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ABSTRACT 

 
PROBING QUANTIZED EXCITATIONS AND MANY-BODY CORRELATIONS 

IN TRANSITION METAL DICHALCOGENIDES WITH OPTICAL 
SPECTROSCOPY 

 
FEBRUARY 2019 

 
 

SHAO-YU CHEN 
 

B.A., NATIONAL TAIWAN UNIVERSITY 
 

M.A., NATIONAL TAIWAN UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Jun Yan 
 
 

Layered transition metal dichalcogenides (TMDCs) have attracted great interests 

in recent years due to their physical properties manifested in different polytypes: 

Hexagonal(H)-TMDC, which is semiconducting, exhibits strong Coulomb interaction and 

intriguing valleytronic properties; distorted octahedral(T’)-TMDC, which is semi-metallic, 

is predicted to exhibit rich nontrivial topological physics. In this dissertation, we employ 

the polarization-resolved micron-Raman/PL spectroscopy to investigate the optical 

properties of the atomic layer of several polytypes of TMDC. 

In the first part for polarization-resolved Raman spectroscopy, we study the lattice 

vibration of both H and T’-TMDC, providing a thorough understanding of the 

polymorphism of TMDCs. We demonstrate that Raman spectroscopy is a versatile tool to 

probe the symmetry as well as the quality of crystals. This becomes quite important for 



 vii 

atomic layers of TMDCs which are sensitive to the environment and substrate. In the 

second part of the dissertation, we focus on fabricating high-quality monolayer tungsten 

diselenide samples and study their excitonic bound states by photoluminescence, 

reflection, resonant-Raman spectroscopy, magneto-optical measurements and time-

resolved spectroscopy. We first demonstrate the many-body correlation of the multi-

particle bound excitonic states at low temperatures. The PL measurement in magnetic 

fields demonstrate for the first time the abnormal valleytronic properties of the biexciton 

and five-particle bound states, exciton-trion in 1L-TMDCs. The time-resolved PL 

measurement reveals the ultralong lifetime of the several bound states at even lower 

energy range, establishing a potential platform for further investigation on exciton 

condensation. In addition to the lower energy bound states, we also explore its excited 

Rydberg states in high magnetic fields. Surprisingly, we observe for the first time the PL 

of up to 4s excitons, opening doors to the investigation the physics of Rydberg exciton in 

a 2D system. For example, we investigate the role of electron-hole exchange-interactions 

in 2s exciton. Contrary to 1s exciton, the exchange interaction in 2s exciton is strongly 

suppressed due to its larger size. Consequently, the 2s display superior valley polarization 

and valley coherence, paving the way to valleytronic applications. 
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CHAPTER 1 

BACKGROUND 

1.1 Polymorphism of Two-Dimensional Transition Metal Dichalcogenide  

Two-dimensional transition metal dichalcogenide (2D-TMDC) is a class of van 

der Waals nanomaterials that exhibits interesting phase transition within its various 

polytypes. As illustrated in Figure 0.1, the unit layer of 2D-TMDC is composed by MX2 

three atomic layers [1]: a center transition metal(M) (e.g. Mo, W) atomic layer 

sandwiched by the top and bottom chalcogen (X) (e.g. S, Se, Te) atomic layers. The three 

atomic layers are linked by covalent bonds, forming a triatomic unit layer. The unit layers 

can be further stacked with van der Waals forces to form a few layer TMDCs, reflecting 

the nature of van der Waals crystal. 

 

 

Figure 0.1: Schematic of monolayer and multilayer-TMDCs. The red dash squares 
enclose the unit layer of TMDCs. Atoms in the unit layer are linked by covalent 
bonds, while the unit layers are coupled by van der Waals force.  
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The polymorphs in 2D-TMDCs can be categorized by intralayer and interlayer 

polytypes. The structure presented in Figure 0.1 is the hexagonal (H) phase of 1L 

TMDCs; the unit cell is arranged in triangular lattice which can be seen from the top 

perspective view. Indeed, 2D-TMDCs have other intralayer polytypes. Figure 0.2 depicts 

the atomic structure of monolayer TMDC in three distinct intralayer polytypes: 

hexagonal (H), octahedral (T) and distorted octahedral (T’) phases. Based on the atom 

size and the involved orbitals in constructing the crystal, the energetic favorable phase for 

different types of TMDCs can be various. The H phase is the most common 

semiconducting phase in TMDCs except WTe2 T’ phase is energy favorable for WTe2 

but a metastable phase for others [2]. T phase is in general an unstable phase but can be 

engineered by chemical charge doping [3].  

 

 

Figure 0.2: The schematics of 1L hexagonal (H), octahedral (T), and distorted 
octahedral (T’)-TMDCs. 
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In addition to the intralayer polytypes, 2D-TMDCs possess rich interlayer 

polytypes through a variety of van der Waals stacking, i.e. unit layers may stack in 

various orders to achieve distinct stable/metastable phases [4]. Although the interlayer 

van der Waals interaction is much weaker than the intralayer covalent bonding, the 

different stacking orders may induce the change of crystal symmetry, dielectric 

environment and Coulomb interactions which are crucial in mediating in the physical 

properties of materials [5–7]. As a representative example, H-TMDC undergoes an 

electronic band transition from the direct-bandgap (1L H-TMDC) to indirect-bandgap 

semiconductor (few-layer and bulk H-TMDC). This has been demonstrated by seeing the 

dramatically enhancement of quantum efficiency in photoluminescence 

measurements [8,9]. Furthermore, the phase transition between polytypes may involve 

inversion symmetry breaking which is critical in studying valley-spin coupling [10–12], 

the valley-Hall effect [10,13] and the Weyl fermion in Type-II semimetals [14]. A 

systematic study on the polymorphism of TMDC is thus crucial to realize those physics 

as well as the further applications such as the valleytronics [15] which will be addressed 

in the next section. 

1.2 The Tightly Bound Quantized Excitons in H-TMDCs 

Exciton is a two-particle excitation in semiconductor with one electron and one 

hole (absent of electron) bound by Coulomb interaction. In conventional 3D 

semiconductors, the exciton emission can only be observed in the cryogenic temperature 

due the tiny binding energy (10 meV in silicon and 2.7 meV in germanium [16]), as a 

direct consequence of strong dielectric screening. In contrast, the dielectric screening 
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effect from material is strongly suppressed in atomically thin 2D H-TMDCs, enabling the 

observation of excitons even at room temperature. The giant binding energies of exciton 

in 2D H-TMDCs thus provide a promising platform to investigate the Coulomb 

interaction.  

Experimentally, however, the assignment of binding energy is still under debate. 

It is because the emissions from band edge is strongly suppressed so that it fails to 

directly probe the binding energy of exciton by optical spectroscopy. As an alternative, it 

has been demonstrated by detecting of the quantized Rydberg states of exciton to 

estimate the binding energy of the ground state exciton [17–19]. In addition, the bare 

bandgap energy has also been measured by scanning tunneling microscopy [20], although 

the values are deviated from the ones derived from spectroscopy measurements. The 

accurate measurement of these quantized excitonic states is crucial to investigate the 

binding energy as well as the other Coulomb interaction mediated many-body correlation 

in 2D-TMDCs. 

Another interesting property of H-TMDCs is the strong spin–orbit coupling (SOC) 

which is originated from the d orbitals in transition metal, leading to a large spin splitting 

for the valence band [21]. In 1L H-TMDCs, the splitting of valance band is about 150 

meV for 1L-Mo(S, Se)2 and 450 meV for 1L-W(S, Se)2; while the splitting in conduction 

band is relatively small, ranging from 10 to 30 meV. In addition, due the presence of 

inversion symmetry breaking in 1L H-TMDC, the K and K’ valleys become a time 

reversal pair, addressing the new valley degree of freedom (DoF) [10]. As a direct 

consequence, the spin DoF in valence band near K and K’ points are coupled to valley 
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DoF and develop a robust spin polarized states, as shown in spin-valley configurations in 

Figure 0.3.  

  

Figure 0.3: The schematic of spin-valley configurations of valence and conduction 
bands splitting near K and K’ points in Brillouin zone. The top and bottom panel 
are corresponding to 1L-MoX2 and WX2, respectively.  
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As denoted in Figure 0.3, the spin-orbital coupling in conduction bands is distinct 

for 1L MoX2 and WX2, resulting in the dramatic difference in their optical properties. 

The abnormal SOC in 1L MoX2 has been revealed from the theoretical calculation with 

three-band tight binding model [21]: the conduction band spin splitting (CBSS) is 

opposite in sign and the conduction band crossing in a small finite k, in contrast to 1L-

WX2. Experimentally, the spin-orbit splitting energies are confirmed by measuring the 

PL emission from the dipole forbidden PL emission from the dark excitons with opposite 

spins. This has been demonstrated by various methods, such as measuring the PL 

emission with the presence of in-plane magnetic fields [22], by coupling the exciton to 

the surface plasmon polaritons [23], or by detecting with a finite outgoing angles [24]. 

The experimental results reveal that the CBSS is about 40 meV [22–25] for 1L-WSe2 and 

47 meV [26] for 1L-WS2  while the CBSS is –2 meV for 1L-MoSe2, substantiating the 

theoretical frameworks. 

The unique spin-valley configurations of 1L-WX2 open a window to investigate 

the many-body correlation in the 2D excitonic system. Specifically, the ground state free 

exciton in 1L-WX2 comes from the lower conduction band and the top valence band, 

which is not dipole allowed transition (so it is named dark exciton). As a result, the dark 

exciton is highly populated in the system with longer lifetime than bright exciton at the 

cryogenic temperature. The dark exciton in the system thus may interact with the bright 

exciton through the Coulomb exchange interaction, providing an outstanding platform for 

studying the intriguing many body interactions. This motivates our study of intervalley 

biexciton and exciton-trion in Chapter 6 and Chapter 9. 
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1.3 Outline  

In Chapter 1, we briefly introduce the background of the 2D-TMDCs. Recent 

progress on the electrical and optical properties of atomically thin TMDC declare several 

interesting physics in the monolayer limits, which motivate the works presented in this 

dissertation. Chapter 2 describes the experimental methods. In section 2.1, we introduce 

the fabrication procedures of making ultrahigh quality 2D heterostructures. In section 2.2, 

we illustrate the experimental setup of polarization resolved PL/Raman spectroscopy with 

several different configurations. Section 2.3 introduces the experimental setup of the 

magneto-optical measurements carried out in our lab as well as in the National High 

Magnetic Field Laboratory(NHMFL) in Tallahassee, Florida. 

Chapters 3 to 5 are composed as the first part of the dissertation: Investigation on 

the polymorphisms of atomic layered TMDCs by employing the polarization-resolved 

Raman spectroscopy. In Chapter 3, we focus on the five prototypical semiconducting 

TMDCs including H-MoS2, H-WS2, H-MoSe2, H-WSe2 and H-MoTe2. Employing 

crystal symmetry analysis, we find a generic classification of the optical phonons of H-

TMDCs into six stereotypes. Assisted by Raman tensor calculation, we demonstrate that 

the energies of these six type optical phonons is sensitive to the structural change, 

enabling us to characterize the symmetry and the number of layer of H-TMDCs [27,28].  

In Chapter 4, we turn to the polymorphism studies of bulk MoTe2 in distorted 

octahedral (T’) phase. We present the Raman signatures of the temperature induced phase 

transition from monoclinic to orthorhombic phase in bulk T’-MoTe2, which is essentially 

a reflection of the phase-transition-driven  inversion symmetry breaking of crystal [29]. 

In Chapter 5, we investigate the Raman signature of the high quality T’-(Mo, W)Te2  
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crystal down to the monolayer limit. The hBN/graphene covered/encapsulated 1L T’-

TMDC crystal exhibits superb stability and ultrahigh crystal quality. Moreover, we 

employ Raman scattering to in situ monitor the crystal quality of atomic layered T’-

MoTe2 by watching the relative intensity of defect activated extrinsic peaks at 128 and  

141 cm-1 [30]. 

Chapters 6 to 9 are composed as the second part of the dissertation: Investigation 

on the many-body correlation of the tightly Coulomb bound exciton in high quality 1L-

WSe2. In Chapter 6, we reveal the excitonic emission features with narrow linewidth in 

the high quality hBN/1L-WSe2/hBN heterostructure [31]. Of the most interests is we 

observed the abnormally large and negative valley polarization of the biexciton and 

exciton-trion. Consequently, the results reveal the significant roles of dark exciton in 1L-

WSe2. In Chapter 7, we carry out the finding of the luminescent emission up to 4s 

excitons of 1L-WSe2 in high magnetic fields. By analyzing the diamagnetic and Zeeman 

shift, we further point out the nontrivial differences of magnetic dipole moment between 

these Rydberg exciton states, as a direct consequence of the finite momentum 

distributions. Chapter 8 focus on the 2s exciton luminescence which can be observed up 

to room temperature. By comparing the valley polarization and coherence of 1s and 2s 

exciton, we reveal that the electron-hole exchange interaction plays a significant role 

governing the intervalley depolarization and decoherence. In Chapter 9, we introduce the 

preliminary results on the low energy bound state with the time-resolved spectroscopy. 

The ultralong lifetime as well as the other optical properties pave the way to investigate 

the exciton condensation in atomic layered materials. At last, concluding remarks of the 

dissertation are given in Chapter 10.   
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CHAPTER 2 

METHODOLOGY 

2.1 Fabrication of High Quality 2D-TMDCs Sample 

2.1.1 Pre-stacking Preparation 

The substrate we typical used is a commercially available SiO2(280nm)/p-Si 

wafer. The SiO2/Si wafer is first cut in a proper size and ultrasonically cleaned with 

acetone/IPA/water for 5 minutes in sequence. These steps can largely remove 

hydrocarbon contamination and dust on the surface. After solvent cleaning, we further 

anneal the substrates at 1000℃ in argon ambient for at least 10 minutes to remove the 

small molecules such as water and oxygen absorbed on the surface and the nanoporous 

structure in SiO2. Thermal annealing is essential for preparation of the air sensitive 2D-

mateirals such as atomic-layered T’-TMDC to avoid reacting with the outgassing 

molecules. 

We prepare the bulk crystals of 2D-TMDCs by Chemical Vapor Transport (CVT) 

method [29,31,32]. The grown bulk crystal is then exfoliated several times by Scotch tape 

and attached to the substrate immediately. We inspect the sample with a reflective optical 

microscope in the glovebox. After peeling off the tape, the flakes are first inspected and 

identified by the optical contrast. This method was firstly demonstrated with 

graphene [33,34] yet has been widely applied in inspecting other atomically-thin 2D 

materials [35,36]. Figure 0.1a shows the optical micrographs of atomic layered H-MoS2 

exfoliated on a SiO2(300nm)/Si substrates. The optical contrast can be seen from dimmer 

to brighter associated to 1L to 5L H-MoS2.  
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Figure 0.1: (a) The optical micrograph of exfoliated atomic layered MoS2 from 1L to 
5L on SiO2/Si substrates. (b) The DIC micrograph of atomic-thickness hBN/1L-
WSe2/hBN heterostructures. The red arrow points out the sandwiched flake and the 
trapped bubble. 

 

We further use differential interference contrast (DIC) microscopy and atomic 

force microscopy to further confirm the morphology and cleanness of samples. Figure 

0.1b demonstrates a DIC micrograph of a heterostructure made by stacking of three 2D 

materials: hBN/1L-WSe2/hBN. As can be seen, we can clearly locate the sandwiched 

flakes and the trapped bubbles by enhancing the contrast of edges. 

2.1.2 Polymer-based Dry Transfer Technique 

To make high quality sample, we further passivate samples to protect it from 

reacting with air. The state-of-the-art technology of passivation is sandwiching the target 

material with a couple of single crystal hexagonal boron nitride (hBN) thin flakes. The 

single crystal hBN provides an inert surface (negligible surface dangling bonds) to reduce 

the accidently chemical reaction and doping from the ambient. In addition, the surface of 

hBN flakes has been measured as atomically flat (the roughness is about 1Å [37]), 
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assuring that the materials can be well supported with the minimum morphology changes. 

To achieve that, we use the polymer based dry transfer technique to make 2D 

heterostructures, similar to the method published in literatures [38]. In Figure 0.2, we 

demonstrate the procedure of making a heterostructure of hBN/1L-WSe2/hBN. Firstly, 

the PPC thin film is prepared by dropping the 8% polypropylene carbonate (PPC, Sigma-

Aldrich 389021)/chloroform solution on a bare SiO2/Si substrate. We then make a 

transparent double-side tape (3MTM, VHBTM #4910) stamp and transfer the PPC film on 

top of it. During the transfer processes, the PPC layer provides stronger stickiness than 

the van der Waals forces between the flakes and substrates, enabling us to pick up a few 

layer hBN flakes. After the top hBN flake pickup, we can directly use this hBN flake to 

continue picking up 1L-WSe2 and another hBN flake sequentially. The last step is 

dropping the hBN/1L-WSe2/hBN staking done to the target substrates. 

 

Figure 0.2: The schematic of polymer based dry transfer technology. 
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Figure 0.3 illustrates the setup of the polymer-based dry transfer which is 

composed of an upright microscope, a sample stage and a stamp manipulator. On sample 

stage, we further integrate thermoelectric Peltier heater to fine tune the sample 

temperature. We note that the precise control of temperature is critical for the successful 

transferring. Therefore, optimizing the temperature can greatly enhance the yield of 

successful pickup. In our setup, contrary to the conventional ceramic heater, 

thermoelectric Peltier device can actively transport the heat from one side to another side, 

enabling us to stabilize the temperature by a PID feedback control. 

 

 

Figure 0.3: The experimental setup of the polymer-based dry transfer. 
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In Figure 0.4, we give the procedure of typical temperature settings for a round of 

pickup. We start with lowering the stamp until barely touching to the sample. At this 

moment, we slowly heat the sample up to 30 ℃ in a rate about 1 ℃/mins, enabling the 

smooth engagement. This step is crucial to reduce flake folding and bubble trapping. 

Once the stamp and sample have been fully contacted, we gently press the stamp down 

and raise the temperature to 40 ℃ and wait for 10 minutes. For picking the flake up, we 

cool the sample down to the pick-up temperature and lift the stamp quickly. We found 

that setting temperature at 30 ℃ achieves the best yield. After finishing several rounds of 

pickup, we drop the whole stacking down to the target substrate and heat the sample up to 

60 ℃ to release the PPC. 

 

 

Figure 0.4: The temperature setting and procedure of a complete pickup.  
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2.1.3 Post-stacking Treatment 

After stacking, the sample is further annealed to remove the residue from tape and 

PPC. Figure 0.5 shows the optical micrograph before and after thermal annealing at 350 

℃ for 1 hour. As can be seen the residue on both substrate and hBN flakes has been 

largely removed. In addition, we note that the annealing treatment can improve the 

sample quality. In general, we observed the linewidth narrowing of PL emission as well 

as the suppression of defect activated modes in 1L-WSe2 sample, as carried out in 

Chapter 6 and Chapter 9. 

 

 

Figure 0.5: Optical micrograph of hBN/1L-WSe2/hBN stacking (a) before and (b) 
after thermal annealing at 350℃ for 1 hour. The residue on substrate and hBN 
flakes has been effectively removed after annealing. 
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2.2 Polarization-resolved Raman/PL Spectroscopy 

2.2.1 Introduction of Raman Scattering 

Raman scattering has been widely used to probe the vibrational, rotational, and 

other low-frequency phonons in material. As one of the inelastic light scattering 

processes, the incident photons may loss or acquire the energy associated with the 

quantized excitations. Figure 0.6 illustrates the Stokes and anti-Stokes Raman scattering 

in term of photon energy. The energy of the excitation laser is 𝐸FG. The Stokes/anti-

Stokes Raman scattering loss/gain the energy of 𝐸HI  which reflects the material 

properties. The final photon energy 𝐸J = 𝐸FG ± 𝐸HI obeys the energy conservation law 

and can be directly measured by a spectrometer. In addition to energy conservation, a 

valid Raman process obeys momentum conservation law. The momentum conservation 

ensures the total momentum of quantized excitations is zero. For first-order Raman 

scattering (involves only one phonon), the phonon is required to be zero momentum, 

zone-center phonon (the normal modes). High-order Raman scattering may involve the 

multiple phonons with various combination in momentum. For example, the 2D band in 

graphene involves two finite-k phonons which scattered the electron back and force 

between two valleys [39]. 
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Figure 0.6: The schematics of Raleigh, Stokes and anti-Stokes Raman scattering 
processes. 
 

2.2.2 Experimental Setup for Measuring Low-wavenumber Inelastic Scattering 

Figure 0.7 illustrates the optical spectroscopy designed for measuring the 

Raman/PL spectra down to 5 cm-1 from the sample with micrometer size. It is composed 

of light sources(laser), a line filtering system, a microscope, and a spectrometer. Briefly, 

the laser is first cleaned by a spectral filtering system and guided through a beamsplitter 

and then a homemade microscope which is configured in the back-scattering geometry. 

