
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

March 2019

Efficient Probabilistic Reasoning Using Partial State-Space Efficient Probabilistic Reasoning Using Partial State-Space

Exploration Exploration

Luis Pineda

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Pineda, Luis, "Efficient Probabilistic Reasoning Using Partial State-Space Exploration" (2019). Doctoral
Dissertations. 1539.
https://scholarworks.umass.edu/dissertations_2/1539

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/220130898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1539?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

EFFICIENT PROBABILISTIC REASONING USING
PARTIAL STATE-SPACE EXPLORATION

A Dissertation Presented

by

LUIS PINEDA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2019

College of Information and Computer Sciences

c© Copyright by Luis Pineda 2019

All Rights Reserved

EFFICIENT PROBABILISTIC REASONING USING
PARTIAL STATE-SPACE EXPLORATION

A Dissertation Presented

by

LUIS PINEDA

Approved as to style and content by:

Shlomo Zilberstein, Chair

Daniel Sheldon, Member

Akshay Krishnamurthy, Member

Weibo Gong, Member

James Allan, Chair
College of Information and Computer Sciences

ACKNOWLEDGMENTS

It is difficult to properly express my appreciation for the many people who helped

me achieve this goal. Be that as it may, I will try in the next few lines, hoping that

the result does them at least a modicum of justice.

From my advisor, Shlomo Zilberstein, I have learned countless lessons on how to

conduct world-class research under a spirit of collaboration and cordiality. He has

also instilled in me a drive to always dig deeper, and to not get discouraged by the

inevitable roadblocks that are found when solving a difficult problem.

I am also thankful to the other members of my committee. Daniel Sheldon’s

insightful suggestions and sharp intellect have been a source of inspiration. Like-

wise, I have enjoyed many enlightening and entertaining conversations with Akshay

Krishnamurthy, not only covering my thesis work, but also mathematics, statistics

and general research advice. Weibo Gong’s insights (and his extraordinary optimal

control class!) helped me put my work under a wider perspective. I would also like

to thank my former (pre-UMass) advisor and mentor, Nestor Queipo, for providing

additional proof-reading and advice.

I will fondly remember my times at the Resource-Bounded Reasoning lab. My

regular conversations (and debates) with Kyle and Sandhya have made me a better

researcher, and made my time at RBR much enjoyable. I am also thankful for my

other great RBR lab mates, Rick, Xiaojian, Justin, Connor, Shuwa, and John. Thanks

for the good times!

I gained many friends during my time at CICS, whose presence brightened these

years of hard-work and long winters, and whom I’ll miss a lot. These include Aaron,

iv

Addison, Dirk, Emma S., Francisco, Garret, Ian, James, Jesse, Katerina, Keen, Kevin,

Matteo, Mike, Myungha, Pat, Pinar, Roy and Samer. I hope we get to hang out in

the future, so let’s publish and travel a lot!

I have been lucky to be part of a great CS department, with a unique mix of

top quality research and a friendly atmosphere. I took many fun courses taught

by brilliant faculty, which include Barna Saha, Erik Learned-Miller, Philip Thomas,

Ramesh Sitaraman, and Roderic Grupen. I also owe much to the advice and admin-

istrative support of Leeanne Leclerc and Michele Roberts, who made everything run

impressively smoothly.

My parents have been a constant pillar of support and advice, and, by their

example, were the ones that first shaped my intellectual curiosity and constant drive

for learning and improvement. My brother and sister have also been a much welcome

source of happiness during my travels back home. I am also grateful for the visits of

my mother- and sister-in-law, which have been an amazing source of support for me

and my family.

This thesis is dedicated to my beloved wife Niri and our beautiful daughter Sarah.

Doing a PhD is a lot of work for everyone involved, and I’ll be eternally grateful for

Niri’s patience, empathy and wisdom. Sharing my life with her helps me become a

better person every day. Sarah, watching you grow, play, and learn gives me more

joy than I ever thought was possible.

v

ABSTRACT

EFFICIENT PROBABILISTIC REASONING USING
PARTIAL STATE-SPACE EXPLORATION

FEBRUARY 2019

LUIS PINEDA

B.Sc., UNIVERSIDAD DEL ZULIA, VENEZUELA

M.Sc., UNIVERSIDAD DEL ZULIA, VENEZUELA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

Planning, namely the ability of an autonomous agent to make decisions leading

towards a certain goal, is one of the fundamental components of intelligent behavior.

In the face of uncertainty, this problem is typically modeled as a Markov Decision Pro-

cess (MDP). The MDP framework is highly expressive, and has been used in a variety

of applications, such as mobile robots, flow assignment in heterogeneous networks,

optimizing software in mobile phones, and aircraft collision avoidance. However, its

wide adoption in real-world scenarios is still impaired by the complexity of solving

large MDPs. Developing effective ways to tackle this complexity barrier is a challeng-

ing research problem.

This thesis focuses on the development of scalable and robust MDP solution ap-

proaches for partially exploring the state space of an MDP. The main contribution is

vi

a series of mathematical and algorithmic techniques for selecting the parts of the state

space that are the most critical for effective planning, with the ultimate goal of max-

imizing performance in the presence of bounded resources. The proposed approaches

work on two distinct axes: i) constructing reduced MDP models that are computa-

tionally easier to solve, but whose policies still result in near-optimal performance

when applied to the original model, and ii) using sampling-based exploration that is

biased towards states for which additional computation can be more productive, in a

well-defined sense.

The first part of the thesis addresses the model reduction component, introducing

an MDP reduction framework that generalizes popular solution approaches based

on determinization. In particular, the framework encompasses a spectrum of MDP

reductions differing along two dimensions: i) the number of outcomes per state-

action pair that are fully accounted for, and ii) the number of occurrences of the

remaining, exceptional, outcomes that are planned for in advance. An important

insight resulting from this work is that the choice of reduction is crucial for achieving

good performance, an issue under-explored by the planning community, even for

determinization-based planners.

The second part of the thesis presents a sampling-based approach that does not

require modification of the MDP model. The key idea is to avoid computation in

states whose estimated optimal values are more likely to be correct, and rather direct

it towards states whose values (which are closely related to policy quality) can be

improved the most. The proposed approach represents a novel algorithmic framework

that generalizes MDP algorithms based on labeling, a widely used technique in state-

of-the-art planners. The framework can be leveraged to create a variety of MDP

solvers with different trade-offs between computational complexity and policy quality,

and its application to a variety of standard MDP benchmarks results in state-of-the-

art performance.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Overview . 1
1.2 Brief Overview of Solution Methods for MDPs . 2
1.3 Summary of Contributions . 7
1.4 Relevant Publications . 8
1.5 Thesis organization . 9

2. BACKGROUND . 11

2.1 Markov Decision Process . 11
2.2 Methods for Solving Markov Decision Processes . 14

2.2.1 Fundamental Solution Methods for MDPs . 14
2.2.2 Overview of Approximate Planning Methods for Solving

MDPs . 16
2.2.3 Determinization-based Planners . 17

2.2.3.1 FF-Replan . 19
2.2.3.2 FF-Hindsight . 20
2.2.3.3 RFF . 21
2.2.3.4 HMDPP . 22

2.2.4 State Abstraction . 23
2.2.5 Sparse Sampling Methods . 25

viii

2.2.5.1 Kearns et al.’s Sparse Sampling . 25
2.2.5.2 Monte-Carlo Tree Search and UCT 27
2.2.5.3 Trial-based Heuristic Tree-Search . 30

2.2.6 Solvers with Alternative Outcome Selection 32

3. Mk
l -REDUCTIONS - GENERALIZING
DETERMINIZATION . 34

3.1 A Broad Spectrum of MDP Model Reductions . 34
3.2 Planning for More than k Exceptions . 39

3.2.1 Continual Planning Using Reduced Models 39
3.2.2 Evaluating the Performance of the Continual Planning

Approach . 41

3.3 The Choice of Reduced Model Matters . 43

3.3.1 The Value of Going Beyond Single-Outcome
Determinization . 43

3.3.2 Choosing the Right Outcomes . 46

3.4 A Greedy Approach for Learning Reduced Models 48
3.5 Experimental Results . 53

3.5.1 Evaluating Mk
l -REPLAN . 53

4. COMBINING Mk
l -REDUCTIONS WITH CLASSICAL

PLANNING TECHNIQUES . 59

4.1 FF-LAO*: Leveraging classical planners . 59

4.1.1 Handling plan deviations during execution . 61
4.1.2 Theoretical considerations . 62
4.1.3 Learning a Good Determinization . 64

4.2 Experiments . 66

4.2.1 Domains and methodology . 66
4.2.2 Results and Discussion . 68

5. A NEW LABELING MECHANISM FOR EFFICIENT STATE
EXPLORATION . 71

5.1 An MDP Solver Based on Short-Sighted Labeling . 71

5.1.1 The FLARES Algorithm . 71

ix

5.1.2 Illustrative Example: A Simple Grid World Problem 78

5.2 Soft Labeling in SSPs . 80

5.2.1 Generalizing Labeling . 80
5.2.2 Soft Labeling . 84

5.3 Experiments . 90

5.3.1 Sailing Domain . 92
5.3.2 Racetrack Domain . 94
5.3.3 International Planning Competition Domains 94

6. CONCLUSION . 96

6.1 Summary of Contributions . 96

6.1.1 Mk
l -reductions . 96

6.1.2 Soft Labeling . 98

6.2 Future Work . 99

BIBLIOGRAPHY . 100

x

LIST OF TABLES

Table Page

3.1 Comparison of the best determinization (M1) and the best M0
2-reduction

(M2) for three racetrack problems. 45

3.2 Number of successful trials, out of a maximum of 50, using two different

M0
1-reductions on ten TRIANGLE-TIREWORLD problems. 46

3.3 Expected cost and average planning time obtained with several
reduced models of the racetrack domain. 55

5.1 Results on the grid world shown in Figure 5.2. 79

5.2 Expected cost and total planning of several planning algorithms on
the sailing domain (middle-goal). 91

5.3 Expected cost and total planning of several planning algorithms on
an instance of the sailing domain (corner-goal). 91

5.4 Expected cost and total planning of several planning algorithms on
the racetrack domain (ring-5). 93

5.5 Expected cost and total planning of several planning algorithms on
the racetrack domain (square-4). 93

5.6 Number of runs in which planners were able to successfully reach the
goal for two IPPC’08 domains. 94

xi

LIST OF FIGURES

Figure Page

3.1 Illustration of the pruning effect of an Mk
l -reduction, using two

different values of k. Exceptional outcomes are marked with a red
cross and reachable states are highlighted in green (darker color
for those reachable with k = 1 but not k = 0). The value of k can
be used to regulate the trade-off between computational efficiency
and plan robustness. 37

3.2 Action groups in the racetrack domain: dark squares represent the

intended action, gray squares represent the acceleration outcome

associated with slipping, and the light gray squares represent the

remaining outcomes. 44

3.3 Three instances of the racetrack domain. 45

3.4 Three instances of the TRIANGLE-TIREWORLD domain. Locations
with spare tires are marked in black (Little and Thiebaux,
2007). 47

3.5 Example showing that −VM
cp (〈s0, k〉) is not submodular. Actions A and B

have cost 1. 50

3.6 An instance of the racetrack domain. 54

3.7 Anytime performance of several Mk
l -reductions using Mk

l -ANYTIME

to solve three instances of the racetrack problem. From left to
right, results corresponding to G1, G2, and G3 in Figure 3.6. 56

4.1 Number of solved rounds by 5 different planners in IPPC’08
benchmarks. 69

5.1 Problem with large optimal policy but small high-probability
envelope (S: start state, G: goal, scale shows log-probability). 72

5.2 Grid world illustrating the advantages of FLARES. 79

xii

5.3 Illustration of the ε-distance of a state under a given policy, for two
different distance functions. 83

xiii

CHAPTER 1

INTRODUCTION

1.1 Overview

The ability to form a sequence of actions for achieving a goal is one of the most

distinctive features that characterize humans. Except for the most trivial tasks, every

time we make a decision, most of us typically evoke some form of internal model—

perhaps simple and inaccurate—that predicts the consequences of our potential deci-

sions. Using predictions produced by this model, we are then able to decide the most

favorable plan of action, at least under the assumptions that the model implies. In the

Artificial Intelligence (AI) literature, this model-based approach to action selection

is known as planning (Tate and Hendler, 1994; Weld, 1999).

Most interesting real-world planning scenarios involve some form of uncertainty.

Actions may fail, sensing capabilities might be imperfect, and the environment could

respond to events in a multitude of possible ways. In general, agents operating in

the real world have to consider the possibility of unexpected events occurring. The

problem of producing intelligent behavior in these situations is known as planning

under uncertainty, or probabilistic reasoning.

In the presence of uncertainty, a planning problem can be modeled as a Markov

Decision Process (MDP) (Puterman, 1994). This model has been widely used in

AI for planning (Kaelbling et al., 1998; Kolobov and Mausam, 2012) and learn-

ing (Sutton and Barto, 1998b) under uncertainty, with applications including mobile

robots (Koenig et al., 1996; Thrun et al., 2005; Hsu et al., 2006), flow assignment in

heterogenous networks (Singh et al., 2010), aircraft collision avoidance (Temizer et al.,

1

2010), and semi-autonomous driving (Wray et al., 2016). Unfortunately, despite the

high expressiveness of the framework, solving MDPs is computationally demanding,

a difficulty that has limited its application to real-world scenarios.

Early MDP solution methods produced a decision (an action) for every possible

situation (or state) the agent could encounter (Bellman, 1957; Howard, 1960). In

more recent AI literature, planning methods have been refined so that only a subset

of all states need to be considered to produce optimal solutions; this is important,

since the complexity of planning is directly related to the number of states the plan

needs to account for. The pioneering examples of this refinement approach, based on

heuristic search, are the RTDP (Barto et al., 1995), LAO* (Hansen and Zilberstein,

2001) and LRTDP (Bonet and Geffner, 2003a) algorithms. Unfortunately, while these

methods can drastically reduce the number of states that need to be considered during

planning, their computational complexity is still in the order of the total number of

states in the problem, a set whose cardinality is exponential in the number of variables

that describe the problem (Littman, 1997). This is not only a theoretical concern,

since most interesting real world applications involve a large number of state variables.

1.2 Brief Overview of Solution Methods for MDPs

There is a vast body of work concerned with solution methods for MDPs, spanning

decades of research in control, operations research and planning. A comprehensive

survey of the existing work is thus outside of the scope of this thesis. Nevertheless,

we will provide a brief high level summary of the most popular solution approaches

in the planning literature; a detailed description of the methods summarized in this

section can be found in (Kolobov and Mausam, 2012). In Chapter 2, we provide

a deeper discussion on the subset of MDP solution approaches most related to our

work. Importantly, the discussion here and in Chapter 2 will be centered around

2

MDPs with discrete state and action spaces, which has been the most popular model

used in planning research.

Many algorithms for solving MDPs require the computation of a value function,

which maps states to an estimate of the optimal expected utility that can be obtained

from that state; the output of the algorithm is a policy, which is a function that maps

states to actions. The two must fundamental algorithms for finding optimal solutions

to MDPs are Value Iteration (Bellman, 1957) and Policy Iteration (Howard, 1960).

Both of these algorithms are optimal, but they require computing state values for

all of the states in the MDP, a cost that is clearly not scalable, particularly in high

dimensional problems. An important improvement over these methods arose with

the introduction of Asynchronous Value Iteration (Bertsekas and Tsitsiklis, 1989).

Rather than iteratively updating the values of all states, Asynchronous VI works by

iteratively updating the value of an arbitrarily chosen state. The crucial result was

proving that this method converges to an optimal solution, as long as no state gets

starved, i.e., all states have values updated an infinite number of times.

Asynchronous VI prompted a variety of improvements to VI. Some prominent ex-

amples are Prioritized Sweeping (Moore and Atkeson, 1993), Prioritized VI (Wingate

and Seppi, 2005), and Topological VI (Dai and Goldsmith, 2007). All of these al-

gorithms attempt to find a good ordering of states for performing value updates, in

order to accelerate convergence to an optimal (or near-optimal) solution. However,

all of these methods still require an amount of computation and memory proportional

to the MDP’s state space size.

An important development was the introduction of heuristic search algorithms,

briefly mentioned in the previous section. These methods rely on a heuristic function

(an optimistic bound on state values) to direct a graph search procedure towards the

more relevant parts of the state space. Generally, these approaches consider com-

puting a plan that starts from a given initial state, and the search procedure only

3

considers states reachable from that state. The search is directed by choosing actions

greedily on the current value estimates, initialized using the heuristic function. Since

value updates are only performed in the states that are visited, as opposed to all

possible states, this approach potentially results in large computational gains, partic-

ularly with accurate heuristics. The seminal methods in this area are RTDP (Barto

et al., 1995), LAO* (Hansen and Zilberstein, 2001) and LRTDP (Bonet and Geffner,

2003a). Other extensions are HDP (Bonet and Geffner, 2003b), BRTDP (McMahan

et al., 2005), FRTDP (Smith and Simmons, 2006), and VPI-RTDP (Sanner et al., 2009).

We provide a more detailed description of these methods in Chapter 2.

While generally more efficient than VI variants, heuristic search methods still suf-

fer from scalability issues. In particular, any optimal algorithm must, at a minimum,

compute an action for every state reachable by an optimal policy. This incurs both a

cost in terms of memory and time, which can be impractical in very large problems.

Attempts to address this difficulties has led to the use of abstraction (Mccallum,

1993; Ravindran and Barto, 2002; Givan et al., 2003; Li et al., 2006) and symbolic

algorithms (Hoey et al., 1999; Feng and Hansen, 2002), which seek to group similar

states and perform value updates that modify values for large groups of states at

once. However, these reduction approaches have seen limited use, as most of the

work for the past decade has focused on the development of approximate algorithms

for solving MDPs, which have scaled to much larger problems in practice.

There is a wide variety of algorithms for approximately solving MDPs. The most

popular ones in the planning literature can be roughly categorized into one of the

following general approaches: determinization, short-sightedness, sparse sampling,

and dimensionality-reduction. A common thread among approximate MDP solvers is

the use of re-planning, also known as online planning. Concretely, an online algorithm

is concerned with repeatedly finding a good action for the current state of execution,

4

rather than finding a complete plan of action from the start state to a goal, requiring

no additional computation afterwards.

Determinization-based algorithms became popular in the mid-late 2000s, after the

surprising success of an algorithm called FF-REPLAN (Yoon et al., 2007) in the first

International Probabilistic Planning Competition (Younes et al., 2005). The idea was

simple: create a deterministic version of the MDP (e.g., always choose the most prob-

able outcome), and solve it with a highly efficient deterministic planner. This allows

FF-REPLAN to scale to extremely large problems, at the cost of reduced policy quality

(which can be arbitrarily bad in the worst case). To address this drawback, more ro-

bust determinization-based algorithms have been developed, such as HMDPP (Keyder

and Geffner, 2008b), RFF (Teichteil-Königsbuch et al., 2010), FF-HINDSIGHT (Yoon

et al., 2008, 2010). Notably, a great part of this thesis is concerned with directly

addressing some of the drawbacks of determinization-based methods.

Short-sighted algorithms (sometimes referred to as myopic) work by restricting

computation to only a subset of states close to the current state of execution. The

earliest well-known short-sighted algorithm for solving MDPs is HDP(I,J) (Bonet and

Geffner, 2003b), which creates an envelope of states by following the most likely

outcomes of actions. A more recent short-sighted algorithm is SSIPP and its vari-

ants (Trevizan and Veloso, 2014). This algorithm works by restricting the search to

states reachable in a small number of steps from the current state. There is also a

trajectory-based variant that restricts the search to states reachable by trajectories

whose probability is within some predefined threshold. Chapter 5 discusses limita-

tions of existing short-sighted solvers.

Sparse sampling algorithms have recently become popular, particularly in prob-

lems in which the number of outcomes of an action is very large. The algorithms

described earlier typically rely on dynamic programming value updates, whose com-

plexity is linear in the number of outcomes. In problems in which this number is very

5

large, a more practical alternative is to sample the outcomes and update values using

Monte Carlo averaging. The more popular examples of this approach are SS (Kearns

et al., 2002), FSSS (Walsh et al., 2010), UCT (Kocsis and Szepesvári, 2006), and the

THTS framework (Keller and Helmert, 2013). The THTS framework, in particular, was

the first work, to the best of our knowledge, that explicitly formulated the outcome

selection problem for sampling algorithms; that is, to devise a mechanism to choose

outcomes during the search process to result in improved performance. Indeed, the

outcome selection problem is one of the central question of this thesis, and all of our

methods can be positioned as attempts to answer this question.

Finally, we briefly describe the dimensionality-reduction approach to solving MDP.

In contrast with the algorithms described above, which attempt to reduce the amount

of search needed to solve an MDP, a dimensionality reduction algorithm attempts to

represent the optimal value function (or the policy) in a parameterized way (e.g., as

a linear combination of state features), and then tries to find an optimal value for

the parameters. This changes the complexity of solving the problem so that it is

now dependent on the number of parameters, rather than the number of states of the

problem. On the other hand, the quality of the resulting policy is dependent on the

expressiveness of the value/policy representation.

Some examples of dimensionality-reduction algorithms in the planning literature

are the approximate versions of Value and Policy Iteration (Guestrin et al., 2003),

and, more generally, a wide variety of approximate dynamic programming meth-

ods (de Farias and Van Roy, 2003; Powell, 2007). In more recent years, the approach

has fell out of favor in the planning community, due to the focus on domains factored

using symbolic languages, for which the other techniques described above have worked

better in practice. Some recent dimensionality-reduction examples within this context

are the FPG (Buffet and Aberdeen, 2009) and RETRASE (Kolobov et al., 2009) plan-

ners. However, we note that the dimensionality-reduction approach is the backbone

6

of the vast amount of research in reinforcement learning (Bertsekas and Tsitsiklis,

1996; Sutton and Barto, 1998a), which has gained popularity in recent years after its

success in solving complex high dimensional spaces, such as the game of Go (Silver

et al., 2016), and learning to play video games directly from pixels (Mnih et al., 2015).

1.3 Summary of Contributions

In this thesis, we address the limitations of existing reduction approaches for solv-

ing Markov Decision Process, particularly, determinization and short-sightedness, by

developing efficient and adaptable frameworks for state-space exploration in proba-

bilistic planning. The result is a series of algorithmic and mathematical techniques

that consistently produce near-optimal plans with little computation. In more detail,

our main contributions are the following:

• A scalable and robust reduction paradigm for Markov Decision Pro-

cesses. We introduce the Mk
l -reduction for MDPs, a reduction paradigm that

generalizes single-outcome determinization as just one extreme point from a

spectrum of MDP reductions that differ along two dimensions: i) the number of

outcomes per state-action pair that are fully accounted for in the reduced model,

and ii) the number of occurrences of the remaining, exceptional, outcomes that

are planned for in advance. For example, a single-outcome determinization

can be represented in this framework as an instance of an M0
1-reduction, but

more robust reductions can be created by increasing the number of exceptions

handled by the planner.

