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ABSTRACT 

POPULATION VIABILITY AND CONNECTIVITY OF THE FEDERALLY 

THREATENED EASTERN INDIGO SNAKE IN CENTRAL PENINSULAR FLORIDA 

 

FEBRUARY 2019 

 

JAVAN MATHIAS BAUDER, B.S., UNIVERSITY OF IDAHO 

 

M.S., IDAHO STATE UNIVERSITY 

 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Kevin McGarigal 

 

 Understanding the factors influencing the likelihood of persistence of real-world 

populations requires both an accurate understanding of the traits and behaviors of 

individuals within those populations (e.g., movement, habitat selection, survival, 

fecundity, dispersal) but also an understanding of how those traits and behaviors are 

influenced by landscape features. The federally threatened eastern indigo snake (EIS, 

Drymarchon couperi) has declined throughout its range primarily due to 

anthropogenically-induced habitat loss and fragmentation making spatially-explicit 

assessments of population viability and connectivity essential for understanding its 

current status and directing future conservation efforts.  
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The primary goal of my dissertation was to understand how landscape features 

influence EIS population viability and connectivity in central peninsular Florida. I 

accomplished this through four components. First, I evaluated EIS movement patterns 

and space use including daily movement distance, home range size, within-individual 

home range overlap, and among-individual home range overlap and how these patterns 

varied by sex and season. Second, I conducted a multi-level, multi-scale habitat selection 

analysis to create spatially-explicit estimates of EIS habitat selection. Third, using the 

aforementioned data and previously published data, I developed an agent-based model for 

simulating EIS movement, survival, reproduction, and dispersal in central Florida. I used 

this model to determine how landscape features and conservation lands influence EIS 

occupancy across our study landscape. Finally, I used landscape genetics to determine 

how landscape features influenced genetic connectivity and to estimate resistance 

surfaces with which to model potential corridors. 

I found that male EIS maintain larger home ranges than females and move 

extensively during the breeding season in search of females. While seasonal home ranges 

within an individual strongly overlapped, individuals avoided home ranges of same-sex 

conspecifics. EIS selected home ranges and within-home range locations in areas of 

undeveloped upland habitat with high habitat heterogeneity and generally avoided urban. 

While EIS did not avoid roads, they rarely crossed primary and secondary roads. I used 

observed patterns of movement and habitat selection to calibrate my ABM. My ABM 

simulated larger male home ranges and smaller home ranges and lower survival in 

urbanized landscapes although simulated effect sizes were weaker than observed effect 

sizes. My model was unable to simulate observed patterns of within-individual home 
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range overlap but accurately simulated survival in developed and undeveloped 

landscapes. EIS occupancy after a 15 year simulation was 56% and occupancy was most 

strongly affected, negatively, by urbanization. While the presence of conservation lands 

was not a strong driver of EIS occupancy, EIS occupancy was more consistently higher 

on conservation lands. EIS gene flow was most strongly associated with undeveloped 

uplands, urbanization, and habitat edge at the broadest scales we evaluated. Potential 

corridors were widespread in the southern half of our study area with substantial areas of 

potential habitat and corridor occurring outside of the existing conservation network. This 

work indicates that the LWR contains extensive areas capable of supporting EIS although 

increasing urbanization may have a negative impact on future persistence of EIS. 
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CHAPTER 1 

EFFECTS OF SEX AND SEASON ON EASTERN INDIGO SNAKE 

(DRYMARCHON COUPERI) MOVEMENT PATTERNS AND SPATIAL 

OVERLAP AT MULTIPLE SPATIO-TEMPORAL SCALES 

1.1. Introduction 

 Animal movements can vary across multiple spatio-temporal scales in response to 

variation in resource availability or the relative importance of a given resource (e.g., 

Lister and Aguayo 1992; Trierweiler et al. 2013). Seasonal variation in movement 

patterns is widespread throughout many snake taxa and can occur in response to spatio-

temporal variation in hibernacula (Gregory 1982), prey (Madsen and Shine 1996a; Sperry 

and Weatherhead 2009b), mates (King and Duvall 1990; Glaudas and Rodriguez-Robles 

2011), gestation or oviposition sites (Blouin-Demers and Weatherhead 2002; Brown et al. 

2005), and thermally suitable shelters (Croak et al. 2013). As ectotherms, snake activity 

is also strongly influenced by environmental temperature (Peterson et al. 1993; George et 

al. 2015) and seasonal variation in temperature may constrain their activity to periods of 

thermally conducive weather (Sperry et al. 2010). Some of the most pronounced seasonal 

movements in snakes occur in populations in north-temperate regions in the form of 

seasonal migrations between communal hibernacula and summer foraging/breeding 

habitats (Larsen 1987; Jorgensen et al. 2008; Gardiner et al. 2013). Many snake species 

with broad geographical ranges appear to exhibit more pronounced migratory behavior at 

higher latitudes (Reed and Douglas 2002; Rodriguez-Robles 2003; Carfagno and 

Weatherhead 2008; Klug et al. 2011; Gardiner et al. 2013). Nevertheless, species in mild 
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climates might still undertake lengthy migrations in response to seasonal variation in 

other resources, such as prey (Madsen and Shine 1996a). 

The nature of interactions among conspecifics has a strong influence on their 

degree of spatial overlap, which in turn influences multiple ecological processes, 

including social behaviors (MacDonald et al. 2010), mating systems (Owen-Smith 1977), 

and population density and regulation (Wolff 1997; Fryxell et al. 1999). The degree of 

spatial overlap among conspecifics can vary widely within and among species (Rogers 

1987; Ostfeld 1990; Gehrt and Fritzell 1998; McLoughlin et al. 2000; MacDonald et al. 

2010), ranging from extensive overlap to exclusive space use (Maher and Lott 1995). 

Patterns of conspecific spatial overlap and the factors influencing those patterns are 

described for many terrestrial taxa, including mammalian carnivores (Powell 1979; 

Rogers 1987; Powell 1994; Gese 2001; MacDonald et al. 2010) and herbivores (Owen-

Smith 1977), small mammals (Smith 1968; Ostfeld 1986; Ostfeld 1990), birds (Brown 

1969), and lizards (Stamps 1983). However, relatively little is known about the factors 

influencing spatial overlap in snakes. 

Studies on snake movement patterns and space use have reported widely varying 

levels of spatial overlap, ranging from extensive home range overlap (Diffendorfer et al. 

2005; Mitrovich et al. 2009; Anguiano and Diffendorfer 2015) to low levels of overlap 

(Webb and Shine 1997; Steen and Smith 2009; Cottone and Bauer 2013). Other studies 

have reported extensive home range overlap but conspecific avoidance at the scale of 

specific shelters (Fitzgerald et al. 2002; Whitaker and Shine 2003). However, active 

defense of and conspecific exclusion from an area (i.e., territoriality) (Maher and Lott 

1995) appears very rare in snakes (Gregory et al. 1987; Greene 1997; Huang et al. 2011; 
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Webb et al. 2015). Indeed, many species of snakes show very dense conspecific 

aggregations (Gregory et al. 1987) yet these aggregations often occur near high 

concentrations of resources such as communal hibernacula, gestation sites, distinct 

habitats (e.g., wetlands or riparian habitats), cover objects, prey, or potential mates 

(Gregory 1984; Gillingham 1987; Gregory et al. 1987; Graves and Duvall 1995). In such 

cases, the benefits and efficacy of maintaining exclusive access to those resources may be 

far below the costs (Maher and Lott 2000) although the only two studies demonstrating 

territorial behavior in snakes both involved spatially clustered resources, i.e., sea turtle 

nests (Huang et al. 2011) and shelter sites (Webb et al. 2015). Excluding individuals from 

an area where resources are widely dispersed may prove similarly uneconomical. 

Nevertheless, despite the variability in patterns of spatial overlap reported for snakes, 

most studies reporting information on inter-individual home range overlap in snakes 

merely report population-level summary statistics and do not examine how overlap varied 

temporally or by sex. Describing patterns of home range overlap within and between 

sexes and how those patterns vary seasonally may provide insights into the mechanisms 

driving the degree of observed overlap.    

Eastern Indigo Snakes (Drymarchon couperi) are large (> 2 m) colubrids endemic 

to the southeastern coastal plain of the U.S. (Smith 1941; Conant and Collins 1998; Enge 

et al. 2013) and listed as Threatened under the U.S. Endangered Species Act (U. S. Fish 

and Wildlife Service 1978). This species shows male-biased sexual dimorphism with 

males being longer and heavier than females (Stevenson et al. 2009). In the northern part 

of their range (southern Georgia), D. couperi exhibit strong seasonal variation in 

movement patterns (Speake et al. 1978; Hyslop et al. 2014). In this region, D. couperi 



4 

maintained small (< 10 ha) winter home ranges on xeric sandhills that support Gopher 

Tortoises (Gopherus polyphemus), but used much larger (≤ 1500 ha) home ranges and a 

greater diversity of habitat types during Spring through Autumn (Speake et al. 1978; 

Stevenson et al. 2003; Hyslop et al. 2009a; Stevenson et al. 2009; Hyslop et al. 2014). In 

one study, several individuals undertook lengthy (1.5–7.5 km) linear migrations between 

winter and summer home ranges in a manner analogous to many north-temperate snake 

species (Hyslop et al. 2014). However, less is understood about seasonal variation in D. 

couperi movements in peninsular Florida. Breininger et al. (Breininger et al. 2011) 

reported smaller home range sizes (≤ 538 ha) than those reported for southern Georgia 

and noted that D. couperi did not make seasonal migrations. Additionally, very little is 

known about how individual home ranges overlap spatially or what factors may affect the 

degree of overlap. Hyslop et al. (2014) reported that several D. couperi in southern 

Georgia had overlapping year-round home ranges. No studies have to-date discussed 

inter- or intra-individual home range overlap for D. couperi in peninsular Florida.  More 

detailed descriptions are therefore needed to quantify seasonal variation in D. couperi 

spatial ecology in peninsular Florida.  

Reproductive behavior is also known to have a strong influence on seasonal 

variation in snake movements both within and between sexes. Males in many species 

search for females during the breeding season and therefore move more extensively 

during those times (Waldron et al. 2006; Glaudas and Rodriguez-Robles 2011; Lelievre 

et al. 2012; Putman et al. 2013). Females might also move more extensively during the 

breeding season (Blouin-Demers and Weatherhead 2002; Brown et al. 2005) or exhibit 

reduced movement while gestating or prior to oviposition (Reinert and Zappalorti 1988b; 
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Graves and Duvall 1993; Carfagno and Weatherhead 2008). Drymarchon couperi appear 

to maintain a late fall through early spring breeding season throughout their range, during 

which males engage in mate-searching, male–male ritualized combat, and, possibly, 

guarding of females (Moler 1992; Stevenson et al. 2003; Hyslop 2007; Stevenson et al. 

2009; D.S. Stevenson, personal observation). In southern Georgia, however, breeding 

activity is largely confined to overwintering sites presumably because of D. couperi’s 

cool-season reliance on Gopher Tortoise burrows (Stevenson et al. 2003; Hyslop et al. 

2009a; Hyslop et al. 2014). In contrast, D. couperi breeding activity in peninsular Florida 

could potentially occur over a broader spatial extent because individuals can move 

throughout their home ranges during both the breeding and non-breeding seasons 

(Breininger et al. 2011). While Breininger et al. (2011) found that male D. couperi had 

larger home ranges than females, they did not examine the extent to which this might 

have been related to male breeding season movements, nor did they quantify the degree 

of within-individual seasonal home range overlap. 

Our goals were to describe seasonal variation in the spatial ecology of D. couperi 

in central Florida at multiple temporal scales, and to ascertain the degree to which 

seasonal variation in spatial parameters differs between sexes. Given that male D. couperi 

appear to search for females during the breeding season in southern Georgia (Stevenson 

et al. 2009), we hypothesized that male D. couperi in central Florida would also exhibit 

mate-searching behavior. However, given the greater potential for year-round surface 

activity in peninsular Florida (Breininger et al. 2011),we predicted that male mate-

searching behavior in our study would result in longer, more frequent movements and 

larger home ranges during the breeding season compared to the non-breeding season. We 
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also expected that females would show either seasonally invariant movement patterns or 

increased movements during spring oviposition (e.g., Blouin-Demers and Weatherhead 

2002). We also predicted that within-individual home range overlap would be moderate 

to high (Breininger et al. 2011), but that such overlap would be lowest for males when 

comparing breeding and non-breeding seasons, indicating that males expanded and/or 

shifted their breeding season home ranges in their search for females. Finally, we 

predicted that D. couperi would show relatively little inter-individual home range overlap 

within sexes and that the degree of inter-individual home range overlap for males would 

increase during the breeding season. 

