisions regarding the selection and 

implementation of resources and strategies. Another 

characteristic of expertise is the problem solver’s 

belief system — the attitude that a solution to a 

problem does exist and can be found with persistence. 

Such affective and metacognitive aspects of acquiring 

expertise are not addressed by purely cognitive 

approaches such as those of Anderson (1983). 

2.3 Memory in Mathematics 

It seems curious that debate in mathematics 

education has often polarized in terms of memory vs. 

understanding when it is clear that these are 

educationally mutually supporting (Byers & Erlwanger, 

1985) . Basic findings in memory research suggest their 

importance in learning mathematics. Much of the 

research on memory skills focuses on conscious strategies 

for encoding and retrieving information (Glass & Holyoak, 

1986) . There are many memory techniques: general 
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techniques, such as rehearsal, use of imagery, and 

finding organizing principles; specific techniques, such 

as chunking, natural language mediation, semantic 

elaboration, and outlining; and quite special 

serial-order mnemonics, such as the method of loci and 

the pegword method . The method of loci involves 

associating the items to be remembered with an already 

remembered sequence of imaginary locations. The pegword 

method involves associating in vivid images the items to 

be remembered with an already remembered sequence of 

rhymes. 

On the other hand, excessive reliance on such memory 

techniques is made at the expense of understanding the 

structures underlying the rules, formulas, and algorithms 

of mathematics. Mathematical structures and operations 

are not random assemblages, like word lists, to be 

recalled by some mnemonic technique. Mathematics does 

not require memorization in this sense, since instead of 

being remembered, many principles and relationships may 

be deduced and derived from other well-remembered 

relationships. 

Madell (1985) describes informal invented methods 

for solving addition and subtraction problems in column 

arithmetic. He delays teaching the standard algorithms 

for a year while encouraging the development of invented 

methods of grouping and combining numbers. He wants the 
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solution of problems to depend on the child’s reasoning. 

One advantage is that there is a reduced need for a large 

store of memorized addition and subtraction facts. He 

sees another advantage in the freedom that teachers will 

have in spending more time on meaningful learning and 

less "time on repetition. 

Eventually, of course, all the facts must be 

learned. But the early focus on memorization in 

the teaching of arithmetic thoroughly distorts in 
the children’s minds the fact that mathematics is 
primarily reasoning. This is often difficult, if 
not impossible, to undo. (Madell, 1985) 

Memory plays an essential role in understanding 

mathematics. Byers & Erlwanger (1985) in a review 

article on memory in mathematics understanding suggest 

that a major source of mathematical errors should be 

sought in memory transformations and subjective 

organization". Important questions are what is 

remembered and how, by those who under stand mathematics 

and by those who do not. Some indication of how material 

is well remembered has been known for some time: that it 

be organized and rendered "meaningful“. For example, 

Bruner (1962) emphasized the role of organization in 

memory. Unless detail is encoded in memory as a 

structured pattern, it is rapidly forgotten. 

Organizing facts in terms of principles and ideas 

from which they may be inferred is the only known 

way of reducing the quick rate of loss of human 
memory . What learning general or fundamental 

principles does is to ensure that memory loss will 

not mean total loss, that what remains will permit 
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1962° reConstruct the stalls when needed. (Bruner. 

Skemp (1987) sees consequences for remembering in 

the kind of mathematical understanding acquired by 

students. He distinguishes two types of mathematical 

understanding: 

Instrumental understanding: recognizing a task 

as one to which a rule or formula may be applied. It is 

easier to understand than relational understanding. One 

can get the right answer more quickly. The rewards are 

more immediate and apparent. However, it is more 

difficult to remember all the specific rules and formulas 

and under what circumstances they are to be applied. For 

example, division by a fraction is understood 

instrumentally as "turn it upside-down and multiply". 

Relational understanding: recognizing a task 

as one related to an appropriate schema. Although more 

difficult to learn, it is easier to remember. Rules and 

formulas are remembered as parts of a connected whole. 

It is adaptable to new tasks and motivates exploration 

into new areas of mathematics. For example, division by 

a fraction would be understood relationally as "the 

number of times the fraction is contained in the 

dividend". 

Quite similar distinctions are made by Hiebert 

(1986) who contrasts procedural knowledge and conceptual 
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knowledge. He and other researchers are generally in 

agreement that acquiring relational understanding or 

conceptual knowledge has a greater importance in learning 

mathematics than instrumental understanding or procedural 

knowledge. Most classroom practice, however, for a 

number of reasons, continues to revolve around acquiring 

procedural knowledge. 

Byers & Erlwanger (1985) believe that this emphatic 

support by researchers for teaching relational 

mathematics has resulted in "unfortunate" attitudes 

towards the issue of memory in mathematics that have yet 

to be fully addressed. To what extent, conversely, does 

understanding depend on memory? Does the learning of 

principles invariably reduce the quantity and complexity 

of mathematical material held in memory? Can a 

"principle" be transformed in memory into a blind rule, 

thus resulting in a loss of mathematical understanding? 

An aspect of memory that has direct bearing on 

mathematics learning is the way material is subjectively 

organized at the time of encoding and transformed at the 

time of retrieval or while stored in memory. This is 

implicated when errors, distortion, and misconceptions 

occur. Memory is not primarily detailed but schematic; 

even key details may not be encoded (Bartlett, 1932). 

New material is assimilated to a student’s existing 

schemata: 



23 

that errors are due to attempts by 
students to simplify mathematical material The 

student tries to introduce his own unity, coherence 
and consistency into material he has learned at 
aixferent times, and to do so on the basis of 

hypotheses which appear to him to be both simple 
and sensible - instances of Bartlett’s "effort 
after meaning". 

Remembering mathematics is a more complex task than 
remembering a picture or story. [While this claim 
is moot, these tasks certainly are qualitativelv 

different - H.E.] For one thing, mathematical 
symbolism is replete with significant detail. For 
another, a mathematical statement, whether 

propositional or algorithmic, is already a precis. 
Although the meaning of such a statement has to be 

distinguished from its expression, small changes in 
wording [symbols] may turn a true statement into a 
false one, while small changes in procedure often 

result in wrong answers to problems. Few students 
are capable of paraphrasing a mathematical 

statement correctly, making the reproduction of 
definitions and the statement of theorems into 

difficult examination questions even at the 

university level. (Byers & Erlwanger, 1985, p.276) 

In a comprehensive study of fourth grade children 

suffering from "mathematics difficulty" (MD) — defined 

as children performing poorly in school math but normal 

in intelligence — Russell & Ginsburg (1984) found MD 

children to be "essentially cognitively normal", similar 

to younger peers. Such children were not seriously 

deficient in key mathematical concepts and skills and 

were capable of "insightful" solutions of simple word 

problems. The "dramatic" exception was that MD children 

displayed severe difficulty in recalling common addition 

facts. Russell & Ginsburg consider this a surprising 

finding since rote acquisition of number facts would seem 
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to be among the simplest of mathematical tasks. Small 

wonder that classroom teachers emphasize rote learning 

and drill and practice! 

Information processing models of cognition generally 

assign two components to memory: long term memory (LTM), 

characterized by unlimited capacity and permanent 

storage, and short term memory (STM), characterized in 

small children by small capacity (3 to 5 •chunks"), ease 

of retrieval, and impermanent storage. Some researchers, 

for example Greeno (1973), have proposed another low 

capacity memory structure called "working memory", where 

data supplied by STM and LTM are organized for the task 

at hand. The limited capacity of working memory suggests 

that this component is readily overloaded: when the 

amount of the material being processed in working memory 

exceeds its capacity, some of the material is lost. 

Case (1982) offers a similar hypothesis but with 

somewhat different terminology in place of LTM and STM. 

He refers to a "central coordinating or processing 

capacity", which becomes a key feature in his theory of 

cognitive development in the child. He believes the 

development of cognitive abilities is parallel across 

various domains of activity, including mathematical 

ability. A child’s transition from one stage of learning 

to the next in any given domain depends not just on 

experience in that domain, but on the growth of some 
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central coordinating or processing capacity. The ability 

to coordinate a certain number of elements at one stage 

in a prerequisite for assembling the operations at the 

next higher stage. Case suggests that what determines 

the rate of growth of processing capacity is the rate of 

increase of operational efficiency, given that total 

capacity is fixed. Operational efficiency is thus a 

function of both maturation and practice. 

He believes the instructional implications are: 

1. Match instruction to students’ current 

developmental level. 

2. Minimize the processing load during 

developmental transition. 

3- Ensure that the child’s basic operations are as 

efficient as possible by providing sufficient practice. 

Memory capacity or deficit is not the only source of 

mathematics learning difficulty. Other sources may be 

deficiencies in logical reasoning, attention span, 

misconceptions (“bugs"), or lack of understanding. 

2.4 Addition and Subtraction 

Young children entering school at the age of 5 or 6 

are known to bring with them informal knowledge of 

arithmetic (Ginsburg, 1980). They are able to solve 

simple addition and subtraction problems, often based on 
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counting, even before they have been drilled in number 

facts or taught the standard algorithms. 

Young chiidren often employ invented strategies; 
they do not always solve mathematics problems in 
the way the teacher intended. Instead, the child 

mfvfL ^eS-a Stfa^egy Which is Par*ly °f his own 
making. The invented strategy is usually a hybrid 
a mixture of informal methods like finger counting 
and schooled procedures. The invented strategy 

reflects the child’s contribution to the work of 
understanding. And often the child’s input (for 

example regrouping) is so fundamentally sound that 
it can be used as the basis for formal instruction 

The teacher can, in effect, build on what the child 
already knows. (Ginsburg, 1980) 

Steffe (1983) contrasts the "mature" forms of school 

algorithms with immature child-generated forms, which may 

be regarded as comprising much of children’s arithmetic 

knowledge, their "operative schemes" or mental 

structures. 

Counting may be considered a prototypical algorithm. 

It is the first formal mathematics that a child usually 

learns before entering school. It displays features 

characteristic of all algorithms. It has been studied 

intensively (Gelman & Gallistel, 1978; Steffe, von 

Glasersfeld, Richards, & Cobb, 1983) as a means of 

discovering some of the principles underlying the child’s 

developing cognitive abilities. According to Gelman and 

Gallistel, ability to count develops with the acquisition 

of implicit knowledge of counting principles the 

one-to-one principle, the stable numberword order 

principle, the cardinal principle, the abstraction 
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principle, and the order irrelevance principle. The 

meaning of the counting algorithm may be said to reside 

m these principles. Here syntax and semantics are not 

separable, Lhat is, each of the principles of counting 

may be regarded as embodying both procedural knowledge 

and conceptual knowledge. 

Counting is basic to subsequent arithmetic 

knowledge. Much of school mathematics may be understood 

as an elaboration of counting. In particular, addition 

and subtraction may be seen as forward and reverse 

counting, and solving an arithmetic problem may be 

rendered as a question of what it is that needs to be 

counted. Stated this way, the transition from solving 

arithmetic problems informally by counting to solving 

multidigit addition/subtraction problems by standard 

algorithms would seem to be an easy one. However, for 

many children it is quite difficult and is often the 

beginning of a persistent pattern of failure and 

disaffection. 

Addition methods of first- and second-grade 

children are still changing and unstable and, to a large 

extent, based on counting. Houlihan & Ginsburg (1981) 

described various addition methods in terms of counting 

vs. non-counting methods: 
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Non-counting methods of *Hrli + ^ 

Direct memory 

Indirect memory (5+7=5+5+2=12) 

Place value (32 + 45 = 30 + 40 + 2 + 5 = 77) 

Counting methods of addi + ior. 

Counting from 1 with concrete aids. 

Counting from 1 without concrete aids. 

Counting on from addend with aids. 

Counting on from addend without aids. 

Indirect: memory for combining, then 

counting. 

Counting method not determinable. 

Inappropriate method (guesses, alters). 

Undeterminable answer. 

Counting is the basis for subsequent understanding 

of multidigit numbers. Fuson (1989) reported that 

multidigit numbers may be represented by children in five 

different ways during their developing understanding of 

the operations of addition and subtraction. Such 

representations are often the source of many difficulties 

and misconceptions: 

1. Unitary representation: This refers to the 

cardinal value of a multidigit number, the result of 

counting out a set of objects. The number is not yet 

understood as having a nested decimal structure. 
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2- Named-value representation: English number 

words (units, tens, hundreds, etc.) are used as labels 

for the digits but as yet have no quantitative meaning to 

the child. 

3‘ Multiunit sequence representation: This refers 

to the solution of 2-digit addition problems by counting 

on by tens and units. For example, 35 + 47 could be 

solved by: "30, 40, 50, 60, 70, 75, 76, 77, 78, 79, 80, 

81, 82". 

4* Concatenated single digit representation: This 

treats a multidigit number as the sum of its individual 

digits, for example, 314 —> (3+1+4) —> 8 

5. Positional base-ten representation: The 

position of the digits in a multidigit number conveys the 

place value of the digits. 

Brown & Burton (1978) made an extensive study of 

the kinds of errors made in multidigit subtraction. They 

found that many errors (approximately 40%) could be 

explained as the result of "buggy” algorithms, that is, 

the application of an incorrect procedure in a consistent 

principled way. Resnick & Omanson (1987) cite two 

theories proposed to explain the origin of subtractive 

bugs: One by Young & O’Shea (1981) suggests that 

children either forget or never learned the standard 

school subtraction algorithm. The other by Brown & Van 
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Lehn (1980) proposes that children employ “repair- 

algorithms to repair incomplete or inappropriate 

procedures in order to overcome an impasse which resulted 

from forgetting or failure to learn. Repair algorithms 

are actions to try when the standard action is not known 

or forgotten. Resnick & Omanson (1987) note that these 

theories concern the surface structure of the procedure 

and not the principles underlying subtraction, 

particularly the place value system. 

Similar findings of error frequencies in solving 

addition problems have been reported by McDonald, Beal, & 

Ayers (1987) who used computer software to diagnose 554 

errors made by 51 subjects taking a 50-item test. 

Procedural errors accounted for 51% of the errors; 17% 

were errors of basic addition facts; and 32% were errors 

not identified by the software. Typically, there are 

several times as many procedural errors as there are 

number fact errors. 

Understanding place value does not come easily to 

primary grade children (Kamii, 1986; Ginsburg, 1977). 

Kamii believes place value is difficult because children 

engage in a long process of constructing a system of tens 

on a system of ones. Initially, children understand 

numbers as a counted sequence; later they understand them 

as groupings of ten. This reflects the Piagetian view 

that understanding is a synthesis of ordering and 
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hierarchical inclusion, an understanding of part/whole 

relationships (Inhelder & Piaget (1964). A further 

difficulty is that place value involves multiplication 

(e.g. sixty-one means six times ten and one more, which 

is not a simple extension of addition. When she asked 

children to count a heap of approximately 100 chips, she 

observed a progression from first-grade children who 

counted by ones and twos to second-graders who grouped 

the system of ones into heaps of ten and counted the ten- 

heaps and ones left over. 

Such physical embodiments (manipulatives) of verbal 

or written numeric symbols have long been used to convey 

meaning in elementary mathematics, particularly the 

concept of place value (Dienes, 1963; Resnick & Omanson, 

1987; Fuson, 1989; Fuson & Briars, 1989). Fuson & Briars 

(1989) found that 1st- and 2nd-graders demonstrated 

meaningful multidigit addition and place value concepts. 

The children could add large multidigit numbers when 

taught in the context of using both base-ten blocks to 

embody the English named-value system and digit cards to 

embody the positional base-ten system of numeration. 

Fuson & Briars employed a multi-representational board 

displaying base-ten blocks and their corresponding named- 

values and written numeric symbols. They emphasized that 

as each column on the board is added, recording in 

symbols should occur immediately after each move of 
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objects so that the link between operations on objects 

and operations with symbols is clear. 

Resnick & Omanson (1987) outlined place value 

principles underlying written subtraction, but which 

apply as well to written addition: 

1* Additive composition of quantities. All 

quantities are compositions of other quantities (e.g. 7 

is composed of 3 and 4, or 2 and 5, etc.) 

2. Conventions of decimal place value notation. 

Each position in a multidigit number represents a higher 

power of ten. Each is limited to a value of 9 or less 

and thus constrain the compositions representing 

quantity. For example, the number 624 is composed of 6 

hundreds, 2 tens, and 4 units. 

3. Calculation through partitioning. This is the 

principle that permits written addition or subtraction to 

be done column by column. When multidigit numbers are 

added together, units are added to units, tens are added 

to tens, etc. 

4. Recomposition and conservation of the partial 

sum. This principle leads to the "carry" procedure. For 

example, in adding 37 and 56, the sum of the units (7+6) 

is greater than 9, namely 13. The 13 is recomposed into 

10 + 3; the 3 is the number of units in the Siam; and the 

10 is “carried", that is, added to the column of tens, 

thus conserving the total value of the partial sum, 13. 
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At what point in the mathematics curriculum does 

multicolumn addition first appear? In a comparison of 

curricula from Japan, mainland China, the Soviet Onion, 

Taiwan, and the U.S., examining widely used textbooks, 

Fuson, Stigler, & Bartsch (1987) found that addition and 

subtraction of two multidigit numbers (2 digits ± 1 or 2 

trading from ones) started in the O.S. at 

grade 2.5 (about where this study begins) and addition 

and subtraction of 3 digits ± 2 or 3 digits with trading 

from tens started at grade 3. The other countries 

introduce trading earlier (up to a year earlier) and 

include in their texts activities supporting a specific 

method of solving problems with sums and minuends to 18. 

Solution of such problems is necessary for solving 

multidigit problems with trading. 

2.5 Review of Methodology 

Efforts to understand how children acquire their 

knowledge of arithmetic generally involve methods to 

establish their level of knowledge before and after some 

instructional treatment. The more commonly used measures 

are traditional written tests, observations of children 

manipulating concrete objects, and analysis of protocols, 

that is, transcripts or tape recordings of interviews 

(Ginsburg, Kossan, Schwartz, & Swanson, 1983). 

Interviews may be either structured, where probing 
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questions are planned in advance, or take the form of an 

unstructured dialogue where the child’s responses guide 

the questioning. Another newly developing method with 

these features used in this study is the interaction 

between a child, an instructor/researcher, and computer 

software. 

Microcomputers proliferated in the schools in the 

1980s and are playing an increasingly important role in 

some aspects of mathematics and language education 

1987). Although a revolutionary role for 

computers in education has not yet materialized in the 

form as envisioned earlier (Papert, 1980), they have 

already demonstrated their usefulness and versatility in 

education as "tutor, tool, and tutee" (Taylor, 1980). 

For example, they appear as tutor in drill-and-practice 

programs and in intellectually challenging simulations; 

as tools for calculations and for word processing; and as 

"tutee", as a means of learning programming skills and 

instructing the computer in its own performance. They 

are being used to diagnose children’s computational 

errors (Janke & Pilkey, 1985; McDonald, Beal, & Ayers, 

1987). In recent years they are appearing as 

"intelligent tutors" fashioned around research in 

artificial intelligence (Sleeman & Brown, 1982). 

In this study a microcomputer is used as both a 

"tutor" and a research tool, providing on-screen 
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assistance and software guidance to the learner while 

capturing performance data for later analysis. The 

display of concrete representations of the "meaning" of 

the steps in the multicolumn addition algorithm offers 

the learner alternative opportunities for insight, 

different from those ordinarily offered by a textbook or 

workbook or by physical manipulatives. This is an 

example of a class of software that Dickson (1985) 

describes as designed to juxtapose two or more symbol 

systems. Users are encouraged to move back and forth 

between the systems, thereby promoting insight and 

understanding. 