• Methods for learning Mk
l -reductions automatically. A crucial insight

arising from this thesis is the fact that the choice of reduction can have a sub-

stantial impact on the quality of the resulting plans. We show that in many

problems the choice of reduction makes the difference between catastrophic and

7

optimal behavior, even when using determinization. Building on this observa-

tion, we introduce two methods to automatically choose anMk
l -reduction that

can be used to produce high quality plans for a given MDP. The first is a greedy

algorithm that adds a single outcome to the set of exceptions at every iteration,

stopping when the quality of the resulting plan falls below a certain threshold.

Furthermore, we show that it is possible to learn a reduction on a small problem

instance, and apply the same reduction to a larger instance to produce near-

optimal policies efficiently. The second method is an exhaustive approach for

finding determinizations in MDPs described using factored domain languages.

• Sampling-based algorithms for efficient state-space exploration. We

also introduce an algorithmic framework for solving MDPs that does not require

modifying the model used for planning. We introduce the notion of short-sighted

soft labeling, a generalized version of popular sampling algorithms that rely on

state labeling. We show that short-sighted labeling can be used to compute

approximate plans very efficiently, while still achieving deeper exploration (and

thus, better policy quality) than previous short-sighted approaches. Moreover,

our notion of soft-labeling allows us to provide theoretical guarantees, while

also improving efficiency by biasing the search. In particular, a soft labeling

algorithm modifies the transition function used for sampling, so that the search

is biased towards states for which further computation is more likely to improve

policy quality. Our experiments show that soft labeling delivers state-of-the-art

performance in a wide variety of popular benchmark domains.

1.4 Relevant Publications

The work presented in this thesis builds upon previous publications:

8

• L. Pineda, Y. Lu, S. Zilberstein, and C. V. Goldman. Fault-tolerant planning

under uncertainty. Proceedings of the Twenty-Third International Joint Con-

ference on Artificial Intelligence, 2013 (Pineda et al., 2013).

• L. Pineda and S. Zilberstein. Planning under uncertainty using reduced mod-

els: Revisiting determinization. Proceedings of the Twenty-Fourth International

Conference on Automated Planning and Scheduling, 2014 (Pineda and Zilber-

stein, 2014).

• L. Pineda, T. Takahashi, H. Jung, S. Zilberstein, and R. Grupen. Continual

Planning for Search and Rescue Robots. Proceedings of the IEEE-RAS 15th

International Conference on Humanoid Robots, 2015 (Pineda et al., 2015).

• L. Pineda, K. H. Wray, and S. Zilberstein. Fast SSP Solvers Using Short-Sighted

Labeling. Proceedings of the Thirty-First Conference on Artificial Intelligence,

2017 (Pineda et al., 2017).

1.5 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 presents mathematical

background, as well as a review of methods for solving Markov Decision Processes.

The review covers determinization, state-abstraction, sparse sampling methods, and

methods combining heuristic search with biased sampling. Chapter 3 introduces

the Mk
l -reduction, a greedy algorithm to choose reduced models, and experimental

results. Chapter 4 presents an algorithm that combines Mk
l -reductions with classi-

cal planning, allowing it to scale to problems with billions of states, as we show in

our experiments; additionally, this chapter also presents the automatic approach for

choosing determinizations using a factored domain language representation. Finally,

Chapter 5 presents our work on soft-labeling, first describing the benefits associated

with the use of short-sighted labeling, as opposed to using short-sightedness or la-

9

beling individually. We then explain our general soft labeling framework, analyze its

theoretical properties, and empirically evaluate its benefits. We conclude in Chap-

ter 6, with a summary of this work and directions for future research.

10

CHAPTER 2

BACKGROUND

In this chapter, we formally define the Markov Decision Process (MDP) and

Stochastic Shortest Path (SSP) models. We then present a brief survey of the most

popular solution methods for MDPs and SSPs in planning.

2.1 Markov Decision Process

The MDP model encapsulates a wide variety of sequential decision problems under

uncertainty. The common elements among these are the concepts of states, actions,

transition function, and reward/cost function; we will describe these in more detail

below. On the other hand, MDP varieties differ in elements such as whether the

system dynamics are continuous or discrete, or whether execution time is finite or

not (Kolobov and Mausam, 2012). In this thesis we will primarily focus on a class

of MDPs known as Stochastic Shortest Path problems (SSPs) (Bertsekas and Tsit-

siklis, 1991), which generalizes other well-known discrete MDP sub-classes such as

Finite-Horizon MDPs and Infinite Horizon Discounted-Reward MPDs (Puterman,

1994; Bertsekas and Tsitsiklis, 1996).

Definition 1. Stochastic Shortest Path problem. A Stochastic Shortest Path

problem is a tuple 〈S,A, T , C, s0,G〉, where:

• S is the finite set of all possible states of the system,

• A is the finite set of all possible actions the agent can take,

11

• T : S × A × S → [0, 1] is a transition function specifying the probability

T (s, a, s′) of going to state s′ whenever action a is executed in state s,

• C : S×A → R is a cost function that gives the cost C(s, a) incurred whenever

the agent executes action a and the system is in state s,

• s0 ∈ S is the initial state of the system, and

• G ⊆ S is the non-empty set of goal states, s.t. for every sg ∈ G, for all

a ∈ A, and for all s′ 6= sg, the transition function obeys T (sg, a, sg) = 1,

T (sg, a, s
′) = 0, and C(sg, a, sg) = 0,

Informally, in an SSP, at every discrete time step the system is in some state s ∈ S,

the agent executes an action a ∈ A, and this moves the system to state s′ ∈ S with

probability T (s, a, s′), incurring cost C(s, a); the objective is to bring the system from

the initial state s0 to a goal state sg ∈ G with minimum total cost, in expectation.

The behavior of an agent is described in terms of a policy, which in the broad-

est sense maps a history of interactions to a probability distribution over actions.

However, for optimal behavior in SSPs it suffices to consider policies that are Marko-

vian, stationary, and deterministic. That is, where the actions: are non-random

functions of the current state (deterministic), ignore the previous history of states

(Markovian), and ignore the notion of time (stationary). Under these constraints,

we can say that a solution to an SSP is a policy, a mapping π : S → A. An

execution history that terminates at state s for policy π, is a sequence of tuples

hs = ((s0, π(s0)), (s1, π(s1)), ..., (st−1, π(st−1)), s) of pairs of states the agent has vis-

ited and actions the agent has taken in those states, plus the state s in which the

history ends. Execution histories are also sometimes referred to as trials or episodes.

The following type of policy plays an essential role in SSPs (Kolobov and Mausam,

2012).

12

Definition 2. Proper policy. For a given SSP 〈S,A, T , C, s0,G〉, let hs be an ex-

ecution history that terminates at state s. For a given set S ′ ∈ S, let P π
t (hs, S

′) be

the probability that after execution history hs, the agent transitions to some state

in S ′ within t time steps if it follows policy π. A policy π is called proper at

state s if limt→∞ P
π
t (hs,G) = 1 for all histories that terminate at s. If for some

hs, limt→∞ P
π
t (hs,G) < 1, π is called improper at state s. A policy π is called

proper if it is proper at all states s ∈ S. Otherwise, it is called improper.

Given a policy π, we can define the value function V π that represents the ex-

pected total cost incurred when π is executed starting from state s. That is,

V π(s) , E
[∞∑
t=0

C(st+k, π(st+k))|st = s, π
]

(2.1)

An optimal solution to an SSP, or optimal policy, denoted as π∗, and its optimal

value function, V ∗, are ones that satisfy,

V ∗(s) = min
π
V π(s) (2.2)

and, for all s ∈ S,

V ∗(s) = min
a

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

(2.3)

π∗(s) = arg min
a

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

(2.4)

as long as the following two conditions are satisfied (Bertsekas and Tsitsiklis, 1991):

• There exists at least one proper policy,

• For every improper policy π, and for every state s ∈ S where π is improper,

V π(s) =∞.

13

One simple and intuitive case in which the second condition is satisfied is when

C(s, a) > 0 for all s /∈ G, and for all actions a ∈ A, which is analogous to the

condition for correctness of Dijkstra’s algorithm for the problem of finding shortest

paths in graphs—the deterministic counterpart of SSPs.

2.2 Methods for Solving Markov Decision Processes

In this section we describe several methods for solving MDPs. We begin our dis-

cussion with an overview of Value Iteration (VI), one of the fundamental methods for

solving MDPs optimally. During our description of VI, we introduce several impor-

tant concepts associated with more advanced solution techniques. After describing

VI, we move on to a brief survey of several approximation methods for solving MDPs.

2.2.1 Fundamental Solution Methods for MDPs

In this section we describe Value Iteration (Bellman, 1957), a fundamental

algorithm for finding optimal solutions to SSPs that forms the basis for the large

majority of the state-of-the-art algorithms for solving SSPs/MDPs. The correctness

of this algorithm for SSPs stems from an important result by Bertsekas and Tsitsik-

lis (Bertsekas and Tsitsiklis, 1991), who showed that under the two conditions listed

above, the optimal value function for an SSP, V ∗, is the fixed point of the set of

Bellman equations,

V (s) = min
a

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V (s′)
]

(2.5)

Although Value Iteration (VI) follows directly from the Bellman equations, it is useful

to introduce the concept of Q-value under a value function of a state-action pair,

defined as

QV (s, a) , C(s, a) +
∑
s′∈S

T (s, a, s′)V (s′) (2.6)

14

and the optimal Q-value of a state-action pair, defined as

Q∗(s, a) , C(s, a) +
∑
s′∈S

T (s, a, s′)V ∗(s′) (2.7)

In simple terms, Q∗(s, a) is the expected cost the agent obtains by taking action a

in state s and following the optimal policy thereafter. VI finds the optimal value

function of an SSP by repeatedly applying the Bellman equation as an operator that

improves our current estimate of the optimal value function. Concretely, the Bellman

update or Bellman backup operator is defined as

Vn(s)← min
a
QVn−1(s, a) (2.8)

VI initializes V0 arbitrarily and iteratively computes Vn(s) for all the states in S, in

a full sweep. Convergence is defined in terms of the residual or Bellman error,

ResV (s) , |V (s)−min
a
QVn−1(s, a)| (2.9)

The algorithm terminates when ResVn , maxs∈S Res
Vn(s) satisfies ResVn < ε. The

greedy policy, πV
n
, which forms the solution for the SSP, is obtained from the final

value function V n as

πVn(s) , arg min
a∈A

QVn(s, a) (2.10)

Note that, while ResVn < ε, it is not necessarily the case that |Vn(s) − V ∗(s)| < ε

for any state s ∈ S. For SSPs, bounding this error is complicated, as it depends

on the expected number of steps needed by the policy to reach a goal from state s.

Nevertheless, in practice, VI typically obtains optimal or near-optimal policies for

small ε values. Value functions satisfying ResV < ε are said to be ε-consistent.

15

Bellman backups also satisfy an useful property, monotonicity, which means that,

∀s ∈ S, Vk(s) ≤ V ∗(s) =⇒ ∀s ∈ S, Vk+1(s) ≤ V ∗(s) (2.11)

∀s ∈ S, Vk(s) ≥ V ∗(s) =⇒ ∀s ∈ S, Vk+1(s) ≥ V ∗(s) (2.12)

A value function that satisfies the left side of Eq. (2.11) is also called an admissible

heuristic. These are commonly used to guide search algorithms towards parts of the

state space that could potentially be relevant to an optimal policy.

Before, we mentioned that VI applies a Bellman backup for all states in a full

sweep, which is sometimes referred to as synchronous VI. However, another important

property of Bellman backups is that they can be performed asynchronously. This

leads to the Asynchronous VI algorithm, which at each iteration selects a single

state s ∈ S to update Vn(s) using Eq.(2.8) (in contrast to the synchronous version,

which updates state values all at once). Moreover, states can be chosen in any order,

with the only restriction that no state gets starved; i.e., all states are backed up an

infinite number of times and infinitely often (Bertsekas and Tsitsiklis, 1989). The

importance of this asynchronous property cannot be overstated: most search-based

methods for solving SSP/MDPs can be seen as variants of Asynchronous VI with

clever mechanisms for selecting the order of state updates.

2.2.2 Overview of Approximate Planning Methods for Solving MDPs

There is a large body of research on solving MDPs and SSPs, starting with the

seminal work of Bellman (Bellman, 1957) and Howard (Howard, 1960) in dynamic

programming (from which the VI algorithm derives). In the previous section, we

discussed an algorithm that computes optimal solutions by computing optimal values

for all states in S. Unfortunately, many interesting scenarios involve a number of

states that increases exponentially with respect to the size of factored representations

of the problem domain. Consider, for instance, an MDP formulation of the problem of

16

controlling wildfire propagation that models the terrain as a rectangular grid. If there

are n cells in the grid and each has two possible states (burning and not-burning),

then the number of states of the system is 2n. With a modest-sized 10× 10 grid this

already gives more than 1030 states (for reference, a petabyte is 1018 bytes).

Therefore, in this thesis we are mostly concerned with approximate methods for

solving MDPs. Among these, the large majority of methods proposed in the planning

literature attempt to reduce the number of states that need to be considered during

planning. Some of them do it by directly modifying the problem and creating a

simplified, or reduced, MDP. The hope is that the resulting problem is much easier

to solve, but that the resulting policy still performs near-optimally when applied to

the original problem. This is the case of determinization-based methods and state

abstraction methods; we devote Sections 2.2.3 and 2.2.4 to these, respectively.

Another way of reducing the number of states to be considered is by perform-

ing sparse sampling, a technique that avoids having to enumerate all the states to

compute Q-value estimates. Instead, they sample the transition function sparsely

and perform rollouts (i.e., simulations of the current policy) and aggregate the accu-

mulated rewards in different ways (most typically using Monte-Carlo averaging) to

produce an improved policy. We devote Section 2.2.5 to this type of methods.

Finally, we conclude the literature review in Section 2.2.6, by describing a set of

sampling-based algorithms that use an alternative transition function to guide their

search (as opposed to sampling from the transition function of the problem). These

methods bear some similarities to the soft labeling framework that we introduce in

Chapter 5, and are thus an important point of reference for comparison.

2.2.3 Determinization-based Planners

Arguably, the simplest form of reduction one can do to an MDP is to completely

ignore stochasticity and assume the agent has total control over action outcomes. This

17

is the main idea behind determinization-based approaches. We start our discussion

by formally defining the concept of determinization. For that, it will be useful to

introduce the notion of successor set of a state-action pair for SSPs. Given an SSP

〈S,A, T , C, s0,G〉, the transition function induces a successor set of a state s ∈ S and

action a ∈ A, defined as succ(s, a) , {s′|T (s, a, s′) > 0}. We say that state s′ is a

successor of state-action pair (s, a) if s′ ∈ succ(s, a). We also refer to successors as

outcomes of an action.

Definition 3. Deterministic SSP. Given an SSP 〈S,A, T , C, s0,G〉, an action

a ∈ A is called a deterministic action at state s if it satisfies |succ(s, a)| = 1.

An action is called a deterministic action if it is deterministic at all states s ∈ S.

An SSP is called a deterministic SSP if all actions in A are deterministic.

Definition 4. Determinization. Given an SSP M = 〈S,A, T , C, s0,G〉 and a

tuple 〈Md, δ〉, a deterministic SSPMd = 〈S,Ad, T d, Cd, s0,G〉 and injective mapping

δ : Ad → S × A × S satisfying T d(s, ad, s′) = 1 iff δ(ad) = (s, a, s′), is called a

determinization of M.

In simple terms, a determinization of SSP M is a deterministic SSP, Md, with

the same state space as M, and whose deterministic actions are each mapped to a

successor of some state-action pair in M. Several of the existing determinization-

based planners use one of the following two determinizations.

Definition 5. Most-likely-outcome determinization. Given an SSP M = {S,

A, T , C, s0,G} and its determinization Md, we call Md the most-likely-outcome

determinization of M iff,

• |Ad| = |S × A|, and

• for all (s, a, s′) ∈ S × A × S s.t. s′ = arg maxs′′∈succ(s,a) T (s, a, s′′), there exists

ad ∈ Ad s.t. δ(ad) = (s, a, s′).

18

Definition 6. All-outcomes determinization. Given an SSP M = {S,A, T , C,

s0,G} and its determinizationMd, we callMd the all-outcomes determinization

of M iff,

• |Ad| = |S × A × S|, and

• for all (s, a, s′) ∈ S × A × S s.t. s′ ∈ succ(s, a), there exists ad ∈ Ad s.t.

δ(ad) = (s, a, s′).

Put simply, the most-likely-outcome determinization is the one where each state-

action pair in the original SSP is replaced with a deterministic action leading to its

most probable successor. On the other hand, the all-outcomes determinization is the

one where each successor of a state-action pair has its own associated action.

2.2.3.1 FF-Replan

FF-REPLAN (Yoon et al., 2007) was the catalyst for sparking interest in

determinization-based approaches, after its surprising success in the 1st International

Probabilistic Planning Competition (IPPC) (Younes et al., 2005) in 2004. The idea

is very simple: construct a determinization of the original SSP, solve it using an ef-

ficient classical planner (in this case the FF planner (Hoffmann and Nebel, 2001)),

and execute the plan. If, during execution, a state not covered by the current plan

is encountered, the process is repeated starting from the current state. This is where

the name FF-Replan comes from.

The earliest version of FF-REPLAN, which won the aforementioned competition,

used the most-likely-outcome determinization. It works particularly well in problems

where there is a high probable path leading towards a goal, and where deviations from

this path are not too costly. On the other hand, it can completely fail to produce plans

in problems where it is impossible to reach a goal following only most-likely outcomes.

This can be alleviated by employing the all-outcomes determinization, which ensures

that FF-REPLAN produces a sequence of actions with non-zero probability of reaching

19

the goal. However, both versions suffer when the cost of plan deviations are high. This

is particularly evident in problems that contain so-called dead-ends ; states from which

there is no sequence of actions that will lead to a goal. Intuitively, completely ignoring

some outcomes can make FF-REPLAN being overly optimistic about the effects of

actions, leading the agent to potentially dangerous paths with no consideration for

the corresponding consequences.

2.2.3.2 FF-Hindsight

The FF-HINDSIGHT planner (Yoon et al., 2008) seeks to mitigate the consequences

of using determinization by accounting for many possible determinizations at once.

Intuitively, when choosing an action, instead of considering the first action in a plan

that consists of a single path to the goal, it makes sense to take an action that, on

average, serves as a starting point of multiple such paths. This is the idea behind

FF-HINDSIGHT.

This algorithm takes two parameters: T , the number of lookahead steps, and W ,

the number of deterministic paths, or futures, to be considered. To select an action

for state s, FF-HINDSIGHT samples multiple futures, each of which is non-stationary

determinization (i.e., one where the state set includes time) of the original problem,

constructed by sampling action successors for times t = 1, ..., T from the original

transition function, and assigning a deterministic action for each of these successors.

Solving a future means finding a plan, using the FF planner, for the deterministic

non-stationary problem.

After solving W futures, FF-HINDSIGHT computes an estimate of the optimal

Q-value of an action by averaging the costs of the plans obtained for each of the

futures (including a large penalty for futures it could not solve). It then selects

for execution the action with the lowest Q-value estimate, and repeats the process

for the next state. By reasoning about multiple scenarios, FF-HINDSIGHT mitigates

20

some of the issues associated with the use of determinization, albeit at the cost of

increasing computational cost—it requires solving W · |A| determinizations at each

state, instead of just one. Some improvements to address this issue were introduced

in later work (Yoon et al., 2010). It is also worth mentioning a recent variant of this

hindsight optimization approach that does not rely on FF but uses an Integer Linear

Programming formulation instead (Issakkimuthu et al., 2015).

2.2.3.3 RFF

RFF (Robust FF) (Teichteil-Königsbuch et al., 2010), which won the Third Prob-

abilistic Planning Competition (Bryce and Buffet, 2008), is a planner that seeks to

construct plans with low probability of requiring re-planning, by iteratively extending

the envelope of states covered by the plan. Concretely, RFF maintains an envelope

of “solved” states, which is initialized to only include s0. The first step is to find a

plan to reach a goal from s0, by calling the FF planner, and adding to the envelope

all states in the solution path. Then, it creates a set of fringe states, consisting of

the successors of states in the envelope for which no plan has been found yet. It then

computes the probability of reaching a fringe state by using Monte-Carlo sampling. If

this probability is lower than a parameter ε, it proceeds to execute the resulting plan.

Otherwise, it goes back to the first step, but computing plans for all fringe states.

In this manner, the envelope is increased at each iteration, until the probability of

leaving the envelope is lower than ε.

While this version of the RFF planner is able to anticipate the most likely conse-

quences of its plan, it suffers from the same set of drawbacks as FF-REPLAN—the final

plan is just an aggregation of sub-plans that ignore the probabilistic nature of the

problem. A more sophisticated version of the algorithm performs Bellman backups

on the states in the envelop and uses this to inform the selection of actions for this

states; however, the computational cost of this modification can be much higher.

21

2.2.3.4 HMDPP

The HMDPP planner (Keyder and Geffner, 2008b) takes a different approach to de-

terminization than the planners previously discussed. It accounts for the probabilistic

nature of the SSP by directly modifying the cost function used in an all-outcomes de-

terminization, with the goal of discouraging actions associated to outcomes that have

low probability of success. It does this by relying on the self-loop determinization of

an SSP.

Definition 7. Self-loop determinization. Given an SSP M = 〈S,A, T , C, s0,G〉

and an all-outcomes determinization Msl = 〈S,Asl, T sl, Csl, s0,G〉, we call Msl the

self-loop determinization of M iff its cost function is modified so that it satisfies

Csl(s, ad) = C(δ(ad))
T (δ(ad))

1.

To see why this modified cost-function makes sense, consider a (self-loop) SSP

where the only source of uncertainty is whether actions succeed or leave the state of

the system unchanged. Uncertainty is reduced in this case to the number of times

an action needs to be applied to obtain the desired outcome. The authors of HMDPP

show that the optimal value function for such an SSP is the same as that of its self-

loop determinization. Therefore, for an arbitrary SSP, computing an optimal solution

to its self-loop determinization is equivalent to optimally solving a self-loop relaxation

of the original problem.

The other difference with respect to the previous determinization-based planners

is that HMDPP does not actually solve the deterministic problem. Instead it employs

a cost-sensitive heuristic from the classical planning literature (Bonet and Geffner,

2001; Keyder and Geffner, 2008a) to get an estimate for the value of a state, hsladd.

