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ABSTRACT 

THE DEVELOPMENT AND FIELD TESTING OF GEOMETRY UNITS 
USING A LEARNING CYCLE APPROACH AND 

TEN QUESTION GUIDE AS A FRAMEWORK FOR LESSON DESIGN 
AND CLASSROOM METHODOLOGY 

MAY 1989 

VIRGINIA M. BASTABLE, B.S., UNIVERSITY OF MASSACHUSETTS 

M.S., WORCESTER POLYTECHNIC INSTITUTE 

Ed.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Portia C. Elliott 

Geometry units for a secondary school program were 

created and field tested. The lessons were developed 

according to a ten question format for lesson design that 

insured the materials would be at all levels of geometric 

reasoning, were concrete as well as abstract, and included 

the use of the computer as a tool for learning mathematics. 

These units were taught using a methodology which 

incorporated the investigator's learning cycle approach. 

This teaching method starts with the learner's intuitive 

understandings and proceeds through levels of exploration 

and deduction until the learner has constructed a new 

belief. 

The purpose of this study was to create geometry units 

and to implement a teaching methodology which would 

integrate a problem solving approach with the principles of 

Piaget and the van Hieles. This study described the 

development of the lessons, the implementation of this 
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methodology, the day to day impact of this teaching style 

on the students, and provided a comparison of male and 

female student opinions regarding these materials. 

This approach was field tested at a public secondary 

school. Data were gathered to determine the students' 

views toward learning in four formats which were embedded 

in the materials and methodology: working in groups, using 

computers, using writing, and using manipulatives. In 

addition, student reaction to differing teacher roles, 

facilitator and explainer, was studied. Male and female 

students were compared to determine if the results of this 

teaching style were constant or if they varied with gender. 

The indications from this work are that the question 

guide and learning cycle were powerful constructs for 

devising, planning and implementing lessons in geometry. 

The field testing, student evaluation forms, and summative 

evaluation forms indicated that some components of this 

teaching style were considered positively: use of groups, 

use of computers, and differing teacher roles. The use of 

manipulatives was received with mixed feelings. The use of 

writing was considered a negative feature in this study. 

Three of these strategies, use of group work, use of 

writing, and teacher as facilitator showed no gender 

related differences. Use of computers and use of 

manipulatives indicated a male preference. Overall student 

views to the teaching methods were positive. 
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CHAPTER I 

INTRODUCTION 

Introduction to the Problem 

"Lessons should be designed around problem situations 

posed in an environment that encourages students to 

explore, to formulate and test conjectures, to prove 

generalizations, and to communicate and apply the results 

of their investigations." This statement from the National 

Council of Teachers of Mathematics' recently published 

document, Curriculum and Evaluation Standards for School 

Mathematics (Romberg et al., 1987, p. 90), sets the tone 

for this study. 

Geometry units for a secondary school program were 

created and field tested. The lessons were developed 

according to a ten question format for lesson design that 

insured the materials would be at all levels of geometric 

reasoning as determined by the van Hieles, were concrete as 

well as abstract, and included the use of the computer and 

calculator as tools for learning mathematics. 

These units were taught using a methodology which 

incorporated the investigator's learning cycle approach. 

This teaching method starts with the learner's intuitive 
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understandings and proceeds through levels of exploration 

and deduction until the learner has constructed a new 

belief. 

The intent of the study was to produce curriculum 

units of geometry in keeping with the principles of the van 

Hieles and Piaget. The teaching methodology incorporated a 

problem solving approach. The study includes the 

development of the lessons, the implementation of this 

methodology, the day to day impact of this teaching style 

on the students, and a comparison of male and female 

student opinions regarding these materials. 

This approach was field tested at a public secondary 

school. The majority of the students using these materials 

were in homogeneously grouped classes which represented the 

three levels of achievement recognized by the school 

district. In addition, one class included students who had 

been designated as needing remedial help in mathematics. 

This class contained students at all grouping levels. 

Data were gathered to determine the students' views 

toward learning in four formats which were embedded in the 

materials and methodology: working in groups, using 

computers, using writing, and using manipulatives. In 

addition, student reaction to differing teacher roles, 

facilitator and explainer, was studied. Male and female 
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students were compared to determine if the results of this 

teaching style were constant or if they varied with gender. 

Background of the Problem 

"Almost all writings on school geometry are derived 

from two major problems: the poor performance of students 

and an outdated curriculum" (Usiskin, 1987, p. 17). The 

lack of success that students display is a continuing 

problem. The results of the "Fourth National Assessment of 

Educational Progress" indicate poor student performance on 

geometry items. For example, 45% of eleventh grade 

students taking the test could not find the area of a 

square when given the length of one side. These results 

are not significantly different from previous assessments 

(Brown, et al., 1988). 

The issues in geometry curriculum are made even more 

complicated by the fact that there is no consistent opinion 

on what geometry is or what approach should be taken toward 

it. In 1969 Allendorfer identified three styles of 

geometry: synthetic, analytic, and vector. In the 1973 

Yearbook of the National Council of Teachers of 

Mathematics, published articles represented six different 

approaches to geometry: conventional, affine, 

transformational, coordinate, vector, and eclectic. 
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The curricular confusion continues unresolved in spite 

of the efforts of committees that were charged with 

formulating recommendations for mathematics curriculum. In 

NCTM's An Agenda for Action (1980) geometry is discussed in 

a single paragraph. In School Mathematics; Options for the 

1990 * s, the only recommendation for the geometry course was 

that ’’the topics should be unified and integrated so that _ 

the interrelationships of algebra, geometry, and 

applications are made" (Romberg, 1984, p. 12). 

Two reports do address the issue of geometry 

curriculum in a new light. The 1983 statement from the 

Conference Board of the Mathematical Sciences contains a 

paragraph which argues for geometry students spending less 

time on writing formal two column proof and more time 

studying algebraic methods in geometry, three dimensional 

relationships, and using computer graphics paclcages to get 

a visual sense of geometric concepts (CBMS, 1983). 

In NCTM's Curriculum and Evaluation Standards for 

School Mathematics (Romberg et al., 1987) recommendations 

to restructure the geometry curriculum are made. These 

suggestions include: incorporating algebraic methods in 

geometry such as transformations and coordinates; requiring 

that students represent problem situations with geometric 

models; deducing through short sequences of logical 

relationships between figures; using computer programs 
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which will allow students to create and manipulate two and 

three dimensional objects; and designing classes so that 

students form connections between the geometry studied and 

their real world experiences. 

While it is true that the CBMS and NCTM reports do 

treat the issue of geometry curriculum more extensively 

than did the reports cited earlier, what is more important 

to notice is the tone of these reports. Both of these 

statements do more than discuss what content is being 

covered. They include discussions of what the students are 

doing in class and descibe how the students are learning 

geometry. These reports do not contain merely a listing of 

curriculum topics but carry implicit and explicit messages 

about the teaching practices that are needed. 

This new awareness of incorporating the learner into 

the process demands some background from educational 

theorists. Piaget and the van Hieles have each made 

significant contributions to educational theory that should 

be reflected in secondary school mathematics education 

practice. The implications of the work of these 

educational theorists for classroom instruction is now 

addressed. 
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In his work Piaget described developmental levels of 

reasoning through which children progress. These levels 

are summarized as reported in the work of Hedden (1984); 

Level 1 Sensory-Motor Knowledge (ages 0-2) The child at 
this level displays a knowledge of objects as they exist in 
space and time. The mental constructs are preverbal and 
presymbolic. 

Level 2 Preoperational (ages 2-6) During this level 
language is acquired. The child can understand signs and 
symbols as representations of the real world. The child 
can distinguish between the reality and the symbols, 
however he/she cannot operate on those mental symbols. 

Level 3 Concrete Operational (ages 7-12?) The child at 
this level can reason about the world of objects. The 
child can appreciate relations between real objects. 

Level 4 Formal Operational (ages 13?- on) The child at 
this level can reason in the manner of a scientist, can use 
propositional logic, can reason on abstract as well as 

concrete objects. 

The debate over the specific ages for each level and 

the search for the mechanism that causes change continues, 

but there is little debate over the fact that Piaget's 

conception has formed the foundation on which much of 

mathematics education has been built. In particular, the 

explicit construct that children are consciously trying to 

make sense of the world they experiehoe is central and 

critical to mathematics learning. 

in order to succeed in a secondary school geometry 

class, students must be able to hypothesize, reason 

deductively, understand the role of mathematical models, 

and understand the difference between defining and deducing 
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(Farrell and Farmer, 1979). All of these abilities are 

characteristic of Piaget's formal operational stage 

(Farrell, 1987). But it has been shown that many students 

in geometry classrooms are not at this Piagetian level. 

For example, Renner (1977) reports that students he studied 

in grades ten through twelve exhibited concrete thought 57% 

of the time. 

Another study indicates that at least 30% of students 

in geometry class reason at the concrete operational level 

with another 30% to 40% being labeled as transitional 

reasoners, sometimes reasoning concretely, other times 

displaying formal reasoning abilities. This leaves only 

30% at the formal stage (McDonald, 1982; Farrell and 

Farmer, 1985). 

Such a high percentage of non-formal reasoners 

indicates that teaching styles must take into account the 

needs of the concrete learner. "The presence of concrete 

reasoning means that actual experience with those concepts 

that are to be learned is the only way understanding 

develops" (Renner and Marelc, 1988, p. 22). 

These students who are concrete operational need 

opportunities to learn geometric concepts through 

manipulation of concrete objects, not mental abstractions. 

The value of manipulatives in elementary and middle schools 

has been established. In her review of the research on the 
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use of manipulatives, Suydam (1984) states that lessons 

which incorporate the use of materials to manipulate have a 

higher probability of producing greater learning than 

lessons which do not. She also notes that the 

achievement-enhancing effect of manipulatives occurs at 

every grade level, with a variety of mathematical topics, 

and with every ability level of student. 

Traditional formal geometry instruction has not 

provided this opportunity. In spite of research evidence 

indicating that gains are made by using manipulative 

materials, the tendency in elementary schools is for that 

use to taper off as the students proceed to higher level 

elementary grades (Scott, 1983). In secondary school 

geometry courses teachers rely heavily on the text boo}c 

(Brown, 1974) and spend most the class time, 80%, talking 

at the board (Beaulieu, 1979). This would indicate that 

students in geometry classes at this level spend little 

time manipulating objects in order to learn geometry. 

Dina and Pierre van Hiele have studied geometry 

learning extensively and have proposed a model of the 

developmental levels involved in learning this subject 

matter. In the description below each of the five levels 

is illustrated by a response typical of a student reasoning 

at that level. 

8 



^ level 0) in which the learner reasons from a 
whole visual image. For example, a rectangle is something 
that looks like a door. 

Analysis (level 1) in which the learner lists properties of 
a figure. A rectangle has two pairs of equal sides, four 
right angles, etc. 

Abstraction (level 2) in which the learner uses 
classification schemes. A rectangle is a special type of 
parallelogram. 

Formal Deduction (level 3) in which the learner relies on 
deductive proof. Prove all square.s are rectangles. 

Rigor (level 4) in which the learner can consider alternate 
axioms. Define a rectangle on the surface of a sphere. 

The van Hiele model is still developing with some 

points open to debate. However, it provides a framework 

for consideration to classroom teachers (Schoenfeld, 1986). 

This model states that a qualitatively different kind of 

reasoning is displayed at each level. Therefore full 

conceptual understanding develops over time through a 

variety of reasoning styles. The van Hiele model states 

that students who are not yet capable of formal reasoning 

which occurs at level three are in fact reasoning but in a 

different mode. 

It is important to note that the "informal deduction" 

characteristic of a learner operating at level 2 of the van 

Hiele model is reasoning. This kind of thinking should not 

be regarded as the naive work of an unsophisticated 

student, but rather as a different mode of reasoning. 

Erich Wittman (1981) uses the phrase "intuitive activities" 
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to describe this kind of logic. Within informal 

mathematics intuitive activities are a natural mode of 

mathematical thinking. They must not be understood as a 

concession to the students not yet mature for proper 

mathematics. 

How well does this model of geometry learning fit with 

the reality of the classroom? One study listed the 

following results (Burger and Shaugnessy, 1986): 

1. The van Hiele levels were good descriptors of students’ 
reasoning processes. 

2. No secondary school student reasoned consistently at 
level 3. 

3. There is often a mismatch between the level of the 
teacher's work and the level of student thinking. 

4. Students may actually regress to a lower van Hiele 
level after taking a full year course in geometry. 

Taken together these conclusions indicate the problem. 

Geometry students are operating on van Hiele levels 0, 1 

and possibly 2, but the materials and teaching approach in 

traditional geometry are at level 3 or 4. 

These results have not gone unnoticed. The Oregon 

Mathematics Educational Council has prepared concept papers 

describing a geometry course which has been created in 

response to some of these concerns. The suggested course 

is designed to integrate informal geometry and proof at the 

high school level. "The emphasis of this course is in a 
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visual approach to problem solving in geometry" (Morgan, 

1986, p. 104). The Oregon project is an attempt to provide 

materials which will connect the students' intuition with 

the formal geometry study. 

In the traditional geometry course, significant time 

is spent teaching students how to write proofs. Yet one 

study showed that only 31% of students in 85 classes were 

judged as being competent in this area of the curriculum 

(Senk, 1985). Schoenfeld noted that even students who were 

competent at doing proofs could not use that knowledge in a 

problem solving situation (Schoenfeld, in press). 

What kind of teaching does impart the value and 

meaning of proof? According to Alan Bell, 

... pupils will not use formal proof with 
appreciation of its purpose until they are 
aware of the public status of knowledge and 
the value of public verification. The most 
potent accelerator towards achievement of 
this is likely to be cooperative research-type 
activity by the class. In this, investigation 
of a situation would lead to different conjectures 
by different pupils, and the resolution of 
conflicts by arguments and evidence. (1976, p. 25) 

This summary of geometry curriculum issues indicates 

the scope of the problem. Student performance in the 

content of geometry is poor. Student understanding of the 

process, value, and meaning of proof is poor. As a partial 

explanation for this poor performance and as a partial 

formulation of a solution to this problem, note that the 
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work of Piaget and the van Hieles illustrates a gap between 

the content and practices of the traditional course and the 

cognitive structures of the students in those courses. 

Statement of the Problem Situation 

The work of Piaget and the van Hieles provides the 

framework upon which to consider classroom practices. Both 

models of understanding indicate the need for students to 

be actively involved in the classroom, manipulating objects 

and formulating conjectures as is appropriate to each 

student's level of reasoning. 

Yet the findings of the "Fourth National Assessment of 

Educational Progress" illustrate that "typical 

mathematics instruction consists of listening to teacher 

explanations, watching the teacher work problems at the 

blackboard, using a mathematics textbook, and working alone 

to solve problems on worksheets" (Silver et al., 

1988, p. 725). 

A gap exists between the current realities of 

classroom instruction and the implementation of the 

theories of Piaget and the van Hieles which conceptually 

designed curriculum materials can help bridge. But 

curriculum design is only part of the answer. The need for 

an interactive teaching methodology is also necessary. 
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Geometry instruction based on the perspectives offered 

by Piaget, the van Hieles and Bell requires materials which 

are designed with these principles and must be implemented 

with a teaching style which encourages student exploration 

and dialogue. 

Curriculum design cannot be separated from 

instructional methods. The content and the process are 

interwoven. "Curriculum has become less about merely the 

classroom realization of syllabuses and teaching materials, 

having more to do with pupil's learning as a complex 

interaction between teacher and pupil, materials and 

experiences, schools and society, time, place, and intent" 

(Tripp, 1986, p. 3). 

So it becomes clear that curriculum materials and an 

instructional process for their implementation which are 

based on the principles of learning stated above are 

required. During the course of this study, curriculum 

content was developed, linked to methodology and field 

tested. 

Purpose of the Study 

The purpose of this study was to create geometry units 

and to implement a teaching methodology which would 
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integrate a problem solving approach with the principles of 

Piaget and the van Hieles. Materials were based on the 

following premises: 

One: Students need exploratory concrete activities to 
provide them with information before formal work on the 
concepts can begin. 

Two: Geometry study should contain a variety of types of 
exercises so that students at every van Hiele level have an 
opportunity to reason about the concepts. 

Three: Students must understand proof as a way of 
communicating not only what they know is true but also how 
they came to know it. 

Developing lessons in geometry which are conceptually 

based was therefore the main objective of this work. The 

investigator developed a question guide as a format for 

designing such lessons. This question guide is embodied 

within the learning cycle approach recommended by the 

investigator as a teaching methodology. 

Definition of Terms 

The Geometric Supposer(s): The term The Geometric 

Supposer(s) is used to refer to a set of computer software 

discs titled: Pre-Supposer, Triangles, Quadrilaterals, and 

Circles. This software has been created and developed by 

Dr. Judah L. Schwartz and Dr. Michal Yerushalmy and is 

marketed by Sunburst Inc. The software allows the user to 

construct geometric objects and measure various attributes 

such as length, area, angle size, and perimeter. It can be 
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used in the classroom as a demonstrator or as part of an 

interactive process where students can gather inductive 

evidence to form and test conjectures. 

Grouping (heterogeneous/homogeneous): All geometry students 

at the school where this study was conducted are identified 

as being in the basic, the standard or the advanced level. 

This categorization is an achievement based system with 

otiginal recommendations made by the students * previous 

iinathematics teacher. Parents have the right to disagree 

and may override a teacher's recommendation. 

Most classes in the mathematics department are singly 

grouped, that is each class contains students who have 

received the same designation. The term homogeneous will 

be used to refer to these classes. 

One class in the study contained students from all 

three levels. This class which was best described as a 

mixed class will be referred to as being heterogeneous for 

the purposes of this study. 

Learning Cycle Approach: The teaching methodology used 

during this study was based on a conception of student 

learning which asserted that students gain understanding by 

encountering concepts in a cyclical fashion. This learning 

cycle contains four stages: intuition, exploration, 

formalization, and again intuition. 
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At the first level of the cycle, intuition, the 

teacher's objective is to create exercises which allow the 

learner to verbalize their current understanding or belief 

about the concept. During the second stage of the cycle, 

exploration, the learner "plays with" the idea in various 

formats. The third stage is deduction during which the 

learner formalizes their understanding of the geometric 

concept. The final stage is again labeled intuition 

because it now describes the new belief held by the 

learner. 

This completes one cycle of learning. The learner has 

moved from pre-existing belief through exploration and 

deduction to a new belief. Now once again the learner is 

at stage 1 with their current level of belief about the 

concept. New periods of exploration and deduction would 

lead to more sophisticated levels of understanding. 

Although the learning cycle can be considered a four 

stage process, it does not fit a linear pattern. Each 

stage 4 returns the learner to a new level of stage 1. The 

appropriate visual image would be a spiral, every level 4 

spiralling into a new level 1. 

question Guide; At each stage of the cycle specific 

questions are the appropriate tools for focusing learning. 
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The ten questions which provide the guidelines for lesson 

design and their relationship within the learning cycle are 

listed below. 

Each question is identified with a particular mode or 

set of materials which are suggested as the vehicle for 

student reasoning within this level of the cycle. 

Stage 1 
Questions which engage the intuition; 

1. What is suggested? intuition/quick sketch 
2. What is apparent? scale diagram/graph paper 

Stage 2 
Questions which provide a forum for exploration; 

3. What can be constructed? physical model 
4. What can be calculated? arithmetic/calculators 
5. What can be expressed? algebra 
6. What can be explored? computer analysis 
7. What can be changed? sequenced drawing/models 

Stage 3 
Questions which compel formal thinking; 

8. What can be deduced? formal reasoning 

Stage 4 
Questions which engage the intuition; 

9. How can this be employed? problem solving 
10. What does this mean? belief 

Materials developed using this question guide present 

each concept through a variety of exercises using concrete 

models, calculators, computers, and problem solving 

techniques. Therefore students at all Piaget levels, 

students reasoning at all van Hiele levels and students at 
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every level of understanding about problem solving and 

proof find geometry accessible to them. 

Rationale 

Current cognitive science research has added 

significantly to our understanding of how mathematics 

skills and concepts are acquired. However this work has 

been carried out in very structured environments and sheds 

little light on the learning that occurs in the classroom. 

Classroom educational research has focused on topics such 

as time on task, wait time, and teacher differentiated 

behavior with little regard to the content being taught. 

"Research is needed that blends the strengths of 

current cognitive research with a concern for the realities 

of the classroom and focuses on students' learning from 

instruction over extended periods of time" (Romberg and 

Carpenter, 1986, p. 868). 

The present study moved toward that end. Geometry 

units werd created and instruction given according to the 

learning cycle. The impact of these materials and this 

teaching approach was documented and described. Revision 

of the materials was undertaken according to these results 

The revised materials with teaching suggestions were the 

final outcome of this study. 
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The intent of the study was to document both teacher 

views and student views throughout this process. Static 

models for research were not sufficient to describe these 

changes. "Dynamic models are needed that capture the ways 

meanings are constructed in classroom settings on specific 

mathematical topics" (Romberg and Carpenter, 1986, p. 868). 

The teacher as researcher was an integral part of this work 

since the teacher had the final responsibility in creating, 

implementing, and revising methodology and curricula. 

Toward this end the teacher/researcher kept a journal and 

the students filled out periodic evaluation forms as a way 

to assess day to day activities. 

Questions to be Answered 

Implementation of the suggested teaching methodology 

involved many aspects. The integration of the van Hiele 

theory, the work of Piaget and the problem solving approach 

recommended by Bell within the traditional geometry course 

was the key feature of this dissertation. This by its very 

nature was a very expansive and consuming project. The 

intent was to create units of geometry study which 

incorporated all aspects of mathematics and reached a 

variety of learning styles, making geometry study sensible 

and meaningful to students of all levels. 
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Within the methodology recommended by the learning 

cycle approach there lay several specific aspects of 

teaching style upon which to base research questions. The 

suggested classroom style involved five aspects which are 

generally new to students in secondary school mathematics: 

group work, computer use, use of writing, the use of 

manipulative materials and the role of the teacher as a 

facilitator not as a fact giver. 

In this study the materials and the teaching style 

were field tested by students in all three grouping levels 

recognized by the school system. The opinions of both male 

and female students toward specific components of those 

materials was determined and analyzed. 

Field testing the materials written for this study and 

implementing the suggested teaching methodology provided 

the investigator with information concerning the effects of 

this conceptually based geometry program. What is the 

effect of this style of teaching on male and female 

students? Do student views towards components of this 

teaching style change over the course of the project? 

Students in the various grouping levels and of both genders 

were studied in order to determine if the impact of this 

style of teaching is the same for these groups or if it 

varies. 
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Information was gathered to help answer the following 

questions: 

1. Do students identify group work as a positive, 
neutral, or negative influence on their learning 
of geometry? 

2. Do students identify the use of the computer 
software, the Supposers and LOGO, as a positive, 
risutral, or negative influence on their learning 
of geometry? 

3. Do students identify the use of writing as a 
positive, neutral, or negative influence on their 
learning of geometry? 

4. Do students identify the use of manipulating actual 
objects as a positive, neutral, or negative 
influence on their learning of geometry? 

5. Do students note the role of the teacher as a 
facilitator not as a giver of fact as a positive, 
negative, or neutral influence on their learning 
of geometry? 

Data were gathered on these questions before and after 

the field testing experience and also analyzed according to 

the gender of the students. 

Scope and Delimitation of the Study 

Since the study was small in scale, it did not resolve 

these issues for the general education audience. This 

study was limited in scope. It involved just one teacher, 

who was also the investigator, and a set of four classes 

during the fall semester in one school. Therefore the 

results were not generalizable beyond that population. 
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Importance of the Study 

This study was a beginning step toward developing a 

mathematics curriculum which is conceptually based. A set 

of geometry concepts were considered. The materials to 

teach these concepts were developed and a methodology for 

presenting the concepts were discussed and implemented. 

The effect of this conceptually based learning on different 

students was examined to determine trends in the answers to 

these questions: 

1. Is this style more appropriate to certain levels of 
students than others? 

2. Are components of this style more accepted by 
female or male students? 

The sharing of this information with colleagues will 

provide a basis for discussion concerning the geometry 

program in secondary school mathematics. 

As valuable as initiating such discussion, the study 

also highlights the importance of the role played by the 

teacher/investigator. Blending the roles of researcher and 

teacher into one allows the teacher/researcher to bring 

into the classroom situation the formal work of the 

researcher and also to integrate that work with the 

practical realities of daily classroom life. Cameron-Jones 

reports that Whitehead (1982) spoke of the 
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... educational potential of individual teachers' 
motivations for engaging in the improvement of 
their professional practice. Whitehead saw 
these motivations to action as stemming, for 
all thoughtful and self-critical educators, 
from their responses to continued discrepancies 
between their espoused principles and their 
habitual practices. (1985, p. 4) 

By serving as both teacher and researcher the teacher 

has an opportunity to analyze his/her own daily work in 

terms of his/her own ideals. 

A final aspect of the importance of this study to the 

school community is that the teacher/researcher provides an 

example to professional educators of how a fresh attitude 

toward educational research can be of value to the 

practitioner and also promotes a better understanding of 

the work of educational researchers in general. 

Outline of the Remainder of the Dissertation 

The second chapter of this study will include three 

sections. One will be a review of the research on 

mathematics learning in general and geometry learning in 

particular. The second will contain a review of work done 

on the role of teacher as researcher. The third section of 

Chapter Two will report on gender issues in the learning of 

mathematics as related to the following components of 

learning: use of writing, use of computers, use of 
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manipulative materials, use of small group work, and the 

role of the teacher. 

Chapter Three will describe the procedures involved in 

the study including the field testing. Chapter Four will 

contain the lessons which were created, a summary of the 

teaching process used, and the results of the surveys and 

tests given. Chapter Five will interpret the data and 

state recommendations for future work. Appendices will 

contain the units of study, teaching guides, evaluation 

forms and a list of teacher resources. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Introduction 

This study has three main components, the development 

of the lessons and the methodology for geometry 

instruction, the field testing of the lessons, and the 

investigation of male and female student views towards five 

pedagogical tools used in the approach. The organization 

of this chapter reflects this sectioning. 

The first part of this chapter will be devoted to 

summarizing aspects of the literature on the learning of 

mathematics, in particular the learning of geometry. The 

findings of the theorists in this field will be compared 

with the findings of the researchers who describe the 

reality of the classroom situation. This is the background 

necessary for the formation of the lessons and the 

pedagogical style implemented during the work of this 

study. 

The second section will be a discussion of the work 

2;0garding the role of the teacher as researcher. This is 

the methodology used in the field testing of the materials. 

The third part of the chapter will summarize the work 

of educational researchers concerning gender differences 
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found within the study of mathematics. Implications for 

pedagogy will also be explored. Five specific teaching 

tools will be examined to see if student views towards 

these learning methods display gender differences. The 

following questions state these areas of concern 

explicitly: 

1. Do students identify group work as a positive, 
neutral, or negative influence on their learning? 

2. Do students identify the use of the computer, ie 
Logo and the Geometric Supposers, as a positive, 
neutral, or negative influence on their learning? 

3. Do students identify the use of writing as a 
positive, neutral, or negative influence on their 
learning? 

4. Do students identify the use of manipulating actual 
objects as a positive, neutral, or negative 
influence on their learning? 

5. Do students note the role of the teacher as a 
facilitator not as a giver of fact as a positive, 
neutral or negative influence on their learning? 

Learning Mathematics 

Theories of learning and theories of instruction 

should be interrelated, each informing the other to improve 

the models of understanding from which teachers make their 

daily and long term decisions. However, these theories 

must be based on a philosophy which states one's beliefs 

about how mathematical knowledge is acquired. 

It is necessary to state a position on this question 

before continuing. This excursion will be brief since this 
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IS not the explicit purpose of this chapter, however the 

belief to be stated provides the context for work of this 

study and to omit it would limit the understanding of the 

reader. 

It is the belief of the investigator that people 

create their own understanding of mathematics by forming 

conjectures based on their experiences and the mental 

representations from which they form them. With this 

constructivist view of mathematics learning, the 

investigator believes that each of us seeks to understand 

mathematics, to abstract it in our own way, according to 

the mental structure we currently have. 

Theoretical Framework 

The work of Piaget forms the theoretical basis of this 

philosophy. His work began when he resolved that educators 

were missing important information by focussing on the 

quantity of right vs wrong answers on IQ tests. His 

approach was to determine the reasons why people chose the 

answers they did. From this viewpoint a rich field of 

analysis was born. 

As he studied children in detail, his theory grew more 

complex, incorporating the constructs of accommodation and 

assimilation. He postulated and described the levels of 

development (as outlined in Chapter One). In this way 
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Piaget further refined his basic premise: that individuals 

are always trying to understand the world and that this 

understanding is tested, modified and expressed through the 

individuals' own experiences. 

This theory is employed as a basis for many 

researchers. As reported in Steffe, et al. (1983), one of 

the basic assumptions underlying much current research is 

that children actively construct knowledge for themselves 

through interaction with the environment and reorganization 

of their own mental constructs. 