Most microcomputer applications in mathematics 

education involve two-way interactions between learner 

and computer. This study, however, is based on a 

three-way interaction between student, computer, and 

instructor. Here, the instructor (researcher), and not 

the software, provides the kind of support in the form of 

suggestions, prompts, and questionings, which intelligent 

tutors (that is, computers) some day may provide. 

In this section on review of methodology, the work 

of Resnick & Omanson (1987) in particular is discussed in 

detail, since their studies most closely correspond to 

the design and intent of this study. They have attempted 

to establish the nature and extent of children’s 

knowledge of the principles of subtraction in both 
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written and non-written systems. They wondered whether 

children already knew a great deal about subtraction 

principles in the context of concrete, non-written 

systems, such as coinage or decimally coded (Dienes) 

blocks, but didn’t know how to apply this knowledge to 

numeric symbols. To find out, they tracked the 

performance of ten third-grade children — 5 boys and 5 

girls over the course of the school year in tasks that 

tested their knowledge of subtraction with decimally 

coded blocks and with written numbers. Here is a brief 

outline description of the tasks employed to assess 

knowledge of subtraction with blocks: 

A. Conventions of decimal coding 

1. Name the value of individual blocks. 

2. Read a display of concrete 

representations. 

3. Construct a concrete display of a number. 

B. Principle of recomposition (or regrouping) 

1. Show a quantity in two ways. 

2. Use a trade procedure (e.g. exchange ten 

one’s for one ten) in subtraction with 

blocks. 

3. Rebuild a block display with more of a 

"denomination" (e.g., show 34, 

consisting of 3 tens and 4 ones, with 

more than 4 ones. 
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And to assess knowledge of written numbers: 

A. Conventions of decimal coding 

1* Compare the value of the same digit 

appearing in two different columns. 

2. Show the value of a digit using blocks. 

B- Arithmetic procedures 

1- Solve written addition problems with 

carrying. 

2. Solve written subtraction problems with 

borrowing. 

C- Principle of recomposition (or regrouping) 

1. Name the value of the carry mark. 

2. Name the value of the borrow mark. 

Their findings were that the children had better command 

of value conventions in block representations than of 

those in written representations. Although they could 

use blocks to represent 2- and 3-digit total quantities, 

they could not use them reliably to represent individual 

digits. They showed good understanding of recomposition 

in blocks but were unable to assign appropriate values to 

written borrow and carry marks, suggesting that 

recomposition principles were not being applied in 

written arithmetic. They seemed to know that they could 

decompose numerals but didn’t understand that they were 

actually decomposing quantities. 
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To discover what kinds of procedures children were 

using to solve single digit addition problems, Groen & 

Parkman (1972) measured response times. They proposed a 

model that assumed the existence of a mental counter with 

two operations, setting the counter and incrementing the 

counter. An addition problem presented in the form m + n 

may then be solved in several different ways: 

1. The counter is set to zero. Both addends are 

counted (added) by increments of one. 

2. The counter is set to m (the left number). The 

right number n is added by increments of one. 

3. The reverse of (2). 

4. The counter is set to which of m or n is the 

greater and the remaining number is added by increments 

of one. 

5. The counter is set to which of m or n is the 

smaller and the remaining number is added by increments 

of one. 

Mean response times were plotted as a function of the 

number to be incremented. Which procedure is most likely 

being used may then be inferred from the degree of 

correlation. 

Model 5 above, when averaged over all subjects, was 

found to be the most likely strategy being used. On 

occasion, there were significantly low response times. 
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for example for "ties" (where m = „), which may be 

accounted for by assuming the fast recall of number 

facts. 

The Resnick & Omanson (1987) studies extended this 

response-time approach to infer whether recomposition and 

Place value principles are being used by children in the 

addition of larger, 2-digit numbers. Assuming a mental 

counter procedure, four possibilities call on 

recomposition and place value principles to varying 

degrees when a 2-digit number and a 1-digit number are 

added (in the form of m + n, where m is a 2-digit 

number): 

1. Minimum of the Addends. Reaction time would be a 

function of the single digit number. No understanding of 

the decimal system of numbers is required. 

2. Sum of the Units. Reaction time is a function of 

the sum of the two units digits. The counter is set at 

the beginning of the decade of the 2-digit number (e.g. 

23 + 8 is recomposed into 20 + 3 + 8). This procedure 

reflects an understanding of the composition of 2-digit 

numbers but not full appreciation of recomposition. 

3. Minimum of the Units. Reaction time is a 

function of the smaller of the two digits in the units 

column (e.g. 23 + 8 is rearranged into 28 + 3). This 

procedure indicates that the child may understand how 

numbers may be recomposed. 
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4. Mental Carry. This procedure mimics the 

carrying procedure for written arithmetic. It is 

difficult to discriminate this procedure from the Minimum 

of Dnits (No.3 above) on the basis of reaction times 

because the units are added together initially. Bowever, 

if reaction times are significantly lower when the units 

are doubles that are being added (e.g. 28 + 8) then this 

would suggest that the child was using Mental Carry. 

They concluded that relatively few primary children use 

procedures that apply recomposition principles to the 

decimal structure of the counting numbers. 

Many children’s difficulty with place value in 
written arithmetic may result not from a total 
absence of knowledge of the relevant principles, 
but from an inadequate linking of the principles 
with the symbols and syntax of the written 
algorithm. (Resnick & Omanson, 1987, p.71) 

This suggested that they develop instruction that 

links principles with instruction. Accordingly, they 

tested a method of instruction called manning 

instruction, requiring a child to do subtraction problems 

both with Dienes blocks and in written symbols, 

maintaining a step-by-step correspondence between the 

blocks and the written symbols. Resnick (1982) had 

earlier identified three levels of mapping: 
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1. Code mapping: Shape or color of the concrete 

materials codes the same information as position (column) 

in the written numerals. 

2. Result mapping: Procedures in the concrete 

materials yield the same answers as procedures in the 

written system. 

3. Operations mapping: Operations in the concrete 

system are identified as equivalent operations in the 

written system. 

Mapping is thus one explanation to account for the 

results, which were encouraging. Understanding developed 

with blocks in a concrete way is transferred to written 

arithmetic. "Semantic knowledge initially embedded in 

the blocks algorithm is applied to the rules for writing 

so that the newly enriched knowledge structure then 

eliminates bugs" (Resnick & Omanson, 1987), and justifies 

and explains the steps in the algorithm. 

An alternative explanation of how mapping 

instruction works is that it enables the routine to be 

rehearsed without making errors (the result of 

"prohibition instruction") . "The pairing of each step in 

the blocks with its parallel step in the algorithm may 

prohibit wrong operations in the writing .... and 

provides high feedback to override an entrenched bug. " 

(Resnick, 1982). 
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To explore these alternatives, they compared mapping 

instruction with an explicit form of prohibition 

instruction, which consisted only of practicing the 

written algorithm with no incorrect steps permitted and 

no Dienes blocks used. They found, with some 

disappointment, that neither mapping nor prohibition 

instruction was very successful in correcting bugs. 

Could the failure of mapping instruction to correct 

bugs be due to the incompleteness of children’s 

understanding after instruction? Resnick and Omanson 

then looked at the relationship between an individual’s 

level of understanding and his/her performance on the 

written subtraction procedure. They identified five 

levels of understanding based on understanding of place 

value and composition principles to explain borrowing. 

Only a small minority of children who reached Level 5 

(full understanding of place value and composition 

principles) were able on a delayed posttest to perform 

the subtraction algorithm without bugs. They concluded 

that “mapping instruction, in the form presented, is not 

effective in curing subtraction bugs, even when it 

induces understanding of the principles underlying the 

subtraction procedure.“ 

To try to account for the great variability in 

learning the principles of subtraction in the course of 

mapping instruction. Resnick & Omanson investigated what 
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factors are likely to determine who will iearn. TheJr 

found: 

1- Differences in entering knowledge. 

2. Differences in amount of instruction. 

3. Differences in time spent on manipulating 

blocks. 

4. Differences in time needed to master the steps 

of the mapping instruction plan. 

5. Differences in the child’s verbalization of 

quantities during instruction. 

What seemed to characterize the learners from the 

non-learners was having longer interviews and using this 

added time to make more correct verbalizations of the 

quantities involved in borrowing. Resnick & Omanson 

rejected the notion that understanding is transferred 

directly from blocks to the written arithmetic system as 

a result of mapping instruction; it seems to be attention 

to the quantities that are being manipulated in both 

blocks and written symbols that produces learning. The 

children did not always call upon all of their relevant 

knowledge when calculating. 

Furthermore, Resnick and Omanson believe that their 

mapping instruction did not fully address the issue 

between automated and deliberately controlled skills: 

If, when they are doing routine calculation, 
children do not represent the problem as involving 
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but only as digits to be manipulated 
then there is no simple way for* -t-Viom + ^ ’ 

newly learned principles. They must firs?P 7 ^* 

interrupt their normal performance to !Lra„, 
the problem for themselves as one involving ~ 

operationsonquantities. But this means living up 

teL^he eff 1ClenCy of 311 automated skill aid 

SES: ?987?gpa92rti0n t0 eVery SteP- <ReSnick & 

They suggest two general principles for mathematics 

instruction drawn from their current studies: 

1. Early focus on the principles of a 

procedural domain might prevent buggy rules from becoming 

automated. 

2. Instruction should be designed that 

invokes and maintains a reflective attitude towards how 

principles apply to each step of a calculation procedure 

Wearne & Hiebert (1988) draw a distinction between 

their own instructional approach which they call 

"semantic analysis" and mapping instruction. Semantic 

analysis begins with meanings of individual symbols, 

spending a major part of instruction on connecting 

symbols with referents; actions on referents are then 

used to generate procedures with symbols, even invented 

procedures. Mapping instruction develops a rationale 

for a standard algorithm by comparing step by step 

actions on blocks with the movement of symbols on paper; 

alternative non-standard but appropriate algorithms are 

less likely to emerge. But both approaches are 
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commendable in trying to help students make sense of 

algorithms by connecting the rules with referents. 

2.6 Summary 

This literature review opened with a brief 

historical introduction to the decades long controversy 

between mathematics educators, those who emphasized 

behaviorist methods and those who emphasized 

understanding of mathematical relationships in 

instruction. Cognitive approaches to instruction have 

mitigated this controversy to some degree, but the 

controversy continues today in more sophisticated guise 

between those who believe mathematics learning to be a 

matter of skill acquisition and those who believe it to 

be the construction of meaningful mathematical 

relationships by the learner. However, these are not 

mutually exclusive positions. 

Areas of literature relevant to the learning of 

algorithms were then reviewed, namely, skill acquisition, 

memory in mathematics, and educational studies in 

addition and subtraction. In skill acquisition, we 

focused primarily on the cognitive theories of Anderson 

(1983) and Lesgold (1984), which may be characterized as 

bottom-up perspectives. The role of memory in 

understanding and learning mathematics was explored, 

primarily in the work of Byers & Erlwanger (1985). 
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Material is remembered better when presented in some 

meaningfully organized way or is organized meaningfully 

by the learner. Case (1982) claims that total working 

memory capacity is fixed but that processing capacity 

increases with increasing operational efficiency, that 

is, when procedures being learned become automated. 

Finally, studies in addition and subtraction and 

some research methodologies were reviewed, particularly 

the work of Resnick & Qmanson (1987), who are concerned 

with the inability of children to link principles with 

the symbols and syntax of written algorithms. 



CHAPTER 3 

METHOD 

In this study computer software has been designed 

as an instructional aid in the teaching of the multidigit 

addition algorithm. This is not computer aided 

instruction (CAI) in the usual sense in which the student 

interacts solely with the computer. Here, the student 

with light-pen in hand, the computer with its screen 

displays, and the teacher (researcher) who instructs and 

prompts, are involved in a 3-way interaction. 

The research focused on differences between three 

versions of the software. The control group used the 

version which does not provide on-screen assistance for 

number facts, that is, the student must recall number 

facts while learning the algorithm. The assisted group 

used the version which does provide on-screen assistance 

for number facts; and the simulation group used the 

version which provides additionally, in the form of 

simulated blocks, an on-screen representation of the 

quantitative meaning of the symbol manipulations. 

Section 3.3.4 describes the software in detail. 

Also described in this chapter are the population 

from which a sampling of subjects has been drawn, the 

sampling method, sample size, the relevant variables, the 

tests and interview questions that were used to 
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characterize subjects before and after treatment, and the 

research design. 

A pilot study was conducted of 6 subjects drawn 

from a second grade class at the Marks Meadow Elementary 

School, Amherst, MA in order to debug and fine-tune the 

instrumentation and to standardize instructions. 

3.1 Sample 

The sample consisted of 44 second grade children 

drawn from two classes in the Morgan School, an inner 

city elementary school in Holyoke, Massachusetts. When 

the study began in January 1989, the children had not yet 

received formal classroom instruction in 2-digit column 

addition. Classroom instruction was based on a workbook 

entitled "Addison-Wesley Mathematics" (Eicholz et al. , 

1985). Pretests were individually administered 

consisting of questions about basic first grade 

arithmetic, understanding of place value, and written 2- 

digit column addition. 

After the pretest, 5 children were dropped from the 

sample, either for doing very well and so not needing 

instruction in the topic or for doing quite poorly 

(particularly in first grade arithmetic) and so 

insufficiently prepared to begin 2-digit column 

arithmetic. 
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The remaining sample of 39 children were then 

divided into three statistically comparable groups, 

equalized for pretest scores, classroom membership 

(teacher), and sex. (During the course of the study, 3 

more children were dropped — two moved to another school 

and one was absent with an extended illness. The final 

sample consisted of 36 children in three groups of 12 

each. ) The groups were then randomly assigned as control 

group and two treatment groups. See Appendix A for the 

equalizing method used and statistical comparisons 

between the groups formed. Several methods of weighting 

the pretest scores were compared. No statistically 

significant differences were found among the groups 

regardless of the weighting method used, indicating that 

the groups were satisfactorily equalized. 

The final composition of the three groups is shown 

in Table 3.1. The 36 subjects consisted of 20 girls and 

16 boys from two 2nd-grade classrooms, 21 from Room G and 

15 from Room F. 

TABLE 3.1 Composition of the Groups 

Control Assisted Simulation_Total 

Room G / Female 
Room G / Male 
Room F / Female 
Room F / Male 

Totals 12 12 12 36 
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3.2 Research Design 

The research design was a simple controlled 

experiment with pretest and posttest to determine the 

effect of two treatments on learning the multicolumn 

addition algorithm. The independent variable is the 

group assignment: the control group and the two treatment 

groups. Dependent variables are the pretest and posttest 

scores. 

In a conventional classroom setting children are 

instructed in 2-digit column addition on a chalkboard and 

are required to work examples on paper with pencil. In 

this experimental situation, examples are presented on a 

computer screen, and, after a brief demonstration by the 

instructor, the child works examples by touching a light 

pen to the digits displayed on the screen. 

The control and treatment groups are all instructed in 

the algorithm in the same way in this medium. They 

differ only with respect to the kind of screen display, 

as follows: 

Control Group: No on-screen assistance for number 

facts. The subject learns the algorithm and adds single 

digits mentally (or by counting). See Figure 3.1. 

Assisted Group: On-screen assistance for number 

facts. As each subject in the assisted group touches 

each digit to be added, the cumulative sum appears on the 
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screen in a "Memory Box". This is the on-screen 

assistance that allows the subject to learn the 

perceptual/motor aspects of the algorithm without having 

to recall number facts initially. The assisted group is 

the basis for testing the hypothesis that, with 

automation of the procedural aspects of the algorithm and 

therefore less cognitive demand on short term memory, 

effective learning is likely to occur. See Figure 3.2 

for the screen display. 

Simulation Group: Number facts assist with mapping 

display. This treatment is similar to that of the 

"assisted" group in providing on-screen number-fact 

assistance, but it also has an additional feature 

intended to provide the subject with the possibility of 

an insight into the meaning of the symbol manipulations. 

As the problem is presented, the value of each of the 

numbers to be added together is decomposed into tens and 

units and is represented as, or mapped into, an array 

of simulated blocks. Then, as the subject places each 

digit of the sum into its proper position, images of 

blocks appear in positions on the screen corresponding to 

units, tens, and hundreds. The purpose of this display 

is to demonstrate to the subject the connection between 

counting, which the subject presumably understands, and 

the addition algorithm. This is a variant of mapping 

instruction described earlier. Its purpose is also to 
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test the second hypothesis — that understanding the 

concepts supporting the algorithm leads to effective 

learning. See Figure 3.3 for the screen display. 

All three groups work through the same 24 problems 

with instruction, commentary, and questions by the 

instructor. At the end of this instructional phase that 

occurs in three working sessions over 10 days, each 

subject is given a test to work 6 problems in the control 

group mode without on-screen number fact assistance and 

without any intervention or commentary by the instructor. 

3.3 Instrumentation 

This section contains the details of the various 

instruments used in the study: descriptions of the pre- 

and posttests; the problem set used in the instruction; 

hardware and software; and the instructional script. 

3.3.1 Pretests and Posttests 

The pretest and the posttest are exactly the same 

in content, but at least four weeks separates the 

administration of each of them. The tasks are similar to 

those employed by Russell & Ginsburg (1984) in their 

study of -mathematics difficulty" children and are scored 

one point for each fully correct response. A few 

additional problems after the posttest are given to each 
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subject to get an indication of understanding of the 

algorithm and of any transfer to more difficult problems. 

Introductory remarks 

See the instructional script in Section 3.3.5 below. 

Ability to count 

1. "Start counting up from 14." (up to 25) 

2. "Start counting up from 87." (up to 105) 

3. "Can you count by 2s?" 

4. "Can you count by 5s?" 

5. "Can you count by 10s?“ 

6. "Com you count by 100s?“ 

7. 

8. 

9. 

10. 

11. 
12. 

13. 

14. 

15. 

'How much 

'How much 

"How much 

"How much 

"How much 

"How much 

"How much 

"How much 

"How much 

Knowledge of number facts 

Oral 1-digit addition 

is 4 and 2 ?" -“How did you 

is 3 and 5 ?“ -"How did you 

is 11 and 6 ?"-"How did you 

is 7 and 8 ?" -"How did you 

is 13 and 0 ?" - "How did you 

is 4 and 6 ?"  "How did you 

is 6 and 4 ?"  "How did you 

is 10 and 7 ?“ — "How did you 

is 5 and 50 ?" - "How did you 

get that?" 

get that?" 

get that?" 

get that?" 

get that?' 

get that?' 

get that?' 

get that?* 

get that? 
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16. "Can you write down 6 plus 3 ?" — "and the answer?" 

17. "Can you write down 2 plus 9 ?" — "and the answer?" 

"Can you write down the answer to this?" 

18. (Hold up card) 4 + 5 = ? 

19- (Hold up card) 6 + 3 = ? 

20. (Hold up card) 3 + 8 = ? 

21. (Hold up card) 7 + 2 = ? 

Read 2~, 3-digit numbers 

"Can you read this?" 

22. (Hold up card) 54 ? 

23. (Hold up card) 776 ? 

24. (Hold up card) 308 ? 

Counting money 

25. "How many cents are there in a dime?" 

"How much money-how many cents-do we have here?" 