Additionally, it uses another heuristic, hpdb, derived from an abstract and compu-

tationally tractable SSP, defined by abstracting states into patterns, which is then

1Here we abuse the notation so that C(δ(ad)) = C(s, a) when δ(ad) = (s, a, s′).

22

solved using VI. The hsladd heuristic scales up well and provides guidance towards the

goal, while hpdb is harder to compute but can identify high-risk states that need to

be avoided. They integrate the heuristics in a lexicographical ordering, by obtaining

first the actions that minimize the expected value of hpdb, and among these the one

that minimizes the value of hsladd. Using this strategy, HMDPP outperforms RFF in a

number of hard problems (Bryce and Buffet, 2008).

2.2.4 State Abstraction

Another form of reduction for MPDs/SSPs is state abstraction. State abstraction

(or state aggregation) is a technique that has been extensively studied in AI and Op-

erations Research (Li et al., 2006). In this approach, planning is performed in an

abstract state space, in which the original states are grouped according to some crite-

ria, so that the space of the abstracted MDP is smaller than the original one, and thus

easier to work with. Several state abstraction approaches have been proposed in the

planning and reinforcement learning communities, for instance, bisimulation (Givan

et al., 2003), homomorphism (Ravindran and Barto, 2002), utile distinction (Mccal-

lum, 1993), and policy irrelevance (Jong and Stone, 2005).

Much of the work in abstraction methods for MDPs has focused on bisimulation,

a notion of equivalence between states that preserves one-step rewards and transi-

tions (Givan et al., 2003). This concept leads naturally to a model minimization

paradigm (Givan et al., 2003), in which states that are equivalent under a bisimu-

lation are aggregated into a single abstract state. A related notion of equivalence

is homomorphism (Ravindran and Barto, 2002), defined as a tuple of surjections–

one over states, one over actions–that also preserve transition and reward structures;

moreover, it has the advantage over bisimulation of being able to cleanly represent

state-action equivalences, which can lead to capturing coarser abstractions.

23

Unfortunately, while bisimulation and homomorphism can be used to produce

MDP reductions that preserve optimality, they are computationally expensive to pro-

duce (NP-hard for some problem representations (Givan and Dean, 1997; Ravindran

and Barto, 2002)), and have seen limited use in practice. Some recent work on bisim-

ulation has focused on using a metrics formulation of the equivalence relation (Ferns

et al., 2004, 2006; Comanici et al., 2012), which significantly speeds up computation.

Yet, despite these improvements, most results so far have only scaled up to problems

with a few hundred of states, which is still not practical.

Currently, the most promising results using abstraction have been obtained in the

context of sparse sampling methods (Browne et al., 2012). Hostetler et al. (2015) pro-

posed an abstraction improvement over the FSSS sampling algorithm (Walsh et al.,

2010). Starting with the coarsest abstraction possible, the algorithm runs FSSS in the

abstract problem, and then iteratively refines the abstraction and runs FSSS again,

until time runs out. They propose a refinement procedure that encourages all states

in the same abstract class to have the same optimal action. Their method has the

same guarantees as the underlying sampling method used, but exploits the com-

putational benefits of coarse abstractions when the time budget is small. Jiang et

al. (Jiang et al., 2014) considered local approximate homomorphisms for UCT (Kocsis

and Szepesvári, 2006) constructed from sampled trajectories. Starting from an initial

trivial abstraction, the algorithm operates over a batch of trajectories using the most

current abstraction, updates the abstraction after the batch is finished, and repeats.

A similar work, by Anand et al. (Anand et al., 2015), introduced a more flexible no-

tion of equivalence named ASAP (Abstractions of State-Action Pairs), which operates

over AND-OR graphs, and is able to find coarser abstractions than those obtained

from homomorphism, while still maintaining optimality. They also introduce an al-

gorithm, ASAP-UCT, which interleaves tree expansion with abstraction computation

as in (Jiang et al., 2014), and show improvements over plain UCT in problems with

24

thousands of states. A more recent improvement, called OGA-UCT (Anand et al.,

2016), computes ASAP abstractions incrementally as the UCT tree is built.

2.2.5 Sparse Sampling Methods

We use the term sparse sampling to refer to a class of methods that sample from

a simulator of the MDP and compute statistical estimates of action Q-values, instead

of directly using the Bellman update operator defined in Eq.(2.8). These methods

have two main advantages: i) they do not require knowledge of the transition function

and can work with a generative model of the problem, and ii) they do not require

enumerating all the successors of state-action pairs to explore the state space.

Note that in this section we will focus on MDPs where the objective is to maximize

the total discounted reward accumulated by the system over an infinite time horizon,

as this is the setting where sparse sampling methods more naturally apply. However,

the algorithms presented here can be applied to the SSP case, albeit losing some of

their theoretical guarantees. We use the notation R to refer to the reward function

(the analogous of the cost function C), and γ to refer to the discount factor.

2.2.5.1 Kearns et al.’s Sparse Sampling

The sparse sampling algorithm of Kearns et al. (2002), or SS, was the first algo-

rithm to produce near-optimal policies with no dependence on the size of the state

space. Instead, its running time is exponential in the ε-horizon time, where ε is the

error tolerance desired. More precisely, it grows at a rate of (1/ε)O(log(1/ε)).

SS is relatively simple and we give its pseudocode in Algorithms 1, 2, and 3. The

inputs are an error tolerance ε, a discount factor, γ, the maximum reward that can be

obtained after executing an action, Rmax, a generative model of the problem,M, and

the initial state s0. The algorithm starts by computing the width, C, and the depth,

H, whose values are computed according to expressions that guarantee bounded error.

C is the number of successors it needs to sample at each step, while H is the depth

25

Algorithm 1: ESTIMATE-Q function for SS.

input: h, C, γ, M, s
output: A list

(
Q̂∗h(s, a1), Q̂

∗
h(s, a2), ..., Q̂

∗
h(s, ak)

)
of Q-value estimates

1 If h = 0, return (0, ..., 0)
2 For each a ∈ A, use M to generate C samples s′ ∈ succ(s, a). Let Sa be the

set containing these C successors
3 For each a ∈ A let

Q̂∗(s, a)← R(s, a) + γ 1
C

∑
s′∈Sa ESTIMATE-V(h− 1, C, γ,M, s′)

4 Return
(
Q̂∗h(s, a1), Q̂

∗
h(s, a2), ..., Q̂

∗
h(s, ak)

)
Algorithm 2: ESTIMATE-V function for SS.

input: h, C, γ, M, s
output: A state value estimate V̂ ∗h (s)

1
(
Q̂∗h(s, a1), Q̂

∗
h(s, a2), ..., Q̂

∗
h(s, ak)

)
← ESTIMATE-Q(h,C, γ,M, s)

2 Return maxa∈a1,a2,...,ak{Q∗h(s, a)}

up to which the algorithm explores. SS works by creating a sparse directed tree of

states in depth-first fashion, sampling C successors of each action at each state in

the tree. It then propagates estimates of the actions Q-values up the tree, which are

computed by averaging the values observed for their successors states in the tree (line

3 in Algorithm 1). Note that this expression is equivalent to a Bellman backup when

the transition function leads to each sampled successor with probability 1/C.

This early algorithm already incorporated the main advantages of the sampling

approach over enumerative approaches. It’s near-optimal with running time that is

independent of the size of the state space, it does not require an explicit description of

the transition function, and it does not need to compute the values of all successors of

a state-action pair to estimte its Q-value. On the other hand, it still suffers from some

problems, particularly because it can spend a lot of time in irrelevant parts of the

tree, since there is no action selection mechanism to perform adaptive exploration—

instead it expands all actions at every state. There is also an improved version, FSSS

algorithm (Walsh et al., 2010), which uses lower and upper bounds for values and

Q-values to prune actions and accelerate the search.

26

Algorithm 3: Kearns et al.’s Sparse Sampling algorithm.

input: ε, γ, Rmax, M, s0
output: An action a

1 Vmax ← Rmax
1−γ

2 H ← dlogγ(λ/Vmax)e
3 C ← V 2

max

λ2

(
2H log kHV 2

max

λ2
+ log Rmax

λ

)
4
(
Q̂∗H(s, a1), Q̂

∗
H(s, a2), ..., Q̂

∗
H(s, ak)

)
← ESTIMATE-Q(H,C, γ,G, s0)

5 Return arg maxa∈a1,a2,...,ak{Q∗H(s, a)}

2.2.5.2 Monte-Carlo Tree Search and UCT

A different take on sparse sampling is to use a rollout-based approach (Kocsis

and Szepesvári, 2006; Browne et al., 2012), commonly known as a Monte-Carlo Tree

Search (MCTS) method. A MCTS algorithm builds its search tree by repeatedly

sampling episodes from the initial state, and incrementally adding to the tree the

information gathered during each episode. Estimates of the action values are kept

throughout the algorithm’s operation, and are reused when the same state-action is

re-encountered in future episodes. These estimates can in turn be used to bias the

choice of what action to follow, potentially speeding up the convergence of the value

estimates.

Algorithms 4 and 5 outline a typical MCTS algorithm (Kocsis and Szepesvári,

2006). The inputs are a lookahead horizon to cut the search, H, a generative model

of the problem, M, and the initial state, s0, for which an action is required. A

MCTS algorithm iteratively generates episodes (Algorithm 5, line 1) and returns the

action with the largest observed long-term reward (function BEST-ACTION). When

the search arrives at the cutoff horizon, an estimate of the value of the state is

returned (function EVALUATE). This estimate can be obtained by using a heuristic

or by simulating a base policy for some number of episodes. In line 3 of Algorithm 4,

the algorithm selects an action for exploration, which can be done through a number

of different ways. The most popular one is the use of the UCB1 rule (Auer et al.,

27

Algorithm 4: SEARCH PROCEDURE FOR GENERIC MCTS APPROACH.

input: s, d,H,M
output: The accumulated reward for this episode, R

1 If state is terminal, return 0
2 If d = H, EVALUATE(s, d)
3 a← SELECT-ACTION(S,D)

4 Use M to sample a successor s′ ∈ succ(s, a) and the reward R(s, a)
5 R← R(s, a) + γSEARCH(s′, d+ 1, H,M)
6 UPDATE-VALUE(s, a, R, d)
7 Return R

Algorithm 5: Generic MCTS approach.

input: H, M, s0
output: An action a

1 while remaning time > 0 do
SEARCH(s0, 0, H,M)

2 Return BEST-ACTION(s0,0)

2002), which leads to the UCT algorithm (Kocsis and Szepesvári, 2006). The next

step in a MCTS algorithm is to sample a successor for the state and action, using

the generative model, and add the observed reward to the total cumulative reward

(lines 4 asnd 5). Finally, function UPDATE-VALUE (Algorithm 4, line 6) adjusts the

estimate of the Q-value for the given state-action pair; this will be explained in more

detail below.

In order to compute Q-value estimates and select actions, MCTS algorithms keep

counters of the number of times states and state-action pairs have been seen. Typ-

ically, this is done in a tree-structured way; that is, a different copy of a state is

maintained for each possible path leading to that state, each with its own counters.

We use the notation N(s) to represent the number of times a node represented state

s has been visited during the episodes, and N(s, a) the number of times a node

representing state-action pair (s, a) has been visited.

The UPDATE-VALUE function typically adjusts the Q-value estimates using Monte-

Carlo averaging, through the following equation:

28

Q̂(t+1)(s, a)← Q̂(t)(s, a) + η
R− Q̂(t)(s, a)

N(s, a)
(2.13)

where η is a learning rate and R is the accumulated reward observed after performing

a rollout starting at s, a. Additionally, Q-values can be initialized before performing

this computation for the first time, in the same vein as done in EVALUATE. An useful

property is that, unlike dynamic programming methods that select actions greedily,

these estimate are not required to be admissible.

The performance of the algorithm depends a lot on the action selection procedure.

As mentioned before, the most popular one is the UCB1 rule, which comes from the

multi-armed bandit problem literature. This rule estimates an upper confidence bound

for the Q-value of the actions, and selects the action with the highest bound. These

bounds are computed using the equation

QUCB1(s, a)← Q̂(t)(s, a) + C

√
lnN(s)

N(s, a)
(2.14)

Kocsis and Szepesvári (2006) showed that the resulting MCTS approach converges to

the optimal solution when the exploration constant, C, is chosen appropriately. Un-

fortunately, the choice of C greatly affects the performance of UCT. Nevertheless UCT

was the basis for a successful planner for finite-horizon MDPs called PROST (Keller

and Eyerich, 2012), which won the last three International Probabilitistic Planning

Competitions, in 2011, 2014, and 2018. Moreover, MCTS is an active research area

and it has recently been used in the creation of Alpha Go, the Go-playing program

that beat the human champion Lee Sedol in 2016 (Silver et al., 2016).

On the other hand, without undermining the success of MCTS methods, we high-

light the fact that these sampling methods ignore the declarative model when avail-

able, hence neglect useful information that could potentially improve performance.

In fact, some have argued that the success of UCT in planning problems is mostly

29

related to their ability to use non-admissible—but accurate—heuristics, which gives

it an edge over previous dynamic programming methods (Bonet and Geffner, 2012).

Part of the goal of this thesis is to devise better sampling mechanisms for problems

in which access to a declarative model of the MDP is available.

2.2.5.3 Trial-based Heuristic Tree-Search

We conclude the section on sparse sampling approaches by briefly describing

THTS, a recent framework that generalizes many trial-based solvers for finite-horizon

MDPs (Keller and Helmert, 2013; Keller, 2015). The framework identifies the follow-

ing components:

• Initialization: Initializes nodes in the tree with estimates for the values of

states and actions.

• Backup function: Defines how value and Q-value estimates are propagated

up the tree. Examples of this are the Bellman update equation 2.8 and the

Monte-Carlo update equation 2.13.

• Action Selection: Defines how actions are selected to explore the tree (e.g.,

greedily or using UCB1).

• Outcome Selection: Defines how successors are selected for exploration (e.g.,

by sampling from the transition function).

• Trial Length: Determines if trials are stopped when a leaf node is reached or

by some other mechanism (e.g., when a previously unseen note is visited for the

first time).

• Recommendation Function: Returns an action given the current value esti-

mates and statistics gathered during the trials.

30

The framework describes a generic THTS algorithm, following an outline very sim-

ilar to the generic MCTS illustrated in Algorithm 5, except that the search alternates

between visiting decision nodes (associated to states) and chance nodes (associated

to actions). The interesting insight arising from the THTS work was showing that it

is possible to produce new anytime optimal solvers2 by combining dynamic program-

ming backup updates with non-greedy action selection mechanisms. Moreover, they

introduced several backup operators to illustrate this idea, for instance the following

partial Bellman backup operator:

Vk(nd)←

0 if nd represents a terminal state

maxnc∈succ(nd)Qk(nc) otherwise

(2.15)

Qk(nc)← R(ρ(nc), nc) +

∑
nd∈succ(nc) T

(
ρ(nc), nc, nd

)
· Vk(nd)∑

nd∈succ(nc) T
(
ρ(nc), nc, nd

) (2.16)

Here nd and nc represent a decision node and a chance node, respectively, whose

associated state and actions can be recovered through functions s(nd) and a(nc);

the parent of a chance node can be recovered through function ρ(nc). We abuse

notation to let R and T operate over nodes directly, as if they were the states/actions

they represent. Following this notation, it is straightforward to see that the partial

Bellman backup converges to the usual Bellman backup as long as whole tree is

eventually expanded—thus making
∑

nd∈succ(nc) T
(
ρ(nc), nc, nd

)
→ 1. In the mean

time, it performs backups in a manner similar to the operator used by SS (Algorithm 1,

line 3), but incorporates information about the transition probabilities of the model.

Combining this backup operator with the UCB1 action selection rule leads to the

DP-UCT and UCT* algorithms (Keller and Helmert, 2013) (the latter being a version

2Anytime solvers are solvers that are optimal with infinite exploration, but can return a sub-
optimal or partial plan if stopped prematurely.

31

of DP-UCT that stops trials whenever an unvisited node is expanded)—the UCT*

algorithm formed the basis of PROST that won the 2014 IPPC.

Of particular interest to this thesis is the outcome selection component, which the

THST authors recognize as an under-explored research topic. In their work they used

the usual strategy of sampling from the transition distribution, but leave open the

possibility of devising more informed mechanisms. In the next and final section of

the literature review, we will describe the few existing algorithms (to the best of our

knowledge) that have dealt with this topic.

2.2.6 Solvers with Alternative Outcome Selection

With the exception of determinization-based approaches, all algorithms discussed

so far explore the state space by sampling from the (possibly unknown) transition

function of the underlying MDP. However, when the transition function is given, it

makes sense to instead sample states that are more informative, and use the known

probability of transition to incorporate the result into the value estimate. The algo-

rithms described in in this section attempt to do precisely this.

The first of these algorithms is Bounded RTDP (BRTDP) (McMahan et al., 2005),

an extension of the RTDP algorithm (Barto et al., 1995) that incorporates upper and

lower bounds on the state values. Instead of following the probabilities implied by

transition function, BRTDP biases sampling towards states where the gap between the

bounds is large. Specifically, given a state s and action a, BRTDP constructs a new

transition function, T ′(s, a, s′) ∝ T (s, a, s′) · gap(s′), where gap(s′) is the difference

between the upper and lower bound on the value of s′. The authors show that this

simple approach improves performance over RTDP and LRTDP.

Another algorithm that modifies the transition function is Focused RTDP

(FRTDP) (Smith and Simmons, 2006). FRTDP tries to exploit the concept of oc-

cupancy of states in MDPs. The occupancy of a state, denoted as W (s), is roughly

32

defined as the expected number of steps per execution that a policy spends on s be-

fore it reaches a fringe state (one that has not been explored by the algorithm yet).

The main observation is that the policy quality is directly related to its quality at

fringe states. Therefore, when bounds on state values are available, it makes sense to

explore the fringe state that can decrease the most the gap in the value of the initial

state s0—which represents the policy’s quality. As it turns out, this is the fringe state

s′ with the largest value of W (s′) · gap(s′). However, because W (s′) cannot be com-

puted exactly, FRTDP maintains a priority value for each state, which approximates

this quantity, and selects outcomes greedily according to this priority. This approach

also shows improvement when compared to LRTDP.

Finally, the most recent algorithm following this trend is VPI-RTDP (Sanner et al.,

2009). The idea of this approach is that, rather than decreasing the variance in our

value estimates, the agent should attempt to directly improve policy quality. To do

this, VPI-RTDP performs a myopic Value of Perfect Imformation analysis (Howard,

1966; Dearden et al., 1998) to estimate what the improvement in policy quality would

be if we have perfect knowledge about each successor’s value. The algorithm then

samples from the distribution implied by the VPI scores for the successor states. The

authors report significant improvements over BRTDP and FRTDP.

33

CHAPTER 3

Mk
l -REDUCTIONS - GENERALIZING

DETERMINIZATION

In this chapter we introduce theMk
l -reduction, a new form of reduction for MDPs

that generalizes single-outcome determinization as just one extreme point on a spec-

trum of MDP reductions that differ from each other along two dimensions: i) the

number of outcomes per state-action pair that are fully accounted for, and ii) the

number of occurrences of the remaining, exceptional, outcomes that are planned for

in advance. An interesting insight obtained from this thesis is that the choice of re-

duction is crucial for achieving good performance. We show experimental results that

highlight the benefit of planning with reduced models and the effects of the reduction

choice in the performance of the resulting plans.

3.1 A Broad Spectrum of MDP Model Reductions

We propose a new family of MDP reduced models that are characterized by two

key parameters: the number of outcomes per action that are fully accounted for, and

the maximum number of occurrences of the remaining outcomes that are planned for

in advance. We refer to the first set of outcomes as primary outcomes (those that

will be fully accounted for) and to the remaining outcomes as exceptional outcomes.

We consider factored representations of MDPs—such as PPDDL (Younes et al.,

2005)—in which actions are represented as probabilistic operators of the form:

a = 〈prec, cost, [pa1 : ea1, ..., p
a
m : eam]〉,

34

where prec is a set of conditions necessary for the action to be executed, cost is the cost

of the action (assumed to be the same in all states), and for each i ∈ {1, ...,m}, pai is

the probability of outcome eai occurring when the action is executed. The transition

function can be recovered from this representation by means of a function τ that

maps outcomes to successor states, so that s′ = τ(s, eai) and T (s, a, s′) = pai . Note

that typical MDP representations, like PPDDL, model actions as parameterized action

schemata, each of which declares a function from objects to a grounded action. We

formalize our framework at the level of grounded actions, although we expect that,

in practice, reducing the problem at the schema level will be more practical.

For any action a, let Pa ⊆ {ea1, ..., eam} be the set of its primary outcomes. Given

sets Pa for each action a∈A, we define a reduced version of an MDP that accounts

for a bounded number of occurrences of exceptional outcomes, which we refer to as

exceptions. Note that an exception is any effect that belongs to {ea1, ..., eam} \ Pa.

Formally, a reduced model of an MDPM = 〈S,A, T , C, s0,G〉 is another MDP,

M = 〈S ′,A, T ′, C ′, s′0,G ′〉, where

• The set of states is defined as S ′ , S×{0, 1, ..., k}, where k is a positive integer;

• The set of actions is the original set, A;

• The transition function is defined by Eqs. (3.1), (3.2) and (3.3) below;

• The cost function is defined as C ′(〈s, j〉, a) , C(s, a), for all 〈s, j〉 ∈ S ′∧a ∈ A;

• The initial state is s′0 , 〈s0, 0〉;

• The set of goals is defined as G ′ , {〈s, j〉 ∈ S ′|s ∈ G}.

The transition function T ′ of the augmented MDP is defined as follows. Given

a state 〈s, j〉, the counter j represents the maximum number of exceptions, per tra-

jectory, that will be accounted for by the planner when computing a plan for 〈s, j〉.

35

When j = 0, the reduced model assumes that no more exceptions can occur, so the

new transition function is:

∀s, a, s′ T ′(〈s, j〉, a, 〈s′, j′〉) ,

p′i eai ∈ Pa ∧ j′ = j = 0

0 eai /∈ Pa ∧ j′ = j = 0

(3.1)

where we use the shorthand s′ = τ(s, eai) and the set {p′1, ..., p′m} is any set of real

numbers that satisfy

∀i : eai ∈ Pa ⇒ p′i > 0 ∧
∑

i:eai ∈Pa

p′i = 1 (3.2)

For states 〈s, j〉 with j > 0, the full transition model is used, and the exception

counter is updated appropriately if an exception occurs. Thus, the transition function

in this case becomes:

∀s, a, s′, j, j′ T ′(〈s, j〉, a, 〈s′, j′〉) ,

pai eai ∈ Pa ∧ j′ = j

pai eai /∈ Pa ∧ j′ = j − 1

0 otherwise

(3.3)

Note that while the complete state space of a reduced MDP is actually larger

than that of the original problem, the benefit of the reduction is that, for well-chosen

values of k and sets Pa, the set of reachable states can become much smaller. This

is desirable because the runtime of heuristic search algorithms for solving MDPs,

such as LAO* and LRTDP, depends heavily on the size of the reachable state space.