1.2. Methods 

1.2.1. Study Site and Data Collection 

 We used radio telemetry data collected from two separate studies. The first study 

occurred on the southern 40 km of the Lake Wales Ridge in Highlands County, Florida 

(27°17ʹN, 81°21ʹW; datum = WGS84 in all cases) from 2011–2013. This study area 

included both state and private lands and was a mix of natural habitats (scrub, scrubby 

flatwoods, mesic flatwoods, forested and non-forested wetlands), cattle ranches, citrus 

groves, and rural and urban development. Abrahamson et al. (1984) and Layne and 

Steiner (1996) provide additional details about this study area. Sampling methodologies 

including D. couperi capture, surgical implantation of radio transmitters, and radio 

telemetry procedures were described in Bauder and Barnhart (2014). While the majority 

of our telemetry fixes were obtained via homing, a small number (113 of 3219 = 3.5%) 
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were obtained via triangulation (White and Garrott 1990) with Lenth’s maximum 

likelihood estimator (Lenth 1981) using LOAS (v4.0, Ecological Software Solutions 

LLC, Hegymagas, Hungary). We then predicted the linear error of these locations as 

described in Bauder and Barnhart (Bauder and Barnhart 2014). 

The second study occurred primarily at three locations in central peninsular 

Florida including Brevard (28°38ʹN, 80°42ʹW), Indian River (27°50ʹN, 80°35ʹW), and 

Polk counties (27°37ʹN, 81°19ʹW). These study areas included federal, state, and private 

lands and a diversity of natural habitats (scrub, scrubby flatwoods, mesic flatwoods, 

hammocks, forested and non-forested wetlands, coastal scrub) and rural and urban 

development. Data were collected from 1998–2003 as described in Breininger et al. 

(2011). We hereafter refer to these two datasets as Highlands and Brevard, respectively. 

1.2.2. Movement Patterns 

We used the Highlands data to analyze fine-scale movement patterns because the 

data were collected more frequently (approximately every 2 d) than the Brevard data 

(approximately weekly). We further restricted our movement analyses to telemetry fixes 

obtained via homing and separated by ≤ 7 d (n = 2735). All analyses were conducted in R 

(R Core Team 2017) and values are reported as mean ± 1 SE unless otherwise noted.  

We estimated daily probability of movement (DPM) as the per day probability of 

a snake leaving its current location. Because we did not obtain daily locations on our 

telemetered snakes we considered the probability of a snake leaving its current location 

as a binomial probability with trial size equal to the number of days until the next 

consecutive telemetry fix (Days) and per trial (i.e., per day) probability (P) of moving 



8 

from that location as DPM. We estimated DPM by first calculating the sum of the 

squared error (SSE) between our observed data (0 or 1 denoting whether or not the snake 

moved from that location) and the predicted probability of the snake moving from that 

location with trial size equal to Days and per trial probability equal to P. We then used 

the R function optimize to find the value of P that minimized the SSE which we then 

retained as our estimate of DPM. To determine how DPM varied seasonally, we used a 

40-d moving window to calculate DPM and a bootstrapped 95% confidence interval for 

each day of the year (DOY). We selected a 40-d window because it was the smallest 

window size that allowed model convergence in subsequent analysis, although we found 

that window size had little effect on the overall pattern of our results. To create a 

smoothed fit to our time series of DPM, we fit a generalized additive model (GAM) to 

DPM for males and females separately using the MGCV package (v. 1.8-5; Wood 2011; 

Wood 2015). We used a cyclic P-spline smooth term to ensure that the predicted DPM 

for DOY = 1 and DOY = 365 were equal, and a generalized approximate cross-validation 

to select the degree of smoothing. We calculated bootstrapped prediction intervals by 

randomly sampling our data with replacement, calculating the DPM for each DOY using 

a 40-d moving window, fitting a GAM to the new estimates of DPM, and then calculating 

the predicted DPM for each DOY. We repeated this process 1000 times and took the 2.5 

and 97.5 percentiles of each DOY’s predicted values.  

We calculated daily movement rate as meters moved per day. Although most 

researchers obtain this value by dividing the distance between consecutive telemetry 

observations by the number days between those observations, this approach assumes the 

distance was covered equally over each day, an assumption that is unrealistic in nature. 
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Therefore, we used our predicted DPM from the GAM to adjust our uncorrected 

estimates of daily movement rate, as follows:  

1. We measured the distance between consecutive telemetry locations with the 

package ADEHABITATLT in R (v. 0.3.23; Calenge 2006).  

2. For each telemetry location, we calculated the probability that the telemetered 

snake moved from that location (Pmoved) as a binomial probability with trial 

size equal to Days and P equal to the GAM-predicted DPM for that snake’s 

sex and DOY.  

3. For 1,…n where n = Days, we multiplied the uncorrected movement rate 

(distance/n) by the cumulative binomial probability of moving from that 

location with trial size n = Days and per trial probability P normalized by 

Pmoved. For example, if Days = 3, P = 0.50, and distance between locations = 

100 m then Pmoved = 0.875. We would then calculate the probability of moving 

100 m over one day (0.375), normalize that value by Pmoved (i.e., 0.375 / 0.875 

= 0.429), and then multiply the resulting value by 100/1. We would then 

calculate the probability of moving 100 m over 2 d (0.375), normalize that 

value by Pmoved, and multiply the resulting value by 100/2. Lastly, we would 

calculate the probability of moving 100 m over 3 d (0.125), normalize that 

value by Pmoved, and multiply the resulting value by 100/3. Finally, we would 

sum these values to obtain the adjusted daily movement rate (i.e., [0.429 × 

100 m / day] + [0.429 × 50 m / day] + [0.143 × 33 m / day] = 69.07 m / day 

compared to 100 m / 3 days = 33.33 m / day).  
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Because the frequency distribution of daily movement rate was highly right-

skewed, we modeled our data using a generalized Pareto distribution (GPD) with the 

package TEXMEX (v. 2.1; Southworth and Heffernan 2013). TEXMEX uses a GPD with two 

parameters, scale and shape. The scale controls the spread of the distribution while the 

shape controls the shape of the distribution and can be positive or negative. In our 

application, both an increasing scale and shape indicate a greater frequency of longer 

daily movement rate although shape had a trivial effect on the overall form of our 

distributions so we only report the estimates of scale. To determine how daily movement 

rate varied seasonally, we used a 40-d moving window to calculate scale and its 

bootstrapped 95% CI for each DOY. 

1.2.3. Home Range Estimation 

We estimated annual and seasonal home ranges for both Highlands and Brevard 

data. We used triangulated locations from Highlands County with predicted linear error ≤ 

150 m (Bauder and Barnhart 2014) because fixed kernel home range estimates are robust 

to triangulation error at the scale observed in our study (Moser and Garton 2007). We 

estimated annual (i.e., 9–12 mo) home ranges using fixes from individuals tracked ≥ 255 

consecutive days (~9 mo) because home range estimates are unbiased these sampling 

durations (i.e., home range size estimated with 9 mo of data is ≥ 0.90 of home range size 

estimated with 12 mo of data; Bauder et al. 2015). We defined the breeding season as 

October–March and the non-breeding season as April–September based on observations 

of D. couperi breeding activity throughout its range (Layne and Steiner 1996; Stevenson 

et al. 2009; Hyslop et al. 2014). We estimated seasonal home ranges for each 6-mo 
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season using individuals tracked for ≥ 105 consecutive days (~3.5 mo) because estimates 

are unbiased at these sampling durations (i.e., home range size estimated with 3.5 mo of 

data is ≥ 0.90 of home range size estimated with 6 mo of data; Bauder et al. 2015), and 

our results were similar for individuals tracked for 6 mo. The greater sampling intensity 

for Highlands snakes also allowed us to calculate 3-mo home ranges for Winter 

(January–March), Spring (April–June), Summer (July–September), and Autumn 

(October–December). We used individuals tracked for ≥ 73 consecutive days (~2.5 mo) 

and our results were similar to those using individuals tracked for 3 mo. We did not 

estimate 3-mo home ranges for Brevard because of insufficient telemetry fixes.  

We estimated home ranges using 95% fixed kernel utilization distributions (UD) 

and 100% minimum convex polygons (MCP). We used the plug-in and reference 

bandwidths with unconstrained bandwidth matrices (Duong and Hazelton 2003) because 

they were robust to variation in sampling intensity and allowed for a more flexible degree 

of smoothing compared to single-parameter bandwidth matrices (Bauder et al. 2015). We 

estimated the bandwidth matrix using the KS package (v. 1.9.2; Duong 2007; Duong 

2014). Home range sizes estimated using the reference bandwidth were highly correlated 

with home range sizes estimated using the plug-in bandwidth (rs ≥ 0.97) and MCP (rs ≥ 

0.97), so we report the results of the home range size analyses using the reference 

bandwidth. Because some seasonal home ranges in the Brevard data had as few as 10 

fixes, we calculated area-observation plots for all seasonal home ranges by subsampling 

the data for each home range at 5, …, n – 1 fixes where n is the total number of fixes for 

that home range (Harris et al. 1990; Laver and Kelly 2008). We ran 500 iterations at each 

number of subsampled fixes and considered our home range estimates to have reached an 
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asymptote if the mean home range size for ≥ (n × 0.50) subsampled fixes was within 0.10 

of the full home range size. The number of fixes for seasonal home ranges reaching an 

asymptote ranged from 11–84. We found that the results of our subsequent analyses were 

similar to those obtained using all seasonal home ranges with ≥ 10 fixes. 

We tested for effects of sex, study site (Highlands and Brevard), and their 

interaction on annual home range size using linear mixed-effects models with individual 

treated as a random effect in the NLME package (v. 3.1–111; Pinheiro et al. 2013) and 

ranked models using AIC adjusted for small sample sizes (AICc; Burnham and Anderson 

2002). We report model-averaged parameter estimates and 95% CI. We also tested for an 

effect of sex, season, and their interaction on seasonal home range size using linear 

mixed-effects models. Preliminary analyses indicated a 3-way interaction between sex, 

season, and study site for 6-mo home range size, so we analyzed those data separately for 

Highlands and Brevard. The number of fixes was not correlated with home range size for 

any of our analyses (|rs| ≤ 0.12, P ≥ 0.19), but we nevertheless included it in our models 

to control for unequal sampling intensities within individuals. We also tested for an effect 

of body size (snout–vent length [SVL]) in all analyses because Hyslop et al. (2014) found 

SVL was positively associated with annual home range size for D. couperi in southern 

Georgia. We used mean SVL values for individuals for which we had >1 measure of 

body size (31 of 71 subjects = 46%). 

1.2.4. Within-Individual Spatial Overlap 

 We used individuals with multiple seasonal home ranges meeting the 

aforementioned criteria to measure the degree of spatial overlap within individuals over 
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time. We calculated the percentage of home range overlap at the 95% volume contour 

between pairs of home ranges (dyads) following Chaverri et al. (2007). However, the 

percentage of home range overlap does not incorporate information provided by the UD 

about variation in the intensity of space use within the home range. Therefore, we 

calculated the volume of intersection (VI) and utilization overlap index (UDOI) at the 

95% volume contour to quantify the degree of UD overlap (Fieberg and Kochanny 2005; 

Fieberg 2014). As an additional measure of spatial overlap, we measured the Euclidean 

distance between home range centroids defined as the mean x/y coordinates for a given 

home range.  

We used linear mixed-effects models to test for effects of sex, seasonal 

combinations (e.g., breeding–breeding, non-breeding–breeding), and their interaction on 

the degree of spatial overlap with individual as a random effect. The effect of body size 

had virtually no model support and was not included the analyses. For 6-mo home ranges, 

seasonal combination was a four-level categorical variable consisting of non-breeding vs. 

breeding, breeding vs. breeding, non-breeding vs. non-breeding, and non-breeding vs. 

non-breeding with two intervening seasons (i.e., non-breeding 2011 to breeding 2012). 