(Spread coins randomly on table): 

26. 3 dimes and 7 pennies 

27. 2 dimes and 15 pennies 

28. "Can you pick out 43 cents from all this money?" 

(from a scattered array of dimes and pennies) 



Place value 

What does this digit mean? 
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(Hold up a card bearing a number and point to the digit) 

1. "What does this (4) mean, or stand for?" 54 

2. "What does this (5) mean, or stand for?" 54 

3. "What does this (7) mean, or stand for?" 776 

4. "What does this (7) mean, or stand for?" 776 

5. "What does this (6) mean, or stand for?" 776 

6. "What does this (8) mean, or stand for?" 308 

7. "What does this (3) mean, or stand for?" 308 

8. "What does this (0) mean. or stand for?" 308 

Which number of a pair is larger? (Hold up card) 

9. "Which number is larger or greater?" 522 288 

10 . "Which number : is larger < or greater?" 799 877 

How manv tens / hundreds? 

11 . "How many tens are there in 146 ? 
•• 

12 . “How many tens are there in 52 ?" 

13. "How many hundreds are there in 378 ?" 

14. "How many hundreds are there in 529 ?“ 

Name tens 

15. "What are four tens called ?" 

16. "What are ten tens called ?" 

Positional value of digit 

"Here are two numbers. (Hold up card with: 32 73) 

Can you tell me the difference between the 3 here 

and the 3 here? Are these different kinds of 3 ? 

17. 
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Decomposition 

18. "What three numbers make up, add up easily to 658 ?" 

(A deliberate hint is offered in the form of pauses 

and emphasis of voice: “Six hundred" [pause] 

"fifty" [pause] "eight") 

Composition 

19. "Can you add these numbers in your head ?" 

(4 + 70 + 200) 

Number proximity (1-digit1 

20. "Here are two numbers on this card (2 7). And here 

are two numbers on this card (4 5). Which card 

has the numbers closer to each other ?" 

Number proximity (3-digit) 

21. "Here are two numbers on this card (436 448). And 

here are two numbers on this card (546 548). 

Which card has the numbers closer to each other ?" 

Multicolumn Addition Problems 

Each subject is given worksheets bearing 8 addition 

problems in horizontal format to solve. The problems are 

presented in horizontal format to ascertain whether the 

subjects is able to rewrite the problems vertically for 

easier solution. As follows: 

1) 45 + 3 = 

2) 13 + 46 = 

3) 88 + 37 = 
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4) 96 + 7 

5) 5 + 68 

6) 26 + 38 

7) 54 + 62 

8) 84 + 67 

Since 4 -to 6 weeks elapsed between the pretest and the 

beginning of instruction on the computer, a "monitor 

check" was administered to each subject just before 

instruction to ascertain whether the addition algorithm 

had been learned in the interim. This check consisted of 

the following three worksheet problems: 86+42 57+18 

56+78 

3.3.2 Transfer and Correction Tasks 

When the posttest was completed, each subject was 

asked to solve six additional problems which extended the 

algorithm to three 2-digit addends and to 3— and 4-digit 

numbers. Success in this task would indicate that near 

transfer is occurring. The "transfer problems were 

presented in vertical format as follows: 

m m (3) (4-L_ (5)- (£L_ 

68 
42 

+57 

79 
37 

+16 

407 
+847 

977 2847 5474 
+221 +3625 +4378 
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Another task (called "correction'* problems) 

involved asking each subject to "make believe that you 

are the teacher and I have just done these problems 

(handing the subject a sheet bearing 4 finished 

problems) . Would you look them over and correct them if 

you find anything wrong and tell me why." The 

"correction" problems were presented as follows: 

—QJ. -(21_ _£_3J_ (4) 

54 26 46 29 
+38 +18 +37 + 1 

93 314 73 20 

After these tasks, each subject is asked what the "carry 

means, while pointing to a carry mark on one of the 

problems. Finally, each subject is asked what he/she 

liked or did not like about learning to add on the 

computer. 

3.3.3 The Computer Problem Set 

The following lists the types of problems that 

may be encountered in 1— and 2-digit addition and the 

specific 30-problem set administered to each subject: 

Types 

Type 1: One-digit addends, no carry. 

Type 2*- One-digit addends with carry. 

Type 3: Two-digit plus one-digit addends, no carry. 

Type 4: Two-digit plus one-digit addends with carry. 
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Type 5: Two-digit plus One 

Type 6: Two-digit addends, 

Type 7: Two-digit addends, 

Type 8: Two-digit addends, 

Type 9: Two-digit addends, 

digit addends, sum > 99. 

no carry. 

carry from units column only, 

carry from tens column only, 

carries from both columns. 

Problem Set 

1) 2+1 Type 1 

2) 3+2 Type 1 

3) 5+4 Type 1 

4) 40 + 24 Type 6 

5) 15 + 72 Type 6 

6) 82 + 16 Type 6 

7) 33+5 Type 3 

8) 48 + 14 Type 7 

9) 73 + 52 Type 8 

10) 25+7 Type 4 

ID 78 + 79 Type 9 

12) 15 + 72 Type 6 

13) 93+9 Type 5 

14) 19 + 25 Type 7 

15) 16+4 Type 4 

16) 41 + 84 Type 8 

17) 96+7 Type 5 

18) 63 + 47 Type 9 

19) 69+2 Type 4 
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20) 88 55 Type 9 

21) 92 + 8 Type 5 

22) 61 + 92 Type 8 

23) 54 + 9 Type 4 

24) 95 + 7 Type 5 

25) 47 + 89 Type 9 

26) 24 + 57 Type 7 

27) 66 + 62 Type 8 

28) 56 + 38 Type 7 

29) 35 + 73 Type 8 

30) 93 + 38 Type 9 

3.3.4 Hardware and Software 

The hardware consisted of an Apple lie computer 

into which was installed a Gibson (Koala) light pen. The 

light pen system includes both interfacing hardware which 

plugs into Slot #7 of the computer and software which 

permits commands for the light pen system to be embedded 

in a BASIC program. 

The following describes the software written for 

this study as it applies to the control group. All 

input/output interaction by subjects with the monitor 

screen of an Apple lie computer is done by means of the 

light pen. 
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When the pen is in "tracking" mode and its tip is 

held briefly (approximately 0.5 sec) against an 

illuminated portion of the screen, the coordinates of the 

pen’s position are calculated and can be stored for later 

retrieval. Conversely, a display may be made to appear 

on the screen if the pen is held briefly at a position 

previously specified by the software. Input/output 

occurs only when the pen is held stationary for a very 

brief period of time (0.5 sec), indicating that the user 

has made a decision to point at a particular location on 

the screen. Such placement of the pen is called a "pen 

hit". In this way, all pointing responses can be 

captured and stored on a floppy disk for later analysis. 

The time between pen hits is also captured with a 

precision of + 0.1 sec 

There is a parallel between using the light pen on 

the screen and using a pencil on paper. Both the light 

pen and a pencil are used during the process of 

calculation primarily as pointing tools, "counting off" 

or tagging the numerals as they are processed. The light 

pen, however, unlike a pencil, does not "write", but with 

appropriate moves "picks up" and "lays down" the 

appropriate numeral. 

The following is a typical sequence of activities 

during the subject-computer-instructor interaction: 
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See Figures 3.1 to 3.6 at the end of this chapter 

for screen layouts for the control and treatment groups. 

At the top edge of a blank screen, one of the nine 

types of addition problems used in this study is 

displayed in horizontal format (e.g., 38 + 27 = ?), 

beginning with the simpler addition of One-digit numbers. 

There ensues a brief pause in order to allow the subject 

to read the problem and to express under standing of the 

nature of the task. 

The problem is then presented in vertical format: 

38 
+ 27 

The instructor explains that "we arrange the numbers this 

way so that we can add them together easily. We can add 

very large numbers this way easily, too." 

Then an array of the 10 digits (0 through 9) 

divided into two rows appears in reverse video: 

0 12 3 4 

5 6 7 8 9 

(The reason for putting the digits into two rows is space 

limitations on the screen.) These are the digits the 

subject will tap (with the light pen) and then place in 

the appropriate positions. The instructor explains- 

"These are the answer numbers you will pick to put into 

the answer place." 
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The subject points with the light pen to each of 

the digits to be processed in sequence, moving down the 

column of digits. A sound signal (beep) indicates 

whether the correct digit is being touched in the correct 

sequence (that is, according to the standard school 

addition algorithm) . This is intended to mean that the 

digit is to be added mentally. Results of calculations 

on the column of digits are inscribed in the appropriate 

position by "dragging'* the appropriate digit from the 10- 

digit array. 

All of the light pen moves made by the subject and 

the timing of moves are captured in a software array. At 

the end of each worked problem, the contents of the array 

are transferred as a text file to a floppy disk for later 

analysis. Each subject is instructed in multicolumn 

addition through this medium in a series of 30 to 45 

minute sessions on different days. The instruction ends 

when 24 problems have been processed. The remaining 6 

problems of the 30-problem set are reserved for testing 

the subject1 s acquired skill in performing the computer 

algorithm. 

3.3.5 Instructional Script 

All three experimental groups were presented with 

set drawn from a computer file (in 
the same 30-problem 
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order "to standardize the type, number, and sequencing of 

the problems). 

The following is the instruction given to each 

subject. Somewhat more elaborate instruction is given to 

the simulation concerning the blocks display. 

Pretest'- Session 1 

A brief informal introduction: "Have you ever 

played with a computer? — I hope this will be fun — 

I’ve tried to make this computer help children to learn 

to add numbers — How do you like doing number work and 

math? — Before we get started, I’d like to ask you some 

questions about numbers and math so that I can find out 

where you might need some help in learning to add big 

numbers — I think you can count up to a high number. 

How high do you think you can count?“ — (The pretest 

begins here.) 

(After the pretest, the first interaction with the 

computer and the software begins. All subjects do the 

first 6 problems in the problem set. No carries are 

involved) "We’re going to start now on the computer. 

You can type in your name. I’ll do the first one to show 

you how to do it and then you can try it yourself. (The 

problem appears in horizontal format. The instructor 

reads off the problem.) Five plus two equals - that’s a 

question mark. The first thing we do is to rearrange the 

numbers, put the numbers up and down in 
a straight line. 
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(The computer does this. Then the number array (0-9) 

appears.) We’ll use these answer numbers to put our 

answers in the answer place, (where the sum is placed)" 

(Instructor describes light pen) "This is a 

special pen. It has a little hole in the end of it. At 

the bottom of the hole there’s an electric eye that sees 

where you put the pen on the screen. You hold the pen 

straight out from the screen (demonstrates) and touch the 

screen. Now listen as I add the five and the two 

(Instructor demonstrates. A beep is sounded as each 

number is tapped in the correct sequence.) How much is 

five and two? — Seven — So I bring the seven up from 

the answer numbers (touches the 7 in the array), and I 

hold it in the answer place. (The seven appears in the 

answer place. A brief ascending tone scale is sounded to 

indicate a successful completion of the problem.) Now 

you can try it”. (The first three problems are One digit 

additions. When a new problem is displayed in horizontal 

format, the subject is asked, “How do you read that? ) 

(The next three problems are double-digit additions 

with no carries.) (Demonstrates) "The way we do this 

one (namely, 23 + 41 = ?) is we first add the ones parts 

together and then the tens parts together. Notice the 

twenty three is two tens, or twenty, and three — twenty 

three. Forty one is four tens or forty — forty and one 

When you add the ones parts, you put the 
is forty one. 
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answer here, and then we add the tens parts, the two tens 

and the four tens and put the answer here. 

(Demonstrates) — Three ones and one is? — four ones 

(Demonstrates) — Two tens and four tens is how many 

tens? -- six tens — So now how much is 23 plus 41? — 

(Subject reads answer, 64) — What does that six stand 

for? (pointing to the 6 in 64) — six tens — And what 

does the four stand for? — four ones — What is 6 tens 

called? — sixty — sixty and four make sixty four. 

That’s how we add big numbers together." (The instructor 

reviews the procedure.) 

(With both the assisted and simulation group, the 

instructor describes the "memory box". Instruction is 

identical to that of the control group, except that a 

"memory box" appears on the screen after the vertical 

layout of the problem appears. Then the following 

explanation is made: ) "This is a memory box. This is 

where the computer will help you remember your addition 

facts as you go through the steps of the addition. Later 

on, after you have learned all the steps, you can try to 

do the addition without the memory box." 

Instruction - Sessions 2 and 3 

(The following is a typical script used with all 

groups when explaining the carry. The problem being 

solved is 88+55) (For the simulation group only: Point 

to the simulated blocks as they are being displayed on 
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•the screen) "This shows what 88 looks like. It is made 

up of 8 tens, or eighty, and 8 ones. Now what does 55 

look like? — 5 tens, or fifty, and 5 ones. Now you cam 

start adding the ones parts — 8 ones and 5 ones are? — 

13 ones —so you put the ones part of the 13 into the 

ones part of the answer place. Then you carry the one 

ten left over from the 13 up here into the tens place 

(pointing). The computer is doing the same thing (10 

blocks are moved into the tens column. ) Now you add up 

all the tens parts — One ten and 8 tens and 5 tens are? 

— 14 tens. So you put the 4 tens into the tens answer 

place and the computer does the same thing (in simulated 

blocks). Notice that leaves 10 tens left over from the 

14 tens. Ten tens are one hundred, so we put or carry a 

one that stands for one one-hundred up here in the 

hundreds place. (Demonstrates) Now you add up all the 

hundreds parts. One one-hundred and blank is? one 

one-hundred. So you pick up a one and put it into the 

hundreds answer place. The computer does the same thing 

with the little blocks that you are doing with numbers. 

What is the answer? — 143. What does 143 look like? 

(Pointing to the blocks in the answer place) It is made 

up of 100 blocks plus 40 blocks plus 3 blocks — 143. 
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CHAPTER 4 

RESULTS AND ANALYSIS 

This chapter contains results and analysis of 

pretests and posttests, arranged according to basic 

skills, place value understanding, pencil-on-paper column 

addition, transfer problems, correction problems, column 

addition on computer, and timing data. Each section 

contains both summary statistics send details of 

performance on components of the various tests. 

Data tables for individual subject scores are found 

in Appendix B. 

The three experimental groups differed in the 

version of software used. The control group had no on¬ 

screen number-fact assistance. The assisted group did 

have on-screen number-fact assistance. The simulation 

group had not only number—fact assistance but also 

displays of simulated blocks intended to convey the 

quantitative meaning of the symbol manipulations in the 

algorithm as it was executed. 

All questions were scored one point for each fully 

correct answer, zero otherwise. 

Although all three groups and almost all subjects 

improved from pretest to posttest, the matter of primary 

interest is whether the treatment groups improved to a 

significantly greater degree than the control group. 
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Consequently, t-tests were performed on the pretest-to- 

posttest difference scores. A 5% criterion was adopted 

for significance, and since the predictions made in the 

hypotheses being tested are directional, that is, that 

the treatments will result in improvement, the t-tests 

were one-tailed. The tests were performed pairwise on 

the control/assisted and control/simulation groups only. 

The tests were not done on the assisted/simulation groups 

because the scores of the simulation group had been 

predicted to be higher than those of the assisted group 

when in fact they turned out to be lower. Comparisons 

were also made on pretest—posttest differences for sex 

and classroom (Room F vs. Room G). 

A further matter of interest was group mean 

comparisons for tasks that had not been pretested. T— 

tests were applied pairwise to the control/assisted and 

control/simulation groups for their performance in basic 

skills, in the transfer and correction tasks, and in 

multicolumn addition on the computer. 

The following is a brief summary of the analysis. 

1. Basic skills scores: no significant differences 

were found among the groups. This confirms that the 

composition of the three groups prior to treatment was 

satisfactorily balanced. 
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2. Place value pretest/posttest difference scores: 

both the assisted and simulation groups had significantly 

higher scores than the control group. 

3. Column addition pretest/posttest difference 

scores: only the assisted group had significanLly higher 

scores. 

4. Transfer problems scores: only the assisted 

group had significantly higher scores. 

5. Correction problems scores: only the assisted 

group had significantly higher scores. 

6. Column addition on the computer: no significant 

differences were found among the groups. 

7. Computer timing: the assisted group took 

significantly less time than either the simulation group 

or the control group to complete the six problems 

presented on the computer screen. (See Section 3.3.4 for 

a description of the light pen. Timing data consisted of 

the time elapsed between "pen hits". A pen hit occurs 

when the pen is held stationary for at least 0.5 second 

against one of the numerals on the screen. ) 



77 

4.1 Basic Skills 

Analysis of basic skills scores is summarized in 

Table 4.1 below. Ib indicates that there are no 

significant differences at the 5% level of significance 

between control and treatment group scores, between male 

and female scores, or between Room F and Room G scores. 

Discussion of performance on the problems in the 

basic skills test follows. See Appendix A for details of 

formation of control and treatment groups. 

TABLE 4.1 Basic Skills Scores 

Groups n Mean SD t-value p 

Control 12 21.4 4.9 

Assisted 12 23.4 2.5 1.258 0.111 

Control 12 21.4 4.9 

Simulation 12 23.0 3.8 0.882 0.194 

Female 20 22.0 3.6 

Male 16 23.4 4.0 1.580 0.178 

Room F 21 22.4 3.3 

Room G 15 22.9 4.6 0.332 0.371 

Maximum score: 28 
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Table 4.2 Basic Skills Scores by Problem, on the 

following page, lists scores and percentages for the 

entire sample of 36 subjects on each question in the 

basic skills test. The salient findings in each 

component of the test are summarized in each of the 

sections following. Of particular interest in Section 

4.8.2 is the listing of the various kinds of errors made 

in addition tests. 



TABLE 4.2 Basic Skills Scores by Problem 

Score 
(Max: 36) Percent 

Counting 
#1 Count from 14 35 97 
#2 Count from 87 32 89 
#3 Count by twos 22 61 
#4 Count by fives 23 64 
#5 Count by tens 33 93 
#6 Count by hundreds 7 19 

Total 152 70 

Oral simple addition 

#7 4+2 35 97 

#8 3+5 33 92 

#9 11+6 27 75 

#10 7+8 28 78 

#11 13+0 36 100 

#12 4+6 35 97 

#13 6+4 36 100 

#14 10+7 28 78 

#15 5+50 26 72 

Total 284 88 

Written simple 

#16 
#17 

#18 

#19 
#20 
#21 

Reading 2-, 3 
#22 
#23 

#24 

addition 

6+3 

2+5 

4+5 
6+3 

3+8 

7+2 

Total 

digit numbers 

Read 54 

Read 776 

Read 308 

Total 

35 97 

36 100 

34 94 

35 97 

33 92 

34 94 

207 96 

34 94 

18 50 

16 44 

68 63 

f!nimting money 
#25 Cents in a dime.' ^ 
#26 3 dimes, 7 pennies 25 

#27 2 dimes, 15 pennies 24 

#28 Pick out 43 cents 21 

92 

69 

67 

58 
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4.1.1 Counting 

Almost all the subjects (97%) successfully counted- 

on from 14. Slightly fewer (92%) counted-on successfully 

from 87; of these a few had difficulty crossing 100, 

either stopping or counting on by tens (110, 120, etc.). 

Almost all (92%) were able to count by tens but only 

approximately 60% could count by twos or fives. This 

difference may reflect the relatively higher frequency of 

practice in counting by tens in games played outside 

school. Only one out of five subjects (19%) was able to 

count by hundreds until prompted ("100, 200 ...?"). 