The implication of this theory for teachers can be 

subtle. Although instruction clearly affects what children 

learn, it does not determine it. Children are not passive 

recipients of knowledge; they interpret it, put structure 

into it, and assimilate it in the light of their own mental 

framework (Wittrock, 1974). 

The testing of Piaget's theories continues. Points to 

be investigated which will have impact on school curriculum 

and practices in the future include guestions concerning 

the levels that Piaget has hypothesized: what is the 

relationship between age and Piagetian level and can 

instruction move a child from one level to another? 

In Piaget's early work he identified ages 12 to 13 as 

marking the beginning of the change from concrete 

operational to formal operational thinking. However in 
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recent years there has been evidence that this transition 

is a very slow process. in one study students in grades 

ten through twelve were found to demonstrate concrete 

thought 57% of the time (Renner, 1977). Work done by 

Farrell (1967), Farrell and Farmer (1979) and McDonald 

(1982) support the statement that students in geometry 

classes display a spectrum of Piagetian levels; 

approximately 30% of these students are at the concrete 

operational level, approximately 30% are at the formal 

operational level and the remaining 40% are labeled 

transitional reasoners displaying both concrete and formal 

thought at various times. 

Thus we see that the age at which a formal operational 

level is attained can not be determined accurately. Can 

instruction affect this process? Are the levels purely 

developmental or are they amenable to instruction? 

Klausmeier has tested his own Cognitive Learning and 

Development (CLD) theory and disagrees with those who are 

content to wait for children to develop without stimulating 

that development. According to his CLD theory, the 

transitional period between concrete thought and formal 

thought may be longer than many previously imagined, and 

instruction can hasten the transition for many individuals 

(Klausmeier, 1979). 

Within the specific field of geometry, the van Hiele 

model of levels of reasoning (described in Chapter One) 
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includes a description of the pedagogy necessary to support 

student understanding in geometry. In this model the van 

Hieles describe the different phases of instruction which 

help move the students through the levels of reasoning. 

These phases are described by Crowley (1987). 

Information: working with materials presented by the 
teacher, students become familiar with the structure of the 
concept. 

Guided Orientation: investigating the material guided by 
the teacher's questions. 

Explicitation: learning to express concepts in correct 
mathematical language. 

Free orientation: allowing students to explore the concept 
through the use of open-ended questions. 

Integration: connecting this new knowledge with existing 
cognitive representations. 

The van Hiele model states that movement through the 

levels is accomplished by the teacher guiding the students 

using these phases of instruction. This part of the theory 

has not yet been tested by researchers but does provide the 

stage for the next level of inquiry. 

Understanding Mathematics 

If each person constructs their own meaning and that 

meaning is grounded in and expressed by their own 

experiences and mental structures, then how do teachers 

define mathematical understanding in a learner? Robert 

Davis provides this statement. 
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... when we say that a student is good at 
mathematics, we mean that he or she deals 
with a wide range of mathematical situations 
powerfully and flexibly. This includes 
coping with things that may be novel and 
unexpected. Understanding what you are doing 
IS an important part of this capability. 
(1983, p. 103) 

This definition of mathematical understanding 

precludes rote learning as the major vehicle for teaching 

J^S-thematics. It is useful to consider mathematical 

understanding as containing two components, conceptual and 

procedural. 

Conceptual and Procedural Knowledge 

Understanding is a word that can be defined in many 

ways. One useful partition of the meanings of this word is 

to separate the knowledge components into two categories, 

that of conceptual knowledge and that of procedural 

knowledge. The descriptions and comments that follow 

appear in the work of James Hiebert (1986). 

Conceptual knowledge is characterized most 
clearly as knowledge that is rich in 
relationships. It can be thought of as a 
connected web of knowledge, a network 
in which the linking relationships are as 
prominent as the discrete pieces of information. 
Relationships pervade the individual facts 
and propositions so that all pieces of 
information are linked to some network. 

(pp. 3-4) 

Procedural knowledge, as we define it here, 
is made up of two distinct parts. One part 
is composed of the formal language, or symbol 
representation system, of mathematics. The 
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other part consists of the algorithms, or 
rules, for completing mathematical tasks...they 
are step-by-step instructions that prescribe 
how to complete tasks, (p. 6) 

The type of learning demanded by these kinds of 

knowledge varies. "Conceptual knowledge, by our 

definition, must be learned meaningfully. Procedures, on 

the other hand, may or may not be learned with meaning." 

(p. 8) Although this separation of types of knowledge and 

the learning approach needed to foster each of them is 

clear and distinct, it would be a mistake to believe that 

these forms of knowledge are complete unto themselves. 

There is clear evidence that the related interplay of these 

two forms of knowledge support understanding. 

Linking conceptual knowledge and procedural 
knowledge has many advantages. Usually the 
advantages are claimed for procedural knowledge. 
Procedural knowledge that is informed by 
conceptual knowledge results in symbols that 
have meaning and procedures that can be 
remembered better and used more effectively. 
A closer look reveals advantages for conceptual 
knowledge. Procedural knowledge provides a 
formal language and action sequences that 
raise the level and applicability 
of conceptual knowledge (Hiebert, p. 10). 

There have been many studies that indicate conceptual 

knowledge "helps" in the selection of procedures. There 

are indications that having a strong conceptual base from 

which to build procedural and algorithmic skills gives 

positive results (Lesh et al, 1983; Greeno, 1980; Gelraan 

and Meek, 1986). 
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There have also been indications that procedural 

knowledge can be used as a base from which to expand 

conceptual knowledge (Byers and Erlwanger, 1984; Kotovsky 

et al, 1985; Baroody and Ginsburg, 1986). 

These studies show a need for two kinds of knowledge 

for complete mathematical understanding. The link between 

these two is essential, van Hiele points out that it is 

possible to teach "... a skillful pupil abilities above his 

actual level, like one can train young children in the 

arithmetic of fractions without telling them what fractions 

mean..." (Freudenthal, 1973, p. 25). Geometrical examples 

include students who can calculate the area of a rectangle 

but who have no understanding of what area is and students 

who simply memorize "a square is a rectangle" but who do 

not understand the nested quality of these definitions. 

The phases of instruction model designed by the van 

Hieles attempts to provide a structure for teaching that 

will result in the integration of procedural and conceptual 

knowledge. This aspect of the model has not been 

researched. The research that has been done has focused on 

validating the hierarchical nature of the levels (Burger 

and Shaughnessy, 1986), the appropriateness of the model 

for characterizing geometrical thinking (Fuys, Geddes, and 

Tischler, 1985; 1988; Usiskin, 1982), and connections 

between the model and geometry textbooks (Fuys, Geddes, and 

Tischler, 1985, 1988). Fuys and Lehrer call for further 
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research to determine the relation of this model to broader 

psychological contexts such as Piagetian theory and 

cognitive psychology (Fuys and Lehrer, 1988). 

Individual Differences 

Other work shows the wide range of individual 

differences that occur in every classroom. Students 

display a variety of attributes according to the 

developmental levels of Piaget, the learning style they 

prefer and the mental structure they have formed. Mark 

Driscoll (1986) summarizes the results of the studies he 

reviewed. He reports that every secondary level 

mathematics student: 

(1) is somewhere on the continuum between concrete 
thinking and full formal thinking (Phillips, 1978), 

(2) has a position on each of several cognitive style 
continuums (Fennema and Behr, 1980), and 

(3) differs from many other students in the kind of 
bridge he or she has built-- with language, intuition, and 
the formation of personal rules-- between mathematics and 
the real world (Peck and Jencks, 1979; Erlwanger, 1975). 

To summarize the points made regarding the learning of 

mathematics, mathematical knowledge is constructed from 

conceptual and procedural knowledge by building on 

intuitive understandings. Students in mathematics 

classrooms construct meaning in their own ways and display 

a variety of reasoning styles. 
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The writings of Dina and Pierre van Hiele contain 

descriptions of the five levels of geometric understanding 

they have postulated. Students in geometry classes vary 

along this dimension in addition to displaying the spectrum 

of individual differences already noted. 

The van Hieles note the importance of meeting each 

learner at their own level of understanding. According to 

this theory it is important to make contact with the 

learner's meanings before instruction can begin. 

The geometric figures have already obtained 
certain meanings. These meanings can lead 
to inappropriate actions during the initial 
stages of geometry instruction because the 
mathematician considers appropriate only 
those actions that are based on certain 
logical rules of the game. By starting 
geometry instruction using the logical 
structure of thought one really puts the 
child into an ambiguous learning situation; 
the meanings which the material possesses for 
the children do not fit the operations that 
have to be carried out with the material. 
This undesirable situation can be avoided by 
taking care that already existing meanings are 
utilized as much as possible in the initial 
learning situations (van Hiele in Fuys, 
1984, p. 34). 

These statements are made with regard to geometry. 

However, little has been done to study the role of 

intuition in the learning of geometry. There are many 

studies which indicate that it is easy for students to be 

"successful" in a formal school setting and yet retain many 

misconceptions. The research indicating students may have 

"formal" knowledge without real understanding comes from 
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several academic areas. Studies in arithmetic by Erlwanger 

(1973), in algebra by Rosnick and Clement (1980) and in 

physics by di Sessa (1982) all indicate that students can 

learn to imitate without acquiring internal meanings. 

Robert Davis describes the situation in these words: 

In our view a strong instructional program 
operates both at the formal level 
(i.e. with algorithms, definitions, notations, 
etc.) and also at the experiential level, 
taking pains to make contact with the student's 
existing representational structures, and 
helping the student to build, revise and extend 
these structures by the process of 'assembly' 
(including the process of 'educating your 
intuition') (Davis, 1985, p. 371). 

Madeleine Coutant (1987) reports that students develop 

intuition by encountering phenomena in everyday life. The 

way to build that intuition is to have students control 

those experiences and thus lead the way to insight. 

Classroom Realities 

Several studies have been conducted to determine if 

the van Hiele model of geometry understanding is 

appropriate to American secondary school students. In 

summing up these studies Burger and Shaugnessy (1986) noted 

the following: 

1. The van Hiele levels were good descriptors of 
students' reasoning processes. 

2. No secondary school student reasoned consistently 

at level 3. 
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3. 

4. 

5. 

6. 

There was often a mismatch between the level of the 
teacher s work and the level of student thinking. 

Students may actually regress to a lower van Hiele 
evel after taking a full year course in geometry. 

Over 70 per cent of students beginning a geometry 
course were at levels 0 or 1 (Usiskin, 1982). 

Geometry text books contained exercises at levels 0 
and levels 3 only; that is there were no questions 
of an analytical or informal nature, only strictly 
visual or totally proof oriented (Geddes et al 1982) 

These studies indicate that the van Hiele model is an 

s^PP^opriate construct for analyzing geometry materials, 

instruction, and student understanding. They also indicate 

that a gap exists between the suggested approaches of the 

model and the actual work of teachers and students in the 

classroom. 

Further difficulties with geometry instruction can be 

found by looking at the results of researchers studying 

student understanding of proof. Several studies provide 

information. The Cognitive Development and Achievement in 

Secondary School Geometry Project (CDASSG) addressed many 

issues. One of them was proof. These results are 

summarized as follows: 

...at the end of a full year course in 
geometry in which proof writing is studied, 
about 25% of the students have virtually 
no competence in writing proofs; another 
25% can do only trivial proofs; about 20% 
can do some proofs of greater complexity; 
and only 30% master proofs similar to the 
theorems and exercises in standard textbooks 
(Senk, 1985, pp. 453-454). 
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These results indicate poor achievement in proof 

writing. Then what do we know about student understanding 

of the concept of proof? Edgar Williams surveyed eleventh 

graders and found that "fewer than 30% exhibited any 

understanding of the meaning of proof in mathematics, that 

approximately 60% were unwilling to argue, for the sake of 

argument, from any hypothesis they considered false." 

(1980, p. 166) 

Is this how students see the role of proof? Alan 

Schoenfeld finds that students form "beliefs" about 

mathematics as a result of their schooling. He states 

students believe "that 'proof was used either to confirm 

(a) what they already believed was obvious for intuitive 

reasons, or (b) what the teacher attested to be true, which 

they were to verify. In either case, mathematical 

argumentation was never used to discover anything." (1983, 

p. 21) This does not agree with the reasons the 

professionals give for doing proofs. 

In a further study Schoenfeld noted that "... students 

can be competent at deduction, and competent at 

constructions, but that they will often compartmentalize 

their knowledge in inappropriate ways. The result is that 

much of their knowledge goes unused ..." (1985, p. 259). 

This indicates the poor results stemming from current 

practice. 
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Many students are not becoming competent at the task 

of writing proofs and among those who are competent this 

knowledge is a dead end because the value and meaning of 

proof are not understood. 

Common Practice 

What kind of geometry teaching is common? Several 

provide clues. Brown (1974) found that geometry 

teachers depend very heavily on the textbook. Beaulieu 

(1979) discovered that teachers in a geometry classroom 

talk about 80% of the time. Another study noted that "The 

majority of student time in mathematics class was spent 

listening to teacher presentations, doing seatwork or 

taking tests. Little time was spent in small group work" 

(Crosswhite et al., 1985, p. 56). These results show that 

common practice in the geometry class does not provide 

opportunities for open-ended exploratory activities that 

would give students a good understanding of the meaning and 

value of proof. 

Cognitive Process Research 

What do researchers in cognitive development have to 

offer geometry teachers? Much current cognitive work has 

been concerned with identifying students' misconceptions. 

This kind of research has many attributes that distinguish 

it from other educational research paradigms. It is 
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process oriented; that is, it is concerned more with how 

students are thinking, not just with the correctness of the 

final result. It is domain specific, "...it lays much 

greater emphasis on the particulars of the subject matter 

being studied" (Schoenfeld, in press). One common format 

is that of protocol analysis in which students talk to an 

interviewer as they solve problems explaining what they are 

doing and why they are doing it. These studies provide 

information of two types: how people think about what they 

are doing when they are solving problems and the impact of 

schooling on those reasoning processes. 

Three of these studies are of interest. One has been 

referred to earlier, that of Alan Schoenfeld (1985), in 

which it was noted that students compartmentalize their 

understanding and do not use proof knowledge in solving 

non-proof problems. A second finding of interest is in the 

field of arithmetic. Erlwanger (1973) found that sixth 

grade students were studying a formalistic system of one 

kind or another, were thought to be successful and turned 

out to have gross misconceptions at a fundamental level. 

The persistence of these misconceptions is so strong that 

researchers can predict the errors that students will make 

based on their experimental evidence. 

A last example from this kind of research will 

indicate the scope of the problem. Within the realms of 

arithmetic and algebra, teaching students to solve word 
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problems has always been difficult. One solution widely 

accepted is to teach students to identify "key words". 

That is, to encourage students to pick out of a problem a 

word such as "left" and connect the operation of 

subtraction with this key word. But what has this really 

accomplished? "It has allowed students to obtain the right 

answers without understanding-- and gave them the option of 

not seeking understanding at all" (Schoenfeld, in press). 

This misconception research indicates that students 

are being taught by rote and as a consequence have 

developed much incorrect though very persistent and 

consistent methods of solving math problems. Robert Davis 

argues that some educators have created a system of 

learning which allows students "...to create formalistic 

knowledge of verbal statements (that can be memorized and 

repeated without being understood) and rote algorithms. 

Many curricula today do precisely this. When this happens, 

students’ knowledge is fragile and superficial, allowing 

for severe misconceptions" (Davis, 1983, p. 106). 

Summary 

A classroom situation that allows students to relate 

what they learn to their own belief systems, to engage 

their own intuitions, and to discuss and argue with each 

other about mathematics will prevent this memorized 

learning. 
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A curriculum that is multifaceted, incorporating the 

levels of Piaget and the van Hieles, integrating conceptual 

and procedural knowledge, and providing opportunities for 

small group discoveries and justifications is indicated by 

the work of the theorists. 

Yet, what is the classroom reality? Teachers talk 80% 

of the class time. Teachers spend most class time 

presenting material or discussing homework exercises. 

Teachers depend very heavily on the text book. Text books 

are at van Hiele level 3. 

The predominant model of current instruction is based 

on what Romberg and Carpenter call the "absorption" theory 

of learning. "The traditional classroom focuses on 

competition, management, and group attitudes; the 

mathematics taught is assumed to be a fixed body of 

knowledge, and it is taught under the assumption that 

learners absorb what has been covered." (1985, p. 868) 

The need for curriculum restructuring as well as 

pedagogical tools for classroom implementation has been 

established. 

Teacher as Researcher 

All teachers think about what happens in 
the classroom, but these thoughts are largely 
undocumented and unreported, and if they are 
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reported they are usually anecdotal and only for 
lunchroom discussion. in brief, teacher research 
because It is unplanned and undocumented, has 
no institutional standing, and, as a result, 
few districts provide paid time for teachers 
to do it; thus education is one of the few 
professions where expertise in ’how' to do its 
tasks is assigned to people who do not in fact 
do them (Myers, 1985, p. 2). 

statement describes a situation in which teachers 

are always researching but are rarely researchers. There 

is a new concern in supporting teachers who wish to take on 

this dual role (Myers, 1985). This resurgence of interest 

has led to a rediscovery of a process originally labeled 

"action research" which was prominent in the 1940's. 

Historical Perspective 

Historically, action research was classroom based and 

involved either the teacher as a researcher or, more often, 

a team approach with teachers and researchers 

collaborating. The degree of teacher involvement varied 

considerably. Some teachers were active participants in 

the entire process, designing the experiment, analyzing the 

data, and interpreting the findings with the researcher. 

Other teachers participated only by allowing their 

classroom, their students and themselves to be observed and 

studied without active involvement between the teacher and 

the reseacher. Lewin (1948) saw action research as the 

application of tools and methods of the social sciences to 

understand and improve practice in schools. 
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The goals of such research were to learn how to 

improve school practice. Action research focused on 

immediate application of techniques or approaches to be 

tested, not the development of a theory or the construction 

of a model for nationwide applicability. 

In the 1950's Hodgkinson (1957) attacked the principle 

behind teachers doing action research. His powerful 

statements decrying amateurs doing research resulted in a 

loss of academic respectability for this kind of 

investigation. 

Because of the critiques of action research 
as unscientific and unproductive and the 
emphasis on social sciences and federal 
funding agencies on the separation of 
research and practice, action research in the 
1960's and the early 1970's became inquiry 
done by practitioner with the help of a 
consultant. During these years, action 
research was used to provide inservice 
training and to improve practice rather than 
to produce generalizable results 
(Smulyan, 1984, p. 7). 

Recently there has been more interest in this kind of 

research model. 

Many observers have deprecated action research 
as nothing more than the application of common 
sense or good management. But whether or not 
it is worthy of the term 'research', it does 
apply scientific thinking and methods to real 
life problems and represents great improvement 
over teachers' subjective judgements and decisions 
based on folklore and limited personal experience 

(Best and Kahn, 1986, p. 22). 
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Bolster is in the almost unique position of being both 

a practicing teacher (He spends his mornings as a social 

studies teacher at a secondary school in Massachusetts.) 

and a professor of education. (He spends his afternoons at 

Harvard in that role.) In his consideration of this kind 

of research he states, "The more I became aware of and 

experienced with this methodology the more I became 

convinced that of all the models of research, I knew, this 

method had the greatest potential for generating knowledge 

that is both useful and interesting to teachers" (Bolster, 

1983, p. 305). What is it that makes this model of 

research so appealing for teachers? Contrasting this model 

of research with others will help to elucidate the reasons. 

Characteristics of Teacher Research Work 

Academic research is defined as the process 
of discovering the relationships between 
two or more variables. It requires careful 
disciplined procedures. However, the classroom 
teacher has usually neither the time nor the 
money to engage in rigidly designed, carefully 
controlled research. Rather we can think in 
terms of Webster's definition of research, 'a 
studious inquiry, examination, or investigation,' 
in our case investigation into what is really 
going on in our classrooms (Klinghammer, 
1986, p. 1). 

This statement sets out in broad terms some of the 

contrasts between the research work done by teachers and 

that done by educational researchers who are not 

scrutinizing their own classrooms. In the discussion that 
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follows, these two styles of research will be described. 

According to Simon (1981), the main differences between 

teacher research and pure educational research occur in 

three areas: the kind of data and its analysis, the 

purposes of the results, and the amount of control over the 

experiment itself. 

Data 

In teacher research, the data are likely to be 

extensive and inclusive, based on the multitude of 

experiences in a classroom every day. Data are often 

reported in terms of general trends rather than analyzed by 

statistics. The findings are generally believed if they 

are corroborated by the experiences of other teachers 

rather than verified by the significance tests of 

statistics. 

On the other hand, in pure research the data would be 

tightly defined and limited to a small number of variables 

for a specific prestated purpose. Once obtained this data 

v^ould be subjected to careful analysis using statistical 

tests to determine the validity and the generalizability of 

the findings. 

Purposes 

In teacher research, the purpose of the investigation 

is classroom related, for example; to determine a solution 

46 



to a class problem, to study a type of lesson to see if it 

promotes learning in the students, or to determine the 

effect of certain teacher behaviors on the students. The 

object of the study is to gain information on what is 

happening in the teacher's own classroom so that the 

teacher can make better educational decisions. 

Researchers are interested in more general 

information. They are not just concerned with the specific 

classroom which produced the data. The purpose of the 

experiment is to produce knowledge which can be shared with 

others and generalized to other situations. The results 

may not be related to school structures at all, but may be 

associated with life experiences in other settings. 

Control of the Experiment 

Teachers have few opportunities to design an 

experimental structure; they must use the existing 

classroom situation as the setting for their study. They 

are limited by circumstance to a particular time period, 

place and subjects. They are also constrained by their 

role as teacher. In that role they must make decisions 

based on what they think is best for each student, not what 

is best for the experiment. The design of the experiment 

is not rigidly controlled, but must be in keeping with the 

general atmosphere of the classroom. "In such a study, the 

designer, 'satisfices', selects a solution, that is which 
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’suffices', to get the job done and at the same time 

’satisfies' the need for a solution which, if not the best, 

is at least better than the other alternative" 

(Simon, 1981, p. 138). 

Researchers can and do create specific experimental 

designs, often choosing their subjects according to some 

preset criteria, using control groups, acting on these 

groups in different ways, and rarely having contact with 

the subjects once the experiment is over. 

In summary, the teacher researcher and academic 

researcher differ in three main areas; the form and 

analysis of the data, the purpose of the experiment, and 

the control of the experimental situation. While it is 

useful to note these differences, it is important to 

remember that most research will not completely fit either 

description, but rather will display characteristics of 

both. A more realistic picture would be a spectrum of 

research types with these descriptions providing the 

endpoints and with most studies lying somewhere in between. 

Definition of Teacher Research 

What then is the definition of teacher research? 

Myers notes that "Dixie Goswami, for one, solves the 

problem by defining teacher research as naturalistic 

inquiry procedures which do not result in statistical data 
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toward which journals of education are so heavily biased." 

(1985, p. 4) But many studies display such characteristics 

and some teacher studies do include statistical analysis. 

So this definition is clearly lacking. One could consider 

the style of Oswald Veblen who, when asked to explain what 

geometry was, said, "geometry is what geometers do" 

(Allendoerfer, 1969, p. 165). So perhaps teacher research 

is simply research that teachers do. 

The Value of Teacher Research 

Elliott speaks of the value to the teaching profession 

of this kind of research. "Educational action research is 

not only practical but emancipatory." (1987, p. 165) In 

reporting about the experiences of teachers who were taking 

graduate course work in educational research and were 

encouraged to do a research project, Williams and 

Loertscher (1986) noted that naturalistic methods lent 

themselves to the study of education. They suggest 

teachers can learn to use naturalistic approaches in 

dealing with their students and evaluating their own 

effectiveness. 

Margaret McIntosh, a teacher who has been involved in 

several self-designed research studies summarizes her 

experiences in this way: 

I do not recommend that all educational 
research be conducted in intact classrooms 
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by teachers, but I do propose more such 
'action' research be encouraged - especially 
as opposed to the research that involves 
what Eisner (1984, p. 451) calls 'educational 
commando raids to get the data and get out. ' 
Being a teacher researcher has had a positive 
impact on colleagues, (who appreciated the 
boost), students (who are the raison d'etre 
for teachers), and for the researchers 
themselves. (1984, p.8) 

Teachers involved in this aspect of classroom life are 

natural participant observers in their own classrooms and 

are committed to using their results to improve educational 

practice in the future. In fact, Erickson calls for more 

work of this kind. 

If classroom teaching in the elementary 
and secondary schools is to come of age 
as a profession - if the role of the teacher 
is not to continue to be institutionally 
infantilized - then teachers need to take 
the adult responsiblity of investigating 
their own practices systematically and 
critically by methods that are appropriate 
to their practice. (1986, p. 157) 

Teachers who define their own problem, design a 

reseach project to test a solution, and then adapt their 

practices according to these results demonstrate the 

potential power for educational change embedded in the 

construct of teacher as researcher. 

Gender Issues and Teaching Methodology in Mathematics 

The growing crisis in the effectiveness of mathematics 

education, most severe among females and minorities, has 
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been well documented (Carpenter et al., 1983). 

Furthermore, there is a substantial body of evidence which 

indicates that although young women may excel during the 

elementary grades, by the high school years males perform 

significantly better on most measures of mathematical 

achievement (Lee and Ware, 1986; Peterson and Fennema, 

1985). These differences tend to show up by ages 13 to 17 

and are independent of formal educational experiences 

(Benbow and Stanley, 1980; Carpenter et al., 1984; Lewis 

and Hoover, 1983). 

In the report on the Fourth National Assessment of 

Educational Progress it was noted that gender related 

differences between thirteen-year-old male and female 

students is small, but when comparing seventeen-year-old 

male and female students this gap, though less serious than 

in the past, is still significant. The same report showed 

that course-ta]cing behavior varied for the 

seventeen-year-olds. "Significantly more males than 

females, however, reported taking precalculus or calculus 

courses..." (Silver et al., 1988, p. 724). 

In order to determine specific information on how 

these differences are played out in classrooms, many 

aspects of students' mathematical lives have been studied. 
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The results below provide a flavor of these studies. 

Women enroll in fewer advanced mathematics classes 

(DeBoer, 1984). 

Among students who are doing well in advanced math and 

science courses, women are less confident and have a lower 

self concept than the men students (Fennema and Sherman, 

1978) . 

Women students are more likely to characterize 

mathematics as less interesting and less useful than other 

subjects than are men students (Fox, 1981; Lips, 1984; 

Fennema and Sherman, 1978). 

Women display more negative attitudes towards 

mathematics than do their male counterparts (Meece, 1981). 

Women suffer from math anxiety to a greater and deeper 

extent than do men (Tobias and Weissbrod, 1980). 

This group of studies and many more like them have 

made clear the differences that exist between the 

achievement and attitude of male and female students. 

Many points are less clear. Are these differences due 

to purely physical states? Are these differences a 

sociological phenomenon, having more to do with our culture 
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than physical selves? Are these differences amenable to 

changes created by our educational system? Some research 

has been done on these issues. 

One means of attack is to determine if there is a 

phsical explanation to these differences. in 

studies reported by Peterson (1983), Luchins (1981), and 

Fennema and Ayer (1984), it has been documented that 

biology alone is not the cause of these differences. 

It would seem then that affective variables and the 

effect of socialization are more likely to explain these 

differences. This avenue of study has led to many 

projects. 
J 

The impact of differential parental expectations has 

been explored by Petersen (1983) and Stage et al. (1985). j 

j 

I 

The role of attribution and its differences between 

men and women has been explored in studies by Enemark and 

Wise (1981) and Wolleat et al. (1980). 

Wigfield (1984) has noted the importance of beliefs 

and attitude toward success in mathematics classes. 

Pedro (1981) noted that students' perceptions of the 

usefulness of mathematics to them is a factor on which 

males and females vary. 
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Another construct under investigation is sex role 

conflict. This occurs when male or female students are 

successful in domains that are traditionally associated 

with the opposite sex (Smead and Chase, 1981; Petersen, 

1983 ) . 

These studies all point to various influences which 

impact male and female students differently and may be 

implicated in causing the gaps noted. However it is not at 

all clear if these influences are the root of the problem 

or simply another sympton. 

Taken as a whole these studies provide a picture of an 

educational system which is a reflection of the culture. 

The explanations that are most likely to be helpful to 

educators in the future are those which take the 

socialization aspects into account. 

Pedagogical Considerations 

None of the studies cited provides a hint as to what 

pedagogical tools could help to lessen these disparities. 

There are some indications that the educational system, the 

curriculum, and prevalent teaching styles favor the males 

in our schools. "Traditional teaching may tap boys' 

strengths more effectively than girls'" (Featherstone, 

1986, p. 2). 
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It is the investigator's belief that the teaching 

methodology which supports geometric understanding 

discussed in the first part of this chapter will also 

provide an atmosphere to help counteract the negative 

influence of these gender imbalances. 

The learning cycle proposed as a curriculum format 

involves several teaching tools. Five of these will be 

discussed as they apply to geometry instruction. The 

possible impact of each tool on female students will be 

explored. 

Use of Group Work 

To implement the discovery-type geometry curriculum 

being recommended, small group exploration, discussion and 

argument is essential. The cooperative group method of 

instruction is the most appropriate means to teach this 

kind of conceptual mathematics. 