We excluded home range dyads that were separated by > 2 intervening seasons. We had 

insufficient data within the Highlands 6-mo seasonal home ranges to fit our models, so 

we combined the Highlands and Brevard data (results were similar regardless). We 

represented seasonal combinations for the 3-mo home ranges as a seven-level categorical 

variable with the following combinations: “B–B” = within the same breeding season 

(e.g., Fall 2011 to Winter 2011), “NB–NB” = within the same non-breeding season, “B–

NB” = adjacent 3-mo seasons within adjacent breeding and non-breeding seasons, and 
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“B–NB1” = non-adjacent 3-mo seasons within adjacent breeding and non-breeding 

seasons separated by one 3-mo season (e.g., Autumn 2011 to Spring 2012). We compared 

models using AICc and report model-averaged parameter estimates and 95% CI. We 

examined our model residuals for homogeneity of variances and specified alternate 

variance structures available in the lme function as necessary to meet the assumption of 

homogeneity of variances. We also transformed our dependent variables as necessary to 

meet the assumption of normality. 

1.2.5. Among-Individual Spatial Overlap 

 We evaluated among-individual home range overlap using 6-mo seasonal home 

ranges as previously described. We included data from two Highlands snakes that 

exhibited complications with the transmitter implantation site or extreme weight loss (≥ 

31%) because they exhibited spatial overlap with other telemetered snakes and gave no 

indication that their space use patterns differed from those of other telemetered snakes. 

We likewise included data from a single Brevard snake that died from receiving an 

antibiotic combined with ivermectin during surgery. We estimated 95% and 50% fixed 

kernel utilization distributions (UD) using the unconstrained reference bandwidth 

because the reference bandwidth imposed a higher degree of smoothing, resulting in 

larger home range estimates that allowed more adjacent home range dyads to meet our 

criteria for adjacency (see below). Additionally, in a study such as ours, where the degree 

of inter-individual interaction may be under-represented due to infrequent sampling, 

imposing a higher degree of smoothing for home range estimation may be advantageous, 

because it incorporates areas where space use may have occurred but was not detected. 
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Because some of the Brevard home ranges had as few as 10 fixes, we created area-

observation plots for all home ranges and retained those whose plots reached an 

asymptote (Harris et al. 1990; Laver and Kelly 2008). We generated 500 bootstrapped 

home range estimates for each number of fixes from 5 to n where n = the total number of 

fixes for that home range. We considered an estimate to have reached an asymptote if the 

mean bootstrapped home range size for at least the last 50% of subsampled fixes were 

within 10% of the home range size estimated with all fixes. However, this relatively 

conservative criterion excluded several home ranges, including some which visually 

appeared to reach an asymptote. Because inter-individual variability in home range sizes 

is often the single greatest source of variability in home range data sets, it is often 

advantageous to maximize the number of individuals included in an analysis (Borger et 

al. 2006). We therefore reran our area-observation plots using a more liberal criterion 

defining an asymptote as a mean bootstrapped home range size within 10% of the full 

home range size for the last five subsampled fixes (Laver and Kelly 2008). We ran all 

subsequent analyses with both data sets and obtained similar results so we report those 

using the more liberal criterion.  

 To quantify spatial overlap among individuals, we identified dyads of 

simultaneously adjacent home ranges, defined as home ranges within the same season 

with overlapping 99% UD volume contours. This ensured that individuals in the same 

dyad were tracked during the same temporal (season) and spatial (overlapping UD) 

extent. We used the 99% volume contour to define adjacency because it approximates the 

maximum possible area over which an individual could have moved and therefore 

interacted with conspecifics. We measured home range and core area overlap using the 
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volume of intersection (VI) and utilization distribution overlap index (UDOI) (Fieberg 

and Kochanny 2005; Fieberg 2014). We also calculated the distance between home range 

centroids for each dyad, where the centroid was the mean x and y coordinates across an 

individual’s telemetry fixes. However, small home ranges mostly or completely 

overlapped by larger home ranges had low VI and UDOI despite high degrees of overlap. 

Therefore, for each dyad, we calculated the probability of each individual occurring 

within the other individual’s home range (PHR) (Fieberg and Kochanny 2005) which is 

analogous to the proportion of home range i overlapped by home range j but accounts for 

non-uniform space use within the home range by using the UD. Because PHR is 

calculated for each individual in the dyad we used the maximum of the two values 

(PHRmax) in all analyses. The higher the PHRmax value, the more one home range was 

contained within the other home range.  

We analyzed inter-individual UD overlap for home ranges and core areas 

separately using a permutation-based multivariate analysis of variance of distance 

matrices (Anderson 2001; McArdle and Anderson 2001). This accounted for both the 

non-normal distribution of our data and the lack of independence among dyads due to the 

presence of individuals within more than one dyad. We specified our data as a Euclidean 

distance matrix upon which the sums of squares was then partitioned between within- and 

among-group variance in a manner analogous to a parametric analysis of variance. We 

used 10,000 permutations to calculate exact P values with the adonis function in the R 

package VEGAN (v. 2.2-1; Oksanen et al. 2015). We tested for an interactive effect of sex 

(male-female, female-female, and male-male) and season (breeding and non-breeding) on 

UD overlap and combined Highlands and Brevard data because of sample size 
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limitations. If the initial test was significant, we then conducted pairwise tests using the 

adonis function within the significant factors and reported adjusted P values using 

sequential Bonferroni corrections (Holm 1979). Because of sample size limitations we 

used an uncorrected α = 0.10.  

While the above metrics quantify the degree of spatial overlap at the scale of the 

entire home range, we were primarily interested in describing the degree to which an 

individual uses space within a conspecific’s simultaneously adjacent home range. 

Because the UD provides a probabilistic measure of space use, where each underlying 

pixel has a probability density value proportional to its expected probability of use, the 

distribution of conspecific UD densities at an individual’s telemetry fix describes the 

manner in which that individual utilized the conspecific’s home range. However, our 

observations of simultaneously adjacent home range overlap only included two, 

occasionally three, individuals. Because we did not simultaneously monitor all adjacent 

conspecifics, we felt that only fixes within some “zone of interaction” (ZOI), instead of 

all fixes, had the potential to be influenced by a conspecific. We defined the ZOI using a 

two-step process. First, we calculated the 99% UD volume contours for the focal 

individual and its simultaneously adjacent conspecifics and considered all fixes within 

the area of overlap as within the ZOI. For fixes outside of the area of overlap, we 

measured the Euclidean distance to the edge of the focal individual’s 99% volume 

contour (distfocal) and the edges of the 99% volume contours of the conspecifics (distconsp). 

All fixes where distconsp ≤ distfocal and that overlapped the conspecific UD were also 

considered within the ZOI. For all fixes within the ZOI we measured the density values 

of the conspecific UD (Dconsp) as the density at that fix multiplied by the area of the pixel. 
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We used a constant pixel size (15 × 15 m) for all individuals. We assumed the presence 

of two conspecifics would represent an additive effect and therefore added the UD when 

multiple simultaneously adjacent conspecifics were present. We measured Dconsp twice, 

once using only simultaneously adjacent individuals of the same sex (i.e., male-male or 

female-female overlap) and once using only simultaneously adjacent individuals of the 

opposite sex (i.e., male-female or female-male). 

Because the distribution of Dconsp was highly right skewed, we modeled our data 

using a generalized Pareto distribution (GPD) using the TEXMEX package (v. 2.1; 

Southworth and Heffernan 2013). We again combined the Highlands and Brevard data 

because of small sample sizes. The GPD has two parameters, shape and scale, and we 

modeled both parameters as a function of overlap type, sex, season, and their respective 

interactions. Overlap type included same-sex (i.e., male-male or female-female) or 

opposite-sex (i.e., male-female or female-male) overlap. Male-female overlap represents 

male use of female home ranges while female-male overlap represents female use of 

male home ranges. Sex was a binary variable representing male use of conspecific space 

or female use of conspecific space. Season was also binary representing breeding or non-

breeding seasons. Because data sparseness prevented us from fitting the global model 

with all possible interactions, we considered interactive terms of two variables with an 

additive effect of the third variable. We compared models using AICc (Burnham and 

Anderson 2002). 
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1.3. Results 

1.3.1. Movement Patterns 

 We collected data from a total of 30 D. couperi from the Highlands study site. 

However, two females developed externally visible infections around their transmitter 

implantation sites within 4 mo and another male and female lost 23–31% of their body 

weight within 6 mo after receiving their transmitters. Therefore, we conducted all 

analyses with, and without, these four subjects and found that including them did not alter 

the overall patterns of our results. We nevertheless report the results of all analyses 

without these four subjects. We therefore included a total of 26 D. couperi from the 

Highlands site (18 males and 8 females) with mean number of fixes per individual of 110 

(± 55 SD) in the analyses of movement patterns.  

Daily probability of movement calculated across all individuals was 0.40 and 

overall DPM for males and females was also 0.40. Males and females moved at similar 

frequencies throughout the year except for two brief periods (Fig. 1). Females moved 

more frequently than males during March and April, whereas males moved more 

frequently during November. 
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Figure 1.1. Seasonal change in daily probability of moving for female (A) and male (B) 

Drymarchon couperi in Highlands County, Florida. The dotted lines and light 

shaded ribbons represent the observed values with their bootstrapped 95% CI, 

and the solid lines and dark shaded ribbons represent the predicted values and 

their bootstrapped 95% CI from generalized additive models fit separately to 

each sex. The horizontal dashed line is the overall DPM across the entire 

study with both sexes (0.40). The left-most vertical line is the start of the 

non-breeding season (March 1) and the right-most vertical line is the start of 

the breeding season (October 1). 

 

 

Median daily movement rate during the breeding season was 234 m/d (95
th

 

quantiles = 1.7–990.9 m/d) and 114 m/d (95
th

 quantiles = 3.3–587.9 m/d) for males and 

females, respectively. During the non-breeding season, these values were 185 m/d (95
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quantiles = 4.4–745.0 m/d) and 140 m/d (95
th

 quantiles = 8.2–571.8 m/d) for males and 

females, respectively. Overall, males exhibited longer daily movements than females 

(Fig. 2). Males and females made similar daily movements during the non-breeding 

season as evidenced by the overlapping CI around the scale parameter (Fig. 2). During 

the breeding season, male daily movement distances were greater as evidenced by the 

higher estimates for the scale parameter of the GPD. 
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Figure 1.2. Movement distances and frequencies for Drymarchon couperi in Highlands 

County, Florida. (A) Estimates (solid lines) and bootstrapped 95% confidence 

interval (shaded ribbons) for the scale parameter from the generalized Pareto 

distributions (GPD) fit to subject daily movement distance for each day-of-

year (DOY). Higher values of scale indicate a greater frequency of longer 

daily movement distances. (B) The median (solid lines) and inter-quartile 

range (25th and 75th percentiles, shaded ribbons) for daily movement rate 

(m/day). We do not present the estimates of the shape parameter from the 

GPD because it has a negligible effect on the overall form of the GPD 

distribution. The leftmost vertical line is the start of the nonbreeding season 

(April 1) and the rightmost vertical line is the start of the breeding season 

(October 1). 
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1.3.2. Annual and Seasonal Home Range Size 

 We had sufficient data from 12 Highlands and 59 Brevard subjects to estimate 

annual home ranges and estimated 12 and 84 annual home ranges from each study area, 

respectively (Appendix A). We removed four Highlands 6-mo home ranges because we 

lost contact with those subjects throughout their respective seasons and therefore 

estimated 36 six-month home ranges from 19 Highlands snakes. We estimated 128 six-

month home ranges from 59 Brevard snakes. After removing three 3-mo ranges on 

account of having lost contact with those subjects, we estimated 70 three-month home 

ranges from 24 Highlands snakes. Males were larger than females for the pooled (male 

SVL = 173.4 ± 3.5 cm, female SVL = 163.9 ± 3.0 cm; t = –2.07, P = 0.04), Brevard 

(male SVL = 177.8 ± 4.3 cm, female SVL = 166.6 ± 2.8 cm, t = –2.20, P = 0.03), and 

Highlands data (male SVL = 155.3 ± 4.7 cm, female SVL = 139.5 ± 4.9 cm, t = –2.33, P 

= 0.03). 