Furthermore, by changing k and the maximum size of the sets Pa, we can adjust

the amount of uncertainty we are willing to ignore in order to have a smaller reduced

problem. Figure 3.1 illustrates the pruning effect that can be achieved with a reduced

model.

36

Using k = 0

s
0

Using k = 1

s
0

Figure 3.1: Illustration of the pruning effect of an Mk
l -reduction, using two different

values of k. Exceptional outcomes are marked with a red cross and reachable states
are highlighted in green (darker color for those reachable with k = 1 but not k = 0).
The value of k can be used to regulate the trade-off between computational efficiency
and plan robustness.

Building on the formulation presented above, the following definition formalizes

the concept of Mk
l -reductions.

Definition 8 (Mk
l -reduction of an MDP). An Mk

l -reduction of an MDP is an

augmented MDP with the transition function defined by Eqs. (3.1), (3.2), and (3.3),

where j ∈ {0, 1, ..., k} and ∀a |Pa| ≤ l.

For example, the single-outcome determinization used in the original FF-REPLAN

work (Yoon et al., 2007) is an instance of anM0
1-reduction where each set Pa contains

the single most likely outcome of the corresponding action a.

37

Note that for any given values of k and l there might be more than one possible

Mk
l -reduction. We introduce the notation M ∈ Mk

l to indicate that M is some

instance of an Mk
l -reduction; different instances are characterized by two choices.

One is the specific outcomes that will be labeled primary. The other is how to

distribute the probability of the exceptional outcomes among the primary ones when

j = 0—i.e., the choice of p′i in Eq. (3.1). In the thesis we simply normalize the

probabilities of the primary outcomes so that they sum up to one. However, more

complex ways to redistribute the probabilities of exceptional outcomes are possible.

The concept of Mk
l -reductions raises a number of critical questions about its

potential benefits in planning:

1. How should we assess the comprehensive value of an Mk
l -reduction? Can this

be done analytically?

2. Considering the space of Mk
l -reductions, is determinization or M0

1-reduction

always preferable?

3. In the space of possible determinizations, can the best ones be identified using a

simple heuristic (e.g., choosing the most likely outcome)? Or do we need more

sophisticated value-based methods for that purpose?

4. How can we explore efficiently the space of Mk
l -reductions? How can we find

good ones or the best one?

In later sections we answer these questions, showing evidence that anM0
1-reduction

(i.e., a single-outcome determinization) is not always desirable. Furthermore, even

when determinization can provide good (or even optimal) performance, a value-based

approach is needed to choose the most appropriate primary outcome per action. How-

ever, before we can attempt to answer these questions, we need a way to evaluate

the benefits of a particular Mk
l -reduction. In the next section we show how, given k

38

and sets Pa for all actions in the original MDP, we can evaluate analytically the ex-

pected cost of solving the original problem using plans derived by solving the reduced

problem.

3.2 Planning for More than k Exceptions

A plan generated using a reduction M ∈ Mk
l is likely to be incomplete because

more than k exceptions could occur during plan execution, leading to a state that

is not included in the plan. Hence, in this section, we propose a continual planning

approach that takes advantage of the added robustness of reduced model plans, such

that it can handle a limited number of exceptions and thereby facilitate uninterrupted

plan execution.

3.2.1 Continual Planning Using Reduced Models

The terms continuous planning and continual planning generally refer to system

architectures in which plan generation and plan execution are integrated and per-

formed concurrently, in contrast to the more traditional plan-then-execute paradigm

(desJardins et al., 1999; Myers, 1999; Chien et al., 2000; Brenner and Nebel, 2009).

Building on these early efforts, our goal is to introduce a continual planning approach

for solving MDPs that is amenable to an analytical evaluation and could provide

performance guarantees. In contrast, early work on continual planning often resulted

in complex planning and execution architectures that are hard to analyze from a

theoretical perspective.

To this end, we propose a continual planning strategy specifically designed for

Mk
l -reductions. A high-level version of this approach, namedMk

l -REPLAN, is shown

in Algorithm 6. We use the notation P to represent the choice of primary outcomes

39

for a reduction; that is, a mapping1 P : A → 2{e
a
1 ,...,e

a
m}, relating each action to a set

of primary outcomes. Mk
l -REPLAN relies on function CREATE-REDUCED-MDP, which

takes as input an MDP,M, an initial state, s, the chosen primary outcomes, P , and

the exception counter, k; its output is the corresponding reduced MDP, with initial

state s.

Mk
l -REPLAN begins by creating a reduced model (line 1) and solving it optimally

(see COMPUTE-OPTIMAL-PLAN in line 2). This plan is then executed (line 4), and

whenever the exception counter reaches the lower bound, j = 0, the algorithm gen-

erates a new reduced model in line 6 (for reasons explained below) and an optimal

plan for this reduced model (line 7). At this point in execution there will still be an

action ready in the current plan, so we can compute the new plan while simultane-

ously executing an action from the existing plan. As long as the new plan is ready

when the action finishes executing, plan execution will resume without delay. Action

execution relies on function EXECUTE-ACTION, which receives the current state and

an action, applies this action to the system, and returns the state reached after the

action is executed, updating the exception counter appropriately. Note that, after

re-planning, the algorithm sets the exception counter of the current state to j = k,

since the new plan can handle up to k additional exceptions.

There is one complication in this continual planning process. Since the new plan

will be activated from a start state that is not yet known (when the planning process

starts), all the possible start states need to be taken into account, including those

reached as a result of another exception. Therefore, we create a new dummy start

state (line 5) that leads via a single zero-cost action to all the start states we may

1This is a slight abuse notation, since the set of possible outcomes {ea1 , ..., eam} is indexed by action
a. Nevertheless, since the intended meaning should be clear, we argue that the gain in readability
compensates for the loss of rigor.

40

Algorithm 6: Mk
l -REPLAN: A continual planning approach for handling

more than k exceptions

input:M = 〈S,A, T , C, s0,G〉, k, P
1 M ← CREATE-REDUCED-MDP(M, s0,P , k)
2 π ← COMPUTE-OPTIMAL-PLAN(M, 〈s0, 0〉)
3 〈s, j〉 ← 〈s0, 0〉

while s /∈ G do
if j 6= 0 then

4 〈s, j〉 ← EXECUTE-ACTION(〈s, j〉, π〈s, j〉)
else

5 Create new state ŝ with one zero-cost action â s.t.
∀s′∈S : Pr(〈s′, k〉|ŝ, â) = T (s′|s, π〈s, j〉)

6 M ← CREATE-REDUCED-MDP(M, ŝ,P , k)
do in parallel

7 π′ ← COMPUTE-OPTIMAL-PLAN(M, ŝ)
8 〈s, j〉 ← EXECUTE-ACTION(〈s, j〉, π〈s, j〉);
9 π ← π′

10 〈s, j〉 ← (s, k)

encounter when the execution of the current action terminates; we then create a new

reduced model using the dummy state as initial state (line 6).

For the sake of clarity of the algorithm and its analysis, we described a straightfor-

ward implementation where the execution time of one action is sufficient to generate

a plan for the reduced model. When planning requires more time, it may delay the

execution of the new plan.

3.2.2 Evaluating the Performance of the Continual Planning Approach

Unlike existing continual planning methods (Chanel et al., 2014), the proposed

approach facilitates a precise analytical evaluation of reduced models. Let πk be a

universal plan (Schoppers, 1987) for a reduced model M ∈ Mk
l —one that covers

every possible state of the reduced model M . While universal planning is considered

impractical in large domains (Ginsberg, 1989), we are using it here to propose an

41

offline technique to evaluate the performance of the continual planning method in

hindsight; finding πk is not needed when solving a given problem instance using

Algorithm 6.

While the continual planning and execution algorithm does not generate a univer-

sal plan, we observe that it always executes actions that agree with πk as it conforms

to the following rule: whenever it reaches a state 〈s, 0〉 (in which no more exceptions

will be considered), it executes πk(〈s, 0〉) and, if the outcome state is s′ (as a result

of either a primary or exceptional outcome), it moves to state 〈s′, k〉 (of the newly

generated plan) and executes πk(〈s′, k〉). This is essentially what the continual plan-

ning process does, by producing online a new partial plan for any outcome of the last

action according to the previous plan.

More formally, this planning and execution approach generates a trajectory of the

following Markov chain defined over states of the form 〈s, j〉, with initial state 〈s0, k〉

and the following transition function, for any s ∈ S, 0 ≤ j ≤ k:

∀s, j, s′, j′ Pr(〈s′, j′〉|〈s, j〉) =

T ′(〈s, j〉, πk(〈s, j〉), 〈s′, j′〉) j > 0

T (s, πk(〈s, j〉), s′) j = 0 ∧ j′ = k

0 otherwise

The middle case represents the transition from 〈s, 0〉 to (s′, k), which also indicates

the transition to a new plan. Let V M
cp denote the value function defined over this

continual planning Markov chain with respect to a given reduction M . Then we

have:

Proposition 1. V M
cp (〈s0, k〉) provides the expected value of the continual planning

and execution approach for a given reduced model M , when the plan is executed in

the original (not reduced) problem domain.

42

Existing continual planning methods often involve heuristic decisions about the

interleaving of planning and execution, making it necessary to evaluate them empir-

ically. The ability to derive an exact expected value for the proposed planning and

execution approach makes it easier to compare different reduced models, knowing

that the expected value is not biased by the sampling method.

3.3 The Choice of Reduced Model Matters

In this section we show evidence that a careful choice of reduced model can re-

sult in policies that have significantly better cost than policies generated by popular

determinization-based approaches. First, in Section 3.3.1, we show how this can be

accomplished by planning with more than one primary outcome (i.e., going beyond

single-outcome determinization), but without accounting for the full original model.

Second, in Section 3.3.2, we show that in some problems, the choice of primary out-

come has a large impact in the quality of resulting plans, even when using only a

single-outcome determinization for planning.

3.3.1 The Value of Going Beyond Single-Outcome Determinization

The defining property of most determinization-based algorithms is the use of fully

deterministic models in planning, entirely ignoring what we call exceptional outcomes.

In fact, even the widely used all-outcomes determinization treats each probabilistic

outcome as a fully deterministic one, completely ignoring the relationship between

outcomes of the same action. Hence, we argue that an M0
1-reduction is not always

desirable, and that anM0
l -reduction with l > 1 could be significantly better for some

domains.

To illustrate this point—that determinization could sometimes lead to poor per-

formance relative to other reduced models—we use a modified version of the racetrack

domain (Barto et al., 1995), a well-known reinforcement learning benchmark. The

43

o
2

o
5

o
0

o
3

o
4

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
1

o
9

o
6

o
10

o
8

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
7

o
13

o
11

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
12

o
14

Group 1
No acceleration

Group 2
Accelerate in

only 1 direction

Group 1
No acceleration

Group 3
Accelerate in 2

directions

Figure 3.2: Action groups in the racetrack domain: dark squares represent the intended
action, gray squares represent the acceleration outcome associated with slipping, and the
light gray squares represent the remaining outcomes.

problem involves a simulation of a race car on a discrete track of some length and

shape, where a starting line has been drawn on one end and a finish line on the op-

posite end of the track. The state of the car is determined by its location and its

two-dimensional velocity. The car can change its speed in each dimension by at most

1 unit, giving a total of nine possible actions. After applying an action there is a

probability pslip that the resulting acceleration is zero, simulating failed attempts to

accelerate/decelerate because of unpredictably slipping on the track. Additionally,

we include a probability per that the resulting acceleration is off by one dimension

w.r.t. the intended acceleration. The goal is to go from the start line to the finish

line in as few moves as possible.

To decrease the number of reductions to consider, instead of treating the outcomes

of all nine actions separately, we can group symmetrical actions and apply the same

reduction to all actions in the same group. The racetrack domain has three groups

of symmetric actions: four actions that accelerate/decelerate in both directions, four

actions that accelerate/decelerate in only one direction, and one action that keeps

the current speed. Figure 3.2 illustrates these groups of actions and their possible

outcomes; for each group, a decomposition is specified by the set of outcomes, relative

44

small track

medium track

large track

goal

start

start

start

goal

goal

Figure 3.3: Three instances of the racetrack domain.

|S| V M1
cp 〈s0, 0〉 V M2

cp 〈s0, 0〉 V̂ ao(s0)

small 239 9.22% 5.40% 126.8%

medium 2219 28.18% 7.42% 118.6%

large 24587 48.91% 11.53% 102.8%

Table 3.1: Comparison of the best determinization (M1) and the bestM0
2-reduction (M2)

for three racetrack problems.

to the intended outcome (shown in darker color), that are labeled as primary. In our

experiments we used three racetrack problems of different sizes (see Figure 3.3).

We compared the following two reductions, M1 and M2:

M1 = min
M∈M0

1

V M
cp (〈s0, k〉) and M2 = min

M∈M0
2

V M
cp (〈s0, k〉)

That is, we compared the best possible M0
1-reduction (determinization) of this

problem, with its best possible M0
2-reduction. For reference, we also report the

expected cost (estimated using 1000 simulations) of a policy obtained with an all-

outcomes determinization of the problem; we denote this cost as V̂ ao(s0)).

Table 3.1 shows the increase in cost of these reductions with respect to the optimal

expected cost obtained by solving using the full model. In all of the three tracks con-

45

Primary outcome P01 P02 P03 P04 P05 P06 P07 P08 P09 P10

(not (not-flattire)) 50 50 50 50 50 50 50 50 50 28

(not-flattire) 30 10 4 0 0 0 0 0 0 0

Table 3.2: Number of successful trials, out of a maximum of 50, using two different M0
1-

reductions on ten TRIANGLE-TIREWORLD problems.

sidered, the use of single-outcome determinization resulted in a 9% or higher increase

in cost, while the maximum cost increase for the best M0
2-reduction was less than

5% in all cases. Additionally, note that using an all-outcome determinization, which

cannot be represented as an Mk
l -reduction, results in particularly poor performance

in this domain. To see why, consider that under the error model considered in this

example, the no-acceleration action includes a unique low probability outcome for

each possible direction the agent can move to. Thus, for instance, a planner based on

the all-outcomes determinization can potentially choose a plan that always decides

not to accelerate, since this plan has a non-zero probability of reaching a goal. Ad-

mitedly, there are techniques that can alleviate this issue (e.g., increasing the cost of

actions associated to low probabity outcomes), but the goal of the previous analysis

is to highlight the importance of the choice of reduced model, ceteris paribus.

3.3.2 Choosing the Right Outcomes

In some problems determinization works well. That is, the cost of using continual

planning with the best M0
1-reduction may be close to the optimal cost V ∗. However,

the choice of primary outcomes by simply inspecting the domain description may still

present a non-trivial challenge. For example, the commonly used most-likely-outcome

heuristic may not work well.

To illustrate this issue we experimented with different determinizations of the

TRIANGLE-TIREWORLD domain (Little and Thiebaux, 2007). This problem involves

a car traveling between locations on a graph shaped like a triangle (see Figure 3.4).

46

Figure 3.4: Three instances of the TRIANGLE-TIREWORLD domain. Locations with
spare tires are marked in black (Little and Thiebaux, 2007).

Every time it moves there is a certain probability of getting a flat tire when the car

reaches the next location (60% in the experiments in this section), but only some

locations include a spare tire that can be used to repair the car. Note that, since the

car cannot change its location when it has a flat tire, this domain has dead-ends. We

address this issue using a well-known technique for planning in this type of problem.

In particular, we use a cap on state costs, D, and modify the Bellman backup operator

as follows

V (s) = min
{
D,min

a∈A

{
C(s, a) +

∑
s′∈S

T (s, a, s′)V (s′)
}}

which guarantees the convergence of heuristic search algorithms (Kolobov et al.,

2012).

This domain has two possible determinizations, depending on whether getting a

flat tire is considered an exception or a primary outcome. Table 3.2 shows the results

(number of trials reaching the goal) of evaluating the two determinizations on 10

instances of this domain. The best determinization is undoubtedly the one in which

getting a flat tire is considered the primary outcome. The resulting plan enabled

the car to reach the goal in most of the large majority of simulated rounds (from a

47

maximum of 50 rounds to be solved within a 20 minutes time limit), while the other

determinization resulted in complete failure to reach the goal for (P04 ... P10).

As it turns out, the right determinization for this problem is not very intuitive, as

one typically expects for primary outcomes to correspond to the most likely outcome

of an action or to its intended outcome when it succeeds (the most likely outcome is

not having a flat tire with probability 60%.) This counterintuitive result might lead

one to consider the use of conservative heuristics, labeling the worst-case outcome as

primary. Although this would indeed work very well in the TRIANGLE-TIREWORLD

domain, it would perform poorly in other domains such as the racetrack problem.

Additionally, note that an all-outcomes determinization does not work well in this

problem either, as our experimental results with FF-REPLAN show (Chapter 4) .

To sum up, some determinizations can indeed result in optimal performance, but

there seems to be no all-purpose “rule of thumb” to choose the best one. This

suggests that a more principled value-based approach is needed in order to find a

good determinization or a good reduction in general.

3.4 A Greedy Approach for Learning Reduced Models

In this section, we propose a greedy algorithm for finding a model M ∈Mk
l with

a low cost V M
cp (〈s0, k〉) for some given k and l. The main premise of the approach

is that problems in the given domain share some common structure, and that the

relative performance of different Mk
l -reductions generalizes across different problem

instances. Although this is a strong assumption, experiments we report in Section

5.3 confirm that it can work well in practice.

Given k and l, every reduction M ∈ Mk
l is uniquely determined by the mapping

PM : A→ 2{e
a
1 ,...,e

a
m}, which associates every action with the set of its primary out-

comes. Since outcomes are indexed by the action they are associated to, this mapping

can also be uniquely represented as a set EM ≡
⋃
a∈APM(a), so that ea ∈ EM =⇒

48

ea ∈ PM(a). Using this notation, finding a good Mk
l -reduction amounts to solving

the following combinatorial optimization problem:

max
EM⊆E

−V M
cp (〈s0, k〉), E ≡

⋃
a∈A

outcomes(a)

s.t. ∀a ∈ A, 1 ≤ |{e : e ∈ EM ∩ outcomes(a)}| ≤ l

(3.4)

This optimization problem is particularly hard to solve due to two complications.

First, it is possible that some reductions M introduce dead-ends even if the original

MDP had none. This can happen, for example, if all the outcomes that can make

progress towards the goal are outside the set of primary outcomes, and the only path

towards the goal requires the occurrence of more than k of these outcomes. Second, as

we show below, the maximized objective function is not submodular (Nemhauser et al.,

1978), making it harder to develop a bounded approximation scheme. A function

f : 2W → R, where W is a finite set, is submodular if for every A ⊆ B ⊆ W and

e ∈ W \ B, the following diminishing returns property holds (Krause and Golovin,

2014),

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)

Submodular functions are attractive because they lead to good approximate greedy

maximization algorithms. Unfortunately, as mentioned above, the objective function

described by Eq. (3.4) is not submoduar, as the following proposition shows.

Proposition 2. The function f(EM) , −V M
cp (〈s0, k〉) is not submodular.

Proof. We provide an example contradicting submodularity, using the MDP shown

in Figure 3.5. Consider two M0
2-reductions M1 and M2, where EM1 = {eA1 , eB1 , eB2 }

and EM2 = {eA1 , eB2 }. It is not hard to see that f(EM1) = f(EM2) = −51, since both

reductions result in action B being chosen, with a resulting expected cost of 51. Now

49

consider adding outcome eA2 to both EM1 and EM2 . Let ρe(S) = f(S ∪ {e})− f(S).

Then we have ρeA2 (EM1) = −19+51 = 31, since action A is chosen under EM1∪{eA2 }—

i.e., the full model—with expected cost of 19, while ρeA2 (EM2) = 0, since action B

is still chosen under EM2 ∪ {eA2 }. But this implies that ρeA2 (EM2) < ρeA2 (EM1) and

EM2 ⊂ EM1 , which contradicts submodularity.

Similar counterexamples can be constructed for larger values of k. Intuitively, lack

of submodularity results because the benefit of adding a particular outcome to the

reduction might not become evident unless some other outcomes had been previously

added. Nevertheless, we have found empirical evidence that a simple greedy approach

works well in practice, despite the difficulty in obtaining a bound with respect to

optimal solution of the combinatorial optimization problem described in Eq. (3.4).

Our method, described in Algorithm 7, starts with M equal to the full probabilistic

model, and iteratively removes from EM the outcome e that minimizes V M̂
cp (〈s0, k〉)

(the expected cost of the induced continual planning approach); M̂ represents the

reduced model resulting after removing e from M . In the pseudo-code, the best out-

come to remove is denoted as eαbest, where α is the action this outcome is associated

to. This process is continued as long as: i) the maximum number of primary out-

comes is larger than the desired l (lines 19 and 21), and ii) the relative increase in

comprehensive cost with respect to the value of the full model is lower than some

threshold (line 21).

goalstart

cost =100

cost =10

cost =95

cost =5

e1
A

e2
A

e1
B

e2
B

P(e1
A
)=0.1

P(e2
A
)=0.9

P(e1
B
)=0.5

P(e2
B
)=0.5

Figure 3.5: Example showing that −VM
cp (〈s0, k〉) is not submodular. Actions A and B have

cost 1.

50

We use VALUE-ITERATION to compute V M̂
cp (〈s0, k〉), as doing so requires a universal

plan (see Section 3.2.2). Therefore, during this greedy process we also discard any

reduction that makes the problem unsolvable (line 12), thereby ensuring that the

value V M
cp (〈s0, k〉) remains well-defined. A reduction becomes unsolvable if any state

of the model is a dead-end (i.e., a state from which no policy can reach the goal)

under that reduction, and it is solvable otherwise.

To check if a reduction M̂ is solvable, we perform a strongly connected component

analysis on a modified version of M̂ . Specifically, we add an artificial initial state,

s̄0, and an action, ā, and modify the transition function so that T ′(s′|s̄0, ā) = 1
|S′| for

all s′ ∈ S ′. In other words, s̄0 leads to all states in the reduced model with equal

probability. Furthermore, we modify the transition function so that T (s̄0|sg, a) = 1

for all states sg ∈ G′, that is, goals transition back to the artificial initial state.

As it turns out, it is easy to detect dead-ends in M̂ by performing a strongly con-

nected component analysis on the all-outcomes determinization of this new problem

(e.g., using Tarjan’s algorithm (Tarjan, 1972)). If M̂ has no dead-ends, then this

modified problem will have a single component. Conversely, if there is more than one

component in the problem, then there must be a dead-end state. To see why no dead-

ends implies a single component, note that having goals connected back to s̄0 implies

that any state with a path to the goal is strongly connected to s̄0; the converse is

easily proven from the same observation. Note that we added s̄0, rather than connect

the goal with the initial state, because computing V M̂
cp (〈s0, k〉) requires a universal

plan for the reduction, rather than one that covers only those states reachable from

〈s0, k〉.