A summary of the research on discovery learning notes, 

"The general conclusion is that discovery is often less 

effective than exposition for immediate learning, but is 

better for retention and for transfer to new situations" 

(Bell et al., 1983, p. 171). 

Small group work is most appropriate during the 

exploration phase of the learning cycle. It can also be 

used effectively during the intuition phases by providing a 
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forum for students to discuss with each other what they 

believe to be true about the concept. in this way they 

challenge each others' beliefs. 

The cooperative learning models of Slavin, and Johnson 

and Johnson have been tested extensively in the elementary 

schools to determine their effects. In his review of the 

research literature on cooperative learning, Slavin (1987) 

reports that when considering cooperative learning studies 

which involve two particular aspects, group goals and 

individual accountability, effects on achievement have been 

consistently positive; 34 out of 41 such studies (83%) 

found significantly positive achievement effects. 

Johnson and Johnson (1984) summarize the worlc of well 

over a thousand studies which indicate that cooperative 

learning promotes greater mastery and retention of facts 

and concepts, greater interpersonal and small group slcills, 

greater development of higher level reasoning, greater 

motivation for success, greater affinity for classmates, 

more positive attitude toward subject matter, higher self 

esteem, and greater social maturity. 

In spite of this overwhelming research evidence 

indicating the positive effects of cooperative learning, 

little work has been done on the secondary level. A few 

studies in the realm of mathematics learning are noted 

here. One study does indicate that this teaching tool has 
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positive effects for older students as well as those in 

elementary grades. Sherman and Thomas conducted a study in 

general mathematics classes, in this study two classes 

were taught the same content unit; one class was taught in 

the traditional individualistic fashion, the second was 

taught using Slavin's cooperative group approach. They 

report "...the cooperative group demonstrated significantly 

higher achievement on the post-test than the 

individualistic group" (Sherman and Thomas, 1986, p. 6). 

Small group work has been shown to be an effective 

means of involving female students. "In elementary schools 

competitive math activities tend to favor the boys, 

cooperative math activities tend to favor the girls" 

(Berliner, 1987, p. 11). 

Use of Computers 

Another recommendation for geometry exploration is to 

incorporate the use of the computer into the geometry 

curriculum. The LOGO language and the use of the Geometric 

Supposer(s) allow students to make and test their own 

conjectures. 

Previous work on this topic has been done by Susan 

Scally using the LOGO language to support geometric 

understanding. Scally's research study attempts to bridge 

the gap between middle school study of shapes and 
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properties and the tenth grade treatment of formal 

deductive geometry by providing ninth grade students with a 

better understanding of geometric relationships using the 

LOGO language (Scally, 1986). Another study (Olive and 

Lankenau, 1987) indicates the power of the LOGO computer 

language to enhance students non-verbal cognitive 

abilities. 

Studying the effects of teaching with the Geometric 

Supposer(s), Yerushalmy (1987) notes two aspects of student 

behavior which change after they study with the computer 

software: their attitude toward geometric diagrams and 

their method of attacking a problem. 

There is some indication in the literature that 

computer use may favor males (Fuchs, 1986), but those 

results were not based on computer activities in geometry 

but rather were related to mathematical games on the 

computer or Computer Assisted Instruction. It is not clear 

if the same factors will be present within a geometry 

curriculum. 

Use of Writing 

Using writing as a pedagogical tool for learning is 

appropriate at all levels of the learning cycle. During 

the intuitive stage it allows the students to explicitly 

state their current belief. At the exploration phase it is 
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a way of recording and reporting their results. During the 

formalization phase it provides a way of stating what they 

have proved and sharing that proof with others. At the 

final intuitive phase, writing is a means of stating their 

understanding. 

Johnson reports that writing can help the mathematics 

student in several ways. "Students who are required to 

^^^st do considerable thinking and organizing of their 

thoughts before they write, thus crystallizing in their 

minds the concepts studied." (1983, p. 117) 

In work by Nahrgang and Petersen (1986), journal 

writing in mathematics class was studied. They did not 

find any strong relationship among the variables studied 

(test scores, attitudes and writing), but they did note 

that the students used the journals extensively to think 

about the mathematics being explored in class and that the 

students viewed the journals in a positive light. 

Another study investigating the usefulness of journal 

writing and mathematics was conducted at Michigan State 

University. In this work it was shown that students who 

did journal writing about the mathematics presented in 

class scored equally well on examninations as those who were 

assigned traditional drill and practice problems 

(Young, 1985). 
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In SGcondary school matheinatics, one study of ninth 

graders indicated that "... writing about mathematics had 

made an impact upon the math averages of even students who 

were marginal or below average academically" (Gladstone, 

1987, p. 4). 

Sandra Keith describes the importance of using writing 

in a mathematics class in this way. "Short explorative 

writing assignments can transform the mathematics classroom 

into a dynamic and exciting learning laboratory. In 

explorative writing, students explore their knowledge about 

a topic by writing what they know about it in their own 

language." (1988, p. 714) 

In a summer program designed to improve both the math 

competence and confidence of young women, instructors who 

incorporated writing into their course work report that 

...informal analysis of this pilot project 
suggests that a portion of the success 
achieved by thesestudents can be attributed 
to the writing exercises and subsequent 
discussions. Students' attitudes towards 
themselves and mathematics improved, and 
they now felt more comfortable and competent 
in their math classes (Morrow and Schifter, 

1988, p. 384). 

Use of Manipulatives 

Use of manipulatives is necessary within the learning 

cycle approach during the exploration level. Exercises 

using manipulatives provide the link between the intuitive 
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Ideas of the learner and the concepts he/she is to 

formalize. The use of these materials will provide all 

students the opportunity to act on objects concretely 

before performing mental abstractions. 

Many studies document the power of manipulatives to 

provide the link between concrete and abstract reasoning. 

From an analysis of sixty-four research studies at the 

elementary level, Parham (1983) reported that students who 

had used manipulative materials outperformed those who did 

not as evidenced by achievement scores. This finding is in 

agreement with earlier work of Suydam and Higgins (1977) 

who found that lessons involving manipulatives are more 

likely to produce greater achievement in mathematics than 

lessons which do not involve manipulatives. Canny (1984) 

found that the fourth graders she studied displayed 

significant improvement in problem solving scores when 

manipulatives were used to introduce content. 

Manipulatives should be used not only 
at the elementary level but also at the 
secondary level. Many adolescents and 
even adults find science and math difficult 
because they lack the concrete experience 
from which to make sense of the concepts" 
(Skolnick et al., 1982, p. 52). 

In spite of this research evidence, studies show that 

manipulatives are not used very frequently. Hunting (1984) 

concluded that a lack of use of manipulatives resulted in 
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poor student performance on equivalent fractions tasks. 

This study included students at fourth, sixth, and 

eighth-grade levels. 

Scott (1983) has also deplored this lack of the use of 

manipulatives. In his survey of teachers from kindergarten 

to grade five, he found that few teachers reported using 

manipulatives more than five times a year. The percentage 

of first grade teachers using materials was only about 60%. 

This percentage dropped off each year after first grade. 

In a research study performed in Ontario grade 8 

teachers were surveyed to determine their use of 

instructional aids for teaching geometry. It was found 

that, 

The traditional ruler and compass, 
protractor, and graph paper were the 
basic tools for instructional purposes. 
Laboratory-oriented teaching materials 
such as mirrors and models were used 
infrequently, and more specialized 
manipulative or interactive resources were 
used not at all (Raphael and Wahlstrom, 
1989, p. 175). 

There are some middle school teachers who do use 

manipulatives. Herbert reports that "manipulatives allow 

teachers to create situations that draw mathematical 

responses from the children. Such situations result in 

improvements in motivation, involvement, understanding, and 

achievement — overwhelming reasons to believe that 

manipulatives are good mathematics." (1985, p. 4) 
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The usefulness of manipulative materials in secondary 

school mathematics has not been documented. Largely, this 

investigator suspects, because they are so rarely used. 

Given the earlier documentation on the number of students 

at secondary level who still display concrete reasoning at 

least half the time, a ripe field for study would be the 

connection between the lack of instructional approaches 

involving manipulatives and the poor performance of 

secondary students on mathematics achievement exams. But 

this study has yet to be done. 

The poor performance of female students in particular 

could be related to the lack of manipulative approaches at 

the secondary level. Fennema and Sherman (1978) have noted 

that female difficulties with spatial visualization may be 

the result of less knowledge and experience with 

manipulative materials. Incorporating the use of 

manipulative materials within the classroom could help 

dispel any differences caused by previous experience. 

The factors most critical to the development of 

spatial visualization skills are experience with 

manipulative materials such as constructing and examining 

three dimensional structures, graphing, and modeling 

(Skolnick et al., 1982). Creating classroom environments 

where these activities are included would insure that women 

students will have the experiences needed to form mental 

abstractions. 
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Teacher as Facilitator 

The role of the teacher is not to transfer 
knowledge, nor to command an action, but 
to show and explain reality. The teacher 
should be a companion in the perception of 
reality, and a supplier of techniques to 
retrieve desired information. In this 
approach the teacher's power as manager 
of the educational experience is replaced 
by his participation in a joint intellectual 
venture, his relation with the student is 
not based on authority, but rather on partner¬ 
ship in the pursuit of understanding and change 
(D'Ambrioso, 1981, p. 41). 

The teaching style necessary for successful 

implementation of the learning cycle requires the teacher 

to take on a different role than one traditionally sees. 

The teacher is not a giver of facts, but one who 

facilitates discovery, exploration, and discussion. 

In this style of teaching, "... the teacher no longer 

acts as the embodiment of knowledge or the container of 

secret criteria and so becomes less 'important,' less the 

authority, more a 'coach' or an 'ally' in Elbow's (1979) 

terms, more a 'partner' in the language of Paulo Friere 

(1971)" (Belenky et al., 1986, p. 208). 

In their discussion of the classroom process using the 

Geometric Supposer(s), Yerushalmy and Houde note that new 

roles for both student and teacher are necessary for this 

kind of inductive teaching. They summarized student 

activities in this way: 
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Students worked in pairs at the computer 
laboratory and wrote reports of their work 
together. Students reported their results 
to the class. Students spent the majority 
Of class time discussing and doing geometry 
rather than listening to the teacher talk 
about it" (Yerushalmy and Houde, 1986, p. 422). 

From these statements, one can infer the role of the 

teacher. The teacher is there to pose the questions, to 

serve as a facilitator of discussion and to encourage 

students to pursue the next steps. This model of teaching 

is also recommended for the implementation of the learning 

cycle. 

But this style of teaching is being suggested for more 

than computer laboratories and geometry classes. The 

Educational Testing Service recently issued a report based 

of twenty years of testing done by the US Department of 

Education termed the National Assessment of Educational 

Progress. The results of these assessments have been 

discussed elsewhere in this paper, but of interest here is 

the interpretation of those results. The report titled 

"Crossroads in American Education" (1989) calls for a 

revolution in the classroom. "Students must become doers 

and thinkers rather than passive learners, and teachers 

must serve as guides rather than continuing in their 

traditional, authoritarian roles" (The Boston Globe, 

February 15, 1989, p. 4). 
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In the NCTM document Curriculum and Evaluation 

Standards for School Mathematics it is noted that "For 

instruction to result in the student outcomes specified in 

the NCTM Standards, it is necessary that students 

frequently be given opportunities to explore and 

investigate mathematical ideas, either as part of a 

whole-class discussion, in small groups, or independently, 

and use mathematics to communicate their ideas" (Romberg et 

al., 1989, p. 169). 

Even though the call for this style of teaching is 

coming from many fronts and the need for this change in 

teacher role is implicit in the work of many learning 

theorists, the investigator could find no direct classroom 

research in secondary schools to study the effect of this 

style of teaching on either male or female students. The 

NCTM report cited above calls for "sustained classroom 

observations and ... teacher reports" in order to obtain 

the necessary information about how the mathematical 

content is actually treated during instruction and to 

determine the effect of this approach on student 

achievement and attitudes (Romberg et al., 1989, p. 169). 

Summary 

The first part of this chapter reviewed the materials 

concerning the learning of mathematics in general and that 
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of geometry in particular. it was noted that the geometry 

curriculum should reflect the levels of Piaget and those of 

the van Hieles. The interplay of conceptual and procedural 

knowledge was examined. The classroom realities of 

individual differences, overemphasis on the text book, and 

a preponderance of teacher lecture were described. 

In the second section the background and current 

climate regarding the role of the teacher as a researcher 

was discussed. The value of this type of research was 

established. 

Next a summary of the literature on gender issues in 

mathematics learning was presented. The overall picture 

shows that these differences still exist and that our 

understanding of what socialization factors contribute to 

this problem has grown but is not. complete. 

Finally, the results of studies regarding five 

specific pedagogical tools were summarized. What stands 

out is that few of these studies were performed in 

secondary schools. The studies quoted on using cooperative 

groups and using manipulatives were almost entirely based 

on elementary school subjects. The studies quoted on using 

writing were predominantly done at the college level. Even 

the research results for using the computer were generally 
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middle school students. The consideration of the role of 

the teacher as a facilitator in the classroom as opposed to 

a fact giver has not yet been studied. 

Based on what research has been done, it is likely 

that these five tools could have a positive impact on 

student understanding at the secondary schools; however, it 

is clear that much research in these areas is yet to be 

done. 
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CHAPTER III 

METHODOLOGY 

Overview 

This study has three main components, the development 

of the geometry units and the methodology for instruction, 

the field testing of the lessons, and the investigation of 

female student views towards five pedagogical 

tools used in the approach. The organization of this 

chapter reflects this partitioning. 

The first section will discuss the process and 

procedures used during the first stage of this work, the 

development of the lessons and the teaching guides. The 

second part of the chapter will explain the procedures used 

during the field testing phase of the work. The third 

section of the chapter will describe the methods used to 

determine student views on five teaching tools: the use of 

small group instruction, the use of computers, the use of 

writing, the use of manipulatives, and the role of the 

teacher as a facilitator. 

The Development of the Units 

The objective of the first part of this work was to 

produce curriculum units of geometry which were designed 
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using the question guide as a format. This question guide 

had been developed by the investigator to serve as a 

structure for analyzing and creating instructional units. 

Determining the usefulness of the question guide as a model 

for lesson design was one goal of the study. Each unit 

consisted of six to eight individual lessons. Four of the 

units were field tested during the second phase of this 

work. These four units are: Determined, Triangle 

Congruence, Angles In and Out of Polygons, and 

Quadrilaterals. These are to be found in Appendix A. 

Teaching guides were written to connect these lessons 

with the investigator's learning cycle model for classroom 

methodology. Appendix B contains the teaching guides for 

the four units under discussion. 

Procedure 

These lessons were designed to be incorporated into a 

public school course in geometry, not an experimental 

version of such a course. It is important to the 

investigator, who is also a public school teacher, that the 

materials be useful within a traditional school setting; 

also that the methodology being suggested be one which 

could reasonably be implemented within a conventional 

school environment. Therefore the lessons were designed to 

take into account the accepted textbook and 45 minute class 

period usually available for mathematics instruction. 
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It was the belief of the investigator that units 

designed with this question guide and implemented with the 

learning cycle approach would fill the gap between current 

practice in secondary school mathematics classrooms and the 

work of the theorists in mathematics education such as 

Piaget and the van Hieles. The design of both the 

materials and the methodology was informed by the work of 

cognitive psychologists, educational researchers studying 

student misconceptions in mathematics, and the current work 

being done on implementing problem solving strategies in 

the classroom. These were the goals of the investigator in 

the creation of the units and teaching guides. 

Data Collection 

In order to gather anecdotal information on the 

process of developing the units, the investigator kept a 

journal to record her thoughts and reflect upon the 

interplay of curriculum materials, the question guide, and 

the learning cycle as they affected the decisions 

concerning lesson design. The journal entries provided a 

basis for the written natural history of the process. This 

record serves as the data for the first component of this 

study, the description of the process of the development of 

the materials. 
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Data Analysis 

Thus the first stage, the development of the lessons, 

was documented by the journal of the teacher/investigator. 

These subjective data were analyzed by the investigator by 

rereading the journal. Then the investigator wrote an 

account of the development of one of the units. This 

account will be the first section of Chapter Four. It will 

describe the process starting with the content and 

pedagogical goals of the unit, illustrating the use of the 

ten question guide, and examining the relationship of the 

learning cycle in the production of the teaching guide. The 

result of this part of the study was to produce a natural 

history of the process of the creation of one of these 

units. 

Limitations 

The teacher/investigator both originated data and 

interpreted it. The results of this work, the lessons that 

were created and the description of the process of their 

design, was produced by the teacher/investigator using her 

own journal. This subjective process provides no guarantee 

of bias-free reporting; it does however provide a record of 

curriculum design from the point of view of the teacher. 
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Field Testing 

The second aspect of this study was the field testing 

of the materials and methodolgy. The objective of the 

field testing was two-fold, to actually use the materials 

and methodology with secondary school geometry students and 

to determine what revisions were necessary to improve these 

materials and/or the teaching approach being suggested. 

The field testing was accomplished by the 

teacher/investigator within the structure of the school 

day. 

The implementation of the teaching guide and the field 

testing of these materials was part of the naturally 

occuring work of the teacher. The decision to evaluate the 

lessons according to the teacher's reading of their success 

was a conscious one, motivated by the desire of the 

teacher/investigator to parallel the usual process of 

teacher curriculum design and revision. 

Subjects 

This approach to teaching geometry was field tested at 

a public secondary school in a suburban setting. The 

school has a strong academic bent with 80% of its 300 

yearly graduates attending further schooling. The 

investigator is a teacher at this school. 
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The students in the investigator's geometry classes 

served as subjects in this study. Students were assigned 

to one of these classes by routine computer scheduling. 

For the most part this scheduling was a random process. 

Approximately 60 students were involved. About two-thirds 

of these students were in classes which were grouped 

homogeneously according to their prior achievement in 

mathematics. 

One exception to this random process was made for a 

selected group of students who had been identified as 

remedial. These 7 students were placed in one section 

along with other students who had been randomly selected. 

This section was co-taught by the remedial mathematics 

teacher along with the teacher/investigator. This class 

contained students who had been identified by the school 

system at all levels and is best described as a 

heterogeneous class. 

Procedure 

The students participated in two types of data 

gathering in the initial phase of the study. During the 

first two weeks of school, class time was devoted to the 

following two instruments for the purpose of collecting 

entry level data: The STEP Level IJ test of Mathematics 

Computation by Addison Wesley Testing Service and the STEP 

Level I test of Basic Concepts of Mathematics by Addison 
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^sley Testing Service. The objective of this testing was 

to provide a description of the student population in the 

study in terms of their understanding of mathematical 

concepts and their abilities with mathematical skills. 

During the fall semester these students learned 

geometry using the materials and methodology of the 

learning cycle and the ten question guide. The students 

were asked to evaluate the materials and the teaching 

approach being used. Each class was informed that their 

teacher had been working on constructing geometry lessons 

and that they would be working on those lessons as part of 

regular class assignments. In addition they were 

told that their teacher would solicit their reactions to 

the materials and teaching style. 

Data Collection 

At the end of each unit being field tested the 

students were asked to complete an evaluation form 

concerning the materials and teaching style for that 

particular unit. An example of this form is in Appendix C. 

During the completion of this form the teacher/investigator 

reminded students that she would not be able to identify 

them by name, encouraged them to be honest, and stated that 

she was interested in using their input to modify the 
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^^^terials and methodology for future use. She also 

answered clarifying questions concerning the form itself 

and the lessons it identified. 

The teacher/investigator was the primary source for 

^oH^cting information. Throughout data collection and 

recording she worked at maintaining the balance between 

guaranteeing student anonymity and valuing their opinions. 

The students were assured that the comments on the forms 

would remain confidential and could not have any effect on 

their grades. 

At the same time it was important for the students to 

know that the teacher/investigator had a genuine interest 

in what they had written as a group. In one instance a 

lesson that had been planned but not yet presented was 

modified by the investigator because of the comments on 

evaluation forms of similar lessons in a previous unit. 

This incident illustrates the fluid nature of this work. 

The results from one stage impacted the work of the next. 

To gather additional information as to the success of 

the lessons, the investigator took field notes. She 

recorded her interpretation of the consequences of the 

lessons, how the class felt about the materials, and what 

suggestions for change were indicated. These notes were 

started at school and then reflected upon and completed in 

the journal. In order to differentiate between this use of 
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the journal and the one previously described I will refer 

to these writings as field notes. 

Data Analysis 

During this second stage of the work, both the teacher 

and the students generated data. The field notes of the 

teacher and the evaluation forms of the students each 

described classroom activities from their own point of 

view. The teacher analyzed this data by summarizing the 

comments on the forms and comparing them with her own 

notes. Similarities and differences in the views of the 

teacher and those of the students were noted. Suggestions 

for revising the lessons were made as a result of this 

analysis. 

Working from the field notes and the student 

evaluation forms, the teacher/investigator summarized the 

class activity and evaluation form results for one of these 

units. The second section of Chapter Four will contain a 

day by day reconstruction of a class working through one of 

the units and their comments on the evaluation forms. This 

description is one of the results of the field testing 

portion of this study. The suggested changes in the 

lessons and teaching guides were compiled as a result of 

the field testing. 
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Limitations 

In order for this study to be considered in the proper 

perspective, the following limitations must be kept in 

mind. 

The study was small in scale involving as it did 

approximately 75 subjects in one school over a time span of 

four months. It was limited to one teacher/investigator 

who presented the classroom material, gathered the data and 

performed the data analysis. 

This fact that the investigator was also the classroom 

teacher makes the data obtained idiosyncratic and limited 

to the study itself. The input of the students may have 

been affected by the fact that the investigator was also 

their teacher. 

The subjective data from the student evaluation forms 

and the classroom field notes were analyzed by the 

investigator, not an impartial evaluator. The results and 

findings from the study are therefore not free from the 

subjective bias of the investigator. 

These limitations indicate that the results of this 

study are not generalizable to the population as a whole. 



Five Pedaqocfical Tools 

The third component of this study involved student 

opinions concerning the use of five specific teaching 

tools. Field testing the materials written for this study 

and implementing the suggested teaching methodology 

provided the investigator with information concerning this 

teaching approach. Two questions were considered, what is 

the effect of this style of teaching on male and female 

students? Do student views towards components of this 

teaching style change over the course of time? In order to 

answer these broad questions, students were queried to 

determine if the impact of this style of teaching was the 

same for all students or if it varied with gender. 

The suggested teaching approach involved five teaching 

techniques not commonly used in secondary school 

mathematics classes: use of small groups to solve problems 

cooperatively, use of computer software such as LOGO and 

The Geometric Supposer(s), use of writing to learn 

mathematics, use of manipulative materials, and a change in 

the role of the teacher from one who explains and gives 

information to one who asks questions, listens, and 

facilitates discussion. 

Information was gathered to help answer the following 

more specific questions. Each question was designed to 
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elicit information concerning one of the five pedagogical 

tools used in the implementation of this approach. 

1. Do students identify group work as a positive, 
neutral, or negative influence on their learning 
of geometry? 

2. Do students identify the use of the computer 
software (The Geometric Supposer(s) and LOGO) as 
a positive, neutral, or negative influence on their 
learning of geometry? 

3. Do students identify the use of writing as a 
positive, neutral, or negative influence on their 
learning of geometry? 

4. Do students identify the use of manipulating actual 
objects as a positive, neutral, or negative 
influence on their learning of geometry? 

5. Do students note the role of the teacher as a 
facilitator not as a giver of fact as a positive, 
negative, or neutral influence on their learning 
of geometry? 

Data Collection 

To gather data on these questions the investigator 

asked students to complete a questionnaire expressing their 

views toward these five pedagogical tools. This form was 

titled "Summative Evaluation". (See Appendix D.) 

The first questionnaire was distributed early in the 

term before any of the field tested materials were used. 

This initial form provided a base line from which to 

measure differences over time. The same questionnaire was 

used at the end of this work, after the fourth unit was 

completed. 
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The students were asked not to write their names on 

the form but to indicate their gender. The investigator 

explained that she was interested in knowing if the results 

showed any differences between the opinions of male and 

female students in her classes taken as a whole. 

During the completion of this questionnaire the 

teacher answered clarifying questions and encouraged the 

students to express their true feelings, reminding them 

that she would not be able to identify anyone by name. 

During the discussion the teacher/investigator explained 

that the blank line was provided in order that students 

would be able to write in a class activity not previously 

listed. She also indicated her interest and willingness to 

use the information provided to modify or adapt class 

practices. 

Data Analysis 

During this third phase of the study, data were 

derived from the student questionnaires and was analyzed by 

looking for general trends and sorted by gender. The 

investigator was particularly interested in noting any 

differences between the perceptions of male and female 

students as to the usefulness of these teaching methods. 

In order to determine any change of opinion, a 

comparison of the data received at the beginning of the 
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study and the data recorded after the fourth unit was field 

tested was made. This information was used to describe the 

general feelings of the students towards these methods. 

The results of this analysis will form the third section of 

Chapter Four. 

The data were not subjected to any statistical 

analysis beyond noting general trends. This was in keeping 

with the objective of this work, to produce a natural 

history of the process of developing and field testing 

materials for a geometry unit in a public school setting. 

Limitations 

Given the small number of students involved and the 

complicating factor that the investigator was also the 

classroom teacher for these students, there was no attempt 

to subject the data that these questionnaires provided to 

statistical tests. The data were used to note the general 

feelings of the students. This questionnaire, while not 

statistically significant, was however a part of the 

process, a means of recording whatever opinions the 

students were willing to express at the time. The 

questionnaire also provided the students with a specific 

vocabulary with which to discuss details of classroom 

methodology. The results from this phase of the study are 

not generalizable beyond the study itself. 
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Summary 

In summary, each of the three stages of this study 

created data of a different kind. Each kind of data 

required its own method of analysis. Each stage also 

required a format for reporting the findings which was 

appropriate to the kinds of data gathered and analyzed. 

I. The Development Stage: Data were in the form of a 

journal and was analyzed by the investigator who summarized 

the process and described the materials created. The first 

section of Chapter Four will report the findings of this 

stage of the work. This section is a detailed account of 

the development of one of the four units that was field 

tested. The description provides a natural history of the 

design of the lessons, the lessons themselves, and the 

creation of the teaching guide which illustrates the 

process of using the learning cycle approach. 

II. The Field Testing Stage: Data were from student 

evaluation forms and the field notes of the investigator. 

This was analyzed by the investigator comparing the 

comments of the students on the student evaluation forms to 

the field notes made after those classes. The second 

section of Chapter Four includes a characterization of the 

classroom implementation of the lessons of one unit, the 

results of the student evaluation forms, a summary of the 
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teacher/investigator's field notes, and the suggestions for 

the revised lessons. 

III. The Five Pedagogical Tools: Data from student 

questionnaires were analyzed by looking for trends. Data 

were also sorted by gender. The third section of Chapter 

Four contains a summary of the data concerning the points 

of methodology that were investigated. These results will 

be examined as a whole and also sorted and reported 

according to gender. The data will also be examined to see 

if any change occurred over the course of the study. 
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CHAPTER IV 

RESULTS 

This study had three components, the development of 

the units, the field testing of the units, and a survey of 

students' views on teaching methodology. The results of 

these components are discussed in this chapter. The first 

section contains a detailed description of the process of 

the development of one of the units. The second section is 

a characterization of a class working through this unit as 

part of the field testing experience. The last section 

contains the data from the student questionnaires 

concerning the use of five specific pedagogical tools. 

The Development of the Units 

The first component of this work was the development 

of the units to be field tested. In previous work, the 

investigator had formulated a learning cycle approach to 

instruction. This construct of learning asserted that the 

teacher must first elicit the learner's intuitive beliefs 

about a concept, then provide experiences for exploration 

of the concept in various formats and modes so as to move 

the learner to formalize a new belief about the concept. 

This learning cycle is discussed in Chapter One. 
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The investigator organized a curriculum around this 

principle so as to implement and test this construct of 

instruction. 

Geometry 

The curriculum area of geometry was chosen for several 

reasons. The investigator had broad experience teaching 

geometry to students of differing ability levels over a 

period of time. She had used a variety of textbooks and 

problem solving materials, and was familar with the 

available computer software. This background meant that 

the investigator was building on a knowledge base of 

previous curriculum work. 

Another reason for working with geometry was the 

flexibility it offered. The content of a geometry course 

is less defined than that of many other secondary school 

mathematics courses. The course content varies from text 

to text and school to school. The demands of the 

curriculum are therefore reduced. This makes it easier to 

plan a variety of lessons. The teacher can feel a sense of 

freedom in this curriculum area that is not often felt in 

other courses. 

As a subject matter, geometry is especially 

interesting. It displays the extremes of being both very 

physical and also very abstract. It can be approached from 
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a practical, down-to-earth perspective by emphasizing the 

ways shapes are used in daily life. Equally it can be 

highly formal and abstract with teacher emphasis on the 

deductive nature of mathematics. Elucidating the 

connections between these approaches was appealing to the 

investigator. 