The excitation laser is focused on the sample by a high NA objective lens to achieve the 

sub-micrometer spot size. The scattered light or luminescence from sample are then 

collected with the same objective lens, filtered by notch filters, dispersed by a 

spectrometer, and finally detected by a liquid nitrogen cooled charge-coupled device 

(CCD). 
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In our setup, we employ both single wavelength laser and tunable laser, including 

argon ion laser (including several lines at 476nm, 488nm, 496 nm, 514nm), DPSS 

Nd:YAG laser (532nm), diode laser (405 nm), dye laser and Ti:Sapphire laser. The 

wavelength coverage of dye laser depends on the selected dye. In our system, we can 

achieve the wavelength range by switching two different dyes: 560–640nm for RG6; and 

615–674 nm for DCM. For Ti:Sapphire laser, the wavelength range is 708–970 nm. 

These tunable lasers cover the range of the 1s exciton emission of the H-TMDC (except 

H-MoTe2), enabling us to perform the resonant excitation and emission to investigate the 

light-matter interactions. 

 

Figure 0.7: Optical setup for low-wavenumber micron-Raman/PL spectroscopy.  
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To perform the low wavenumber inelastic light scattering spectroscopy, a spectral 

clean and sharp laser line filter and an ultra-narrow notch/edge filter is required for the 

employed laser wavelength. For single wavelength laser, it’s relative easy to achieve this 

by using the-state-of-the-art Bragg filters (BragGrate™) which provides both laser line 

and notch filtering down to 5 cm-1 for the selected wavelengths. However, for tunable 

laser, we build a homemade tunable laser line filter system to clean the laser. Figure 0.8a 

displays the 4f-optical setup integrated with 2 holographic gratings, which delivers the 

best filtering performance. In Figure 0.8b, we show the spectra of a supercontinuum laser 

before and after spectral filtering with the designed bandwidth about 0.15 nm. We further 

confirm the performance of stray light rejection in our filtering system. In Figure 0.8c, we 

further compare the stray light rejection performance of different setups. As can be seen, 

our 2-grating system delivers the cutting edge of the laser line less than 50 cm-1, 

significantly better than the filtering system equipped only 1 grating. 

For the collection, a triple stage spectrometer (Horiba T64000) is required to 

provide the best capability of Rayleigh scattering rejection. The first two stages are 

configured in the subtractive modes, acting like a tunable edge filter to reject the 

Rayleigh scattered photons. After cutting laser light, the signal can be analyzed by a 

spectrograph in the third stage. 
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Figure 0.8: (a) Optical setup for the 2-grating laser line filter configured with a 4f 
optical relay system. (b) Comparison of the original broadband light sources with a 
filtered spectrum. (c) Comparison of the stray light rejection performance of 1-
grating and 2-grating spectral filtering system. 
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2.2.3 Experimental Setup of Polarization-resolved Spectroscopy 

We introduce several linear polarizers and waveplates into our optical system to 

control and analyze the polarization. Figure 0.9 illustrates three different configurations 

of polarization-resolved spectroscopy we used in the following chapters. Figure 0.9a is 

the schematic of the linear polarization resolved spectroscopy demonstrated in Chapter 4 

and 5. In this configuration, the sample is excited by a linear polarized light with the 

controlled polarization direction relative to the crystal principle axis 𝜃F The direction of 

incident light polarization can be rotated by a half waveplate in between BS and objective 

lens. The back-scattered signal is analyzed by another set of half-wave plate and a linear 

polarizer after BS. Figure 0.9b shows the setup employed in Chapter 3 and 8. We excite 

sample with 𝜎N polarized light and detect the 𝜎N and 𝜎O polarized light in the signal. To 

achieve that, we place a broadband quarter waveplate (Fresnel Rhomb) after BS to 

transform the incident linear polarized light into 𝜎N polarized light. For collection, we 

use the same quarter waveplate to transform the 𝜎N and 𝜎O signals back to the linear 

polarized light to minimize the polarization distortion caused by other optics. Figure 0.9c 

illustrates the optical setup employed in Chapter 6, 7 and 9. In this configuration, we 

excite sample with a linear polarized light and detect the 𝜎N and 𝜎O circular polarized 

signals separately. 
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Figure 0.9: Three different experimental setups of polarization-resolved 
spectroscopy we used in (a) Chapter 4 and 5. (b) Chapter 3 and 8. (c) Chapter 6, 7 
and 9, respectively. 
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2.3 Experimental Setup of Magneto-optical Spectroscopy 

2.3.1 The Setup Integrating with 9T Superconducting Magnet. 

To perform the spectroscopy in the high magnetic field, we further integrate a 

nonmagnetic cryostat with a 9T superconducting magnet in our lab. The magnet has a 2-

inch room temperature bore, enabling us to integrate the polarization-resolved 

spectroscopy easily. We note the strong magnetic field can alter the properties of the 

optics. For example, the magnetic fields can induce the Faraday rotation in objective lens 

which must be considered and calibrated. In addition, the magnetic field may change the 

phase retardation of the waveplate, especially for Fresnel Rhomb due to the bulky 

material. To avoid that, we keep all optics except objective lens at least 3 feet away from 

the magnet bore in our setup. 

2.3.2 Magneto-optical Spectroscopy Setup in NHMFL 

To access the higher magnetic field than 9T, we also perform the polarization-

resolved spectroscopy in the NHMFL in Tallahassee, Florida. We have accessed two 

different setups: the free-space helium bath cryostat integrating with a 17T 

superconducting magnet (SCM3) and a fiber based system in a Helium-3 cryostat 

integrating with a 31T resistive magnet (Cell 9). The optical setup for free-space is 

illustrated in Figure 0.10. In this setup, the sample is mounted on a 3-axis piezo stages. A 

nonmagnetic high NA objective lens is mounted on the probe and cooled down with the 

sample. This design improves the overall stability, enabling us to perform reliable 

measurements on the weak features from the 2s and 3s exciton emission in 1L-WSe2. In 

31T resistive magnet system, the huge magnetic fields as well as large amount of 
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vibrations from the cooling system make the free-space design very challenging. Instead, 

in this setup, all optics are carefully mounted on the probe, as illustrated in Figure 0.11. 

The excitation laser and signals are coupled through the fibers. 

 

 

Figure 0.10: The free-space optical setup with 17T superconducting magnet (SCM3) 
in NHMFL. 

  



 

24 

 

Figure 0.11: The fiber-based optical setup with 31T resistive magnet (Cell 9) in 
NHMFL.  
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CHAPTER 3 

HELICITY-RESOLVED RAMAN SCATTERING OF H-TMDCS 

3.1 Introduction 

The study of polymorphism is to understand how the physical properties change 

with their atomic arrangement. In H-TMDCs, the electronic band structure is extremely 

sensitive to the number of layer in the monolayer limit: 1L H-MoS2 is a direct bandgap 

material while 2L H-MoS2 is an indirect bandgap material [8,9]. An accurate and reliable 

measurement to determine the number of layer is thus crucial when study the 2D 

materials in the atomic thickness level. The state-of-the-art microscopy can directly see 

the atomic arrangement, e.g. scanning tunneling microscope and transmission electron 

microscope. However, these measurements require specific sample preparation process 

and thus are limited in a few applications. Another conventional method to determine the 

number of layer is by measuring the thickness of flakes and then compare with the 

theoretical values from first principle calculation. Atomic force microscopy (AFM) has 

been widely used to measure the thickness of atomic layered material down to sub nm 

resolution. However, experimentally, determine the number of layer only by thickness 

measurement may misinterpret because of the uncertainty of the spacing between 

substrate and crystal [40] and the interlayer spacing in different stacking order 

polytypes [41]. In this chapter, we demonstrate that complementary to AFM, the helicity-

resolved Raman spectroscopy enables us to determine the number of layer and stacking 

orders of H-TMDC unambiguously. Moreover, we discover that while some phonons 

maintain helicity from incident to emitted photon, others can switch it completely out. 
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This points out an important fact: Both 𝜎O and 𝜎N photon can emit from K/K’ valley in 

the nonresonant excitation, challenging the approximation in the core of the valleytronics: 

The 𝜎O/ 𝜎N photons are only allowed to emit in K/K’ valley. Our results consequently 

provide new insights into the relation between the photon helicity and valleytronics in 

semiconducting TMDCs. 

3.2 Six Generic Types of Zone Center Phonon in Atomic Thickness H-TMDCs 

Layered H-TMDCs have a graphite-like structure with each graphene sheet 

replaced with an X-M-X tri-atomic layer, where X is a chalcogen atom (S, Se, Te) and M 

is a transition metal atom (W, Mo). 1L-MX2 has three atoms in its unit cell and their 

vibrations result in 9 normal modes, including 3 acoustic and 6 optical branches. Figure 

0.1 illustrates the normal modes which can be further divided by two types: one is the 

vibration only involves the chalcogen atoms that includes 1 out-of-plane OC modes and 2 

degenerated in-plane IC modes; another is the vibration of relative motion of transition 

metal and chalcogen atoms that includes 1 out-of-plane OMC modes and 2 degenerated 

in-plane IMC modes. 

For multi-layer H-TMDC, the optical phonons within individual MX2 layer 

couple to each other and create new normal modes. The energies of the new optical 

phonon modes are slightly shifted from the corresponding monolayer phonon due to the 

interlayer interactions. Similarly, the acoustic phonons of individual layers couple to each 

other and form new optical phonon branches, including the in-plane `shear’ mode and the 

out-of-plane `breathing’ mode (see Figure 0.2 for the shear and breathing modes AB 
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stacking [42] 2L-MX2). These modes have relatively low energy less than 50 cm-1, 

reflecting that the interlayer interactions are much weaker than the covalent bonding 

within each MX2 layer. These six prototypical types of optical zone center phonons well 

describe all the peaks observed in the Raman spectra. 

 

 

Figure 0.1: The schematic of four intralayer normal modes in 1L H-TMDC. 
 

 

Figure 0.2: The schematic of shear and breathing modes of an AB stacking bilayer 
H-TMDC. 
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We further determine whether the optical phonon is Raman active by applying the 

transformation of irreducible representations based on the point group and symmetry of 

the crystal. Table 0.1 summarizes the irreducible representations for the six prototypical 

types of optical phonons. Monolayer H-TMDC is invariant under the 12 symmetry 

operations in the D3h point group [42,43]. The IMC and OC modes belong to 𝐸′ and 𝐴'′ 

symmetry, respectively and both are Raman active. The IC and OMC modes belong to 

𝐸′′  and 𝐴$′′  symmetry, respectively and both are Raman inactive. Bilayer MoS2 is 

symmetric under inversion and the symmetry operations form the D3d point group. In 

multilayers, the optical phonons in Figure 0.1 couple to form symmetric modes (𝐸R for IC 

and IMC, 𝐴'R for OC and OMC) and anti-symmetric modes (𝐸S for IC and IMC, 𝐴$S for 

OC and OMC). Coupling of the acoustic phonons forms the even 𝐸R shear mode and 𝐴'R 

breathing mode (Figure 0.2). Going further, it turns out the symmetry point group is D3h 

for all odd layers, and D3d for all even layers. For bulk H-TMDC, the unit cell consists of 

2 MX2 units with 6 atoms, and the symmetry space group is the non-symmorphic D46h 

(P63/mmc). The acoustic phonons are odd under inversion while the shear and breathing 

modes are even, and the IC, OC, IMC, and OMC each have one even and one odd. We 

note that in above discussion we only consider AB(2Hc) stacking, which is the most 

stable polytypes for H-TMDCs. 
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Table 0.1: Symmetry representations for phonon modes in bulk and few layer H-
TMDCs 

 

 

3.3 Polarization Selection Rules of Raman Modes in Atomic Layered H-TMDCs 

In this section, we demonstrate the polarization-resolved Raman spectra of 2L H-

MoTe2 with various configurations. In Figure 0.3, four spectra are shown from top to 

bottom are colinear (HH: the excitation and the detected signal are in the same linear 

polarization), crosslinear (HV: the excitation and detected signal are in the perpendicular 

linear polarization), crosscircular (XC: the excitation laser is in 𝜎N but detected signal is 

in 𝜎O circular polarization) and cocircular (CC: the excitation and detected signal are in 

𝜎N circular polarization). As can be seen, the six prototypical phonon modes behave 

differently: The OC/OMC/breathing modes only show up in HH and CC configurations 

while IC/IMC/shear modes show up in HH, HV and XC configurations. 

  



 

30 

 

 

 

 

 
 

Figure 0.3: Polarization-resolved Raman spectra of 2L H-MoTe2, matching well 
with the phonon dispersion acquired by DFT calculation. 

  



 

31 

The observed polarization dependence of Raman intensity is a direct consequence 

of the selection rule in Raman tensors, enable us to determine the phonon symmetry of 

each phonon mode. Briefly, in the nonresonant condition, the Raman cross section can be 

estimated by the equation given by 

𝐴∑ UV𝜀JU𝑅YU𝜀FZU
$[

Y\' ,  (Eq. 3.1) 

where	𝐴 is a scaling constant, 𝑅Y  are tabulated Raman tensors, j is the index 

counting from 1 to the total degeneracy d, 𝜀F  and 𝜀J  are polarization states of the 

incoming and outgoing light [44]. The Raman tensor is related to the phonon symmetry 

and thus provide a route to identify the crystal symmetry. In addition, we summarize the 

Raman tensors of the normal modes of TMDC in Appendix A; the complete list can be 

found in Ref. [44]. 

For 2L H-MoTe2, the OC/OMC/breathing modes we observed in Figure 0.3 are in 

𝐴'R symmetry; the IC, IMC and shear modes are in 𝐸R symmetry. The corresponding 

Raman tensors are given as ]
𝑎 0 0
0 𝑎 0
0 0 𝑏

` for 𝐴'R, and ]
𝑓 0 0
0 −𝑓 𝑑
0 𝑑 0

` ]
0 −𝑓 −𝑑
−𝑓 0 0
−𝑑 0 0

` for 

𝐸R which is doubly degenerated. 

In HH configuration, we assume 𝜀F = 𝜀J = ]
1
0
0
`, the intensity can be calculated 

straightforward as  

∑ UV𝜀JU𝐴'RU𝜀FZU
$[

Y\' = 𝑎 for OC/OMC/breathing modes; 

∑ UV𝜀JU𝐸R,YU𝜀FZU
$[

Y\' = 𝑓$ + 0 = 𝑓$ for IC/IMC/shear modes; 
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In HV configuration, by assuming. 𝜀F = ]
1
0
0
`,	𝜀J = ]

0
1
0
`;  

∑ UV𝜀JU𝐴'RU𝜀FZU
$[

Y\' = 0 for OC/OMC/breathing modes; 

∑ UV𝜀JU𝐸R,YU𝜀FZU
$[

Y\' = 0 + (−𝑓)$ = 𝑓$ for IC/IMC/shear modes. 

 

In CC configuration, we assume the incident and outgoing light are in the same 

circular polarization, i.e. 𝜀F = 𝜀J =
'
√$
]
1
−𝑖
0
`;  

∑ UV𝜀JU𝐴'RU𝜀FZU
$[

Y\' = 𝑎 for OC/OMC/breathing modes; 

∑ UV𝜀JU𝐸R,YU𝜀FZU
$[

Y\' = 𝑓$ + (𝑓𝑖)$ = 0 for IC/IMC/shear modes. 

 

In XC configuration, 𝜀F =
'
√$
]
1
−𝑖
0
` while 𝜀J =

'
√$
]
1
𝑖
0
`; 

∑ UV𝜀JU𝐴'RU𝜀FZU
$[

Y\' = 0; 

∑ UV𝜀JU𝐸R,YU𝜀FZU
$[

Y\' = '
$
(𝑓$ − (𝑓𝑖)$) = 𝑓$. 

 

The above calculations are consistent with the experimental results presented in 

Figure 0.3: The OC/OMC/Breathing modes only show up in HH and CC configurations 

while the IC/IMC/Shear modes only show up in HH, HV and XC configurations. The 

polarization selection rule can be further generalized by introducing 𝜃 and 𝜑, the angles 

between the polarization of incident and outgoing light respected to the principal axis of 
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crystal, respectively. That is 𝜀F = ]
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃
0
`	  and 𝜀J = m

𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑
0

n . This generalization is 

important when working with the anisotropic crystal, such as the T’-TMDC. We will 

discuss more detail in Chapter 4 and 5. 

3.4 Raman Signatures of the Atomic Layered H-TMDCs 

The polarization dependence as well as the energy of the Raman modes provide a 

handy tool for characterization of the family of atomic layered H-TMDC. The discussion 

of the polarization in previous section only depends on the phonon symmetry thus quite 

robust for all family of atomic layered H-TMDCs. Figure 0.4 demonstrates the Raman 

spectra of H-MoTe2 from 1L to 5L. All six peaks show layer dependent energy shift: OC 

and shear modes show the blue shift while IMC and breathing modes show the red shift 

with the increasing number of layer. In shear/breathing/OC modes, we observed those 

modes split when the thickness increases to five layers. The peak splitting can be 

understood by the group theory analysis as listed in Table 0.1: for OC modes, there are 

(𝑁 + 1)/2	 normal modes for 𝑁 = 3 and 5 layers and 𝑁/2 normal modes for 𝑁 = 4 

layers; for shear and breathing modes, there are (𝑁 − 1)/2	 normal modes for 𝑁 = 3 and 

5 layers and (𝑁 − 2)/2 normal modes for 𝑁 = 4 layers. This splitting is known as 

Davydov splitting due to interlayer interactions [45]. However, theoretically such 

splitting should also occur in other modes such as OMC, IMC and IC modes. We 

speculate that this is because the splitting is not large enough compared with the line-

width of the relevant phonon bands.  
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Figure 0.4: Layer dependent Raman spectra of few layer H-MoTe2. The distinct 
peak energies provide signatures of number of layer.  

 

The layer dependent energy shift is also observed with other members in H-

TMDC. providing the signatures of number of layer. Figure 0.5 displays the helicity-

resolved layer dependence of OC and IMC modes of (Mo, W)(S, Se)2. As expected all 

the OC modes have the same helicity as the incident while the IMC modes occur only in 

spectra of opposite helicity. The OC modes of MoS2 and WS2 have similar energies 

410±10 cm-1 [43,45–51], reflecting the fact that they both involve only sulfur atoms and 

that there is only a slight difference between the bond strength (spring constant) in the 

two materials. Similarly OC modes in MoSe2 and WSe2 have energies of 245±5 cm-1 

which are lower due to the larger mass of selenium atoms [43,50,52–55]. For the IMC 

modes, the inverse of the reduced mass is given by the sum of the inverse mass of one 

metal atom and that of two chalcogen atoms. The light mass of sulfur atoms (2×32) thus 

make IMC in MoS2 and WS2 have higher energy (370±15 cm-1) than in MoSe2 (Mo: 96; 

288 cm-1) and WSe2 (W: 184; Se: 2×79; 250cm-1). In particular, in monolayer WSe2, the 

IMC and the OC modes become accidentally degenerate. The phonon energies of H-



 

35 

TMDC is summarized in Appendix B, serving as a reference to determine the number of 

layer. 

 

 

Figure 0.5: The optical images and the layer dependent Raman spectra of OC and 
IMC of atomically thin (Mo, W)(S, Se)2. 

 

In addition to the OC and IMC, we also perform the polarization-resolved low 

wavenumber Raman spectroscopy to learn the layer dependence of the shear and 

breathing modes. As can be seen in Figure 0.6, the spectra are strongly layer thickness 

dependent, with the shear (breathing) mode stiffening (softening) with increasing number 

of layers, and absent in monolayer TMDC as expected. This sensitive dependence, 

similar to that observed in multi-layer graphene [56–58], has been interpreted by a linear 

chain model and provides a sensitive fingerprint for TMDC atomic layer number 
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identification. The advantage of helicity-resolved measurement can be seen in 3L 

TMDCs where the B and S modes have very similar energies. The capability to 

separately resolve S and B modes using helicity-dependent Raman provides higher 

accuracy in distinguishing the subtle mode energy differences, as compared with 

unpolarized or linearly polarized measurements [43,47] in which the B partially overlaps 

with the S mode and can only be analyzed via multi-peak fitting. 

 

Figure 0.6: The layer dependent shear and breathing modes of atomically thin (Mo, 
W)(S, Se)2.  
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3.5 Discussion 

The helicity selection rule of Raman scattering is found to be robust and generic 

from bulk to monolayer for all the H-TMDCs. Moreover, comparing with unpolarized or 

linearly polarized Raman scattering, helicity-resolved Raman spectroscopy is more 

advantageous in distinguishing and assigning phonon modes: OC, OMC and breathing 

modes only show up in the same helicity as the excitation photon while IMC, IC and 

shear modes are opposite. In 1L H-TMDCs, due the breaking of inversion symmetry in 

crystal structure, the valley DoF is coupled to the photon helicity. Specifically, optical 

excitation of excitons in the two valleys requires angular momentum transfer of ±ℏ only 

when at the K points and when the conduction (valence) band is purely composed of 𝑑qr 

( '
√$
[𝑑trNur ± 𝑖𝑑tu]) orbitals. This is however, not exactly true. Tight binding and density 

functional theory calculations show that the electron wavefunctions do have finite albeit 

small contributions from the s and p orbitals of the chalcogen atoms [21,59]. Another 

contributing factor is the wavevector dependent Berry curvature that leads to changes of 

lattice orbital angular momentum away from the K points. In addition, the Raman spectra 

we shown in previous sections are taken with off-resonant exciton of photon energy 2.33 

or 2.54 eV, far from the 1s exciton energy. The higher excitation photon energy may also 

excite the high-energy states contributed from p and s orbitals, which don't follow the 

valley-helicity selection rule. In light of these considerations, observing both  𝜎O and  𝜎N 

from the same valley is not completely surprising. 