Obviously, this greedy approach could be costly in terms of computation time,

since every evaluation of the objective function involves computing a universal plan

for the reduced model, and for k > 0 this is in fact more costly than solving the

original problem using value iteration. In order to overcome this difficulty, the greedy

51

Algorithm 7: GREEDY-LEARN: A greedy method for finding good reduced
models

input: MDP problem M = 〈S,A, T , C, s0,G〉, k, l, τ
output: Reduced model M

1 EM ←
⋃
a∈A outcomes(a)

2 M ←Mk
l -reduction of M with primary outcomes EM

3 Vopt ← V M
cp (〈s0, k〉)

4 while true do
5 Vbest ←∞
6 α← ∅
7 eαbest ← ∅
8 for a ∈ A do
9 for ea ∈ (outcomes(a) ∩ EM) do

10 Ê ← EM \ {e}
11 M̂ ← CREATE-REDUCED-MDP(M, s0, Ê , k)

12 if SOLVABLE(M̂) ∧ V M̂
cp (〈s0, k〉) < Vbest then

13 Vbest ← V M̂
cp (〈s0, k〉)

14 α← a
15 eαbest ← ea

16 if Vbest =∞ then
17 break // Removing any outcome makes problem unsolvable

18 EM ← EM \ {eαbest}
19 lmax ← maxa |outcomes(a) ∩ EM |
20 M ← CREATE-REDUCED-MDP(M, s0, EM , k)

21 if
(Vbest−Vopt

Vopt

)
> τ ∧ lmax ≤ l then

22 break

approach is meant to be applied to relatively small problem instances that can be

solved quickly, allowing the planner to learn a good reduced model that can be applied

to other instances in the same domain. The underlying assumption is that if a small

problem instance captures the relevant structure of the domain, then a good reduction

for this instance generalizes to larger problems.

52

3.5 Experimental Results

In this section we present experiments for evaluating the performance of Mk
l -

REPLAN, as well as the effectiveness of our strategy for learning reduced models.

Additionally, in Section 3.5.1, we introduce an anytime version of Mk
l -REPLAN, to

evaluate how our approach performs under time constraints.

3.5.1 Evaluating Mk
l -REPLAN

We evaluate the use of our continual planning approach,Mk
l -REPLAN with several

reductions of the racetrack domain, and compare their performance with LAO* using

the full transition model; we also use LAO* to solve the reduced models. For the

racetrack problem, we used pslip = 0.1 and per = 0.05 (see description in Section 3.3.1).

We evaluateMk
l -REPLAN using two possible sets of primary outcomes, one with l = 1

and one with l = 2, and values of k ∈ {0, 1, 2, 3} for each of them; in our discussion we

use the notation MKL to refer to the planner using theMk
l -reduction. In all cases, we

used the optimal solution of the all-outcomes determinization as the initial heuristic,

which is admissible for every possible reduction of the domain.

We learned the two sets of primary outcomes using GREEDY-LEARN (Algorithm 7),

on a smaller track with 1,367 states, using k = 0 and τ = 1.05. In the case of l = 2

(i.e., at most two primary outcomes), GREEDY-LEARN found that using determiniza-

tion was within the desired tolerance (τ); therefore we used the last Mk
2-reduction

found such that at least one action had two primary outcomes. In particular, the

Mk
1-reduction used was the most-likely outcome determinization (outcomes o0, o5,

and o11 in Figure 3.2), and theMk
2-reduction added to that the possibility of slipping

when accelerating in one direction (outcomes o0, o5, o11, and o8 in Figure 3.2). The

racetrack used in our experiments is shown in Figure 3.6, which has 34,897 states.

Table 3.3 (bottom) shows the total CPU time spent on planning (bottom), which

includes the time used to compute an initial plan, as well as the time needed for re-

53

start

G2

G1

G3

Figure 3.6: An instance of the racetrack domain.

planning. The time reported is the average taken over 500 simulations (the observed

standard error was negligible, so it’s not reported). In the large majority of cases, the

planning time is significantly shorter than the time necessary to plan with the full

model; in fact, for values of k = 0 and k = 1 this time is shorter by multiple orders

of magnitude. The only case considered in which planning with the reduced model is

slower corresponds to problem G3, where using k = 3 was slower than using the full

model.

The expected costs of the resulting policies are shown on Table 3.3 (top), which

are computed exactly using the Markov Chain discussed in Section 3.2.2. Note that

planning with the most-likely-outcome determinization (M01), while being extremely

fast, always results in more than 19% increase in cost with respect to the optimal

cost (and in one case 34.6%). Adding a single outcome, without increasing k (M02),

decreases the expected cost by at least 5% in two of the problems considered, with

marginal increase in total planning time. Notice, however, that M02 resulted in a

slight increase in expected cost for problem G3, which indicates that simply adding

54

Expected Cost

LAO* M01 M11 M21 M31 M02 M12 M22 M32

G1 16.03 19.16 16.42 16.19 16.10 18.35 16.35 16.26 16.08

G2 14.96 20.14 15.51 15.12 15.03 19.28 15.40 15.15 15.01

G3 20.00 23.83 20.69 20.30 20.15 24.09 20.51 20.31 20.21

CPU Time

LAO* M01 M11 M21 M31 M02 M12 M22 M32

G1 7,610 1 26 495 3,640 5 120 1,978 7,285

G2 8,244 1 136 1,309 4,871 2 151 1,138 4,400

G3 6,813 1 126 1,723 8,093 8 489 5,306 18,501

Table 3.3: Expected cost and average planning time obtained with several reduced
models of the racetrack domain.

an outcome is not guaranteed to result in a better plan. On the other hand, increasing

k generally results in better policies in these experiments, a trend that is observed in

all the problems and with all values of k. With k = 1, the policies are always within

4% of optimal. With k = 3, the difference with respect to the optimal cost reduces

to less than 1%, even when the underlying model is deterministic (M31).

The results discussed above offer evidence that Mk
l -reductions can be used to

compute near-optimal plans, and do so orders of magnitude faster than optimal plan-

ning under the full model. However, note that in these experiments the planners

were allowed as much time as needed for planning, which is not necessarily the most

practical approach. Indeed, a standard setting encountered in the planning literature

is to study the performance of a planner when there is only a limited window of time

available for planning before each action.

To this end, we evaluate an anytime variant of Mk
l -REPLAN, referred to as

Mk
l -ANYTIME, and outlined in Algorithm 8. As in Mk

l -REPLAN, Mk
l -ANYTIME con-

siders planning in parallel to action execution. However, this new anytime version

does not assume that the execution time of an action is sufficient to generate a new

plan. Instead, the planner can be preempted whenever an action is requested (line 7),

55

0.03 0.13 0.51 2.05 8.19
Time (seconds)

16.0

16.2

16.4

16.6

16.8
Ex

pe
ct

ed
 co

st

G1

0.03 0.13 0.51 2.05 8.19
Time (seconds)

15.0

15.5

16.0

16.5

17.0

17.5

18.0
G2

0.03 0.13 0.51 2.05 8.19
Time (seconds)

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

G3
full M12 M21 M11 M02+

Figure 3.7: Anytime performance of several Mk
l -reductions using Mk

l -ANYTIME to
solve three instances of the racetrack problem. From left to right, results correspond-
ing to G1, G2, and G3 in Figure 3.6.

and the agent always chooses an action greedily on the most recent value estimates

(line 4). Note that, as in the case of Mk
l -REPLAN, the algorithm tries to create a

plan for the states that can be encountered after the current action is executed (line

5). But, unlikeMk
l -REPLAN, the anytime version plans during the execution of every

action (as opposed to only when j = 0), and therefore always uses the greedy action

corresponding to 〈s, k〉.

We evaluatedMk
l -ANYTIME using the same set of racetrack problems illustrated in

Figure 3.6, assuming a fixed time per action ranging from 0.05 seconds to 6.4 seconds

(increased in multiples of 2). We used the LRTDP algorithm (Bonet and Geffner,

2003a) as the underlying optimal planner, since it has better anytime properties than

LAO*. The results for the best performing reductions are shown in Figure 3.7, along

with the results obtained using the full model. The plots show the expected costs

obtained with all the reductions, averaged over 10,000 simulations, along with error

bars representing 95% confidence intervals.

As seen in Figure 3.7, in the large majority of scenarios, the best anytime perfor-

mance was obtained using k = 1, both with one and two primary outcomes (planners

56

M11 and M12, respectively). Planner M11, in particular, significantly outperformed

all other planners for all times lower or equal to 200 milliseconds per action. Planners

M12 and M21 were able to perform better when the time increased, and for times of

800 milliseconds per action, or higher, the performance of M11, M12, and M21 was

comparable (M21 was slightly better in problems G2 and G3, but not at the 95%

significance level). On the other hand, planning with the full model required much

larger times per action in order to result in comparable performance (at least 3.2

seconds per action), and its performance was much worse than the other models for

lower times.

Note that Figure 3.7 does not include the results for M01, and M02. We did not

include these results to maintain clarity in the figure, but note that the observed

performance matched that shown in Table 3.3 (a straight horizontal line), which was

worse than all other planners considered. Unlike the more complex models, using

k = 0 meant that the planner could not take advantage of having more time per

action, when available.

Interestingly, to address some of the downsides of choosing a low value of k, we

experimented with a variant of Mk
l -ANYTIME that leverages labels produced by an

algorithm like LRTDP. In particular, when a plan is about to be computed (line 7 of

Algorithm 8), instead of using 〈s, k〉, the new algorithm checks for the lowest value

of j ≥ k such that 〈s, j〉 has not been previously labeled as solved, and uses 〈s, j〉

as the initial state for planning. When picking an action (line 4 of Algorithm 8),

the algorithm uses the best action associated with 〈s, j〉, where j ≥ k is the highest

value such that 〈s, j〉 has been labeled as solved; if no such value exists, then it uses

a greedy action on 〈s, k〉. This means that the planner can continuously increase

k throughout execution in order to compute more robust plans. As it turns out,

this strategy is effective, and the results are illustrated in the plot labeled as M02+.

While the results are not better than those of the other reduced models considered,

57

Algorithm 8:Mk
l -REPLAN-ANYTIME

input:M = 〈S,A, T , C, s0,G〉, k, P , τ
1 M ← CREATE-REDUCED-MDP(M, s0,P , k)
2 PLAN-FOR-LIMITED-TIME(M, 〈s0, k〉, τ)
3 s← s0

while s /∈ G do
4 a← GREEDY-ACTION(M, 〈s, k〉)
5 Create new state ŝ with one zero-cost action â s.t.

∀s′∈S : Pr(〈s′, k〉|ŝ, â) = T (s′|s, a)
6 M ← CREATE-REDUCED-MDP(M, ŝ,P , k)

do in parallel
7 PLAN-UNTIL-PREEMPTED(M, 〈s, k〉)
8 s← EXECUTE-ACTION(s, a)

the approach has good anytime performance, and may be a good choice when it is

not clear what a good value for k is.

58

CHAPTER 4

COMBINING Mk
l -REDUCTIONS WITH CLASSICAL

PLANNING TECHNIQUES

So far, we have assumed that Mk
l -reductions will be solved optimally using a

regular MDP solver, such as LAO*. However, in some cases it is possible to leverage

the structure of a reduction even further in order to devise more efficient planning

algorithms. In this chapter we present one such algorithm, specifically tailored to

Mk
1-reductions. The approach employs a classical planner to accelerate computation

for states in which no more exceptions will be considered, i.e., states 〈s, j〉 such that

j = 0. We also introduce an approach for learning determinizations over the space of

factored domain language representations.

4.1 FF-LAO*: Leveraging classical planners

Using determinization has the advantage of making it possible to leverage highly

efficient classical planners for the solution of probabilistic problems. As it turns out,

we can also incorporate this approach into our reduced models framework, particu-

larly when usingMk
1-reductions. Note that aMk

1-reduction becomes a deterministic

problem for any state with exception counter j = 0. Thus, a classical planner can be

used for solving the deterministic parts of the augmented state space.

To illustrate this idea, we describe a modified version of LAO* that leverages

the FF classical planner. This solver, FF-LAO* (Algorithms 9-12), receives as input

anMk
1-reduction, M = 〈S ′,A, T ′, C ′, 〈s0, k〉,G ′〉—i.e., one where ∀a ∈ A, |Pa| = 1; an

exception bound, k; and an error tolerance, ε. We use M to denote the original MDP

from which M is derived.

59

FF-LAO* works almost exactly as LAO*1, except that FF is used to compute values

and actions for states that have reached the exception bound—i.e., states of the form

〈s, 0〉. This occurs in lines 4 and 8 of Algorithm 9, where the state expansion and test

convergence procedures are replaced with versions that use FF (Algorithms 10 and 11,

respectively). Readers familiar with LAO* may notice differences with respect to the

usual expansion and convergence test procedures. In particular, note the inclusion

of if statements in line 7 (both procedures), where the successors of the expanded

state are only added to the stack if j > 0. The reason is that states 〈s, 0〉 will be

solved by calling FF, so there is no need to expand their successors. It is possible, of

course, to remove these if statements and let FF-LAO* continue the search; in that

case, FF will be used as an inadmissible heuristic. However, this does not improve the

theoretical properties of the algorithm (neither version is optimal, due to the use of

FF), and results in higher computation times, so we prefer the version shown in the

pseudocode.

The call to FF is done in Algorithm 12 (FF-BELLMAN-UPDATE). This procedure

performs a Bellman update, as in Eq. (2.8), for any state 〈s, j〉 with j > 0, and stores

the updated cost estimate and best action in global variables V [〈s, j〉] and π[〈s, j〉],

respectively (lines 6-7). We assume, as is common for heuristic search algorithms,

that the values V [〈s, j〉] are initialized using an admissible heuristic for M .

For states 〈s, 0〉, the FF-BELLMAN-UPDATE procedure creates a PDDL file2, de-

noted as D, representing the deterministic problem induced by M when j = 0, with

initial state s (CREATE-PDDL in line 3). The procedure then calls FF with input D

(line 4) and memoizes costs and actions for all the states visited in the plan com-

1We use the so-called improved LAO* algorithm, where the greedy solution graph is searched in
depth-first fashion, and Bellman backups are performed in post-order traversal, both for the state
expansion step and the convergence test step.

2In practice, we create the PDDL file representing M before calling FF-LAO* and store its name
in memory. CREATE-PDDL is shown for simplicity of presentation.

60

Algorithm 9: FF-LAO*

input: M=〈S ′, A, T ′, C ′, 〈s0, k〉, G′〉, k, ε
1 while true do

// Node expansion step
2 while true do
3 visited ← ∅
4 cnt ← FF-EXPAND

(
M, 〈s, j〉, k, visited

)
5 if cnt = 0 then

// No tip nodes were expanded, so current policy is closed
break

// Convergence test step
6 while true do
7 visited ← ∅
8 error ← FF-TEST-CONVERGENCE

(
M, 〈s, j〉, k, visited

)
9 if error < ε then

return // solution found

10 if error =∞ then
break // change in partial policy, go back to expansion step

puted by FF (lines 5-7). More concretely, for each state si visited by this plan, we

set V [〈si, 0〉] to be the cost, according to C ′, of the plan computed by FF for that

state (line 6), and set π[〈si, 0〉] to be the corresponding action (line 7). Additionally,

note that the estimates V [〈s, 0〉] are not admissible, even with respect to the input

Mk
1-reduction, since FF is not an optimal planner for deterministic problems. Finally,

in the case that FF returns failure, we set V [〈s, 0〉] =∞ and π[〈s, 0〉] = NOP.

FF-BELLMAN-UPDATE also returns the residual, defined as the absolute difference

between the previous cost estimate, and the estimate after applying the Bellman

equation. This residual is used by FF-TEST-CONVERGENCE to check the stopping

criterion of the algorithm.

4.1.1 Handling plan deviations during execution

For the experiments with FF-LAO* we use a slightly different continual planning

approach than the one described in Section 3.2; this new approach is illustrated in

Algorithm 13. The idea is simple: during execution, check if the current state has

61

Algorithm 10: FF-EXPAND

input: M=〈S ′, A, T ′, C ′, 〈s0, 0〉, G′〉, 〈s, j〉, k, visited
1 if 〈s, j〉 ∈ visited then

return 0
2 visited← visited ∪ {〈s, j〉}
3 cnt = 0
4 if π[〈s, j〉] = ∅ then

// Expand this state for the first time
5 FF-BELLMAN-UPDATE

(
M, 〈s, j〉, k

)
6 return 1

7 else if j > 0 then
8 forall 〈s′, j′〉 s.t. T ′(〈s′, j′〉|〈s, j〉, π[〈s, j〉]) > 0 do
9 cnt += FF-EXPAND

(
M, 〈s, j〉, k, visited

)
10 FF-BELLMAN-UPDATE

(
M, 〈s′, j′〉, k

)
11 return cnt

an action already computed with j = k. If that is the case, this action is executed

(line 7). Otherwise, FF-LAO* is called to solve the reduced model with initial state

〈s, k〉 (lines 5-6). FF-LAO*-REPLAN receives the choice of determinization as input

(P), and creates an Mk
1-reduction accordingly (line 1).

4.1.2 Theoretical considerations

We now show conditions under which FF-LAO* is guaranteed to succeed. The

following definition will be useful: a proper policy rooted at s is one that reaches a

goal state with probability 1 from every state it can reach from s.

Proposition 3. Given an admissible heuristic for the reduced model M , if M has

at least one proper policy rooted at 〈s0, k〉, then FF-LAO* is guaranteed to find one in

finite time.

Proof. Whenever FF-LAO* expands a state 〈s, 0〉 and calls FF on this state, if the

call succeeds, the states si, for i ∈ [1, ..., L], that are part of the plan computed

by FF essentially become terminal states of the problem, with final costs set as in

line 6 of Algorithm 12, which essentially induces a new MDP in which the states

62

Algorithm 11: FF-TEST-CONVERGENCE

input: M=〈S ′, A, T ′, C ′, 〈s0, k〉, G′〉, 〈s, j〉, k, visited
1 if s ∈ visited then

return 0
2 visited← visited ∪ {〈s, j〉}
3 error = 0
4 a← π[〈s, j〉]
5 if a = ∅ then

// The test reached a state that has not been expanded yet
6 return ∞
7 else if j > 0 then
8 forall 〈s′, j′〉 s.t. T ′(〈s′, j′〉|〈s, j〉, π[〈s, j〉]) > 0 do
9 error = max

(
error, FF-TEST-CONVERGENCE

(
M, 〈s, j〉, k, visited

))
10 error = max

(
error, FF-BELLMAN-UPDATE

(
M, 〈s, j〉, k

))
11 if π[〈s, j〉] 6= a then
12 return ∞ // the policy changed

13 return error

si, si+1, ..., sL are additional goals. Since FF is a sub-optimal planner, we have that∑
i≤x≤LC

′(〈sx, 0〉, ai) ≥ V [〈si, 0〉], and thus the values of all other states 〈s, j〉, with

j > 0, are guaranteed to be admissible with respect to the new updated value of

the added terminal states. In other words, the current value function is admissible

with respect to new MDP induced by the solution found by FF. Therefore, after every

successful call to FF, the resulting set of values and terminal states form a well-defined

SSP, which LAO* is able to solve.

Moreover, in the case that a call to FF fails for some state ŝ, this state will be

assigned an infinite cost, and thus the improved version of LAO* will avoid ŝ as long

as there is some other path to the goal. Because FF is complete, any state belonging

to a proper policy will be assigned a positive cost, so ŝ could not have been part

of a proper policy for M . Thus, under the conditions of the theorem, every call to

FF transforms the problem into an MDP with avoidable dead-ends (Kolobov et al.,

2012), which LAO* is able to solve.

63

Algorithm 12: FF-BELLMAN-UPDATE

input: M=〈S ′, A, T ′, C ′, 〈s0, k〉, G′〉, 〈s, j〉, k
output: error

1 V ′ ← V [〈s, j〉]
2 if j = 0 then
3 D ← CREATE-PDDL(M, s)
4 {s1, a1, s2, a2, ..., sL, aL} ← CALL-FF(D)
5 for i ∈ {1, ..., L} do
6 V [〈si, 0〉]←

∑
i≤x≤LC

′(〈sx, 0〉, ai)
7 π[〈si, 0〉]← ai

8 else
9 V [〈s, j〉]← minaC

′(〈s, j〉, a) +
∑
〈s′,j′〉 T

′(〈s′, j′〉|〈s, j〉, a)V [〈s′, j′〉]
10 π[〈s, j〉]← arg minaC

′(〈s, j〉, a) +
∑
〈s′,j′〉 T

′(〈s′, j′〉|〈s, j〉, a)V [〈s′, j′〉]
11 return |V [(s, j)]− V ′|

Algorithm 13: FF-LAO*-REPLAN

input: M=〈S,A, T, C, s0, G〉,P , k, ε
1 M ← CREATE-REDUCED-MDP(M, s0,P , k)
2 s← s0
3 while s /∈ G do
4 if 〈s, k〉 /∈ π then
5 M ← CREATE-REDUCED-MDP(M, s,P , k)
6 FF-LAO*(M,k, ε)

7 s← EXECUTE-ACTION(s, π[〈s, k〉])

Unfortunately, as is the case for virtually all re-planning algorithms, not much can

be guaranteed about the quality of plans found by FF-LAO*-REPLAN for M. However,

as we show in our experiments, by carefully choosing the input determinization, P and

the bound k, FF-LAO*-REPLAN can find successful policies extremely quickly, even in

domains well-known for their computational hardness and the presence of dead-end

states.

4.1.3 Learning a Good Determinization

In this section we present an approach for learning a good single-outcome de-

terminization, although its main idea can also be directly applied in learning Mk
l -

64

reductions. The approach is motivated by the observation that many stochastic do-

mains have inherent structures that make some of their determinizations significantly

more effective than others. As illustrated in Section 3.3.2, one of such domains is

the TRIANGLE-TIREWORLD problem (Little and Thiebaux, 2007), where the optimal

policy can be obtained by planning as if a flat tire will always occur. The interesting

part is that this is true for all instances of this problem, regardless of size.

TRIANGLE-TIREWORLD is a great example of a domain where all problem in-

stances share a probabilistic structure that can be captured by a single-outcome

determinization. In practical terms, this means that it is possible to learn a determi-

nization on the smaller problems, and then use it for solving larger ones. Moreover,

one advantage of learning determinizations over more complexMk
l -reductions is that

it is easier to enumerate all the possible determinizations of a domain, and that each

of these can be solved much faster (e.g., by using FF-LAO*-REPLAN).