4.1.2 Oral/Written Simple Addition 

"Simple’* addition consisted of addition of two 1- 

digit numbers or of a 2-digit and 1-digit number. The 

problems were either presented orally for oral response 

or presented on separate cards for written response. 

Overall score for oral simple addition was 88% compared 

to 96% for written simple addition. Some difficulty was 

encountered (scores: 72-78%) when the sum of the digits 

exceeded ten. None of the subjects had completely 

automated number facts. That is, all subjects resorted 

to adding by counting, primarily on their fingers (openly 

or surreptitiously) or occasionally subvocally. 
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Problems #12 (4+6) and #13 (6+4) were commutation 

problems with the same addends but in reverse order. 

Fourteen subjects (39%) commuted; that is, they responded 

immediately to the second of these problems with the same 

sum. When asked to explain their rapid response, they 

said, typically: "You just changed the numbers around", 

"Same numbers", "[added] backwards", "The same. It 

didn’t change". Twenty-two subjects (61%) did not 

commute but re-added the numbers, primarily by finger 

counting. 

Problem #15 (5+50) is also a commutation problem. 

Nine subjects (25%) counted-on from 50 and did not take 

advantage of the decimal structure of the number system 

(units nested in tens) or counting by fives. A similar 

lack of utilizing decimal structure was found with 

Problem #14 (10+7) which 26 subjects (67%) solved by 

counting-on from ten. 

Problem #11 (13+0) was answered correctly by all 

subjects. When asked to explain the rapidity of their 

response, they said typically that zero is "nothing". 

Here is a sampling of their remarks• 

"No other number." 

“You don’t add anything." 

"Zero is nothing" 

"Zero means nothing." 

"If you put zero, it’s none. 
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"It’s the same. " 

“Zero doesn’t do anything.” 

“No other number goes with it.” 

"Zero is hardly a number, just a circle, and a 

circle is nothing." 

These notions conflict with the role of zero as an empty 

place holder in multidigit numbers and is a source of 

difficulty in reading and manipulating numbers of three 

or more digits, of which at least one digit is a zero. 

4.1.3 Reading 2- or 3-Digit Numbers 

Problems #22-24 required a subject to read a 2- or 

3—digit number displayed on a card. There were three 

numbers to read: 54, 776, and 308. Nearly all subjects 

(94%) could read 54. Ability to read 3-digit numbers 

dropped markedly: to 50% able to read 776, and to 44% 

able to read 308. Many did not respond. 

Here is a sampling of misreadings of 776: 

"Seven seven six" 

“Seventy seven six" 

"Seventy six" 

"Seventy seventy six 

"One hundred seventy, seventy six 

And here is a sampling of misreadings of 308: 

"Three eight" 

"Thirty hundred and eight' 
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"Thirty eight" 

"Thirty, eight" 

"Thirty eight hundred" 

"Three eighty, three hundred thirty eight" 

"Three hundred and eighty" 

"Three zero seven" 

They had been taught to read 3-digit numbers but were not 

yet sufficiently practiced. They were able pick up the 

verbal pattern again quickly and could read 3-digit 

numbers with a little instruction after the completion of 

the pretest. This deficiency, however, is bound to 

affect their understanding of place value. 

4.1.4 Counting Money 

Nearly all subjects (92%) knew there are ten cents 

"in" a dime. Ten subjects (28%) failed to calculate the 

value of a random assortment of dimes and pennies 

correctly or failed to count out a specific amount of 

money correctly. Counting money is not only a necessary 

practical skill but also this concrete experience of 

grouping is a valuable contribution to place value 

understanding. 
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4.2 Place Value 

Pretest/posttest place value mean scores are 

summarized in Table 4.3 below. Each test question 

answered correctly was scored one point, zero otherwise. 

TABLE 4.3 Mean Pretest-Posttest Place Value Scores 

Group Pretest Posttest Difference 

Control 6.6 11.4 4.8 

Assisted 5.9 14.5 8.6 

Simulation 6.3 14.7 8.3 

Maximum score: 21 

An analysis of place value difference scores shown 

in Table 4.4, on the following page, indicates 

significantly higher scores for both the assisted and 

simulation groups, but no significant differences in the 

sex and classroom comparisons. 
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TABLE 4.4 Place Value Difference Scores 

Group n Mean SD t-value E 

Control 12 4.8 2.9 

Assisted 12 8.6 3.3 2.969 .004 * 

Control 12 4.8 2.9 

Simulation 12 8.3 3.9 2.492 .011 * 

Assisted 12 8.6 3.3 

Simulation 12 8.3 3.9 .171 .866 

Female 20 6.7 4.2 

Male 16 8.0 3.1 1.087 .143 

Room F 21 7.1 4.0 

Room G 15 7.4 3.4 0.202 .421 

* Significant at the 5% level 
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Table 4.5 Place Value Scores by Problem, on the 

following page, lists scores and percentages for the 

entire sample of 36 subjects on each question in the 

place value tests (pretest/posttest). Each test question 

answered correctly was scored one point, zero otherwise. 

The table is not broken into control and treatment 

groups since the focus of interest is on the relative 

difficulty of the problems posed. The salient findings 

in each component of the test are summarized in each of 

the sections following the table. 



TABLE 4.5 Place Value Scores by Problem 

Scores (Max:36) Percent 
Pretest Posttest Pretest Posttest 

Question Type 
What does the digit mean? 
#1 54 5 29 19 81 
#2 54 9 36 25 100 
#3 776 5 32 14 89 
#4 776 5 25 14 69 
#5 776 9 30 25 83 

#6 308 9 31 25 86 

#7 308 8 25 22 69 

#8 308 4 20 11 56 

Total 54 228 19 79 

Which number is larger? 

#9 522 vs 288 27 28 75 78 

#10 799 vs 877 25 28 69 78 

Total 52 56 72 78 

How many tens/hundreds in. 9 
• • • 

#11 146 5 17 14 47 

#12 52 19 28 53 78 

#13 378 12 20 33 56 

#14 529 14 21 39 58 

Total 50 86 35 60 

Name tens 

#15 Four tens 17 22 47 61 

#16 Ten tens 4 28 11 78 

Total 21 50 29 69 

Positional value 

#17 
Decomposition 

#18 
Composition 

#19 
Proximity: 1-digit 

#20 
Proximity'- 3-digit_ 

#21 

7 

0 

6 
numbers 

30 
numbers 

6 

18 19 50 

3 0 8 

8 17 22 

28 83 78 

10 17 28 

487 30 64 
Overall Totals 226 
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4.2.1 Digit Meaning 

For Problems #1 through #8 that ask for the place 

value of a digit, the pretest score for all subjects was 

19% compared to the posttest score of 79% The low 

pretest score indicated that few subjects had been 

schooled sufficiently in place value or even understood 

the problem. Many subjects did not respond in the 

pretest. Posttesting suggested lingering difficulty with 

the hundreds place and particularly with the zero in 308. 

Here is a sampling of failed responses: 

Gives any digit a tens value. 

Responds with the digit plus one. 

Guesses(?) "ones", "tens", ignores hundreds place 

All digits are given a units value. 

Re-reads the number. 

Responds with "the ones side" or "the twos side". 

The sevens in 776 are called "seven pennies". 

In posttest, this subject responded to the 

seven in the hundreds place as "one hundred 

sevens", which is not incorrect but misses the 

decade structure. To another subject this 

seven was interpreted as "one hundred seventy". 
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4.2.2 The Larger of a Number Pair 

Problem #9 asked which number is larger, 522 or 288? 

and Problem #10 asked which number is larger, 799 or 

877? There was little pretest, bo posbtesb improvement in 

scores (72% bo 78%). Most subjects selected the larger 

number by mechanically comparing the leftmost digit in 

each number, but only a few explained their choice by the 

place value of that digit. Most of those who erred made 

their choice by selecting the number containing the 

largest digit of either pair and ignoring place value. 

4.2.3 How Many Tens/Hundreds? 

Problems #11 through #14, "How many tens/hundreds 

ar© there i ~n [number!" are the counterparts of the digit 

meaning questions, "What does the [digit] in [the 

number] mean?" The responses and difficulties were 

similar. Problem #10 ("How many tens in 146?") was the 

most difficult of the four with scores of 14% in pretest 

and 47% in posttest. A response of either "four" or 

"fourteen" was scored correct. The many (approx, half) 

who failed Problem #13 (“How many hundreds are there m 

three hundred . . . [pause with emphasis] . . . seventy 

eight?") missed what was offered as a seemingly clear and 

loud hint in the phrasing and intonation of the number. 
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4.2.4 Name Tens 

Problem #15 ("What are four tens called?") and 

Problem #16 ("What are ten tens called?") are questions 

of multiplication before this topic is formally 

introduced. Knowledge of this is required for an 

understanding of a carry, when the sum of the tens column 

exceeds 9. The "1" carried stands for one one-hundred 

(ten tens) carried into the hundreds column. Few 

subjects (11%) in the pretest knew that ten tens are 

called one hundred. A common response was to add ten 

plus ten, yielding “twenty". Ten out of the 36 subjects 

(28%) responded this way. In posttest, 78% answered this 

question correctly, which for at least some of them is 

quite likely a memorized response to instruction and not 

an understanding of the re-grouping operation. 

4.2.5 Positional Value of a Digit 

Problem #17 ("What is the difference between the 

three in 32 and the three in 73?") yielded a pretest 

score of 19% and a posttest score of 50% A response 

technically correct but without reference to place value 

was graded incorrect, such as, typically, "This three is 

in front and this other three is in back. Other 

variations: "first/last", "beginning/end", “not the 

same". 
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4.2.6 Decomposition of Numbers 

Problem #18 ("What three numbers add up easily to 

658?" — the number was displayed on a card. ) was not 

answered correctly by any of the subjects in pretest, and 

only 8% did so in posttest. This question can of course 

be answered any number of ways. It is perhaps too 

difficult for children at this grade level but still is 

indicative of place value understanding. It did prove to 

be the most difficult of all the place value questions. 

Even a definite hint was not picked up. The hint resided 

in the way the number was spoken, its emphasis and 

pauses’■ "Six hundred . . . [pause] - - - fifty . . . [pause] 

eight" . The subjects did not yet have a sufficient 

understanding of the nested decimal structure of the 

number system. 

4.2.7 Composition of Numbers 

Problem #19 ("Can you add up these numbers in your 

head?" [4+70+200] displayed on a card) is the counterpart 

to Problem #18. The numbers are presented in this 

particular order to avoid priming the subject when the 

problem is spoken aloud. Again, few subjects scored 

well: 17% in pretest, 22% in posttest. 

Here is a sampling of incorrect responses: 247, 

201, 1200, 1120, 1300, 294, 301, 904. These are not 

random responses since the effort to add the numbers can 
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be seen in each answer. Each could be described as a 

fleeting product of thoughtful guessing, an effort to 

bring the fragments of one’s knowledge to bear on an 

unfamiliar problem. 

4.2.8 Number Proximity 

Problem #20 (Which pair of numbers have numbers that 

are closer together? - 2,7 (displayed on one card) or 

4,5 (displayed together on another card) was answered and 

explained correctly by most subjects, 83% in pretest, 78% 

in posttest. Five of the subjects (14%) responded to the 

word “closer" as a physical attribute rather than as a 

comparison of number magnitudes. They seemed to be stuck 

in this interpretation, in spite of prompting to see the 

numbers as "numbers" (abstractions). They might have 

responded differently if the question had been put in the 

context of comparing two sets of ages. 

Problem #21, in which the number pairs were 436,448 

and 546,548, was much more difficult, resulting in scores 

of 17% in pretest and 28% in posttest. This reflected 

the subjects’ difficulties with place value in 3-digit 

numbers. 
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4.3 Multicolumn Addition 

This section contains results of the eight pretest/ 

posttest multicolumn addition problems. Statistical 

analysis of the performance of the treatment groups vs. 

the control group is followed by more detailed results on 

individual problems. These results are not broken into 

control and treatment groups since the focus of interest 

is on the relative difficulty of the problems posed. 

Errors in column addition, because of their importance to 

the discussion in Chapter 5, are listed separately in 

some detail in Section 4.8.2. 

Pretest/posttest column addition mean scores are 

summarized in Table 4.6 below. 

TABLE 4.6 Mean Pretest-Posttest Addition Scores 

Group _Pretest_Posttest_Difference 

Control 2.7 4.0 1.3 

Assisted 2.7 6.0 3.3 

Simulation 2.3 4.3 2.0 

Maximum score: 8 
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An analysis of column addition difference scores 

shown in Table 4.7 below indicated significance for the 

control/assisted group only, none for any others. 

TABLE 4.7 Column Addition Difference Scores 

Group n Mean SD t-value p 

Control 12 1.3 2.7 

Assisted 12 3.3 2.0 2.036 .027 * 

Control 12 1.3 2.7 

Simulation 12 2.0 2.0 0.675 .254 

Assisted 12 3.3 2.0 

Simulation 12 2.0 2.0 0.675 .122 

Female 20 2.4 2.5 

Male 16 2.1 2.3 0.356 .362 

Room F 21 2.4 2.7 

Room G 15 1.9 1.9 0.610 .273 

* Significant at the 5% level 
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The pretest/posttest 2-digit addition problems were 

a mix of seven of the nine types. Overall performance 

improved from 32% in pretest to 60% in posttest. See 

Table 4.8, Column Addition by Problem, below. 

TABLE 4.8 Column Addition by Problem 

Scores (Max: 36) Percent 

Problem Type Pretest Posttest Pretest Posttest 

#1 45+3 3 29 30 81 83 

#2 13+46 6 20 29 56 81 

#3 88+37 9 0 19 0 53 

#4 96+7 5 14 20 39 56 

#5 5+68 4 21 18 58 50 

#6 26+38 7 4 21 11 58 

#7 54+62 8 4 21 11 58 

#8 84+67 9 0 14 0 39 

Total 92 172 32 60 

Problem #1 (45+3) scored highest (81% in pretest, 

83% in posttest) since most subjects simply counted-on 3 

units without resorting to column addition. Problem #2 

(13+46), which involved no carries and could also be 

solved by counting-on from 46, scored next highest (56% 

in pretest, 81% in posttest). 

The lowest scores occurred in pretest, as expected, 

since instruction in multicolumn addition with carries 
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had not yet begun. None of the subjects in pretest 

correctly solved the two type 9 problems (#3, #8), which 

involved two carries. 

All eight problems were presented to the subjects in 

horizontal format since an instructional objective was to 

learn that multidigit numbers presented in horizontal 

format should be rewritten in vertical format ("up and 

down") for easier solution using the algorithm. Pretest 

indicated that nearly all subjects (92%) tried to solve 

many problems in horizontal format. In posttest this 

percentage dropped to 53%, which is still relatively 

high. Many subjects persisted in trying to solve the 

more difficult problems in the horizontal format in which 

the problems were presented, even after instruction. 

Problems #1, #7, and possibly #2 are easily solved 

by counting-on from the larger addend. In pretest most 

subjects did this as expected, but also, lacking 

knowledge of the algorithm, they tried to solve some of 

the more difficult problems by counting-on. The percent 

subjects counting-on dropped from 86% in pretest to 33% 

in posttest. 

In pretest, 39% of the subjects did not respond to 

(left blank) one or more problems, but in posttest all 

subjects responded to all the problems. 

The "monitor" test of three problems, one each of 

types 7, 8, and 9, indicated that some learning of the 
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algorithm had occurred during the several weeks time that 

elapsed between the pretest and the beginning of 

instruction. Performance score on these three problems 

was 25%, which is greater than the pretest score of 7% on 

comparable type problems, but less than the posttest 

score of 54% on comparable type problems. 
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4.4 Transfer Problems 

The -transfer problems, so called, were administered 

-to “the subjects immediately following the posttest column 

addition problems. They were intended to elicit a 

transfer of the subject’s newly acquired algorithmic 

skill to solve more complex column addition problems 

which had not yet been encountered in the classroom. The 

problem set consisted of six transfer problems, two each 

of the following problem types to add: three 2-digit 

numbers, two 3-digit numbers, and two 4-digit numbers. 

Table 4.9 on the following page, Mean Scores for 

Transfer Problems, indicates a significant difference in 

means between the control/assisted groups (one-tailed t— 

test) and between the assisted/simulation groups (two- 

tailed t-test). Table 4.10 following, lists results for 

individual transfer problems. 
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TABLE 4.9 Mean Scores for Transfer Problems 

Group n Mean SD t-value r> 

Control 12 2.2 1.9 

Assisted 12 4.1 1.9 2.423 .012 

Control 12 2.2 1.9 

Simulation 12 2.4 1.9 0.316 .378 

Assisted 12 4.1 1.9 

Simulation 12 2.4 1.9 2.117 .046 

* Significant at the 5% level 

Maximum score: 6 

TABLE 4.10 Scores for Individual Transfer Problems 

Problem Smrfi (Max: 36) Percent 

#1 68+42+57 18 50 

#2 79+37+16 10 28 

443 407+847 15 42 

#4 977+221 26 72 

#5 2847+3625 16 44 

#6 5474+4378 19 53 

Total 104 48 

Would subjects, having been instructed with examples 

requiring carries of "one", transfer their knowledge and 

understanding of the algorithm to a problem requiring a 
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carry of "two"? Transfer Problems #1 and #2 (scored 46%) 

compared to addition posttest Problems #3 and #8 (scored 

39%), which are comparable in type, indicates that some 

transfer has occurred. However, transfer Problem #2, 

which entailed a carry of "2”, scored low (28%), 

primarily because several subjects either did not sum all 

three digits in the units column or believed that "l" is 

always carried. 

Transfer Problems #3 through #6 tested the subjects’ 

ability to extend the algorithm to 3- and 4-digit 

addends. The composite score of these four problems was 

53%. The composite score of the four problems of 

comparable type (involving two carries) in the posttest 

addition Problems #3, #6, #7, #8, was 52%, which also 

indicates that transfer of skill occurred. 

Being challenged with novel and more difficult 

problems seemed to disconcert several subjects, who 

apparently regressed into making errors that were less 

prevalent or even not seen in the addition posttest. 

Table 4.11, Incidence of Errors (Posttest vs. Combined 

Transfer and Correction Problems) indicates that two 

types of procedural error more than doubled in incidence 

from the posttest problems to the transfer and correction 

problems. The two types of error were neglectmg-to- 

carry (e.g., 27+36 = 53) and carry-into-answer (e.g., 

27+36 = 513). Also, when more digits are to be added, as 



101 

expected, the incidence of miscalculation (number-fact 

error) increased. 

TABLE 4.11 Incidence of Errors * 

Posttest vs. Combined Transfer and Correction Problems 

Combined transfer and 
Posttest Problems correction Problems 

Incidents Incidence Incidents Incidence 

Miscalculations 19 6.6 41 11.4 

Procedural errors 

No response 0 0.0 16 4.4 

Did not carry 11 3.8 39 10.8 

Wrong carry 0 0.0 6 1.7 

Carry in answer 13 4.5 47 13.1 

Ondeterm. error 18 6.2 20 5.6 

Add col. left-rt 16 5.6 10 2.8 

Incomplete 1 0.3 6 1.7 

Carried left-rt 8 2.8 15 4.2 

working 8 
incidence 
Incidence 

Note'- Posttest incidence base is 36 subjects 
roblems. Combined transfer and correction 
ase is 36 subjects working 10 problems, 
s defined here as incidents per 100 problems. 
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4.5 Correction Problems 

The correction problems, so called, are a set of 

four completed but erroneous column addition problems 

administered to the subjects immediately following the 

transfer problems. The subjects’ task was to detect the 

errors, correct them, and articulate reasons for doing 

so. 