Another interesting question then arises: is the IMC mode switching the valley 

index of photo-excited carrier, i.e., is there inter-valley scattering during this Raman 

process? To understand this, we first note that the IMC is a Brillouin zone center phonon, 
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while inter-valley scattering requires large momentum transfer (~108 cm-1) that is three 

orders of magnitude larger than the photon momentum (~105 cm-1). Thus, conservation of 

momentum dictates that the IMC Raman process can only occur within the same valley, 

despite that the photon helicity is switched. Our data consequently point to the conclusion 

that in semiconducting TMDCs, even for the monolayer, photons emitted from the same 

valley can have either 𝜎O or 𝜎N polarization, and the valley-photon helicity selection rule 

can only be approximately true. 

3.6 Summary 

In summary, we study helicity-resolved Raman scattering of the TMDC atomic 

layers. The switching of photon angular momentum by zone-center optical phonons is 

interpreted as a result of phonon symmetry, instead of intervalley scattering and spin flip, 

providing new insights into the relation between photon helicity and valley pumping. 

Comparing with unpolarized or linearly polarized Raman scattering, helicity-resolved 

Raman scattering provides more accurate measurements for assignment the phonon 

modes especially in the presence of accidental degenerate. The low wavenumber shear 

and breathing modes have been demonstrated as a sensitive tool to probe number of layer 

in the atomically thin TMDCs. We further anticipate that, from the generic symmetry 

considerations presented here, the helicity-resolved Raman spectroscopy is applicable as 

a powerful tool for characterizing the interlayer polymorphs by probing breathing modes, 

shear modes, layer stacking etc. in all 2D layered materials.   
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CHAPTER 4 

RAMAN SIGNATURES OF THE  

INVERSION SYMMETRY BREAKING IN T’-MOTE2 

4.1 The Weyl Semimetal Candidates: T’-TMDCs 

Distorted octahedral (T’) transition metal dichalcogenides (TMDCs) are predicted 

to possess topologically nontrivial electronic bands that host quantum spin Hall states [60] 

and type II Weyl fermions [14] in the vicinity of the Fermi energy, which has sparked 

much recent interest in understanding this class of topological layered compounds. As a 

nonmagnetic material system, an important condition for the existence of Weyl nodes is 

the breaking of inversion symmetry [14]. In particular, T’-MoTe2, as a promising 

candidate for studying novel type II Weyl physics, has both centrosymmetric and non-

centrosymmetric polymorphs. 

In addition to the H phase which is the focus in Chapter 3, MoTe2 has another two 

octahedral metastable phases as illustrated in Figure 0.1: the centrosymmetric monoclinic 

(T'mo) phase at room temperature (RT) and the non-centrosymmetric orthorhombic (T'or) 

phase at low temperature (LT) below 150K. The latter was recently predicted to be a type 

II Weyl semimetal. The cousin of T’-MoTe2, WTe2 also a Weyl semimetal candidate, 

having a stable non-centrosymmetric phase T’or phase in all temperature range. However, 

the T’mo-MoTe2 was predicted having much larger separation between Weyl points of 

opposite chirality [61], making the Weyl fermions presumably easier to access 

experimentally with tools such as angle resolved photon emission spectroscopy. This has 

led to intense experimental studies of T’-MoTe2, revealing its rich fundamental properties 
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related to superconductivity, electronic band structure, Fermi surface, lattice vibrations, 

charge transport, etc. [62–71]. 

 

 

Figure 0.1: An example of bulk T’-MoTe2 interlayer polytypes. The schematic phase 
transition from RT T’mo to LT T’or phases induced by lowering temperature across 
the critical temperature.  

 

In this chapter, we first synthesize T’-MoTe2 by CVT method followed by 

thermal quenching to generate the needle-like crystal in a metastable phase. We then 

investigate the vibrational properties of the selected single crystal with Raman 

spectroscopy, density functional theory and symmetry analysis. Compared to the results 

from RT T'mo phase, four new Raman bands emerge in the LT T'or phase, providing the 

signature of phase transition. Furthermore, the crystal-angle-dependent, light-

polarization-resolved measurements indicate that all the observed Raman peaks belong to 

two categories: those vibrating along the zigzag Mo atomic chain (z-modes) and those 

vibrating in the mirror plane (m-modes) perpendicular to the zigzag chain. Interestingly 
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the low energy shear z-mode and shear m-mode, absent from the T’mo spectra, become 

activated when sample cooling induces a phase transition to the T’or crystal structure. We 

interpret this observation as a consequence of inversion-symmetry breaking, which is 

crucial for the existence of Weyl fermions in the layered crystal. 

4.2 Bulk T’-MoTe2 Synthesis and the Raman Characterization 

The T’-MoTe2 crystal used in this work is grown via chemical vapor transport 

method using bromine as the transport agent. High purity Mo, Te, and TeBr4 powders are 

placed in a fused silica tube, 18 mm in diameter and 300 mm in length. The purity of the 

source materials are Mo 99.9 %, Te 99.997 %, and TeBr4 99.999 % (Sigma Aldrich). 

Total Mo and Te are kept in a stoichiometric 2:1 ratio with sufficient TeBr4 to achieve a 

Br density of 3 mg/cm3. The tube is pump-purged with ultra-high purity argon gas and 

sealed at high vacuum prior to growth. 

We apply a three-zone tube furnace with 1 inch diameter to perform the growth. 

The three-zone furnace enable us to maintain the temperature gradient between the source 

end and growth end. The high temperature reaction zone and a low temperature growth 

zone were kept at 1000 °C and 900 °C respectively for 100 hours. At the end of the 

growth, the whole fused silica tube as well as the crystal attached on the wall is thermally 

quenched in a cold water bath to keep the crystal from transitioning into the hexagonal 

phase. 

The as-grown layered crystals have needle-like shape (Figure 0.2a and b), with 

typical lengths of about 10 mm (along the a-axis) and widths of about 1 mm (along the b-

axis). This elongated shape is a result of in-plane anisotropy of the crystal: as illustrated 
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in Figure 0.2c for a monolayer, the strong bonding strength between the Mo-Mo atoms 

distorts the crystal lattice, forming zigzag Mo atomic chains (purple zigzags) to lower the 

free energy of the crystal, resulting in atomic scale periodic buckling. In Figure 0.2c we 

also illustrate a mirror symmetry plane (m, thick red horizontal line) that is perpendicular 

the zigzag chains. The zigzag (z) chain and the mirror (m) provide useful classification in 

T’-TMDC and facilitate the discussion of phonons (vibrations along the zigzag chain: z-

modes; in the mirror plane: m-modes) that we will use throughout this chapter and 

Chapter 5. 

 

 

 

Figure 0.2: (a) Picture of a grown T'-MoTe2 sample composed of many needle-like 
single crystals. (b) A zoomed-in optical image of a T'-MoTe2 single crystal. The 
needle direction is along the a-axis. (c) Top view of atomic arrangement of a 
monolayer T'-MoTe2. The a-axis points along the Mo-Mo zigzag chain (purple 
zigzags); and the b-axis lies in a mirror plane (thick red horizontal line) 
perpendicular to the zigzag chains.  



 

43 

 
Figure 0.3 compares the typical Raman spectra of bulk T’mo-MoTe2 at 300 K 

comparing with its counterpart, bulk H-MoTe2. The three sharp peaks in bulk H-MoTe2 

have been assigned as shear, OC and IMC modes from left to right following the 

convention we used in Chapter 3 for H-TMDCs. However, T’mo-MoTe2 displays distinct 

Raman bands, directly pointing out that the Raman scattering is highly sensitive to the 

intralayer polytypes. In contrast to H-MoTe2 which has 24 symmetry operations (D6h), 

the distortion in Mo atoms lowers the crystal symmetry down to 4 symmetry operations 

(C2v) left. As the results, the size of unit cell become twice bigger, doubling the phonon 

modes. 

 

 

Figure 0.3: Typical Raman spectra of T’mo and H bulk MoTe2.   
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Figure 0.4 displays the Raman spectra of our bulk T’-MoTe2 sample at 78K and 

296K with various polarization configurations. The crystal orientation dependence of 

mode intensity (defined by 𝜃: the angle between crystal a-axis and light polarization) can 

be explained by polarization selection rules, similar to the works have been done in the 

section 3.3. Figure 0.4b-e show detailed RT and LT T’-MoTe2 Raman bands with 𝜃 =

45° and 0° in HV scattering geometry. The 𝜃 = 45° spectra selectively reveal the m-

modes (8 for the LT orthorhombic T’or phase and 6 for the RT monoclinic T’mo phase), 

and the 𝜃 = 0° spectra select the z-modes (5 for LT T’or and 3 for RT T’mo phase). 

Interestingly, in the LT T’or phase, four additional Raman bands become activated as 

compared with the RT T’mo phase; two of these new bands appear at low energies 

whereas the other two appear at high energies, as highlighted by the yellow bands in 

panels (b) and (c). The two new high energy modes are further displayed in the zoomed-

in panels (d) and (e) with the spectra being measured by triple additive scattering, 

enabling us to resolve the two overlapped peaks. These four peaks provide the signature 

of different phases in T’-MoTe2. In particular, the two low wavenumber modes which are 

attributed the two shear modes, mor at 12.6 cm-1 and zor at 29.1 cm-1, directly link to the 

inversion symmetry, i.e. these two shear modes become Raman inactive in T’or due to the 

inversion symmetry is broken [29].  
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Figure 0.4: (a) Schematic of linear polarization-resolved Raman spectroscopy. The 
𝜽 is defined as the angle between crystal a-axis and incident light polarization. (b&c) 
The Raman spectra of T'-MoTe2 at 78 K and 296 K in HV with 𝜽 = 𝟒𝟓° and 𝟎°. The 
yellow bands highlight the four emerging new modes at 78 K. Panels (d) and (e) 
show the zoomed-in spectra of the two new high energy modes. 
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For 𝜃 between 0° and 45°, both the m- and the z-modes have finite intensity. 

Table 0.1 displays the detailed Raman intensity dependence on angle 𝜃 for 13 T’or modes 

and 9 T’mo modes in HH and HV configurations, enabling us to categorize the phonons 

into two generic groups, z-modes and m-modes: z-modes indicate the vibration along the 

zigzag direction while m-modes is the vibration mode in the mirror plane (more 

discussion will be shown by DFT calculation in section 4.3).The angular dependence for 

m-modes in HH scattering is highly sensitive to specific lattice vibration, while in HV all 

the mode intensities display four-fold symmetry, with the m-mode peaks at 𝜃 = 45° and 

z-mode peaks at 𝜃 = 0°, as evidenced by spectra in Figure 0.4b to 4.4e. 
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Table 0.1: The angular dependence (with respect to the a-axis) of Raman intensity of 
mor, zor, mmo and zmo modes. The polarization configurations (HH or HV) and the 
mode energies are noted in each panel. The solid curves are fits using Eq. 4.1–4.4 in 
Chapter 4.3. 
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4.3 Symmetry Analysis and DFT Calculation on T’-MoTe2 Phonons 

Below we explain the experimental observations with symmetry analysis and 

density functional theory (DFT) calculations. We have chosen in Figure 0.2 the in-plane 

a- and b- axes as along the zigzag Mo chain and parallel to the mirror plane respectively. 

The out-of-plane c-axis is also parallel to the mirror plane m, and is thus perpendicular to 

the a-axis; meanwhile its angle made with the b-axis depends on the crystal phase, which 

is 93.44° in T’mo (Figure 0.5a) and 90° in T’or (Figure 0.5b). The difference in the c-axis 

direction has important consequences for crystal symmetry. To understand this, we first 

examine the crystal symmetry as illustrated in Figure 0.5. 

 

 

Figure 0.5: Atomic arrangement of (a)T’mo (b) T’or and (c) H-phase MoTe2. 
 

The T’mo phase has three symmetry operations in addition to translations along 

the primitive lattice vectors, including: inversion (i), a mirror plane (m), and a screw axis 

along the zigzag Mo chain (2'q), where the superscript z stands for 'zigzag' (the symbols 
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are consistent with the International Table for Crystallography) [72]. In contrast, the T’or 

phase only shares the mirror plane symmetry (m) with the T’mo phase. The two other 

symmetry operations for T’or MoTe2 are a screw axis along c-axis (2'|), and a glide plane 

perpendicular to the b-axis (n). The symmetry group of T’mo and T’or MoTe2 are thus C2h 

(No.11 P21/m) and C2v (No.31 Pmn21) respectively [72–74]. For facilitate the discussion 

of the shear modes later, we also illustrate in Figure 0.5c the H-MoTe2 unit cell and its 

inversion centers for comparison. 

Since both T’mo and T’or MoTe2 contain two layers of MoTe2 and 12 atoms in the 

unit cell (shaded area in Figure 0.5a & Figure 0.5b), each crystal hosts 36 phonon 

branches. We use plane-wave density functional theory (DFT) as implemented in the 

Vienna Ab Initio Simulation Package (VASP) [75] to calculate the 36 phonon branch 

dispersions. As standard DFT functionals fail to describe interlayer van der Waals 

bonding correctly, we used the non-local optB86b van der Waals functional [76,77], 

which reproduces the equilibrium geometry of MoTe2 accurately [29,78]. Table 0.2 and 

Table 0.3 show the results of DFT calculation, including first Brillouin zone, phonon 

dispersion, character table for symmetry group, and zone center normal modes with their 

calculated energies as well as the vibrational symmetry representations for both bulk T’mo 

and T’or MoTe2, respectively. We note that all the DFT calculated zone-center optical 

phonons have different energies; this is because the irreducible representations of both 

C2h and C2v are one dimensional, in contrast to the hexagonal phase we displayed Chapter 

3, in which all in-plane phonons are doubly degenerate [28,79]. The symmetry analysis 

from Figure 0.5 also shows that the mirror plane reflection symmetry m is shared both in 

the T’mo and T’or bulk MoTe2 crystals. This provides a generic classification of lattice 
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vibrations in T’-TMDC: one-third of the vibrations along the zigzag chain are odd under 

m operation(z-modes); and two-third of the vibrations parallel to the mirror plane are 

even (m-modes). To make this clear, we group the 12 z-modes and 24 m-modes in Tables 

4.2 and 4.3. We note that this rule can also apply to the atomically thin T’-TMDC layers, 

as we present in Chapter 5. 
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Table 0.2: DFT calculation results of T'mo-MoTe2, including first Brillouin zone, 
phonon dispersion, character table for C2h symmetry group, and the schematics of 
zone center normal modes with their calculated energies as well as the vibration 
symmetry representations.  
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Table 0.3: DFT calculation results of T'or-MoTe2, including first Brillouin zone, 
phonon dispersion, character table for C2v symmetry group, and the schematics of 
zone center normal modes with their calculated energies as well as the vibration 
symmetry representations. The four new modes, 𝒛𝒐𝒓𝟐𝟗.𝟏, 𝒛𝒐𝒓𝟏𝟖𝟔.𝟖, 𝒎𝐨𝐫

𝟏𝟐.𝟔 and 𝒎𝐨𝐫
𝟏𝟑𝟎.𝟖 are 

highlighted in yellow. 
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With the understanding of the crystal symmetry, we are able to figure out the 

polarization selection rules by applying the corresponding Raman tensors (See Appendix 

A). In the back-scattering geometry, the Raman active m-modes have 𝐴R symmetry in 

T’mo and 𝐴' symmetry in T’or; similarly the Raman active z-modes have 𝐵R symmetry in 

T’mo and 𝐴$  symmetry in the T’or phase. The in-plane Raman tensor is thus given 

by [44](In back scattering geometry, we can consider only x and y axis for simplicity): 

for the m-modes, ℜ� = �𝑑 0
0 𝑒� (𝐴R of C2h for T’mo and 𝐴' of C2v for T’or); for the z-

modes, ℜq = �0 𝑔
𝑔 0� (𝐵R  of C2h for T’mo and 𝐴$ of C2v for T’or). The intensity of a 

Raman-active lattice vibration is given by 𝐼 = 𝐴|⟨𝜖F|𝑅� ∙ ℜ ∙ 𝑅|𝜖J⟩|$ , where A is a 

constant, 𝜖F and 𝜖J are polarizations of the incident and outgoing light respectively, ℜ is 

the effective Raman tensor linked to ℜ� or ℜq, R and 𝑅� are the rotation matrix and its 

transpose that account for rotation of crystal or equivalently, light polarization. The 

rotation matrix is given by 𝑅 = �cos	(𝜃) −sin	(𝜃)
sin	(𝜃) cos	(𝜃) �. 

In HV scattering, 𝜖F = �10�, 𝜖J = �01�. The Raman intensities are given by: 

𝐼��� (𝜃) =  [N¡
$
 
$
sin$(2𝜃), (Eq. 4.1) 

𝐼��q (𝜃) = |𝑔|$cos$(2𝜃). (Eq. 4.2) 

In HH scattering, 𝜖F = �10�, 𝜖J = �10�. The Raman intensities are given by: 

𝐼��� (𝜃) = |𝑑	cos$𝜃 + 𝑒	sin$𝜃|$,  (Eq. 4.3) 

𝐼��q (𝜃) = |𝑔|$sin$(2𝜃). (Eq. 4.4) 
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In HV scattering, the intensities of m and z modes are expected to depend on 𝜃 as 

sin$(2𝜃) and cos$(2𝜃), providing convenient classification of the two types of Raman 

bands. We have taken advantage of this fact in Figure 0.4b-e to selectively display m-

modes with HV 𝜃 = 45°, and z-modes with HV 𝜃 = 0°. We note that due to in plane 

anisotropy in dielectric constant and absorption, d, e, and 𝑔 in the effective Raman 

tensors are allowed to be complex [80–82]. Thus in HH scattering, the z-mode scales as 

sin$(2𝜃) while the angular dependence of the m-mode is sensitive to the phase difference 

between d and e, and can exhibit different shapes for different phonons with the same 

symmetry. These are in good agreement with the angular patterns seen in Table 4.1 and 

support our experimental classification and assignment of m and z mode vibrations. With 

this thorough understanding of symmetry representation and lattice classification, we can 

unambiguously assign mor at 12.6 cm-1 as the shear mode vibrating along the b-axis, and 

zor at 29.1 cm-1 as the shear mode vibrating along the a-axis in T’or-MoTe2. 
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4.4 Raman Signature of Inversion Symmetry Breaking in T’-MoTe2  

In this section, we demonstrate that Raman spectroscopy is not only sensitive to 

the intralayer polytypes but also can be a tool to probe the inversion symmetry breaking. 

Conventionally, few methods have been applied to determine the inversion symmetry of 

bulk crystal. First, the microscopy technique with atomic resolution, such as 

Transmission Electron Microscopy (TEM), can directly see the lattice structure. However, 

the specimen preparation for such measurement is extremely complicated and is limited 

to few atoms in thickness and few nanometer in size. Second harmonic generation(SHG) 

measurement is an optical measurement which is sensitive to the inversion symmetry of 

crystal [83]. However, the cross-section of SHG signal is typical small and hence it 

requires specialized sub-ps pulsed laser with high instantaneous power. Raman 

spectroscopy is a non-invasive optical measurement and has been widely used in 2D 

materials community. With the polarization-resolved Raman scattering setup, we will 

able to determine the inversion symmetry by seeing the low wavenumber shear and 

breathing modes. 

With an overall picture of the lattice vibrations as described above, we build an 

intuitive link between inversion symmetry breaking and Raman scattering of the two 

shear modes in the T’-MoTe2 crystals. We first note that T’mo-MoTe2, like the T’or phase, 

has two layers of MoTe2 in its unit cell. The monoclinic crystal thus also supports two 

shear vibrations: one m-mode along the b-axis and one z-mode along the a-axis. The 

reason why these modes evade in Raman scattering measurements at room temperature is 

closely linked to the inversion symmetry and the position of inversion centers. The 

presence of inversion symmetry in T’mo-MoTe2 dictates that all the zone-center lattice 



 

56 

vibrations have either even or odd parity, and the odd ones are Raman inactive due to 

selection rules. With the inversion centers located inside the MoTe2 atomic layers (Figure 

0.5a), we observe that the two shear modes calculated to be at 15.3 and 29.3 cm-1 in 

Table 4.2 are odd under the inversion operation. This explains why at RT the T’-MoTe2 

Raman spectra do not show shear modes in Figure 0.4b. It is interesting to note that bulk 

H-MoTe2 displays its shear mode at 27.5 cm-1 in Figure 0.3, in spite of being inversion 

symmetric. This is because for H-TMDC the inversion centers are located in-between the 

atomic layers (as shown in Figure 0.5c), making the shear modes centrosymmetric even 

under the inversion operation and thus are Raman active. 