Models including sex were the best-supported models for all four home range 

analyses (Table 1.1). Males consistently had larger home ranges than females (Fig. 1.3) 

although the model-averaged parameter estimate for sex overlapped zero for the 

Highlands 6-mo home ranges (Table 1.2). However, SVL was positively correlated with 

6-mo home range size in the Highlands subjects. Size only had a significant effect on 

Highlands 6- and 3-mo home range sizes (Table 1.2). We found no support for 

differences in annual home range size between study sites. However, the interactive 

effect of sex and season on 6-mo home range size differed between Highlands 

(significant) and Brevard (non-significant, although the model-averaged 95% CI for the 

interactive term only slightly overlapped zero; Table 1.2). Male seasonal home ranges 
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were larger in winter than in summer for Highlands while this trend was reduced in 

Brevard (Fig. 1.3). Male 3-mo home ranges from the Highlands data were also largest 

during the breeding season while female 3-mo home ranges remained relatively invariant 

(Fig. 1.3).  
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Table 1.1. Model selection results for annual, 6-, and 3-mo home range sizes for 

Drymarchon couperi as a function of sex, size (snout-vent length), and study 

site (study = Highlands or Brevard). Individual was included as a random 

effect in all analyses. Season in the 6-mo home range models includes the 

breeding (October–March) and non-breeding season (April–September) while 

in the 3-mo model season includes Winter (January–March), Spring (April–

June), Summer (July–September), and Autumn (October–December). Number 

of fixes was included in all models. Deviance is –2 × log likelihood, k = 

number of parameters, and wi = AICc model weights. We report models whose 

cumulative w ≥ 0.95. 

Model Deviance k AICc ΔAICc wi 

Annual home range 

     Sex + size –119.97 4 250.61 0.00 0.2470 

Sex + study + size –117.77 6 250.81 0.21 0.2228 

Sex + study –119.07 5 251.09 0.48 0.1940 

Sex –119.19 5 251.32 0.71 0.1728 

Sex × study + size –117.56 7 252.77 2.16 0.0839 

Sex × study –118.84 6 252.95 2.34 0.0768 

      Highlands 6-mo seasonal home range 

     Sex × season + size –30.04 8 81.41 0.00 0.6563 

Sex × season –32.74 7 83.48 2.06 0.2342 

Sex + size –35.84 6 86.58 5.17 0.0495 

Sex –37.53 5 87.07 5.65 0.0389 

       

Brevard 6-mo seasonal home range 

     Sex × season –141.34 7 297.62 0.00 0.4227 

Sex × season + size –141.09 8 299.38 1.76 0.1753 

Sex + season –143.36 6 299.41 1.79 0.1731 

Sex –144.94 5 300.37 2.75 0.1069 

Sex + season + size –143.11 7 301.15 3.53 0.0723 

      Highlands 3-mo seasonal home range 

     Sex × season + size –55.64 12 140.76 0.00 0.7395 

Sex × season –58.45 11 143.44 2.68 0.1932 

Sex + season + size –63.19 9 147.39 6.63 0.0269 
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Table 1.2. Model-averaged betas (i.e., parameter estimates) and 95% CI for fixed-effects 

parameters from annual and seasonal models of home range size for 

Drymarchon couperi. Parameter estimates whose model-averaged 95% CI did 

not overlap zero are displayed in bold. Reference levels are female (Sex), 

Brevard (Study), Summer (6-mo season), and Autumn (3-mo season). 

Parameter Model-averaged  95% CI 

Annual home range 

  Sex 0.86 0.40–1.33 

Study 0.84 –0.63–2.31 

Sex × study 0.44 –0.90–1.78 

Size 0.01 –0.00–0.02 

Fixes 0.00 –0.02–0.01 

   Highlands 6-mo seasonal home range 

  Sex 0.46 –0.40–1.32 

Season –0.68 –1.31––0.05 

Sex × study 1.26 0.46–2.07 

Size 0.02 0.00–0.04 

Fixes 0.02 0.00–0.04 

   Brevard 6-mo seasonal home range 

  Sex 0.80 0.30–1.30 

Season –0.30 –0.58––0.01 

Sex × study 0.40 –0.00–0.79 

Size 0.00 –0.01–0.02 

Fixes –0.01 –0.03–0.02 

   Highlands 3-mo seasonal home range 

  Sex  1.41 0.55–2.28 

Season (spring)  0.02 –0.6–0.65 

Season (summer)  0.18 –0.41–0.78 

Season (winter) –0.58 –1.17–0.01 

Sex × season (spring)  –0.93 –1.69– –0.17 

Sex × season (summer)  –0.94 –1.71– –0.18 

Sex × season (winter) 0.06 –0.73–0.85 

Size 0.02 0.00–0.04 

Fixes 0.02 –0.00–0.04 
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Figure 1.3. Seasonal home range sizes (means ± bootstrapped 95% CI) for Drymarchon 

couperi by sex and season. (A) Highlands 6-mo home ranges; (B) Brevard 6-

mo home ranges; and (C) Highlands 3-mo home ranges. Home ranges were 

estimated using 95% fixed kernel utilization distributions with an 

unconstrained reference bandwidth matrix. Seasons for the 6-mo home 

ranges are breeding (October–March) and non-breeding (April–September) 

and seasons for the 3-mo range ranges are Autumn (October–December), 

Winter (January–March), Spring (April–June), and Summer (July–

September). 
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1.3.3. Within-Individual Spatial Overlap 

Within the Highlands and Brevard 6-mo data, we obtained 140 home range dyads 

(58 males and 82 females) from 47 subjects. We obtained 74 home range dyads (41 males 

and 33 females) from 19 subjects in Highlands 3-mo data. The volume of intersection 

was highly correlated with the percentage of home range overlap (rs ≥ 0.82, P < 0.0001) 

and UDOI (rs ≥ 0.96, P < 0.0001), so we only report the results using VI. Mean VI across 

all dyads was 0.48 (0.04–0.75) and 0.46 (0.13–0.75) for 6- and 3-m dyads, respectively. 

Mean distance between centroids across all dyads was 296 m (11–3445 m) and 356 m 

(11–1469 m) for 6- and 3-mo dyads, respectively. 

Models containing an effect of seasonal combination on VI between seasonal 

home ranges had high support for both 6- and 3-mo home ranges (Table 1.3). There was 

no strong support for an effect of sex on VI (Table 1.4). For 6-mo home ranges, only the 

degree of overlap between breeding and non-breeding seasons separated by 12 mo (i.e., 

two seasons) was less than the degree of overlap between adjacent breeding and non-

breeding seasons (Fig. 1.4). The model-averaged 95% CI for seasonal combinations of 3-

mo home ranges all overlapped zero for VI. Models containing an interactive effect of 

sex and season had very little support for both seasonal home ranges and overlap metrics 

(wi ≤ 0.08). We only observed two and three within-individual home range dyads, from 

Brevard and Highlands respectively (four male subjects), where the distance between 

home range centroids was > 1 km (e.g., Appendix B). For all but two subjects, there was 

substantial overlap between breeding and non-breeding home ranges (i.e., VI ≥ 0.21, and 

% home range overlap ≥ 0.40). 
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Table 1.3. Model selection results for Drymarchon couperi for factors influencing 

within-individual 6- and 3-mo home range overlap. Season in the 6-mo home 

range models includes the breeding (October–March) and non-breeding season 

(April–September) while in the 3-mo model season includes Winter (January–

March), Spring (April–June), Summer (July–September), and Autumn 

(October–December). Deviance is –2 × log likelihood, k = number of 

parameters, and wi = AICc model weights. The null model contained only a 

random effect of individual. The reference levels for all models are females 

and a breeding–non-breeding season with no intervening seasons (e.g., non-

breeding 2011–breeding 2011). 

Model Deviance k AICc ΔAICc wi 

Brevard and Highlands 6-mo 

     Volume of intersection 

     Season 57.02 6 –101.42 0.00 0.6150 

Sex + season 57.61 7 –100.38 1.04 0.3660 

Sex × season 57.92 10 –94.13 7.28 0.0161 

Null 48.02 3 –89.85 11.56 0.0019 

Sex 48.36 4 –88.42 13.00 0.0009 

Distance between centroids 

     Sex + season –171.77 7 358.40 0.00 0.5580 

Sex  –175.48 4 359.25 0.85 0.3647 

Sex × season –170.33 10 362.36 3.96 0.0769 

Season –181.06 6 374.75 16.36 0.0002 

Null –184.40 3 374.97 16.57 0.0001 

Highlands 3-mo 

     Volume of intersection 

     Season –62.50 6 –49.25 0.00 0.4396 

Sex + season –63.33 7 –47.63 1.62 0.1956 

Null –53.87 3 –47.52 1.73 0.1854 

Sex –55.07 4 –46.49 2.76 0.1104 

Sex × season –69.04 10 –45.55 3.71 0.0689 

Distance between centroids 

     Sex 169.30 4 177.88 0.00 0.8944 

Sex + season 168.07 7 183.76 5.88 0.0472 

Sex × season 160.39 10 183.88 6.00 0.0445 

Null 180.00 3 186.34 8.46 0.0130 

Season 178.65 6 191.90 14.02 0.0008 
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Table 1.4. Model-averaged betas (i.e., parameter estimates), 95% CI, and AICc parameter 

weights for fixed-effects parameters from Drymarchon couperi within-

individual home range overlap models. Parameter estimates whose model-

averaged 95% CI did not overlap zero are displayed in bold. Reference levels 

are female (Sex) and breeding–non-breeding (Season). The betas and CI for 

the interactive effect of sex and season are not reported because models with 

the interactive term had low support (wi ≤ 0.07) and the CI for the betas all 

overlapped zero. 

 

Model-averaged  95% CI 

Brevard and Highlands 6-mo  

 Volume of intersection  

 Season (breeding) –0.04 –0.12–0.04 

Season (non-breeding) 0.00 –0.07–0.07 

Season (breeding–non-breeding 2) –0.18 –0.26– –0.10 

Sex –0.04 –0.12–0.04 

Distance between centroids 

  Sex 0.93 0.52–1.34 

Season (breeding) –0.03 –0.50–0.43 

Season (non-breeding) 0.25 –0.13–0.64 

Season (breeding–non-breeding 2) 0.53 0.08–0.97 

 

  Highlands 3-mo 

  Volume of intersection 

  Season (breeding) 0.09 –0.04–0.22 

Season (non-breeding) 0.10 –0.04–0.24 

 

Season (breeding–non-breeding 1) –0.02 –0.11–0.07 

Sex  –0.06 –0.19–0.07 

Distance between centroids 

  Sex 1.15 0.49–1.81 

Season (breeding) 0.35 –0.44–1.15 

Season (non-breeding) 0.32 –0.61–1.25 

Season (breeding–non-breeding 2) 0.25 –0.23–0.73 

 

Model-averaged  95% CI 

Brevard and Highlands 6-mo  

 Volume of intersection  

 Season (breeding) –0.04 –0.12–0.04 

Season (non-breeding) 0.00 –0.07–0.07 

Season (breeding–non-breeding 2) –0.18 –0.26– –0.10 

Sex –0.04 –0.12–0.04 

Distance between centroids 
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Sex 0.93 0.52–1.34 

Season (breeding) –0.03 –0.50–0.43 

Season (non-breeding) 0.25 –0.13–0.64 

Season (breeding–non-breeding 2) 0.53 0.08–0.97 

 

  Highlands 3-mo 

  Volume of intersection 

  Season (breeding) 0.09 –0.04–0.22 

Season (non-breeding) 0.10 –0.04–0.24 

 

Season (breeding–non-breeding 1) –0.02 –0.11–0.07 

Sex  –0.06 –0.19–0.07 

Distance between centroids 

  Sex 1.15 0.49–1.81 

Season (breeding) 0.35 –0.44–1.15 

Season (non-breeding) 0.32 –0.61–1.25 

Season (breeding–non-breeding 2) 0.25 –0.23–0.73 
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Figure 1.4. Within-individual seasonal overlap in home ranges of Drymarchon couperi 

measured in 6-mo (Brevard and Highlands sites combined, A and B) and 3-

mo (Highlands only, B and C) intervals. Plotted values represent means ± 

bootstrapped 95% CI. Males and females were pooled for volume of 

intersection. Each 3-mo home range was reclassified into its respective 6-mo 

season (breeding or non-breeding). The season combination marked with an 

asterisk had a model-averaged parameter estimate whose 95% CI did not 

overlap zero. Distance between home range centroids differed between sexes 

for both the 6- and 3-mo data. See text for description of seasonal 

combinations. 
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1.3.5. Among-Individual Spatial Overlap 

We estimated 6-month home ranges from 41 Brevard and 16 Highlands snakes 

that were simultaneously adjacent with at least one other conspecific (Table 1.5). We 

obtained 61 conspecific 6-month home range dyads, including 36 male-female, 8 female-

female, and 17 male-male dyads. All individuals were considered adults (snout-vent 

length [SVL] ≥ 122 cm) and we did not distinguish between gravid and non-gravid 

females because available data suggest that female D. couperi reproduce annually 

(Speake et al. 1987; Hyslop et al. 2009b). Males were significantly longer (SVL [mean ± 

SE]: males = 168.75 cm ± 3.90, females = 156.69 cm ± 3.53, t = -2.29, P = 0.0252) and 

heavier (males = 1.66 kg ± 0.09, females = 1.20 kg ± 0.07, t = -4.17, P < 0.0001) than 

females. 