Building on these observations, Algorithm 14 illustrates LEARNING-DET, a brute-

force approach to learn a determinization P for problem D. Given an input Ml, rep-

resenting the problem used for learning, this procedure does a comprehensive search

over the space of all of the domain’s determinizations, at the level of parameterized ac-

tion schemata. For each, we estimate the probability of success (Pi) and the expected

execution cost (Ci) of executing a continual planning approach (e.g., Mk
l -REPLAN

or FF-LAO*-REPLAN) on Ml; the costs and probabilities are estimated using Monte-

Carlo simulations. Finally, we pick the determinization with the lowest expected cost,

among the ones with the highest probability of success.

There are some subtleties involved in this process. Note that both of the continual

planning approaches described here assume that there is a proper policy for the given

problem. This will most likely not be the case for many of the determinizations

explored by LEARNING-DET; in fact, under some determinizations the goals might be

completely unreachable from any state. To circumvent this, we use the same technique

65

Algorithm 14: LEARNING-DET

input: D,Ml = 〈S,A, T, C, s0, G〉, k
output: P

1 {P1, ...,Pµ} ← Create all possible determinizations of D
2 forall i ∈ {1, ..., µ} do
3 M ← CREATE-REDUCED-MDP(Ml, s0,Pi, k)
4 Estimate probability of successs and expected cost of a continual planning

approach with input M , k

5 P ∗ ← maxi Pi
6 P ← Pmini Ci s.t. Pi=P ∗

we described in Section 3.3.2, where a cap is put on the maximum cost that can be

assigned to a state. While this introduces a new parameter impacting the planner’s

decisions, and hides the true impact of dead-end states, note that LEARNING-DET still

attempts to maximize the multi-objective evaluation criterion typically used when

unavoidable dead-ends exist (Kolobov et al., 2012; Steinmetz et al., 2016).

4.2 Experiments

4.2.1 Domains and methodology

We evaluated FF-LAO* and LEARNING-DET on a set of problems taken from

IPPC’08 (Bryce and Buffet, 2008). Specifically, we used the first 10 problem instances

of the following four domains: TRIANGLE-TIREWORLD, BLOCKSWORLD,

EX-BLOCKSWORLD, and ZENOTRAVEL. Unfortunately, the rest of the IPPC’08 do-

mains are not supported by our PPDDL parser (Bonet and Geffner, 2005). Addition-

ally, we modified the EX-BLOCKSWORLD domain to avoid the possibility of blocks to

be put on top of themselves (Trevizan and Veloso, 2014).

The evaluation methodology was similar to the one used in past planning com-

petitions: we give each planner 20 minutes to solve 50 rounds of each problem (i.e.,

reach a goal state starting from the initial state). Then we measure its performance

in terms of the number of rounds that the planner was able to solve during that

66

time. All experiments were conducted on an Intel Core i7-6820HQ machine running

at 2.70GHz with a 4GB memory cutoff.

We evaluated the planners using the MDPSIM (Younes et al., 2005) client/server

program for simulating SSPs, by having planners repeatedly perform the following

three steps: i) connect to the MDPSIM server to receive a state, ii) compute an action

for the received state and send the action to the MDPSIM server, and iii) wait for

the server to simulate the result of applying this action and send a new state. A

simulation ends when a goal state is reached, when an invalid action is sent by the

client, or after 2500 actions have been sent by the planner.

We compared the performance of FF-LAO* with our own implementations of

FF-REPLAN and RFF, as well as the original author’s implementation of SSIPP (Tre-

vizan and Veloso, 2014). We evaluated two variants of FF-REPLAN, one using the most

likely outcome determinization, MLO, (FFS) and another one using the all-outcomes

determinization, AO, (FFA). For RFF we used MLO and the Random Goals vari-

ant, in which before every call to FF, a random subset (size 100) of the previously

solved states are added as goal states. Additionally, we used a probability threshold

ρ = 0.2. The choice of these parameters was informed by analysis in the original

work (Teichteil-Königsbuch et al., 2010). For SSIPP we used t = 3 and the hadd

heuristic, parameters also informed by the original work (Trevizan and Veloso, 2014).

For FF-LAO*, we learned a good determinization to use by applying LEARNING-DET

on the first problem of each domain (p01), with k = 0. This choice of k was motivated

both by time considerations, and by the rationale that k = 0 should better reflect

the impact of each determinization (since FF-LAO* becomes a fully determinization-

based planner). We used a dead-end cap D = 500 throughout our experiments. We

initialized values with the non-admissible FF heuristic (Bonet and Geffner, 2005).

We ran LEARNING-DET offline, prior to the MDPSIM evaluation. Note, however,

that the time taken by the brute force search plus the time used to solve problem

67

p01 with the chosen determinization was, in all cases, well below the 20 minutes

limit (approx. 2 minutes in the worst case). The remaining parameter for FF-LAO* is

the value of k. We report the best performing configuration in the range k ∈ [0, 3],

which was k = 0 for most domains, with the exception of EX-BLOCKSWORLD, which

required k = 3. Note that FF-LAO* with k = 0 is essentially equivalent to FF-REPLAN,

so any advantage obtained over FFS and FFA is completely derived from the choice of

determinization.

4.2.2 Results and Discussion

Figure 4.1 shows the number of successful rounds obtained by each planner in

the benchmarks. In general, FF-LAO* either tied for the best, or outperformed the

baselines. All planners had a 100% success rate in BLOCKSWORLD, so there is not

much room for comparison.

In the TRIANGLE-TIREWORLD domain, FF-LAO* and FFS had 100% success rate,

while RFF ran out of time in the last 3 problems. On the other hand, the performance

of SSIPP and FFA deteriorated quickly as the problem instance increased. It is worth

pointing out that the performances of FFS and RFF in this domain are quite sensitive

to tie-breaking—there are only two outcomes to choose from, each occurring with 0.5

probability. As the results of FFA suggest, a different choice would have resulted in a

much worse success rate. On the other hand, the use of LEARNING-DET gets around

this issue by automatically choosing the best determinization to use, a process that

took seconds. While we do note that the best goals parameterization of RFF gets

around this issue, its computational cost is much harder, so it is not obvious that it

would actually improve performance in this case (Teichteil-Königsbuch et al., 2010).

In the EX-BLOCKSWORLD domain, FF-LAO* (with k = 3) and SSIPP significantly

outperform the other two planners, solving 252 and 250 rounds, respectively, against

187 for both FFS and RFF, and 200 for FFA. Interestingly, in this domain the deter-

68

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
triangle-tireworld

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
ex-blocksworld

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
blocksworld

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
zenotravel

RFF FFs FFa SSiPP FF-LAO*

Figure 4.1: Number of solved rounds by 5 different planners in IPPC’08 benchmarks.

minization found by LEARNING-DET is not sufficient to obtain good performance; in

fact, only 3 problems had a non-zero success rate with k = 0. This highlights the

utility of doing probabilistic reasoning with FF-LAO*. Although not shown here for

space considerations, the performance with k = 1 (214 successful rounds) was already

better than all the baselines, except for SSIPP.

In ZENOTRAVEL, FF-LAO* and FFA were remarkably better than the other two

planners: they achieved 100% success rate in all domain instances, while the other

baselines failed almost all of the rounds. In the case of the determinization-based

planners, this is due to the goal becoming unreachable under MLO, so the choice of

determinization has a significant impact on performance.

Finally, we briefly mention another important state-of-the-art planner that we

could not include in our experiments. FF-H+ is a planner based on hindisight opti-

mization that has been shown to outperform RFF in the IPPC benchmarks (Yoon

69

et al., 2010). Unfortunately, we were not able to obtain code for this planner even

after repeated email communication with two of the original authors; thus, our re-

sults are not directly comparable, and should be taken merely as suggestive of what

a proper comparison would show.

With that consideration, we note that the results obtained by FF-LAO* appear

to be comparable to those reported for FF-H+ on the same domains. Considering

a maximum of 30 rounds per problem, as reported in (Yoon et al., 2010), FF-LAO*

was able to solve 1,078 rounds successfully, under a time limit of 20 minutes per

problem instance (30 rounds each). Conversely, FF-H+ is reported to have solved

1,084 instances—at most—using a 30 minute limit per instance; note that the au-

thors of FF-H+ report planning times higher than 20 minutes in all cases, except

for TRIANGLE-TIREWORLD. In general, the results suggest that FF-LAO* can obtain

comparable success rate, with potentially less overall planning time. As mentioned

before, this comparison should be taken with care, but they are still suggestive of

the power of planning with determinizations that are automatically tailored to the

specific characteristics of a domain.3.

3The results reported in (Yoon et al., 2010) are not broken down by problem instance. Since
they experimented on 15 problem instances for each domain, rather than 10 as we did, we have
computed the maximum possible number of successful rounds obtained in the first 10 problems as
rounds = min{300, rounds}

70

CHAPTER 5

A NEW LABELING MECHANISM FOR EFFICIENT
STATE EXPLORATION

In this chapter we introduce an alternative approach to reduce the computational

effort of search algorithms, not by modifying the transition model, but by directly

changing the algorithm sampling’s mechanisms through a short-sighted notion of la-

beling. The resulting algorithm, FLARES, achieves near-optimal performance with

very low computational effort. Subsequently, we introduce the soft labeling frame-

work, a generalization of state labeling that bridges the gap between FLARES and

the optimal solver LRTDP. The notion of soft labeling allows us to offer improved

theoretical properties for short-sighted labeling algorithms. It also results in a mech-

anism for biasing state-space exploration toward states for which computation is more

likely to improve policy quality. Our experimental result show that both short-sighted

labeling and soft labeling result in state-of-the-art performance in challenging SSP

benchmarks used by the planning community.

5.1 An MDP Solver Based on Short-Sighted Labeling

5.1.1 The FLARES Algorithm

Heuristic search algorithms are some of the best methods for solving SSPs opti-

mally, note-worthy examples being LAO* and LRTDP. These algorithms are charac-

terized by the use of an initial estimate of the optimal value function (referred to as a

heuristic, denoted h) to guide the search to the more relevant parts of the state space.

71

S G

Figure 5.1: Problem with large optimal policy but small high-probability envelope
(S: start state, G: goal, scale shows log-probability).

Typically the heuristic is required to be admissible, i.e., a lower bound on the optimal

value function. Moreover, often the heuristic is required to be monotone, satisfying:

h(s) ≤ min
a∈A

{
C(s, a) +

∑
s′∈S

T (s′|s, a)h(s′)
}

(5.1)

Although heuristic search can result in significant computational savings over

Value Iteration and Policy Iteration, their efficiency is highly correlated with the

size of the resulting optimal policy. Concretely, in order to confirm that a policy is

optimal, a solver needs to ensure that there is no better action for any of the states

that can be reached by this policy. Typically, this involves performing one or more

Bellman backups on all reachable states of the current policy, until some convergence

criterion is met.

However, it is common to have an optimal policy in which many of the covered

states can only be reached with very low probability. Thus, their costs have minimal

impact on the expected cost of the optimal policy. For instance, consider the grid

shown in Figure 5.1. Suppose that every time the agent tries to move in one direc-

tion, it succeeds with probability 0.7, or moves in each of the other directions with

72

probability 0.1; the goal is to move from position (9,11) to position (13,11). Due to

the nature of the transition function, the optimal policy for this problem covers the

entire state space. Yet, as the color gradient shows, the (log)probability of visiting a

state under the optimal policy quickly degrades with distance to the goal, resulting

in a very small “envelope” of high-probability states, close to the most likely path

between the start and the goal. This raises the question of how to better exploit this

property to design faster approximate algorithms for SSPs.

We present the FLARES algorithm that leverages this property by combining short-

sightedness and trial-based search in a novel way. Concretely, FLARES works by

performing a number of trials from the start to the goal, while trying to label states as

solved according to a short-sighted labeling criterion. The key property of FLARES,

which distinguishes it from other short-sighted approaches, is that it can propagate

information from the goal to the start state while simultaneously pruning the state-

space, and do so without requiring a large search horizon. Intuitively, FLARES works

by attempting to construct narrow corridors of states with low residual error from

the start to the goal.

Readers familiar with heuristic search methods for solving MDPs will notice sim-

ilarities between FLARES and the well-known LRTDP algorithm (Bonet and Geffner,

2003a). Indeed, FLARES is based on LRTDP with a particular change in the way states

are labeled. For reference, LRTDP is an extension of RTDP that includes a procedure

to label states as solved (checkSolved). In RTDP, trials are run repeatedly and

Bellman backups are done on each of the states visited during a trial. This procedure

can be stopped once the current greedy policy covers only ε-consistent states. In

LRTDP, this is improved by pushing to a stack the states seen during a trial, and then

calling checkSolved on each as they are taken out of the stack.

73

Algorithm 15: A depth limited procedure to label states.

DLCHECKSOLVED

input : s, t
1 solved = true
2 open = emptyStack
3 closed = emptyStack
4 all = true
5 if ¬(s.solv ∨ s.d-solv) then
6 open.PUSH(〈s, 0〉)
7 while open 6= emptyStack do
8 〈s, d〉 = open.pop()

9 if d > 2t then
10 all = false
11 continue

12 closed.push(〈s, d〉)
13 if s.residual() > ε then
14 solved = false

15 a = greedyAction(s)
16 for s′ ∈ {s′ ∈ S|P (s′|s, a) > 0} do
17 if ¬(s′.solv ∨ s′.d-solv) ∧ s′ /∈ closed then
18 open.push(〈s′, d+ 1〉)
19 else if s′.d-solv ∧ ¬s′.solv then
20 all = false

21 if solved then
22 for 〈s′, d〉 ∈ closed do
23 if all then
24 s′.solv = true
25 s′.d-solv = true

26 else if d ≤ t then
27 s′.d-solv = true

28 else
29 while closed 6= emptyStack do
30 〈s′, d〉 = closed.pop()
31 bellmanUpdate(s)

32 return solved

The checkSolved labeling procedure has the following property: it only labels

a state s as solved if all states s′ that can be reached from s following a greedy policy

are ε-consistent. The main advantage of labeling is that, once a state is labeled as

solved, the stored values and actions can be used if this state is found during future

trials or calls to checkSolved.

74

While such a labeling approach could result in large computational savings, clearly

checkSolved suffers from the same problem that affects optimal solvers—it may

have to explore large low-probability sections of the state space because it must

check all reachable states before labeling. To address this problem, we introduce

the following depth-limited labeling property as a way to accelerate heuristic search

methods: a state s is considered depth-t-solved only if all states s′ that can be

reached with t or less actions following the greedy policy are ε-consistent.

Algorithm 15 shows the procedure DLCHECKSOLVED that implements this idea: a

call with state s and horizon t visits all states that can be reached from s by following

at most 2t actions under the current greedy policy. If all states s′ visited during this

search satisfy ResV (s′) < ε—where V is the current value funcion—the method then

proceeds to label as depth-t-solved only those states found up to horizon t. Note

that doing the search up to horizon 2t allows DLCHECKSOLVED to label several states

during a single call, instead of only the root state if the residuals were only checked

up to depth t.

The FLARES algorithm incorporates DLCHECKSOLVED into a trial based action

selection mechanism (shown in Algorithm 16). Propositions 4 and 5 show the condi-

tions under which FLARES, and more specifically DLCHECKSOLVED, maintains the

labeling properties described above.

Proposition 4. DLCHECKSOLVED labels a state s with s.solv = true only if all states

s′ that can be reached from s following the greedy policy satisfy ResV (s′) < ε, where

V : S → R is the current value function.

Proof. We prove this by contradiction. If a state x is labeled x.solv = true incor-

rectly, then two things happen: i) all = true at line 23, ii) there exists a descendant

y in the greedy graph s.t. ResV (y) > ε and y /∈ closed. However, this implies some

ancestor u 6= x of y in the graph satisfies ¬u.solv∧u.d-solv (line 18), which implies

all = false (line 20).

75

Algorithm 16: The FLARES algorithm.

FLARES
input : s0, t
output: action to execute

1 while ¬s0.solved ∨ s0.d-solv do
2 s = s0
3 visited = emptyStack
4 while ¬(s.solved ∨ s.d-solv) do
5 visited.push(s)
6 if goal(s) then break
7 bellmanUpdate(s)
8 a = greedyAction(s)
9 s = randomSuccessor(s, a)

10 while visited 6= emptyStack do
11 s = visited.pop()
12 if ¬dlCheckSolved(s, t) then
13 break

14 return greedyAction(s)

Proposition 5. If, during the execution of FLARES, no call to bellmanUpdate(s′)

with ResV (s′)<ε results in ResV
′
(s′)≥ ε, where V and V ′ are the value functions

before and after the call, respectively, then DLCHECKSOLVED labels a state s with

s.d-solv only if s is depth-t-solved.

Proof. Proof by induction. For the induction step, note that calling DLCHECKSOLVED

on state x with all previous labels being correct, results in new labels set correctly in

line 27; this is because all the unlabeled descendants of x reachable within 2t steps

will still be added to closed, but only those reachable within t steps are labeled. The

base case, when no states have been previously labeled, is trivial, because in this case

all descendants up to depth 2t are added to open (line 18).

The assumption of Proposition 5 requires some explanation. State s can be labeled

with s.d-solv while some of its low residual descendants with depth larger than t are

not (DLCHECKSOLVED only labels states up to depth t after checking the residual on

all states up to depth 2t). Since FLARES can perform Bellman backups of unlabeled

states, and because residuals are not guaranteed to be monotonically decreasing, it

76

is possible for the residual of an unlabeled state to increment above ε during a trial,

breaking the depth-limited labeling guarantee of its ancestors. This can lead to a

sequence of events such as the following:

1. for some state, the algorithm correctly sets y.d-solv,

2. some unlabeled descendant z, reachable at depth d s.t. t < d ≤ 2t, stops being

ε-consistent, which means y is no longer depth-t-solved,

3. another state x s.t. y is a descendant at depth less than t, becomes labeled.

Note that when event 3 happens, state y is not visited by DLCHECKSOLVED (line

17). Now, unlike y, which was initially labeled correctly, x is not even depth-t-solved

at the time of labeling. Therefore, the assumption is crucial for the correctness of

Proposition 5. Unfortunately, there is no simple way fully address this issue without

resorting to some cumbersome backtracking, and no way to predict whether such

an increment will happen on a given run of FLARES. Nevertheless, our experiments

suggest that this event is uncommon in practice (it was never observed). Moreover,

we can obtain a revised labeling error guarantee during planning, by keeping track

of all states for which a Bellman backup increased the residual above ε, and use the

maximum of those residuals as the revised error.

Next we prove that FLARES is guaranteed to terminate in a finite number of

iterations.

Theorem 1. With an admissible and monotone heuristic, FLARES terminates after

at most 1/ε
∑

s∈S[V ∗(s)−h(s)] trials.

Proof. The proof follows from a similar argument to the proof of LRTDP’s termination.

Under the assumptions on the heuristic, the application of a Bellman backup always

has a non-decreasing in the value function. So, each call to DLCHECKSOLVED either

labels a state as solved, or increases the value of some state by more than ε. The

77

trials of FLARES are guaranteed to terminate under an admissible heuristic, thus after

each trial there are one or more calls to DLCHECKSOLVED. The bound in the theorem

follows immediately from these two properties.

Even though this is the same bound as LRTDP’s, in practice convergence happens

much faster because the final values computed by FLARES are only lower bounds on

the optimal values. Unfortunately, like other methods that choose actions based on

lower bounds, it is possible to construct examples where the final policy returned by

FLARES can be arbitrarily bad. On the other hand, it is easy to see that FLARES is

asymptotically optimal as t→∞ because it simply turns into the LRTDP algorithm.

In fact, as the following theorem shows, there exists a finite value of t for which

FLARES returns the optimal policy. It is then easy to construct an optimal SSP solver

using FLARES, by running FLARES with increasing values of t until s0.solv = true,

and clearing all d-solv labels before each run.

Theorem 2. With an admissible and monotone heuristic, there exists a finite t for

which FLARES converges to the ε-optimal value function.

Proof. Since the state space is finite, there exists a finite value of t for which all calls

to DLCHECKSOLVED cover the same set of states as checkSolved (a trivial solution

is t ≥ |S|). Under these conditions, the algorithm becomes equivalent to LRTDP, and

is thus optimal.

5.1.2 Illustrative Example: A Simple Grid World Problem

We illustrate the advantages of FLARES over other short-sighted solvers by means

of a simple toy domain. Consider the grid world shown in Figure 5.2. The agent can

move in any of the four grid directions (up, down, right, left). After moving, there

is a 0.7 probability of succeeding or a 0.3 probability of moving in another direction

(chosen uniformly at random). The cost of moving is 1, except for some “dangerous”

cells (highlighted in gray) with cost 20; additionally, some cells have obstacles that

78

25 x 100 cells

25 x 100 cells

Start Goal 1

Goal 2

Figure 5.2: Grid world illustrating the advantages of FLARES.

algorithm cost time

LRTDP 135 34.02

FLARES(0) 134.43± 0.88 1.28

HDP(3,0) 135.28± 0.82 0.62

SSIPP(64) 136.85± 0.96 10.53

Table 5.1: Results on the grid world shown in Figure 5.2.

cannot be crossed (shown in black). The grid has width 100 and height 51, for a total

of 5100 states. The start state is at the bottom left corner, and there are two goals,

one at the top-left corner and one at the bottom-right. The optimal policy attempts

to reach the goal state to the right, so that the agent avoids the dangerous states in

the top part of the map.

Table 5.1 shows the expected cost (mean and standard error) and average planning

time for each of the algorithms; the cost shown for LRTDP is the optimal cost estimated

by the algorithm. Notably, FLARES with t = 0 already returns essentially the

optimal policy, while being on average two orders of magnitude faster than LRTDP.

Although HDP(I,J) is even faster on this problem, it required some parameter tuning

to find appropriate values for i and j. The parameter settings shown are the lowest

value of i for which results comparable to FLARES(0) are obtained.

79

On the other hand, SSIPP is slower than the other approximate methods, and

substantial parameter tuning was also required. Table 5.1 shows only results obtained

with t = 64, which is the first value of t (in powers of 2) that results in comparable

expected costs to FLARES(0). Note the large horizons required to find a good policy,

resulting in a very large running time, which is close to 8 times slower than FLARES(0).

This simple problem highlights several qualities of FLARES. First, although an

optimal policy for this problem must cover the entire state space, every state outside

the narrow corridor at the bottom is only reached with low probability. This is an

example of a problem where an optimal solver would be unnecessarily slow. On the

other hand, FLARES only needs to realize that the policy going up leads to a high cost,

which happens during the first few trials. Then, once the algorithm switches to the

policy that moves to the right, it quickly stops when all states in the corridor reach a

low residual error. Second, since the algorithm is only short-sighted during labeling,

but its trials are unrestricted, it can quickly account for the dangerous states far away

from the start. This is the reason why t = 0 can already generate good policies. On

the other hand, limiting the search to states close to the start, requires larger horizons

to achieve comparable results.