Since the shear modes in T’mo-MoTe2 have odd parity, the emergence of shear 

Raman intensity at low temperatures is an indication of cooling induced structural phase 

transition that breaks the inversion symmetry. The process of inversion symmetry 

breaking can be monitored by measuring the evolution of the Raman spectra as the 

temperature changes. Figure 0.6 shows typical evolution of m-mode Raman spectra with 

energies less than 150 cm-1 when the sample is cooled down from RT to 78 K and then 

warmed back up to RT. The Raman bands between 70 and 130 cm-1 appear at all 

temperatures, with slight changes in peak position and linewidth due to cooling or 

warming. The two new m-modes at 12.6 and 130.8 cm-1 which only occur in the T’or 

phase are found to be sensitive to whether the temperature is going down or up; at 236 K, 

the peak intensity is much larger during warming than during cooling. This suggests that 

there is significant hysteresis in the T’mo → T’or → T’mo phase transition. 
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Figure 0.6: The T'-MoTe2 m-modes shown up in Raman spectra with energy less 
than 150 cm-1 under different thermal cycles. The Raman spectra collected here are 
dispersed by a single grating. Two modes 𝒎𝒐𝒓

𝟏𝟐.𝟔 and 𝒎𝒐𝒓
𝟏𝟑𝟎.𝟖 emerge when the sample 

cools down from 296 K to 78 K and persist during warming up to 296 K. 
 

In Figure 0.7 we have plotted the temperature dependence of the peak intensity 

for the shear mode 𝑚"#
'$.) during cooling and warming. The originally missing 𝑚"#

'$.) 

persists up to RT when we warm up from LT and we had to heat the crystal up to 339K to 

make it completely disappear. At low temperatures, the peak intensities of 𝑚"#
'$.) tend to 

stabilize below 200 K and become independent of cooling or warming. This indicates that 

the crystal is stabilized in pure T’or phase, without any admixture from the T’mo at low 

temperatures, making it suitable for probing type II Weyl physics. The shear mode has 

low energy and requires relatively specialized Raman system to perform the 
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measurement; however, the alternative mode at 130.8 cm-1 (highlighted by an asterisk in 

Figure 0.7), which should be easily accessible to most Raman setups, displays behavior 

similar to the shear 𝑚J£
'$.): it appears only in the T’or phase and has hysteresis in concert 

with the 𝑚J£
'$.). We thus conclude that the 𝑚J£

'+,.( mode provides the most convenient 

signature for monitoring the inversion symmetry breaking and the phase transition to the 

T’or structure. One could, in principle, use instead 𝑧"#$%.' and  𝑧"#'().( modes; however we 

have found that these peaks are much weaker than 𝑚"#
'$.) and 𝑚"#

'+,.( in our experimental 

setup. 

 

 
 

Figure 0.7: Temperature dependent intensity of 𝒎𝐨𝐫
𝟏𝟐.𝟔 mode during cooling (dark 

blue) and warming (red). The hysteresis means that T'mo and T'or phases can coexist 
in certain temperature range. 
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4.5 Summary  

In conclusion, we have probed with Raman scattering the inversion symmetry and 

the crystal phase transition of T’-MoTe2. Our investigation provides a generic approach 

for analyzing and detecting the lattice m-mode and z-mode vibrations. The two new shear 

modes that we observed and systematically analyzed were found to be directly linked to 

inversion symmetry breaking in the T’mo–T’or structural phase transition in the crystal. 

The two concomitant high energy modes, especially the 𝑚J£
'+,.(  mode, provide a 

convenient Raman fingerprint for the T’or phase that has raised much recent interest for 

studying type II Weyl fermions. Finally, the thermally-driven stacking changes could also 

occur in atomically-thin T’-MoTe2, raising interesting questions regarding stacking-

dependent vibrational, optical and electronic properties.  
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CHAPTER 5  

PROBING THE DEGRADATION OF 1L T’-(MO, W)TE2  

BY RAMAN SPECTROSCOPY 

5.1 Research Objective and Motivation 

It is of both fundamental and practical interest to develop a thorough 

understanding of T’-(Mo, W)Te2 at the monolayer level. Theory calculations predict the 

quantum spin Hall (QSH) effect in T’ monolayers, a foundation for developing 

topological quantum computing devices, inspiring several experimental studies on thin 

films [84,85] (~10 nm thick) of T’-(Mo, W)Te2. In addition, 1L T’-TMDC can serve as a 

bottom-up starting point for understanding multi-layered and intercalated T’-TMDCs, 

which have been used in the applications for solid state battery electrodes, 

electrochemical capacitors, and hydrogen evolution reactions [86,87]. As it turns out 1L 

T’-TMDC is relatively challenging to work with due to the rapid sample degradation in 

air [88,89]. For this reason, recent optical and electrical studies on T’-TMDCs [84,85,89] 

are limited to multi-layers; and despite recent efforts [90–92], a thorough Raman 

characterization of 1L T’-TMDC is still lacking. 

In this chapter, we focus on the realization of the complete Raman signatures of 

well-protected high quality 1L T’-(Mo, W)Te2, exhibiting sharp and robust intrinsic 
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Raman bands. We also discovered that less protected samples show coexistence of 

phonon spectra of T’-MoTe2 and its degradation products; the two types of Raman 

features exhibit drastically different symmetry properties, and can be unambiguously 

distinguished by light-polarization and crystal-angle resolved Raman tensor analysis. 

5.2 Sample Preparation and Microscopic Characterization 

The 1L T’-MoTe2 studied in this work is grown by chemical vapor deposition 

(CVD) on 300 nm SiO2/Si substrate [71]. To achieve the growth of metastable T’ phase, 

the sample is rapid thermal quench from 700°C to RT [71]. Figure 0.1 shows the optical 

image of a typical sample. The CVD grown 1L T’-MoTe2 flakes have a bamboo-leaf like 

shape. The step-height from substrate to the monolayer is about 0.8 nm as shown by 

AFM measurements in Figure 0.1b, which is consistent with the 0.7–0.8 nm per layer 

thickness from previous studies [93]. 

 

Figure 0.1: (a) The optical micrograph of a typical CVD grown 1L T’-MoTe2 sample. 
All bamboo-leaf like flakes on the image are 1L T’-MoTe2, and the small dark dots 
near center of the flakes are multilayer crystals. (b) AFM image of a monolayer 
flake. The step height is 0.8 nm.   
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The as grown 1L T’-MoTe2 flakes were transferred onto a commercial holey-

carbon TEM grid using a typical wet transfer method for further microscopy 

characterization. he TEM was performed with a JEOL ARM 200CF equipped with a 

CEOS corrector and a high-angle annular dark field detector. The operation voltage is 

kept below 80 kV to avoid sample damage. As shown in the Figure 0.2a and b, the crystal 

grows preferentially along the zigzag chains, which we denote as the a-axis. This can be 

seen from the TEM diffraction pattern (Figure 0.2b): the rectangular reciprocal lattice is 

in accord with the rectangular real space unit cell (light blue rectangle in Figure 0.2c ), 

from which we determine the in-plane unit vector lengths of the crystal to be a = 3.42 Å, 

b = 6.34	Å. For later description of the lattice vibrations we also show in Figure 0.2c the 

mirror plane and zigzag chains, in line with the definition we used for bulk T’-MoTe2 in 

Chapter 4.  

 
Figure 0.2: (a) Dark field TEM image of a 1L T’-MoTe2 flake transferred on top of 
holey carbon film. (b) The selected-area electron diffraction image of a suspended 
1L T’-MoTe2, exhibiting rectangular diffraction patterns. (c) Schematic top view of 
the 1L T’-MoTe2 crystal. The a-axis is aligned with the zigzag direction. The Mo-Mo 
zigzag chains are highlighted by blue lines. The mirror plane which is perpendicular 
to zigzag chains is shown as a red line. The unit cell is denoted as a light-blue 
rectangle. 
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We note that the 1L T’-TMDCs are extremely sensitive to the air, especially to 

the water. We thus need to passivate the flakes by covering by either graphene or hBN 

flakes. For CVD sample, we apply the CVD graphene for passivating 1L T’-MoTe2, 

which is firstly grown on a Cu foil substrate by CVD. It was then transferred off the Cu 

foil substrate by bubble transfer method with a NaOH solution and left afloat in a DI 

water bath. Following the growth of 1L T’-MoTe2 by CVD, the sample is briefly dipped 

inside the DI water bath and the graphene is instantly pulled over the chip to cover the 1L 

T’-MoTe2. The graphene/1L T’-MoTe2 stack is then immediately dried with N2 gun. 

Through this quick passivation method, the 1L T’-MoTe2 flakes are in air and water for a 

handful of seconds which minimizes the degradation. For exfoliate sample, we protect 

sample by covering fL-hBN flakes with dry transfer technique, as we mentioned in 

Chapter 2.1. After passivation, the sample is then transferred to a microscopy cryostat 

and pump to high vacuum (10-6 Torr) for further protection by removing the residue 

water molecules in/on the SiO2. 

5.3 Raman Fingerprint of High-quality 1L T’-TMDCs 

With the knowledge of the zigzag atomic chain direction, we proceed with Raman 

scattering measurements on the 1L T’-TMDCs, paying special attention to the angular 

dependent intensity of modes under different angle between directions of the MoTe2 a-

axis and the light polarization. In Figure 0.3 we display the representative polarization 

resolved Raman spectra of 1L T’-TMDC in four different scattering configurations of HV 

and HH at 𝜃 = 0° and 45°. (See Chapter 2.2.3 for experimental setup and notations) 

Following the naming conventions used in Chapter 4 for bulk T’-MoTe2, we are able to 
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assign all the Raman active peaks we observe in the high quality samples. In 1L T’-

MoTe2, we observe in total nine zone-center optical phonons, including six ‘m-modes’ 

(𝑚(¥, 𝑚''+, 𝑚'$(, 𝑚')¦, 𝑚$¥+ and 𝑚$§,) and three ‘z-modes’ (𝑧%$, 𝑧',$ and 𝑧'%,); in 

1L T’-WTe2, there are six ‘m-modes’ (𝑚(), 𝑚'$,, 𝑚'+), 𝑚')¦, 𝑚$'+ and 𝑚$'§) and 

three ‘z-modes’ (𝑧((, 𝑧',% and 𝑧')+). The high-quality of samples enable us to reveal the 

complete set of nine even-parity zone-center optical phonons, providing reliable 

fingerprints for 1L T’-TMDCs. 

 

Figure 0.3: Polarization resolved Raman spectra of (a) CVD 1L T’-MoTe2 and (b) 
exfoliated 1L T’-WTe2. 
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The assignment and classification for the nine Raman bands can be understood 

from symmetry considerations. In Figure 0.4a we plot the top and side views of 1L T’-

MoTe2 together with its unit cell and symmetry operations. The primitive unit cell, 

denoted as the shaded area, contains six atoms, resulting in 18 Brillouin zone center (Γ) 

phonons. The atomic displacements of these phonons are illustrated in Figure 0.4c. 

Symmetry operations of the crystal include, in addition to translations, identity (E), 

inversion (i), mirror reflection (m), and a screw axis along the zigzag Mo chain (2'q) that 

form the C2h group. Similar to the bulk T’mo-MoTe2, 1L T’-TMDC is centrosymmetric 

with its inversion centers in the center of atomic layer (yellow dots in Figure 0.4a). For 

this reason, half of the 18 zone-center vibrations have even-parity and the other half have 

odd-parity. Since in crystals with inversion centers the even Raman-active and the odd 

infrared-active modes are mutually exclusive, the nine modes we observe are in fact, the 

maximum number of zone-center optical phonons that are allowed to appear in the 

Raman spectra. Another important symmetry of 1L T’-MoTe2 is the mirror reflection 

operation (the mirrors are parallel to the b-c plane perpendicular to the zigzag direction; 

see red lines in Figure 0.4a). We note that this mirror plane operation is also shared by fL 

and bulk T’-TMDC polytypes [29], and thus provides a generic way to categorize 

phonons as: m-modes, atomic vibrations in the mirror plane; and z-modes, atomic 

vibrations perpendicular to the mirror plane.  
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Figure 0.4: (a) Top and side views of 1L T’-MoTe2 atomic arrangement. The unit 
cell and the symmetry operations are illustrated on top of the schematic drawings. 
(b) Character table of the C2h group. (c) The schematics of all zone-center normal 
modes categorized into 4 groups with different symmetry: z-modes with odd parity 
belong to Au symmetry; z-modes with even parity belong to Bg symmetry; m-modes 
with odd parity belong to Bu symmetry; and m-modes with even parity belong to Ag 
symmetry. The intensity angular dependences of the 9 Raman-active modes are 
plotted above the corresponding lattice vibrations. The FWHM of each mode is 
included in the parentheses.   
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5.4 Raman Signature of Degradation in 1L T’-MoTe2 

The Raman data in Figure 0.3 are taken on flakes with the best quality. We have 

found that there is a correlation between optical contrast and sample quality: as can be 

seen in Figure 0.1a, the atomic flakes on the Si/SiO2 substrate have similar shape but 

different darkness, and in general darker samples are of better quality. The variations of 

optical contrast and sample quality in certain areas on the silicon chip are likely due to 

non-uniform passivation from either water residue left during the transfer process or 

incomplete protection due to the voids and cracks in the CVD graphene that were either 

innate from growth or created during the transfer process. 

Raman spectroscopy has been demonstrated in great success to probe the defects 

in atomic layered graphene [94]: i.e. the intensity of D band and the linewidth of G band 

provide signatures of sample quality. However, for atomic layered TMDCs, the Raman 

spectroscopic evidence for sample degradation is still lacking. In this section, we study 

the Raman spectra from four selected flakes from S1 to S4 as shown in a which exhibit 

different optical contrast. The relation between optical contrast and sample quality is 

commonly employed in other air sensitive 2D materials [95,96]. In the lower panel of 

Figure 0.5b, we display the Raman spectra of four flakes with different optical contrast 

from S1 to S4 denoted in panel a. Sample S1 is has `best’ contrast and the Raman 

features are similar to the data in Figure 0.3, indicating the high sample quality. In 

contrast, sample S4, which is poorly passivated and has `poorest’ contrast, displays 

distinct Raman spectra from S1: the intrinsic Raman features of 1L T’-MoTe2 are 

vanishing and instead, two intense new peaks (labeled as A to B) between 100 and 150 
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cm-1 show up. Meanwhile, samples S2 and S3 displays coexistence of Raman features 

from 1L T’-MoTe2 and from the sample degradation. 

 

Figure 0.5: (a) Optical micrographs of selected 1L T’-MoTe2 with different optical 
contrast: S1 to S4 from good to poor contrast. The arrows point to the positions 
where Raman spectra were collected. (b) Lower panel: the Raman spectra for 
samples S1 to S4. The spectra are shifted vertically for clarity. The Raman spectra 
from Te powder are plotted for comparison in the upper panel. 
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To understand the origin of these new peaks, we also measure the Raman spectra 

of tellurium powder (Sigma-Aldrich 99.997%); see the upper panel of Figure 0.5b The 

Raman spectra of Te powder show two prominent modes A1 and E (following the naming 

convention in literatures), [97,98] corresponding to the Te breathing vibration in the basal 

plane and asymmetric stretching vibration along the c-axis, respectively. These are 

consistent with the A and B modes we observe in sample S4, suggesting that Te 

metalloids are likely a by-product of MoTe2 degradation. We note that there are some 

small energy differences between the Raman peaks in Te powder and degraded MoTe2: 

peak A has slightly higher energy in degraded MoTe2 and redshifts from 128 cm-1 in S2 

to 122 cm-1 in S4, approaching the 121 cm-1 peak in Te powder, suggesting different Te 

cluster sizes in S2 to S4 [99,100]. We note that this peak could overlap with the 𝑚'$( 

mode in 1L T’-MoTe2; however the former is typically much more intense and thus 

might be mistakenly assigned to the intrinsic Raman feature of 1L T’-MoTe2 [101]. 

While the Te-like side peak B (~142 cm-1) shows up in the energy range which is 

spectrally clean in the intrinsic spectrum (this is also true for WTe2), acting as a handy 

tool to gauge the sample quality in bulk and atomically thin T’-(Mo, W)Te2. 
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Figure 0.6: The Raman spectra of (a) the poor quality 1L T’-MoTe2 and (b) Te 
powder in HH or HV configuration with 𝜽 = 𝟎° and 𝟒𝟓°. The angular dependences 
of intensity for peaks A and B of degraded 1L T’-MoTe2 and A1 and E for Te 
powder are shown in the inset. 
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To confirm that the Raman peaks A and B are indeed due to sample degradation 

we thus collect polarization and angular dependent data from the degraded sample. As 

can be seen in Figure 0.6a, the spectra taken at 𝜃 = 0° and 45° are almost identical in 

either HH or HV, similar to the ones we acquired on Te Powder (Figure 0.6b), but in 

drastic contrast to intrinsic 1L T’-MoTe2 peaks. The detailed angular dependence of 

peaks A and B are shown in the insets of Figure 0.6a; these are to be compared with the 

angular dependence of the z- and m-modes in Figure 0.4c, confirming that peaks A and B 

have very different symmetry properties. We also performe similar polarization-resolved 

measurements on the A1 and E modes of Te powder as shown in Figure 0.6b, which 

reflect the polycrystalline nature of the Te powder. The angular dependences of the two 

are similar, substantiating our speculation that the new peaks A and B in degraded T’-

MoTe2 are due to chemical reactions that generate clusters of Te metalloid.  

5.5 Excitation Power Control of the Degradation 

To further understand the degradation rate of samples in different quality, we 

perform a set of controlled experiments using in situ Raman scattering to monitor sample 

degradation in ambient conditions. Figure 0.7a and b show the time evolution of Raman 

spectra of a ‘good’ and a ‘poor’ sample. The spectra are recorded continuously in 30-

second step for 5 minutes and the laser power is kept at 1mW focused to a spot size of 

about 1µm. In both samples, we observe increasing intensity of Te-like modes A and B as 

time goes but with different rates. For the ‘good’ sample, the intensity of Te-like modes 

grows while that of peaks due to 1L T’-MoTe2 decreases slowly. For the ‘poor’ sample, 

those 1L T’-MoTe2 modes disappear almost completely after the first 30 seconds; while 
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the Te-like modes keep increasing and getting more and more intense, reaching more 

than twice the intensity of silicon peak in five minutes.  

 

 

Figure 0.7: Spectral evolution of samples with (a) good (similar to S1 in Figure 0.5a) 
and (b) poor (similar to S4 in Figure 0.5b) optical contrast in ambient. 

 

Quantitatively, we summarize in Figure 0.8a the evolution of the intensity ratio of 

mode A to the silicon phonon at 520 cm-1 for the three in situ Raman measurements. For 

the ‘good’ sample the Te(A)/Si ratio increases slowly; for the ‘poor’ sample, the Te(A)/Si 

ratio increases rapidly and saturates after 4 minutes. As a controlled comparison, we also 

conduct similar in situ Raman monitoring on a ‘good’ sample that was placed in the high 
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vacuum pumped for a week at 3 × 10N) torr. In this sample, no additional Te-like modes 

were seen in 5 minutes, indicating negligible degradation. Furthermore, we also examine 

the linewidth and intensity of the m85 mode in Figure 0.8b. The increase of FWHM from 

3.4 to 4.6 cm-1 during the 5 minutes indicates the degradation of sample crystallinity, 

correlated with the intensity decrease which is consistent with previous degradation 

studies of air sensitive 2D materials [90,102,103]. 

 

 

 
Figure 0.8: (a) The intensity ratio of peak A to the silicon mode plotted as a function 
of laser exposure time. (b) the evolution of FWHM and intensity of the m85 mode. 
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5.6 Summary 

In conclusion, the lattice dynamic of CVD 1L T’-MoTe2 and exfoliated 1L T’-

WTe2 are investigated by the polarization and crystal orientation resolved Raman 

spectroscopy. We observed the complete set of zone-center Raman-active modes 

including 3 z-modes and 6 m-modes, providing Raman fingerprints for high-quality 1L 

T’-TMDCs. By monitoring the intensity of Raman features due to sample degradation, 

which are attributed to the Te-metalloid like phonons, we are able to quantitatively gauge 

the quality the 1L T’-MoTe2 crystal. Our work represents a solid advance in 

understanding the fundamental properties of T’-TMDC and provides a metrological tool 

for monitoring the quality of electrochemical and/or topological devices developed with 

T’-MoTe2. 
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CHAPTER 6 

MULTI-PARTICLE BOUND EXCITONIC STATES IN 1L-WSE2 

6.1 Introduction and Motivation 

Many-body correlation is a fascinating topic that has attracted decades of 

experimental and theoretical investigation. In condensed matter systems, ab initio 

simulations are so far lacking for addressing complexes with three or more charged 

particles; and experimentally light emissions due to exciton molecules, or biexcitons, are 

only revealed in a few systems, such as carbon nanotubes, GaAs, CuCl and GaN [104–

107]. In addition, the multi-particle bound states more than 4 particles are never realized 

experimentally. In this chapter, we demonstrate that 1L-WSe2 is an outstanding platform 

to investigate the many-body interaction. We report the experimental observation of 

optical features due to multi-particle bound states in 1L-WSe2. We observe that the four-

particle biexciton as well as the five-particle exciton-trion. Several controlled 

experiments have been demonstrated to confirm our assignments, including power 

dependent, charge doping dependent, temperature dependent and magnetic field 

dependent PL. Most interestingly, the magnetic field dependent PL reveals the unique 

spin and valley configurations for biexciton (exciton-trion): a dark exciton in one valley 

and a bright exciton (intravalley trion) in another valley. This unique intervalley 

configurations for biexciton and exciton-trion result in the anomalous valley polarization 

that has an opposite sign compared to the well-known bright exciton in a magnetic 

field [108,109]. Our findings shed new light on many-body physics of transition metal 
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dichalcogenides, and pave way for developing new valleytronic devices and spin-valley 

entangled photon sources. 