Table 4.12 below. Mean Scores for Correction 

Problems, indicates a significant difference in means 

between the control/assisted groups (one-tailed t-test) 

and between the assisted/simulation groups (two-tailed t- 

test). 

TABLE 4.12 Mean Scores for Correction Problems 

Group n Mean SD t-value E 

Control 12 1.5 1.6 

Assisted 12 2.7 1.4 1.902 .035 

Control 12 1.5 1.6 

Simulation 12 1.4 1.4 0.136 .447 

Assisted 12 2.7 1.4 

Simulation 12 1.4 1.4 2.227 .036 

* Significant at the 5% level 

Maximum score: 4 
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Table 4.13 below lists the scores for individual 

correction problems. A correction problem was graded 

incorrect if the subject incorrectly solved the problem 

or judged the solution to an erroneous problem to be 

correct. Most subjects did not articulate reasons for 

making or not making corrections. Either unwilling or 

unable to interpret the answer given, they proceeded to 

do the algorithm and superimposed their own answer or 

not, without comment. 

TABLE 4.13 Scores for Individual Correction Problems 

Problem and its error Score fMax: 36) Percent 

#1 54+38=93 Miscalculation 19 53 

#2 26+18=314 Carry-in-answer 11 31 

#3 46+37=73 Did not carry 16 44 

#4 29+1 =20 Did not carry 21 58 

Total 67 47 
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4.6 Multicolumn Addition on Computer 

Of the 30-problem set used in the instruction phase, 

the last six were used as a test of performance of the 

standard addition algorithm as it was learned on the 

computer by means of the light pen. 

Table 4.14, Column Addition on the Computer, on the 

following page contains the results and t-test analysis 

of three aspects of this test: mean scores, 

“significant" errors, and "thrashing" errors. 

"Significant" errors, in the context of performing 

the computer algorithm with the light pen, are those 

which if performed in a pencil—on-paper test would have 

been scored incorrect (e.g. incorrect 1-digit addition or 

misplacing the carry from the tens column into the units 

column). 

“Thrashing" errors are those which are recorded by 

the software as "mis-hits" but would not have been scored 

incorrect in a pencil—on—paper test (e.g. holding the 

light pen too long in one position or placing the 

hundreds carry too high in the hundreds column). 

No significant differences were found in any of the 

group comparisons. 
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TABLE 4.14 Column Addition on the Computer 

Group n Mean SD t- -value p 

Mean Scores (Max. 6) 

Control 12 3.8 1.7 

Assisted 12 3.8 1.4 0.130 .449 

Control 12 3.8 1.7 

Simulation 12 3.7 1.6 0.123 .452 

Si imif i cant Errors (Means) 

Control 12 4.0 4.6 

Assisted 12 3.3 3.1 0.473 .321 

Control 12 4.0 4.6 

Simulation 12 3.7 4.1 0.188 .452 

Thrashing Errors (Means) 

Control 12 15.7 12.9 

Assisted 12 12.8 9.3 0.635 .266 

Control 12 15.7 12.9 

Simulation 12 13.3 12.2 0.454 .327 
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4.7 Timing 

During the 6-problem test of performing the 

algorithm on computer, the dwell time (seconds) between 

pen hits as each subject performed the steps in the 

algorithm was captured by the software. These times were 

compiled into three summary statistics: mean time (sec) 

in correct moves, total time (sec), and percent time in 

correct moves. All of these times refer to the six 

computer test problems. The results and analysis are 

found in Table 4.15 Mean Computer Times, on the following 

page . 

Mean time in making correct moves and mean total 

time were found to be significantly less for the assisted 

group than either for the control or simulation groups. 

No significant differences were found among any of 

the groups for percent time in making correct moves. 

That is, all three groups consumed about 20% of their 

total time in making errors, but the assisted group was 

significantly faster overall than either of the other two 

groups. 



TABLE 4.15 Mean Computer Times 

Group n Mean SD t-value p 

Time (sec) in Correct. Moves 

Control 12 261 67 

Assisted 12 220 34 1.882 .037 * 

Control 12 261 67 

Simulation 12 231 54 1.201 .122 

Total Time (sec) 

Control 12 332 114 

Assisted 12 267 61 1.724 .049 * 

Control 12 332 114 

Simulation 12 306 133 0.516 .306 

Percent Time in Correct Moves 

Control 12 82.1 14.2 

Assisted 12 83.8 8.4 0.369 .358 

Control 12 82.1 14.2 

Simulation 12 80.2 13.0 0.345 .377 

* Significant at the 5% level 
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4.8 Errors in Multicolumn Addition 

The frequencies and kinds of errors in multicolumn 

addition made by the second-graders in this study are set 

out in some detail in this section. A study of errors 

has always been of great interest in educational research 

for suggesting insights into children’s thinking and 

behavior. In the next chapter this becomes an important 

basis of discussion and interpretation. 

4.8.1 Frequencies 

First, for an overview, Table 4.16 below compares 

the frequency of procedural versus calculation errors 

among the 36 children solving the eight addition problems 

in pretest and posttest. Procedural errors, those that 

involve placement of the numbers, predominated over 

calculation errors, those that involve obtaining the 

numbers to be placed. The category No response could 

be classified as a form of procedural error: being unable 

or unwilling to proceed. Calculation error includes 

mistaken recall of number-facts and/or a mis 

reconstruction of number—facts by counting. 
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TABLE 4.16 Procedural vs Calculation Errors 

Pretest_ _Posttest 

Frequency Percent Frequency Percent 

Calculation errors 21 13 19 16 

Procedural errors 91 56 102 84 

No response 49 31 0 0 

Total 161 121 



110 

Another way of looking at error frequencies (see 

Table 4.17 below) is to count the number of subjects out 

of the whole sample of 36 making a particular kind of 

error. 

TABLE 4.17 Frequency of Procedural Errors 

_Pretest Posttest_ 

Number of Number of 

Type of error Sub jects Percent Subjects Percent 

Did not carry 5 14 4 11 

Misalign digits 3 8 14 39 

Carry-in-answer 4 11 5 14 

Response undeterm. 19 53 5 14 

Add col. left-right 1 3 4 11 

Incomplete 4 11 1 3 

Carry left-right 2 6 4 11 

Add horiz incorrectly 6 17 3 8 

The subjects changed their approach to the addition 

problems from pretest to posttest. In pretest almost 

all (33 or 92%) tried to solve at least some multidigit 

addition problems in horizontal format. Many subjects 

seemed to be constrained by the format of the problem, 

trying to solve a horizontally formatted problem without 

rewriting it into vertical format for algorithmic 

indicate a reliance on their 
treatment. This may 
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familiar counting-on method of addition. It may also 

indicate habituation to work-book formats: a horizontally 

presented problem is to be solved horizontally. The 

number of such subjects declined to 19 (53%) in posttest 

after instruction in multicolumn addition. A large 

proportion of subjects left at least one problem blank 

(no response) in pretest, but none did so in posttest. 

Nearly half of the subjects (15 or 42%), the same number 

in both pretest and posttest, made at least one 

calculation error in the eight problems. 

4.8.2 Individual Error Types 

The following is a collection of nearly fifty 

multidigit addition errors, almost all different to some 

degree, and all drawn from the sample of 36 second- 

graders. Given a larger sample, more types of error are 

likely to be found. The errors have been grouped 

according to the subject making them and have been 

labelled with the subject’s initials. This has been done 

to indicate the numerous instances of knowledge 

instability in which the same kind of problem is solved 

in different buggy ways by the same subject. Also recall 

that all of the problems are presented in horizontal 

format and that many subjects chose or felt constrained 

without rewriting them vertically. 
to solve them 
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Note the general characteristics of the errors, 

which may be seen as the result of knowledge that is 

missing or incomplete, fragmentary, inappropriately 

applied (buggy), unstable, and "set" or entrenched. 

These characteristics and the many following instances 

are used in the next chapter to develop a comprehensive 

approach towards all these disparate findings. 

1. AD Carry in answer. (Is this a miscalculation or a 
carry in each column?) 88+37 -> 1216 

2. AD Misaligned. Rewrote (5+68) as: 5 
68 

118 

3. TAN Added incorrect pairs of digits: 
13+46 -> (1+4),([3+4] or [1+6]) -> 57 

4. TAN Added all digits: 96+7 -> (9+6+7) -> 22 

5. TAN The plus symbol displaced the second addend to 

the right. Carry-in-answer. 

Rewrote 56+78 as: 56 
+78 

1216 

6 TAN Said "One hundred and three" but writes "1300 
96+7 -> 1300 

7. TAN Added columns left to right, perceiving that 5,6 

are to be added but stopped (because the columns 

in the answer are occupied?). Rewrote 54+62 as: 

54 
+62 

11 

8. JES Broke up second addend into separate digits to 
be added: 13+46 -> (13+4+6) -> 22 

Broke a 2-digit number into separate digits, 

addedthem in pairs and reassembled the results 

into a 2-digit number: 
54+62 -> (5+4), 4+2) > »t> 

9. JES 



113 

10. JES 

11. JES 

12. HC 

13. HC 

14. HC 

15. DF 

16. DF 

17. GM 

18. FR 

19. FR 

20. JL 

21. JL 

The many zeros indicate an indefinitely large 
number beyond 100: 84+67 -> 10000 

Dropped both carries. Rewrote 56+78 as: 
56 

+78 
24 

Counted on from 37? 88+37 -> (37+8+8) -> 44 

Tried to write one hundred three: 96+7 -> 300 

Cross-added digits. Carry-in-answer: 
84+67 -> (8+7),(4+6) -> 1510 

Ignored one addend. Added digits 4,2: 
86+42 -> 6 

Both the problem and its addends were rewritten 

vertically: (26+38): 23 
+68 

91 

A mix of proper carry and carry—in—answer - 

1 
2847 

3625 

51472 

Added columns right to left, carried from tens 

column into the units column. Then re-added the 
units column, scratching out the original 8 and 

replacing it with 9. Rewrote (86+42) as: 

86 
+42 

28 

9 

Dyslexic reversal? Added left to right putting 

carry from the hundreds column into the tens 
column. Finally, added the units column and put 

the carry into the answer (as when adding 

columns right to left): 2g47 

+3625 
til *71 O 

Cross-added digits: 13+46 -> (1+6),(3+4) -> 77 

Wrote 103 literally as "1003": 96+7 -> 1003 
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22. ER Added units then tens, but placed partial sums 

in reverse order, from left to right: 

26+38 -> 145 

23. ER Mixed addition and subtraction, subtraction in 

the units column, addition in the tens column: 

416 

5 6 

±7_fi 

11 8 

24. ER Scrambled carry. Intended to carry 20 but put 2 

in the units answer place and carried the zero 

into the tens column: 0 

79 

37 

±1& 
112 

25. MIS Mixed horizontal and vertical procedures, 

reversed answer digits. Added 6 and 8, put 4 in 

the answer and carried ” 1" over the 2; added 

1+2+3, put a six to the right of the four in the 

answer: 
1 
26+38 -> 46 

26. BED Carried a ten by encircling the 1, possibly as a 

reminder that a ten is being carried. 

27. BED Omitted the zero in the tens place. 

(96+7) was rewritten as: 

1 
96 

_7 

13 

28. JSS Added and carried left to right: 1 
8b 

+42 

29 

45 

+ 3 

78 

29. JSS Added 1-digit addend twice: 
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30. JSS Was observed bo reverse the digits in a 2-digit 
number (15 was written as 51): l 

84 
+67 
511 

31. CG Inability to write a number over 100. CG wrote 
"3" and then said "This is one hundred three". 

96+7 -> 3 

32. KEF Solved all posttest problems in both horizontal 
and vertical format, getting different answers, 
unaware of or ignoring any inconsistency. Note 
the way the digits are vertically formatted 

without regard to their values, although the 
correct procedure was carried out. The problem 
presented was (5+68) and was solved in two ways-- 

5+68 -> 73 56 
+ 8 

64 

33. KH Was observed to put the tens carry back into the 

tens column. Rewrote (54+62) as: 1 
54 

+62 

16 

34. EL Apparently counted on from the larger addend but 

ignored the tens digit on the other addend: 
26+38 -> 38+6 -> 44 

35. IA Misaligned but correct. Rewrote (26+38) as: 

1 
26 
+38 

64 

36. IA 
Now aligned correctly. Added right to left but 

carried back into the units column. Then re 

added the units column, scratching out tbe 

previous answer. Rewrote 54+62) as: 

54 

+62 

16 

7 
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37. IA Cycling. Similar to (36) above. Added units 

column and carried into the tens column. Added 

tens column but either ignored the carry or 

miscalculated 8+6 to be 14. The carry from the 

tens column is then put into the units column, 

which is then recalculated and the answer 

changed to 2, scratching out the previous 

answer. The problem (84+67) was rewritten as: 

11 
84 

+67 

41 

2 

38. AL Digits were added correctly in parallel and then 

inappropriately combined: 

56+78 -> (5+7)+(6+8) -> (12+14) -> 26 

39. BG Digits as well as numbers were formatted 

vertically: (13+46) was rewritten as: 

3 6 

+1+4 

410 

40. VR Left to right column addition, carry plays no 

role. Added tens column first, then the units 

column, putting the carry into the tens column. 

The problem (26+38) was rewritten as: 
1 
26 

+38 

54 

41. VR Left to right addition and carry. The problem 

(54+62) was rewritten as: 1 
54 

+62 

17 

42. VR 
lycling. Solved (84+67) as follows: 

Added 4 and 7, put result (11) in answer. 
Remembered to put carry over tens column, 

erased the 1 in the tens answer place. 

Added tens column, put 5 in the tens 

column. Carried into the units column 

without changing the answer in the units 

column. 
84 

4-R7 

11 

5 
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The next, three problems were done by JK in succession. 

43. JK Cycling. Carried into the units column. Added 

tens. Noticed carry in units column, so re¬ 

added units column. (26+38) was rewritten as: 

1 
26 

+38 

54 

5 

44. JK Ignored carry or forgot to carry to the hundreds 

place. (54+62) was rewritten as: 

54 

+62 

16 

45. JK Carry-in-answer. Rewrote (84+67) as: 

84 

+67 

1411 

46. JK Added units column, putting 5 in units answer 

place and putting the carry above 8 in the units 

column. Added tens, putting the carry in the 

tens column. Added up the tens column (result 

12). Then put 12 in the tens answer place. Re¬ 

added the units column (result 16). Put 6 next 

to the units answer without deleting the 5. 

Rewrote (88+37) as: ^ 

88 
+37 

1256 

47. JK 
Similar to (46) above, but now put a carry in 

the hundreds column: 

56 

+78 

124 

5 

"h£d?’ones right to left, squeezing the names 

into the answer: 
2 84 i 

+ 3 62 5 

514612 
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50. DB "You can put the 1 anywhere", said DB. Db put 
the carries from the units and tens columns off 
to the left. The leftmost column was then 
summed to 20: (11+5+4 -> 20): 

11 
5474 

+4378 
20742 

Yet this subject scored very well, ranking 
second in the place value posttest. DB 
answered 19 of the 21 problems correctly, an 
indication that test scores used alone for 
diagnosis may obscure fundamental deficiencies 
in understanding. 



CHAPTER 5 

DISCUSSION AND RECOMMENDATIONS 

This study has focused on two aspects of algorithmic 

learning: the child’s short term processing capacity and 

place value understanding. Section 5.1 discusses these 

in terms of the analysis of data reported in Chapter 4. 

Collected along with pretest/posttest performance 

scores were qualitative data regarding the kinds of 

errors made. The diversity of errors and the evidence 

they provide about children’s mathematical knowledge also 

demand interpretation. Consequently, in Sections 5.2 and 

5.3 interpretive and diagnostic framework for 

children’s errors in elementary mathematics is developed 

in the form of a metaphor I have called “superposition of 

frames". Section 5.4 discusses the educational 

implications of the study and its interpretations. 

Finally, Section 5.5 consists of a brief retrospective 

summary of the study. 

119 



120 

5.1 Interpretation of Results 

How do the results reported in Chapter 4 bear on the 

hypotheses posed at the beginning of this study? Figure 

5.1 below displays mean pretest-posttest difference 

scores, the key measures in the place value and addition 

tests to be discussed in this section. 

FIGURE 5.1 Mean pretest-posttest difference scores. 

* Difference significant at the 5% level when compared to 

pretest/posttest difference of the control group. 
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The first hypothesis - that multicolumn addition 

is learned more effectively when learned first as a 

sequence of procedural steps alone and without initial 

recall of number facts than when the algorithm is learned 

along with required recall of number facts - is 

supported, but not unequivocally, by the pretest-posttest 

difference scores. Both assisted and simulation groups 

had significantly higher scores than the control group in 

the place value posttest, but in the multicolumn addition 

posttest only the assisted group (but not the simulation 

group) had significantly higher scores than the control 

group. Again, only the assisted group had significantly 

higher scores in the transfer and correction problems 

(see Table 4.9 and Table 4.12), which were also pencil- 

on~paper multicolumn addition tests, An anomaly (to be 

explained below) is the finding that although the 

simulation group did not score significantly higher than 

the control group, except for the place value posttest, 

yet it too, like the assisted group, had received on 

screen number-fact assistance. 

The second hypothesis — that simulating the 

movements and quantitative meaning of the symbol 

manipulations by means of a simultaneous display of 

graphic blocks on the computer screen would result xn 

more effective learning of the algorithm by the 

simulation group than either the assisted group or the 
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control group — was not supported by the data. The 

simulation group did not score higher than the assisted 

group in any of the posttests and scored signif icantly 

higher than the control test only in the place value 

posttest. 

An explanation for this apparent anomaly may lie in 

what was claimed in the first hypothesis, for which some 

support was found. If, in fact, the processing capacity 

of a subject in the control group is exceeded by having 

to recall or reconstruct number facts while learning the 

steps of the algorithm, then the reduction in demand made 

on the simulation group by the contribution of on-screen 

number-fact assistance in learning the algorithm is 

replaced by or offset by the greater demand of the 

complex workings of the simulated blocks and the 

accompanying instructions. In effect, the benefit of the 

on-screen assistance is negated by the competing stimuli 

of the simulation displays. This benefit apparently is 

not negated when the simulation group is learning place 

value. Here, the significant increase in place value 

scores of the simulation group may be attributed to the 

of simulation displays and the accompanying instruction. 

The assisted group did not have these displays but still 

scored significantly higher than the control group in the 

place value posttest. This may be attributed to the 

processing capacity made available by on-screen number- 
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fact assistance, consequently a greater possibility of 

attending to and processing instruction on place value. 

Another anomaly to be explained is the contrast in 

performance of the three groups on the addition algorithm 

done with the light pen on the computer screen (which 

will be referred to in later discussion as the computer 

addition) versus the pencil-on-paper addition algorithm. 