5.2 Soft Labeling in SSPs

In this section we introduce soft-labeling, a generalization of the short-sighted

labeling approach underlying FLARES, which is also able to capture the behavior of

an optimal labeling algorithm such as LRTDP.

5.2.1 Generalizing Labeling

Labeling in SSPs can be interpreted as an outcome selection mechanism (Keller

and Helmert, 2013) that continually modifies the transition function used for sampling

states during planning. Specifically, it modifies the probabilities of sampling successor

80

states guaranteed to remain ε-consistent, making these probabilities equal to zero. We

introduce a generalization of this idea, which we call soft labeling, in which a label

is interpreted a probabilistic factor that modifies the transition function used for

sampling. We begin formalizing the notion of soft labeling by introducing a few key

definitions.

Definition 9. Deterministic policy graph rooted at a state. Given an SSP

M = 〈S,A, T , C, s0,G〉 and a state s ∈ S, the deterministic policy graph rooted at

state s is a directed graph Gs,π = (Ss,π, Eπ), where the set of vertices, Ss,π, is the

set of all states reachable from s by following policy π, and Eπ is a set of edges

{〈s′, s′′〉 | T (s′, π(s′), s′′) > 0}.

That is, Gs,π is a directed graph containing a vertex for every state reachable from

s following policy π, and an edge connecting two states whenever one is a possible

outcome of the other under π.

Definition 10. Weighted distance between states. Let M = 〈S,A, T , C, s0,G〉

be an SSP and s a state in S. Furthermore, let G
(w)
s,π be the deterministic policy graph,

weighted with a function w : Eπ → R+
0 that assigns a non-negative weight to each

edge. Then, the weighted distance between s and s′ ∈ S\{s}, δ(s, s′) is the total weight

of the deterministic shortest path between s and s′ in the weighted deterministic policy

graph. When s = s′, δ(s, s′) , 0.

This notion of weighted distance allows us to characterize different measures of

short-sightedness using a single notation. For example, the most common—depth-

based—form, which we used in the FLARES algorithm, can be represented by assigning

w(〈s, s′〉) = 1 to every edge in G
(w)
s,π . Additionally, we can represent other forms of

short-sightedness based on trajectory probabilities (Trevizan and Veloso, 2014), using

w(〈s, s′〉) = − log2 T (s, π(s), s′) (5.2)

81

or plausibilities (Bonet and Geffner, 2003b), using

w(〈s, s′〉) =
⌊
− log2

(T (s, π(s), s′)

maxs′′ T (s, π(s), s′′)

)⌋
(5.3)

Given a weight function, w, we define the ε-distance of state s, dε(s), as the shortest

weighted distance from s to a state that is not ε-consistent.

Definition 11. ε-distance of a state. Let M = 〈S,A, T , C, s0,G〉 be an SSP, s

a state in S, and G
(w)
s,π be the weighted deterministic policy graph. Furthermore, let

V : S → R be a value function. The ε-distance of state s, dε(s), is defined as dε ,

mins′∈Sε+s δ(s, s′), where Sε+s , {s′ ∈ Ss,π | ResV (s) > ε}, and dε =∞ if Sε+s = ∅.

Note that dε(s) generally depends on the weight function as well as the current

policy and value function. For the sake of clarity, we omit these details from the

notation, but we make sure that in the rest of this chapter the correct conditions

are clear from the context. Figure 5.3 illustrates the ε-distance of a few states on a

small SSP, using a depth-based weight function. Assuming ε = 0.1, the red edges

illustrates the path to the state at the shortest weighted distance from A (G), using

w(〈s, s′〉) = 1, which results in dε(A) = 2. The blue path shows the corresponding

path (to state H) when w is defined as in (5.2), resulting in dε(A) = 0.46.

We can use the concept of ε-distance to provide a concise definition of the typical

criterion for labeling states in SSPs solvers (Bonet and Geffner, 2003a): a state s

should be labeled only if dε(s) = ∞ under the current value function V and a greedy

policy over V (irrespective of the weight function used). Additionally, the depth-

based short-sighted labeling criterion of FLARES can be described as: a state s should

be labeled only if dε(s) ≥ t, where t is an input parameter and the ε-distance is

conditioned on the current value function V , a greedy policy π over V , and w(e) = 1

for every edge in the deterministic policy graph.

82

A

B

C

Res(B)=0.09

Res(F)=0.01

D

E

F

GRes(C)=0.09

Res(D)=0.09

Res(E)=0.09 Remaining
states

Res(G)=0.5

p = 0.9

p = 0.1

p = 0.9

p = 0.1

p
=

0.
9

p = 0.1

Res(A)=0.05

H

Res(H)=0.2p = 0.9

p = 0.1

Figure 5.3: Illustration of the ε-distance of a state under a given policy, for two
different distance functions.

Both of these labeling criteria consider states “solved” once they are labeled.

In practice, this means that trial-based algorithms using labeling (e.g., LRTDP or

FLARES) stop trials as soon as they encounter labeled states. We can describe this

process via a sampling function, σ : S×A×S+ → [0, 1], such that σ(s, a, s′) represents

the probability that a trial continues in state s′ if action a is chosen when visiting

state s. We use the notation S+ , S ∪{ŝ}, where ŝ is a dummy state that represents

that the current trial stops. Note that σ only affects the algorithm’s choice of explored

states, not the computation of values using (2.8).

Building on this notation, we can represent labeling-based sampling via

σ(s, a, s′) =

(
1− L(s′)

)
· T (s, a, s′) if s′ ∈ S∑

x∈S L(x) · T (s, a, x) if s′ = ŝ

(5.4)

where the label, L, is a factor that alters the probability of a trial continuing at a

given successor state.

This definition of labeling generalizes existing forms of labeling, which can be

recovered from (5.4) with appropriate definitions of L. For example, to recover the

labeling used in LRTDP, L should be defined as

83

L(s′) , [dε(s
′) =∞] (5.5)

where dε(s
′) is conditioned on the current value function V , the greedy policy over

V , and an arbitrary weighting function w; [·] denotes an Iverson bracket. For the

depth-based short-sighted labeling used in FLARES, the label is

L(s′) , [∀s′′ ∈ Ss′,π ∩ {x : δ(〈s′, s′′〉) ≤ t)}, dε(s
′′) ≥ t] (5.6)

where dε(s
′′) is conditioned on V , its associated greedy policy π, and the weight

function w(〈s, s′〉) = 1. While this labeling function might seem overly complicated,

in later sections we show that we can generalize this behavior by means of a generic

procedure for estimating ε-distances, while letting the labeling functions be directly

dependent only on the estimated value of dε(s
′).

5.2.2 Soft Labeling

Algorithm 17 presents a generic trial-based solver based on the soft labeling frame-

work described above. The algorithm receives a labeling function, L, a weight function

used to compute distances, w, the residual tolerance to be used, ε, the number of tri-

als to perform, n, and a vector with additional parameters, θ (e.g., the horizon t in

FLARES).

The algorithm starts by initializing ε-distances of all states (line 1)1. Typically,

ε-distances should be initialized so that L(s) = 0 (e.g., by setting dε(s) to −∞), but

we allow room for other possibilities, such as keeping ε-distances computed during

previous calls to the solver on the same input problem. The algorithm functions in a

manner much similar to LRTDP, with the following differences:

1In practice this should be done lazily, i.e., whenever a state’s ε-distance needs to be used the first
time. We explicitly include it here to highlight the prominent role ε-distances play on the algorithm.

84

• The label s.SOLVED is replaced by a sample [x ∼ Bernoulli(L(s)) = 1] (see

lines 13 and 18). This choice is consistent with the probabilistic interpretation

of L, and will become more relevant when we introduce soft versions of L.

• The states sampled during the trials (line 12) are sampled according to (5.4)

(function SAMPLE-FROM-SIGMA).

• The call to CHECK-SOLVED(s) is replaced with ESTIMATE-ε-distance(s) (line

17) . The objective of this function is to explore states in Ss,π, where π is

the greedy policy on the current value estimates, and estimate ε-distances for s

(and possibly for other states in the graph). The function receives the distance

function to be used, w, and any additional parameters necessary, θ.

Algorithm 17: A generic soft labeling trial-based algorithm based on RTDP.

SOFT-LABELED-RTDP
input :M = 〈S,A, T , C, s0,G〉,L, w, ε, n, θ
output : an action to execute

1 ∀s ∈ S, dε(s)← INITIALIZE-ε-DISTANCE(s)
2 i← 0
3 while i < n do
4 i← i+ 1
5 s = s0
6 visited← EMPTY-STACK

7 while true do
8 visited.PUSH(s)
9 if s ∈ G then break

10 BELLMAN-UPDATE(s)
11 a← GREEDY-ACTION(s)
12 s← SAMPLE-FROM-SIGMA(s, a, T ,L, d)
13 if [x ∼ Bernoulli(L(s)) = 1] then
14 break

15 while visited 6= EMPTY-STACK do
16 s← visited.POP()
17 d← ESTIMATE-ε-distance(M, s, w, θ)
18 if [x ∼ Bernoulli(L(s)) = 0] then
19 break

20 return GREEDY-ACTION(s0)

85

Algorithm 18: A depth limited procedure to compute ε-distances.

ESTIMATE-ε-distance
input :M = 〈S,A, T , C, s0,G〉, s, w, ε, ψ, t

1 no-high-res← true
2 open← EMPTY-STACK

3 closed← EMPTY-STACK

4 all← true
5 z ∼ Bernoulli(ψ)
6 h← [z = 0] · t+ [z = 1] · ∞
7 if [x ∼ Bernoulli(L(s)) = 1] then
8 open.PUSH(〈s, 0〉)
9 while open 6= EMPTY-STACK do

10 〈s, d〉 ← open.POP()

11 if d > 2h then
12 all← false
13 continue

14 closed.PUSH(〈s, d〉)
15 if s.RESIDUAL() > ε then
16 no-high-res ← false

17 a← GREEDY-ACTION(s)
18 for s′ ∈ {s′ ∈ S| T (s, a, s′) > 0} do
19 if

(
[x ∼ Bernoulli(L(s)) = 0]

∨ h =∞
)
∧ s′ /∈ closed then

20 open.PUSH
(〈
s′, d+ w(〈s, s′〉)

〉)
21 else if dε(s

′) 6=∞∧ s′ /∈ closed then
22 all = false

23 if no-high-res then
24 for 〈s′, d〉 ∈ closed do
25 if all then
26 dε(s

′) =∞
27 else if d ≤ t then
28 dε(s

′) = t− d

29 else
30 while closed 6= EMPTY-STACK do
31 〈s′, d〉 = closed.POP()
32 BELLMAN-UPDATE(s)

This generic SOFT-LRTDP algorithm generalizes LRTDP and FLARES, as long as

ESTIMATE-ε-distance(s) is instantiated appropriately. For example, for obtaining

LRTDP, it needs to explore all states in s′ ∈ Ss,π, and set dε(s
′)←∞ iff ResV (s′) ≤ ε

86

for all s′. For obtaining FLARES, we can implement ESTIMATE-ε-distanceas a short-

sighted version of CHECK-SOLVED(s) that: i) limits the search to depth 2t, and ii)

sets dε(s
′) = t for any s′ found up to depth t iff all states explored satisfy ResV (s′) ≤

ε. Moreover, this framework allows extensions of FLARES that use other distance

measures, such as trajectory probabilities.

Although reformulating existing algorithms in this light is somewhat interesting,

it does not immediately result in drastically different solution methods for SSPs.

However, as we show next, the real power of this framework is that it directly implies

a family of labeling mechanisms that achieve the computational efficiency of FLARES,

while still maintaining theoretical guarantees of performance. The main insight is

to realize that there is nothing forcing us to use an indicator function for L; in

fact, we can use any arbitrary function L : S → [0, 1]. We refer to the resulting

outcome selection approach as soft labeling because it allows the labeling function,

L, to deter—but not prevent—a state from being explored.

The use of soft labeling has important theoretical advantages over FLARES. In

particular, Theorem 3 shows conditions under which SOFT-LRTDP can produce opti-

mal policies, by operating similarly to RTDP. Further, Theorem 4 shows conditions

on ESTIMATE-ε-distance under which the algorithm converges to ε-consistent values

with high probability, thus operating similarly to LRTDP. Note that, crucially, the use

of ψ in Theorem 4 implies the existence of a wide spectrum of short-sighted labeling

strategies that allow SOFT-LRTDP to bridge the gap between RTDP and LRTDP.

Theorem 3. Given, i) a labeling function L such that ∀s′ ∈ S,L(s′) < η < 1, for

some fixed η, and ii) an implementation of ESTIMATE-ε-distance(s) that only changes

state values through Bellman backups, and iii) an admissible initial value function,

then repeated trials of Algorithm 17 eventually yield optimal values over all states

reachable by a greedy policy on the states values.

87

Proof. This follows from the optimality of asynchronous value iteration and RTDP

(Barto et al., 1995). Conditions i-iii) ensure that SOFT-LRTDP operates like RTDP,

with the only difference being the sampling probabilities used during the trials. Re-

stricting L(s′) < η < 1 guarantees that repeated trials can visit states in any optimal

policy an infinitely often.

Theorem 4. Consider, i) a labeling function L such that L(s′) = 1 iff dε(s
′) =∞; ii)

an implementation of ESTIMATE-ε-distance(s) that sets dε(s
′) =∞ iff Sε+s′ = ∅, only

changes state values through Bellman backups, and with probability ψ > 0 it explores

all states in Ss,π; and iii) an admissible initial value function. Then, under conditions

i-iii) and for any 0 < p < 1, there exists a value Np > 0 s.t. the probability that Np

trials of Algorithm 17 yield ε-consistent values over all states reachable by the greedy

policy is higher than p.

Proof. Under conditions i-iii) there is a probability ψ that ESTIMATE-ε-distance op-

erates exactly like the CHECK-SOLVED function of LRTDP. Suppose SOFT-FLARES

never terminates under these conditions when n → ∞. Then, there must be a state

si such that ESTIMATE-ε-distance(si) is called an infinite number of times. Also,

following Bonet and Geffner (Bonet and Geffner, 2003a), there is a finite number of

calls to CHECK-SOLVED(si) after which Sε+si = ∅. This maximum number of calls to

CHECK-SOLVED(si) is bounded by

C = ε−1
∑
s∈S

V ∗(s)− h(s) (5.7)

where h(s) is the initial admissible value function. Because ψ > 0, we can then bound

the probability that after n calls to ESTIMATE-ε-distance(si), Sε+si 6= ∅. Let X be the

random variable representing the total number of calls to ESTIMATE-ε-distance(si)

that are equivalent to CHECK-SOLVED(si). Then, by applying Chernoff bound,

Pr(X ≤ C) ≤ exp
{
− (nψ − C)2/2nψ

}
(5.8)

88

Thus, for any 0 < q < 1, we have that, as long as Nq −
√

2Nqψ log 1/q > C, then Nq

calls ensure Pr(X ≤ C) < q. Together with conditions i-ii), this implies that after

Nq calls to ESTIMATE-ε-distance, si will be labeled L(si) = 1 with probability higher

than q. Moreover, since q can be arbitrarily small and the number of states is finite,

this implies that for any probability p < q there is a number of SOFT-FLARES trials,

Np, after which L(s0) = 1.

Next, we provide a short-sighted implementation of ESTIMATE-ε-distance(s),

which, coupled with appropriate labeling functions, satisfies the conditions of Theo-

rem 4. This implementation is outlined in Algorithm 18.

Algorithm 18 closely follows the labeling procedure of FLARES, with some major

differences. First, as in Algorithm 17, all boolean label checks have been replaced

by Bernoulli trials with probability L(s) (lines 7 an 19). Second, labeling is done by

modifying the ε-distances of states, instead of assigning hard labels (lines 26 and 28).

Third, the short-sighted horizon, h, is set to infinity with probability ψ, allowing Ss,π

to be explored fully.

In more detail, the algorithm works as follows. Given a state s, Algorithm 18

expands all states in Ss,π up to distance 2h, and checks if all of these are ε-consistent

(lines 15-16); the notion of distance to use is specified by the function w (see line

20). If all of the states found are ε-consistent, the algorithm then modifies ε-distance

estimates according to the distance—from s—at which the state was first found (lines

23-28). If it turns out that Ss,π lies completely within the horizon 2h (when variable

all is true), then dε(s
′) is set to ∞ for all states found, since this condition is the

usual requirement for correctly hard-labeling states.

Note that, in the case where only finite ε-distances can be assigned (line 28),

our distance estimate slightly departs from Definition 11. A more accurate estimate

would be dε(s
′) ← 2t − d, considering that there are ε-consistent states at distances

t to 2t from the initial state s. Similarly, we could also have assigned ε-distances for

89

all states found up to distance 2t, instead of only for those at distance ≤ t (line 27).

However, we took the more conservative approach shown here because it is equivalent

to a more robust version of FLARES; one that labels the same set of states, but that

uses soft labels instead. But, in contrast to FLARES, the use of soft-labeling allows

the planner to explore, with some probability, states that it has previously labeled as

“probably solved”.

Finally, what are good labeling functions to use? Intuitively, we want increasing

functions of the ε-distance, to encourage sampling towards states that are “more

likely” to be far away from convergence. In our experiments we consider the following

labeling functions, for the case when t > 0:

• Linear: L(s) , β−α
t
dε(s) + α

• Logistic: L(s) , 1

1+ 1−α
α

exp{− 1
t
ln

(1−α)β
α(1−β) ·dε(s)}

• Exponential: L(s) , α exp{1
t

ln β
α
· dε(s)}

where α and β are parameters that represent the desired labeling probability for

dε(s) = 0 and dε(t), respectively. In all cases, we assume that L(s) = 0 if dε(s) < 0

and L(s) = β if dε(s) ≥ t.

5.3 Experiments

In this section we empirically evaluate the use of soft labeling for approximately

solving SSPs, denoting the combination of Algorithms 17 and 18 as SOFT-FLARES.

The goal of these experiments was to demonstrate that the general soft labeling

framework can produce algorithms competitive with state-of-the-art methods, both

in terms of expected cost and total planning time. We compared different vari-

ants of SOFT-FLARES to several SSP solvers: RFF (Teichteil-Königsbuch et al., 2010),

LRTDP (Bonet and Geffner, 2003a), FLARES, HDP (Bonet and Geffner, 2003b),

90

BRTDP (McMahan et al., 2005), and SSIPP (Trevizan and Veloso, 2014). We did

not perform extensive experiments with LABELED-SSIPP, since preliminary experi-

ments indicate that run time was never better than that of LRTDP. Similarly, we did

not compare with VPI-RTDP (Sanner et al., 2009) as it seems to be easily affected

by the quality of initial upper bounds; in our experiments we have been unable to

reproduce the results in (Sanner et al., 2009).

Algorithm Exp. cost Time (seconds)

SOFT-FLARES-T-EXP(4) 89.44± 1.62 5.50

LRTDP 91.63± 1.71 12.56

FLARES(4) 91.70± 1.55 5.72

HDP(0) 92.16± 1.65 8.83

SSIPP(8) 92.29± 1.68 19.15

BRTDP 93.73± 1.83 12.97

Table 5.2: Expected cost and total planning of several planning algorithms on the
sailing domain (middle-goal).

Algorithm Exp. cost Time (seconds)

SOFT-FLARES-T-EXP(2) 177.32± 2.32 9.34

LRTDP 177.81± 2.50 16.93

BRTDP 178.70± 2.40 45.21

HDP(0) 179.63± 2.42 13.81

FLARES(3) 179.72± 2.37 11.67

SSIPP(4) 191.03± 2.57 25.64

Table 5.3: Expected cost and total planning of several planning algorithms on an
instance of the sailing domain (corner-goal).

We use the notation ALGORITHM(X) to denote the short-sighted horizon, X, used

by the algorithm. In the case of SOFT-FLARES and SSIPP, the notation

ALGORITHM-DIST-LABEL; refers to a distance function, DIST, (D for depth, T for

trajectory probability, or P for plausibility), and a label function, LABEL, (LINear,

LOGistic, or EXPonential). In all cases we used α = 0.1 and β = 0.9 for SOFT-FLARES.

91

For SOFT-FLARES, we also set ψ = 0, since we will evaluate the quality of the re-

sulting policies empirically. We used the hmin heuristic (Bonet and Geffner, 2003a),

pre-computed for all states before planning started. We evaluated different param-

eterizations of the algorithms with distances from 0 to 4 for HDP, FLARES and

SOFT-FLARES, distances in {1, 2, 4, 8} for SSIPP, and values of ρ = 2−5 and ρ = 2−4

for TRAJECTORY-BASED-SSIPP (Trevizan and Veloso, 2012); we report the results of

the parameterizations with the best expected cost in the problems considered.

All experiments were performed on Xeon E5-2680 v4 @ 2.40GHz computers. The

performance of a planner is evaluated by running simulations of the partial policy

implied by the algorithm’s action selection, and computing the resulting expected

cost and total time spent on planning. We reset any internal state of the algorithms

before each simulation starts, to evaluate their performance in a one-shot planning

task. Note that this is harder than typical competition settings, where planners are

allowed to reuse computation from previous simulations. Actions are selected greedily

on the current value estimates, and we allow the algorithm to re-plan if necessary,

adding the accrued time to the total. For SSIPP, the algorithm re-plans before each

action, for HDP re-planning is done as described by (Bonet and Geffner, 2003b), and

for SOFT-FLARES it is done whenever a soft-label check fails.2

5.3.1 Sailing Domain

Our first evaluation benchmark is the sailing problem (Kocsis and Szepesvári,

2006). We evaluated on two instances of this domain, both with size 40× 40 (12,801

states), differing in the goal location (corner or middle of the grid). We consider

the performance of the algorithms when there is no time limit per action, consider-

ing the following stopping criteria (whichever happens first): successful label checks

for FLARES, SOFT-FLARES, and HDP; 1000 trials for LRTDP, BRTDP, FLARES, and

2The code to reproduce these experiments will be available once anonymity is no longer needed.

92

SOFT-FLARES; a single simulated trial reaching a goal for SSIPP. Tables 5.2 and 5.3

show the expected costs and total planning times of these experiments, averaged over

250 simulations; standard errors are also shown for the expected cost (the variance for

the planning time was negligible). In both of the problem instances considered, a pa-

rameterization of SOFT-FLARES was able to achieve the policy with the best expected

cost, while requiring less planning time than the remaining algorithms. Incidentally,

the best parameterization of SOFT-FLARES involved the trajectory probability dis-

tance and exponential labeling functions, although other parameterizations achieved

similar performance. These results suggest that our soft labeling framework is flex-

ible enough to produce a diverse set of planners having different trade-offs between

quality and computational time.