6.2 Many-body Correlated Excitonic States in 1L-WSe2 

Figure 0.1 shows a typical luminescence emission spectrum at 4 K from a high-

quality hBN/1L-WSe2/hBN sample. We observe several intrinsic features from the 

sample in the energy range of 1.64–1.72 eV. The peak with the highest energy is the two-

particle bright exciton X (full width half maximum (FWHM): 3.4 meV, which is among 

the narrowest for WSe2 monolayers  [110–112]), consisting of an electron and a hole 

residing in the same valley with opposite spins (see Figure 0.2 for the corresponding 

spin-valley configurations). This spin-zero bound state has been widely studied, which 

carries opposite angular momentum of ±ℏ in the K and K’ valleys, giving rise to valley-

selective coupling with circularly-polarized optical excitation [10]. 

The bright exciton can further bind an electron in the same or the opposite valley 

to form negative trions (noted as T1/T2 in Figure 0.2). Our as-made sample is slightly 

electron doped, and indeed, we observe T1 and T2 emissions at 29 and 36 meV below X 

(FWHM: 3.6 and 3.7 meV for T1 and T2 respectively), attributable to the negatively 

charged trions [113]. The 7 meV difference in energy has been attributed to that the 

electron-electron interaction induced splitting in the intravalley and intervalley 

trions [114]. Furthermore, the bright exciton can also bind a hole and form the positive 

trions T+ with the binding energy about 20 meV.   
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Figure 0.1: The typical luminescence spectrum of 1L-WSe2 excited by 2.33 eV at 
4K.  Several bound excitonic states are assigned from high to low energy as bright 
exciton (X), biexciton(XD), negative trions (T1/T2), dark exciton (D) and exciton-
trion (TD). 
 

 
 

Figure 0.2: The corresponding valley-spin configurations of the bound states shown 
in Figure 0.1. The spin and valley are encoded by different colors and symbols: 
blue(red) for spin up (down); close (open) for K (K’) valley.  
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While being the most prominent and well-known optical feature in transition 

metal dichalcogenides [11,12,115], it is important to note that energetically in 1L-WSe2, 

the bright exciton X is not the two-particle ground state of the system due to the 

particular spin ordering of the conduction band with respect to that of the valence 

band [21]. Instead, the dark exciton D, the electron and hole have the same spin and 

reside in the same valley, is energetically more favorable [116]. In the out-of-plane 

direction, the dark exciton is optically silent (hence the name). However, with finite in-

plane magnetic field [22] or momentum [24], D becomes visible. While our experimental 

setup is in back-scattering geometry, the finite collection solid angle (numerical aperture 

NA=0.35) and the high quality of our sample enabled us to observe this optical feature in 

Figure 0.1, located about 40 meV below X (FWHM: 2.0 meV), as a result of the 

conduction band splitting and the distinct many-body interactions [22].  

The remainder two emission features in Figure 0.1, denoted as XD at 18 meV and 

TD at 49 meV below X (FWHM: 3.6 and 3.9 meV for XD and TD respectively), are 

assigned as the biexciton four-particle state and the exciton-trion five-particle state 

respectively. XD peak, observed in the first time, can only be resolved in the high-quality 

sample. We assign it as a 4-particle bound state composed by a bright exciton in one 

valley and a dark exciton in another valley. The TD peak, however, has been observed in 

a previous study and attributed to the biexciton [117]. This assignment however, is being 

debated due to the inconsistency with theoretical calculations, in particular the 

anomalously large binding energy [118–122]. As illustrated in Figure 0.2, instead of 

biexciton, we assign TD as a five-particle bound state involving a dark exciton in one 

valley and an intravalley trion in another valley. 
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6.3 Power Dependence of XD and TD Emission 

The nonlinear relation of the emission and excitation power is the one 

characteristic has been observed in the biexciton in other system [104–107]. In Figure 0.3, 

we plot the normalized PL spectra under various excitation power density from 0.32, 3.2 

to 130 W/cm-2. As can be seen, the XD and TD peaks are vanishing in lowest power and 

grow nonlinearly with higher power. Quantitatively, we further extract the intensity of X, 

XD and TD as a function of the incident laser power in log-log scale as shown in Figure 

0.3b. In contrast to X whose intensity is nearly proportional to the incident power, both 

XD and TD intensities rise more steeply (black dashed and dotted lines in Fig.1c are 

drawn as 𝑃 ∝ 𝐼 and 𝑃 ∝ 𝐼$ respectively). providing a first evidence that they arise from 

higher order complexes in the system. Meanwhile it is quite extraordinary that these 

nonlinear features are readily observable with continuous wave (cw) laser excitation as 

low as 10 µW. 
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Figure 0.3: (a) The PL spectra with excitation power of 0.32, 3.2 and 130 W/cm-2. 
The spectra are normalized by the intensity of X to show the nonlinearity of the XD 
and TD. (b) The intensity of X, XD and TD bound states plotted as a function of 
excitation power. The dashed (dot) lines in the figure are the guide of 𝑷 ∝ 𝑰	 (𝑷 ∝
𝑰𝟐	).  
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6.4 Gate Dependence of XD and TD Emission 

To gain further insights into the nature of XD and TD, we fabricate a field effect 

transistor (FET) device using the bottom hBN as the gate dielectric and a graphene as a 

back gate electrode. (see the device schematic in Figure 0.4a) and investigate the gate 

voltage dependence of its luminescence. By applying the voltage on the gate electrode, 

we can modify the charge density in the material, which can be approximately modeled 

by the parallel capacitor model. Figure 0.4b displays gate voltage and emission energy 

mapping of the luminescence intensity at 100 µW excitation power over a wide tuning 

range from –2 to 1 V. It is evident from these mappings that all the emission features are 

intrinsic from 1L-WSe2 and highly sensitive to charge doping. Similar to the sample in 

Figure 0.1, our FET device also has minor electron doping at 𝑉 = 0 V, and we observe 

strong T1, T2 and TD emissions in the absence of any gate induced charge carriers. As we 

remove electrons from the crystal by applying a negative gate voltage, T1, T2 and TD 

rapidly decrease in intensity while X becomes stronger as the sample becomes more 

charge neutral. Concomitantly, the dark exciton D and the biexciton XD also become 

prominent. At even more negative gate voltage, D and XD disappear, and X becomes 

significantly broadened, accompanied by the appearance of a new emission peak at about 

1.71 eV attributable to the positive trion excitation, indicating that the sample is doped by 

holes in this gate voltage range [123]. These observations suggest that XD is a charge 

neutral entity while TD is associated with electron doping. 
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Figure 0.4: (a) Schematic of graphene back gate FET device. (b) The color map of 
PL spectra excited at 2.33 eV at 3K plotted as a function of gate voltage. The 
assignments of exciton complex are denoted on the figure. 
 
 

 

Figure 0.5: The extracted gate dependent intensity of X, D and XD. The last panel 
shows the gate dependent FWHM of X. 
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To be more quantitative, we have extracted the intensity of various emission 

features as a function of gate voltage in Figure 0.5. XD is found to appear only when the 

X linewidth is narrow and its intensity scales with that of D. Combined with the fact that 

XD is a charge neutral nonlinear optical feature, we attribute it to be a biexciton 

consisting of a bright and a dark exciton. This assignment is distinct from previous FWM 

measurements [124,125] where two bright excitons are involved. Our biexciton is 

unlikely to arise from the binding of two X excitons. For a cw excitation power of about 

10 µW focused to a 2 µm spot, assuming an absorption of about 10% and X exciton 

lifetime of 2 ps  [126,127], the bright exciton density is estimated to be 1.7×108 cm-2. 

Equivalently, the average X-X separation is 0.77 µm, which gives little chance for the 

bright excitons to meet each other before decaying through other channels. The dark 

exciton, on the other hand, is the lowest energy 2-particle state in the system (the 

intervalley version of D has the same kinetic energy, but the exchange interaction raises 

its energy by ~10 meV above D), and its lifetime is several orders of magnitude longer 

than that of the bright exciton [22]. It is thus quite reasonable to conjecture that multi-

particle bound states prefer to involve D excitons at low temperatures. We rule out the 

possibility of the XD emission to be two D excitons bound together, since the emission 

energy is higher than the D exciton which would otherwise suggest a negative binding – a 

state that is energetically unfavorable. The assignment of XD as a charge-neutral 

biexciton is further supported by theoretical calculations. Several independent 

simulations have consistently found that the biexciton binding energy in WSe2 is about 

18–20 meV [118–122], which agrees well with our observed XD to be ~18 meV below X. 
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Figure 0.6: The extracted gate dependent intensity of X, T1, T2 and TD. 

 
 

Now we turn to the gate dependence of the TD peak. From our data in Figure 0.6, 

the intensity of TD follows the rising and lowering of the intensities of T1 and T2, 
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𝐸� − ∆�¯= ℏ𝜔� − ∆�¯, i.e., the TD binding energy needs to be counted from the trion 

emission energy. Indeed, the energy separation between TD and T2 is 13 meV, in 

excellent agreement with theoretical calculations. 

6.5 Temperature Dependence of XD and TD Emission 

The binding energies of XD and TD are further confirmed by thermal activation 

measurements. In Figure 0.7, we plot the temperature dependence of 1L-WSe2 

photoluminescence. The XD and TD peaks are found to be highly sensitive to sample 

heating and they disappear in the temperature range of 100 to 130 K. In contrast, the 

neutral exciton and the negative trion emissions survive to much higher temperatures. 

The comparatively more robust trion emission suggests that the binding energies of both 

XD and TD are smaller than that of the trions, further challenging the speculation that the 

TD peak is bound with respect to X. 

 

Figure 0.7: (a) The color map of PL spectra excited at 2.33eV at temperature 
ranging from 3K to 180K. (b) The selected spectra at different temperature showing 
the evolution of TD (orange) and XD (purple) states.   

(a) (b) 
1.65 1.68 1.71

10

60

110

160

E (eV)

TD XD

T 
(K

)

0.00

0.40
Int.

X
-50 0

80K

 

In
te

ns
ity

 (a
.u

.)

E-EX( meV)

10K

´4

´2  
120K  

160K  



 

86 

Quantitatively the temperature dependence of XD and TD intensities are impacted 

by both the formation and the disassociation dynamics of these highly-correlated 

complexes. The D exciton is the lowest energy state in the system; for temperatures 

below 130 K, we can assume that there are plenty of dark excitons in the crystal. This is 

reflected in the dramatic dropping of X intensity at low temperatures [31,116], as well as 

our observation of relatively strong dark exciton emission in a backscattering optical 

setup with relatively small NA. The formation process can thus be assumed to be 

determined by the population of the minority species, namely XD by X and TD by T in 

the system, which we approximate by the luminescence emission intensity of the neutral 

and charged excitons. By normalizing the intensity of XD and TD to the intensity of X 

and T respectively, we quantitatively characterize the thermal dissociation of XD and TD 

as a function of temperature in Figure 0.8. This thermally activated disassociation can be 

captured by using the thermal activation equation considering only one binding energy: 

𝐼 = ±²

'O³¡
´
µ¶
·¸¹

     (Eq. 6.1) 

where 𝐼,  is the intensity at 0 K, 𝐸º  is the binding energy, 𝑘¼  is Boltzmann 

constant, and A is a fitting constant. Using Eq. 6.1 to fit our experimental data, we find 

that the binding energy of XD and TD to be 18–23 meV and 13–20 meV respectively. 

These values are in reasonable agreement with the theoretical calculations [118–122] as 

well as the binding energy counting alluded above. 
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Figure 0.8: The normalized intensity of (a) XD and (b) TD are plotted as a function 
of temperature. The decrease of intensity reveals the thermal activated dissociation 
with corresponding binding energies. 
 

6.6 Zeeman Effect: The Magnetic Dipole Moments in 1L-WSe2 

The biexciton and the exciton-trion complexes possess remarkable valleytronic 
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emission intensities from different channels thus reflect the degree of valley polarization 

of the corresponding underlying excitonic species. 

Figure 0.9 shows the intensity map of 𝜎N  luminescence for magnetic fields 

ranging from –8 to 8 Tesla. Both XD and TD emissions obey well the valley-helicity 

selection rule, namely, only the K’ valley electron-hole recombination is allowed in the 

𝜎N	channel, similar to X, T1 and T2. In contrast, this valley-helicity locking is broken for 

the D exciton, and both K and K’ dark exciton recombination shows up in the 𝜎N 

luminescence emission, giving rise to the cross pattern in Figure 0.9. This observation 

reiterates the fact that the valley-helicity locking is for angular momentum that is 

perpendicular to the atomic layer [10]. Instead, the D emission arises from radiation with 

momentum that is not perfectly perpendicular to the atomic layer; the projection of 

exciton spin and angular momentum to the light propagation direction allows for 

coupling of D in each valley to both 𝜎O and 𝜎N radiation. 
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Figure 0.9: The color map of 𝝈N PL spectra excited at 2.33 eV in the perpendicular 
magnetic field from –8 to 8 Tesla. 
 

 

Figure 0.10: The schematic of spin-valley configurations and the Zeeman shift of X 
and D states at B = 0 T and B > 0 T. 
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The magnetic field dependent energy shift in Figure 0.9 is governed by the 

Zeeman effect 𝐸¾ = 𝜇ÀJÀÁÂ𝐵,	 where 𝜇ÀJÀÁÂ is the total magnetic moment of the exciton in 

1L-WSe2, composing of three components from the spin, the atomic orbital, and the 

valley. As illustrated in Figure 0.10, 𝜇ÀJÀÁÂ = 𝜇Ã + 𝜇J + 𝜇Ä , where 𝜇Ã = 2𝑠𝜇¼ , 𝜇J =

𝑚𝜏𝜇¼; 𝜇Ä = 𝛽𝜏𝜇¼; 𝑠, 𝑚 and 𝜏 are quantum number of spin (𝑠 = ±1, for spin up/down), 

orbital  (𝑚 is determined by the angular momentum of the atomic orbitals) and valley 

(𝜏 = ±1 for K or K’ valley), respectively; 𝛽 is the orbital contribution calculated from 

Barry curvature; 𝜇¼ = 0.058 meV/T is the Bohr magneton. For the spin terms, the 

parallel spin alignment of the conduction and valence bands in the bright exciton cancel 

out the net magnetic dipole moment, yielding 0	𝜇¼ for both K’/K valley. However, for 

dark excitons, the opposite spin configuration contributes ±2	𝜇¼ for K’/K valley. The 

total orbital terms sum up the contribution from lowest conduction band (c1) and top 

valence band(v1). The first principle calculation reveals that in 1L-WSe2, c1 and c2 band 

are dominant by 𝑑qr (𝑚 = 0) orbital while the v1 band is dominant by 𝑑trNur + 𝑑tu 

(𝑚 = 2) [21], yielding ±2	𝜇¼  contribution for K’/K valley. The magnetic moments 

contributed by the valley term are originated from the Barry curvature induced the self-

rotation of electron wavepacket. Here, we apply a three-band model and assume the 

parabolic bands. The contribution of the magnetic moments from the Berry curvature is 

approximated by 𝜇Ä = 𝛽𝜏𝜇¼ = (�∗
�²
)𝜏𝜇¼, where 𝑚∗ is the effective mass calculated for 

each band, 𝑚, is the free electron mass. By plugging the number 0.28	𝑚,, 0.39	𝑚, and 

0.36𝑚, for 𝑚∗N|', 𝑚∗N|$ and 𝑚∗NÄ', yielding the total magnetic moments in K’/K valley 

are ±0.08	𝜇¼  for X and ∓0.03	𝜇¼  for D [128]. Summarizing all the contributions in 

Figure 0.10, we predict the g-factor of X and D is about 2.08 and 3.97	𝜇¼, respectively. 
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Experimentally, we can derive the g-factors by fitting the slopes in Figure 0.9. XD 

and TD have the same slope as X, T1 and T2, and g = 2.17; while g is 4.58 for D. These 

results are in the same trend as our prediction but slightly off in magnitude based on our 

models. The valley-helicity locking and the Zeeman g-factors of XD and TD emission 

exclude the physical picture where XD and TD emissions arise from radiative 

recombination of the disassociated dark exciton with finite in-plane momentum, and 

provide further evidence that the radiative emission of these four- and five-particle bound 

states are linked to either bright excitons or trions, supporting our interpretation of their 

formation and disassociation process as well as their binding energy. 

6.7 Valleytronic Properties of XD and TD 

Another important information regarding the valleytronic properties of XD and 

TD is encoded in the intensity of the Zeeman-split peaks. The off-resonance laser 

excitation with linear polarization we use populates both valleys of 1L-WSe2 equally with 

electrons and holes. However due to the breaking of valley degeneracy, the formation 

probability of multi-particle bound states in the two valleys are non-equal and occupation 

of lower energy states is preferred. The emission intensities from different channels thus 

reflect the degree of valley polarization of the corresponding underlying excitonic 

complex. 

Figure 0.11 plots the spectral intensities of X, D, XD and TD in 𝜎O and 𝜎N 

channels at 8 T. For X we observe that the 𝜎O emission at K valley is more intense than 

𝜎N at K’: this is understandable since the K valley bright exciton has lower energy at 

positive magnetic fields. For XD and TD in Figure 0.11c&d, we also observe that the 𝜎O 
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emissions have lower energy than the 𝜎N, confirming again the origin of the radiatively 

recombined electron and hole. What the unusual is their intensities: the lower energy 𝜎O 

emission for XD and TD are significantly weaker than the higher energy 𝜎N emission. 

This somewhat counter-intuitive observation is a manifestation that XD and TD are 

intervalley complexes, as we discuss below. 

 

 

Figure 0.11: The luminescence spectra of X, D, XD and TD emission features in 𝝈O 
and 𝝈N helicity at 8 T. Valley polarization is defined as 𝑷𝐕 = (𝑰𝝈Ì − 𝑰𝝈´)/(𝑰𝝈Ì +
𝑰𝝈´). 
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Following the convention established by previous studies [11,12,115], we 

quantify the valley polarization by: 

𝑃Í = ±
ÎÌN±Î

´

±ÎÌO±Î´
  (Eq. 6.2), 

where the 𝐼ÏÌ and 𝐼Ï´ are the integrated emission intensity from the 𝜎O and 𝜎N 

channels respectively. Using Eq.(6.2), we find 𝑃Í to be 0.05 for X, −0.28 for XD and 

−0.33 for TD. The negative 𝑃Í indicates that the dark excitons involved in XD and TD 

reside in the opposite valley from that of X and T; see the schematic illustrations in 

Figure 0.2. In the presence of a magnetic field, there exist lower Zeeman D excitons, 

which due to the intervalley nature of XD and TD, necessarily bind to the higher Zeeman 

X and T. As we discussed above, the radiation process of XD and TD involves the 

disassociation of the D exciton, and the X and T left behind then radiatively recombine. 

Hence the higher energy XD and TD emissions are more intense. 

We note that using Eq. 6.2 for the dark exciton in Figure 0.11b, one would obtain 

a zero 𝑃Í, reflecting that in the absence of valley-helicity locking  [10]. Nevertheless, the 

different intensities of the lower energy and higher energy Zeeman peaks 𝐼Ð and 𝐼� by 

summing up the 𝜎O and 𝜎N contributions, still reflect the population difference of the 

Zeeman split dark excitons, and as expected 𝐼Ð is larger than 𝐼�, similar to the bright 

exciton X. If we define the dark exciton valley polarization as 𝑃Í′ =
±ÑN±Ò

±ÑO±Ò
, we find 𝑃Í′ to 

be 0.5. This value is much larger than the 0.05 𝑃Í for X, due to the larger Zeeman 

splitting of D, as well as the absence of Maialle-Silva-Sham intervalley exchange 

interaction [129] that has been shown to cause valley depolarization of X [31]. It is also 

interesting to note that 𝑃Í′ is larger, but reasonably close to the absolute value of 𝑃Í for 



 

94 

XD and TD. This provides yet another evidence that D is involved in XD and TD that we 

observe, and its valley distribution plays a dominant role in the large valley polarization 

of the four- and five-particle states, as compared to the bright excitons. 