 

 

3
4
 

Table 1.5. Number of individuals, home range dyads, home range sizes, and tracking intensities for radio telemetered eastern 

indigo snakes (Drymarchon couperi) used in the analyses of conspecific spatial overlap. The mean and standard 

deviation of home range size, number of fixes, and tracking duration are reported. Sample sizes within each home 

range column are the number of simultaneously adjacent home range dyads (pooled across sexes). The maximum 

possible number of tracking days was 183 days for 6-month home ranges. 

 

Mean home range size (ha) 

 

Mean 

       

Mean tracking 

       

number duration 

  Males Females of fixes (days) 

 

Snakes Breed- Non- Snakes Breed- Non- 

    (n) ing breeding (n) ing breeding 

  

  

313.68 183.24 

 

36.99 87.3 

  6-month 

 

(238.06) (56.83) 

 

(33.11) (62.47) 

  Highlands 9 n = 5 n = 8 7 n = 7 n = 4 57 (10) 163 (17) 

  

426.68 235.00 

 

84.51 146.26 

  6-month 

 

(313.06) (174.63) 

 

(72.91) (120.81) 

  Brevard 22 n = 29 n = 27 19 n = 19 n = 21 19 (4) 157 (22) 

6-month 

 

410.07 223.17 

 

71.72 136.82 

  Brevard & 

 

(302.78) (156.44) 

 

(67.40) (114.61) 

  Highlands 31 n = 34 n = 35 26 n = 26 n = 25 26 (16) 158 (21) 
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Volume of intersection was highly correlated with UDOI for both home ranges 

(UD) and core areas (50% UD) (rs ≥ 0.94, P < 0.0001) so we only report the results using 

VI. Mean home range VI was 0.13 (range = 0.00–0.60) across all dyads. There was no 

significant effect of sex (F2,60 = 2.15, P = 0.1244), season (F1,60 = 1.49, P = 0.2365), or 

their interaction (F2,60 = 0.22, P = 0.8027) on home range VI. However, there was a 

significant effect of sex (F2,60 = 12.77, P = 0.0002), season (F1,60 = 2.93, P = 0.0904) and 

sex*season (F2,60 = 2.44, P = 0.0945) on distance between home range centroids. 

Following corrections for pairwise error, the distance between breeding season male-

male centroids was significantly greater than the distance between male-female centroids 

during both the breeding (P = 0.0126) and non-breeding seasons (P = 0.0045, Fig. 1). Sex 

was also significant for home range PHRmax (F2,60 = 11.55, P < 0.0001) but not for season 

(F1,60 = 0.10, P = 0.7453) or sex*season (F2,60 = 1.88, P = 0.1502). Male-male home 

range dyads had significantly lower PHRmax than male-female (P = 0.0003) and female-

female dyads (P = 0.0528, Fig. 1.5). 
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Figure 1.5. Boxplots of conspecific home range overlap (95% fixed kernel utilization 

distribution) for simultaneously adjacent eastern indigo snake (Drymarchon 

couperi) 6-month home range dyads (Highlands and Brevard data combined). 

Home ranges were estimated using an unconstrained reference bandwidth 

matrix. The thick horizontal line indicates the median, the edges of the boxes 

the 25
th

 and 75
th

 percentiles, and the whiskers approximate a 95% confidence 

interval. Female-female dyads are denoted as “Female,” male-male dyads as 

“Male,” and male-female dyads as “Male-Female.” Breeding seasons 

(October–March) are denoted with dark gray and non-breeding seasons 

(April–September) with light gray. Maximum PHR is the maximum 

probability of home range overlap for each dyad. Pairs of dyads marked with 

the same upper-case letters (e.g., A, B) are significantly different (P <0
.
10). 

All pairwise P values were adjusted using Holm’s (1979) method. Pairwise 

comparisons in maximum PHR indicate a significant effect of sex; there was 

no significant effect of season or sex*season. 
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38 

Mean core area VI was 0.05 (range = 0.00–0.52). There was no significant effect 

of sex (F2,60 = 0.65, P = 0.5474), season (F1,60 = 0.06, P = 0.8164), or their interaction 

(F2,60 = 0.23, P = 0.7909) on core area VI. Sex was significant for core area PHRmax (F2,60 

= 3.27, P = 0.0421) but not for season (F1,60 = 0.16, P = 0.6926) or sex*season (F2,60 = 

0.32, P = 0.7209). The core area PHRmax for male-male and male-female dyads were 

significantly different (P = 0.0753, Fig. 1.6).  

 

Figure 1.6. Boxplots of conspecific core area overlap (50% fixed kernel utilization 

distribution) for simultaneously adjacent eastern indigo snake (Drymarchon 

couperi) 6-month home range dyads (Highlands and Brevard data combined). 

Home ranges were estimated using an unconstrained reference bandwidth 

matrix. The thick horizontal line indicates the median, the edges of the boxes 

the 25th and 75th percentiles, and the whiskers approximate a 95% 

confidence interval. Female-female dyads are denoted as “Female,” male-

male dyads as “Male,” and male-female dyads as “Male-Female.” Breeding 

seasons (October–March) are denoted with dark gray and non-breeding 

seasons (April–September) with light gray. Maximum PHR is the maximum 

probability of home range overlap for each dyad. Pairs of dyads marked with 

the same upper-case letters (e.g., A, B) are significantly different (P < 0.10). 

All pairwise P values were adjusted using Holm’s (1979) method. Pairwise 

comparisons in maximum PHR indicate a significant effect of sex; there was 

no significant effect of season or sex*season. 
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The model including an interactive effect of season and overlap type and an 

additive effect of sex for shape and scale received all the model support among GPD 

models for individual use of conspecific space (Table 1.6). Males used less of other 

males’ home ranges compared to female use of other females’ home ranges, particularly 

during the non-breeding season (Fig. 1.7). Female use of male home ranges was greatest 

during the breeding season, while male use of female home ranges was lower and more 

temporally consistent. 

Table 1.6. Model selection results using a generalized Pareto distribution (GPD) to 

model conspecific UD density within the zone-of-interaction for 6-month 

home ranges estimated using the unconstrained reference bandwidth. The GPD 

has two parameters, scale (estimated here as log(scale), φ) and shape (ξ), 

which were both modeled as a function of season (breeding = October–March, 

non-breeding = April–September), sex, and overlap type (same-sex or 

opposite-sex). Additive effects (+) were included where model convergence 

would not permit interactive effects (*). Deviance (Dev) is -2*log-likelihood, k 

is the number of model parameters, and wi = AICc model weights. 

Model Dev k AICc ΔAICc wi 

φ(Season*Type + Sex), 

ξ(Season*Type + Sex) 12969
.
78 10 -25919

.
41 0

.
00 1

.
00 

φ(Sex*Type + Season), 

ξ(Season*Type + Season) 12951
.
87 10 -25883

.
60 35

.
81 0

.
00 

φ(Sex*Type), ξ(Sex*Type) 12948
.
56 8 -25881

.
02 38

.
39 0

.
00 

φ(Sex*Season + Type), 

ξ(Sex*Season + Type) 12949
.
54 10 -25878

.
94 40

.
47 0

.
00 

φ(Sex + Type), ξ(Sex + Type) 12934
.
65 6 -25857

.
25 62

.
16 0

.
00 

φ(Sex*Season), ξ(Sex*Season) 12899
.
49 8 -25782

.
88 136

.
53 0

.
00 

φ(Sex + Season), ξ(Sex + Season) 12894
.
01 6 -25775

.
97 143

.
43 0

.
00 

φ(Sex), ξ(Sex) 12889
.
27 4 -25770

.
52 148

.
89 0

.
00 

φ(Season*Type), ξ(Season*Type) 12840
.
95 8 -25665

.
80 253

.
60 0

.
00 

φ(Type), ξ(Type) 12835
.
14 4 -25662

.
26 257

.
15 0

.
00 

φ(Season + Type), ξ(Season + Type) 12836
.
11 6 -25660

.
17 259

.
24 0

.
00 

φ(Season), ξ(Season) 12679
.
46 4 -25350

.
88 568

.
52 0

.
00 

φ(.), ξ(.) 12676
.
76 2 -25349

.
51 569

.
89 0

.
00 
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Figure 1.7. Distributions of conspecific utilization distribution (UD) densities at eastern 

indigo snake (Drymarchon couperi) radio telemetry locations fit using a 

generalized Pareto distribution. Utilization distributions were calculated 

using the unconstrained reference bandwidth for each 6-month season 

(breeding = October–March, non-breeding = April–September). Male-female 

overlap represents male use of female UD while female-male overlap 

represents female use of male UD. The number of fixes for each 

season*overlap type combination are displayed in each panel. 

 

1.4. Discussion 

Our study supports that male and female D. couperi in peninsular Florida show 

different degrees of seasonal variation in movement patterns. Specifically, female D. 

couperi movement patterns were relatively invariant throughout the year with the 

exception of a decrease in movement frequency in the late winter and early spring. In 

contrast, males increased their movement frequency, daily movement distances, and 
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home range sizes during the breeding season. These patterns are consistent with our 

hypothesis that male D. couperi undertake mate-searching movements during the 

breeding season. The timing of these increased movements are consistent with our 

observations of copulation (24 December 2012), male–male combat (26 November 

2012), and apparent mating or courtship (22 February 2013) among our Highlands 

subjects, and with reproductive behavior reported previously across the species’ range 

(Speake et al. 1978; Moler 1992; Layne and Steiner 1996; Stevenson et al. 2003; Hyslop 

2007).  

Increased male movements during the breeding season are known from many 

snake taxa (Waldron et al. 2006; Cardwell 2008; Sperry and Weatherhead 2009a; 

Lelievre et al. 2012). Increased movements might increase male reproductive success by 

increasing the number of females encountered (Madsen et al. 1993; Duvall and Schuett 

1997; Glaudas and Rodriguez-Robles 2011; but see Smith et al. 2015). The spatial 

distribution of females can influence male mate-searching patterns (Duvall and Schuett 

1997; Brown and Weatherhead 1999). For example, where females are widely distributed 

and spatially unpredictable, linear movements might maximize a male’s chances of 

encountering a female (Duvall and Schuett 1997). At our study sites, both male and 

female movements throughout the year were non-directional indicating that female D. 

couperi were spatially predictable.  