Algorithm Exp. cost Time (seconds)

FLARES(4) 26.66± 0.35 8.37

SOFT-FLARES-T-EXP(3) 26.88± 0.36 4.06

HDP(3,0) 26.93± 0.39 4.07

BRTDP 27.24± 0.37 9.25

SSIPP(8) 27.51± 0.39 28.40

LRTDP 27.62± 0.41 12.13

Table 5.4: Expected cost and total planning of several planning algorithms on the
racetrack domain (ring-5).

Algorithm Exp. cost Time (seconds)

SOFT-FLARES-D-LOG(2) 11.46± 0.08 0.82

LRTDP 11.52± 0.11 35.39

SSIPP(8) 11.57± 0.11 32.40

BRTDP 11.64± 0.07 2.70

FLARES(3) 11.65± 0.11 2.67

HDP(2,0) 11.66± 0.11 0.21

Table 5.5: Expected cost and total planning of several planning algorithms on the
racetrack domain (square-4).

93

Algorithm p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

TRIANGLE-TIREWORLD

SOFT-FLARES 50 50 50 50 50 50 50 49 49 41

RFF 50 50 50 50 50 50 50 0 0 0

TRAJECTORY-BASED-SSIPP 50 50 48 46 46 38 40 33 42 31

EX-BLOCKSWORLD

SOFT-FLARES 45 15 17 21 50 48 50 27 23 1

RFF 31 7 25 10 50 12 41 6 5 0

TRAJECTORY-BASED-SSIPP 0 0 31 26 50 46 0 0 0 0

Table 5.6: Number of runs in which planners were able to successfully reach the goal
for two IPPC’08 domains.

5.3.2 Racetrack Domain

Our second evaluation benchmark is the racetrack domain, first proposed in (Barto

et al., 1995), with the modifications described in Chapter 3. We used a probability of

0.20 for slipping, and a probability of 0.10 for randomly changing accelerations. We

experimented with two problems instances, one with 92,909 states (ring-5) and one

with 400,270 states (square-4). The results are shown in Tables 5.4 and 5.5, respec-

tively. In the two problem instances considered a parameterization of SOFT-FLARES

was among the best two planners, both in terms of expected cost and total planning

time. These results offer additional evidence in favor of the utility of soft labeling as

a framework for probabilistic planning.

5.3.3 International Planning Competition Domains

We assessed the scalability of SOFT-FLARES to problems with very large state

spaces, using two domains from the International Planning Competition held in 2008

(the last competition involving goal-based MDPs) (Bryce and Buffet, 2008). We used

problems 1-10 from domains TRIANGLE-TIREWORLD and EX-BLOCKSWORLD. As

typical in competition settings, we gave planners 20 minutes to successfully complete

50 runs of each problem. For SOFT-FLARES, we used t = 2, an exponential labeling

94

function and the inadmissible FF heuristic (Bonet and Geffner, 2005). We compare the

performance of SOFT-FLARES with our implementation of RFF (Teichteil-Königsbuch

et al., 2010), the winner of IPPC’08, and with trajectory-based SSIPP (Trevizan and

Veloso, 2012), using ρ = 0.25 and the hadd heuristic (SSIPP code provided by the orig-

inal author); all experiments were run on the same machine. The results, shown in

Table 5.6, demonstrate that SOFT-FLARES is able scale to very large problems, outper-

forming state-of-the-art planners in two probabilistically interesting domains (Little

and Thiebaux, 2007). Crucially, it outperforms RFF, without relying on a classical

planner to speed up computation, providing convincing evidence that soft labeling

is a promising framework for scalable and performant probabilistic planning. Note

that for TRAJECTORY-BASED-SSIPP, the original work reports 50 in every triangle-

tireworld instance (Trevizan and Veloso, 2012), but we could not reproduce these

results using the original code.

95

CHAPTER 6

CONCLUSION

This thesis studied scalable algorithms for solving Markov Decision Processes,

based on novel paradigms for efficient state-space exploration. Our contributions

push the state-of-the-art in MDP solution methods, and offer flexible frameworks

upon which other efficient and high-performing algorithms can be built. In this

chapter we briefly discuss the main results of this thesis, and then offer directions for

future research.

6.1 Summary of Contributions

6.1.1 Mk
l -reductions

In Chapter 3, we introduced the Mk
l -reduction for MDPs, a model reduction

framework that generalizes the popular single-outcome determinization approach, re-

sulting in a more robust, yet computationally efficient, planning paradigm. The main

idea behind the Mk
l -reduction is to prune sections of the state space by classifying

transition outcomes into one of two types, primary outcomes or exceptional outcomes.

Given an outcome classification, planning is done on a modified MDP in which any

trajectory can have at most k exceptions: that is, after k exceptions have occurred on

a trajectory, the model assumes only primary outcomes are possible. The parameter

l represents how many outcomes, at most, are considered primary in the transition

function of any state-action pair. Thus, for example, a single-outcome determiniza-

tion is an instance of an M0
1-reduction.

96

By allowing the agent to plan for more than just a single primary outcome, a

planner using a Mk
l -reduction is able to compute, as we show in our experiments,

near-optimal plans orders of magnitude faster than when planning using the original,

non-reduced, model. Moreover, we show how the parameters k and l allow the agent

to trade-off computational cost for policy quality.

Importantly, a key result from the research presented in Chapter 3 is that the

choice of reduction (i.e., the choice of primary outcomes) is crucial. Indeed, it can

make the different between optimal behavior and catastrophic performance, even

when using a deterministic reduction. Building on this insight, we presented a greedy

approach for learningMk
l -reductions for a given planning domain, which was used to

learn the reductions used in our experiments.

In Chapter 4 we introduced FF-LAO*, an algorithm that directly leverages the

structure ofMk
1-reductions to gain computational efficiency. In particular, for MDPs

described using factored domain languages like PPDDL, it is possible to create a

deterministic version of the original problem in the same language, which can then

be solved efficiently using out-of-the-box classical planners (e.g., FF). Thus, since a

Mk
1-reduction becomes deterministic in states with exception counters equal to zero,

the planner can replace a full search in the deterministic state space with a call to a

highly optimized classical planner, which is typically orders of magnitude faster.

We also introduce an approach to learn the best determinization to use, by doing

an exhaustive search in the space of action schema representations (i.e., before actions

are grounded with the predicates of a particular problem). Our experiments show

that the combination of an appropriate determinization choice, and the use of a fast

classical planner results in state-of-the-art performance in challenging planning do-

mains with billions of states. Moreover, the ability to use the full model by increasing

k allows FF-LAO* to produce better policies when determinization alone is not robust

enough.

97

6.1.2 Soft Labeling

In Chapter 5 we introduced soft labeling, a general algorithmic paradigm for

solving SSPs that results in more efficient state-space exploration, while achieving

near-optimal performance. In contrast to the Mk
l -reduction, soft labeling works by

altering the sampling strategy of a search algorithm, rather than changing the under-

lying model used for value computation. We started our discussion of soft-labeling

by first proposing a variant of RTDP, called FLARES, that uses a short-sighted form

of labeling for terminating trials early, potentially pruning large sections of the state

space. Since a near-equivalent version of this algorithm can instead sample from

the distribution of unlabeled states, we can see this approach as a form of outcome

selection.

Building on this insight, we then generalize the behavior of FLARES, by grounding

it as a specific instance of our new soft labeling framework. In contrast to determin-

istic labels, soft labels work by decreasing the probability of sampling labeled states

during exploration, rather than completely preventing the planner from visiting these

states again. Since this prevents the possibility of starving states during the search,

the soft labeling technique can be leveraged to produce algorithms with guarantees

of optimality in the limit.

Our soft-labeling framework characterizes different instances according to the

choice of short-sighted measure and the labeling function to use. To formalize the

notion of short-sighted measure, we introduced the concept of ε-distance, a heuristic

measure for how close the value of a state is from convergence to ε-optimality. The

labeling function determines how much the probability of sampling a state decreases

as a function of ε-distance. Using different combinations of ε-distances and labeling

functions, we can devise many different planners based on soft-labeling. Our exper-

iments shows that instances of this framework can outperform state-of-the-art SSP

solvers, illustrating its power.

98

6.2 Future Work

The results reported in this thesis suggest that both Mk
l -reductions and soft

labeling have significant potential as frameworks upon which efficient and robust MDP

solvers can be built. On the other hand, there are several directions for improvement

and future work.

The performance of algorithms likeMk
l -REPLAN and FF-LAO* hinges on access to

goodMk
l -reductions for the planning problems to be solved. While we have provided

two methods that are good initial steps in these direction, both of these build on the

assumption that a reduction learned on a small problem instance of a domain will

carry over to other instances. The conditions under which this assumption is true

are not well understood, and it will be beneficial to formally characterize domains in

which it is guaranteed to hold.

Another interesting direction would be to develop methods for learning contextual

reductions, in which the choice of primary outcomes for a given action is a function of

state features, rather than a single reduced schema universally applied to all states.

Although using universal reductions resulted in highly effective planner performance

in our experiments, it is possible that many other planning domains would require a

more refined choice of reduction.

Conversely, one of the benefits of the soft labeling framework is that it does not

depend on learning a reduced model ahead of time. On the other hand, the choice

of labeling function and ε-distance can have significant impact in the performance

of the algorithm. Thus, a deeper study of the theoretical and empirical properties

of different combinations of distance and labeling functions, as well as developing

additional—more principled—functions, is an immediate direction for future research.

99

BIBLIOGRAPHY

A. Anand, A. Grover, and P. Singla. ASAP-UCT: Abstraction of state-action pairs
in UCT. In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

A. Anand, R. Noothigattu, P. Singla, et al. OGA-UCT: On-the-go abstractions in
UCT. In Proceedings of the Twenty-Sixth International Conference on Automated
Planning and Scheduling, 2016.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81–138, 1995.

R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: Numerical
methods. Prentice Hall Englewood Cliffs, NJ, 1989.

D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3):580–595, 1991.

B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129
(1-2):5–33, 2001. ISSN 0004-3702.

B. Bonet and H. Geffner. Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Proceedings of the Thirteenth International Conference
on Automated Planning and Scheduling, pages 12–21, Trento, Italy, 2003a.

B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with un-
certainty and full feedback. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, pages 1233–1238, Acapulco, Mexico, 2003b.

B. Bonet and H. Geffner. mGPT: A probabilistic planner based on heuristic search.
Journal of Artificial Intelligence Research, 24:933–944, 2005.

B. Bonet and H. Geffner. Action selection for MDPs: Anytime AO* versus UCT. In
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pages
1749–1755, 2012.

100

M. Brenner and B. Nebel. Continual planning and acting in dynamic multiagent
environments. Autonomous Agents and Multi-Agent Systems, 19(3):297–331, 2009.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

D. Bryce and O. Buffet. Sixth international planning competition: Uncertainty part.
In Proceedings of the Sixth International Planning Competition, 2008.

O. Buffet and D. Aberdeen. The factored policy-gradient planner. Artificial Intelli-
gence, 173(5-6):722–747, 2009.

C. P. C. Chanel, C. Lesire, and F. Teichteil-Königsbuch. A robotic execution frame-
work for online probabilistic (re)planning. In Proceedings of the Twenty-Fourth
International Conference on Automated Planning and Scheduling, pages 454–462,
Portsmouth, New Hampshire, 2014.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using iterative
repair to improve responsiveness of planning and scheduling. In Proceedings of the
Fifth International Conference on Artificial Intelligence Planning and Scheduling,
pages 300–307, Breckenridge, Colorado, 2000.

G. Comanici, P. Panangaden, and D. Precup. On-the-fly algorithms for bisimulation
metrics. In Proceedings of the Ninth International Conference on Quantitative
Evaluation of Systems, pages 94–103, 2012.

P. Dai and J. Goldsmith. Topological value iteration algorithm for Markov deci-
sion processes. In Proceedings of the Twentieth International Joint Conference on
Artifical Intelligence, pages 1860–1865, San Francisco, CA, USA, 2007.

D. P. de Farias and B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations Research, 51(6):850–865, Nov. 2003.

R. Dearden, N. Friedman, and S. Russell. Bayesian Q-learning. In Proceedings of
the Tenth Conference on Innovative Applications of Artificial Intelligence, pages
761–768. American Association for Artificial Intelligence, 1998.

M. E. desJardins, E. H. Durfee, C. L. Ortiz, and M. J. Wolverton. A survey of research
in distributed, continual planning. AI Magazine, 20(4):13–22, 1999.

Z. Feng and E. A. Hansen. Symbolic heuristic search for factored Markov decision
processes. In Eighteenth National Conference on Artificial Intelligence, pages 455–
460, Menlo Park, CA, USA, 2002.

N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov decision processes.
In Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence,
pages 162–169, 2004.

101

N. Ferns, P. S. Castro, D. Precup, and P. Panangaden. Methods for computing state
similarity in Markov decision processes. In Proceedings of the Twenty-Second Con-
ference on Uncertainty in Artificial Intelligence, pages 174–181, Arlington, Virginia,
United States, 2006.

M. L. Ginsberg. Universal planning: An (almost) universally bad idea. AI Magazine,
10(4):40–44, 1989.

R. Givan and T. Dean. Model minimization, regression, and propositional STRIPS
planning. In Proceedings of the Fifteenth International Joint Conference on Artifi-
cial Intelligence, pages 1163–1168, 1997.

R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147(1–2):163–223, 2003.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms
for factored MDPs. Journal of Artificial Intelligence Research, 19:399–468, 2003.

E. A. Hansen and S. Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2):35–62, 2001.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using
decision diagrams. In Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 279–288, San Francisco, CA, USA, 1999.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14(1):253–302, 2001.

J. Hostetler, A. Fern, and T. Dietterich. Progressive abstraction refinement for sparse
sampling. In Proceedings of the Thirty-First Conference on Uncertainty in Artificial
Intelligence, pages 365–374. AUAI Press, 2015.

R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

R. A. Howard. Information value theory. IEEE Transactions on systems science and
cybernetics, 2(1):22–26, 1966.

D. Hsu, J.-C. Latombe, and H. Kurniawati. On the probabilistic foundations of
probabilistic roadmap planning. International Journal of Robotics Research, 25(7):
627–643, 2006.

M. Issakkimuthu, A. Fern, R. Khardon, P. Tadepalli, and S. Xue. Hindsight opti-
mization for probabilistic planning with factored actions. In Proceedings of the
Twenty-Fifth International Conference on International Conference on Automated
Planning and Scheduling, pages 120–128, 2015.

N. Jiang, S. Singh, and R. Lewis. Improving UCT planning via approximate ho-
momorphisms. In Proceedings of the Fourteenth International Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 1289–1296, 2014.

102

N. K. Jong and P. Stone. State abstraction discovery from irrelevant state variables.
In Proceedings of the Nineteenth International Joint Conference on Artificial Intel-
ligence, volume 8, pages 752–757, 2005.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine learning, 49(2):193–208,
2002.

T. Keller. Anytime Optimal MDP Planning with Trial-based Heuristic Tree Search.
PhD thesis, University of Freiburg, Freiburg im Breisgau, Germany, 2015.

T. Keller and P. Eyerich. PROST: Probabilistic planning based on UCT. In Twenty-
Second International Conference on Automated Planning and Scheduling, 2012.

T. Keller and M. Helmert. Trial-based heuristic tree search for finite horizon MDPs.
In Proceedings of the Twenty-Third International Conference on International Con-
ference on Automated Planning and Scheduling, pages 135–143, 2013.

E. Keyder and H. Geffner. Heuristics for planning with action costs revisited. In
Proceedings of the Eighteenth European Conference on Artificial Intelligence, pages
588–592, 2008a.

E. Keyder and H. Geffner. The HMDPP planner for planning with probabilities. In
D. Bryce and O. Buffet, editors, ICAPS Third International Probabilistic Planning
Competition. 2008b.

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of
the Seventeenth European conference on Machine Learning, pages 282–293, 2006.

S. Koenig, R. Goodwin, and R. G. Simmons. Robot navigation with Markov models:
A framework for path planning and learning with limited computational resources.
In L. Dorst, M. Lambalgen, and F. Voorbraak, editors, Reasoning with Uncertainty
in Robotics, volume 1093 of Lecture Notes in Computer Science, pages 322–337.
1996.

A. Kolobov and Mausam. Planning with Markov decision processes: An AI per-
spective. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1):
1–210, 2012.

A. Kolobov, Mausam, and D. S. Weld. ReTrASE: Integrating paradigms for ap-
proximate probabilistic planning. In Proceedings of the Twenty-First International
Joint Conference on Artifical Intelligence, pages 1746–1753, San Francisco, CA,
USA, 2009.

103

A. Kolobov, Mausam, and D. S. Weld. A theory of goal-oriented MDPs with dead
ends. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,
pages 438–447, Catalina Island, California, 2012.

A. Krause and D. Golovin. Submodular function maximization. In Tractability:
Practical Approaches to Hard Problems, pages 71–104. Cambridge University Press,
2014.

L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstrac-
tion for MDPs. In Proceedings of the Ninth International Symposium on Artificial
Intelligence and Mathematics, 2006.

I. Little and S. Thiebaux. Probabilistic planning vs. replanning. In Proceedings of
the ICAPS’07 Workshop on the International Planning Competition: Past, Present
and Future, 2007.

M. L. Littman. Probabilistic propositional planning: Representations and complexity.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence,
pages 748–754, Providence, Rhode Island, 1997.

R. A. Mccallum. Overcoming incomplete perception with utile distinction memory.
In Proceedings of the Tenth International Conference on Machine Learning, 1993.

H. B. McMahan, M. Likhachev, and G. J. Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In
Proceedings of the Twenty-Second International Conference on Machine Learning,
pages 569–576. ACM, 2005.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time. Machine learning, 13(1):103–130, 1993.

K. L. Myers. CPEF: A continuous planning and execution framework. AI Magazine,
20(4):63–69, 1999.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions–I. Mathematical Programming, 14(1):
265–294, 1978.

L. Pineda and S. Zilberstein. Planning under uncertainty using reduced models: Re-
visiting determinization. In Proceedings of the Twenty-Fourth International Con-
ference on Automated Planning and Scheduling, pages 217–225, Portsmouth, New
Hampshire, 2014.

104

L. Pineda, Y. Lu, S. Zilberstein, and C. V. Goldman. Fault-tolerant planning under
uncertainty. In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, pages 2350–2356, Beijing, China, 2013.

L. Pineda, T. Takahashi, H.-T. Jung, S. Zilberstein, and R. Grupen. Continual
planning for search and rescue robots. In Proceedings of the IEEE-RAS 15th In-
ternational Conference on Humanoid Robots, pages 243–248, Seoul, Korea, 2015.

L. Pineda, K. H. Wray, and S. Zilberstein. Fast SSP solvers using short-sighted
labeling. In Proceedings of the Thirty-First Conference on Artificial Intelligence,
pages 3629–3635, San Francisco, California, 2017.

W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimension-
ality, volume 703. John Wiley & Sons, 2007.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1994.

B. Ravindran and A. G. Barto. Model minimization in hierarchical reinforcement
learning. In International Symposium on Abstraction, Reformulation, and Approx-
imation, pages 196–211, 2002.

S. Sanner, R. Goetschalckx, K. Driessens, and G. Shani. Bayesian real-time dynamic
programming. In Proceedings of the Twenty-First International Joint Conference
on Artificial Intelligence, Pasadena, California, 2009.

M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
pages 1039–1046, Milan, Italy, 1987.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

J. P. Singh, T. Alpcan, P. Agrawal, and V. Sharma. A Markov decision process based
flow assignment framework for heterogeneous network access. Wireless Networks,
16(2):481–495, 2010.

T. Smith and R. Simmons. Focused real-time dynamic programming for MDPs:
squeezing more out of a heuristic. In Proceedings of the Twenty-First National Con-
ference on Artificial intelligence, pages 1227–1232, Boston, Massachusetts, 2006.

M. Steinmetz, J. Hoffmann, and O. Buffet. Revisiting goal probability analysis in
probabilistic planning. In Proceedings of the Twenty-Sixth International Conference
on Automated Planning and Scheduling, London, UK, 2016.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1998a.

105

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998b.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1(2):146–160, 1972.

A. E. Tate and J. E. Hendler. Readings in Planning. Morgan Kaufmann Publishers
Inc., 1994.

F. Teichteil-Königsbuch, U. Kuter, and G. Infantes. Incremental plan aggregation
for generating policies in MDPs. In Proceedings of the Ninth International Confer-
ence on Autonomous Agents and Multiagent Systems, pages 1231–1238, Toronto,
Canada, 2010.

S. Temizer et al. Collision avoidance for unmanned aircraft using Markov decision
processes. In AIAA Guidance, Navigation, and Control Conference, Toronto, On-
tario. American Institute of Aeronautics and Astronautics, 2010.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,
MA, USA, 2005.

F. W. Trevizan and M. M. Veloso. Trajectory-based short-sighted probabilistic plan-
ning. In Proceedings of Neural Information Processing Systems, pages 3257–3265,
Lake Tahoe, Nevada, 2012.

F. W. Trevizan and M. M. Veloso. Depth-based short-sighted stochastic shortest path
problems. Artificial Intelligence, 216:179–205, 2014.

T. J. Walsh, S. Goschin, and M. L. Littman. Integrating sample-based planning and
model-based reinforcement learning. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, pages 612–617, Atlanta, Georgia, 2010.

D. S. Weld. Recent advances in AI planning. AI Magazine, 20:93–123, 1999.

D. Wingate and K. D. Seppi. Prioritization methods for accelerating MDP solvers.
Journal of Machine Learning Research, 6(May):851–881, 2005.

K. H. Wray, L. Pineda, and S. Zilberstein. Hierarchical approach to transfer of control
in semi-autonomous systems. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, pages 517–523, 2016.

S. Yoon, A. Fern, R. Givan, and S. Kambhampati. Probabilistic planning via deter-
minization in hindsight. In Proceedings of the Twenty-Third National Conference
on Artificial Intelligence, pages 1010–1016, Chicago, Illinois, 2008.

S. Yoon, W. Ruml, J. Benton, and M. B. Do. Improving determinization in hindsight
for online probabilistic planning. In Proceedings of the Twentieth International Con-
ference on Automated Planning and Scheduling, pages 209–216, Toronto, Canada,
2010.

106

S. W. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline for probabilistic planning.
In Proceedings of the Seventeenth International Conference on Automated Planning
and Scheduling, pages 352–359, Providence, Rhode Island, 2007.

H. L. S. Younes, M. L. Littman, D. Weissman, and J. Asmuth. The first probabilistic
track of the international planning competition. Journal of Artificial Intelligence
Research, 24(1):851–887, 2005.

107

	Efficient Probabilistic Reasoning Using Partial State-Space Exploration
	Recommended Citation

	tmp.1550165880.pdf.zTM3r