6.8 Summary 

In summary, we observed six intrinsic low-energy emission features arising from 

bound quantum states in 1L-WSe2. The presence of strong Coulomb interaction and the 

high quality of our sample enabled observation of the four-particle XD and five-particle 

TD bound states under a non-resonant continuous wave excitation. We assign XD as the 

intervalley biexciton composed of a spin-1 dark exciton and a spin-0 bright exciton, and 

TD as the intervalley exciton-trion consisting a spin-1 dark exciton and a negatively 

charged trion. These assignments may also impact the current understanding of biexciton 

and exciton-trion complexes in similar systems such as MoS2, MoSe2, and WS2 in which 

the assignment of nonlinear optical features [26,130–132] is also being debated. 

Luminescence measurements at finite magnetic fields reveal the unusual negative valley 

polarization for the XD and TD emission, highlighting the role of dark excitons in 

forming the multi-particle bound states and their intervalley nature. Our results reveal 

rich many-body correlated excitonic physics and pave way to novel applications such as 

those involving valley encoded quantum information.  
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CHAPTER 7 

LUMINESCENT EMISSION FROM RYDBERG EXCITONS 

OF 1L-WSE2 IN HIGH MAGNETIC FIELDS 

7.1 Introduction and Motivation 

Exciton, one of the fundamental excitation in the solids, is composed by an 

electron and a hole bound by Coulomb attraction. Excitons in the solid-state materials can 

interact with lattices as well as other quasiparticles, providing an informative tool to 

study the material properties and the many-body interactions. For example, ground-state 

1s exciton in 1L-TMDCs can be viewed, from many perspectives, as a benchmark for 

optical features of these atomic layers. It has a size and binding energy in-between the 

Wannier-Mott and Frenkel types of excitons because of the anisotropic dielectric 

screening. In addition, exciton-polariton and the interlayer exciton are extensively studied 

to demonstrate the Bose-Einstein condensation of exciton or biexciton.  

In Chapter 6, we have shown the observation of the multi-particle bound states for 

the 2D excitons at lower energies. However, the relatively large 1s exciton binding 

energy opens a decent energy window of a few hundred meV below the free particle 

bandgap for studying excited exciton states. Analogue of hydrogen atom, exciton has 

several quantized excited states encoded by the principal quantum number (n), angular 

momentum quantum number (l), and magnetic quantum number (m). The highly-excited 

Rydberg states can be extensively populated up to few μm in space and thus can have 

longer radiative lifetime due to the wide separation of electron and hole 
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wavefunctions [133]. Studying excited states of Rydberg exciton have its fundamentally 

interests, such as the size dependence of the Coulomb exchange interaction [31] and 

Coulomb blockade effect between excitons with different energy states which has been 

investigated in conventional 3D semiconductors [133–135]. 

Previous studies have demonstrated using the detection of energy separation of 

Rydberg states to estimate the binding energy by differential reflectance (DR), second 

harmonic generations (SHG) and photoluminescence excitation (PLE)  [17–19]. However, 

due to the sample variation and the uncertainty of measurements, the peak assignments 

are still under debates, resulting in the ambiguous estimation of binding energy. In this 

chapter, we demonstrate for the first time the observation of luminescent emission up to 

4s excited states of the Rydberg excitons in the high quality hBN sandwiched 1L-WSe2 

sample. By measuring the diamagnetic shift, we confirm the assignment of Rydberg 

excitons at different principle quantum numbers up to 4s exciton. This also enables us to 

estimate the 1s exciton binding energy is about 170 meV, which is significantly smaller 

than most previous studies. In addition, the Zeeman splitting of the 1s to 3s states exhibits 

a monotonic increase of g-factor, reflecting nontrivial magnetic-dipole-moment 

differences between ground and excited excitons. We interpret this observation as a result 

of the joint action of the different spreading of the exciton states in the momentum space 

and the k-dependent magnetic dipole moment. 
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7.2 Magneto-optical Measurements on the Rydberg Excitons in 1L-WSe2 

Photoluminescence (PL) spectroscopy is a popular technique that has been widely 

employed to study the excitonic physics in H-TMDCs. While it is straightforward to 

observe the 1s exciton emission from TMDC monolayers, radiative emission from 

excited Rydberg states such as the 2s exciton is relatively challenging due to Kesha’s rule: 

photon emission quantum yield is appreciable only for the lowest energy excited state, 

which for the charge neutral exciton, is the 1s exciton. In literatures, Rydberg excitons of 

2D-TMDCs have been studied in high magnetic fields before, using both differential 

reflectance (DR, ∆𝑅/𝑅) and magneto-PL spectroscopy [136–139]. These two techniques 

have different advantages and disadvantages. In reflectance/absorption spectroscopy, by 

performing high-order derivatives on heavily averaged and smoothed spectra, originally 

small and subtle features can be brought visible, and excited Rydberg states have been 

revealed this way even at zero magnetic field and room temperature [18,140]. On the 

other hand, due to the multi-layer structure (e.g. SiO2 and hBNs) that causes multiple 

reflections and interference, the spectra are typically distorted and have large sloping 

background, making accurate determination of Rydberg state energy challenging. The PL 

typically gives much better-defined emission peaks that make the peak energies 

straightforward to determine. However, due to Kesha’s rule, radiative emission from 

excited excitons is difficult to observe, as a result of their lower population density and 

smaller radiation dipole moment, as well as the strong competition from other intrinsic 

and extrinsic decay channels. Another disadvantage of PL spectroscopy is the typical 

existence of a Stokes shift between PL and absorption due to disorder [141]. This is 

especially important in the context of our investigation of Zeeman and diamagnetic shifts 
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here, as the unknown magnetic field dependent Stokes shift may complicate the 

interpretation of data. These disadvantages of PL spectroscopy are alleviated in our hBN-

sandwiched 1L-WSe2 sample due to the superior sample quality. 

To ensure the reliability of our measurement and analysis, we performed both PL 

and DR measurements at NHMFL with a cryostat designed for free space light coupling 

integrated with a 17 T superconducting magnet (See Figure 0.10 for the setup). In Figure 

0.1, we plot the PL spectra along with the DR spectra as well as its 2nd derivative (2DDR) 

at 5 K and 17 T. For 1s exciton, the strong signal enables us to determine the peak energy 

by all three methods unambiguously. The energy obtained using the three different 

methods are consistent, indicating near-zero Stokes shift. For excited Rydberg states, we 

can see 2s and 3s exciton peaks clearly in the PL spectrum. The DR spectrum also shows 

the 2s and 3s absorption dips quite clearly. However, there is a large sloping background 

and the significant distortion due to the interference effects induced by the multiple 

dielectric layers in our hBN/1L-WSe2/hBN sample on an SiO2/Si chip make assignment 

of the absolute peak position less accurate. The sloping background can be removed by 

performing the 2nd derivative of the ∆𝑅/𝑅 spectra (2DDR), and we can extract the peak 

energy by fitting the dominant peak with Gaussian functions; see Figure 0.1. Note that in 

the 2DDR spectra, several sharp and tiny artifacts show up in the 3s energy range 

(presumably coming from either the optics or light sources; we tried both supercontinuum 

laser and halogen lamp) and cannot be averaged out. The amplitude of these features is 

about 0.2%, making the accurate extraction of 3s and 4s dip positions challenging. We 

thus focus on the 2s exciton to compare the magnetic shifts measured by PL and DR 

methods. 
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Figure 0.1: (a) The comparison of the PL, differential reflectance (DR) and the 2nd 
derivative differential reflectance (2DDR) spectra at 17 T. The dashed lines indicate 
the peak energy extracted from PL spectra. (b) The zoom-in spectra for 2s and 3s 
excitons. 
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Although the spectral distortion results in a sizable artificial blue shift in the 2s 

DR and 2DDR spectra as demonstrated in Figure 0.1b, the extraction of magnetic shifts 

are still quite reliable. The 17 T system allows us to measure both 𝜎N and 𝜎O helicity 

photons at the same magnetic field. We extract the Zeeman-split 2s exciton energies and 

calculate their difference ∆𝐸 and average Eavg, which are the quantity related to the 

Zeeman and diamagnetic shifts respectively (see Eq. (7.1) below). Figure 0.2a & b 

compare the results extracted from PL and 2DDR. We observe that, aside from the 

artificial overall blue shift due to distortion effect in DR spectra, the results are quite 

consistent in both Zeeman and diamagnetic shift analysis. In Figure 0.2a, the two data 

sets overlap well and give the same slope with an uncertainty less than 2%. Figure 0.2b, 

both data set can be well fitted by the same quadratic curves with uncertainty of about ~ 

4% in the quadratic coefficient (the two fits in Figure 0.2b used the same quadratic 

coefficient). Given that the analysis of PL and reflection measurement is consistent, we 

focus below on the magneto-PL data which are measured up to 31 Tesla, and enables 

more reliable determination of the energy of Rydberg excitons. 
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Figure 0.2: (a) The magnetic field dependent energy difference of 2s exciton of 𝝈N 
and 𝝈O  signals extracted by PL and 2DDR spectra. (b) The magnetic field 
dependent average energy of 2s exciton of 𝝈N and 𝝈O signals extracted by PL and 
2DDR spectra. 
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7.3 Diamagnetic Shift of the Rydberg Excitons in High Magnetic Fields 

With the confidence of our data analysis, we can analyze the data quantitatively 

for the Rydberg excitons. At our maximum field of 31 T, the cyclotron energy ℏ𝜔| ≈

ℏ𝑒𝐵/𝑚¡ of the electrons is given by 7.2 meV. This is much smaller than the binding 

energy of the exciton, which is about 170 meV for 1s exciton. In this weak field limit, the 

magnetic field dependence of exciton energy can be described by 

𝐸(𝐵) = 𝐸, − (𝜇|' − 𝜇Ä')𝐵 +
¡r

(�Ô
⟨𝑟$⟩𝐵$,  Eq. (7.1) 

where 𝐸, is the exciton energy at zero field; 𝜇|' and 𝜇Ä' are the total magnetic 

moments of the lowest conduction and top valence electron states respectively; 𝑚£ =

�Ö
∗�×

∗

�Ö
∗O�×

∗  is the reduced mass of the exciton; ⟨𝑟$⟩ = ⟨Ψ|𝑟$|Ψ⟩ is the expectation value 

calculated over the exciton’s wavefunction which provides a measurement of the exciton 

size. The first term is called Zeeman shift which is linear in B and the second term is the 

diamagnetic shift which is quadratic. We thus can separately extract the two contributions 

from the exciton energy vs. magnetic field plot by calculating the difference and average 

energies of PL of opposite helicity in the same field (see Figure 0.2) or PL of same 

helicity under opposite magnetic field. 

Figure 0.3 displays the 2D map of PL intensity as a function of magnetic field B 

ranging from −31 to 31 T. The intense peak shown in the left subpanel at about 1.73 eV 

is the 1s exciton, whose peak position evolution is dominated by the Zeeman shift; the 

peak energy shifts linearly with B field. In the higher energy region from 1.85 to 1.95 eV, 

at low fields, we observed a well-defined peak at 1.86 eV and a broad feature centered 

around 1.88 eV. The peak at 1.86 eV has been assigned as the PL from 2s exciton [31]; 
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here its prominent deviation from the linear Zeeman shift as compared to the 1s exciton 

indicates the sizable contribution from the quadratic term, providing a smoking-gun 

evidence that it has larger diameter than 1s. The ~1.88 eV broad feature has been 

attributed as the 3s exciton before [142]. From Figure 0.3, this feature becomes better 

defined at high fields, and its energy versus B is even more curved than 2s. This suggests 

that at low fields only part of the spectral weight of the broad feature is due to the 3s 

exciton, while at high fields 3s dominates the spectra. The strong magnetic fields are 

indeed helpful for resolving the excited Rydberg excitons. As seen in the spectra at −31T 

in Figure 0.3, we observe a well-defined peak attributable to the 4s exciton at around 

1.925 eV, in accordance with its even larger curvature vs. B (dashed white curve). 
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Figure 0.3: The 2D contour plot of PL spectra as a function of magnetic field from  
−31 to 31 Tesla. The 1s, 2s, 3s and 4s excitons are denoted on the top of the panel. 
The black and white dashed curves on 3s and 4s excitons are guided by eye. We also 
include the spectra taken on 0 T and −31 T on the right panel.   
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7.3 Diamagnetic Shift of the Rydberg Excitons in High Magnetic Fields 

In Figure 0.4a we have plotted the average energy of the 𝜎N PL emission at 

positive and negative fields as a function of B2. Defining 𝐸[FÁ = 𝛼𝐵$ = ¡r

(�Ô
〈𝑟$〉𝐵$, we 

find 𝛼 to be 0.5, 5.8, and 17.6 𝜇eV/𝑇$ for 1s to 3s excitons, which provide quantitative 

measurement of the size-mass ratio for these Rydberg exciton species. By extrapolating 

the diamagnetic shifts to zero field as shown in Figure 0.4, we find 𝐸, to be 1.727(1), 

1.858(1), 1.884(1) eV for 1s to 3s exciton, respectively, evidently showing that the 

binding energy of 1s exciton is at least larger than 157 meV. Our data can be well fitted 

by the theoretical model by assuming a quasi-particle gap of 1.9 eV and a reduced mass 

of 0.22𝑚,, where 𝑚, is the bare electron mass. As demonstrated in Figure 0.4b, we find 

that the calculated exciton energy: 1s, 1.731 eV; 2s, 1.859 eV; and 3s, 1.882 eV, in 

reasonable agreement with experimental data. This also suggests that the binding energy 

of ground state exciton can be estimated around 170 meV. This binding energy is close to 

a recent DR measurement at high magnetic fields [143], but is significantly smaller than 

previous zero field DR results [18], which might be due to the different dielectric 

environment. 
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Figure 0.4: (a) The extracted energy of Rydberg excitons plotted as a function of B2. 
(b) The theoretical and experimentally extrapolated energies of Rydberg excitons at 
B = 0 T  
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7.4 Reduced Mass and Radius of Rydberg Excitons in 1L-WSe2 

The quantity 𝛼 extracted in Figure 0.4a only fix the relation of the reduced mass 

𝑚£ and radius for different excited states. In our experiment, we did not directly measure 

the exciton reduced mass. In literature, the effective mass measurements on 1L-WSe2 

have been demonstrated by several different techniques while the results are still in 

debate. Magneto-transport measurements have been demonstrated on high quality hBN-

sandwiched 1L-WSe2 [144,145]. By fitting the cyclotron frequency extracted from 

Shubnikov-de Hass oscillations, the effective mass of hole has been estimated as 

𝑚I = 0.45 to 0.5𝑚, , which is consistent with the value reported in ab-initio 

calculation [21,128]. In addition, a recent magneto-optical measurement probes the inter-

Landau level transition in K/K’ valley separately by the helicity-resolved reflection 

spectroscopy [146]. The reduce effective mass of exciton can thus be estimated from 

𝑚£ =0.27 to 0.31𝑚, ; the variation comes from the screening effect of Coulomb 

interaction driven mass normalization. Above discussion implies that the effective mass 

may have strong sample to sample variation and sensitive to the dielectric environments. 

By assuming the 𝑚¡~𝑚I (the measurement on 𝑚¡ is still lacking), we can summarize 

the 𝑚£	is ranging from 0.22 to 0.31𝑚, based on literatures. Using the same reduced mass 

in the fittings of Rydberg exciton spectra, 𝑚£ = 0.22	𝑚,, we thus can determine the radii 

of exciton as 2.1, 7.2 and 12.6 nm for 1s, 2s, and 3s exciton, respectively. 
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Figure 0.5: The contour plot showing the relation of reduce mass and radius and the 
corresponding 𝜶 (in log scale). The triangular dots indicate the calculated radii of 1s 
to 3s exciton by using	𝒎𝒓 = 𝟎. 𝟐𝟐	𝒎𝟎. 
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Although the energy is quite consistent with our theoretical model, we cannot 

perfectly match our experimental data of diamagnetic shift with under the same 

theoretical framework. In Figure 0.5, the solid curves on the color map describing the 

relation of reduce mass and radius for 1s to 3s excitons with the corresponding 𝛼 we 

acquired experimentally; the magnitude of 𝛼 is encoded in colors. In the same plot, we 

also include few data points by applying 𝑚£ as 0.22 𝑚, and calculating the radius of the 

1s to 3s Rydberg excitons. As can be seen, the theoretical value in general underestimate 

the radius size comparing with the experimental results. This could be explained by the 

wave function we used in our model is approximated by the 2D hydrogenic wave 

functions. It is expected that to be improved if the proper exciton wave functions, 

obtained by numerical diagonalization of the Hamiltonian are used instead. 

 

7.5 Size Dependent Magnetic Dipole Moment of Rydberg Excitons 

We now discuss the Zeeman shift of the different Rydberg excitons, which is 

obtained by subtracting the peak energies at positive and negative magnetic fields to 

eliminate the contribution from the diamagnetic shift: ∆𝐸¾ =
à(¼)Nà(N¼)

$
=g𝜇¼𝐵, where 

𝜇¼ is Bohr magneton and g is the normalized factor to quantify the exciton magnetic 

dipole moment. Figure 3d displays ∆𝐸¾ as a function of magnetic field for 𝜎N emission 

which is linked to excitons in the K’ valley. As expected, the energy shift is linearly 

proportional to the magnetic field. Interestingly, we observe that the magnitude of g-

factor monotonically increases from 2.15 for 1s exciton to 2.53 for 3s exciton. This 

systematic increase of g-factor for larger excitons is real, and it indicates nontrivial 

difference of the total magnetic moments in different Rydberg states. 
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Figure 0.6: Zeeman shift of Rydberg excitons extracted by different measurement 
method. The g-factors are extracted by linear fitting of the slope.  
 
 

As has been discussed in several previous studies as well as in Chapter 6.6, the 

magnetic moment of the exciton in 1L-WSe2 is composed of three components 

originating from the spin, the atomic orbital, and the valley: 𝜇ÀJÀÁÂ = 𝜇Ã + 𝜇J + 𝜇Ä , 

where 𝜇Ã = 2𝑠𝜇¼, 𝜇J = 𝑚𝜏𝜇¼; 𝜇Ä = 𝛽𝜏𝜇¼; 𝑠, 𝑚 and 𝜏 are quantum number of spin (𝑠 =

±1, for spin up/down), orbital (𝑚 is determined by the angular momentum of the atomic 

orbitals) and valley ( 𝜏 = ±1  for K or K’ valley), respectively; 𝛽  is the orbital 

contribution calculated from Barry curvature. We calculate the contribution of the three 

parts separately in the K’ valley (K valley is the time-reversal pair), corresponding to the 

𝜎N emission in our data. For bright excitons, the spin term is contributed nothing due to 

spins for electron and hole are aligned. The total orbital terms sum up the contribution 
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from lowest conduction band (c1) and top valence band(v1), which give the contribution 

about 2𝜇¼ in K’ valley.  

The first principle calculation  [128] reveals that in 1L-WSe2, c1 band is dominant 

by 𝑑qr (𝑚 = 0) orbital while the v1 band is dominant by 𝑑trNur + 𝑑tu (𝑚 = 2) The net 

contribution induced by orbital magnetic moments in K’ valley is 2𝜇¼. The magnetic 

moments contributed by the valley term are originated from the Barry curvature induced 

the self-rotation of electron wavepacket. In our data, the magnitude of 𝑔-factor for 1s to 

3s excitons is larger than 2𝜇¼, indicating the finite contribution from the valley terms: 

𝜇Ä = 𝜇Ä,|' − 𝜇Ä,Ä'. In contrast to the spin and orbital terms, we note that the Barry 

curvature is peaked at the band edge of K/K’ point and is changing sharply with the finite 

k distribution. As a result, the magnitude of 𝜇Ä should be sensitive to the wavefunction 

extension in k-space for different Rydberg states, contributing a nontrivial difference in 

Zeeman terms. Because of its tightly bound nature of 1s exciton in 1L-WSe2, we 

anticipated that the 𝜇Ä	contribution of 1s exciton will be quite deviated from others. 
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Figure 0.7: Comparison of experimental and theoretically derived the g-factors of 1s 
to 3s exciton. 

 

To figure out the impact of the finite-k distribution on the magnetic dipole 

moments, we perform the DFT calculation by applying the 2D hydrogenic wave 

functions and the interaction potential with Rytova-Keldysh form. The results are 

summarized by the red square dots in Figure 0.7. Right on the band edge, the 𝜇Ä is 

calculated about 1.2𝜇¼, yielding the 𝜇ÀJÀÁÂ is 3.2𝜇¼ in K’ valley (the black line in Figure 

0.7). Considering the finite spreading in k-space, the calculated 𝜇ÀJÀÁÂ  for 1s is 

significantly smaller about 2.4𝜇¼, denoted as the dashed lines in Fig.3d. For 2s and 3s 

exciton, the total magnetic moment is approaching 3.2𝜇¼, yielding 3.05𝜇¼ and 3.15𝜇¼, 

respectively. Qualitatively, the trend derived theoretically matches the experimental data 

well, reflecting the k–dependent 𝜇Ä does participate in the total magnetic dipole moments. 