An additional factor in choosing this subject was that 

most students at the secondary level enroll in this course. 

So the materials that were to be developed would be used by 

students of all abilities. This would also indicate that 

the materials and approach, if successful, are appropriate 

to students of all ability levels. 

Finally, geometry was chosen because there was an 

extensive amount of theoretical work that had yet to be 

applied to the geometry classroom. The learning theories 

of Piaget and the van Hieles provides a solid foundation on 

which to plan this curriculum. The work of the researchers 

in cognitive psychology indicated the direction for a 

teaching methodology. The investigator was interested in 

determining how to apply these ideas to her classroom. 

The Question Guide 

In thinking about the learning cycle and reflecting on 

the work of the theorists in mathematics and geometry 

education, the investigator was convinced that there was a 
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need for a variety of exercises at the exploration level. 

The question guide was developed in response to the need of 

the lesson designer to evaluate the materials being made. 

This question guide is explained in Chapter One. The guide 

would help to determine if some aspect had been neglected 

in the construction of the lessons. It is meant to provide 

a structure for the lesson writer to be sure that every 

concept being considered is discussed in several modes. 

The investigator wanted to test her belief that the 

question guide would function in this way during the 

development of the materials. 

Classroom Considerations 

The lessons that were developed imply a teaching 

style. The investigator made several assumptions about the 

style of teaching and kind of classroom that served as a 

background for this work. This will be discussed here in 

general and made more specific by the lessons and teaching 

guides that follow. 

A basic premise was that students construct their own 

understandings based on their previous knowledge and 

current experiences using the mental representations they 

prefer. This belief ruled out careful explaining as the 

primary teaching method. 
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An implication derived from this premise is that 

students need to be active in the classroom, actually 

carrying out experiments on objects, before they can be 

expected to formalize knowledge and understand it 

abstractly. 

The teacher's role is determined by these beliefs. 

The teacher's main job is to listen. That is not to say 

that the teacher does ..not set the agenda, control the 

classroom, and organize the materials; but that the teacher 

must give the students the power to define how to do the 

task in their own (or their group's) way. 

Not only must students be active in the classroom, but 

they must learn to judge for themselves the correctness or 

reasonableness of an answer or an explanation. It is not 

the teacher's job to say "right" or "wrong" but rather to 

see that the students work on a problem until they are 

convinced they understand it. 

The principlos implied in these statements served as 

the framework for the investigator in the planning of the 

lessons. What follows is an account of the use of the 

learning cycle to create the lessons to be field tested. 

This description is based on a review of the investigator's 

journal writings. One of those units. Angles In and Out of 

Polygons, serves as an example of how the lessons were 

devised using the question guide to implement the learning 
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cycle approach. In keeping with the informal nature of 

^J^itings, the natural history of the development of 

this unit on polygons will be written in the first person. 

Course Constraints 

The first activity in the development of the lessons 

was to take a whole year view and to identify the main 

units that would be taught. In planning these units, I 

accepted several constraints. These units should contain 

material from the geometry course traditionally taught so 

that my students could take the departmental exams in 

January and June along with their schoolmates. 

The units had to be written so they could be taught to 

students of all levels of ability. I wanted to use the 

same materials regardless of the achievement level 

designation of each class. This was important to me 

because I believed that the lowest level students had many 

abilities that were not brought out by traditional 

teaching. Often curriculum goals are "reduced" for these 

students. I wanted to make no assumptions about the 

"limitations" of basic level students but rather I wanted 

to present the same questions to all my students. My 

response beyond that would then be based on their method of 

working with the materials. 
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Additionally, ths l©ssons had to b© compl©t©d within 

th© structur© of th© usual sch©dul©, 45 minut© math©matics 

class©s m©©ting s©v©n out of ©v©ry ©ight days throughout 

th© y©ar. 

T©xtbooks if assign©d would b© ©ith©r of two commonly 

us©d at school. Th©r© was to b© no sizabl© purchas© of n©w 

r©sourc©s. 

All stud©nts in ©v©ry class would do all th© l©ssons 

in ©ach unit. Ev©n though I did not b©li©v© a lin©ar 

approach through th© mat©rials was n©c©ssary, I had plann©d 

on impl©m©nting th© units in that fashion. 

Giv©n th©s© constraints I started th© planning process 

by perusing th© two commonly used text books in my school 

system. Geometry For Enjoyment and Challenge by Rhoad, 

Milauskas, & Whipple published by McDougal, Littell and 

Geometry by Jacobs published by Freeman. A complete list 

of all the resource materials I used in the deyelopment of 

these units is included in Appendix E. 

In the rotating schedule of the school system each 

class meets for seyen days and then skips a day. I 

determined that the second quarter would contain fiye of 

these eight-day time blocks. Assuming that one of these 

periods would be taken up with semester reyiews and 

testing, I planned on being able to field test four units 

in the second quarter. 
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The Content for the Units 

I considered the usual content for that time period in 

geometry; triangle congruence, types of triangles, formal 

proofs of triangle congruence, parallelism of lines, and 

quadrilaterals. In keeping with the findings of the 

researchers I had determined that formal two column proof 

would be done late in the year (if at all). I also knew 

that triangle congruence, which is the building block for 

the rest of the course, was not usually understood by 

students. So I planned the following content areas for 

second quarter: 

1. Determined; During which the students would build 
up a physical understanding of the principles 
behind congruence. 

2. Triangle Congruence: During which we would explore 
the conditions that determine a triangle and the 
various kinds of triangles. 

3. Angles In and Out of Polygons: During which 
students would investigate the relations among 
angle measure and shape. 

4. Quadrilaterals: During which we would investigate 
the conditions for making various quadrilaterals 

and the relations between them. 

These units were not developed in sequence. I started 

with Angles In and Out of Polygons. I made that decision 

because I felt that I had many ideas on how to approach 

this topic and I wanted to see if the question guide would 

help me in organizing those thoughts. I did need to 

consider what students would be likely to know as they 
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entered this unit, so I jotted down what I thought first 

quarter work would cover: classification, the use of Venn 

diagrams, similar figures, geometric vocabularly, and 

problem solving. 

Assuming that Angles In and Out of Polygons would be 

the third unit in the second quarter meant I would plan on 

students already completing the units on Determined and 

Triangle Congruence. It bothered me a little to be working 

on the units out of sequence, but I was sure I knew where 

to begin with Angles In and Out of Polygons and I felt a 

little vague about the Determined unit. I wanted to see 

how the format would help me and I assumed that what I 

learned in designing this unit would provide a basis for 

working on the others. 

I did decide to work on one unit at a time. I knew I 

would be distracted by other ideas I might want to use 

later, so I created files on my computer for all the topics 

I planned to field test. This system provided a way of 

recording useful exercises whenever I came across them and 

at the same time it kept me focused on my main goal. 

In the discussion that follows I will refer to the 

lessons and teaching guide for Angles In and Out of 

Polygons. They are in Appendices A and B respectively. I 

will abbreviate this unit as A in P. 
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Tiling Lesson #1 

I knew how I wanted to open the A in P unit. The 

introductory lesson would have students physically 

determine if given shapes tile. This lesson which I called 

"Tiling" was intended to provide students with an informal 

sense of the meaning of this concept. By referring to 

squares and circles, shapes that are very recognizable to 

the student and ones which fairly obviously do and do not 

tile, I believed that students could intuit the meaning of 

tiling. During the unit I would work on developing their 

abilities to determine a rule for tiling in more 

complicated figures. 

The objective of this lesson was to get students 

thinking about how figures fit together, to notice the 

patterns in the world in which they live, and to make them 

wonder if there is a rule to determine what figures tile 

and which do not. 

Possible Text Book 

As I was looking through text books to get ideas, I 

came upon a text that I had used some ten years before. 

Geometry A Guided Inquiry by Chakerian, Crabill, & Stein 

published by Houghton Mifflin. It was intended to be used 

as a guide for small groups of students working through the 

geometry content. It does not have pages of text followed 
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by practice problems, but rather the text itself is full of 

questions for students to answer as they read the book. 

The students are often directed to discuss what they think 

with their classmates or to compare their answers to those 

of others in the class. 

This book has another feature which I found 

compelling. It starts every chapter with a problem to be 

solved physically, by a scale diagram or actual 

measurement. This problem is then eventually returned to 

later in the chapter when more formal knowledge can clarify 

it. This motivating problem shared some of the traits that 

I felt were important at the intuition stage. It could 

make the learner aware of their current understanding of 

the topic and it called into question what they knew, 

providing the impetus for further work and a possible 

change in this belief. 

I wondered if this book was still available in class¬ 

sized quantities at my school. I was quite committed to 

working without a textbook, because I knew how dominating a 

book can be. Two years before when I was implementing a 

problem solving component in my geometry course, I felt 

pressure to cover the regular content as well as provide 

time for my students to work and discuss the non-routine 

problems. By designing my own lessons away from any text, 

1 felt I had more freedom to decide what the course content 

was. It would also ensure a greater flexibility in 
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r©spond.ing to th© work of th© class. Y©t I was intrigu©d 

th© id©a of using this book and conn©cting it to my 

^^PPtoach. At this point I d©cid©d to us© th© book as a 

r©sourc© of my own but not issu© th©m to stud©nts. 

Angl© M©asur©s L©sson #5 

Th© n©xt l©sson I wrot© was Angl© M©asur©s. I want©d 

stud©nts to form a link b©tw©©n th© shap© of a figur© and 

its angl© m©asur©s. I also want©d m©asur©m©nt to convinc© 

stud©nts that th© sum of th© ©xt©rior angl©s was always 360 

d©gr©©s. As I ©nvision©d th© l©sson, I consid©r©d a whol© 

class activity. Th© data would b© r©cord©d on th© 

blackboard and w© would analyz© it as a group. How©v©r, I 

kn©w I want©d to us© at l©ast on© comput©r ©x©rcis© during 

this unit. At this tim© I had only thr©© Appl© comput©rs 

which I could us© and class©s of 18 to 24 stud©nts. Sine© 

I want©d groups of two of thr©© at th© comput©rs, I n©©d©d 

to split my class in thirds. I decided to writ© th© Angl© 

Measures lesson in enough detail so that student groups 

could work through it with a minimal amount of teacher 

intervention. 

Computer Lessons Lessons #2 & #3 

I wanted to integrate th© us© of Th© Geometric 

Suppos©r(s) into th© curriculum I was designing, but I felt 

restricted by having only three computers available. I 
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chose the Supposer lessons from the suggested materials 

that the school system had purchased. Both of these 

exercises accomplished my goals. They reinforced the 

definition of exterior angle, provided a structure for data 

gathering and analysis, and they anticipated theorems the 

class would develop in the future. Those were the content 

goals. I also wanted to have lessons that were easy for. 

the students to accomplish without my help. I also assumed 

that by this time in the course, students would be familar 

with the computer system and software and would be able to 

concentrate on the geometry of the problem. 

The LOGO lesson was written as an aside. I was not 

even sure if the school system owned LOGO. I was somewhat 

familar with LOGO due to summer coursework I had done. I 

wanted to design a lesson myself that used LOGO. In 

reading textbook problems, I noted that the sum of the 

degrees around a point equalling 360 was implied in many 

problems but never addressed outright. The motivation for 

the LOGO lesson grew out of that notion and out of my own 

experience as a learner in the LOGO environment. 

Regular Polygons Lesson #4 

The shape of this lesson was motivated as much by the 

physical constraints of the teaching situation I was in as 

by pedagogical concerns. In order to make the computer 

lesson available to groups of three, I had decided to use 

97 



three class days and to divide the class among three 

activities. One third of the class would work at the 

computer, one third would work on Angle Measures Lesson #5, 

and the remaining groups would construct regular and 

nonregular shapes. Then over the next two class days the 

groups would change places, until all students had 

accomplished all three tasks. 

From the readings in cognitive psychology, I knew that 

most people associate stereotypical shapes with words such 

as hexagon and quadrilateral. I wanted this lesson to 

broaden the students' views of these terms. I wanted them 

to see a spectrum of shapes all labeled hexagons. I also 

knew that in order for that to happen the students must 

create the shapes for themselves. The opening questions on 

the assignment using the Venn diagram leave these questions 

unresolved. Exercises 6 and 7 are designed to allow 

students to explore the variety of shapes which satisfy a 

given condition. 

In addition I wanted my students to question the 

connection between equal sides and equal angles. Intuition 

might tell them that one demands the other, but that 

intuition is based on triangles and only triangles. The 

questions #6 and #7 provide students with an experience to 

make them question this assumption. 
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I designed the homework questions to reinforce 

learnings from the lesson, to introduce questions in case 

the students did not pose them during the classwork, and to 

provide an opportunity for informal deduction. The issue 

of proof bothered me. I had no trouble discarding two 

column proof from the curriculum. It had been clear to me 

for a long time that students understand little of the 

power and meaning of this form of proof and the research 

evidence supported my experience. 

At this point the term 'informal deduction' was 

appealing and yet meaningless. My work studying the 

theorists was good background, but it was up to me to 

interpret their findings. Informal deduction had the sound 

of something solid, real, and sensible, I could agree that 

it was a vital step for students when I thought abstractly 

about pedagogical issues. But the term also had no 

connections for me at the concrete level, actually working 

with students. What would informal deduction 'look like'? 

I did not resolve this issue as I wrote the lesson. I 

decided to think about it more later. So I responded to 

the content oriented goals and wrote true/false questions. 

At this stage I was feeling confused. I had created 

lessons based on my initial ideas but I was out of ideas 

and clearly the work was not complete. I did like the fact 

that I had not depended on a text book but I was concerned 
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that I did not know how to implement the informal deduction 

concept which made so much sense to me intellectually. I 

decided to analyze the completed lessons according to the 

question guide. As I did so I recorded those thoughts in 

the form of a teaching guide for each lesson which would 

elucidate that lesson’s function in the learning cycle. 

The complete set of teaching guides is in Appendix B. 

It was easy to categorize Tiling and the computer 

lessons. Angle Measure was based on measurement and 

involved only arithmetic in creating the number patterns. 

Once I noted that, I realized that it would be necessary to 

have a lesson which would turn the arithmetic into 

algebraic statements. The question "What can be 

expressed?" had not yet been included. 

Polygons Formulae Lesson #7 

This question motivated lesson #7, Polygons Formulae. 

I noted that all the lessons written so far were for small 

groups. I wanted to introduce some variety into the class 

structure and I also wanted to provide a forum to allow 

students to show what they had learned to each other. So I 

planned this lesson to be conducted in whole class format. 

The content of the lesson would be determined by the 

classwork done in the Angle Measure work. This class would 

be the bridge between the arithmetic and the algebra of the 
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formulae. I wanted students to connect their arithmetic 

statements ("Subtract 2 from the number of sides.") to the 

diagrams they made ("There are two less triangles than 

sides."). There was no way to write this out to guarantee 

that what I wanted to happen in the class would happen. I 

wrote out my intention for the lesson, gave myself some 

hints, but the rest would depend on what the students did 

in response. 

The difference between the lessons that I had written 

earlier and this one strucJc me. The other lessons, which I 

still lilted, were very teacher controlled. Students were 

following my lead and answering my questions. Even the 

computer work was quite guided. This class lesson did have 

a specific place to end; that is, when each student had a 

scheme to determine the number of degrees in a polygon of 

some fixed number of sides, but I did not write step by 

step directions for getting there. It would depend what 

happened in class. I liked that. 

I also noticed that "What can be constructed?" had not 

been addressed. The lessons that I had written did not 

provide any opportunity, except briefly in the intuitive 

stage, to work physically with the concept. I was 

wondering what might be appropriate as I was writing the 

whole class exercise #7, Polygons Formulae. In a moment of 

inspiration I noted that the basis for deriving the 

formulae was the partition of the polygons into triangles. 
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I wanted to have a physical exercise related to that, but 

not specific to it. The answer was to develop a lesson 

using the seven Tangram pieces. 

Tangrams Lesson #6 

I have used the Tangram pieces before as an example of 

recreational mathematics and problem solving. As I thought 

about them now, I planned a way to use them to embody the 

two principles of decomposing a figure into separate pieces 

and its reverse, constructing a figure out of smaller 

figures. While the particular compositions and 

decompositions in the lesson do not directly relate to the 

other A in P lessons, I felt the exercise would give my 

students experience with this principle. 

I did not intend to address this principle explicitly, 

but wanted the students to perform the actions with the 

figures and to intuit a sense of the principle involved. I 

was not interested in their ability to articulate this 

concept. I wanted the experience to speak for itself 

directly to the physical domain. Therefore the content of 

the questions was not related specifically to the A in P 

unit but was designed to have students note properties 

which remain unchanged and those which do change when 

figures are cut apart and rearranged. 
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As I checked the learning cycle and question guide I 

noted several points. I did have a variety of exploration 

exercises. I did have a good opening intuitive question. 

I was lacking deduction, except for the derivation of the 

formulae, and a final intuitive lesson which would pull 

things together for students who were ready and which would 

serve as another level of stage one for those who were not. 

But I felt that this analysis was not complete. 

I decided to see if I could put the lessons in a 

sequence and see what was missing. After a few tries, I 

settled on the sequence in Appendix A. I was not sure what 

computer lesson I would use but I knew it would have to be 

linked with #4 and #5. I noted that even though I did not 

plan on writing the units in any kind of order that I had 

in fact covered stage 1 and stage 2 of the learning cycle 

but that stage 3 and stage 4 were lacking. 

Solve It Lesson #9 

As I pondered the sequence I chose to work on a 

problem solving exercise which would demand integration of 

the concept of shape and angle measure and "fit". At this 

point I wrote lesson #9, Solve It, questions #1 through #4. 

As I imagined my students answering these questions, I 

realized two points. One, they needed some practice 

problems on which to base their work here, and two, that 

these questions are more a test of belief than problem 
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solving. So I moved the category for this lesson to stage 

4 and I planned on a new lesson to follow up the Formulae 

class which would serve as arithmetic practice of the 

relationships. 

Question #5 of lesson #9 was created by a colleague, 

the Chapter One teacher with whom I was planning to team 

teach. She found the pattern in a coloring book but 

realized that it would make an interesting way to test 

students' understanding of the relations between tiling, 

regular polygons, and angle measure. I agreed and added 

her question based on the design to this lesson. 

Chart It Lesson #8 

Lesson #8, Chart It, was written from old materials I 

had used in the past. It started out as a drill and 

practice lesson, but I was intrigued with the idea of 

having students notice that all mathematics questions do 

not have an unique answer. So I included that possibility 

in #4. As I pondered the categorization of the exercise I 

alternated between arithmetic and problem solving. I did 

not find this a problem of the question guide but it 

pointed out that the categorization had more to do with how 

a student solved the problem rather than the problem 

itself. For some, this would be an arithmetic exercise, 

for others, this would be problem solving. 
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concern. I turned I was still left with the deduction 

back to lesson #4, Regular Polygons. I thought some more 

about what proof was. I decided that it was a form of 

communication, a way to tell someone else how it is you 

have come to understand something. I added the phrase, "Say 

how you know." to the true/false questions. This simple 

instruction struck me as quite profound. Not only would it 

mean that students could not just guess at an answer, but 

the form of their answers would indicate the level of their 

reasoning. They might back up their answer with physical 

examples from the work they had done or they might refer to 

the relationships embedded in the Venn diagram. Thus their 

answers would serve a diagnostic function for me. 

I made a final check of the lessons and the learning 

cycle/question guide. I noted that I did not use the 

question "What can be changed?". I spent some time 

thinking what this might mean. How could sequenced 

drawings be used? I visualized a sequence of polygons with 

an increasing number of sides, yet roughly the same area. 

I quickly realized that this lesson, while it was 

intriguing here would be a great opener for the circle 

measure unit. I decided to save it. The Angles In and Out 

of Polygons Unit was completed. Now I wanted to see what 

my students would do with it. 
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Field Testing 

The four units that were developed using the question 

guide were field tested in a public secondary school in 

four geometry classes. The investigator was the teacher in 

these classes. The students involved in the field testing 

had been assigned grouping levels based on their previous 

work in math class according to school guidelines. In 

order to provide a picture of the mathematical competence 

of this student population, the investigator administered 

the standardized exams described in Chapter Three. 

The results of the basic mathematics computation test 

indicated that 48 of the students were at or above grade 

level and that 17 were below grade level with regard to 

arithmetic skills. The test results for mathematics 

concepts showed a slightly more negative picture. 42 

students tested at or above grade level and 26 were below 

grade level concerning their understanding of mathematical 

concepts. (The difference in these totals was due to 

student absences and changes in students' schedules.) 

This description of the population, that about one 

fourth were below grade level in mathematical skills and 

that one-third were below grade level in understanding 

mathematical concepts was actually more positive than the 

NAEP results of secondary school students in general 

(Carpenter at al., 1987). This difference is likely due to 
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th© fact that g©oniGtry is a coursG tak©n by 

college-intending students. This assessment was 

accomplished before the field testing took place. 

The first quarter work was also completed before the 

field testing. The topics covered during this time period 

included the following: classification, the use of Venn 

diagrams, similar figures, geometric vocabulary, use of 

protractors, and problem solving. The second quarter 

units. Determined, Angles In and Out of Polygons, Triangle 

Congruence, and Quadrilaterals were presented by the 

teacher/investigator using the methodology made clear by 

the teaching guides. 

During these weeks of field testing, the 

teacher/investigator kept field notes. After each class, 

she would write a brief statement concerning the activity 

and the student reaction to it. At the end of the day 

these comments were collected and expanded on in the 

journal writing. At the end of the unit (all lessons) the 

class was asked to complete the student evaluation form 

concerning the lessons. (Appendix C contains a sample of 

this form.) This information was compiled and compared 

with the teacher's field notes. On the basis of this 

information suggestions for revisions were noted. 

The account that follows is a characterization of a 

class working through the Angles In and Out of Polygons 
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Unit. In order for this description to be as rich as 

possible, it does not follow a single class through this 

material but rather blends events that happened in each of 

the classes. The teacher/student dialogue is reconstructed 

from the field notes of the teacher. It is not intended to 

be a word for word account of the conversation, but rather 

to provide the reader with the flavor of the interaction. 

This description was written by the 

teacher/investigator after reading the field notes, the 

journal entries, and the student evaluation forms for the 

unit. This description will be in the first person from 

the point of view of the teacher . 

Classroom Implementation 

There were fifteen minutes left to a class when I 

distributed the Tiling exercise. I suggested to the 

students that they work with a partner to start the 

assignment and then complete it at home. The immediate 

student response was: "I don't know how to do this. You 

haven't taught us anything yet." I asked if they had read 

the directions. Most said, "No." I asked them to read the 

directions and then ask questions as they start the work. 

As the period ended students were discussing with 

humor the implications of a floor covered with circles. I 

felt that I had accomplished the main objective of this 
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lesson. I wanted them to note the real world relations of 

geometric shape and begin to think about the issues 

involved in tiling. 

the second day I started the three day round robin 

of lessons #3, #4, and #5. This series of exploration 

lessons was designed to provide experiences to prepare 

students to formulate an algebraic method to determine the 

relationship between the number of sides of a polygon and. 

the number of degrees in its interior and exterior angles. 

The computer exercise provided a special case of triangles 

with which most students were familar and introduced the 

vocabulary of exterior angle in this familiar setting. The 

Regular Polygons exercise was designed to help students 

note the relationships and non-relationships involving the 

side lengths, angle measures, and shape of polygons. It 

also communicated some important vocabulary. The Angle 

Measures lesson would provide the inductive evidence from 

which the formulae could be generated. At this time I did 

not have LOGO available so lesson #2 was not assigned. 

As I considered this plan I was confident that I could 

supervise all three activities. My students had done some 

previous work on the Supposer, so I knew they could use the 

software appropriately. But I wondered if it would seem 

confusing to the class to have so much going on at once. 

In order to relieve that concern, I came in early to 

prepare the room so that the opening of class would be 
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smooth. I wanted the physical arrangement to support the 

activities. I placed three chairs around each computer in 

the back of the room. I set up the middle section to 

accommodate three groups of three and the Regular Polygons 

materials. The front of the room would be for everyone 

else and Angle Measures. 

As the students entered class, I collected the Tiling 

assignment and informed the class that we would be working 

in groups of three for the next three days. I allowed them 

to choose their own groups. I also let them choose which 

activity they were to do today. While some students were 

eager to use the computers and some were not, I noted no 

discernible pattern by gender. 

Interior and Exterior Angles Lesson #3 

Ten minutes into the class, everyone was busy on their 

own activity. I noted that each of the computer groups did 

work well together, but they did no talking across groups. 

I did intervene once in this lesson to help students with 

the Extend Option on the Supposer menu. The Supposer 

exercise took the whole class period for my students. Some 

groups did not finish all parts. I was disappointed that 

there was no time left for discussion, but pleased with the 

involvement of each group in this activity. 
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Regular Polygons Lesson #4 

The students working on this lesson found it very hard 

to work on problems #5 and #6. I spent considerable time 

interacting with these groups. They were to construct 

accurate models of the shapes required, either by drawing 

them with ruler and protractor or by building them with 

wood strips. The students wanted to draw a diagram free 

hand and just to mark it to show that it met the 

constraints. 

As I watched their work I was struck by the fact that 

they were really doing what is common in text books and in 

my own teaching. I often drew diagrams that were not to 

scale and simply marked the attributes I knew. I knew I 

could ignore the unimportant information it might contain, 

but I was not convinced that my students' abstract ability 

was as refined. I felt they would not fully comprehend the 

unconnectedness of the ideas of equal sides and equal 

angles unless they had explored the range of possibilities 

physically. 

I drew a triangle and marked the angles 40 degrees, 70 

degrees, and 60 degrees. I indicated that the side 

connecting the two smaller angles was 6 cm long. I 

requested that they make this triangle. Some students 

tried and failed. They looked at their attempts and 

explained why the shape I had drawn was not possible. I 
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used this opportunity to talk about the misleading 

information on the diagram and to reemphasize that when 

they physically tried to build the object, not only did 

they find out that it could not be made, but also they were 

able to explain why not. I asked a student in each group 

to explain what process the group would use to solve #5 and 

#6, asked if all group members concurred and left them, now 

that the process of how to complete the assignment was 

clear to all. 

Angle Measures Lesson #5 

As I checked with the groups working on Angle 

Measures, I noted that many of then had not followed the 

directions step by step but that they had completed columns 

four and five as they went along. They had no trouble 

second guessing what those columns were for. I decided to 

ignore this at the time being but made a note to revise the 

exercise. 

I sat in with each group as they began to work with 

generalizing the arithmetic to further cases. Every 

student was able to continue the pattern by adding some 

fixed amount of 180 degrees, but extending this pattern to 

102 sides was difficult for more than half the students. I 

listened in to a conversation similar to this exchange. 

SI: Look, it's just 102 times 180. 
S2: Wait, how can that be? A triangle 
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isn’t 3 times 180 

SI: We already know that a triangle 

is 180. We don't have to worry 
about that. 

S2: I guess that's right then. What 
else could it be. Write that down, 
102 times 180. 

These students paid little attention to any patterns 

built in the chart. They focused on the specific question 

and were looking for a specific mathematical operation that 

would produce it. When one of them did try to produce a 

counter example by looking at the extreme case with which 

he was familiar, it was clear that both students were 

satisfied by considering that as a special case. Since 

they already knew this fact, it was not related to the new 

work. 

As I listened to this I was intrigued by the interplay 

of logical and nonlogical thinking that this exchange 

provided. I tried to imagine what sense these students 

would have made out of my reasoning had I taught this unit 

by presenting the formulae at the board. This one small 

conversation reinforced my belief in a style of teaching 

that demanded that the students do mathematics, not listen 

to it being done by the teacher. 

But it was difficult to accept where they really were. 

Just as I would have expected that they would have followed 

my presentation, I did expect that they would see all the 

useful relationships. But their rules include eliminating 
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special cases from consideration instead of building from 

them. As a teacher I realized that I would not have 

considered this kind of logical misconception in a teacher 

explanation mode of presentation. 

Another group was having more success, I turned to 

them in time to see 18,000 degrees being recorded as the 

answer. I asked them how they arrived at that answer and 

one student showed me. He turned over his paper and I saw 

that they had added 180 repeatedly until they had arrived 

at 102 sides. One group member asked me why I would ask 

them to do such a dumb, time wasting thing. I asked if 

they had found any shortcuts to their work and the first 

student admitted that they had added up groups of the 180 

degrees five at a time. He offered this to me as if I 

would think they were cheating. Every few additions they 

had added 900 degrees and five sides. I pointed out that 

that was a time saver and asked if there was a way to 

simplify the work even more. In spite of my prompting they 

were unable to proceed further. 

I indicated that I would like them to share their 

approach to the class when it came time for a whole class 

discussion. I was hoping that the class would be able to 

expand on this procedure and recognize the multiplicative 

nature of the problem. While my comment to consider 

further shortcuts did not produce much, my request that 

they share this method with the class did. This group was 
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group to now quite confident and went over to the first 

explain how to do the problem. The first group decided to 

change their answer to 18,000. As far as I could 

determine, the reason for this change was simply because I 

had indicated interest in this second group’s work. 