There were no significant differences found among the 

three groups on the computer addition, yet the assisted 

group scored significantly higher than either the control 

or simulation groups on the pencil-on-paper addition 

posttest. Ostensibly the two kinds of addition, whether 

on the screen or on paper, have many similarities. They 

use the same symbols; the symbol manipulations for the 

most part are the same; the light pen is closely 

analogous to an ordinary pen, etc. Yet there are 

differences from a pen primarily in that answer numbers 

or carries need to be fetched from the 0-9 array and that 

the subject cannot literally write with the light pen, 

etc. Many subjects did not see the connection between 

the computer addition and pencil-on-paper addition. What 

they learned by doing the computer addition did not 

transfer to pencil-on-paper addition, where they reverted 

to the buggy algorithms seen in their pretests. 
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To summarize: 

First, evidence has been found that learning 

multicolumn addition by means of the software developed 

for this study is more effective when on-screen number- 

fact assistance is provided. Effective learning is 

expressed here in terms of significantly higher pretest- 

posttest difference scores in a pencil-on-paper addition 

test and in a test of place value under standing. The 

general conclusion is that an algorithm is learned more 

effectively if some of the demand on short term memory is 

temporarily lifted, such as the child’s effort to recall 

or reconstruct number facts or the instructor’s 

imposition of explanatory material. 

Second, the version of the software designed to 

enhance place value understanding by simultaneously 

displaying simulated blocks which mimic the symbol 

manipulations of the algorithm, was found to be only 

partially effective. Significantly higher scores 

occurred in place value understanding but not in 

algorithmic performance. 

However, there may be other explanations or 

variables contributing to the differences found in group 

performance and to the anomalous results described above 

Some of these other explanations or variables may be: 
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1. Instruction provided during treatment may not 

have been sufficiently uniform throughout the three 

groups. This is possible since each subject was 

individually instructed; however, there is no overt 

indication of a significant change in instruction over 

the course of the study. If instruction had changed 

significantly, for example, if it had improved, we would 

expect to see scores correlated positively with subjects 

starting instructional treatment at later dates. But 

subjects* starting dates were randomized and there is no 

correlation between posttest scores and the time when 

posttests were given. Of course, since the block 

simulations required explanation, instruction of the 

simulation group had to be different and longer than that 

of the other groups. 

2. Subjects with high memory and/or attention 

skills or those having perceptual-motor difficulties may 

not have been equally distributed among the three groups. 

There was no testing of these skills and abilities, 

however, it is a reasonable assumption that they 

correlate highly with high pretest scores which were 

fairly represented in all three groups. 

3. The amount and quality of assistance that 

subjects may have been getting at home during treatment 

may not be equally distributed among the three groups. 

determined and remains an open question. 
This was not 
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4. The number and intensity of distractions 

occurring in the vicinity of the table where the subjects 

were tested was not controlled. There was no separate or 

private room in which the study might be conducted. The 

only site made available to the researcher was a table in 

the school’s large central open area also used by reading 

groups and the school library. There were frequent 

groups of children and of visitors passing nearby. Some 

children were more easily distracted than others. 

5. There was limited transfer of what was learned 

about the computer-based algorithm to its pencil-on-paper 

implementation, which is the basis of the posttest. 

Strong evidence that this occurred is indicated in an 

examination of the kinds of errors made. (See Section 

4.8.2 Individual Error Types). 

6. High scores in the place value posttest alone do 

not necessarily imply understanding. Responses in this 

test may be rote and a reflection of an ability to recall 

specific instructions and explanations without fully 

understanding the implications of what is recalled. 

Again, an examination of the kinds of errors lends 

support to this effect. 

7. The relatively small sample size, 12 subjects in 

each of 3 groups, may have been insufficient to fully 

bring out other effects that reach statistical 

significance. 
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8. There were only two instructional sessions. One 

or two more sessions might have elicited stronger 

effects, particularly between the assisted and simulation 

groups. 

5.2 Developing a Perspective on the Data 

What accounts for the apparent anomalies in the 

analysis of the data discussed in the preceding section? 

Why did many children revert back to an idiosyncratic, 

buggy performance in the pencil-on-paper posttest and not 

transfer procedural skill acquired on the computer? Why 

did they feel constrained to solve difficult multidigit 

addition problems without rewriting them in vertical 

format (as they had been instructed to do) whenever they 

were presented horizontally? What accounts for the rich 

diversity of error? 

These questions prompted an attempt to understand 

them comprehensively in a descriptive framework or 

extended metaphor, called "superposition of frames". The 

metaphor suggests that a child’s mathematical knowledge 

is initially assimilated into fragmented, isolated frames 

of knowledge; when the child finds appropriate 

"correspondences" between frames, and brings about a 

"superposition of frames", then what initially had been 

knowledge in disarray becomes integrated into a more or 
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less coherent body of procedural and conceptual 

knowledge. 

In this section a perspective will be developed that 

will serve as a basis for this attempt to understand the 

study’s findings, particularly children’s errors and 

misconceptions, many examples of which are reported in 

Chapter 4. 

The data suggest that children’s developing 

knowledge of mathematics may be characterized at least in 

part as: 

1. Incomplete 

2. Fragmented 

3. Unstable 

4. Entrenched or "Set" 

1. Children’s developing knowledge is incomplete. 

This is not to belabor the obvious but to emphasize 

that the exposition of any relatively complex topic 

extends over time. The details of the topic and all its 

ramifications cannot be fully presented to the children 

at one time or even over many times. From a 

constructivist perspective, the child is said to 

assimilate incoming information to existing cognitive 

structures. This is a selective process in which some of 

the information is retained, some not apprehended and 

rejected, and some simply not perceived. There are 

inevitably missing pieces. For example, in this study, 
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many children could not read 3-digit numbers at pretest, 

and few knew the place value decimal structure of the 

numbering system. 

2. Children’s knowledge is fragmented. 

This fragmentation is related to and is the 

counterpart to incomplete knowledge. Many of the missing 

pieces are those that if reviewed and assimilated might 

possibly complete what is retained into a coherent whole. 

Information is retained in bits and pieces that tend to 

be inappropriately applied or combined, especially when a 

child is trying to deal with new or unfamiliar material. 

Example: Trying to read a 3-digit number, 776: 

"One hundred seventy, seventy six" 

Example: Trying to read 308: 

"Three eighty ... three hundred, thirty eight" 

Example: Adding single digits regardless of their 

place value may be viewed as an isolated piece of 

knowledge when applied to the problem (96+7) summed as a 

sequence of single digits: 9+6+7 -> 22 . 

Example: Another child solves the same problem 

(96+7) by counting seven on from 96. The correct answer 

is spoken aloud: "One hundred and three" but written as 

"1300". The one hundred and the three are unintegrated 

pieces clearly embedded in the answer, 

rendition of this number is "1003 . 

Another common 
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Example: The problem (54+62) is presented in 

horizontal format and a subject re-writes the problem in 

vertical format, solving it as follows: 

54 
+62 

11 

Here we can see a number of isolated pieces of knowledge 

being applied (the "pieces" are bracketed below): 

a. [Align the symbols]-but the plus symbol 

( + ) participates in the alignment and displaces the tens 

and units of the addend. 

b. [Add up each column]-the left column is 

added first. A correct solution is still possible .. . 

c. [Stop when the tens and units places in the 

answer have been filled]-in this case both digits of 

the sum (5+6 = 11) are put into the answer, stopping 

further processing. 

Support for the view that children’s knowledge is 

fragmented is found in the literature. DiSessa (1983) 

has noted among novice physics students a similar 

phenomenon which he calls knowledge in pieces 

intuitive physics consists of a rather large number of 

fragments rather than ... integrated structures 

Young and O’Shea (1981) developed a computer simulation 

of children’s written subtraction as a production system 

of if-then rules) and contrast it to the view 
(a system 
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that a skill is a hierarchy of subskills. They said: 

"The production system analysis sees the skill as a more 

anarchic structure, made up from a collection of 

independent pieces, each representing a chunk of codified 

knowledge." 

3. Childrens developing knowledge is unstable. 

The assimilated bits and pieces of knowledge become 

loosely connected into unstable, shifting, trial-and- 

error, idiosyncratic configurations. The following 

example of knowledge instability is a set of three 

multicolumn addition problems done by the (same!) child 

during one session: 

Example: 13+46 -> 23 

The 46 is broken into digits: (13+4+6 -> 23) 

Example: 54+62 -> 96 

The 54 is broken into digits (5+4 -> 9); 

the 6 of the 62 is appended to the 9, and 

the 2 is ignored. 

Example: 84+67 10000 

The child decides the sum is some 

indefinitely large number. 

Here is another set of problems solved by another child 

during one session: 
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Example: 26+38 -> 55 The problem was rewritten 

and solved as: 
1 

26 
+38 

5/1 
5 

Addition began in the standard way, adding the units 

column, entering 4 into the units answer place, then 

putting the carry back into the units column, recomputing 

the units column, and changing the 4 to 5. Finally the 

tens column was summed. 

Example: 54+62 -> 16 Subject rewrote and 

solved this as: 
54 

+62 
16 

The carry from the tens was ignored or incorporated into 

the one in the answer. (Did the subject think of this as 

a “no-carry" problem?) 

Example: 84+67 -> 1411 Subject rewrote this as*. 

84 
+67 
1411 

This kind of instability, in which similar problems in 

the same paper are solved in different ways, are reported 

by most observers of children’s errors (Brown & Burton, 

1978; Brown & VanLehn, 1980). 
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4. Children’s knowledge becomes entrenched or "set" 

In contrast to the instability described above, 

children’s knowledge also becomes entrenched into one of 

several alternative modes or approaches available to the 

child. This is what is described in the literature as 

"set effect": 

... problem solvers become biased by their 
experiences to prefer certain problem solving 
operators. (Anderson, 1987) 

... mental walls which block the problem solver 
from correctly perceiving a problem or 
conceiving its solution. (Adams, 1984) 

. . . problem solving set-a tendency to 
repeat a solution process that has been 
previously successful. (Glass & Holyoak, 1986) 

I shall use the term "set" in a broad sense to refer not 

only to a general tendency to persist in some mode of 

operation but also to specific buggy procedures. 

Here is an example of set in the broader sense. All 

two-digit problems in pretest and posttest were presented 

in horizontal format. Instruction during treatment was 

explicit that the problems be rewritten in vertical 

format. Then just as the posttest was about to begin, 

each subject was instructed, "Do these work sheet 

problems any way you want to. You can do them the way 

you did them on the computer, putting the numbers up and 

down. Or you can do them the way you learned to do them 

in your classroom. Any way you want to." Nevertheless, 

some children persisted in trying to solve the problems 
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in horizontal format, which is difficult when carries are 

involved, and they often reverted to making the same kind 

of errors they had made in pretest. After the subject 

had completed all the posttests, the examiner returned to 

the problems done incorrectly in horizontal format and 

requested, "Try to do these again. Write them up and 

down and do them just the way you did them on the 

computer." Eight children were prompted this way and 

responded by rewriting the problem vertically. Some were 

able to obtain correct answers without intervention. One 

child even reproduced the 0-9 digit array that had been 

part of the screen display. Another when asked, “Why 

didn’t you write them down ’up and down’ just as you had 

done on the computer?", replied, "Because they were 

[given] this way" (gesturing horizontally across the 

paper). The children were "set" into solving problems in 

horizontal format when problems were presented in that 

format. 

The chaotic state of affairs depicted in this 

section makes one wonder how learning some coherent body 

of mathematical knowledge is at all possible. It does 

happen, however, but for many children, laboriously. By 

the end of the third grade the great majority have 

mastered the multicolumn addition algorithm, although 

place value understanding still eludes many. 
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5.3 Superposition of Frames 

Having developed a perspective on children’s errors, 

the following quotation sets the stage further for an 

approach towards understanding this disarray of 

mathematical knowledge. Resnick & Ford (1981) have 

stated a basic dilemma of mathematics education which is 

expressed today as a distinction between procedural and 

conceptual knowledge: 

[Brownell said that] without meaningful instruction 

to point out the interrelationships, drill would 
encourage students to view mathematics as a mass of 

unrelated items and independent facts. ... To 
Thorndike, math learning consisted of a collection 

of bonds; to Brownell, it was an integrated set of 

principles and patterns. The two definitions in 

turn seemed to call for very different methods of 

teaching, either drill or meaningful instruction. 
Today most educators acknowledge the need for both 

types of learning experiences, but how they should 

be integrated is still not clear. (Resnick & Ford, 

1981, p.19) (emphasis mine) 

I shall use a metaphor, "superposition of frames" as 

a descriptive framework for addressing these issues and 

the questions raised by the study’s findings. The 

metaphor draws heavily on the cognitive concepts of 

Piaget: assimilation, accommodation, equilibration 

(Piaget & Inhelder, 1969); and of Anderson (1983): 

compilation processes in production systems; and on those 

of the many cognitive psychologists in memory research 

(see the review by Baddeley, 1986). It also draws on the 

work of the many mathematics educators who are working in 

a constructivist tradition, particularly those exploring 
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methods linking procedural and conceptual knowledge 

(Carpenter & Moser, 1982) and those trying to help 

children understand abstractions by mapping concrete 

experiences onto abstract symbols (Resnick & Omanson, 

1987; Kamii, 1985; Fuson, 1986). It makes no claim to be 

a theory of cognitive processes. It is a descriptive and 

interpretive framework, a heuristic metaphor — a 

metaphor whose terms and concepts are drawn from 

cognitive psychology, and a heuristic suggesting the ways 

information is processed by children and suggesting 

instructional possibilities. 

This superposition-of-frames metaphor takes its 

departure from and is grounded in the characterizations 

of children’s errors outlined in the previous section. A 

frame, as defined here, is a frame (or schema) not only 

in the usual large sense, "a large complex unit of 

knowledge that encodes typical properties of instances of 

general categories" (Minsky, 1975; Anderson, 1985), that 

is, a coherent body of knowledge, but also in the small 

sense, a mere isolated fragment of knowledge, as little 

as some obscure remembered detail. I have chosen the 

term "frame" rather than "schema" since it connotes 

boundaries and separation of knowledge, delineating a 

content of elements and/or procedures and/or 

relationships. It is as if this image captures the 
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initially incomplete, fragmented character of children’s 

knowledge. 

Frames thus range in scope from the trivial to the 

global. We may imagine a basic attribute to be a 

tendency to remain as either isolated, separate modules 

of knowledge or clustered into associative chains - 

unless a second attribute is brought into play. The 

second attribute is the presence of ''correspondences" . A 

frame encloses elements and procedures, of which one or 

more correspond to (can be mapped on to) other elements 

and procedures enclosed by some other frame. If a 

learner matches up a "correspondence between two frames, 

then the two frames merge into a single composite frame, 

a “superposition of frames . A more (or less) coherent 

but integrated module of knowledge results. 

What are these "correspondences"? They range from 

the features of a pair of analogs that are identified 

vaguely as "the same" to mathematical expressions 

identified to be precisely equivalent. Ultimately they 

rest on intuition: "’This’ is the ’Same’ as ’That’". For 

example, correspondences and their manner of 

correspondence may be seen between the following pairs of 

frames: 
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Spatial: 

[An addition problem formatted horizontally] 

"is the same as" 

[An addition problem formatted vertically] 

Analogous: 

[Manipulations with physical base-ten blocks] 

"is the same as" 

[Manipulations with numeric symbols] 

Logical *- 

[10 + 7 -> 17] 

"is the same as" 

[10 + 1 + 1 + 1 + 1 + 1 + 1 + 1 -> IT] 

We have seen children for whom these pairs of frames are 

not in correspondence but remain as isolated and set 

frames of knowledge. 

So far described, the superposition-of-frames 

metaphor captures the relatively incomplete, fragmented, 

and set character of children’s errors — but what of 

unstable errors? When frames are superposed, we may 

imagine the frames merged into a single frame containing 

conflicting, incompatible elements which displace one 

another at different times. For example, assume a child 

has just merged the two frames'- 

[ Addition problem formatted horizontally ] 

"is the same as” 

[ Addition problem formatted vertically ]. 
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If the child is being taught the standard algorithm which 

requires right-to-left column addition, this brings into 

one frame the conflicting procedures: 

[in horizontal format, add left-to-right] 

versus 

[in vertical format, add right to left ]. 

Thus we see children adding columns in either direction, 

changeably; the error is unstable. If a child settles 

firmly on one choice, [add left-to-right], then the error 

becomes ,,sef*. Right-to-left processing also conflicts 

with standard reading patterns as well. 

The educational task then is to help children find 

correspondences between their frames of mathematical 

knowledge, to help them resolve conflicts between 

elements within a frame, and to help them overcome set . 

The next section deals with such implications of 

superposition-of-frames for classroom instruction. 

5.4 Educational Implications 

Although superposition-of-frames is but a metaphor 

and an application of concepts already current in 

psychology and education, nevertheless, it may have 

practical value. That is, it may suggest likely outcomes 

of instruction in elementary mathematics, and it may have 

the potential of enhancing instruction. Kilpatrick 

(1985) has endorsed this sort of approach in an address 
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about reflection and recursion as metaphors in 

mathematics education: 

This paper has been concerned about metaphor because 
in my view, all our discussion about how children 
learn mathematics and teachers teach mathematics 
ultimately rests on metaphorical constructions ... 
(Kilpatrick, 1985) 

Sections 5.4.1, 5.4.2, 5.4.3 will discuss 

educational implications for each of the three major 

phases of instruction, respectively: presentation of new 

material, review of material, and remediation. Section 

5.4.4 discusses the general lack of understanding of 

place value in the sample of 36 children. Section 5.4.5 

lists difficulties associated with manipulatives and 

suggests an alternative form of manipulative other than 

the standard base-ten blocks. Finally, Section 5.4.6 

continues the procedural/conceptual debate and attempts a 

resolution. 

5.4.1 Presentation of New Material 

The metaphor suggests that presentation of new 

material, whether in the form of chalkboard exposition, 

graphic demonstrations, concrete models or manipulatives, 

and regardless of its importance or the care with which 

it is prepared and presented, becomes fragmented 

knowledge. Statements of principles and relationships 

may have no higher priority in the young learner’s mind 

over even superficial details-all are being 
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incompletely assimilated into isolated frames in pieces 

or in associated chains. Behaviorist programs, with 

their skills hierarchies and drill and practice, and the 

constructivist programs with their indirect, activity- 

oriented, discovery approaches, both run up against this 

phenomenon. In short, the new material as it is being 

experienced and retained by the learner will be in 

disarray: incomplete, fragmented, unstable, and set. 

5.4.2 Review of Material 

Review of the material, whether in the form of 

drill-and—practice worksheets or in retelling, tends to 

suffer the same fate as the new material itself. The 

difference lies in a renewed opportunity to fill in 

missing pieces and redress the disarray of retained 

information. Unfortunately, this progresses haphazardly. 

If they have not yet decided to abandon the effort, 

children are generally trying to "make sense" out of the 

material, at least when they are attending, making 

connections (superpositioning frames) on their own 

spontaneously or under guidance, but some frames of 

knowledge may become more firmly set and remain isolated; 

others may merge inappropriately and harbor bugs in the 

making. 

Workbooks especially contribute to this malaise. 

The workbook (Eicholz et al., 1985) used by the subjects 
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in their classrooms is probably typical of its kind. Its 

many exercises are presented in carefully graded steps, 

embellished with appealing graphics, quality printing, 

and story situations. Although they provide very 

necessary practice, workbooks bear at least one serious 

liability. Each page presents a single type of problem 

sind is likely to be framed by the child as an isolated 

experience. Once she figures out or decides on or 

invents or is told the answer to the first question or 

two, she will fill in the rest of the blanks on a page in 

a patterned manner. Drill and practice of a single type 

of problem promotes development of certain desired 

automatic skills but leaves knowledge fragmented and 

induces ,'set,,. 