 

113 

However, quantitatively, the magnitude is consistently larger and the discrepancy is 

dependent by n quantum numbers. We suggest that there are other sources participate in 

addition to the Barry curvature. A recent paper reveals that the strong Coulomb 

interaction as well as exchange interaction can induce an abnormal behavior of g-factor 

for exciton in 1L-WSe2 in high electron-doped region [147]. In addition, in our previous 

work, we indicated that the 2s exciton exhibits superior valley polarization and coherence 

which is origin from the suppression of the Coulomb-exchange-interaction-driven valley-

depolarization process, the Maialle-Silva-Sham (MSS) mechanism [31] which is 

dramatically distinct from 1s to 3s exciton. The discrepancy between in the theoretical 

calculation and experimental data could be partially explained by the participation of 

exchange interaction which is not negligible when considering the tightly bound exciton.  

7.6 Summary 

In conclusion, we demonstrate in the first time the observation of PL of Rydberg 

exciton up to 4s. Due to the superior sample quality and high magnetic fields, we are able 

to accurately determine the Zeeman shift and diamagnetic shift of different Rydberg 

excitons, enabling us to unambiguously assign the PL emission features. In addition, we 

systematically investigate the physical properties of these Rydberg excitons. The 

diamagnetic shift increase monotonically with higher excited states, reflecting the larger 

size of higher Rydberg states. We also observe the magnetic dipole moment is sensitive 

to the n quantum numbers. The trend qualitatively matches our theoretical calculation. 

However, more theoretical work is required to explain the discrepancy quantitatively.  
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CHAPTER 8 

SUPERIOR VALLEY POLARIZATION OF 2S RYDBERG EXCITON 

8.1 Research Objective and Motivation 

The coupled spin-valley physics [10] in 1L-TMDC semiconductors has inspired 

great strides towards realizing valleytronic devices harnessing these 2D materials [11–

13,115]. As extensively discussed in Chapter 6, the two energetically degenerate 1L-

TMDC valleys with opposite angular momentum can be selectively populated with 

circularly polarized optical excitation, and the valley polarization can be detected both 

optically [11,12,115] as well as electrically [13]. The two degenerate valleys can be lifted 

by applying a finite perpendicular magnetic field, as demonstrated in Chapter 6 and 7. 

Further, coherent superposition of valley excitons can be generated with linearly 

polarized light  [114] or a sequence of laser pulses with opposite circular 

polarization [123], which allows for rotation of the valley pseudospin with magnetic 

Zeeman effect or optical Stark effect [148,149]. Such coherent manipulations of valley 

pseudospin are at the heart of future quantum valleytronic devices, and require thorough 

understanding and efficient control of various valley depolarization and decoherence 

processes. Intervalley scattering, the one of the core issues in the valleytronic studies, 

which directly related the valley polarization and dephasing of the quantum states, similar 

to spin relaxation issues in spintronic. In general, intervalley scattering can occur due to 

both extrinsic mechanisms such as disorder scattering, and intrinsic mechanisms such as 

the Coulomb exchange interaction [129]; the competition between these different valley 

relaxation channels is a topic under active debate [123,150–152]. 
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So far many of the valleytronic studies focus on the 1s bright exciton (X in 

chapter 6) and the low energy bound states (e.g. T1 and T2), which is readily accessible in 

2D TMDC monolayers [11–13,114,115,123,148,149,153]. In this chapter, we study the 

valleytronic properties of the Rydberg states, the 2s exciton. Even though the PL 

emission of 2s is not energetic favorable due to the Kasha’s rule, the 2s exciton 

luminescence in our high quality 1L-WSe2 can be clearly observed and is persisted up to 

room temperatures, providing a new quantum entity for facile manipulation of valley 

pseudospins. Most interestingly, we found that 2s exciton exhibits much higher degree of 

valley polarization and coherence in contrast to 1s, enabling the opportunity to use 2s 

exciton as the better valleytronic states. 

8.2 Physical Properties of the Rydberg 2s Excitons Emission 

We first explore the physical properties of 2s exciton by PL measurements. Figure 

0.1a shows detailed temperature dependence of the exciton luminescence emission. X1s 

peaks at about 1.65 eV at room temperature and blue shifts with a narrower linewidth at 

lower temperatures. Its intensity first increases and then decreases, peaking at about 150K 

as shown in Figure 0.1b. We note that this is distinct from WSe2 samples that display 

monotonic 1s intensity decrease with lowering temperature, as a result of disorder 

scattering that depletes bright excitons into thermal equilibrium with lower energy dark 

excitons possessing opposite electron spin configuration [116]. In the temperature range 

T > 150 K, the increase of intensity is due to the reduction of phonon scattering at lower 

temperature. However, below 150 K, the dramatically decrease of intensity of 1s is 

because: First, the ground dark exciton states deplete the bright exciton. Second, several 
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multi-particle bound states are getting dominated due to the reduction of thermal 

activation energy. The non-monotonic 1s intensity temperature dependence is thus a 

manifestation of out-of-equilibrium exciton radiative recombination becoming more 

competitive with thermal equilibration between different quantum channels when 

disorder in the sample is minimized. In contrast, the intensity of 2s luminescence keeps 

increasing with lowering temperature. This indicates that removal of phonon scattering 

enhances non-equilibrium 2s radiative emission, and further suggests that the 2s exciton 

also has fast radiative recombination rate [154–156] as well as the limited competition 

with other states. 

 

 

Figure 0.1: (a) Photoluminescence spectra plotted as a function of temperature. 
Selected spectra at T = 10 to 280 K with 30 K steps are displayed. (b) Temperature 
dependences of 1s and 2s intensity. 
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Figure 0.2: Temperature dependent (a) peak energy and (b) linewidth of X1s and X2s 
radiations. The solid curves are fits using Eq. 8.1 and 8.2. The dashed lines in (b) 
represent the linear terms which dominate at low temperatures. 
 

The 1s and 2s peak energy and linewidth show similar temperature dependences. 

We found that they can be fitted to the same models of hyperbolic cotangent relation (Eq. 

8.1) [157] and phonon induced broadening (Eq. 8.2) [158] respectively: 

 

𝐸R(𝑇) = 𝐸, − 𝑆〈ℏ𝜔〉 �coth ä
〈ℏå〉
$æ¸�

ç − 1�  Eq. (8.1), 

 

where E0 is the optical bandgap at T = 0 K, S is the coupling factor, and 〈ℏ𝜔〉 

represents the average phonon energy in the system [159]; 

𝛾 = 𝛾, + 𝑐'𝑇 +
|r

¡
〈ℏé〉
·¸¹N'

		   Eq. (8.2), 
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where 𝛾, is the FWHM at T = 0 K, the second and third terms account for the 

impacts of acoustic and optical phonons respectively, and 〈ℏ𝜔〉 matches well with the OC 

and IMC phonons which are accidentally degenerate in 1L-WSe2 [27]. From the fitting 

parameters in Table 8.1, 𝛾,  is 3.80 ± 0.05meV. This matches well with four-wave-

mixing measurements [160] that reveals the intrinsic FWHM of 1L-WSe2 to be 3.8 ± 0.4 

meV at 5 K, indicating that disorder in our sample is indeed minimal. 

 
Table 0.1: The fitting parameters for the temperature dependent peak energy and 
linewidth of 1s and 2s exciton luminescence.  

peak energy linewidth 
⟨ℏ𝜔⟩ 𝐸, 𝑆 ⟨ℏ𝜔⟩ 𝛾,(FHWM) 𝑐' 𝑐$ 
meV 𝑒V  

meV meV 𝜇eV/K  

𝑋'Ã	  
13.0 ± 0.4 

1.728 2.01 ± 0.03 
31 ± 1 

3.80 ± 0.05 16.0 ± 1.4 0.05 ± 0.002 
𝑋$Ã	  1.860 1.85 ± 0.05 4.20 ± 0.06 34.0 ± 1.7 0.05 ± 0.004 
 

 

Similar to the one we demonstrated with 1s exciton in Chapter 6.4, we also 

performed electrostatic doping dependent PL measurements using an hBN-sandwiched 

FET device to probe charge-doping dependence of the 2s exciton. Figure 0.3 shows the 

PL spectra as a function of gate voltage at 4 K. We found that the intensity of 𝑋'Ã and 𝑋$Ã 

are highly correlated: both peaks appear at charge neutral and become broader and 

slightly red shift at hole doping side, indicating that 𝑋'Ã and 𝑋$Ã are associated with 

neutral excitons. Interestingly, in contrast to 1s exciton which develops rich features in 

the low energy, the energy range in between 2s and 1s excitons is quite spectral clean, 

indicating 2s exciton has weaker Coulomb interaction. This result is consistent with the 
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larger radius of 2s exciton we measured in Chapter 7 and the monotonic temperature 

dependent intensity we just discussed.  

 

 

 

 
Figure 0.3: PL spectra plotted as a function of gate voltage for a hBN sandwiched 
1L-WSe2 FET device at 4 K with 1mW, 2.33 eV excitation. 
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8.3 Valley Polarization and Valley Coherence of Excitonic States in 1L-WSe2 

Taking advantage of the robust spin-valley locking and valley-helicity selection 

rule [10], we use circularly polarized light to selectively populate one valley and monitor 

the resultant valley polarization by examining the helicity of optical emission [11,12,115]. 

Using the similar definition employed in the spintronic, we define the valley polarization 

𝑃 =
±ÎÌN±Î´

±ÎÌO±Î´
 : exciting the sample with 𝜎O polarization light and collect the luminescence 

emission with 𝜎O and 𝜎N separately. The 𝐼Ï± is defined as the radiation intensity for the 

helicity 𝜎± for the corresponding modes. 

We also use linearly polarized light to create a coherent superposition of excitons 

in both K and K’ valleys; the decoherence of the valley excitons are reflected in the 

degree of linear polarization of the luminescence emission [114]. Experimentally we 

excite our sample with a horizontal (H) linearly polarized laser light and detect the 

luminescence emission with H and vertical (V) polarizations; see Figure 0.9a. We define 

𝐶 = ±îîN±îï
±îîO±îï

 to quantify the coherence of the superposition states, where 𝐼ðð and 𝐼ðÍ are 

defined as the radiation intensity for the H and V polarized light with the excitation of H 

polarized light. 

We first demonstrate the P and C on the 1s exciton as well as the low energy 

bound states in Figure 0.4. The Figure 0.4a shows the cocircular (𝜎O𝜎O) and cross-

circular (𝜎O𝜎N) polarization spectra taken at 4 K with excitation about 20 meV above 1s 

exciton. As can be seen, the bright exciton X is slightly valley polarized. Two trions 

exhibit distinct behaviors, T1 is strong valley polarized while T2 is none. These two 

observations reflect the existence of strong Coulomb exchange interaction with the bright 
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exciton, which is the core in this chapter. The XD and TD both show slightly valley 

polarization. The helicity-valley selection rule does not hold in dark exciton, which has 

been shown in Chapter 6. The valley polarization of XD and TD is thus determined to X 

and T2 for XD and TD, respectively. Moreover, we observed a peak X’ with the energy 

about 60 meV below the X also exhibits great valley polarization. The origin of X’ is so 

far unclear and will be further investigated in Chapter 9. 

 

Figure 0.4: The circular and linear polarization-resolved photoluminescence of 1s 
exciton and its multi-particle bound states in 1L-WSe2 at 4 K.  
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In Figure 0.4b we present the spectra from the same sample and sample 

temperature but replacing the circular polarized light with the linear polarized one. 

Interestingly, only X show slightly valley coherence. Other modes in general exhibit zero 

valley coherence. The loss of valley coherence can be attributed to the Coulomb 

exchange interactions which breaks the valley coherence [114]. Another possible 

explanation as we will discuss in Chapter 9, the radiative recombination lifetime of these 

lower energy states is much longer comparing with X [127], resulting in the competition 

with other dephasing mechanisms. 

Now we turn to the P and C of 2s exciton state in the higher energy side. Previous 

studies had shown that the magnitude P and C in H-TMDC are sensitive to the 

temperature and the energy difference between excitation energy and the exciton 

emission energy [114,161]. We thus perform the measurement at same temperature and 

fix the excitation energy about 20 meV above the 1s and 2s exciton to compare difference 

of P and C. Interestingly, as demonstrated in Figure 0.5, we found the 2s exciton exhibits 

superior capability in retaining the broken time reversal symmetry and coherence of 

incident laser light with 𝑃 = 0.82 and 𝐶 = 0.56. However, for 1s exciton, 𝑃 = 0.15 and 

𝐶 = 0.17 are significantly smaller than 2s. The high P and C in 2s exciton imply that the 

valley relaxation by defect scattering or other dephasing mechanism has less impact on 2s 

exciton, making the 2s exciton as a good quantum state for valleytronic applications. 
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Figure 0.5: The circular and linear polarization-resolved photoluminescence of 1L-
WSe2 at 20 K with detuned excitation photon energy at 20 meV above 1s (left) and 
2s (right) excitons. 
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The higher P and C observed in 2s exciton can be understood by the 

phenomenological relation: 

𝑃GÃ =
'

'Oñòó/ñô´õô
 Eq. (8.3), 

where 𝜏GÃ and 𝜏öN÷ö is the population and polarization decay time for various 

Rydberg exciton state. As qualitative evidence shown in Figure 0.6, we note that the 

FWHM linewidth of 2s exciton (4.8 meV) is wider than the 1s exciton (4.0 meV), 

reflecting the 2s exciton has more decay channels such as 2s–1s transition. Quantitatively, 

we estimate the decay rate ratio by comparing the oscillation strength of 1s and 2s 

exciton. As shown in Figure 0.6, the absorption dip of 2s exciton is about 17 times 

smaller while the PL intensity is about 70 times smaller (see Figure 0.1b), yielding the 

population decay rate about 4.1 times larger of 2s exciton. Applying the	𝜏'Ã as 2 ps [127], 

and 𝑃'Ã = 0.15 for 1s exiction, we can derive the polarization decay time 𝜏öN'ö is about 

0.35 ps.  

Here, by assuming that the constant polarization decay time 𝜏öN$ö = 𝜏öN'ö =	 0.35 

ps, we can straightforward calculate the 𝑃$Ã  is about 0.42 (using 	𝜏$Ã = 2	ps 4.1⁄ =

0.48	ps), which is only half of the value 0.82 we acquired experimentally. The discussion 

above indicates that population decay rate difference alone cannot resolve the 

discrepancy of valley polarization of 2s. To achieve 𝑃$Ã = 0.82, we find out that 𝜏ÃN$Ã 

has be to much larger than 𝜏ÃN'Ã  about 2.2 ps, indicating the distinct polarization 

relaxation mechanism.  
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Figure 0.6: The PL and DR spectra of 1s and 2s excitons at 20 K. 
 

8.4 Coulomb Exchange Interaction Induced Intervalley Scattering in 1L-WSe2 

In this section, we explain the drastically different valley polarization and 

coherence for 1s and 2s excitons in the framework of the exchange interaction MSS 

mechanism. As illustrated in Figure 0.7a, the strong Coulomb interaction between the 

photo-generated electrons and holes not only gives rise to exceptionally large exciton 

binding energy [18], but also leads to the annihilation of one exciton in one valley and 

creation an exciton in the other valley. This exchange of the excitons between the two 

valleys conserves energy but induces flipping of exciton angular momentum and 

pseudospin, compromising the valley polarization and coherence. For excitons with 

center-of-mass momentum 𝑘ú⃑ , the inter-valley exchange interaction is given by  [162] 

𝐽æú⃑ = −|𝜓(𝑟¡I = 0)|$ Á
rÀr

àþr
𝑉ÿ𝑘ú⃑ !𝑘$𝑒N$F"   Eq. (8.4) 
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where 𝜓(𝑟¡I) is the real space wavefunction for the relative motion between the 

electron and the hole, 𝑎 = 3.32	Å is the lattice constant of monolayer WSe2, t = 1.19 eV 

is the hopping energy, Eg ≈ 2 eV is the band gap, 𝑉ÿ𝑘ú⃑ ! is the 𝑘ú⃑  component of the 

Coulomb interaction, and 𝜃  denotes the direction of 𝑘ú⃑ . Effectively this exchange 

interaction introduces a pseudo-magnetic field acting on the valley pseudospin of the 

excitons. The angular dependence in Eq. 8.4 implies that the direction of the pseudo-

magnetic field depends on the direction of the exciton wavevector (Figure 0.7b). 

Consider, for example, a set of excitons with the same energy and pseudospin populated 

on a ring in the 𝑘ú⃑  space. The pseudo magnetic fields acting on them will have the same 

magnitude but different directions depending on the direction of 𝑘ú⃑ . This makes the 

excitons on the ring to precess towards different directions, which in turn, causes valley 

depolarization and decoherence as the excitons propagate.  

 

Figure 0.7: (a) The schematic showing the inter-valley electron-hole exchange 
interaction, which induces pseudospin flip. (b) The strength and direction of the 
inter-valley exchange pseudo-magnetic field in k-space. 
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In Eq. (8.4), |𝜓(𝑟¡I = 0)|$ describes the probability density for the electron and 

the hole to spatially overlap. For the 1s exciton this is given approximately by 1/𝑎¼$ , 

where 𝑎¼ ≈ 2.1 nm. In the case of 2s excitons, we have measured the diamagnetic shift of 

2s exciton (See Chapter 7) an acquired the electron-hole separation in 2s exciton is about 

7.2 nm. By assuming that the 1s and 2s excitons have about the same reduced mass 𝑚£ =

0.22	𝑚,, the exchange interaction of 2s exciton is then about 15 times weaker. This 

difference indeed has a significant impact on the exciton valley pseudospin dynamics. In 

Figure 0.8a, we simulate the pure exchange-interaction-driven valley depolarization and 

decoherence for excitons with different momentum k and kinetic energy Ek = k2/2M; the 

analytically solution can be found in Ref.  [31]. At k = 0, both P and C are equal to 1 

since the exchange interaction in Eq.(8.4) goes to zero at k = 0; for nonzero k, both P and 

C of 1s drops steeply at finite Ek, while for 2s the decrease is much slower, confirming 

that 1s is more impacted by the exchange depolarization fields.  

 

 



 

128 

 

Figure 0.8: (a) The simulated valley coherence (C) and polarization (P) as a function 
of Ek for 1s and 2s excitons considering pure exchange interactions. The left (right) 
panel is in linear (semilog) scale. (b) Simulated C and P considering both exchange 
interactions and other depolarization and decoherence mechanisms 

 

It is of interest to note that for both 1s and 2s simulations in Figure 0.8a, C is 

always larger than P — this is a hallmark of exciton exchange interaction in 2D [129]: 

the exchange-interaction-induced pseudo-magnetic-fields are in the plane of the atomic 

layer, thus the out-of-plane pseudospin of valley polarized excitons experiences the 

pseudo magnetic fields in two directions, while the in-plane pseudospin of the valley 

coherent excitons is relaxed only by the magnetic field component that is perpendicular 

to the pseudospin. Experimentally, we have observed C to be larger than P for 1s in 

Figure 0.5 as well as with many other laser excitations (more data is displayed in the next 

section Figure 0.9b), further confirming that the exchange interaction dominates the 1s 

exciton valleytronic behavior. This is consistent with another recent study on high-quality 

MoS2 where C is also found to be larger than P  [111]. 
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For 2s excitons, however, P is significantly larger than C. This suggests that with 

weaker 2s exchange interaction, other decoherence and depolarization mechanisms 

become more competitive. To account for these additional mechanisms, we add another 

depolarization decay time in our model [31] such that even for k = 0, P and C are smaller 

than 1. This relatively simple model captures our observations semi-quantitatively: as 

shown in Figure 0.8b, for excitons with small kinetic energy (Ek < 10meV), P is mostly 

larger than C for 2s exciton and smaller than C for 1s, and numerically the 2s P and C 

values are much larger than 1s. In fact, our conclusion in Chapter 7 also shows that 2s 

excitons are distributed narrower in k-space, matching our simulation results where 2s 

exciton has larger P and C with small kinetic energy. 
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8.5 Enhancing Valley Polarization and Coherence by Incorporating Interlayer 
Phonon Scattering 

Excitons can only become radiative if its momentum lies within the light cone, 

whose boundary corresponds to 1s and 2s exciton kinetic energy of ~10 µeV. At such 

small Ek’s the impact of exchange interaction is negligible. However, the experimental 

data shows the large difference between P and C for 1s and 2s, indicating the excitons 

outside the light cone with larger momentum provide a reservoir where disorder and 

phonon can scatter them into the light cone, which subsequently radiate [154]. The 

average exchange interaction that the radiatively recombined excitons experienced is thus 

much larger than the fields inside the light cone, as we discussed in Chapter 8.4. 