No one had yet noticed that 18,000 was 100 times 180, 

nor had anyone paid any attention to any geometric objects 

such as the polygons on the exercise sheet or a triangle. 

I decided to wait until they had the results from the 

exterior angles to press them for a more geometric 

solution. I was hopeful that the degrees of 360 would 

trigger a geometric relationship. The summary questions 

also asked them to state their conclusions in words. I 

hoped that this effort would help students note the 

relationship. 

The next two days, different groups worked through the 

same three activities. I made a special effort to inform 

the Angle Measure groups to follow directions exactly. I 

suggested that each group appoint a reader who would read 

the directions aloud one at a time and not proceed to the 

next step until the previous one was complete. In these 

classes the work went smoother. However the content was 

similar to what happened on the first day. The computer 

activity continued to be too long and the Regular Polygon 

lesson was challenging but useful. They were all serving 

as exploration exercises. 
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I was frustrated at this time. I did enjoy running 

the round robin type of class. I was satisfied with the 

small group process. I enjoyed the interactions I had with 

the groups and was pleased to note that the students 

accepted me in this less "talky" role. But I was 

frustrated with the lack of discussion among the groups. 

There had been no opportunity for the groups to analyze 

what they had done and share it with the whole class. I 

decided not to include the follow up questions after the 

computer work since some groups did not finish. I felt 

those questions prompted further thought and exploration 

and did not want to give them up, but I also wondered if my 

students were ready for them at this point. 

I was also confused about what I wanted from these 

exercises. Was I falling into the trap of expecting 

students to generate abstract understanding too quickly? 

If I meant them as exploration, didn’t they really 

accomplish that task? The thoughful analysis which would 

lead to deduction could and perhaps should come later. I 

had been quite convinced that students need sufficient time 

to explore in several modes before formalizing. What 

occured to me now was that I had this belief intellectually 

but that I needed to pay attention to what was happening in 

my class to act on this knowledge concretely. 

As I considered the lessons I wrote and the response 

of my students, I began to feel that my intuition about the 
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classroom had led me to the correct response as a teacher. 

The students should not be rushed through the exercises and 

asked to analyze when the level of thinking they were 

illustrating in the daily work showed that these exercises 

were challenging for them. The discussion and 

formalization could wait. I decided to give my students 

the time to gain valuable physical experiences without the 

urge to sum up in a formula within 30 minutes. So I 

decided that the round robin was successful. 

One of the difficulties with the round robin was that 

it took close to a week for all students to complete the 

activities and this delayed any whole group discussion of 

this work. At first I was quite concerned about this, but 

after noting the level of thinking in the classroom I came 

to the conclusion that the delay would actually be 

beneficial. They would be able to look at the results of 

their work from a distance of time. I collected the 

results of their work daily, read through the papers and 

held on to them, planning to return them at the opening of 

the whole group discussion which I hoped would lead to the 

formulae. 

Tanqrams Lesson #6 

Before that whole class discussion, I had planned for 

the class to work with the tangrams. I remembered that I 

added this lesson as an after thought to this unit. Now 
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that the class had actually worked through the first 5 

lessons, I came to see how absolutely necessary it was. 

Reflecting on the discussions the groups had concerning the 

102 sided figure and their mostly arithmetic approach, I 

knew that the process of partitioning a polygon into 

triangles would be alien to them without some experience of 

that type. 

I had also decided that I would include discussion 

time in this lesson, even if it meant that all students 

would not complete all questions. I would stop the 

activity after 30 minutes to provide students with time for 

a whole class discussion. My reason for wanting this had 

more to do with pedagogy than content. I was not even 

concerned with the topic for discussion, that would depend 

on the class, but after three days of all small group work, 

I wanted to provide a time when the class would operate as 

a whole, listen to each other, and participate in a 

discussion. 

To begin this activity I drew sketches of the seven 

pieces on the front board and labeled them. A and B were 

the two large triangles, C and E were the two small 

triangles, G was the medium size triangle, D was the square 

and F was the parallelogram. I asked each pair to form a 

triangle out of pieces C, E and F. I have found in the 

past that this is a good preliminary exercise. Even though 

it involves only three pieces, it brings out a number of 
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good points. One is that there is more than one way to 

accomplish the task. Another is that this particular 

example illustrates how the pieces fit together compactly, 

and it also provides a model to illustrate how to record 

the answers. 

After a brief discussion of their answers, they worked 

in pairs on the worksheet. Most students enjoyed this 

activity. This exercise can be very frustrating. My main 

job was to circulate and determine which pairs were getting 

stuck and which needed clues to continue. I discovered 

much variation in the room concerning the giving of clues. 

I made a quick numerical check of student reaction to 

clue-giving. About two-thirds of the class were adament, 

"Don't tell me. I don't want to see how it is done. Let me 

try some more." I liked that. I wished they accepted that 

attitude as part of learning mathematics. I was trying to 

figure why they had this attitude here. Part of the answer 

was that they were sure they could solve the problem. All 

they had to do is move the pieces and eventually the 

solution would be there. Most students do not believe that 

this is true in math in general. That is, they do not 

believe that they could figure it out without the teacher 

giving them the answer. 

The remaining third of the class was equally split 

among groups who would ask for a clue after working for a 

while and those who simply said, "I never could do these 
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kinds of things." I changed some of the pairs to split up 

those who felt completely unable to do anything. That 

seemed to help, but a lot depended on the willingness of 

the partner to talk about their train of thought. 

Many students did work on all the questions in the 30 

minutes. Of those who did number 8, about half said that 

the perim.eters were the same. I decided to focus our whole 

class discussion on that question. It was difficult for 

the groups who had not finished to stop working and join in 

the group discussion, but eventually everyone did. 

I asked a student to read problem #8 aloud to focus 

everyone's attention on it. Various groups came to the 

board and drew their diagrams for the four shapes. I asked 

for a show of hands, "How many say they all have the same 

area?" It was unanimous. "How do you know?" 

51 They are all made up out of the 
same pieces. 

52 They have to be same, I just took 
one part of the rectangle and moved 
it to make the triangle. 

53 They are all the same as 16 little 
triangles 

Next I posed the same question about the perimeters, 

"How many say they all have the same perimeters?" About 

two-thirds of the class said yes. 

51 If they have the same areas then 
they have the same perimeters. 

52 If they are made up out of the 
same pieces then they would have 

I 120 



to have the same perimeter. 
53 They are all made up out of the 

same pieces. 
54 What is perimeter, anyway? 

I was intrigued by the fourth response. I believed 

that it indicated a crack in this student's rather 

unsophisticated beliefs about measure. I was sure that 

this student was aware of what perimeter was, but was 

beginning to realize that he had answered my question 

without considering that. He had simply decided that all 

measures would be the same in this case. Now he was 

wondering if that was true. 

I asked the class, "What is perimeter?" They 

responded with the distance around the figure. I asked how 

to measure that and they decided to use the length of the 

hypotenuse of the small triangle. Each section of the room 

made one of the four figures and then measured the 

perimeter in terms of the given length. They decided the 

perimeters were not the same. 

Suddenly the class was over and everyone left. I had 

wanted to pose a homework question that would ask them to 

note which figures had the larger perimeters and which the 

smaller. I wanted them to explain why. That would have to 

wait until another day. 

I 
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Angles with LOGO Lesson #2 

I was checking in the tangrams work, and thinking 

about the whole class discussion, when a colleague came 

into the math teachers' office with the news that she had 

found a way to make the LOGO software work on some of the 

computers in our computer room. It would only work on nine 

of the machines, but since pairs could work together I 

decided to test it out the next day. 

The next class I asked students to work in pairs, or 

triples, if necessary. I told them to be sure that someone 

in their group knew what LOGO was. It turned out that this 

was all that was needed. LOGO is so easy to learn, at 

least the graphics commands we would use, that I never gave 

any instruction in the language itself. 

The students found it easy to work through these 

problems. They enjoyed the sense of control they had over 

the machine. They could make it do what they wanted. I 

overheard students noting, "Look, it just goes around 360 

and then it's back where it started." Most students 

finished the tasks on the lesson and then spent time trying 

to make their initials and other designs. A student who 

wanted to make an "N" said he thought it was pretty tricky 

of me to assign work with LOGO. I asked him what he meant. 

He said, "It seems like just a game, just fooling around, 

but you have to pay attention to the angles if you want it 
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to come out right.*’ I was sure that the student evaluation 

forms for this exercise would be highly positive, but I was 

wondering how all these exercises would come together into 

a whole concept. The next class was planned to accomplish 

that. 

Polygon Formulae Lesson #7 

Several days had passed since students had worked on 

the Angle Measures assignment, I decided to focus this 

class on a new question, rather than consider it as a 

discussion of that work. I did not return their Angle 

Measure assignment because I did not want them to refer to 

the numerical results from Angle Measures. I had them sit 

in groups of four but started with a question to the whole 

class. 

I drew a convex but irregular seven sided figure on 

the board. I marked every one of the seven angles, then 

asked, *'If I measured these angles and added them up, how 

many degrees would I get? How would you convince someone 

that you were right, if you couldn't just measure?" In a 

few minutes, they were convinced that the answer was 900 

degrees. I challenged each group to provide an explanation 

at the board and gave them fifteen minutes to work 

together. 
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During this time I checked with each group. About 

half of them were partitioning the figure into triangles. 

In one of these, there was an argument about whether you 

could do this starting with an interior point or whether 

you had to draw diagonals. When I came over they asked me 

which was right. I told them they had to decide as a 

group. 

One of the other groups was working from a triangle 

and adding segments until they had a seven sided figure 

which looked something like what I had drawn. I drew a 

different looking seven sided figure and asked them if 

their method would still work. They said they would check 

it out and started to draw again. 

The other two groups were stumped. I sat in with them 

and asked them to list all they knew about angle measures. 

One of the things they listed was that a triangle had 180 

degrees. I asked them if there was any way they could use 

this fact to help them and one person said, "Maybe we could 

see how many triangle we have?" As I left they were 

drawing in random diagonals to make triangles. 

I called time to end the small group work and asked 

each group to present their solution. A student from one 

group volunteered. She drew all the diagonals from one 

vertex and counted the triangles. (Case 1) The students 

in the group which had been arguing about how to partition 
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said that thsy had dons it a diffsrsnt way. A 

student from that group drew triangles from a point in the 

'center' of the figure making seven triangles and sat down. 

51 But that's not 900 degrees. 
52 You don't count all that extra 

stuff. You subtract 360 degrees. 
(Case 2) 

A third student who seemed very confused said that 

they had done it very differently. He showed their method 

of drawing line segments on a triangle and adding 180 each 

time. (Case 3) 

I summarized by asking them to help me write out 

arithmetic sentences for each case: 

Case 1 (7-2) times 180 degrees 
Case 2 (7 x 180 degrees) minus 360 degrees 
Case 3 ■ 180 degrees + 4 times 180 degrees 

Next I posed the question about a figure of some 

unknown number of sides. What if we called the number of 

sides n? I told them to give an explanation which referred 

to their method of calculation. We ran out of time so this 

became a homework question. 

The next day we continued this discussion. Now each 

method had its advocate. 

Case 1 For n sides, I can make n - 2 
triangles. Each triangle has 180 
degrees, so the figure has (n - 2) 
times 180 degrees. 
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Case 2 For n sides, I can make n triangles. 
But I have some extra, 360 degrees. 
So the figure has 180 degrees times n 
minus the extra 360 degrees. 

Case 3 I start with a triangle. It has 
three sides and 180 degrees. For each 
side more I add 180 degrees, so the 
figure has 180 degrees plus (n - 3) times 
180 degrees. 

I was impressed. Not everyone in the room understood 

all three ways, but the explanations were presented based 

on the triangles and polygons that the students had drawn. 

Each generaliztion was backed up by a specific diagram. I 

asked about the exterior angles. 

51 Just like LOGO, its just 360. 
52 I noticed when we measured, the 

more angles there were the smaller 
each one was. They added up the 
same, 360 degrees. 

53 It's because you are getting to a 
circle. 

The step to formalization was made by many students at 

this class. I was not sure if the students who had been 

quiet were making the same conclusions. I planned on 

listening to them during this next assignment to check that 

out. 

Chart It Lesson #8 

As students were working on this assignment I noted 

that it implied the use of the (n-2) version of the 

formula. Even though I had listed openendedness as one of 
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my objectives, I had not anticipated the variety of 

responses my classes created. I had them eliminate column 

two. I wondered how they would recieve the last two 

columns. I had not addressed the connection between 

regular and angle size in the discussion at all. However, 

it was not a problem. As one student said, "It is just a 

division problem." 

Students had little trouble picking out #4 as the 

problem which could not be done. I had imagined some 

confusion regarding the difference between no solution and 

no unique solution, but a student referred to the earlier 

work on the Determined Unit to explain to her partner, "It 

has an infinite number of solutions, you remember, like the 

triangle with only two sides given." I was glad to have 

heard this conversation because it provided me with a 

connection I had not made before. Not only did I have a 

better way to help students who were having trouble here, 

but I learned something new myself. The class ended before 

students had finished so this assignment became homework. 

As they came in the next day I saw that students had 

varying success with problems #5 and #6. Someone who had 

them figured out offered to explain. "You work with the 

outside angles. They are easier since they always equal 

360 degrees. That is the trick." 
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Solve It Lesson #9 

The questions in this lesson were Qood follow up 

questions to the previous days work. Students who were 

unclear about the relationships had an opportunity to 

manipulate them. I did wish that I had asked the question 

in a different order though, #3 and #4 should have been 

first. Some students tried to answer #1 and #2 without 

referring to the formulae at all. They wanted to try to 

physically make them and see what would happen. The 

difficulty with this solution was expressed by one student, 

"I can't tell if I can't make it or if it can't be made." 

This lesson brought out the differences among students 

who had integrated the concepts of this unit and those who 

had not. The question about the design was especially 

telling. Student responses varied from: 

51 How can I tell? Do you want 
me to measure? 

52 Yes, they all look it. 
53 They can't be. It doesn't 

make 360 degrees. 
54 Not regular but they are 

equilateral. 

Several points struck me as I listened to the students 

explain their beliefs to each other. I noted how much of 

what was important in the class would really be considered 

problem solving. Students with skills at approaching 

problems were able to make more sense out of the exercises 

than those who had poor problem solving skills. This led 

I 
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me to wonder what was the difference between learning 

mathematics and learning problem solving? 

I noticed the variety of understandings that they 

displayed. It was clear that even though they all had done 

the same work, the results were different. I also noted 

that students who did not intuitively see the answer to the 

design question were unimpressed by the correct solution. 

They simply were not ready to understand that yet. 

Some students had proceeded through the stages of the 

learning cycle: intuition, exploration, deduction, and 

intuition and had reached a new level of belief concerning 

this concept. Other students were still at the exploring 

stage and would need some additional experiences before 

they reached the next level. 

Lesson Revisions 

Now that the unit was over, I had a list of changes 

that I wanted to make before I used the lessons again. I 

decided to list the changes before investigating the 

student evaluation forms. 

Tiling Lesson #1: This needs to be changed so that 

students will not be bound by the rectangular edges. Some 

students rejected the Greek Cross because of this. 

Students need an image of an infinite floor. As an 

addition to this or as a followup to it. I'll have students 
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find tiling patterns at home or at school, copy them and 

display them in the classroom. 

Tangrams Lesson #6: I would like to add a writing 

assignment as a homework, to create a question that would 

give students a chance to talk about feeling frustrated in 

math class and what they do about it. "How did you feel 

today when you were making figures out of the tangrams and 

were having difficulty? Do you feel the same way in class? 

What do you do when you feel like that?" 

Interior and Exterior Angles Lesson #3: This lesson 

should be modified so that the class will have some 

discussion time and time to share results. 

Angle Measures Lesson #5: I want to change the table 

so that directions and format are easier for students to 

follow. I will add to question #5 that students should 

check with another group here to see if they agree. I will 

add a teacher checkpoint after question #8 so that I will 

interact with every group here. 

Chart It Lesson #8: I will change or remove the 

second column so that all possible formulae can be 

accommodated. The chart should reflect the variety of 

possible approaches to the question. 

Those were my suggestions for changes but I also 

wanted to see what the students wrote on the evaluation 
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forms. I wondered if we would agree on any of the same 

points and I was curious to see on which points we would 

disagree. 

Student Comments 

The overall impression I have when reading the forms 

is that students are not used to noticing what happens in 

class except in very broad terms. Many of the comments are 

of the order, "I liked this, it was easy." or the partner 

comment, "I didn't like this, it was hard." No students 

made specific suggestions for change, other than "Make it 

easier." or "Make it shorter." This was a little 

disappointing to me as I had hoped for more substantive 

comments on the specific lessons. 

However, student comments concerning the teaching 

style were more interesting. The comments that follow 

indicate the variety of responses from all four classes. 

Several students commented on working in groups. 

"She lets us get involved together by letting 
us work as a team together in groups." 

"It helps because if I can't do the homework I 
can hear how other people solved it instead of 
just finding out the answer." 

"I like it when we work in groups. We can share 
ideas and explain problem answers to each other." 
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No students spoke negatively of the group work but 

several expressed frustration at some of the tasks and the 

teaching style. 

"She (the teacher) half explained something and 
then ran off." 

"I feel that she thinks that we should already 
know what to do." 

"I find it frustrating when we start a new 
section. You give us problems to work on before 
you explain them." 

These students were reacting negatively to the stage 1 

intuition level of this process. As a teacher it is 

important to be aware of student frustration levels and to 

provide emotional support for those who need it, without 

reducing the educational value of the task itself. 

Determining the appropriate amount of teacher intervention 

is not easy and the comments on the evaluation forms 

indicate this difficulty. 

Another set of comments were related to the computer 

lessons. S will be used to indicate comments directed to 

The Geometric Supposer lesson and L will indicate comments 

made specifically concerning the LOGO activity. 

S "I was able to experiment with different 

angles with ease." 

S "I hate computers. I work on them anyway." 

S "There weren't enough computers to go around." 

L "Watching things on the computer where you 
can do it yourself is better." 
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L "I could use my logic to rationalize the 
computer actions.” 

The computer views expressed were in agreement with 

the field notes from the computer lessons. Most students 

found a sense of freedom and power in the activity. A few 

students would prefer not to use them at all. 

Several students spoke of the value of building models 

and drawing diagrams. However, others did not like this 

physical approach. The comments below indicate the 

spectrum of opinion. 

"I like things I can get my hands on.” 

”I love to draw my own shapes.” 

"Hand out objects to work with instead of just 
paper.” 

"Activities with actual objects take too long.” 

"I hate dealing with objects in real life.” 

”I can't draw well so it doesn't help me.” 

Finally some of the comments spoke generally about 

what students felt was happening in the class. 

"She lets us do our own work. We teach 
ourselves.” 

"She's creative, but it is hard to ask 
questions about everything I don't know.” 

"It is nice, being able to know why we were doing 

it.” 

"I didn't not like anything, except maybe too much 

writing." 

133 



This set of comments, while not providing any clear 

direction for changes, made me feel encouraged in another 

way. As I read the comments and studied my field notes and 

journal summaries, it was clear that the students and I 

were all in the same room. I felt that my interpretation 

of the class was on base with their comments. Some of the 

changes I created would deal with the difficulties we had 

determined. Some of the changes highlighted the positive 

aspects we agreed on. 

At the same time some of the difficulties would 

remain. There were areas on which we would not agree. 

This style of teaching was still unusual; some students 

still had the conception that I should just tell them how 

to do the work and let them practice. Some of their 

comments spoke to this difference of opinion concerning the 

definition of teaching. 

It should be noted though that many of the comments 

quoted indicate student awareness of teaching methods. 

Data on student views toward five specific teaching tools 

are reported on in the final part of this chapter. 

Five Pedagogical Tools 

The third component of this study involved student 

opinions concerning the use of five specific teaching 

tools. These teaching techniques (which are are not 
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conimonly used in secondary school mathematics classes) are: 

use of small groups to solve problems cooperatively, use of 

computer software such as LOGO and The Geometric 

Supposer(s) , use of writing to learn mathematics, use of 

manipulative materials, and a change in the role of the 

teacher from one who explains and gives information to one 

who asks questions, listens, and facilitates discussion. 

The implementation of the learning cycle approach to 

teaching geometry included these five pedagogical tools. 

Units created according to the format of the question guide 

would necessarily include these teaching styles. The field 

testing experiences would expose the students to these 

approaches in the context of the lessons. The investigator 

was interested in determining if student views towards 

these teaching methods would be the same before and after 

the field testing experience. 

Additionally, the investigator wanted to determine if 

student opinion on these techniques varied with gender. 

Results reported in chapter two provided some indication 

that these tools might be more accepted by female than male 

students. 

To gather data on these questions the investigator 

asked students to complete a questionnaire expressing their 

views toward various class activities. This questionnaire, 

"Summative Evaluation", can be found in Appendix D. The 
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chosen so that students would understand they 

were to evaluate each type of class activity on the basis 

of its relation to their learning. 

The questionnaire was designed so that each of the 

five teaching methods would be included. Question #1 and 

Question #6 were meant to point out the difference in 

teacher behavior. These two questions were intended to 

reflect student opinion concerning the role of the teacher. 

Question #2 dealt with computer use. No distinction 

was made between the use of LOGO and The Geometric 

Supposer(s). Question #3 recorded student opinion toward 

working in cooperative groups. Question #4 elicited 

responses concerning the use of writing to learn 

mathematics. Question #5 provided students the opportunity 

to express their views on using actual objects, 

constructions, or manipulatives. 

The students were asked to indicate which of these 

class activities had a positive influence on their 

learning, which had a negative influence, and which they 

considered as neutral. 

The first questionnaire was distributed before any of 

the field tested materials were used. The table that 

follows contains the results of that initial survey. 
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Table 1 Initial Evaluation Form Results 

Positive Negative Neutral Total 

Explainer 26 5 24 55 

Computer 21 14 21 56 

Groups 39 4 13 56 

Writing 36 11 9 56 

Manipulatives 30 5 22 57 

Facilitator 36 4 15 55 

Several points can be made by considering these 

results. First, the student responses indicate a generally 

positive feeling toward all of these activities. 

Considering both positive and neutral responses shows that 

most of these students felt that the class activities 
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supported their learning. Given that overall feeling, it 

is not clear if they effectively differentiated between 

these activities. 

Second, both teacher roles are accepted, with some 

preference shown for the teacher as facilitator. This 

question was placed in the context of small group 

instruction and some student response may have been made on 

that basis without much analysis of how the teacher was 

responding. These positive responses may also be 

interpreted as students indicating overall satisfaction 

with the teacher. The data does not indicate if the 

students noted differing teacher behavior. 

Third, the most negative responses occurred in 

reference to the computer. This activity created the most 

divergent views. As many felt neutral concerning the 

computer as felt positive. The computer activity also drew 

the largest negative response. 

Fourth, the responses to the writing question showed 

more negatives than any other except the computer question. 

Also less students felt neutral concerning this question 

than any other. 

Table 1 indicates the views of the students on each of 

the pedagogical tools. In Table 2 and Table 3 these 

results are separated by gender. 
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Table 2 Initial Evaluation Form Results Males 

Positive Negative Neutral Total 

Explainer 16 3 15 34 

Computer 15 8 11 34 

Groups 20 3 11 34 

Writing 21 9 5 35 

Manipulatives 20 3 13 36 

Facilitator 22 0 11 33 
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Table 3 Initial Evaluation Form Results Females 

Positive Negative Neutral Total 

Explainer 10 2 9 21 

Computer 6 6 10 22 

Groups 19 1 2 22 

Writing 15 2 4 21 

Manipulatives 10 2 9 21 

Facilitator 14 4 4 

— 

22 

Several points are clear from this breakdown of the 

data. First there was a 3 to 2 ratio of males to females 

in the students questioned. Since this questionnaire was 

completed in regularly scheduled geometry classes, it 

indicates that more males than females were enrolled in 

these classes. 
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Second, one difference noted is in the reports 

concerning the use of small group work. The female 

students were strongly positive about this teaching device. 

Only a few did not indicate positive, yet the males were 

more split. Only a few of the males indicated a negative 

response, but about one-third responded in the neutral 

category. It would seem then that this activity was more 

important to the females than to the males. 

Third, the response to the computer question showed 

the largest difference between the two groups. As many 

females indicated this activity as positive as indicated 

that it was negative. About half of the females marked the 

neutral response to the computer use question. The males 

also displayed a variation of opinion on this question, 

with one-fourth of them stating a negative reaction, and 

about half indicating a positive one. 

Fourth, the use of writing brought out negative 

responses from approximately one-fourth of the male but 

only one-tenth of the female students. The positive and 

neutral responses were about the same for the two groups. 

In considering the teacher as facilitator issue, the 

male students were all positive and neutral, yet the female 

students indicated a negative response in one-fifth of the 

responses. 
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The use of manipulatives showed differences between 

the two groups. In the male responses about two-thirds 

indicated positive and the remaining indicated neutral, yet 

the female response was much more equally split. About 

one-half were positive and one-half were neutral. 

Table 4 Final Evaluation Form Results 

142 



The data in Tables 4, 5, and 6 indicate the responses 

of students after the field testing component of this 

study. The numbers show some variation from tables 1, 2, 
and 3 due to changes in students' schedules. The time 

interval between the two surveys was four months. 

In comparing the results of Table 1 and Table 4 three 

differences are apparent. The biggest change was in 

student feeling towards writing. More than one-third of 

the students changed their view in this category. That 

change was decidedly negative. The responses in the 

neutral and negative columns were increased from what they 

had been at the expense of the positive responses. This 

indicates that students see little connection between the 

writing they do and what they learn in mathematics. Their 

view may have grown more negative after the field testing 

since they were asked to do more writing during those 

experiences. 

A second trend occurs in the computer oriented 

question. A more positive response to computers can be 

seen after the field testing work, istill, it is important 

to note that one-sixth of the students indicated a negative 

reaction to the computer component. 

The third result of interest is found in the category 

of teacher as facilitator. One-seventh of the students 

moved from a neutral view of the teacher in this role to a 
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positive one. This shift resulted in the teacher as 

facilitator receiving the highest proportion of positive 

responses. Almost 90% of the students had a positive 

response to this item on the final form. 

Tables 5 and 6 indicate the data from Table 4 broken 

into male and female groups. 

Table 5 Final Evaluation Form Results Males 

Positive Negative Neutral Total 

Explainer 16 3 14 33 

Computer 17 5 11 33 

Groups 23 2 9 34 

Writing 11 10 12 33 

Manipulatives 18 4 11 33 

Facilitator 27 2 4 33 
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Table 6 Final Evaluation Form Results Females 

Positive Negative Neutral Total 

Explainer 10 3 9 22 

Computer 13 5 5 23 

Groups 17 1 5 23 

Writing 9 7 7 23 

Manipulatives 12 3 8 23 

Facilitator 18 1 3 22 

These results show some changes from the earlier data. 

In the teacher as facilitator question both the males and 

females shifted views to a more positive one. This change 

showed no difference due to gender. 

The computer question did indicate a shift that was 

different for the two groups. The male students started 
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out positive in this category and they made a small 

positive shift noted in Table 5. The female students 

however changed more noticeably. Table 6 indicates that 

the number of female students marking this positive after 

the field testing had doubled. It is interesting to note 

however, that these changes came from the neutral 

responses. The one-quarter of the females who had marked 

negative originally did not change. 

Writing was the category that displayed the most 

negative change. There was little difference between the 

male and female students, this shift to the negative was 

over the whole population. 

Remaining relatively unchanged over time were student 

views towards manipulatives and small groups. The 

differences between the male and female students that were 

noted after the initial survey remained the same. 

Summary 

Question 1. Do students identify group work as a 

positive, neutral, or negative influence on their learning 

of geometry? The data indicated a generally positive 

response to this question with female students more 

strongly positive than the males. 

Question 2. Do students identify the use of the 

computer software (The Geometric Supposerlsj and LOGO) as a 
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positiv0, nGutral, or nsgativG influsncG on thGir laarning 

of geometry? The overall data indicated a mixed response 

prior to the field testing and a more positive view after 

the field testing experience. Male students were positive 

intially and remained so. There was a trend in the female 

group to react more positively to computer use after the 

field testing. 

Question 3. Do students identify the use of writing 

as a positive, neutral, or negative influence on their 

learning of geometry? The overall data indicated a 

negative trend in the entire population, both male and 

female students giving more negative views after the field 

.testing. 

Question 4. Do students identify the use of 

manipulating actual objects as a positive, neutral, or 

negative influence on their learning of geometry? The data 

indicated some differences between male and female students 

on this question. Male students were more strongly 

positive while female student responses were more neutral. 

This did not change after the field testing experience. 

Question 5. Do students note the role of the teacher 

as a facilitator not as a giver of fact as a positive, 

negative, or neutral influence on their learning of 

geometry? The data is confusing on this question. There 

is an overall postitive view towards both teacher roles 
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discussed. There was a shift of the population to an even 

more positive response to the teacher as facilitator after 

the field testing. This shift was the same for both male 

and female students. 