The Eicholtz workbook consisted almost entirely of 

"fill-in-the-blank"-type problems. Only a dozen pages 

out of a total of 336 pages called on the child to fill 

in more than one blank per problem. Only one page was 

devoted to practicing rewriting addition problems 

presented horizontally into vertical format ("Copy and 

add."). Almost invariably, problems were presented in 

vertical format. One consequence of this was the many 

instances of misaligned digits when the children wrote 

out whole problems in pretest/posttest. Place value 

exercises were presented as diagrams of bundled and loose 

sticks, with instructions, "Count the sticks. Ring ten. 
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Write the numbers" and "Trade 1 ten for 10 ones. Write 

the numbers." 

If workbooks are to continue in the classroom — 

some would abolish them (Kamii, 1985) — worksheets 

should include samplings of older as well as newer 

material on the same page. This would counter tendencies 

towards "set" and would give the teacher an occasion to 

help children achieve a desired superposition of frames. 

It also helps reveal, for diagnostic and remediation 

purposes, frame instabilities, fragmentations, and 

missing pieces. For example, a review page that 

contained multicolumn addition problems along with 

related questions about place value increases the 

possibility that they will be perceived as relevant to 

each other and not isolated pieces of mathematics. 

Review, in the form of repeated exposition and 

drill-and-practice (including worksheets), has important 

benefits filling in missing pieces of knowledge and 

automating certain desired skills, but it also bears the 

liabilities of entrenching buggy procedures and other 

knowledge disarray (unless closely monitored); of 

promoting a distaste for mathematics as an elaborate 

exercise in recall; and of impoverishing a capacity for 

reasoning and problem solving. 
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5.4.3 Remediation 

When review does not suffice to redress a child’s 

fragmented, unstable, buggy knowledge, we turn to 

remediation. If the remediation takes the form of a more 

vigorous review (extensive drill and practice) or an 

elaboration of detail, we may be contributing to more of 

the same disarray and raising an anxious and resistant 

defensiveness. Instead, if we were to pose questions 

that challenged the child’s intuitions about what is true 

and what is not true, we might induce “frame conflict", 

or in Piagetian terms, disequilibrium, and bring about a 

repositioning of frames into desired configurations to 

achieve correct solutions to problems. The following is 

a detailed example of this approach to remediation- 

Imagine a child with a carry-in-answer bug, such as: 

19 
+23 

312 

The child is then presented with two problems and solves 

them as follows: 

Problem B 

20 
+ 3 

23 

Problem A 

19 
+ 4 

113 

To each problem we imagine, metaphorically, the child 

bringing into working memory a 
a frame of knowledge which 

is applied to each problem. The frame and its elements 

are imagined to be: 
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[<Add up a column> <place sum in answer> <righ-t-to-lef-t> ] 

The element <place sum in answer> allows both 1-digit and 

2-digit sums to be placed as a partial answer. Now the 

instructor, intending to induce “frame conflict" or 

disequilibrium, has the child retrieve a different but 

relevant frame: 

The instructor, covering up Problem A, asks, 'How 

much is nineteen plus four?" The child responds 

(probably by counting up): "Twenty three". The 

instructor: "How then do you explain your different 

answer here?" (uncovers Problem A with its answer, 

112). 

We imagine the child is aware that she has applied an 

algorithm-frame and a counting-frame to the same problem 

but may simply shrug off the different answers. The 

instructor, by implying or simply stating that the 

answers must be the same — this is also another frame 

is inducing the child to superpose isolated frames into 

one frame (the knowledge to solve a multicolumn addition 

problem) with conflicting elements. The conflicting 

elements in the frames-to-be-merged are addition-by- 

(buggy)algorithm and addition-by-counting. If the child 

becomes aware of the conflict, that the two elements lead 

to but then must not lead to different results, she may 

become uncertain about which element should be applied to 

the problem. She may then become amenable to a 
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resolution of the conflict. Resolving the conflict 

should take the form of simple numeric reasoning and an 

appeal to intuition of what is true/not true, as in the 

following suggested comparison offered to the child who 

is also asked to discuss it: 

Compare Problems A and B 

19 <-> 20 

+ 4 <-> + 3 
_ o*>oo - 

112 <-> 23 

(Note that this also is a superposition of frames with 

conflicting elements.) The instructor asks the child to 

compare the two problems or, if necessary, prompts- 

"Twenty is one more than nineteen. Three is one less 

than four. What do you think? Should the two sums 

(answers) be one more or one less or the same or 

different from each other? Can you tell me why?" If the 

child can be brought to see clearly that the sums must be 

the same, then the process of dislodging the bug by 

has begun. If a second-grader has not already 

been challenged to reason about simple number relations, 

this may be too subtle or too complex. If such reasoning 

(and especially verbalising in reasoning) is not started 

as early as the child enters school, we are excluding an 

essential aspect of learning mathematics. For example. 

"Two plus three is six. True or not true? 

think that?" Or, “288 is greater than 522. 

-true? ... Why do you think that?" 

.. Why do you 

True or not 
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A major mode of instruction in elementary 

mathematics should be efforts to challenge logic 

intuitions and induce "frame conflict” (disequilibrium) 

by means of true/not-true-and-explain games described 

above. Some of the time now spent on drill-and-practice 

should be spent on this reasoning form of review. 

There is a need to challenge children’s logic 

intuitions in order to cultivate in children a sense of 

true/not—true, a sensitivity to the analytic, syntactic 

aspects of both language and mathematics, a sensitivity 

to what situations are contradictory and ambiguous. This 

is essential for an integration of procedural and 

conceptual knowledge. 

5.4.4 Place Value 

The 36 second-graders in this study were ill- 

prepared to understand the workings of multicolumn 

addition. Their combined score on place value 

understanding at pretest was only 30%, increasing 

modestly to 64% at posttest. Many simply recalled 

phrases they had heard during instructional treatment. 

Even those who scored well at posttest (5 out of the 10 

subjects who scored 80% or better) showed signs of not 

understanding place value. For example, several of them 
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misaligned digits (5+68 -> 118), and one, quoted earlier 

said: "You cam put the ’one’ (the carry) anywhere". 

Scores on place value tests such as those in the 

pretest/posttests in this study are only crude measures 

of understanding. Children will parrot back phrases and 

explamations heard, but without understanding. More 

probing questions are needed. Does a child understand 

place value who cam answer correctly the question, "How 

many tens in 658?" by recalling a formula that the 

columns are labeled "units, tens, hundreds" — but who 

cannot answer the question, "What three numbers add up 

easily to six hundred [pause] fifty [pause] eight? 

In a similar finding, Cauley (1988) in a study of 

borrowing in subtraction in procedurally proficient 

children found that they have a poor grasp of place value 

conventions. She suggested that an understanding of the 

addition composition of number is necessary to fully 

understand place value and borrowing. 

A typical adult’s exposition of place value is not 

likely to be understood by anyone who does not already 

understand place value. For example, "... seven tens 

plus eight tens add up to fifteen tens. Fifteen tens are 

made up of ten tens and five tens. We place the -five’ 

of the fifteen in the answer place — this ’five’ stands 

for five tens or fifty. The ten tens remaining from the 

fifteen is another name for one hundred. So we place a 
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’one* up here into the hundreds column. This ’one’ 

stands for ten tens or one one-hundred ... etc." 

We should not be surprised when teachers opt for a 

simpler symbol manipulating mode: ”... seven plus eight 

equals fifteen. Put the ’five’ here and carry the ’one’ 

up here ... etc.“ 

Another finding in this study bearing on place value 

is that only 7 out of the 36 second-graders (19%) at 

pretest (midyear) were able to count by hundreds. When 

prompted "100, 200 ..." they did so easily, continuing on 

by themselves, but in a way analogous to one apple, two 

apples, etc.", an indication that they are more likely to 

see the decimal structure of the number system as a 

verbal pattern and not as quantitative groupings. 

5.4.5 Alternative Algorithms 

This gap between understanding of place value and 

algorithmic skill in the early grades widens as other 

arithmetic algorithms are learned. Kamii (1985) 

recommends putting off the standard algorithms for 

addition and subtraction to the third grade; she says 

they should be replaced in the second grade with less 

efficient algorithms that make the place value aspects of 

multicolumn arithmetic more explicit. 

The following are examples of such alternative 

algorithms that do make place value more explicit: 
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1. Left-to-right column addition with partial sums. 

75 
+48 

110 
+ 13 

123 

Kamii (1985) found second-graders able to do 

this verbally proceeding naturally from the left, adding 

tens first: "Seventy plus forty is one hundred ten . . . 

etc." She also claims that the school algorithm, adding 

columns right-to-left, conflicts with the developing 

understanding of number as a "hierarchical inclusion of a 

system of ones within a system of tens”. Also from a 

practical standpoint, it is important that children see 

that the highest place is correct. 

2. Decomposition of addends. Variant of (1) above. 

75 > 70 + 5 

+48 > 40 + 8 
HO +13 —> (100+10) +(10+3) —> 100+( 10+10)+3 —> 

100+20+3 -> 123 

3. Single digit column addition in parallel. 

Modelled by Peelle (1980), this algorithm is a 

natural extension of single column addition and it 

explains what is labelled an error in the standard 

algorithm, the "carry-in-answer" error. 

75 

+48 
7I 5 

> + 4J 8 
11 13 

(11+1) 3 

12 3 

1 1 2 3 

1 123 
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5.4.6 Manipulatives 

Several researchers (Kamii, 1985; Fuson, 1986; 

Resnick & Omanson, 1987) believe understanding of place 

value is best achieved through the use of manipulatives. 

I have followed their lead in this study for the 

simulation group, where operations on base-ten blocks are 

closely mapped on to or correspond to operations with 

symbols, and vice versa. However, there are some 

cautions and controversies over the use of manipulatives. 

The display of blocks on the computer screen was 

intended to substitute for physical manipulatives 

concrete embodiments of their abstract, symbolic 

counterparts (numbers). The manipulations of the screen 

blocks matched the symbol manipulations of the algorithm. 

Of course, the screen blocks were not concrete , could 

not be physically handled, but were themselves abstract 

symbols. This "mapping" instruction did not prove to be 

successful with the children, most of whom did not see 

the point of it. A few complained the display was a 

bother. Their attention was focused almost entirely on 

the novelty of moving symbols around the screen with the 

light-pen. 

Manipulatives and other concrete representations 

continue to appeal to educators as an effective way to 

bring "meaning" into mathematics. The frames metaphor 

would suggest this would be a complex undertaking for 
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children; although manipulatives offer a possibility of 

conveying meaning, they also inject many possibilities 

for the kinds of knowledge disarray described above. Are 

the children learning the abstractions of place value? 

Are they learning two separate activities? Or are they 

learning a single complex algorithm, the blocks-symbols 

algorithm, without understanding place value? 

Hughes (1986) discusses (and superposition-of-frames 

predicts) how children "translated" between concrete 

blocks and symbolic subtraction: 

The children observed here seemed to be only dimly 

aware they were dealing with two different 

representations of the same problem and that the two 

answers should agree. Rather they seemed to regard 

the written procedure of decomposition and the 

concrete manipulation of material as being two 

fundamentally unrelated activities. (Hughes, 1986, 

p.120) 

Administrative problems in using manipulatives are 

complex. Suydam & Higgins (1978) caution that for 

manipulatives to be effective they should be consistent 

with curriculum goals, used frequently, with other aids 

such as diagrams and films, in the context of discovery 

learning, with the recording of results symbolically, and 

in the form of simple materials. 

Jackson (1978) described a number of additudmal 

factors that have operated against a more widespread use 

of manipulatives: problems of control and management in 

the classroom, pressure to complete curriculum goals 
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(where learning to manipulate symbols takes precedence 

over understanding), inertial resistance towards giving 

up worksheet assignments, attitudes that manipulatives 

are "kid stuff", and reaction to an overzealous 

acceptance of manipulatives as an educational panacea. 

A more fundamental difficulty than such 

administrative or additudinal difficulties in modelling 

symbol systems is that there are always some incompatible 

or irrelevant features between analogs. In particular, 

the base-ten blocks or bundles of objects used to 

represent decade structure differ from multidigit numbers 

in fundamental ways, perceptually and structurally. 

1. The relation between blocks and numbers is 

indirect. Groupings of blocks can represent the same 

total quantity as a multidigit number without 

corresponding to the digits of that number. For example, 

in base-ten blocks, 12 hundreds plus 13 tens plus 14 

units represent the total quantity 1344 but not the 

digits of that number. 

2. Physical placement is irrelevant to the 

total quantity represented by blocks. Blocks can be 

positioned in any arrangement without changing their 

total value, but not digits. 

3. Zero and negative quantities are easily 

represented symbolically, but not physically. Such 

numbers appeared late in human history because physical 
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•things are either physically present or not present, and 

only natural positive numbers were permitted. For 

example, Roman numerals have no symbol for zero and no 

place value. The numerals themselves are tick marks 

corresponding to physical objects or groups of other 

numerals (e.g., X <—> W <—> IIIIIIIIII). There is no 

physical way of representing the absence of an object, 

although we do it today symbolically with zero. 

All of these differences have to be rationalized 

before children are convinced (rather than coerced) that 

the blocks system "is the same as" the number system. 

The bundles of sticks or base-ten blocks are a much 

closer analog to the Roman numeral system, which was 

abandoned long ago, and the leap to multidigit numbers 

may be too great to be made in one step by many children. 

Here I suggest two intermediate steps or stages to ease 

the transition. All four stages are described below: 

1. Counting loose objects or blocks, bundling 

them in groups of tens and hundreds. These are the 

standard base-ten manipulatives with the characteristics 

described above. For many children counting is solely a 

sequential naming process and not yet a hierarchical 

system of ones nested in tens. 

2. Play money consisting of coin-like chips, 

all of the same size and diameter but differing only in 

color and value: Green chips have a value of 100; silver 
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chips, a value of 10; and copper-colored chips, each 

having a value of 1. The play money is used to "buy" or 

change for the loose and bundled objects. It has 

essentially the same characteristics as those objects, 

except that here children learn that single symbols can 

represent groups of objects. The children who have not 

yet mastered counting out money would also benefit by 

this game. Real money or simulated money should not be 

used and would not be appropriate for the next stage 

since real money values are signalled not only by color 

but also by size and material. 

3. A new rule is applied to the coin-like 

chips of play money- only the least number of coins may 

be used to buy the objects. This is managed by using 

place-value trays (Figure 5.2), each capable of holding 

only 9 coins of one color in the following arrangement: 

Hundreds Tens Singles (Units) 

Figure 5.2 Place value trays 

This arrangement emulates the counting boxes, trays, or 

abaci in use in medieval times prior to the introduction 

of the hindu-arabic numeration with sero as a new symbol. 
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The zero represents the absence of coins in the tray. 

The tray acts as a place value holder. 

4. The count of the coins in each tray can. now 

be written as a digit under each tray. The meaning of 

the digits may now be seen as a total value determined by 

the sum of the number of hundreds, tens, and singles in 

their respective trays. This is a much closer analog to 

multidigit numbers than bundles or blocks. As a further 

next step the trays may also be used as a quasi-abacus, 

as a near analog emulating the operations of multicolumn 

addition and subtraction. Processing might start left- 

to-right, as Kamii recommended above, with back-trading. 

Once the basic idea is learned, then the right-to-left 

algorithm can be introduced as minimizing back—trading. 

Note the transitions from one step to another are a 

superposition of frames with few but distinct 

correspondences facilitating the transitions. 

5.4.7 Procedural vs Conceptual 

The focus of -this study has been on algorithmic 

learning and would seem to put it on one side of the 

debate over the relative emphasis placed on procedural 

versus conceptual knowledge in mathematics education. 

However, there is an apparent paradox here; in making a 

procedural/conceptual distinction we may be creating a 
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spurious dichotomy. Thus on closer examination, 

conceptual knowledge can be made to merge into procedural 

knowledge, as the following example shows. Having a 

conceptual knowledge of the addition algorithm implies an 

understanding of both the place value structure of the 

decimal numbering system and the structure of arithmetic 

(in particular, its associative and commutative laws). 

The meaning of these structures is itself "algorithmic", 

that is, syntactic, expressed in terms of elements, 

operators, and rules of combination like an algorithm. 

An “understanding" or proof of some mathematical 

relationship always emerges in the end as an exercise in 

syntax, sounding very much like an algorithm. Any given 

procedure has as its logical underpinning other 

procedures from which the given procedure is derived. 

Underpinning those are still others, until we encounter 

the axioms of the entire system, at which point our 

“understanding" stops. The axioms are ""rote", accepted 

by convention or by intuition. Then one could argue that 

what children are lacking is not "conceptual"" knowledge 

of place value but procedural knowledge of the workings 

of place value and of commutativity and associativity. 

The set of transformations (56+78) <-> (50+6+70+8) <-> 

(50+70+6+8) <-> (120+14) <-> (120+10+4) <-> (130+4) <-> 

(134) is an algorithm composed of algorithms. Where are 

"•understanding" and conceptual knowledge now? However, 
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this does not resolve the debate. Mathematics is not 

solely a set of procedures. One does not become an 

expert in electronics, for example, only by building 

circuits from kits, following directions step-by-step. 

However, the debate continues with a shift in 

terminology: domain-specific knowledge vs. heuristics. 

Much of the emphasis on problem solving and 
heuristics comes from observations that students who 
have learned a new principle are often unable to use 
it intelligently to solve problems. The assumption 
is made that they lack suitable general problem 
solving strategies ... However, this failure could 
be explained by a lack of suitable schemas or rule 
automation . . . Most available evidence suggests that 
superior problem solving skill does not derive from 
superior heuristics but from domain-specific skill. 
(Owen & Sweller, 1989) 

The debate becomes altogether muddled if we ask if 

executing a procedure can be entirely concept-free, or if 

we consider where the notion of domain-specific 

heuristics fits in. When does a heuristic stop being a 

domain-specific detail and become a general heuristic or 

a problem solving strategy? 

We are all groping towards a resolution of this 

debate. In elementary mathematics there is much that is 

rote and procedure-driven to be learned: the decimal 

number system itself, notation and its often 

inconsistent and ambiguous conventions (Iverson, 1972), 

the descriptive vocabulary needed to talk about 

mathematics, and all the algorithms in arithmetic that 

provide children with practical tools. Behavionsts, 
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however, underestimate the extent to which emphasis on 

skills acquisition and drill and practice promotes "set", 

entrenches bugs, and fosters a preoccupation with 

memorized sequences. Constructivists, emphasizing 

discovery methods and the unifying concepts that impart 

power and beauty to abstract structures, underestimate 

the need to automate skills, the time and effort needed 

to diagnose and remediate knowledge in disarray, and the 

extent to which children discover and embrace buggy 

methods unless closely monitored. 

The superposition—of-frames metaphor being proposed 

here, with its description of likely outcomes of 

instruction and the tactics it suggests for instruction, 

may provide a means of integrating these two kinds of 

instruction. 

5.5 Responses to General Questions 

We are now in a better position to respond to the 

general questions raised in the introductory chapter: 

May understanding and the ability to manipulate 

symbols proceed independently of one another, 

at least for a short time? 

Yes. Initially both are likely to be framed as 

independent frames of knowledge, until the learner 

matches up correspondences and brings about a 

superposition of frames and an integration of both. The 
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significantly better performance of the assisted group in 

this study suggests that separation initially is also 

necessary to avoid overloading processing capacity. 

To what extent does having an understanding of 

mathematical principles facilitate learning an 
algorithm? Conversely, does the learning of an 

algorithm facilitate understanding mathematical 
principles? 