In this section, we show that it is possible to reduce the impact of exchange 

interaction fields on 1s by using the small-momentum 2s exciton as an alternative 

reservoir, assisted by multiple zone-center phonon scattering [163]. With the presence of 

hBN, the 2s exciton can lose the excess ~130 meV by emitting zero-momentum hBN-

WSe2 combinational phonons (as illustrate on top of Figure 0.9a). This reduces the 

number of phonons involved from six [163] to two, and markedly improves the radiative 

cross-section. Figure 0.9a demonstrated the PLE measurement of 1s exciton. The 

intensity of the 1s exciton is dramatically enhanced when the 1s exciton overlapping with 

the hBN+WSe2 combinational phonon modes. We note that this interlayer phonon 

coupling effect is quite interesting and unique in the 2D van der Waals heterostructures 

and has been extensively studied recently [164–166]. 
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In Figure 0.9b, we extract the P and C of 1s exciton with laser excitation scanning 

from 1.84 to 1.89 eV, covering the energy range of the 2s exciton to explore the impact of 

2s–1s transition. When the excitation is off resonance, P and C are in the range of 0.1 to 

0.2. When on-resonance with 2s exciton, the P and C are markedly improved to 0.30 and 

0.64 respectively. This improvement results from using the small-momentum 2s exciton 

as a high-quality reservoir for the 1s luminescence. The 2s exciton reservoir is prepared 

by illuminating the sample with photons that match the 2s exciton energy. The reservoir 

excitons subsequently lose ~ 130 meV excess energy through phonon emission. As a side 

note, in Figure 0.9b we observe that C is larger than P over the whole PLE range, 

confirming that exchange interaction dominates the 1s valley depolarization and 

decoherence as discussed in Chapter 8.4. 
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Figure 0.9: (a) Resonant Raman scattering of R1 and R2 using photon energies from 
1.844 to 1.874 eV. The peaks guided by dashed curve are the 1s exciton 
luminescence. (b) C and P of the 1s exciton emission as a function of laser excitation 
energy.   
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The same mechanism can also be adopted to improve the P and C of 2s excitons. 

In Figure 0.10a we demonstrate the resonant Raman spectra with various excitation laser 

from 1.886 to 1.905 eV. We observe that not only zone center phonon (OC and IMC) but 

also several finite-k phonons are strongly resonant with 2s exciton emission and become 

visible. As we displayed in Chapter 7, the energy different of 3s/4s exciton is about 25/35 

meV higher than 2s exciton. The energy difference coincidently matches well with the 

phonon branches of 1L-WSe2  [52], enabling the incoming resonance with 3s/4s exciton 

and outgoing resonance with 2s exciton. In addition, the finite-k phonons can further 

assist to scatter the excitons into the light cone and then emit, providing additional fast 

population decay channels. 

 

 

Figure 0.10: (a) Resonant Raman scattering of WSe2 OC mode using photon 
energies from 1.886 to 1.905 eV. The peaks guided by dashed curve are the 2s 
exciton luminescence. (b) The calculated C of 2s exciton emission as a function of 
laser excitation energy. The resonant showing up at 1.894 eV involves the incoming 
resonance with 3s exciton and outgoing resonance with 2s exciton. (c) The circular 
and linear polarization-resolved photoluminescence of 1L-WSe2 at 4 K with 
excitation photon energy at 3s exciton.  



 

134 

As can be seen in Figure 0.10b, the valley coherence of 2s excitons is 

dramatically enhanced when the energy differences match either one phonon energy (left 

peak, ∆𝐸~250	cm-1) or the combination of two phonons (right peak, ∆𝐸~500 cm-1). The 

enhancement of valley coherence can be understood by both fast population decay and 

the reduction of Coulomb exchange interaction. As demonstrated in Figure 0.10c, by 

employing resonant phonon scattering, the P and C of 2s exciton can be further improved 

to P = 0.87 and C = 0.80. 

8.7 Summary 

In conclusion, we have accessed the 2s radiative emission in hBN sandwiched 

high-quality 1L-WSe2 crystals. The 2s luminescence is highly robust and can be also 

access at room temperature due to its large binding energy. In addition, the 2s exciton 

exhibits superior valley polarization and coherence. This observation could be facilitated 

in part by the fast population decay of 2s, and our analysis further points to the action of 

intervalley Coulomb exchange interaction in TMDC pseudospin propagation. Our studies 

provide key insights into the TMDC intervalley scattering processes which are essential 

for developing TMDC-based valleytronic devices. Moreover, we demonstrate that 

achieving the P of 0.3 and C of 0.64 for 1s and P of 0.87 and C of 0.80 for 2s exciton by 

incorporating the zone center phonons from hBN and WSe2 resonant with the Rydberg 

exciton states. Not only the phonons in WSe2 but also the phonons on the approximate 

materials can take part in this process to create an efficient emissive recombination 

channels. 
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CHAPTER 9 

DYNAMICS OF EXCITONIC COMPLEX IN 1L-WSE2 

 

9.1 Research Objective and Motivation 

The reduction of screening of Coulomb interaction in atomically thin 2D material 

results in the tightly bound 1s exciton in 1L-WSe2. Several interesting physics properties 

we have discussed in previous chapters. The large binding energy of 1s exciton is about 

170 meV and the radius is only around 2 nm. The confinement in both out-of-plane 

direction and in-plane axis directly link to the strong many-body correlation, reflected by 

the observation of multi-particles bound states as we show in Chapter 6. It is desirable to 

study the dynamics between these bound states. For example, the competition between 

Coulomb exchange interaction and the population lifetime of the excitonic states is an 

important issue related to the valley polarization and coherence which we have 

investigated in Chapter 8.  

9.2 Experimental Setup of Time-resolved Photoluminescence 

Figure 0.1 illustrates the experimental setup of time-resolved photoluminescence 

measurement. We employ a supercontinuum white laser (Fianium WhiteLase) with a 

pulse width of about 20 ps and a repetition rate of 20 MHz. The white laser is filtered by 

several spectral filters to acquire a clean 530 nm excitation. The laser is then focused on 

the sample mounted in a cryostat with the spot size about 2 𝜇m. To measure the PL 

spectra, the signal is collected and then detected by a liquid nitrogen cooled CCD device. 



 

136 

A time-correlated single-photon counting (TCSPC) method (PicoHarp 300) was used to 

perform	the time-resolved PL spectroscopy with the resolution of 4 ps. 	

 

 

 

 

Figure 0.1: Experimental setup of the time-resolved photoluminescence 
measurement.  
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9.3 Preliminary Results on Lifetime of the Excitonic States 

Figure 0.2 illustrates the typical time-resolved PL intensity of 1s exciton in 1L-

WSe2 at 7 K. The dots are the photon counts as a function of time while the shaded area 

reflects the instrumental response function (IRF) about 87 ps in FWHM. The population 

decay of 1s exciton can be fitted by a two-time-constant exponential decay function, 

given the fast component rate about 31 ps and a slow component about 210 ps. A recent 

paper reported the 2 ps decay time of 1s exciton measured by a ultrafast streak 

camera [127] which has been interpreted as the intrinsic radiative recombination lifetime 

under quasi-resonant excitation. The lifetime of 31 ps we measured here is thus limited 

by the detection speed of detector. The slow component of 210 ps has been interpreted as 

the signature of exciton thermalization: the radiative window is small and thus yields a 

radiative decay time longer than the intrinsic recombination time. The two-time-constant 

feature observed in Figure 0.2 indicates X1s is a hot excitonic state. 

 

Figure 0.2: A typical time-resolved PL signal of 1s exciton at 7 K. The solid curve is 
fitted by a two-time-constant exponential decay function. The shaded area is the 
IRF.  
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Figure 0.3a displays a typical PL spectra for 1L-WSe2 excited by the pulsed laser. 

Taking the advantage of the pulsed laser, we are able to observe these multi-particles 

bound XD and TD states under even lower power about 1 𝜇W, avoiding the heating 

issues observed in CW laser excitation measurement [25]. Figure 0.3b shows the lifetime 

measurement of these XD and TD, complementary to the discussion in Chapter 6. The 

XD exhibits similar two-time-constant exponential decay as X, implying that XD is not a 

ground state. This result is consistent with our assignment that XD is composed by a X 

and D, where X is the hot exciton. In contrast, the intensity decay of TD peak can be 

described by using only one-exponential decay function with the lifetime of 250 ps, 

indicating the TD state is in thermal equilibrium [127]. 

Interestingly, in Figure 0.3a we observe other three intense modes denoted as X’, 

L1 and L2 showing up in the energy of about 60 meV, 103 meV and 116 meV below the 

X, respectively. As can be seen in Figure 0.3c, X’ mode is anticipated to has less decay 

channels, showing the slightly longer lifetime of 270 ps than the TD. Turning to even 

lower energy, L1 and L2 modes have longer decay time about 295 ps and 320 ps, 

respectively. In addition, both L1 and L2 modes have another decay component with 

ultralong lifetime in the order of 100 ns, which may be from the exciton bound by deep-

level defect states. In fact, the L1 and L2 peak have been attributed to the defect activated 

modes, demonstrated by a strong electron-beam irradiation [167]. However, our 

preliminary data delivered in the following reveal the unusual physical properties, distinct 

from the model of defect bound exciton states. 
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Figure 0.3: (a) The PL spectra of 1L-WSe2 excited by a 20 ps pulsed laser at 7 K. (b) 
The time-resolved PL of X, XD and TD bound states. The solid curves are 
exponential fittings. The dashed line indicates the time of intensity peaked. (c) The 
time-resolved PL of X’ state. (d) The time-resolved PL of L1 and L2 states. Inset: 
the zoom in data during the initial 3 ns. 
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9.4 The X’, L1 and L2 Low Energy Bound States 

We first investigate the gate voltage tuning of the PL spectra. Figure 0.4a 

illustrates the color map of gate dependent PL spectra. At the charge neutral point about 

𝑉 = −9	V, as can be seen in Figure 0.4b, only X, XD and X’ modes are presented in the 

maximum intensity, implying that the X’ is a charged neutral state. As the gate voltage 

increase (electron doping), the L1 and L2 peaks appear and go up and dramatically. As 

the 𝑉 goes beyond 4 V, as denoted in the white dashed line in Figure 0.4a, the X, L1 and 

L2 start blue shifting. This effect can be explained by the Pauli blocking effects observed 

in X when the Fermi-level is tuned above the upper conduction band [25,146,168]. In 

addition to peak energy shift, we further observe that the intensity of X is strongly 

quenched above this gate voltage while the L2 is dramatically increased. 

 

  

Figure 0.4: The contour map of gate voltage dependent PL spectra. Charge neutral 
point is about 𝑽𝒈 = −𝟗	𝐕. The white dashed line indicates the turning point we 
discussed above. (b) The selected PL spectra at the corresponding gate voltages.  
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We further examine the excitation power dependent intensity of L1 peak. Figure 

0.5a displays the PL under several different orders of excitation fluence at the 𝑉 = 0V. 

As can be seen in the bottom penal, we can only observe L1 and L2 peak in the spectra, 

indicating that these states indeed a dominant interaction of the exciton in 1L-WSe2. With 

the increasing excitation fluence, other high energy excitonic species growing up as 

demonstrated in the top penal in Figure 0.5a. To further understand the excitation fluence 

dependence, we extract the intensity of L1 mode and plot them as a function of excitation 

fluence in Figure 0.5b. The PL intensity simply increases under low excitation fluence 

condition (<6 × 10N'$ J/cm2). In contrast, the PL intensity deviates from a simple linear 

dependence and eventually saturates at the excitation fluence about 6 × 10N% J/cm2. The 

sublinear saturation behavior in higher excitation fluence has been interpreted as the fully 

population of the localized states [169] or the exciton-exciton annihilation [170]. In our 

time-resolved PL in Figure 0.3d, the two constant exponential decay in L1 and L2 modes 

is a signature of the exciton-exciton annihilation process which has been demonstrated 

with the free exciton X in atomic layered TMDCs [170,171]. While in our experimental 

results, the critical excitation fluence is 6 orders less than the value reported in previous 

studies on free exciton. This indicates that the defects may localize the excitons and 

activate the exciton-exciton annihilation effect even in a low excitation density. We thus 

can estimate the defect density of our sample by assuming the 10% absorption of photons 

and all the generated excitons are bound to the defect site. By choosing the saturation 

fluence of about 10N( J/cm2, we can estimate the defect density about 2.8 × 10%	cm-2.  
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Figure 0.5: (a) The PL spectra excited by various excitation energy densities. (b) The 
log-log plot of intensity of L1 peak vs. excitation energy density. The trend follows 
the linear trends at low energy density while is saturated in the high fluence. 
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We gain the further insight of the nature of the L1 and L2 localized states by 

performing the helicity-resolved PL measurement in magnetic fields. Figure 0.6a shows 

the both 𝜎N and 𝜎O emissions under various out-of-plane magnetic fields. The magnetic 

field break the valley degeneracy and thus induce the exciton repopulation between K 

and K’ valleys. For X mode, no significant difference of intensity in two valleys, 

consistent with data presented in Figure 0.11. However, we observe that both L1 and L2 

peaks exhibit significant difference of intensity in two valleys Specifically, under a 

positive magnetic field, the L1 and L2 bound excitons prefer to populate to the lower 

energy K valley than the K’ valley. This can be explained by the long lifetime which 

enables the thermal equilibrium of high and low energy states, in contrast to the X which 

has ultrashort lifetime about 2 ps. We note that the L1 and L2 exhibit large `positive’ 

valley polarization PV (the definition we used in Chapter 6.7), contrary to the XD and TD 

modes which possess the large negative PV. It is interesting to note that X’ mode at 60 

meV below X also exhibit large negative PV. We suggest that this mode could be from 

the biexciton states composed by two dark excitons. 

The Zeeman shift of each mode encodes the magnetic dipole moment of the 

involved electronic bands. In Figure 0.6b, we extract the energy different of X and L1 

emission form K and K’ valley at various magnetic fields and linearly fit their g-factors. 

The g-factor of X is about 2.1, which is the sum of the contribution from the intravalley 

and intervalley components in magnetic dipole moments, as discussed in Chapter 6 and 7. 

Surprisingly, we find that the L1 and L2 exhibits g-factor up to 5.8. The enhancement of 

g-factor has been interpreted due to the strong Coulomb interaction [147] and the Landau 

Level splitting in highly doped 1L-WSe2 [146].  
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At last, we plot the intensity of L1 mode as a function of the peak energy from the 

spectra we acquire in several magnetic fields in Figure 0.6c. We found that the intensity 

can be well captured by a Boltzmann distribution function, 

𝐼 = 𝐼, +
³

¡(µ´&)/·¹O'
 Eq. (9.1), 

where 𝜇 is the chemical potential, 𝐼, and A are fitting parameters. This result 

again indicates that the L1 is in thermal equilibrium. The fitting temperature is about 7 K, 

matching closely to the experimental temperature 4 K. 

  

Figure 0.6: (a) The helicity-resolved PL spectra at various magnetic fields. (b) The 
peak energy as a function of magnetic fields. (c) The peak energy dependent 
intensity of L1 mode. The red line is the fit by Boltzmann distribution.   
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9.5 Summary and Future Work 

In this chapter, we explore the many-body correlation of the exciton in 1L-WSe2 

by examining the lower energy states. These states had been attributed to the defect 

activated bound excitons in literatures. However, in our high quality sample, these low 

energy states become well defined sharp peaks and exhibit interesting physical properties. 

To realize the origin and the underline physics, more theoretical and experimental studies 

are needed.  
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CHAPTER 10 

CONCLUSION REMARK 

 
The recent theoretical and experimental studies unveil the novel physics in 2D 

materials. In this dissertation, we employed the polarization resolved Raman and PL 

spectroscopy to characterize the quantized excitation including phonon and excitons in 

2D-TMDCs which possess rich intralayer and interlayer polytypes, providing an 

intriguing platform to study the of photon-electron and photon-phonon interaction. We 

first carried out the comprehensive results on the six generic phonons in the H-TMDCs 

atomic layers in Chapter 3. We assigned the phonon modes accurately with the assist of 

polarization-resolved measurements. The energy of phonon modes has been further 

applied as the signature of number of layer and polytypes, reflecting that the phonons are 

closely related to the lattice structures. We found the similar technique and framework 

can also been used in the cousin of H-TMDCs: T’-TMDCs exhibit interesting physics in 

Weyl semimetallic and topological insulating phases. As we demonstrated in Chapter 4, 

the polarization resolved Raman spectroscopy can tell the crystal orientation and provide 

a direct evidence of inversion symmetry breaking. The Raman spectroscopy has been 

widely applied to gauge the crystal quality. This becomes extremely important in 2D 

materials due to the large surface/volume ratio. We thus demonstrated the in situ 

monitoring of crystal quality of 1L T’-(Mo, W)Te2 by polarization resolved Raman 

spectroscopy in Chapter 5. Distinct from the conventional method which monitors the 

intrinsic phonon modes, we proposed by looking at Raman modes from the by-product 

after degradation. We anticipate that this method could be potentially applied to other air 

sensitive 2D materials, especially in the atomic layer limit. Out results shown from 
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Chapter 3 to 5 as well as the appendix A and B provides comprehensive references for 

the future studies on the phonons in 2D materials. 

In the second part of dissertation, we explore the optical properties of the tightly 

bound exciton in 1L-WSe2 by different spectroscopy techniques. Several important issues 

are raised to realize the many-body correlation of exciton and its valley dynamics. In 

chapter 5, we focus on the multi-particle bound states associated with 1s bright exciton in 

high quality 1L-WSe2 sample. In addition to the bright exciton and trions, we observed 

the multi-particle bound biexciton and exciton-trion emissions. The magnetic field 

dependent PL measurements further demonstrate the negative valley polarization of 

biexciton and exciton-trion, revealing the unique intervalley configuration involving dark 

exciton. In Chapter 6, we study the Rydberg excitonic states by performing the PL 

spectroscopy in high magnetic fields. The high magnetic fields as well as high sample 

quality enable us to observe at the first time the 3s and 4s exciton PL emissions, which 

are further confirmed by measuring their diamagnetic shifts. In addition, we found that 

the g-factors in higher excited excitons is larger, pointing out the size dependent magnetic 

dipole moments in the Rydberg excitons. In Chapter 7, we focus on 2s exciton PL 

emission which is quite robust even at the room temperatures. We found that the 2s 

exciton exhibits much higher valley polarization and valley coherence than 1s exciton. 

Quantitative analysis shows that the electron-hole exchange interactions plays a 

significant role due to the reduced of electron-hole wavefunction overlapping in 2s 

exciton, consistent with our finding in Chapter 7. We further demonstrate by employing 

the phonons-exciton resonance effect to achieve the superior P and C for 1s and 2s 

excitons.  
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Finally, we reported our preliminary results on the low energy bound states in 

Chapter 9. We demonstrate the time-resolved PL and magneto-optical measurements on 

these modes, revealing their unusual physical properties. Our results open a window for 

the investigation of the many body correlation of excitons in atomically thin materials.  
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APPENDIX A 

RAMAN TENSORS FOR TMDCS POLYMORPHS 

Table A.1: The Raman tensors for the atomic layered and bulk TMDCs polytypes 
mentioned in this dissertation. (adopted from Ref. [50]) 

  

system class materials Raman tensor

monoclinic C2h

bulk T’mo-MoTe2 

1L T’-MoTe2 

1L T’-WTe2

orthorhombic C2v
bulk T’or -MoTe2 

bulk WTe2

trigonal D3d
even layer H-TMDCs 

(AB stacking)

hexagonal

D3h
odd layer H-TMDCs 
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D6h bulk H-TMDC
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APPENDIX B 

PHONON ENERGIES OF ATOMIC LAYERED H-TMDCS 

Table B.1: The experimental extracted energy (cm-1) of six prototypical optical 
phonon modes in atomic layered H-TMDCs. The excitation is argon laser. The data 
is taken at room temperature with excitation power less than 100 𝝁W. 
 

  

H-TMDC 1L 2L 3L 4L 5L

MoS2

S 24.2 29.6 31.2

B 41.6 30.1 23.5/54.1

IC 286.3 285.6 286.2

IMC 386.3 384.9 384.2 384.1

OC 404.1 406.1 407.2 408.1

OMC - - -

WS2

S 19.6 24.2 -

B 33.8 27.0 -

IC - - -

IMC 359.0 358.3 358.0 -

OC 420.4 420.8 421.2 -

OMC - - -

MoSe2

S 21.0 24.9 26.4

B 34.3 24.5 18.2/45.4

IC 170.4 169.7 170.3

IMC 288.6 287.4 284.2/287.2 283.9/287.0

OC 241.8 242.8 239.9/243.0 240.9/243.2

OMC 355.2 353.5/355.0 353.7/355.2

WSe2

S 17.7 21.6 23.2

B 29.1 20.5 15.7/38.0

IC 177.0 176.8 176.6

IMC 250.8 249.6 249.1 248.9

OC 250.8 251.2 251.4 251.6

OMC 310.3 310.0 309.6

MoTe2

S 19.6 24 10.4/25.3 16.7/26.2

B 28.6 20.9 16.2/37.9 12.6/32.9

IC 118.1 117.6 118.1 117.8

IMC 171.5 172.4 172.9/169.6 173.1/170.5 173.2/171.1/169.0

OC 236.0 235.2 234.9 234.7 234.5

OMC 290.7 290.6 290.4 290.3
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