These results provide a sense of student views toward 

the teaching styles they encountered. Analysis of these 

results and suggestions for further work are contained in 

Chapter Five. 
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CHAPTER V 

CONCLUSIONS 

The Development of the Units 

The first part of this study involved the development 

of units of curriculum based on the question guide which 

had been devised by the investigator. One objective of the 

study was to determine the usefulness of the question guide 

as a format for lesson design. 

The application of this question guide to geometry 

lesson construction was illustrated in the work reported in 

Chapter Four. The purpose of the guide was two-fold: one, 

to provide an overall structure for an entire set of 

lessons based on one concept, and two, to describe the 

mathematical format and the physical context of each lesson 

within that concept. 

The guide was found to be useful in several ways. It 

enabled the teacher/investigator to review the lessons that 

had been designed to teach a particular concept by 

providing an analysis of each lesson according to the type 

of mathematics it used and the type of educational context 

necessary for its application. This analysis resulted in a 

description of the lessons that had been constructed. 
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Classifying the completed lessons in this way and 

comparing them to the overall structure of the question 

guide indicated to the investigator the mathematical 

formats and physical contexts which had not yet been 

addressed in the group of lessons. Thus the question guide 

served the function of alerting the lesson designer to the 

type and content of lessons which should be created in 

order that the group of lessons approach the concept in a 

variety of mathematical formats and physical contexts. 

The analysis that the guide provided served another 

function as well. The lesson designer was able to generate 

lessons by considering the relationship of the question 

from the guide to the concept to be addressed. This 

process was illustrated by the application of the "What can 

be changed?" question to the concept of Angles in Polygons. 

The analysis indicated that this question had not been 

included in the lessons developed at that point. As the 

investigator considered the meaning of the question 

relative to the concept, the idea for a lesson involving 

changing polygons into circles was formed. The role of the 

question guide here was to focus the concept into a 

particular format and a new lesson was formed as a result. 

Thus the question guide was used to help generate lesson 

ideas, not just analyze them. 

The question guide also provided a structure for 

coherence without forcing a rigid daily pattern. This 
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guide provided the curriculum planner with a format for 

designing lessons concerning a concept without imposing a 

linear structure. A new model of curriculum grew as a 

result of this work. A flexible curriculum plan could be 

devised in this format. The concept to be addressed would 

be identified. Lessons for each question would be designed 

using the guide as a format. Once the curriculum had been 

created, it would be the teacher's choice of lessons that 

would determine the daily work for the class. The question 

guide provided a sense of freedom for planning each lesson 

while insuring that each lesson was connected to the 

overall concept. The question guide gave a structure with 

flexibility. 

A model of this flexibly designed geometry curriculum 

could serve as the basis of a school system inservice plan. 

All teachers would add lessons to the curriculum and all 

teachers would have access to all the ideas in the unit. 

In this way teachers would encounter not only the content 

of their colleagues' lessons but also the classroom format 

and structure which applies to the lesson. 

Sharing the results of applying the lessons, 

suggesting revisions in them, and creating additional 

lessons would provide a natural, informal, and practical 

method for teacher development which would emphasize the 

151 



cooperation among teachers and which would allow each 

teacher to build on their existing strengths and teaching 

personality. 

Field Testing 

The second component of this study was field testing 

the lessons and implementing the learning cycle as a 

structure for teaching methodology. The classroom 

described in Chapter Four illustrated a class working 

through the learning cycle on one unit of lessons. Field 

testing provided the teacher/investigator with actual 

experience in implementing these constructs in the 

classroom. 

The most significant conclusion was that the learning 

cycle categorization of the lessons, while helpful, blurred 

in the reality of the classroom. A lesson which was at the 

intuition stage for one student could have been exploration 

or even formalization for another. The student response to 

the lesson determined the category, not the lesson itself. 

This indicated the need for the teacher to have access to a 

variety of lessons designed for all stages. It highlighted 

the usefulness of the flexibly designed curriculum 

described above. 

This variation in student response also illustrated 

that the learning cycle analysis could be used as a 
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diagnostic tool. Teachers could apply this in two ways. 

One, by considering the class as a whole, this analysis 

would provide the teacher with information on which to plan 

the next lesson. The decision making of lesson 

organization would be enhanced. Second, teachers could use 

this analysis on an individual basis, to determine the 

level of understanding of each student in order to decide 

the most appropriate format and context for the next 

lesson. Thus the learning cycle provided not only a 

structure for classroom methodology but also more 

sophisticated information for the teacher on which to make 

decisions. 

The investigator found the learning cycle a useful 

construct of learning. It provided a format for the 

implementation of lessons, guided daily classroom 

decisions, and indicated student progress. The 

connectedness of the learning cycle and the question guide 

was reinforced by this study. The model of curriculum 

proposed above would be based on the premises of this 

learning cycle. This study indicated the power of these 

constructs of learning to the teacher. It demonstrated 

that this adaptable curriculum implemented through the 

learning cycle approach provided a teacher with a structure 

for conceptually based mathematics classes. 
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The Five Pedagogical Tools 

The third component of this study involved gathering 

student opinion on five specific teaching methods. These 

teaching strategies were critical to the implementation of 

the learning cycle approach to the classroom. The intent 

was to determine if the views of the students changed after 

the field testing stage. In addition the investigator was 

interested in knowing if the views of the female and male 

students varied. 

In Chapter Four the investigator described the data 

that was gathered on the five questions. The conclusions 

for each question are discussed below. 

1. Do students identify group work as a positive, 

neutral, or negative influence on their learning 

of geometry? 

This study indicated an overall positive response from 

the total population to this teaching technique. This 

response was stable, it did not change after the field 

testing. The response of the female students was more 

strongly positive than the males. 

The implementation of a teaching methodology using 

group work would be favorable received aooording to these 

results. The data indicated that cooperative small group 

work may support the learning styles of female students. 
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This teaching technique may be helpful in bridging the gap 

between the achievement levels of male and female students. 

2. Do students identify the use of the computer 

software (The Geometric Supposer(s) and LOGO) as 

a positive, neutral, or negative influence on 

their learning of geometry? 

The initial results showed a clear difference between 

male and female students on this question. The data after 

the field testing experience showed no change for the males 

but a trend to the positive for the females. 

The study indicates a postive feeling on the part of 

most students towards integrating computer use into the 

geometry class. The difference between the male and female 

views changed after the field testing indicating that after 

experience with the The Geometric Supposer and LOGO, female 

students responded positively to the effect of computers on 

their learning. 

The data also showed, however, that this positive 

shift was from the female students who had indicated an 

initial neutral view. The female students who indicated a 

negative response originally remained negative even after 

the computer experiences. The conclusions from this aspect 

of the study remain mixed. Further work is needed to 

determine the role of the computer in the mathematics 

learning of the female students. 
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3. Do students identify the use of writing as a 

positive, neutral, or negative influence on 

their learning of geometry? 

The data indicated a neutral to positive view toward 

this aspect at the beginning and a trend to the negative 

after the field testing experiences. This shift was common 

throughout the population of the study and showed no clear 

differences between male and female students. 

A possible conclusion from this study is that these 

students did not find that the use of writing impacted 

positively on their learning of mathematics. The shift 

toward the negative would be accounted for by the 

observation that they were required to do more of this task 

during the field testing stage. It is important to note 

however that writing is hard work. Many students commented 

on difficulties they have writing in a mathematics class. 

It is not clear from these responses if students were 

reacting to the difficulty of the work or to its impact on 

their learning. 

Another difficulty in interpreting this data is that 

this study involved a short time period. It may well be 

true that students did not have sufficient time to develop 

their writing skills to the point where the writing was 
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helpful to them. The results of this study are 

inconclusive on this question of using writing to teach 

mathematics. 

4. Do students identify the use of manipulating 

actual objects as a positive, neutral, or 

negative influence on their learning of? 

geometry? 

The data was stable on this question, no change was 

noted after the field testing experience. There was a 

difference in the views of the male and female students. 

The female students were neutral, the males positive. 

Evidence from the background reading had led the 

investigator to the conclusion that the female students 

would benefit from manipulation with actual objects. One 

interpretation of this data is that the female students did 

not perceive the benefit from these activities. Another 

possible interpretation is that the differences between 

males and females were reinforced rather than reduced by 

these activities. Research to determine the gender-related 

use of manipulatives to teach mathematics at the secondary 

school is needed. 

5. Do students note the role of the teacher as a 

facilitator not as a giver of fact as a positive, 

negative, or neutral influence on their learning 

of geometry? 
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Students reacted positively to both teacher roles 

noted in the initial survey. After the field testing there 

was a shift to an even more positive view of this teacher 

role. These views were similar for both female and male 

students. 

The data showed that students do not appear to 

contrast these two teacher roles. It may be that students 

do not differentiate betweeen the roles or that they react 

positively to both of them. It was clear that there was no 

gender-related difference noted in student response to 

teacher roles. Since students accepted the teacher in the 

facilitator role even more positively after the field 

testing experience, it is likely that this style of 

teaching would be received in a positive manner after 

students have had experience with it. 

Suggestions for Further Research 

The usefulness of this question guide should be 

explored further. It would be interesting to see if other 

teachers find it as helpful as the investigator did. 

Research to determine the value of this guide and learning 

cycle to mathematics teachers in general would be an 

important next step. 

A further area of study would be to determine how to 

use this question guide and learning cycle approach in 
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non-geometrical aspects of mathematics. For instance, 

what modifications in the guestion guide would be necessary 

to design a conceptually based algebra or precalculus 

course. 

The issue of evaluating student understanding has not 

yet been addressed. The implementation of a conceptually 

based mathematics program has ramifications for the process 

of assessment. Is it possible to create mathematics tests 

which are wholistically scored, similar to the tests being 

used for assesssment in the writing process? Research 

investigating this possibility will be needed as classroom 

teachers implement a conceptaully based program. 

This study looked at five specific teaching strategies 

and indicated the reaction of the male and female students 

to these approaches. Further research should be done to 

determine if any of these teaching tools support female 

learning and can be used to reduce the gap in the 

achievement and attitudes of male and female students. 

Summary 

This study resulted in a set of geometry lessons and 

teaching guides which were designed using the question 

guide and were implemented by the learning cycle approach 

to methodology. The indications from this work are that 
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the question guide and learning cycle are powerful 

constructs for devising, planning and implementing lessons 

in geometry. 

The field testing, student evaluation forms, and 

summative evaluation forms provided student reaction to 

this teaching style and materials. It is clear that 

components of this style are considered favorably: use of 

groups, use of computers, and differing teacher roles. Use 

of manipulatives was received with mixed feelings by the 

students. The use of writing was not considered as a 

positive aspect in this study. Yet, when considering the 

teaching style as a whole, student response was positive. 

In conclusion, it is important to realize that the key 

to the cohesiveness of the three phases of this study is 

that they are interwoven and are designed to be so. The 

development of the lessons was the curriculum content, the 

field testing was the methodology component, and student 

opinions of the teaching tools represented the learners 

themselves. Life in the classroom is an amalgam of these 

elements: the content, the pedagogy, and the learner. The 

learning cycle and question guide approach to conceptually 

based teaching integrates all three aspects into the 

structure of curriculum planning. In order for 

conceptually based teaching to be effective these three 

must be dynamically connected. This study points the 

direction on a bold new path. 
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APPENDIX A 

UNITS OF STUDY 
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UNIT 1 DETERMINED 

Types of Triangles 

Use rulers, protractors, compasses, graph paper, etc. to 
construct two different examples for each triangle 
described below. Your drawings should include the measure 
of each angle and the length of each side of every 
triangle. 

Warning: Some of these descriptions are actually 
impossible to create. In those cases show what happens 
when you try to make them and explain why no such triangle 
can exist. 

Reminder: Draw and measure two triangles for each case. 

1) A right-scalene triangle 

2) A right-isosceles triangle 

3) A right-equilateral triangle 

4) An obtuse-scalene triangle 

5) An obtuse-isosceles triangle 

6) An obtuse-equilateral triangle 

7) An acute-scalene triangle 

8) An acute-isosceles triangle 

9) An acute-equilateral triangle 
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UNIT 1 DETERMINED 

THE DETERMINATOR 

What does it mean to say something is "determined"? 

In today's experiment, you will be using pieces of wood 

(The Determinator!) to build some simple structures. In 
each case you want to figure out how many solutions exist; 
that is, how many different structures are possible which 
fit the requirements of the given situation? 

. Are there ^ solutions? 

. Is there only one solution? 

. Are there two or more solutions (some definite 
number)? 

. Is there an infinite number of solutions (within 
a range)? 

. Is there an infinite number of solutions (no 
limitations?) 

For each set of given conditions, state how many solutions 
are possible. Include sketches or descriptions of the 
solutions. Label the measurements on your sketches. 

1) Given conditions: four-sided figure with side 
lengths of 18", 14", 12", and 10" (in that 
order). Leave the pieces together to use for 

#2. 

2) Given conditions: five-sided figure with side 

lengths of 18", 14", 12", 10", and 15" (in 

that order). 

3) Given conditions: triangle with side lengths of 

18", 14", and 12". 

4) Given conditions: triangle with a side length of 

18", an angle of 50, and a side length of 6". Be 
sure the 50 angle is between the two known sides. 

5) Given conditions: triangle with a 50 angle, 14" 

side, and 12" side. Be sure the 50 angle is not 

between the two known sides. 
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Suggestions for using The Determinator 

. The pegboard holes are exactly one inch apart (center 
to center); use the holes to help you measure 
lengths. 

. When one of your sides is an unknown length, use a 
fairly long piece of wood for that side. 

. On the angle-fixing blocks, the settings are as 
follows: 

You can use 
various combinations 
to get different 
sizes of angles. 

Examples: the angle 
between 20“ and 45“ 
is 25“; from 140''to 
195° is 55“. 

. To mark off a length, you can insert a thumbscrew 
just far enough to stay in the piece of pegboard. 

. Once you've marked off a particular length or fixed 
an angle, use a sticker (A or S) to show that it's 

fixed. 
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UNIT 1 DETERMINED 

Algebra-Determined 

WARM-UPS 

Find numbers for X that make each statement true. List up 
to five for each statement. 

l)X+3=5 2)X+3=3+X 

3)X+3=X+5 4)X=9 

5) X < 3 

Remember the POSSIBILITIES 

1) no solution 
2) only one solution (determined) 
3) two or more solutions (some definite number) 
4) an infinite number (within a range) 
5) an infinite number (no limitations) 

Look at the warm-ups and decide which category describes 
their solutions. 
Do this now...write it down...have it checked! 

INVESTIGATE each statement given to decide which category 
of numbers of solutions it belongs to. 

1) 4X > 3X 2) 3(X + 9) = 3X + 27 

3) 3(X + 9) = X - 18 4) 3(X + 9) = (-54 + 3X) 

5) 6X = 5X 6) X(X - 1) = 0 

HOMEWORK 

In today's classwork we used five categories to describe 
the number of solutions to algebraic statements. In the 
past we have used Always, Sometimes, Never, as a system of 

categories. 

1) Study your Warmups and Class Exercises and identify 
them as Always, Sometimes or Never True. 

2) Show how to regroup our five categories by using 
Always, Sometimes, and Never; le, which belong with , 

which with S, which with N. 

3) Make a geometric statement which illustrates each type. 
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UNIT 1 DETERMINED 

Triangles-Determined 

Remember the possibilities for how many different 
structures you can build? 

1) no solution 
2) only one solution (determined) 
3) two or more (some definite number) 
4) an infinite number (within a range) 
5) an infinite number (no limitations) 

Use each set of information below to try to construct 

triangles. Be sure to checlc if more than one kind of 
triangle can be made. Then choose one of the five cases 
above to describe the situation. Hand in drawings and 

answers. 

1) RED <E 90, <R 30, RE = 4 cm 

2) GRN <G = 35, GR = 6 cm, RN = 4 cm 

3) BLU <B = 70', <L = 60', <U = 50’ 

4) YEL <Y = 70*, <E = 60“, <L = 60° 

5) BRN NR 7 cm, BR = 6 cm, BN = 5 cm 

6) WIN <W = 00
 

o
 

A
 

M
 

= 120*, WI = 2 cm 

7) YES <Y = 60^, YE = 7 cm, YS = 4 cm 

Homework Questions 

1) Explain what happens in each no solution case. 

2) Explain what happens in each infinite case. 

3) Explain what happens in each more than one solution 

case. 

4) List here the sets of information which determine 

triangles on the basis of this work. 
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UNIT 1 DETERMINED 

The Geometry of Laundry Racks 

If nothing else, your geometry course ought to give you a 
deeper understanding of laundry. Today you will be 

examining one of several laundry-related structures. When 
folded up and put away these structures are not determined. 
Only when you set them up to be used do you get something 
that won't move around. 

Your job is to figure out what it is that changes the 

structure from its undetermined state to its determined 
state. Why does it go from being movable to being rigid? 

To do this analysis use The Determinator to make a model of 

the structure and then make sketches from that. Don't 
forget to use the S and A stickers to show when a side or 

an angle is fixed. 

Then, base your discussions on one or several of the handy 

little observations listed below. Remember, one 
observation might have lots of implications for your 
structure. Follow the argument all the way through. 

You will turn in one report for your entire group. (Put 
everyone's name on it. ) Keep this sheet and take it home 

to use with your homework. 
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Handy Little Observations 

. One point does not determine a line. 

. Two points determine a line. 

. Two fixed side lengths do not determine a triangle. 

. Three fixed side lengths determine a triangle (SSS). 

Fixing an angle automatically fixes the one opposite 

it (Vertical Angles). 

A fixed angle between two fixed side lengths ^ 

determines a triangle (SAS). 
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UNIT 1 DETERMINED 

Two Sides of a Triangle 

I. Create some (at least four) triangles with sides of 
5 and 8. Make scale diagrams of them. (Everyone needs 
to have them.) 

1) Measure the lengths of the third side in each case. 

2) What is the longest measurement you found? 

3) Do you think it is possible to make a 5-8 triangle 
with a third side longer than the one you found in 
problem 2? 

4) Is it possible to make a 5-8 triangle with a side of 
100? 

5) Is there a limit on the largeness of the third side 
of a 5-8 triangle. If so, what is it? 

6) What is the shortest measurement you found? 

7) Is it possible to create a 5-8 triangle with a third 
side shorter than the one you found in # 6? 

8) Is it possible to create a 5-8 triangle with a third 

side of 1 1/2? 

9) Is there a limit on the smallness of the third side 
of a 5-8 triangle. If so, what it is? 

II. Repeat these steps for a triangle with sides of 8 
Answer questions 1-9 for that case. How did your 
answers change in the isosceles case? 

8. 
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Homework 

1) Look at the lengths of the third side in each 
triangle you made. Write a rule that states what 
you know about the third side of a triangle if you 
know two sides are 6 and 12. 

2) Write a rule about the third side of a triangle when 
know the two sides are 7 and 7. 

3) Measure the angles in your triangles. You should get 
180. Right? Now notice the size of the angles and 
size of the sides. Write two statements describing 
the relations you see about the size of the angles 
and the size of the sides. 
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UNIT 2 TRIANGLE CONGRUENCE 

Another Look at Determined 

1) Use the wood strips to build a figure with these 
measurements: 6 inches, 9 inches, 8 inches, and 10 inches. 
How many different structures can you build that meet these 
conditions? Do the lengths of four sides determine the 
angles of a figure? 

2) Use the wood strips to build a five sided figure by 
adding a side of 7 inches to the figure you made in niamber 
1 above? How many different structures can you make now? 
Are the size of the angles determined by the lengths of the 
sides in this five sided figure? 

3) In problem 1, you looked at a figure with four given 
side lengths. Problem 2 had five given side lengths. Based 
on what you saw with those figures, do you believe that a 
figure with six given side lengths would be determined? 
Say why or why not. 

Are these two different triangles? Explain carefully. 

5) Given conditions: Point B is 3 cm away from Point A. 

How many solutions can you find to satisfy the given 
conditions for Point B? Is point B determined? 

6) Given conditions: a triangle has one side length of 
5 cm and another side length of 3 cm. How many solutions 
can you find for the triangle? Is the triangle determined 

by the length of two of its sides? 
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UNIT 2 TRIANGLE CONGRUENCE 

Solving Triangle Problems 

Solve each problem by making a careful scale drawing (let 1 
inch = 1 mile). In each problem, compare your drawing with 
those of other students. 

Problem A. Dave and Ann are 4 miles apart. Dave sees Ann 
and he also sees a certain oak tree. The angle formed by 
drawing the line from Dave to Ann and drawing the line from 
Dave to the tree is 43 degrees. The tree is 3 miles from 
Ann. How far is the tree from Dave? 

Problem B. Bill and A1 are 3 miles apart, but they can see 
each other. Each can see a statue. The angle between the 
line from Bill to Al and the line from Bill to the statue 
is 73 degrees. The angle between the line from Al to Bill 
and the line from Al to the statue is 51 degrees. How far 
is the statue from each person? 

Problem C. Mike can see an elephant 4 miles away and a 
donkey 3 miles away. The angle between the line from Mike 
to the elephant and the line from Mike to the donkey is 126 
degrees. How far apart are the two beasts? 

Problem D. Jane and Mary are 2 miles apart; each can see 
the other. Both see a ship at sea. The ship is 1.75 miles 
from Jane and 3 miles from Mary. What is the angle between 

the lines drawn from the ship to Jane and Mary 

respectively? 
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UNIT 2 TRIANGLE CONGRUENCE 

Finding Missing Parts 

I. Use what you have learned so far to find x without 
measuring. Explain how you arrived at your answers. 

II. Triangle FAT is congruent to Triangle PIN 

For each case determine the value for the variable and 
calculate the missing part. Explain the geometric reason 

behind each equation that you write. 

FA = 2x + 3 TA = X + 1 FT = 3x + 3 PI = x + 4 

Find X, IN, and FT 

<A = = y - 6 <p = 3y 

Find y. <F, and <T 

FA = 4x + 18 PN : = 2x 

FT = 3y + 4x <A = 6x 

Find X ; r y. and <I 

<I = 2y - 16 <N = y + 7 

+ 4y PI = 12x + 2 
+ lOy 

10. TF = 1 
<F = 45 
Find X. 

X NP = 19 + 5x <T = 90 + lOx 
5x <A = 5x + 75 

What do you know about triangle PIN. 
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UNIT 2 TRIANGLE CONGRUENCE 

Using Congruent Triangles 

1) Explain how to use congruent triangles to construct 
triangle DOC so it could be used to find the 
distance AB across the lake. 

2) Explain how to construct triangle MBQ so that it 
could be used to find the distance AP across the 
river. 

<A = 
AM = 
<PMA 

3) Explain how to construct triangle BCD so that angle 
BDC is guaranteed to be 90. 

A 

C 

I 
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UNIT 2 TRIANGLE CONGRUENCE 

Line Segments in a Triangle 

1) Cut out each triangle on the attached sheet. 

2) Use a protractor and a ruler to figure out which 
triangles are scalene, isosceles, or equilateral; which are 
acute, right, or obtuse. Then, on the back of each 
triangle write ’'scalene isosceles" or whatever is 
appropriate for that particular triangle. 

3) Use folding to help you draw the following medians: 

in triangle FBI, median from vertex B to segment FI 
in triangle COW, median from vertex O to segment CW 
in triangle USA, median from vertex S to segment UA 
in triangle ZPG, median from vertex Z to segment PG 
in triangle EQL, median from vertex E to segment QL 

Write the word "median" in fairly small letters somewhere 
along each median. 

4) Now go back to each triangle listed above and use a 
different kind of folding to help you draw an angle 
bisector from the indicated vertex. Label it also. Try to 
be very careful about labeling so that it's quite clear 
which segment is a median, and which is an angle bisector. 

5) What is this diagram saying about medians and angle 

bisectors? 

6) Is it true, according to what you found with your 
triangles? Give examples from each category. 

7) Now go back to triangles EQL and USA. Draw another set 

of medians and angle bisectors but this time 
vertex Q in triangle EQL and from vertex A in triangle USA. 
Does it make any difference which vertex you start from. 

8) When is a median also an angle bisector? Answer 
ALWAYS, SOMETIMES, or NEVER and explain on a separate 

sheet. 
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Cut out each triangle 

AUSA 
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UNIT 2 TRIANGLE CONGRUENCE 

Segments in Triangles-Proof 

1) Draw and label a triangle in which an angle bisector 
is also a median. How do you know you are right? 

2) Congruent triangles can also be used to verify 
this. For example, we start with an equilateral 
triangle and an angle bisector. We identify the 
given conditions; 

1. 
2. 

Draw an equilateral triangle. 

Draw an angle bisector. 

Mark the given conditions on the diagram. 

Are there any congruent triangles here? 

How do you know? 

What does that tell you about the other 
parts of the small triangles? 

What does that tell you about the angle bisector? 

3) Follow the format of problem 2 for this situation: 

In an isosceles triangle the 
median to the base is also an 
angle bisector. 

Start this way; 

Draw an isosceles triangle. 

Draw the median to the base. 

Continue in the format of problem 2. 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Tiling 

This unit of study is about geometric figures which do and 
which do not fit together nicely. Notice the floor of the 
classroom. It is covered with square tiles. The squares 
fit together nicely at each corner. They do not overlap. 
They do not leave any space uncovered. We say then that a 
square "tiles". 

Imagine that the floor was covered instead with circular 
shaped objects. This would not be very efficient, would 
it? There were be lots of area to., be filled in. We say 
therefore the circles do not "tile". 

Your job is to study the figures drawn below and to 
determine if they tile or not. Remember for these examples 
you must use only shapes congruent to the one given. You 
may find that tracing paper will help you decide. 

For each figure given, write YES if it does tile and NO if 
it does not. 

GREEK CROSS PENTAGON 

QUADRILATERAL TRIANGLE 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Interior and Exterior Angles of a Triangles 

I. One Exterior Angle in Each Triangle 

1. Construct an acute triangle ABC. 

2. Draw an extension of side BC such that BA = AD. 

3. Measure all angles and record the measures 
in a diagram. 

4. Use Repeat to do this for several triangles. 

5. For each triangle, measure the interior angles of 
the triangle and the exterior angle CAD. 

6. State your conjectures about the relationship 
between the exterior angle and the interior 
angles of the triangle. 

II. All Three Exterior Angles in a Triangle 

7. Construct an acute triangle. 

8. Draw all three exterior angles. 

9. Measure all three exterior angles. 

10. Record your drawings and measurements. 

11. Repeat the steps for other types of triangles. 
(Use the repeat feature.) 

12. State your conjectures. 

13. What is the sum of the measures of the three 
exterior angles for an acute triangle? 

14. Is this sum the same for all types of triangles? 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Tangrams 

1) Identify each of the seven pieces as precisely as 
you can. i.e., A is an isosceles right triangle. 

2) How many small triangles cover square D ? 
The area of square D is _ small triangles. 
The area of parallelogram F is _ piece C. The 
area of triangle G is _ small triangles. 
What do you know about the areas of pieces D, F and G? 

3) Form a trapezoid using pieces C, D, E. 
Sketch a diagram to show how the pieces fit. 
The area of this trapezoid is _ small 
triangles. 

4) Form a rectangle using pieces C, D, E. 
Sketch a diagram to show how the pieces fit. 
What do you know about the area of this rectangle? 

5) Form a square using the pieces C, D, E, F, G. 
Show a sketch. 
How many triangles G would it take to cover the 
square? 
How many of the small triangles? 
Make a square using the pieces A and B. 
How many triangles C would it take to cover the 
square? 
How many of the small triangles? 
How would you describe this square and the square 
you made from pieces C, D, E, F and G? 

6) Consider pieces A and B. 
How are they the same? 
How are they different? 

7) Consider pieces A and C. 
How are they the same? 
How are they different? 
What other tangram piece is like A and C? Why? 
Each side of A = _ each side of C. 
The perimeter of A is _ the perimeter of C. 
The area of A is _ the area of C. 

8) Use all seven pieces to form a square, rectangle, a 
trapezoid, and a triangl©. Show sketches to 
illustrate how the pieces fit together. 
What do you know about the areas of these shapes? 
What do you know about their perimeters? 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Angles with LOGO 

Here's how the LOGO turtle thinks about angles: 

I start' 
here. 

They said FD 100, so 
I'm moving straight 
along this line. 

I want to keep 
going straight 
this way. 

^ 35 turn 
But they tell me RT 35 " 
and I have to change the way I'm 
pointing. Then when they tell me FD 50, 
I go off in a new direction. 

1) If you command FD 100 RT 35 FD 50 do you get a 
picture of a 35"angle? If it's not a 35‘angle, what 
size is it? 

2) List the commands you would use to get this picture: 

3) Find a way to draw that 30 angle using FD, BK, 
and RT for your commands (no LT allowed). Then 
keep going with the same method and put another 
30 right next to it. 

4) If you kept going with that method, how many 30‘ 
angles could you fit (before you start to retrace)? 

5) In this figure the angles are not necessarily 
Just be sure you have five spikes coming 

out, and that one angle is 40‘. 
(Again, no LT and no RT > 180) 

In your version of the figure, what 
is the measure of each angle? (Write 
the degrees in the picture.) 