Females in many snake species also show an increase in movement during the 

breeding season (e.g., Cardwell 2008; Sperry and Weatherhead 2009a; Row et al. 2012) 

which may reflect travel to and from suitable oviposition sites (Blouin-Demers and 

Weatherhead 2002; Brown et al. 2005). Additionally, these movements might make 
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females more accessible to males through the deposition of chemical cues (LeMaster et 

al. 2001; Jellen and Aldridge 2014; Jellen et al. 2014). In our study, however, female D. 

couperi did not increase their movements or home ranges during the breeding season and 

moved less frequently during the late winter and early spring. The late winter–early 

spring (i.e., March–April) decrease in daily probability of movement for females might 

be associated with gestation, as D. couperi oviposit in April–June (Moulis 1976; Speake 

et al. 1978; Newberry et al. 2009). Many female snakes reduce movements when gravid 

(Graves and Duvall 1993; Charland and Gregory 1995; Webb and Shine 1997; Carfagno 

and Weatherhead 2008). Interestingly, male D. couperi in our study exhibited a similar 

decrease in movement frequency during this period suggesting that the concurrent 

decrease in female daily probability of movement may not be driven entirely by 

gestation. We are unsure of the causes behind this decrease in movement frequency. This 

timeframe at our study sites is typically characterized by dry conditions that might reduce 

activity patterns among several reptilian and amphibian prey species of D. couperi 

(Stevenson et al. 2010). Lower movement frequencies during this time might therefore 

have been an energy-saving strategy. Dalrymple et al. (1991) found that road-crossings of 

several snakes in southern peninsular Florida (Everglades National Park) remained 

relatively low through April and did not generally peak until May. Hyslop et al. (2014) 

found that the movement frequencies and distances of female D. couperi in southern 

Georgia were lowest during December through April although this might largely reflect 

D. couperi reliance on Gopher Tortoise burrows as cool-season shelter sites (Stevenson et 

al. 2003; Hyslop et al. 2009a; Stevenson et al. 2009). 
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Drymarchon couperi in peninsular Florida remained surface active year-round. 

Many snake species in the southern portion of North America are surface-active during 

periods of warmer weather in Winter, but these levels are generally much less than those 

observed during Spring–Autumn (Timmerman 1995; Cardwell 2008; Sperry and 

Weatherhead 2009a, 2012). While studies have reported year-round snake activity in 

southern peninsular Florida (Dalrymple et al. 1991; Bernardino and Dalrymple 1992; 

May et al. 1996), activity levels still showed a decrease during the winter. With the 

exception of the late winter–early spring decrease in movement frequency, D. couperi at 

our study sites exhibited similar or increased activity levels during the winter months 

compared to the rest of the year. The pattern of winter breeding, and concurrent increases 

in male movements and home range size, in D. couperi is different from Spring and/or 

Autumn breeding reported for most North American snakes (e.g., Aldridge and Duvall 

2002). It is unclear why D. couperi show this divergent behavior. Dry-season breeding 

(i.e., Winter) has been reported or inferred for several tropical species (Madsen and Shine 

1996b; Aldridge and Duvall 2002; Brown and Shine 2002; Bertona and Chiaraviglio 

2003; Fearn et al. 2005). The genus Drymarchon is found primarily in Mexico, Central 

and South America (Wuster et al. 2001), so winter breeding in D. couperi might reflect 

the tropical origins of this genus. However, some tropical species also breed during 

spring/summer months (Maciel et al. 2003; Marques et al. 2014) or show increased 

activity during Spring–Autumn compared to Winter (Brown et al. 2005; Abom et al. 

2012). Additionally, we note that our study did not examine the seasonality of other 

reproductive processes (e.g., vitellogenesis, ovulation).  
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The home ranges of male D. couperi were larger than those of female subjects 

during the non-breeding season, although this difference was smallest during the Summer 

(July–September; mean values for males and females = 161.15 ha and 93.98 ha, 

respectively; β = 0.65, 95% CI = 0.03–1.28). This indicates that the larger annual home 

range sizes we observed for males were not entirely attributable to male mate-searching 

movements. Similarly, Hyslop et al. (2014) found that mean Spring–Autumn home range 

sizes for male D. couperi in southern Georgia were approximately 2–5 times larger than 

those of females. We are unsure why males would maintain larger home ranges outside 

of the breeding season, although other studies have also reported increased movements 

and/or larger home ranges for male snakes outside of the breeding season (Brown et al. 

2005; Smith et al. 2009). This pattern might reflect the larger body sizes of male D. 

couperi (Layne and Steiner 1996; Stevenson et al. 2009). We found a positive effect of 

body size, but not sex, on seasonal home range size at the Highlands site. However, we 

suspect this effect is attributable to low overlap in SVL between males and females 

(inter-quartile range, males = 145.0–162.9 cm vs. females = 126.3–141.5 cm), resulting 

in a high correlation between sex and SVL. Indeed, both of these covariates had similar 

effects on home range size when examined separately. Hyslop et al. (2014) found that 

body size, in addition to sex, had a positive effect on D. couperi annual home range size, 

and suggested that larger male home range sizes were not attributable solely to greater 

resource needs of larger individuals. This hypothesis is supported by the effect of sex, but 

not size, on annual (Highlands and Brevard sites combined) and Brevard seasonal home 

range size, despite males being larger.  
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Although our study was not designed to directly compare seasonal variation in D. 

couperi movement patterns between the southern and northern parts of their range, we 

note several qualitative differences between their movement patterns in peninsular 

Florida and southern Georgia (Hyslop et al. 2014). Consistent with results from 

Breininger et al. (2011), D. couperi in peninsular Florida maintained smaller mean annual 

home ranges than those in southern Georgia (males, 149.12 vs. 510 ha; females, 48.97 vs. 

102 ha; Hyslop et al. 2014). While our annual home range sizes were smaller than those 

reported by Breininger et al. (2011) this is likely because they reported home range sizes 

with tracking durations of up to 2 yr. However, 3-mo home range sizes, movement 

frequency, and distance were all lowest during the Winter (December–March) in southern 

Georgia despite breeding occurring during that time (Speake et al. 1978; Stevenson et al. 

2003; Stevenson et al. 2009; Hyslop et al. 2014). Mean 3-mo home range size at that 

locality ranged from ≤ 10 ha for both males and females in the Winter to approximately 

150–275 ha and 25–50 ha during Spring–Autumn for males and females, respectively 

(Hyslop et al. 2014). In contrast, mean Winter 3-mo home ranges at our study sites were 

100.58 ha and 16.10 ha for male and female subjects, respectively. Additionally, six 

males in the south Georgia study undertook lengthy (1.5–7 km) migrations between 

overwintering sites on sandhills and Summer foraging habitat (Hyslop et al. 2014). These 

results contrast with the increased movement frequency, distance, and home range size of 

D. couperi in peninsular Florida during the Autumn–Winter breeding season, and the lack 

of distinct migratory behavior. 

While our study cannot directly test hypotheses responsible for latitudinal 

variation in seasonal movement patterns of D. couperi, we suspect that this variation is 
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driven by cooler winter temperatures in southern Georgia which, in turn, might dictate D. 

couperi dependence on Gopher Tortoise burrows for winter shelter sites. In southern 

Georgia, > 80% of Autumn–Winter shelter sites were in Gopher Tortoise burrows 

(Hyslop et al. 2009a). In contrast, among the Highlands snakes monitored > 105 d during 

the breeding season (n = 13), Gopher Tortoise burrows comprised a mean of 61% of 

shelter sites. Similarly, 29% of the Brevard snakes were never observed using a tortoise 

burrow for shelter (M.R. Bolt, personal observation). 

Our study suggests that D. couperi in peninsular Florida maintain generally low 

levels of spatial overlap but that the degree of overlap varies interactively by sex and, to a 

lesser extent, season. Male home ranges would often mostly or completely overlap one or 

more female home ranges, whereas male-male and, to a lesser extent, female-female 

overlap was much less (Figs. 1.5, 1.6, & 1.8). These patterns persisted when examining 

core area overlap as only three of 17 (18%) male-male dyads had overlapping core areas 

(50% UD) compared to four of eight (50%) female-female and 20 of 36 male-female 

dyads (56%). The probability of occurring within a conspecific’s home range (PHRmax) 

was significantly greater for male-female dyads compared to female-female or male-male 

dyads (Fig. 1.5). This pattern persisted, albeit at reduced levels, when examining core 

area overlap as PHRmax differed significantly between male-male and male-female dyads. 

There was also evidence for increasing male-female overlap during the breeding season 

and, while this trend was not statistically significant, it was consistent with our 

expectations based on D. couperi mating systems. Webb and Shine (1997) report similar 

patterns with regards to male-male home range overlap in broad-headed snakes 

(Hoplocephalus bungaroides). During the spring and early summer, when individuals 
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inhabited rocky outcrops, male home ranges showed virtually no overlap while female 

home ranges were contained within male home ranges. Home range overlap was greater 

within and between sexes during the summer, when individuals moved into adjacent 

woodlands, but individuals appeared to avoid conspecifics of either sex temporally. Steen 

and Smith (2009) reported low annual home range overlap for eastern kingsnakes 

(Lampropeltis g. getula) and also found that male-female overlap was higher than male-

male overlap. Similarly, Cottone and Bauer (2013) reported that female home ranges 

were often contained within male home ranges during the breeding season for rhombic 

skaapstekers (Psammophylax r. rhombeatus).  
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Figure 1.8. Six-month home range overlap among simultaneously adjacent male and 

female eastern indigo snakes (Drymarchon couperi) for consecutive breeding 

(October–March) and non-breeding (April–September) seasons from 

Highlands County, Florida. Panels A and B, C and D, and E and F depict the 

same individuals. Panels A and B depict an example of reduced male-male 

overlap between the breeding and non-breeding season. Panels C and D 

depict the maximum observed male-male overlap during both the breeding 

and non-breeding season. Panels E and F depict an example of high female-

female overlap. Note that not all of the home range estimates depicted here 

met our criteria for inclusion in the statistical analyses (i.e., were not 

monitored for ≥ 105 days and/or home range size did not asymptote). 

Individuals depicted in panel E but not F were lost due to transmitter 

removal/failure or mortality. 
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In contrast to males, females showed higher overlap in the non-breeding season 

than the breeding season (Figs. 1.5 & 1.6). Although only four female-female non-

breeding season dyads met our criteria for inclusion in our analyses, another three 

Brevard females monitored during the non-breeding seasons of 1999 and 2000 had 

relatively high home range overlap (median VI = 0.09 and 0.35 for core area and home 

ranges, respectively, e.g., Fig. 1.8F). In contrast, home range overlap among these same 

three females during the breeding season was lower (median VI = 0.06 and 0.18 for core 

area and home ranges, respectively, e.g., Fig. 1.8E), a pattern consistent with the results 

of our analyses. Cottone and Bauer (2013) did not observe breeding season home range 

overlap in female rhombic skaapstekers. Low levels of female home range overlap may 

reflect efforts to minimize competition for food so that females can secure sufficient 

resources for reproduction (Ostfeld 1990). Yet if this was the case in our system we 

would expect female-female home range overlap to be lowest during the non-breeding 

season when temperatures are warmer and most foraging occurs (Hyslop et al. 2014). 

Whitaker and Shine (2003) found that female brownsnakes (Pseudonaja textilis) often 

cohabited burrows while males were never observed to do so, a pattern analogous to that 

seen by Webb et al. (2015) with regard to small-eyed snakes (Cryptophis nigrescens) 

using shelter rocks. However, we note that spatial overlap does not imply the lack of 

temporal avoidance (Fitzgerald et al. 2002; Whitaker and Shine 2003). 

Studies reporting low home range overlap in snakes are a minority. It is difficult 

to make direct comparisons of home range overlap among studies because of differences 

in home range estimators and methods used to calculate overlap. For example, most 

snake studies estimated home ranges using minimum convex polygons (MCP) instead of 
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fixed kernels even though the latter provides a probabilistic representation of space use 

that provides a more accurate measure of spatial overlap (Fieberg and Kochanny 2005). 

Nevertheless, we suggest that qualitative comparisons are still possible, particularly of 

factors influencing home range overlap (e.g., sex, season). Of 19 published studies that 

addressed home range overlap in snakes, 15 (79%) inferred high levels of home range 

overlap (e.g., non-exclusive home ranges). However, two of these studies found that, 

despite broad home range overlap (11–89% MCP overlap), snakes avoided using shelter 

sites that were or had previously been occupied by conspecifics (Fitzgerald et al. 2002; 

Whitaker and Shine 2003). Seven of these 15 studies quantified the degree of home range 

overlap either as a percentage of the home range overlapped by one or more individuals 

(Fitzgerald et al. 2002; Whitaker and Shine 2003; Wilson et al. 2006; Mitrovich et al. 