Algorithms/principles are terms equivalent to the terms 

procedural/conceptual discussed in Section 5.4.7 above. 

That discussion applies here as well. 

Algorithms/principles can be mutually facilitating — 

when algorithms may be seen as instances of applied 

principles, and conversely, when principles may be seen 

as (abstracted from) correspondences between instances of 

algorithms. 

What aspects of an algorithm tend to emerge as 

buggy procedures? 

When the errors of the children in this study are 

examined, it seems that hardly any aspect of the 

algorithm escapes being converted into some hind of bug. 

5.6 Suggestions for Further Research 

The methods, findings, and interpretations of data 

in this study suggest further research in the area of 

learning algorithms and acquiring place value 
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understanding. The following are suggestions in the form 

of research questions: 

1. Variants of the current study. 

a) Would stronger effects emerge if the number of 

instructional sessions were increased? 

b) If a computer addition problem were alternated 

with an equivalent pencil-on-paper problem, 

would this closer juxtaposition of symbol 

systems facilitate transfer between the two 

media and result in more effective learning of 

the algorithm? 

c) Would redesigning the screen displays improve 

learning? For example, the placement of the 

“memory box", or placing the tableau of numbers 

on the right side of the screen. The 

arrangement and sequencing of displays are not 

necessarily optimum. 

d) Would allowing the learner to interact with the 

block displays with the light pen, instead 

being a passive viewer, improve learning? 

Allow the learner to manipulate the simulated 

blocks with the light pen. 

2. Children’s notion of zero. When do children go beyond 

"Zero is nothing" and understand its role as a place 

number of questions about 
value holder? Pose a 
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numbers containing zero, of children spanning grades 

2 to 6. 

3. Place value. 

a) Would teaching the less efficient but more 

explicit algorithms described in Section 5.4.4 

(Place value) enhance understanding of place 

value? 

b) Would the transitional stages in manipulatives 

involving uniformly sized play money and the 

place value trays described in Section 5.4.5 

(Manipulatives) facilitate understanding of 

place value? 

4. The superposition-of-frames metaphor. Does the 

superposition-of-frames metaphor have any value in 

classroom instruction? Develop a sequence of 

questions that induce "frame conflict which is 

subsequently resolved by reasoning quantitatively. 

(See Section 5.4.3) 

5. Alternative addition algorithms. Would the learning 

of alternative addition algorithms described in 

Section 5.4.5 enhance place value understanding? 

6. Subtraction. Would the methods used in this study of 

the addition algorithm apply to a study of the 

standard school algorithm for subtraction? 
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5.7 Summary and Conclusions 

1. Evidence has been found that learning 

multicolumn addition by means of software developed for 

this study is more effective when on-screen number-fact 

assistance is provided. The general conclusion is that 

an algorithm is learned more effectively if some of the 

demand on short term memory is lifted temporarily, such 

as the child’s effort to recall or reconstruct number- 

facts or the instructor’s imposition of explanatory 

material. 

2. The version of the software designed to enhance 

place value understanding by simultaneously displaying 

simulated blocks which represent the symbol manipulations 

of the algorithm, was found to be only partially 

effective. This finding is consistent with although 

weaker than (1) above. The simulation displays and 

instructor’s explanations of place value were possibly an 

additional load on the child’s limited processing 

capacity. Consequently, significantly higher scores 

occurred in place value understanding but not in 

algorithmic performance. 

3. A metaphor has been proposed to account for 

anomalies in the findings and to understand the rich 

diversity of errors displayed by the children in 

multidigit addition. The metaphor, called "superposition 

of frames", suggests that children’s mathematical 
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knowledge is fragmented into isolated frames of 

knowledge. When a child finds appropriate 

"correspondences" between frames, and brings about a 

"superposition of frames", what had been knowledge in 

disarray becomes integrated into a coherent body of 

procedural and conceptual knowledge. The metaphor may 

have value in providing a parsimonious description of the 

likely outcomes of instruction and in suggesting 

instructional tactics for helping children to integrate 

their mathematical knowledge. 

4. Multicolumn addition and subtraction provide 

rich opportunities for educational research. A number of 

suggestions were made in this study for further research, 

particularly in the use of computers and concrete 

manipulatives in learning algorithms and understanding 

place value. 
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APPENDIX A 

FORMATION OF CONTROL AND TREATMENT GROUPS 

To form three equalized groups which would be 

randomly assigned as control or one of the two treatment 

groups, subjects were first scored in the pretest with 

one point for each problem or question correctly 

answered. 

A composite score was then derived by assigning 1 

point to categories of the pretests for correctly 

answering a minimum number of problems in the category, 

as set forth in Table A.l below: 

TABLE A.l Pretest Composite Score 

Min Score to obtain 1 Point 

A. Basic Skills 
1. Counting 4 correct out of 6 
2. One-digit addition 11 correct out of 15 
3. Read 2-, 3-digit numbers 3 correct out of 3 
4. Counting money 3 correct out of 4 

B. Place Value 
5. What does the digit mean? 
6. Which number is larger? 
7. How many tens /hundreds? 

8. Name tens 
9. Same digit in diff. pos. 

10. Decomposition 
11. Composition 
12. Number proximity (1-digit) 
13. Number proximity (3-digit) 

4 correct out of 8 
2 correct out of 2 
3 correct out of 3 
2 correct out of 2 
1 correct out of 1 
1 correct out of 1 
1 correct out of 1 
1 correct out of 1 
1 correct out of 1 

C. Multicolumn Addition 
14. to 21. Eight problems, one point each 

Maximum composite score 
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The composite score for each subject was then 

ranked. Three groups were formed by an “equalizing 

method" by assigning high and low rankings to each group. 

Sex and classroom were also equalized. The intended 

result was to form three statistically comparable groups 

which were randomly assigned as control, assisted, and 

simulation groups. The random assignment was performed 

by writing the names of the groups on separate slips of 

paper, mixing up the slips, and assigning each equalized 

group to each slip as it was picked in turn. 

To confirm the validity of this particular method of 

weighting the pretest scores, alternative weighting 

methods were applied to the three groups and compared 

statistically by means of a one-way analysis of variance. 

No significant differences were found among any of the 

five scoring methods. See Table A. 2 on the following 

page. 
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Evaluation of Pretest Weighting Methods 

Group: Control Assisted Simulation p-value 

Method 1 (Maximum score: 22) 932 
Mean 8.7 9.2 8.8 
SD 4.7 2.3 3.1 

Method 2 (Maximum score: 57) .913 
Mean 30.7 32.0 31.7 
SD 10.0 6.2 7.2 

Method 3 (Maximum score: 100%) .966 
Mean 47.0% 48.4% 47.2% 
SD 16.9 11.4 12.6 

Method 4 (Maximum score: 25) .988 
Mean 10.0 10.2 9.9 
SD 4.6 3.2 3.3 

Method 5 (Maximum score: 100%) .944 
Mean 45.8% 47.7% 46.5% 
SD 17.5 11.6 13.2 

Method 1: The original weighting method described 
above. 

Method 2: One point for all problems. 

Method 3: Composite percentage. Based on one point 
for each problem, each category (basic skills, place 
value, multicolumn addition) given a percent score, and 
then these three percentages were averaged. 

Method 4: Subcategory scoring. Each problem within 
a subcategory in the basic skills and place value 
categories was given fractional scores, in effect, giving 
each subcategory a score of one. The addition problems 
were each given a score of one. Then the total was 

obtained. 

Method 5: Composite percentage. Based on giving a 
percent score to each category in Method 4 and combining 
these three equally into a single percentage. 
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CONTROL GR00P 

SUBJECT 
CLASSROOM 
SEX 
GROOP ASSIGNMENT 
STARTING DAY 
ENDING DAY 

MAX SCORE 
- BASICS — 

COONTING 

ORAL ADDITION 

WRITTEN ADDITION 

READ NUMBERS 

COONTING MONEY 

TOTALS 

PLACE VALUE 

PRETEST 21 15 4 4 4 5 3 

POSTTEST 21 17 7 6 6 16 8 

DIFFERENCE 2 3 2 2 11 5 

AD TAN JES 
G G G 
FEE 
c c c 

41 58 41 
48 62 46 

LV 
G 
E 
C 

58 
62 

BC JER 
G G 
M 
C 

32 
41 

M 
C 

74 
79 

-ADDmON- 

PRETEST 8 

POSTTEST 8 

DIFFERENCE 

4 

3 

-1 

2 2 2 2 3 

3 18 11 

1-1 6-1 -2 

MONITOR CHECK 3 

TRANSFER PROBLEMS 6 

CORRECTION PROBLEMS 4 

3 0 

3 1 

2 0 

0 2 

0 5 

0 4 

0 0 

1 0 

3 0 

Continued, next page. 
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SUBJECT 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 
STARTING DAY 
ENDING DAY 

CONTROL GROUP (CONTINUED) 

CC KF 
F F 
F F 
C C 

69 25 
74 34 

DF GM 
F F 
M M 
C C 

39 62 
46 67 

FR PS 
F F 
M M 
C C 

62 48 
67 48 

TOTAL 

MAX SCORE 
- BASICS - 

COUNTING 6 3 6 1 5 2 5 48 

ORAL ADDITION 9 8 8 4 8 9 9 89 

WRITTEN ADDITION 6 6 6 6 6 6 6 69 

READ NTIMRFRS 3 1 2 1 2 1 3 20 

COUNTING MONEY 4 1 4 0 4 1 4 31 

TOTALS 28 19 26 12 25 19 27 257 

PRETEST 21 1 12 3 10 3 15 79 

POSTTEST 21 3 17 8 16 12 21 137 

DIFFERENCE 2 5 5 6 9 6 58 

ADDITION 

PRETEST 8 0 4 1 3 4 3 30 

POSTTEST 8 5 6 2 8 4 6 48 

DIFFERENCE 5 2 1 5 0 3 18 

MONITOR CHECK 3 0 1 0 3 1 1 11 

TRANSFER PROBLEMS 6 5 4 1 4 0 2 26 

CORRECTION PROBLEMS 4 1 4 0 3 0 1 18 

Continued, next page. 
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SUBJECT 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 
STARTING DAY 
ENDING DAY 

ASSISTED GROUP 

JL ER 
G G 
F F 
A A 

65 58 
69 62 

OR MIS 
G G 
F F 
A A 

74 25 
79 34 

NA BED 
G G 
M M 
A A 

25 32 
34 41 

MAX SCORE 
- BASTCS 

COUNTING 6 4 3 4 5 6 5 

ORAL ADDITION 9 9 9 8 9 7 7 

WRITTEN ADDITION 6 6 6 6 6 6 4 

READ NUMBERS 3 1 1 1 1 3 3 

COUNTING MONEY 4 3 3 4 4 4 1 

TOTALS 28 23 22 23 25 26 20 

PRETEST 21 1 5 7 2 11 12 

POSTTEST 21 9 15 16 18 21 18 

DIFFERENCE 8 10 9 16 10 6 

ADDITION 

PRETEST 8 1 4 3 2 2 4 

POSTTEST 8 7 8 7 8 7 8 

DIFFERENCE 6 4 4 6 5 4 

MONITOR CHECK 3 0 1 1 1 0 3 

TRANSFER PROBLEMS 6 3 4 6 5 5 4 

CORRECTION PROBLEMS 4 3 3 3 4 2 3 

Continued, next page. 
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SUBJECT 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 
STARTING DAY 
ENDING DAY 

ASSISTED GROUP (CONTINUED) 

JUR JSS CG 
G G F 
M M F 
AAA 

58 69 27 
62 74 34 

EP AR TR 
F F F 
F F M 
AAA 

44 25 60 
48 34 65 

TOTAL 

MAX SCORE 
- BASICS - 

COUNTING 6 5 4 5 5 5 4 55 

ORAL ADDITION 9 8 9 9 7 9 8 99 

WRITTEN ADDITION 6 6 5 6 5 6 6 68 

READ NUMBERS 3 3 1 2 2 3 3 24 

COUNTING MONEY 4 4 3 1 0 4 4 35 

TOTALS 28 26 22 23 19 27 25 281 

PRETEST 21 9 1 1 5 12 5 71 

POSTTEST 21 16 11 8 16 18 8 174 

DIFFERENCE 7 10 7 11 6 3 103 

ADUlllUrf — " 

PRETEST 8 4 3 2 1 4 2 32 

POSTTEST 8 7 5 3 6 4 3 73 

DIFFERENCE 3 2 1 5 0 1 41 

MONITOR CHECK 3 0 0 0 0 0 0 6 

TRANSFER PROBLEMS 6 5 4 1 0 6 6 49 

CORRECTION PROBLEMS 4 3 4 0 0 4 3 32 

Continued, next page. 



Table B.l (Continued) 

174 

SUBJECT 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 
STARTING DAY 
ENDING DAY 

SIMULATION GROUP 

KEF KR EL XV VCL 
G G G G Q 
F F F F M 
B B B B B 

46 25 65 76 65 
60 34 72 88 72 

BASICS 
MAX SCORE 

COUNTING 

ORAL ADDITION 

WRITTEN ADDITION 

READ NUMBERS 

COUNTING MONEY 

TOTALS 

6 4 3 

9 8 7 

6 6 6 

3 12 

4 14 

28 20 22 

4 5 3 5 

6 9 8 9 

5 6 6 6 

13 3 1 

14 4 4 

17 27 24 25 

PLACE VALUE 

PRETEST 21 5 8 6 14 10 3 

POSTTEST 21 14 14 11 14 19 10 

DIFFERENCE 9 6 5 0 9 7 

- ADDITION - 

PRETEST 8 122432 

POSTTEST 8 3 7 2 7 3 8 

DIFFERENCE 25030 6 

MONITOR CHECK 3 

TRANSFER PROBLEMS 6 

CORRECTION PROBLEMS 4 

0 3 0 

2 3 1 

2 3 1 

3 2 0 

5 6 5 

4 3 0 

Continued, next page. 
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SUBJECT JOR 
CLASSROOM G 
SEX M 
GROUP ASSIGNMENT B 
STARTING DAY 44 
ENDING DAY 48 

SIMULATION GROUP (CONTINUED) 

BG JK YR DB MIR TOTAL 
F F F F F 
F F F M M 
B B B B B 

25 32 74 27 67 
34 41 81 39 72 

MAX SCORE 
-RARTOR 

COUNTING 6 3 5 3 2 6 6 49 

ORAL ADDITION 9 8 8 9 6 9 9 96 

WRITTEN ADDITION 6 5 6 6 6 6 6 70 

READ NUMBERS 3 3 2 3 0 2 3 24 

COUNTING MONEY 4 1 3 4 3 4 4 37 

TOTALS 28 20 24 25 17 27 28 276 

IrliAoiL VALUE. 

PRETEST 21 4 3 4 3 5 11 76 

POSTTEST 21 17 15 11 14 19 18 176 

DIFFERENCE 13 12 7 11 14 7 100 

ADDITION 

PRETEST 8 1 2 3 1 5 2 28 

POSTTEST 8 2 3 3 2 6 6 52 

DIFFERENCE 1 1 0 1 1 4 24 

MONITOR CHECK 3 1 0 0 0 1 0 10 

TRANSFER PROBLEMS 6 1 1 1 0 2 2 29 

CORRECTION PROBLEMS 4 0 0 0 1 1 2 17 
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NAME 
CLASS200M 
SEX 
GROUP ASSIGNMENT 

SCORE (MAX: 6) 

SIGNIFICANT ERRORS 

"THRASHING" ERRORS 

TIME IN CORRECT MOVES (sec) 

TOTAL TIME (sec) 

PERCENT TIME IN CORRECT MOVES 

CONTROL GROUP 

AD TAN JES LV HC JER 
G G G G G G 
F F F F M M 
C C C C C C 

4 3 2 5 6 4 

2 6 12 1 0 2 

4 28 36 7 3 8 

356 321 316 209 231 179 

380 439 483 246 248 201 

94 73 65 85 93 89 

Continued, next page 
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NAME 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 

CC 
F 
F 
C 

KF 
F 
F 
C 

DF 
F 
M 
C 

GM 
F 
M 
C 

FR 
F 
M 
C 

PS 
F 
M 
C 

TOTAL 

SCORE (MAX: 6) 3 6 0 4 5 3 45 

SIGNIFICANT ERRORS 4 0 14 3 1 3 48 

"THRASHING“ ERRORS 11 10 43 13 10 15 188 

TIME IN CORRECT MOVES (sec) 387 227 245 213 209 239 3132 

TOTAL TIME (sec) 438 241 526 254 228 295 3979 

PERCENT TIME IN CORRECT MOVES 88 94 47 84 92 81 79 

Continued, next page 
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ASSISTED GROUP 

NAME 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 

JL 
G 
F 
A 

ER 
G 
F 
A 

OR 
G 
F 
A 

MIS 
G 
F 
A 

NA 
G 
M 
A 

BED 
G 
M 
A 

SCORE (MAX: 6) 3 5 4 4 4 4 

SIGNIFICANT ERRORS 5 1 3 2 3 2 

"THRASHING" ERRORS 23 10 35 6 3 8 

TIME IN CORRECT MOVES (sec) 259 216 236 172 208 248 

TOTAL TIME (sec) 355 239 333 191 238 333 

PERCENT TIME IN CORRECT MOVES 73 90 71 90 87 74 

Continued, next page. 
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ASSISTED GROUP (CONTINUED) 

NAME 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 

JUR 
G 
M 
A 

JSS 
G 
M 
A 

CG 
F 
F 
A 

EP 
F 
F 
A 

AR 
F 
F 
A 

TR 
F 
M 
A 

TOTAL 

SCORE (MAX: 6) 4 3 0 5 5 5 46 

SIGNIFICANT ERRORS 2 5 12 1 1 2 39 

“THRASHING" ERRORS 8 15 17 17 7 4 153 

TIME IN CORRECT MOVES (sec) 174 193 280 196 244 219 2645 

TOTAL TIME (sec) 193 245 358 227 263 230 3205 

PERCENT TIME IN CORRECT MOVES 90 79 78 86 93 95 83 

Continued, next page 
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NAME 
CLASSROOM 
SEX 
GROUP ASSIGNMENT 

SCORE (MAX: 6) 

SIGNIFICANT ERRORS 

"THRASHING" ERRORS 

TIME IN CORRECT MOVES (sec) 

TOTAL TIME (sec) 

PERCENT TIME IN CORRECT MOVES 

KEF 

SIMULATION 

KH EL 

GROUP 

XV VCL AL 
G G G G G G 
F F F F M M 
B B B B B B 

5 4 6 3 3 5 

1 2 0 4 3 1 

6 3 11 27 4 8 

239 298 202 209 215 183 

278 336 246 269 249 195 

86 89 82 78 86 94 

Continued, next page. 
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SIMULATION GROUP (CONTINUED) 

NAME JOR 

CLASSROOM G 
SEX M 
GROUP ASSIGNMENT B 

SCORE (MAX: 6) 0 

SIGNIFICANT ERRORS 15 

"THRASHING” ERRORS 39 

TIME IN CORRECT MOVES (sec) 337 

TOTAL TIME (sec) 621 

PERCENT TIME IN CORRECT MOVES 54 

BG JK VR DB MIR TOTAL 
F F F F F 
F F F M M 
B B B B B 

5 4 2 4 3 44 

1 2 8 3 4 44 

.4 4 31 3 10 160 

192 208 314 182 196 2775 

265 222 530 201 254 3666 

72 94 59 91 77 76 
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