6) Now do the same type of five-spike figure, but this 
time make all five angles congruent. What is the 

measure of each angle? 

congruent. 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Angle Measures 

1) Measure all the angles in the figures A - J. 
This is a good time for shared group work! 

2) Record your measurements in the chart provided. 
This should complete the first three columns of 
the chart. Problem A has been done for you. 

3) Study the information in the chart. Can you extend 
the chart to an entry for a figure K which would 
have 8 sides? (Careful I did not say 7 sides!) 

4) What would column three be if the figure L had 9 
sides? 

5) Imagine a figure M with 102 sides. What would the 
sum of its interior angles be? Complete column / 
three for M. / c 

/i20 

6) Remember the work we did with exterior / \ 
angles? Here is triangle A with an exterior / \ 
angle drawn at each vertex. I listed these / F\ 
measures in the fourth column. Label the J__ 
fourth column: Measures of the exterior angles. 
Complete the fourth column for figures B - J. 

1) The fifth column should be labeled: Total degrees 
in exterior angles (one at each vertex). Complete 

the fifth column. 

8) Study your results: summarize what you found to be 

true. 

9) Are these results surprising to you? 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Angle Measure Chart 

1 ! 2 I 3 4 5 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

Number 
of 

sides 

Angle Measures Sum of 
angle 
measures 

50, 60, 70 180 130,120,110 360 

I 
I 

1 
I 

Hand in this table and the related question sheet as your 

classroom assignment for today. 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Regular Polygons 

1) To which category does this pentagon belong? Say 
why. 

2) 

3) 

4) 

What about this triangle? Say why. 

How come this shape does not belong to category C? 

Is this a hexagon? 

-1- 

5) Briefly summarize the characteristics of each 
category of polygons. 

Now get some blank paper, rulers, protractors, compasses, 
and pieces of wood so that you can design some polygons 
according to these categories. Divide the work within your 

group. 

6) Create a quadrilateral from each category. 

7) Create a hexagon from each category. 

In geometry, there is a special name for polygons from 

category B: Regular Polygons. 
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Homework Questions 

1) Look at the Venn diagram on your classwork sheet. 
Working with your group, you created quadrilaterals 
and hexagons in all four different categories. Why 
is it impossible to draw a triangle for each 
category? 

2) Does a regular quadrilateral have to be square? 
Explain. 

3) Are all regular hexagons congruent? Explain. 

4) Based on the work you've done so far with regular 
polygons, answer True or False. Say how you know. 

a) All regular pentagons are equilateral. 

b) The only way to make a polygon equilateral is 
to make it equiangular also. 

c) An equiangular quadrilateral is really just 
another name for a rectangle. 

d) All squares are equiangular quadrilaterals. 

e) All squares are rectangles. 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Chart It 

Note: one of these problems can't be done. When you find 
it, explain why. 

REGULAR 

Number 
of 

sides 

Number j 

of 
triangles| 

Total 
degrees 
interior 

1 Total 1 Each 
degrees interior 

1 exterior| angle 

j Each 
{exterior 
j angle 

1 1 1 1 1 
1 1 1 1 1 

1) 6 
1 1 1 1 1 
1 1 1 1 1 

2) 

1 
1 

3 
1 
1 

1 1 
1 1 

1 1 
1 1 

1 
1 

1 
1 

3) 

1 
1 

t 
1 

1800 

1 1 
1 1 

1 1 
1 1 

1 
1 

1 
1 

4) 

1 
1 

1 
1 

1 1 
1 1 

360 
1 1 
1 1 

1 
1 

1 
1 

5) 

1 
1 

1 
1 

1 i 
1 1 

1 1 
1 1 

1 
1 

1 
1. 

40 

6) 

1 
1 

1 
1 

1 1 
1 1 

144 
1 1 
1 .. 1 

1 
1 

1 
1, 

Which one could not be done? Why not? 
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UNIT 3 ANGLES IN AND OUT OF POLYGONS 

Solve It 

Explain your answer to each question. 

1) Can a regular polygon have an exterior angle 
of 20 degrees? 

2) Can a regular polygon have an exterior angle 
of 22 degrees? 

3) How many sides does a regular polygon have if each 
of its exterior angles is 6 degrees? 

4) How many sides does a regular polygon have if each 

of its interior angles is 144 degrees? 

5) Can all the polygons in this design be regular? 
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UNIT 4 QUADRILATERALS 

Quadrilaterals-Finding the Range of Solutions 

To do this exercise you'll need to review a few things. 

1) What is a quadrilateral? 

2) Draw a convex quadrilateral. 

3) Draw a non-convex quadrilateral. 

4) What does it mean to say that something is 
determined? 

5) How come three fixed angles (AAA) are not good 
enough to determine a triangle? 

For each set of given conditions, make a model with The 
Determinator. Then, experiment with the model to get a 
sense of the range of solutions for that set of conditions. 
Once you've seen how the model behaves explain carefully; 

.in what way(s) is the quadrilateral 
restricted? 

.in what way(s) is the quadrilateral free to 
move or change? 

For example, perhaps the quadrilateral is restricted in 
that it must be convex, or maybe it's not allowed to have 
more than one pair of parallel sides. Maybe it's free to 
move in that it can lean at any angle, or in that it can be 
any size. Diagrams will be crucial to help you explain 

what you mean. 

1) Given Conditions; the quadrilateral is scalene. 

2) Given Conditions; the quadrilateral has two pairs 
of congruent opposite sides. 

3) Given Conditions; the quadrilateral has four 

congruent angles. 

4) Given Conditions; the quadrilateral has four 

congruent sides. 

5) Given Conditions; the quadrilateral is regular. 
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Homework Questions 

Use your classwork to help you explain why each of these 
statements is FALSE. 

1) ^ quadrilateral has four congruent sides, then 
it also has four congruent angles. 

2) If two quadrilaterals have exactly the same 
corresponding side lengths, the two quadrilaterals 
are congruent. 

3) If a quadrilateral is equiangular, then it is also 
equilateral. 

4) If a quadrilateral is scalene, then none of its 
sides will be parallel to each other. 

5) If a quadrilateral has three congruent angles, then 
the fourth angle must be the same measure as the 
other three.* 

* Hint: on #5, I said congruent angles-not 90 degree 
angles. 
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UNIT 4 QUADRILATERALS 

Quadrilaterals-How Many Kinds are There? 

Look up the definition of parallelogram and write it here 

Make accurate drawings or models of quadrilaterals which 
satisfy the following conditions. Show sketches. If not 
possible, explain. 

I A quadrilateral with diagonals that are 
perpendicular and 

1. diagonals bisect each other. 
2. one diagonal bisects the other and the 

second one does not. 
3. neither diagonal bisects the other. 
4. diagonals are congruent to each other. 

II A quadrilateral with congruent diagonals and 
5. diagonals bisect each other. 
6. one diagonal bisects, the other does not. 
7. neither diagonal bisects the other. 
8. diagonals are perpendicular to each other. 
9. diagonals are not perpendicular to each 

other. 

III A quadrilateral with = diagonals and no = sides. 

IV A parallelogram with - diagonals and no "= sides. 

Homework Questions 

I Look up the definitions of these words and write them 

here: 

Trapezoid: 

Rectangle: 

Rhombus: 

II 

Square: 

Look at your work from class today, 
shape you made as a) parallelogram 
c) rectangle d) rhombus d) square. 

Identify each 
b) trapezoid 
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UNIT 4 QUADRILATERALS 

Quadrilaterals-Special Types 

1) ABCD is a parallelogram. Angle A = 32 degrees 
AB = 8 cm. BC = 3 cm. Draw a sketch. 
Find as many angle measures as you can. 
Find as many side measures as you can. 

2) EFGH is a rectangle EF = 8 cm. FG = 3 cm. 
Draw a sketch. 
Find as many angle measures as you can. 
Find as many side measures as you can. 

3) IJKL is a rhombus. Angle I = 32 degrees. 
IJ = 8 cm. Draw a sketch. 
Find as many side measures as you can. 
Find as many angle measures as you can. 

4) MNOP is a square. MN = 8 cm. 
Draw a sketch. 
Find as many angle measures as you can. 
Find as many side measures as you can. 

5) Draw a parallelogram. Label it QRST. 
Write down as many true statements as you can 
the sides and angles of the figure you drew, 
terms like congruent, supplementary, parallel 

perpendicular. 

about 
Use 

and 
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UNIT 4 QUADRILATERALS 

Properties of Quadrilaterals 

Use the figures from class today to complete this chart. 
Write yes or no. 

1 Parallelograms 
1 
1 

1 Rectangles 
1 
1 

j Rhombus 
1 1 

1 Square 
1 1 

opposite j 1 1 1 1 1 
sides j 1 j 1 1 

congruent j 
1 
1 

1 
1 
1 
1 

1 
1 
1 1 

1 
1 
1 1 

opposite j 1 1 1 1 1 1 
angles j 1 

1 1 1 1 1 
congruent | 

1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 1 

all sides | 1 1 1 1 1 1 
congruent | 

1 
1 

1 
1 
1 
t 

1 
1 
1 1 

1 
1 
1 1 

all angles | 1 
1 

1 
1 

1 
1 

congruent j 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 1 

all angles | 1 
1 

1 
t 

1 
1 

right \ 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

adjacent | 1 
1 

1 
1 

1 
1 

angles | 1 
1 

1 
1 

1 
t 

congruent | 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

adjacent j 1 
1 

1 
1 

1 
1 

angles j 1 
1 

1 
1 

1 
1 

supple- i 1 
1 

1 
1 

1 
1 

mentary | 
1 1 

1 
1 
1 
1 

1 
1 
1 1 

1 
1 
1 
1 

diagonals j 1 
1 

1 
1 

1 
1 

congruent | 
\ 1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

diagonals | 1 
1 

1 
1 

1 
i 1 

perpen- | 
1 
1 1 1 

dicular j 
1 1 

1 
1 
1 
1 

1 
1 
1 

1 
1 
1 

diagonals | 
1 
1 

1 
1 

1 
1 j 

parallel j 
1 
1- 1 

1 
1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

diagonals j 
bisect I 
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UNIT 4 QUADRILATERALS 

Reversibility 

You can always take a definition and write it in "if, then" 
form. Furthermore, the "if, then" statement you write for 
your definition can always be reversed. This is helpful 
when you want to check to see if something fits a 
definition. 

DEFINITIONS ARE ALWAYS REVERSIBLE! 

1) Definition; a parallelogram is a quadrilateral 
with two pairs of parallel opposite sides. 

If-then: 

Reversed; 

According to the definition, is a rectangle a 
parallelogram? 

2) Definition; a rectangle is a quadrilateral with four 
right angles. 

If-then; 

Reversed; 

According to the definition, is a square a rectangle? 

3) Definition; a trapezoid is a quadrilateral with exactly 

one pair of parallel sides. 

If-then; 

Reversed; 

According to the definition, is a parallelogram a 

trapezoid? 



UNIT 4 QUADRILATERALS 

Quadrilaterals-Finding Missing Parts 

1) angle BAD = 120, angle J = 130, BC = 4 cm, CD = 7 cm 

HG = 10 cm, FG = 3 cm, JK = 4 cm, RQ = 2 cm 

Find these angle and side measures using the diagrams 
above. Explain how you know for each case. 

angle B_ angle C_ angle D_ AD_ AB_ 

angle E_ angle F_ angle H_ angle G_ 

EF_ EH_ angle K_ angle L_ angle M_ 

KL_ LM_ JM_ angle N_ angle P_ NP_ 

Use the diagraunns above to write algebraic sentences for 
each problem. Explain why each equation you wrote is 
correct. Solve for x. Find the required part. 

2) angle ABC = 3x - 20 3) 
angle ADC = x + 5 
find X, angle DAB 

5) angle MLK = 4x + 20 6) 
angle LKJ = x + 20 
find X, angle KJM 

7) NR = 2 l/2x - 3 8) 
RQ = 2x 
find X, NP 

EH = 2x 4) EF = 2x - 3 
EF = 3x + 18 angle G = lOx 
HG = 4x - 12 
find X, FG 

angle NPQ = 4x + 10 
angle NP = l/2x - 5 
find X, NR 

JK = l/2x + 4 
JM = 2x “ 26 
find X, ML 
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UNIT 4 QUADRILATERALS 

Quadrilaterals and LOGO 

I 1) What will the computer draw if you type: 

FD 50 RT 150 FD 70? 

2) Type it in. Were you right? 

3) What will the computer draw if you type: 

FD 50 RT 90 FD 70? 

4) Type it in. Were you right? 

5) What will be drawn if you type: 

REPEAT 4[FD 50 RT 90 FD 60] 

6) Check it out. Were you right? 

II For each exercise that follows (7-12), write commands 
that will have the computer draw each object. 
Record your commands. 

7) A square. 

8) A rectangle which is not a square. 

9) A parallelogram which is not a rectangle and not 

a rhombus. 

10) A rhombus which is not a square. 

11) This figure: a parallelogram with both diagonals. 

12) This figure: an equilateral triangle with its 

midlines. 
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APPENDIX B 

TEACHING GUIDES 
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Unit 1; Determined 

Note: Unlike the other units in this series, the 
Determined unit does not complete the entire sequence of 
the Leerninq Cycle. This unit is constructed to serve as 
the opening stages of the cycle: Intuition and Exploration. 
The Formalization and the second level of Intuition for 
this concept in the special case of triangles are included 
in the Triangle Congruence Unit. 

1. TYPES OF TRIANGLES 

Stage: Intuition 
Question: What Can Be Constructed? 
Format: Physical Drawings 
Class Structure: Groups of Three 
Materials Needed: Rulers 

Protractors 
Compasses 
Graph Paper 

Notes to the Teacher: 

This lesson provides both a summary of vocabulary 
terms and an introduction to the determined unit. The 
content objective is to review the terms commonly used to 
describe triangles. The lesson also encourages students to 
investigate the relationship between the sides and angle of 
triangles. 

The lesson includes descriptions of triangles which 
cannot exist. It is important for students to note that 
not all sequences of mathematical sounding words are 
meaningful. When a figure cannot be made, students are 
asked to explain what happens when they try to build it. 
Then they explain why no such triangle exists. These 
questions provide a start for reasoning. Students who have 
trouble explaining why such a triangle cannot exist should 
be asked to look again at their explanation of what happens 
when they try to make such a triangle. The physical 
connections seen there can often be translatd into reasons. 

This lesson also introduces the notion of drawing 
careful diagrams and analyzing them to make conclusions. 
The role of induction is often undervalued in geometry. If 
each group makes two triangles of different sorts, the 
class will have many examples to consider before making any 
generalizations. The discussion of special cases will be 

incorporated in a future lesson. 
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Unit 1; Determined 

2. THE DETERMINATOR 

Stage: Exploration 
Question: What Can Be Constructed? 
Format: Physical Models 
Class Structure: Groups of Four 
Materials Needed: Wood strips with holes an inch apart 

Blocks with angle markings drilled 
Thumbscrews and paper fasteners 

Notes to the Teacher: 

This lesson starts out with a whole class discussion 
of the word "Determined". Ask everyone in the class to 
write a sentence using this word. Collect these and write 
several of them on the board. Ask the class to explain 
some of them. Once the word has been explored, present the 
mathematical meaning of the term. 

To present a geometrical example, attach two wood 
strips so they form a pair of supplementary angles. Ask 
the students what is determined if one angle in this pair 
is "fixed"? This question defines the word "fixed" as well 
as provides an opportunity to discuss "determined" in a 
geometric situation. After this discussion, distribute the 
Determinator materials and the question sheet. 

Students may need some help in their groups as to how 
to use the materials. Sticky tape with S and A can be used 
to denote the object that is fixed and that which can still 
vary. The use of these symbols will be built on later in 
the triangle congruence unit. 

Unit 1: Determined 

3. ALGEBRA-DETERMINED 

Stage: Exploration 
Question: What Can Be Expressed? 
Format: Use of Algebra 
Class Structure: Whole Class/Pairs 
Materials Needed: Calculators 

Notes to the Teacher: 

This exercise is designed to provide students with an 
algebraic context for the meaning of determined. It has 
the additional quality of helping students make sense of 
the variety of ways variables are used. 
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start the class with the warm ups. Record their 
answers on the board. Remind the class of the scheme used 
previously to categorize the number of solutions. Have 
students individually decide on the categories for each. 
As students provide their answers discuss any differences 
of opinions. This part of class should end with the five 
statements, solutions for each and the category left on the 
board so that students may refer to this as they do their 
work. 

There are at least two ways to approach this task. 
One is to look at these statements as sentences in 
arithmetic. In that case, students find it interesting to 
use a calculator to try to find numbers that work. If 
pairs do use calculators it is worthwhile to create a list 
of "kinds" of numbers with them. Ask them to tell you what 
category of numbers they plan to try. Together they can 
generate a list something like this: positive, negative, 
large, small, zero, one, fractions less than one, and so 
on. Determining when how many numbers is enough to try to 
use the label Always is a fascinating question. For some 
students this will motivate the use of algebra. 

Another way to start this problem is to use algebra 
manipulation. Geometry students need to maintain their 
algebra skills. This exercise can be considered a review 
of skills already learned or an opportunity to teach some 
concepts that have not yet been mastered. For some 
students, for instance, problem #2 is a mystery until they 
investigate some numbers. 

The suggested homework questions are appropriate if 
the class has worked extensively with the Always, 
Sometimes, and Never format of questions. It is important 
for students to note that these statements can be 
categorized in more than one way. Learning that 
classification schemes can vary and that the user must 
decide which scheme works for the content of the problem is 

important. 

Students will also see the category of Sometimes is 
pretty vague. It includes several different situations. 
This is very different from the Always and Never case which 

are clearly unique. 

I 

I 
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Unit 1; Determined 

4. TRIANGLES-DETERMINED 

Stage; Exploration 
Question: What Can Be Constructed? 
Format; Physical Drawings 
Class Structure: Groups of Three 
Materials Needed; Rulers 

Protractors 
Compasses 

Notes to the Teacher: 

This is another exploration exercise. It will form 
the basis‘for the triangle congruence unit. The previous 
two lessons had students investigate geometric and 
algrabraic statements and introduced categorization for the 
number of solutions. This lesson focuses on how these 
ideas apply to triangles. 

Even though groups of three are suggested, be sure 
each individual actually constructs the triangles. 
Students find that constructing these triangles can be a 
powerful experience. Many students miss one of the 
triangles in #2, yet I have found no clear pattern in which 
one they leave out. Since that is the case, encourage them 
to share their work with other students to check if they 
are all using the "same" triangle. Some students will make 
the acute and some the obtuse triangle, so they will 

encounter both possibilities. 

Some students will consider all the triangles made in 
exercise #3 as the same even though they notice they have 
different length sides. Clarifying the difference between 
same, similar, and congruence will help them. 

This exercise can be extended to include SSS cases for 
triangles that cannot exist due to contradiction of the 

triangle inequality. 
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Unit 1; Determined 

5. THE GEOMETRY OF LAUNDRY RACKS 

Stage: Exploration 
Question: What Can Be Changed? 
Format: Physical Models 
Class Structure: Groups of Four 
Materials Needed: The Determinators: Wood 

Angle Fixers 
Folding structures: 
wooden clothes dryers 
folding clotheslines 

Notes to the Teacher: 

This is a fun, though unusual, activity. Provide the 
class a variety of objects that change structure, such as 
wooden clothes racks, sweater dryers, or folding 
clotheslines. (If your objects are not all to do with 
laundry, a different title may be appropriate.) Students 
are to analyze the structure in both the determined and 
undetermined state. 

Building a model of the structures with the wooden 
pieces and angle fixers is a necessary part of this 
exercise. As students work on building their model, they 
must notice which aspects of the structure are important 
features in the change process and which are irrelevant. 
The model serves as a stripped down version of the 
structure. As students label the fixed and unfixed sides 
and angles, they are able to connect the motion of these 
objects with the earlier information on determining a 
triangle. 

Unit 1: Determined 

6. TWO SIDES OF A TRIANGLE 

Stage: Exploration/Deduction 
Question: What Can Be Changed? 

What Can Be Deduced? 
Format: Physical Models 
Class Structure: Pairs 
Materials Needed: Rulers 

Protractors 
Compasses 
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Notes to the Teacher: 

This exercise is designed to help students note 
several inequalities concerning triangles. As the students 
work through these questions they will be drawing, checking 
their measurements against their intuition, and determining 
the limitations of one measure when other measures are 
fixed. In this case the fixed measures do not determine a 
unique value for the third side but they do provide a limit 
for the range of solutions. 

Students are then asked to determine if they must 
change their analysis in the case that two sides of the 
triangle are the same. The answer to this question points 
out the role of zero as a number. Determining that a 
segment must be greater than zero is the same as saying 
that it must exist. This rather powerful meaning of zero 
can be noted here. 

The homework questions are designed to help students 
organize the results of the two experiments. Questions 1 
and 2 are phrased in arithmetic terms. Generalizing these 
two solutions as the sum and the difference of the fixed 
sides should be part of the class discussion following this 
assignment. Some students who understand this concept 
physically and arithmetically, may still have trouble with 
the general rule. These students may need extra practice 
with arithmetic cases to help them see the connection. 

The third homework problem allows students to note the 
isosceles triangle angle equality and its more general 
case, the theorem stating that the larger side in a 
triangle is opposite the larger angle. 

Building these triangles out of the wood strips and 
changing the angle between the sides is an effective 
alternate or additional activity for this conept. The 
Geometric Supposer can also be used to analyze various 
cases of SAS. Students who need additional experience with 
these concepts would find those exercises beneficial. 
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Unit 2: Triangle Congruence 

1. ANOTHER LOOK AT DETERMINED 

Stage: Intuition 
Question: What Can Be Constructed? 
Format: Physical Diagram 
Class Structure: Groups of Three 
Materials Needed: Wood strips 

Paper Fasteners 
Compasses 
Rulers 

Notes to the Teacher: 

This lesson is designed to provide the link between 
the concepts of determined and congruence. Question #1, 
#2, and #3 review the work done earlier in the Determined 
Unit. Be sure students build these models. The connection 
between many figures, many different possible angles and 
the non-determined state of the structures is important. 
Give students an opportunity to write about the 
relationships and non-relationships they see. 

Question #4 is designed to elicit student intuitive 
responses. The teacher's job here is to note what meaning 
the students give to the word "different". Language is 
used casually in everyday life. The context of the 
sentence indicates what meaning to ascribe to a given word. 
This principle of English, which makes our language 
interesting, is often a hindrance in mathematical 
understanding. Students may interpret the word "different" 
to mean different shape, or different size, or different 
object. The definition of congruence depends on a commonly 
held meaning to the word different. Discussing the answers 
to question #4 provide the opportunities to bring out all 
these meanings and to agree on the meaning of "different 

as in different object. 

Question #5 is another example of determining the 
number of solutions. It is also designed to help students 
move away from a strictly horizontal and vertical 
orientation. Once students see there are more than four 
answers to this question, they often settle on 360 as the 
number. Other students will argure for an infinite amount 
Letting these students argue with each other is effective. 

Question #6 reviews the results of the two sides of 
triangle exercise which closed the Determined Unit. For 
students who formalized that work, this is a review 
question and provides a link between old knowledge and the 
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new work. For students who are still forming this concept, 
it is additional exploration. 

Unit 2; Triangle Congruence 

2. SOLVING TRIANGLE PROBLEMS 

Stage: Exploration 
Question: What Can Be Constructed? 
Format: Physical Diagram 
Class Structure: Groups of Three 
Materials Needed: Protractors 

Compasses 
Rulers 

Notes to the Teacher: 

This lesson narrows the scope of the study of 
determined to the case of triangles. The exercises include 
the three triangle congruence cases (SSS, SAS, ASA) and the 
ambiguous case (SSA) in which two answers are possible. 

Drawing scale diagrams is an important task in and of 
itself. The skill to physically construct these triangles 
is as important as the formalization of the rules that will 
take place later. These questions also provide practice 
with interpreting verbal information and using the 
protractors and compasses. 

Even though students are working in groups it is 
important that every student draw their own diagrams. 
Alert students to the possibilty of more than one answer by 
referring to the Determined unit work. The difference 
between different diagrams providing the same answer, as 
may happen in questions B, C, and D, and different possible 
diagrams providing different answers as in A, is important 

to be discussed. 

Many students do not notice the second case in problem 
A. Some will draw the acute triangle version. Others will 
draw the obtuse case. As students present their solutions 
to the class, both cases should be noted. Provide the 
determinator wood strips so that students may build a model 
of this case as part of this discussion. Seeing the two 
answers on paper is one format. Building the wood strip 
model shows the two solution case in another format. Both 
of these experiences are worthwhile. 
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Unit 2; Triangle Congruence 

3. TRIANGLE CONGRUENCE RULES 

Stage; Formalization 
Question: What Can Be Deduced? 
Format: Reasoning 
Class Structure: Individual/Whole Class 
Materials Needed: None 

Notes to the Teacher: 

After the class discussion of the problems A - D from 
lesson #2, ask the students to identify what information 
was given in each problem. Provide the wood strips so they 
can build models of each case, marking what is given or 
fixed. The language of the Determined unit should help 
them express the situations. As a summary, the class 
should be asked to list what information is necessary to 
determine a triangle. Abbreviating their conclusions 
should end up with the traditional sequences of SSS, ASA, 
and SAS. 

The following are good follow-up questions which help 
to link the determined concept to that of triangle 
congrunce; 

1. I have two triangles. I know that all three sides 
of one are the same length as all three sides of the other. 
Are the two triangles the same size and shape? Do you know 
anything about their angles? What else would you need to 
know to be guaranteed that the triangles are identical 

copies of each other? 

2. I have two triangles. I know that two of the 
sides of one are the same length as two of the sides of the 
other. Are the two triangles the same size and shape? Do 
you know anything about their angles? What else would you 
need to know to be guaranteed that the triangles are 

identical copies of each other? 

3. I have two triangles. I know that one side of one 
is the same length as one side of the other. Are the two 
triangles the same size and shape? Do you know anything 
about their angles? What else would you need to know to be 
guarLteld tha? the triangles are identical copies of each 

other? 

I 

i 
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Unit 2; Triangle Congruence 

4. FINDING MISSING PARTS 

Stage: Exploration 
Question: What Can Be Calculated? 

What Can Be Expressed? 
Format: Use of Arithmetic 

Use of Algebra 
Class Structure: Individual 
Materials Needed: None 

Notes to the Teacher: 

This exercise provides arithmetic and algebraic 
practice in applying the triangle congruence rules. The 
directions require that students supply reasons for each 
conclusion they make with the numerical examples. These 
questions help students notice the connection between this 
work which appears intuitively easy, and proof which is 
often difficult. Students who develop a sense of 
justifying their work here will find the justifications in 
non-numerical cases similar. 

The algebra examples serve two goals. For many 
students algebra means solving a given equation by some set 
of steps. Few understand the meaning of the equation 
itself (which means they do not understand the reason 
behind the steps of the solution as well). In these 
examples the students must form their own equation. This 
means that they must notice that an equation is a statement 
that two representations have equal value. This setting 
provides an opportunity for students to note the meaning of 
equation. They are asked to provide the geometric reason 
for each algebraic statement. This helps them build up a 
notion of proof as indicative of why they know something is 

true. 

The solutions to the algebraic exercises do not end 
with finding the value of x. The questions require that 
the students calculate some geometric object as well. This 
is done so that students will see that algebra is not an 
end unto itself, but rather a tool for solving other 

problems. 

Several variations are included in the set of 
exercises. There are problems in which the value of x is a 
negative number, but the solution of the geometric problem 
is sensible. There are problems in which the value of x is 
a positive number but the situation in geometry represents 
an impossible geometric case. Students will need to 
analyL the geometry of the solution in order to make sense 

out of their solutions. 
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Students need to understand that one possible answer 
is that the situation described cannot happen. Explaining 
why not is the appropriate answer to such a question. 
Students will add this to their list of possible answers 
only if they encounter such questions frequently enough. 
Most text books include only questions for which answers as 
possible. 

Unit 2: Triangle Congruence 

5. USING CONGRUENT TRIANGLES 

Stage; Intuition 
Question: How Can This Be Used? 
Format: Problem Solving 
Class Structure: Pairs/Whole Class 
Materials Needed: None 

Notes to the Teacher: 

This exercise is designed to provide further practice 
with the triangle congruence rules and their meaning. It 
also provides a non-proof setting to discuss the statement 
frequently used in proofs; Corresponding Sides of Congruent 
Triangle are Congruent. Students use it here as a natural 
part of the definition of triangle congruence. 

These problems are best solved in pairs. Many 
students who feel they understand this concept have 
difficulty explaining their ideas. The process of writing 
out these solutions helps clarify the concpepts involved. A 
useful classroom technique to help them with this task is 
to regroup the pairs into groups of fours once each set of 
pairs has made an attempt to write a clear explanaticpn. In 
the groups of four have them compare results by reading 
each other's explantions and then write one explanation to 

represent their group's work. 

Have each group of four present their solution for one 
of the three problems to the whole class. With the whole 
class sharing, students will see both approaches to the 
geomltScal problem and other formats for the explanations. 