2009; Anguiano and Diffendorfer 2015) or the number overlapping home ranges (Secor 

1994; Hyslop et al. 2014). For example, Hyslop et al. (2014) reported that D. couperi 

home ranges in southern Georgia were overlapped by the annual home ranges of at least 

six other individuals. Mitrovich et al. (2009) calculated the proportion of an individual’s 

home range overlapped by other individuals for coachwhips (Coluber flagellum 

fuliginosus) in southern California and found that mean overlap was 0.49–0.89 across 

three sites. Eight studies that did not quantify the degree of home range overlap reported 

overlap as “substantial” or “extensive” (Slip and Shine 1988; Weatherhead and Hoysak 

1989; Plummer and Congdon 1994; Blouin-Demers and Weatherhead 2002; Diffendorfer 

et al. 2005; Pearson et al. 2005; Carfagno and Weatherhead 2008; Corey and Doody 

2010). Anguiano and Diffendorfer (2015) found that female California kingsnakes shared 

a greater percentage of their MCP home range with males (mean = 63%) than males did 
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with females (19%) or other males (27%). However, males never shared core areas. In 

contrast, “extensive” home range overlap was reported between male and female carpet 

pythons (Morelia spilota, (Slip and Shine 1988; Pearson et al. 2005)) and green pythons 

(Morelia viridis) (Wilson et al. 2006).  

Patterns of low spatial overlap among males combined with relatively higher 

inter-sexual spatial overlap are seen in many mammalian carnivores (Powell 1979; 

Sandell 1989; Powell 1994; Ferreras et al. 1997). Powell (1993, 1994) hypothesized that 

high spatial overlap between males and females in a species where males search for 

females could confer a net advantage to males by providing easy access to females even 

if breeding occurs seasonally. Low year-round home range overlap among male D. 

couperi combined with high male-female overlap may therefore act to increase male 

reproductive success. While high levels of male-female overlap outside of the breeding 

season could lead to intraspecific competition for food resources, the advantages of such 

overlap to males may exceed the costs (Weatherhead and Hoysak 1989; Mitrovich et al. 

2009). Powell (1993, 1994) hypothesized that, in species with male-biased sexual-size 

dimorphism, males may force spatial overlap on females. Additionally, the costs of inter-

sexual home range overlap are expected to decrease if male foraging movements within 

their home range avoid widespread behavioral or numerical suppression of prey (Powell 

1993, 1994). The patterns of D. couperi spatial overlap we observed are consistent with 

these hypotheses, particularly since D. couperi males are larger than females (Layne and 

Steiner 1996; Stevenson et al. 2009). In our study, males also maintained larger home 

ranges than females during both the breeding and non-breeding seasons which could 

serve as a means to reduce inter-sexual competition. However, explicitly testing these 
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hypotheses requires information on mating success and the degree of dietary overlap 

between males and females. 

Resource abundance and competition may also influence spatial overlap. Low 

levels of spatial overlap are theoretically most beneficial when resource abundance and 

availability is neither extremely low nor extremely high, because in each instance the 

costs of excluding conspecifics may exceed the benefits (Carpenter and MacMillen 1976; 

Maher and Lott 2000). While data from mammalian carnivores often supports this 

hypothesis (McLoughlin et al. 2000; Eide et al. 2004; Lopez-Bao et al. 2014), it is less 

clear if this pattern should hold for snakes because, as ectotherms, they have lower 

energetic requirements, greater conversion efficiencies, are able to consume larger meals, 

and are more resilient to fasting than similarly-sized endotherms (Pough 1980; McCue 

2007; Nowak et al. 2008). However, snake species with larger body sizes, home ranges, 

and more active foraging strategies generally have higher energetic requirements (Ruben 

1976; Secor and Nagy 1994; Plummer and Congdon 1996; Nagy 2005; Carfagno and 

Weatherhead 2008; Lelievre et al. 2010; Lelievre et al. 2012), which may make exclusive 

use of foraging habitats more advantageous if it reduces intraspecific competition for 

prey. While data on D. couperi energetic requirements are unavailable, D. couperi is a 

large (> 2 m SVL), actively foraging species with some of the longest daily movement 

distances and home range sizes reported for snakes (Breininger et al. 2011; Hyslop et al. 

2014). The relatively low levels of spatial overlap observed in our study are consistent 

with the hypothesis that reduced spatial overlap is more advantageous for snake species 

with higher energetic requirements. While high home range overlap has been reported in 

ambush foragers (Secor 1994; Pearson et al. 2005) or species with small home ranges (< 
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25 ha, (Fitzgerald et al. 2002; Diffendorfer et al. 2005; Wilson et al. 2006; Anguiano and 

Diffendorfer 2015), other active foraging species of snakes also show high levels of 

spatial overlap (Plummer and Congdon 1994; Carfagno and Weatherhead 2008; 

Mitrovich et al. 2009). Additionally, Hyslop et al. (2014) found broad overlap among D. 

couperi home ranges in southern Georgia although they did not specify how much of this 

overlap was due to shared use of overwintering habitat or migration routes. It is therefore 

less clear how energetic requirements may influence home range overlap in snakes.  

Alternatively, low spatial overlap may be driven by a “bet-hedging” strategy 

where exclusive home ranges are maintained despite temporal fluctuations in prey 

abundance (White and Ralls 1993; Bateson 2002; Jenkins 2007; Lopez-Bao et al. 2014). 

Jenkins (2007) hypothesized that such a strategy might explain inter-annual fidelity in 

western rattlesnake (Crotalus oreganus) summer home ranges despite changing prey 

availability. Similarly, D. couperi appear to show inter-annual fidelity to non-breeding 

season home ranges within our study area. However, additional data on energetics and 

variation in prey availability are needed to test these alternative hypotheses. Another 

factor potentially contributing to low spatial overlap in D. couperi is the potential for 

cannibalism. Snakes comprise a major portion of D. couperi diets and cannibalism has 

been documented (Smith 1987; Stevenson et al. 2010). However, if individuals avoided 

conspecifics to reduce the threat of cannibalism, we would then expect very little male-

female overlap because males are larger and more able to prey on females than other 

males.  

We acknowledge that our study suffers from the limitation of not simultaneously 

monitoring all individuals within our study areas. The presence of non-telemetered 
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individuals could result in greater spatial overlap among individuals than we observed. 

Drymarchon couperi in our study areas are difficult to detect, which makes it difficult to 

assess the degree of bias in our results. However, non-telemetered snakes and telemetered 

snakes that did not meet the criteria for inclusion in our analyses still displayed behaviors 

consistent with our results. For example, in our Highlands study, we captured nine 

unmarked adult males overlapping the home ranges of telemetered males. Although this 

may suggest higher rates of male-male home range overlap than our results indicate, 

seven of these captures (78%) occurred during the breeding season when males are most 

likely to overlap spatially. We implanted transmitters in four of the nine snakes and found 

that their home ranges overlapped little with simultaneously adjacent telemetered males 

during the subsequent non-breeding season (e.g., Fig 1.8A & 1.8B). Patterns of home 

range overlap among Brevard snakes not included in our analyses were also consistent 

with our results. While anecdotal, we suggest that these observations lend confidence to 

the results of our analyses. 

Landscape composition could influence conspecific overlap, although our sample 

sizes did not permit us to examine this factor. Developed landscapes may compress home 

ranges and inflate population densities relative to less-disturbed landscapes (Salek et al. 

2015), potentially leading to greater levels of home range overlap. This pattern was 

observed in coachwhips in isolated habitat fragments (Mitrovich et al. 2009). Breininger 

et al. (2011) found that D. couperi home ranges were smaller for both sexes in developed 

landscapes. This may have confounded the degree of spatial overlap among the Brevard 

snakes because many were monitored in developed landscapes. One of our two broadest 

overlapping male-male dyads (non-breeding season, VI = 0.37) was in an urbanized 
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landscape. However, we observed another broadly overlapping male-male dyad in an 

undeveloped landscape (breeding season, VI = 0.37). Furthermore, urban red foxes 

(Vulpes vulpes) maintained exclusive home ranges similar to those of rural foxes despite 

continuous shifts in the urban home ranges, possibly caused by fluctuating food resources 

(Doncaster and MacDonald 1991). 

We also note that our study did not examine the behavioral mechanisms 

responsible for maintaining the observed levels of spatial overlap. The mechanisms 

responsible for spatial segregation are diverse and include antagonistic physical 

interactions, physical or auditory display, or passive actions such as scent marking (Smith 

1968; Gese 2001; Wronski et al. 2006; Giuggioli et al. 2011). We think it is unlikely that 

D. couperi engage in active defense of their home ranges as we did not observe 

movement patterns consistent with territoriality, such as patrolling the edge of the home 

range (Giuggioli et al. 2011). Nor did we observe antagonistic interactions outside of the 

breeding season suggestive of territorial defense. Nevertheless, exclusive space use may 

be maintained passively through scent markings (e.g., Gese 2001). Snakes have excellent 

olfactory capabilities that are used in foraging (Duvall et al. 1990; Theodoratus and 

Chiszar 2000; Clark 2004), mate selection (LeMaster et al. 2001), and refuge selection 

(Reinert and Zappalorti 1988a; Scott et al. 2013). Furthermore, multiple studies have 

demonstrated that snakes can obtain information about conspecific body size from scent 

(Shine et al. 2003; Scott et al. 2013), which could allow smaller, subordinate individuals 

to avoid areas occupied by larger, dominant individuals (Scott et al. 2013). It is possible 

that the within-home range movements we observed were sufficient to maintain scent 

markings that conspecifics could detect. Alternatively, individuals may retain some 
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spatial memory of areas used by conspecifics and avoid those areas. Investigating the 

mechanisms responsible for maintaining reduced spatial overlap in snakes could provide 

greater insights into the costs and benefits of maintaining reduced overlap. This could in 

turn contribute to a more comprehensive understanding of snake social systems and how 

they contrast with those of ecologically comparable terrestrial vertebrates (e.g., small- to 

medium-sized mammalian carnivores). 

In summary, we found that seasonal variation in D. couperi movements are 

influenced by differences in reproductive behavior between males and females, 

specifically male mate-searching. Our results also indicate differences in the movement 

and spatial ecology of D. couperi between the southern and northern edges of its 

distribution. While we hypothesize that these differences are climatically driven, 

additional research is needed to fully examine the contributing factors. Understanding 

latitudinal and seasonal patterns can also provide information useful for species 

management and conservation given the potential negative impacts of anthropogenic 

landscape changes on species movements at multiple spatio-temporal scales (Gillies et al. 

2011; Beyer et al. 2013). 
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CHAPTER 2 

MULTI-LEVEL, MULTI-SCALE HABITAT SELECTION OF EASTERN 

INDIGO SNAKES IN CENTRAL PENINSULAR FLORIDA 

2.1. Introduction 

 Ecological patterns and processes are influenced by factors operating at multiple 

spatial scales (Wiens 1989; Bowyer and Kie 2006; Martin et al. 2016). For example, 

species often respond to habitat features at multiple spatio-temporal scales (Boyce 2006; 

Mayor et al. 2009; Wheatley and Johnson 2009) or even show multi-scale responses to 

specific habitat features (Thompson and McGarigal 2002; Leblond et al. 2011; Shirk et 

al. 2014). Assessing habitat selection at one or a few spatio-temporal scales, even based 

on biologically-relevant criteria, may result in weak or misleading inferences regarding 

species-habitat relationships (e.g., Grand and Cushman 2004; McClure et al. 2012). 

Multi-scale habitat models often outperform single-scale models (Graf et al. 2005; Martin 

and Fahrig 2012; Timm et al. 2016). Characteristic scales (sensu Holland et al. 2004) 

may vary seasonally (Boyce et al. 2002; Zweifel-Schielly et al. 2009; Leblond et al. 

2011), by sex, and behavioral state (Zeller et al. 2014). Despite the growing awareness of 

spatial scale in wildlife-habitat relationships, many studies fail to consider multi-scale 

relationships or do so at too few scales (McGarigal et al. 2016).  