I 
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Unit 2 Triangle Congruence 

6. LINE SEGMENTS IN TRIANGLES 

Stage: Exploration 
Question: What Can Be Constructed? 
Format: Drawings/Models 
Class Structure: Pairs 
Materials Needed: Rulers 

Protractors 
Scissors 

Notes to the Teacher: 

This lesson provides physical meaning to two line 
segments commonly studied in geometry and is the basis for 
the formal proofs to follow in the next lesson. The intial 
step of measurement and triangle description is important. 
The reason for the classification of triangles in these 
categories is that we can state geometrical information 
about a whole class of triangles not just a particular 
triangle. That is what the proofs in the next lesson will 
accomplish. In order for students to comprehend this value 
of proof they need to see that describing triangles by the 
relations of the sides and angles is not just a trivial 
labeling exercise. This will only happen if students are 
asked to make conclusions on the basis of the categories. 

Note that the directions do not include how to do the 
paper folding. Students are to be given the definitions of 
these terms and to work out for themselves how to fold the 
paper to perform the action. The paper folding exercise 
provides students with physical evidence which indicates 
the difference between the median and the angle bisector. 
Even when they coincide the physical acts of creating them 

are different. 

Question #5 provides an abstract format for the 
conclusions of this exercise. Questions #5 and #6 ask them 
to interpret this Venn diagram and to connect it with the 
physical exercise they performed. This question is 
designed to help students articulate what they noticed in 
the paper folding exercises. The very physical nature of 
the task can create a situation where students do the 
exercise but do not reflect on what happened and therefore 
do not learn from the activity. Performing the action is 
not enough; if the lesson is to have impact, students must 
think about what they did, and then verbalize in formal 

geometric terms what they saw . 

Question #7 is designed to help students increase 
their precision and to note all the conditions necessary to 
the geometrical situation. Many students will conclude the 
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median and the angle bisector coincide in an isosceles 
triangle. This statement is true but not precise enough. 
The function of question #7 is to alert students to the 
modifications necessary to improve the statement. This 
process illustrates the scientific method: collecting data, 
forming a conclusion, checking with further study of the 
data, reforming the conclusion. 

Question #8 provides the forum for students to write 
their final conclusions. Not all students will note the 
difficulty in the isosceles case. This should be brought 
out as students share their answers with the whole class. 

Unit 2: Triangle Congruence 

7. SEGMENTS IN TRIANGLES-PROOF 

Stage: Formalization 
Question: What Can Be Deduced? 
Format: Reasoning 
Class Structure: Individual/Whole Class 
Materials Needed: None 

Notes to the Teacher: 

This lesson should be organized as an interactive 
class with students working individually at their seats, 
but not at their own pace. The class should operate as a 
whole. The content of this lesson follows from the 
previous lesson and illustrates the connection between the 
physical reality of geometrical relations and the way that 
congruent triangles are used to verify them in general. 
Question #1 is used to focus the class attention on the 
situation to be discussed. It is a review of the work of 
the previous day's lesson. Be sure students write down an 
answer to "How do you know you are right?" for later use. 

Work through Question #2 step by step with student 
suggestions and have students record the board work on 
their own papers. This will give them a format to follow 
for other exercises of this type. Some students have 
trouble noting all three triangles present. In order to 
comprehend the use of congruent triangles in proof it is 
necessary for students to have the ability to refocus in 
the middle of a problem. Sometimes we see one triangle 

with an angle bisector, sometimes we see 
Drawing separate diagrams with the appropriate labels can 

help make this explicit. 

once question #2 has been completed through this 
interactive class, ask students to =°"Phre their answers 
question #1 to the work in question #2. It is importan 
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for them to note the similarities and differences between 
the two answers. Both accomplish the task. One is 
informal, based on physical knowledge, the other is formal, 
based on deductive results. One is the way we convince 
ourselves, the other is the way mathematicians convince 
each other. 
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Unit 3; Angles In and Out of Polygons 

1. TILING 

Stage 1: Intuition 
Question: What Is Suggested? 
Format: Scale diagrams 

Class Structure: Pairs or Individual as Homework 
Materials Needed: Tracing Paper 

Scissors (optional) 

Notes to the Teacher: 

"Tiling" is intended to provide students with an 

informal sense of the meaning of regular tesselation. In 
this introductory lesson students start with squares and 
circles. These shapes are not only very familar but also 
serve as base examples of the meaning of tiling. It is 
"obvious" to students that a square tiles and a circle does 

not. These shapes connect with students’ intuitive 
beliefs. Using this as a basis the students are able to 

move from what is very familar and obvious to shapes that 

are more complex. 

Another significant point to note in the written 

instructions is that students are directed to look at the 

world around them, in this case the floor, and to analyze 
its form. The transition from paper and pencil exercise to 
reality and back to paper and pencil illustrates the 
interrelationship between mathematics and the real world. 

Teachers should avoid restating the instructions. Have 

the students read them. Our goals as teachers are not only 
content related, but also to make our students independent 
learners. Yet often we subvert our own goals by doing what 

seems to be more "efficient" such as simply telling the 
students what directions mean. In fact this robs them of 

the chance to be in charge of their own learning. 

Do not tell students how to accomplish this task. If 

they come to wrong conclusions, challenge them to show you 

their diagrams and to compare their work with others. 



Unit 3: Angles In and Out of Polygons 

2. ANGLES WITH LOGO 

Stage 1: Exploration 

Question; What Is Apparent? 
Format; Computers 
Class Structure; Pairs 
Materials Needed; Computers 

LOGO 

Notes to the Teacher; 

This LOGO lesson is designed to help students 

understand that there are 360 degrees around a point. It 
also makes clear the significance of the exterior angle. 
Students need little experience with the LOGO language to 
complete this task. However students do need to act out 
the role of the turtle themselves in order to comprehend 

the turtle moves. Having students walk and turn according 

to the LOGO commands in the introduction of the lesson, 
provides them with a physical meaning to the terms. 

The problem solving process implicit in working with 
LOGO can be described as follows; 

Try something. 
If it doesn't work, see why not. 
Change what you did. 

Try it again. 
Repeat this until it comes out right. 

The LOGO exercises on this sheet have two important 

attributes that teachers can capitalize on. One is that 

there are many ways to do most of the tasks. Letting 
students share solutions with each other broadens the 

approaches that students have and also provides 
satisfaction to the students. Also the tasks are self 

correcting. The students know when they are right without 

having the teacher take on the role of authority. It is 
right when you accomplish the task, when the physical 

reality is satisfied. 
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Unit 3; Angles In and Out of Polygons 

3. INTERIOR & EXTERIOR ANGLES 
EXTERIOR ANGLES 

Stage 2: Exploration 
Question: What Can Be Explored? 
Format: Computers 
Class Structure: Groups of three 
Materials Needed: Computers 

The Geometric Supposer Triangles 

Notes to the Teacher: 

This lesson is started in groups at the computers. As 
groups finish the assignment have them get together to 
compare conjectures. Let them discuss similarities' and 
differences between their own work and the work of the 
other groups. Good follow-up questions: Can you convince 
me that your conjectures are always true? Do similar 
conjectures hold for figures or more than three sides? 

Here students are introduced to the concept of the 
exterior angle of a triangle. The exploration may bring 
out the inequality concerning exterior angles or the 
equality involved. One benefit of having different groups 
compare notes is to disseminate all this information. 

This lesson starts in small groups, then combined 
groups, and by the time the class is done may well end up 
as a whole class discussion. 

One of the suggested follow-up questions asks students 
to imagine what an exterior angle would be in a figure of 
more than three sides. This kind of question has two 
purposes. First, it provides a basis for a future lesson. 
Second, it is an illustration of generalizing. If we want 
our students to generalize, we need to model that behavior 

in our questions. 

A useful construct for organizing geometric statements 
is to determine which are always true (a theorem), which 
are sometimes true (a theorem with conditions), and which 
are never true (a statement that contradicts known fact). 
This device can be used here to form homework questions: 
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Determine which of these statements are always true, 
sometimes true, or never true. Refer to your computer work 
to help you decide. Write out your explanations. 

1. The sum of the exterior angles of a triangle (one 
at each vertex) is 360 degrees. 

2. An exterior angle in a triangle is greater than any 
one of the interior angles of the triangle. 

3. In a right triangle, an exterior angle is equal to 
one of the interior angles of the triangle. 

Unit 3; Angles In and Out of Polygons 

4. REGULAR POLYGONS 

Stage: Exploration 
Question: What Can Be Deduced? 
Format: Diagrams/Physical models 
Class Structure: Groups of four 
Materials Needed: Rulers 

Compasses 
Wood Strips with holes 
Paper fasteners 

Notes to the Teacher: 

The object of this lesson is to help students 
understand the independence of the terms equilateral and 
equiangular. This single lesson (classwork and homework) 
actually illustrates the learning cycle itself. Even 
though students are given the Venn diagram to interpret, 
many of them will answer questions 1 through 4 based on 
their own "gut level" definitions. For example, students 
who say that a hexagon is a figure with six sides will also 
argue that the figure in number 3 is not a hexagon because 
of the "corner". Problems #1 - #4 then bring out the 
students' beliefs and are at the stage one level of 

intuition. 

Problem #5 is designed to have students state these 
beliefs explicitly and connect them with the Venn diagram. 
This problem can serve to indicate conflicts between the 
informal definition of the students and the formal meanings 

implied in the diagram. 

Problems #6 and #7 are physical exploration exercises. 
Students either build or draw objects which satisfy the 
given conditions. This provides another opportunity for 
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them to refine their belief and connect it with physical 
reality. Thus this exercise serves as the exploration 
stage. 

The homework questions are designed to accomplish two 
tasks. The first is content related. These questions ask 
them to reflect on the class activity and to interpret it 
in terms of the principles embedded in the Venn Diagram. 
As importantly, these questions also allow the student to 
justify their beliefs. The directions, "Say how you 
know.", create a format for informal deduction. Students 
learn to reason from known facts in small steps in this 
way. 

Correcting this assignment is an important and 
difficult task. Most students have not been asked to 
explain their answers in mathematics class. They need to 
learn what this task involves. Their first attempts are 
usually inadequate, but they will not improve unless they 
get clear feedback. The teacher plays a vital role here as 
your expectations will define what is acceptable. 

One way to make the importance of communication clear 
is to have the students read and critique each other's 
explanations. This accomplishes two objectives. First, 
each student receives feedback from their peers. This can 
be less threatening than feedback from a teacher who is the 
evaluator. Second, as critiquers, the students note 
unstated assumptions, missing links in the arguments, and 
different approaches to the task. This helps to make the 
task less arbitrary; that is, it's done to communicate an 
idea, not just to please the teacher. 

These homework questions, then, are the formal 
deduction stage of the learning cycle. The student has now 
constructed a new belief about the relationship between 
equilateral and equiangular. This is the end of one cycle 
of learning within this single lesson which is part of a 
broader cycle illustrated by the whole unit. 

Unit 3; Angles In and Out of Polygons 

5. ANGLE MEASURES 

Stage 1: Exploration 
Question: What Can Be Calculated? 

Format: Diagrams 
Class Structure: Groups of four 
Materials Needed: Protractors 
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Notes to the Teacher; 

This lesson is a guided discovery lesson. The 
students compile data from their actual measurements, 
analyze this data, and extend the patterns they found to 
cases beyond the original data sources. This lesson is 
designed to motivate the angle meassure formulae. 

This lesson also illustrates two different uses for 
groups. At first the group functions as a work sharer; 
that is, each member of the group generates some part of 
the required data. The value of this is simple. It 
reduces the amount of time necessary to complete the task. 
However, the function of the group changes after the inital 
data collection. The group should now function as a 
problem solving (two heads are better than one) entity. 
The questions #3 - #7 require pattern finding and 
generalizing tasks quite appropriate for group problem 
solving. 

Remind the students to follow the directions 
carefully. One device is to have each group appoint a 
"reader" whose job is to read the directions out loud one 
at a time. The reader does not move to the next direction 
until the work of the first step is completed. This 
technique helps the group stay on task and avoid confusion. 

Unit 3; Angles In and Out of Polygons 

6. TANGRAMS 

Stage 2: Exploration 
Question; What Can Be Constructed? 
Format; Physical model 
Class Structure; Pairs 
Materials Needed; Tangram Pieces 

Notes to the Teacher; 

For the purposes of this lesson, the tangram pieces 
are labeled this way; A and B are the large triangles, 
C and E are the small triangles, G is the medium sized 
triangle, D is the square and F is the parallelogram. 

This exercise allows students to have physical 
knowledge of how shapes connect with each other and 
other shapes. Many students think of this as a puzzle day 
and are not aware of the mathematics behind the work they 
are doing. The ability to build complicated shapes out of 
simple ones and the reverse process of partitioning a solid 
shape into smaller sections is quite important in 



understanding not only tiling, but also the theorems which 
support most of the familar area formulas. Do not assume 
these exercises are merely play simply because students can 
not articulate this kind of knowledge. Physical 
experiences such as these provide the students with 
understandings that can be built on later. 

This work with tangrams can also include a discussion 
of the problem solving process. Many students note that in 
solving problem #10 once any one of the figures has been 
made the others can be created by slight modifications of 
that one structure. This provides an excellent starting 
point for talking about solving mathematics questions by 
building on to previous work rather than starting from the 
beginning each time a problem is posed. 

Note also in problem #10 students encounter a question 
to which the correct response is to say there is no 
relationship. This question asks what they know about the 
areas and the perimeters of the figures they have made. 
While they can be assured the areas of the figures are all 
the same, there is no such obvious relationship for the 
perimeters. It is just as important for students to note 
this non-relationship of perimeters as it is for them to 
note that areas relate consistently, yet we often ignore 
this kind of question. 

Unit 3; Angles In and Out of Polygons 

7. POLYGONS FORMULAE 

Stage: Formalization 
Question: What Can Be Expressed? 
Format: Reasoning 
Class Structure: Whole Class/Groups of Four 

Materials Needed: None 

Notes to the Teacher: 

This exercise starts out as a whole class discussion 
of lesson #5, Angle Measures. Each group presents the 
number patterns they found in the tables. Possible student 
results* "You add 180 degrees each time you add a side. 
•’The exterior angles are always the same, 360 
"For 102 sides you take away two and times by 180 degrees. 
Once all these statements have been collected on ^he fron 

board, ask each group to create a picture of 
created. Have them work in groups of four on this task for 

a period of time and then share their results. 
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If the groups need more direction to accomplish the 
work, the teacher may draw a 9 sided figure on the board, 
ask the class how many degrees are contained in the 
interior angles, and then ask them to find a way to verify 
that without measuring. 

The teacher's role during the small group work is to 
challenge the students to give physical meaning to the 
written expression of the number patterns. Some groups may 
need concrete reminders of the partitioning work done 
earlier in this unit before they can make sense out of the 
number patterns. 

After the small group work, have the students report 
their findings. It usually happens that some students will 
partition the nine sided figure into triangles by drawing 
diagonals from one vertex and will arrive at the (9-2) 
times 180 degrees version of the formula. Others will draw 
from an interior point and make 9 triangles times 180 
degrees minus the extra 360 degrees. Having students 
verify the equivalence of these expressions is worthwhile. 

Unit 3; Angles In and Out of Polygons 

8. CHART IT 

Stage: Exploration 
Question: What Can Be Calculated? 
Format: Use of Arithmetic 
Class Structure: Individual/Whole Class 
Materials Needed: None 

Notes to the Teacher: 

This exercise is a drill and practice type with a 
touch of problem solving. As students work through these 
problems, have them verbalize what they are doing in terms . 
of the polygon and its triangles. This approach helps them 
to connect each arithmetic step with the physical picture. 
In this way students will be able to integrate this formal 
statement with the physical actions from which it was 
derived. This prevents rote memorization of the formulae. 

One of the exercises does not have a unique solution. 
Warning students that this may happen is important, since 
this is not routinely the case in school work assignments. 
It is not here as just a trick question, but rather it 
illustrates an important mathematical principle. This 
problem can also be used to illustrate the difference 
between problems which cannot be solved and those which do 

not have a unique solution. 

219 



Unit 3; Angles In and Out of Polygons 

• LVE IT 

Stage: Intuition 
Question: What Does This Mean? 
Format: Problem Solving 
Class Structure: Groups of Three/Whole Class 
Materials Needed: None 

Notes to the Teacher: 

This lesson is designed to help students integrate 
their knowledge of angle size and shape of a figure. It 
also provides the teacher with information as to how well 
the students have been able to make these connections. If 
they seem surprised there is no regular polygon with an 
exterior angle of 50 degrees and can only verify it 
numerically, the teacher knows that more work must be done. 
In that case this exercise can be considered as the level 1 
intuition. On the other hand, students who can see that 
the angle sizes are restricted have an intuitive knowledge 
of shape that has been formalized in the previous work. 

The last question, the pattern built out of shapes, is 
designed to refer back to the original issue of tiling. 
Here are some shapes which do tile. Are they all regular? 
They certainly seem regular but measurement will not help 
decide the issue. The ability to apply the abstract 
concept of angle size and polygon shape to correctly 
interpret this quesstion indicates to the teacher that 
students have moved from a previous belief to a newer, more 
complex understanding. A student would then be at level 4 
intuition and ready to explore new levels of this concept 
such as tesselations that are not regular and three 
dimensional versions of "tiling". 



Unit 4: Quadrilaterals 

1. QUADRILATERALS - FINDING THE RANGE OF SOLUTIONS 

Stage: Intuition 
Question: What Can Be Constructed? 
Format: Physical Diagram 
Class Structure: Whole Class/ Groups of Three 
Materials Needed: Wood strips 

Paper Fasteners 
Compasses 
Rulers 

Notes to the Teacher: 

This lesson is designed to set the stage for the study 
of quadrilaterals in general and special types of 
quadrilaterals in particular. The questions are planned to 
accomplish two goals at once. One is to engage the 
students' intution and the second is to start the process 
of exploration. 

The lesson uses model building as a format to be sure 
students picture the wide variety of shapes that the word 
quadrilateral includes. The language of given conditions 
is suggestive of the language used in the proof exercises 
in order to help students form the link between the 
physical models and the abstract proofs. The lesson also 
reviews the geometrical vocabularly used in this unit. 

Be sure to have groups share their results with the 
whole class. Many different approaches can be used and it 
is fruitful for the whole group to see the variety. 
Sharing conclusions and determining similarities and 
differences in the results of the approaches provide 
valuable experience for the class in how to solve problems. 

The homework questions are further examples of 
informal deduction. Students use the results of their own 
work to back up their conclusions. Some of these questions 
are difficult so do not expect complete solutions from 
everyone. Have students show what they have done as a 
starting point. The whole class can then continue to 
refine the answer until they are satisfied with the result. 
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Unit 4: Quadrilaterals 

2. QUADRILATERALS“HOW MANY KINDS ARE THERE 

Stage: Exploration 
Question: What Can Be Constructed? 
Format: Physical Diagram 
Class Structure: Groups of Three/Four 
Materials Needed: Protractors 

Compasses 
Rulers 

Notes to the Teacher: 

This exercise continues the exploration that had begun 
in the earlier lesson, determining shape as a function of 
conditions. This work is the building block for the formal 
stage where students will be deducing the properties from 
given conditions. 

The questions in this lesson also sharpen the problem 
solving skills of students. Many groups will start this 
task by drawing quadrilaterals and measuring to see if they 
meet the conditions. A class discussion concerning the 
problem solving strategy, "Start with the given conditions, 
start with what you know.", may be necessary before 
students will draw the diagonals and work from them. 

As students present their results, a discussion of 
special cases is likely to occur. Some students will 
understand the task to be: make a quadrilateral with 
diagonals which are perpendicular and congruent. Others 
will interpret it as: make a quadrilateral with diagonals 
which are perpendicular and congruent and nothing else in 
particular. Students in the first category should be 
encouraged to draw a variety of figures which meet the 
conditions. As the groups share their results the variety 

of cases will occur. 

Unit 4: Quadrilaterals 

3. quadrilaterals-special types 

Stage: Exploration 
Question: What Is Apparent? 
Format: Diagrams 
Class Structure: Pairs 
Materials Needed: Rulers 

Protractors 
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Notes to the Teacher: 

This lesson provides a link between the construction 
of the figures and the properties that will be derived. 
Constructing the quadrilaterals is an excellent group task 
that reinforces earlier work on parallel. Group problem 
solving on how to build the figures is a worthwhile task. 
Sharing the procedures used to construct the figures will 
illustrate a variety of geometric principles. Be sure each 
group analyzes their method as they present it so the 
connection between the physical task and the concepts of 
parallel are made explicit. 

The last question is purposedly open ended. Have 
students share their list of conclusions with each other. 
Sorting this list into facts that are true by definition 
and facts that can be noted as a result of the definition 
is a good closing class activity which will be used later 
in the proof work. 

Unit 4: Quadrilaterals 

4. PROPERTIES OF QUADRILATERALS 

Stage: Formalization 
Question: What Can Be Deduced? 
Format: Reasoning 
Class Structure: Individual 
Materials Needed: None 

Notes to the Teacher: 

This lesson provides a chart for students to record 
the results of their measurements from the class activity. 
Initially have the students complete the chart by using the 
figures they made. Once the chart is complete, looking for 
patterns and the relationships within the chart can be 
profitable. The classification of the figures into nested 
and intersecting categories will connect with this task. 

Once the chart is complete and some analyis has been 
done by the whole group, ask students to work in twos or 
threes to create a Venn diagram representation of the 
quadrilaterals: Trapezoids, Rectangles, Squares, 
Parallelograms, and Rhombuses. This is a difficult task. 
As groups present their solutions, let students find cases 
which support the diagram and create cases which require 
refinements. The whole class should arrive at an 
acceptable solution. Note: the diagram will vary depending 
on the definition of trapezoid used. 
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Unit 4; Quadrilaterals 

5. REVERSIBILITY 

Stage: Formalization 
Question: What Can Be Deduced? 
Format: Reasoning 
Class Structure: Individual 
Materials Needed: None 

Notes to the Teacher: 

This lesson extends the informal deduction of the 
earlier work in lesson #1 by linking that content with the 
if ... then ...sentence format used in earlier lessons. In 
essence this lesson provides the definition of the word 
"definition". 

The reversibility issue will be used to help make 
clear the reason why the statement, "All squares are 
rectangles." is true, while the statement, "All rectangles 
are squares." is not. 

Unit 4: Quadrilaterals 

6. QUADRILATERALS-FINDING MISSING PARTS 

Stage: Exploration 
Question: What Can Be Calculated? 

What Can Be Expressed? 
Format: Use of Arithmetic 

Use of Algebra 
Class Structure: Groups of Three 
Materials Needed: None 

Notes to the Teacher: 

This lesson uses the properties of quadrilaterals to 
provide drill and practice exercises in both arithmetic and 
algebra. The work that students have done with the 
physical objects should help them make the abstract 
connections necessary for these problems. As with the 
triangle congruence exercise of the same type, expect 
students to provide a reason for each conclusion they make. 
Justifications made here in formal language but familiar 
contexts will help students connect their intuitive 
knowledge of the figures with the formal theorems 

concerning them. 

The algebra problems 
in the Congruent Triangle 
of the algebra. Students 

have the same quality as they did 
Unit; students must be in charge 
must determine from geometry what 
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relationship is useful. They must use that relationship to 
form an equation. Next, they must solve the equation and 
use the value for x to find the missing segment or angle. 
Solving equations using algebra can then be seen as a tool 
to solve other problems, not as just an end in itself. 

The difficulty level of the algebraic statements has 
been increased by one level. The co-efficients of some of 
the terms involve some fractions. Many students will 
assert that the answer to 1/2 x = 50 is 25 because they 
perform operations rather than solve equations. They see 
1/2 and 50 and multiply. Having students draw diagrams to 
illustrate their work, checking solutions, and verbalizing 
what they are doing as they work are techniques that will 
he‘lp them reach correct conclusions. 

Also, some of the solutions may not be possible; that 
is, the algebraic statements do not make sense in the 
physical geometric examples. Alert students to consider 
this possibity. 

Unit 4; Quadrilaterals 

7. QUADRILATERALS AND LOGO 

Stage: Exploration 
Question: What Can Be Explored? 
Format: Use of Computers 
Class Structure: Pairs 
Materials Needed: Computers 

LOGO 

Notes to the Teacher: 

This LOGO exercise is designed to provide another 
format for exploring the conditions that make various types 
of quadrilaterals. The lesson introduces the use of the 
repeat command. Be sure students note that problem #5 does 
not make a rectangle. Students may need to act this out by 
walking around the room according to the directions. 

Sharing methods of solution is valuable because LOGO 
offers so many methods of attack. Some students solve each 
problem separately, others modify a result to get the next 
required figure. Not only are the geometric principles 
made clear but also problem solving strategies can be 

discussed. 
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STUDENT EVALUATION FORM (SAMPLE) 

Unit _ Geometry Class Period_ Male or Female 

Now that this unit of study is complete, please discuss 
each lesson that we did. Your comments will be kept 
confidential and will be considered carefully. 

Lesson 1 TILING 

I liked this because_ 

I did not like this because__ 

I would change this by 

Comments_ 

Teaching Approach 

I liked what the teacher did because_ 

I did not like what the teacher did because_ 

I would have liked the teacher to_ 

Comments__ 

Lesson 2 ANGLES AND LOGO 

I liked this because___ 

I did not like this because^__ 

I would change this by__— 

Comments_ 

Teaching Approach 

I liked what the teacher did because___ 

I did not like what the teacher did because-- 

I would have liked the teacher to___ 

Comments--- 

(Note: This form continues in the same manner and includes 

all lessons in the unit.) 
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SUMMATIVE EVALUATION FORM 

Unit _ Geometry Class Period_ Male or Female_ 

The unit we have just completed was presented to you in 
various formats. I would like you to indicate which of the 
following activities you felt influenced your learning in a 
positive way (were very helpful), which were negative 
influences (were confusing and not helpful) and which had 
no effect at all (were'neutral). 

1. Whole class with teacher explaining 
at the blackboard. 

Positive Negative Neutral 

2. Exploring ideas at the computer. 

Positive Negative Neutral 

3. Working in groups with classmates. 

Positive Negative Neutral 

4. Writing out explanations, not just answers. 

Positive Negative Neutral 

5. Activities involving actual objects. 

Positive Negative Neutral 

6. Teacher help during small group work. 

Positive Negative Neutral 

7. ____ 
(Your Choice) 

Positive Negative Neutral 

229 



APPENDIX E 

TEACHER RESOURCES 

230 



Resources Used in Developing the Units 

TEXT BOOKS 

Chakerian, G.D., Crabill, Calvin D., & Stein, Sherman K. 
(1972). Geometry A Guided Inquiry. Boston: Houghton 
Mifflin Company. 

Graening, Jay. (1980). Geometry: A Blended Approach. 
Columbus: OH: Charles C. Merrill. 

Jacops, Harold. (1974). Geometry. San Francisco: W.H. 
Freeman & Company. 

Jurgensen, Ray C., Brown, Richard G. & King, Alice, M. 
(1980). Geometry, New Edition. Boston: Houghton 
Mifflin Company. 

Lange, Muriel. (1975). Geometry in Modules. Reading, MA: 
Addison-Wesley. 

Moise, Edwin, & Downs, Floyd. (1964). Geometry. Reading, 
MA: Addison-Wesley. 

Nichols, Eugene D., Edwards, Mervine L., Garland, E. 
Henry, Hoffman, Sylvia A., Mamary, Albert, & Palmer, 
William F. (1978). Holt Geometry. New York: Holt, 
Rinehart, and Winston. 

Rhoad, Richard, Milauskas, George, & Whipple, Robert. 
(1981). Geometry For Enjoyment and Challenge. 
Evanston, IL: McDougal, Littell & Company. 

School Mathematics Study Group. (1965). Geometry with 
Coordinates. Stanford, CA: SMSG. 

Sobel, Max, A. (1986). Geometry. New York: Scribner 
Educational Publishers. 

PROBLEM SOLVING RESOURCES 

Davidson, Patricia, & Willcutt, Robert E. (1983). 
Spatial Problem Solving with Cuisenaire Rods. New 
Rochelle, NY: Cuisenaire Company of America. 

Dolan, Daniel T. & Williamson, James. (1983). Teaching 
Problem Solving Strategies. Menlo Park: 

Addison-Wesley. 
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, Martin. (1982). aha! Gotcha Paradoxes 
to Puzzle and Delight. New York: W.H.Freeman and 
Company. 

Harnadek, Anita. (1972). Mathematical Reasoning. Troy, 
MI: Midwest Publishing Company. 

Pappas, Theoni. (1986). Mathematics Appreciation. San 
Carlos, CA: Math Aids/Math Products Plus. 

Pearcy, J.F.F., & Lewis, K. (1966). Experiments in 
Mathematics. Boston: Houghton Mifflin. 

Reynolds, J.A.C. (1964). Shape, Sise and Place. Boston 
Houghton Mifflin. 

Schadler, Reuben. Geometry Problems One Step Beyond. 
(1984). Palo Alto, CA: Dale Seymour. 

Schroyer, Janet, & Fitzgerald, William. (1986). Middle 
Grades Mathematics Project. Reading, MA: 
Addison-Wesley. 
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