In their review of multi-scale habitat selection modeling, McGarigal et al. (2016) 

identified two non-exclusive approaches for assessing multi-scale wildlife-habitat 

relationships. The first and most common approach assessed selection at hierarchically 

nested levels reflecting different behavioral processes (Johnson 1980; Meyer and Thuiller 
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2006; Mayor et al. 2009). For example, researchers might examine home range selection 

within a study area (i.e., Johnson’s (1980) second order of selection) and selection of 

resource patches within a home range (i.e., Johnson’s third order of selection). While 

levels vary in their spatial extent, and therefore scale, these extents vary among species or 

populations. The second approach assesses multi-scale selection by varying the spatial 

size (i.e., grain) of the observation unit and/or extent of analysis (e.g., Leblond et al. 

2011). While scales may be selected to correspond to particular behavioral processes 

(e.g., home range selection), multi-level analyses explicitly link selection with different 

behavioral processes occurring over different spatial extents. Although multi-level studies 

are implicitly multi-scale (but see Wheatley and Johnson 2009), habitat covariates within 

each hierarchical level are predominately measured at a single spatial scale (e.g., Johnson 

et al. 2004). Yet multi-scale relationships may still be present within a given hierarchical 

level (e.g., DeCesare et al. 2012; Shirk et al. 2014; Zeller et al. 2017). Because 

characteristic scales may differ among covariates, using a single a priori scale for each 

covariate and each level may lead to misleading inferences. An alternative, and arguably 

more ideal, approach is to assess selection for each covariate at each level across a 

gradient of scales to identify the characteristic scale of each covariate at each level (e.g, 

Leblond et al. 2011; Bellamy et al. 2013). McGarigal et al. (2016) described this 

approach as a “multi-level scale optimized” approach. Despite its advantages, multi-level 

scale-optimized studies remain a minority among habitat selection studies (but see Zeller 

et al. 2017).  

We examine multi-level scale-optimized habitat selection by the federally 

threatened eastern indigo snake (EIS, Drymarchon couperi). Endemic to the southeastern 
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Coastal Plain of the U.S.A. (Enge et al. 2013), the EIS has declined throughout its range 

primarily due to anthropogenically induced habitat loss and fragmentation (U.S. Fish and 

Wildlife Service 2008). Its large body size (>2 m), large home range sizes (Breininger et 

al. 2011; Hyslop et al. 2014), and year-round active foraging behavior, particularly in 

peninsular Florida (Bauder et al. 2016a), increasing its vulnerability to anthropogenic 

landscape changes. Quantitative data on EIS habitat selection within peninsular Florida 

are lacking. Anecdotal observations suggest that EIS in peninsular Florida use a variety 

of natural and anthropogenically disturbed habitats including rural and suburban 

development (Steiner et al. 1983; Moler 1992; Breininger et al. 2011; Enge et al. 2013). 

While flexible habitat use may mitigate population-level effects of anthropogenic 

landscape changes (e.g., Knopff et al. 2014), disturbed habitats may also act as 

population sinks (Mumme et al. 2000; Breininger et al. 2004), particularly if individuals 

select anthropogenic landscape features that increase mortality. Many snake species 

regularly cross roads (Andrews and Gibbons 2008) and selection for habitats containing 

roads combined with high road crossing rates may negatively impact population viability 

and connectivity (Row et al. 2007; Fahrig and Rytwinski 2009). Multi-level, multi-scale 

assessments of EIS habitat selection are therefore needed to better understand the impacts 

of anthropogenic landscape changes.  

Our goal was to evaluate EIS second- and third-order selection (hereafter Level II 

and Level III, respectively) to provide a multi-level, scale-optimized assessment of EIS 

habitat selection in central peninsular Florida. We also estimated the probability of EIS 

road crossings to provide a fine-scale assessment of EIS responses to roads. We predicted 

that EIS would show negative associations with anthropogenic development and low 
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probabilities of road crossing (Breininger et al. 2011, 2012; Hyslop et al. 2014). While 

EIS in peninsular Florida are surface-active year-round, they nevertheless utilize a variety 

of winter retreat sites, including gopher tortoise (Gopherus polyphemus) burrows (Bauder 

et al. 2016a). Because tortoises primarily occupy terrestrial upland habitats (Auffenberg 

and Franz 1982; Castellon et al. 2015), mosaics of wetland and upland habitats may 

increase resource concentrations for EIS. We therefore predicted that EIS would show 

positive selection for natural habitat heterogeneity (e.g., Hoss et al. 2010; Steen et al. 

2012) and comparatively stronger selection for upland habitats compared to wetlands 

during the winter. We predicted that males and females would show seasonally-variant 

patterns of Level III selection resulting from differences in breeding season (i.e., winter) 

reproductive behavior between males and females (Bauder et al. 2016a). 

2.2. Methods 

2.2.1. Study Area 

We used VHF telemetry data from two EIS studies occurring in a similar suite of 

habitats across central peninsular Florida. The Brevard study (1998–2002) encompassed 

Cape Canaveral/Titusville (28.63°N, 80.70°W; datum = WGS84 in all cases), southern 

Brevard County (27.83°N, 80.58°W), and the Avon Park Air Force Range (27.62°N, 

81.32°W). The Highlands study (2011–2013) took place in central and southern 

Highlands County (27.28°N, 81.35°W). Natural habitats included xeric oak scrub, mesic 

pine flatwoods, hardwood hammocks, maritime scrub and hammocks, and various 

wetland habitats. Anthropogenic habitats present included improved cattle pasture, 
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unimproved pasture/woodlands, citrus groves, commercial agriculture, and rural and 

urban development. Additional descriptions of the study areas and these habitats are 

provided elsewhere (Abrahamson et al. 1984; Myers and Ewel 1990; Breininger et al. 

2011; Bauder and Barnhart 2014). 

2.2.2. Telemetry Data 

 Descriptions of telemetry data collection procedures are provided in Bauder and 

Barnhart (2014) and Breininger (2011) and briefly recounted here. We monitored a total 

of 137 snakes (Highlands: n = 30, Cape Canaveral: n = 71, Indian River: n = 12, Avon 

Park: n = 25). Most snakes (> 90%) were captured opportunistically although a small 

number were captured through road-cruising, visual encounter surveys, or constant-effort 

trapping. Radio transmitters were surgically implanted into adult snakes weighing ≥ 500 

g by professional veterinarians following standard surgical procedures (Reinert and 

Cundall 1982; Hyslop et al. 2009b). Transmitter battery duration ranged from 12–24 

months and a subset of individuals was recaptured and received new transmitters to 

extend their tracking duration. We located individuals approximately weekly in the 

Brevard study and once every two days in the Highlands study. We visually confirmed 

each snake’s location for the majority of telemetry fixes (113 of 3,219 [3.5%]) and 

estimated the remaining using triangulation (White and Garrott 1990), retaining only 

those with predicted linear error ≤ 150 m (Bauder and Barnhart 2014). 
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2.2.3. Home Range Estimation 

We estimated “total” home ranges from all telemetry locations for each snake 

using the 95% volume contour polygon of a fixed kernel utilization distribution. Given 

that our data were collected at relatively infrequent intervals, we used the unconstrained 

reference bandwidth to provide a relatively high degree of smoothing and account for the 

uncertainty of an individual’s location between telemetry fixes (Bauder et al. 2015). We 

estimated bandwidths using the package ks (Duong 2007; Duong 2014) in R (R Core 

Team 2013). We used snakes that were monitored for ≥ 255 consecutive days because 

this duration provides an unbiased estimate of annual home range size (Bauder et al. 

2015). However, some individuals meeting this criterion from the Brevard study had as 

few as 10 fixes. We therefore calculated area-observation plots to determine the number 

of fixes needed to reach a stable estimate of home range size (Bauder et al. 2016a). Of the 

individuals from the Brevard study with ≥ 20 fixes, 90% (57 of 63) reached 90% of their 

observed home range size with < 17 fixes. We therefore assumed that ≥ 17 fixes would 

provide a reasonable estimate of the home range while still maximizing the number of 

individuals included in our analyses. We therefore estimated home ranges for 83 

individuals (Highlands: n = 18, Cape Canaveral: n = 36, Indian River: n = 8, Avon Park: 

n = 21). Most variation in home range size is due to inter-individual variation rather than 

variation in sampling intensity making it important to maximize the number of 

individuals (Borger et al. 2006). Additionally, other studies have found that < 20 fixes 

can still provide unbiased fixed kernel home range estimates (Said et al. 2005; Borger et 

al. 2006).  
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2.2.4. Habitat Covariates 

We used several habitat covariates that we predicted would influence EIS habitat 

selection (Table 2.1). Although, we used land cover data from multiple sources and years, 

we took steps to ensure our habitat data were representative of conditions during each 

telemetry study period. We used the Cooperative Land Cover Map v. 3.0 (CLC, collected 

2014) from the Florida Natural Areas Inventory and Florida Fish and Wildlife 

Conservation Commission (Knight 2010; Kawula 2014) for the Highlands study area and 

protected conservation areas in the remaining study areas. We used the St. John’s (2000), 

South Florida (2004), and Southwest Florida Water Management District (2004) land 

cover data for remaining areas (additional details provided in Appendix A). We also used 

the 2014 National Wetlands Inventory (NWI) data (U.S. Fish and Wildlife Service 2014) 

after visually confirming that the NWI data reflected land cover conditions when the 

telemetry data were collected in each study area. We classified a pixel as wetland if it 

was mapped as a wetland by any data source. We combined and reclassified the CLC and 

WMD data following Knight (2010) and considered five land cover types in our analyses: 

urban, undeveloped, wetlands, citrus, and improved pasture. We considered urban, 

wetland, and citrus edge as additional land cover types. We included paved roads 

(collected 1998), linear wetland features (i.e., rivers, streams, canals, and ditches < 15 m 

wide, hereafter “canals”), soil moisture (available water storage (AWS) at 150 cm), and 

winter and spring normalized differenced vegetation index (NDVI) as habitat covariates 

(Appendices B, C). We calculated NDVI using imagery concurrent with our telemetry 

data collection. Lastly, we also calculated the standard deviation (SD) in AWS and NDVI 

to represent habitat heterogeneity. All GIS data, except NDVI, were obtained in vector 
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format and converted to 15-m rasters. We assigned different weights to different road 

classes, urban densities, and undeveloped land covers to test if EIS responded differently 

to different development intensities (Table 2.2). 
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Table 2.1. Habitat covariates used to assess multi-level, multi-scale eastern indigo snake 

(Drymarchon couperi) habitat selection in central peninsular Florida. 

Class Covariate Description Source 

Land 

cover 

Undeveloped Natural (e.g., scrub, 

flatwoods, dry prairie) and 

anthropogenic (e.g., 

unimproved 

pasture/woodland, rural) 

CLC (Knight 2010; Kawula 

2014) and WMD land cover 

Land 

cover 

Wetlands Forested and unforested 

wetland 

CLC and WMD land cover, 

Archbold Biological Station 

wetlands map (unpublished 

data), National Wetlands 

Inventory (USFWS 2014) 

Land 

cover 

Urban High, medium, and low 

density urban 

CLC and WMD land cover 

Land 

cover 

Citrus Citrus groves CLC and WMD land cover 

Land 

cover 

Pasture Improved pasture CLC and WMD land cover 

Land 

cover 

Canals Permanent and intermittent 

canals and ditches ≤15 m 

wide 

1:24,000 scale National 

Hydrography flowline data 

(USGS 2014) 

Land 

cover 

Roads Paved roads (primary, 

secondary, tertiary) 

1998 1:24,000 roads layer 

(USGS 1990) 

Habitat 

edge 

Wetland 

Edge 

Wetland pixels adjacent to 

other land covers 

CLC and WMD, Archbold 

Biological Station wetlands 

map (unpublished data), 

National Wetlands Inventory 

(USFWS 2014) 

Habitat 

edge 

Urban Edge Urban pixels adjacent to 

other land covers 

CLC and WMD 

Habitat 

edge 

Citrus Edge Citrus pixels adjacent to 

other land covers 

CLC and WMD 

Soil 

moisture 

AWS Available water storage at 

150 cm 

Soil Survey Geographic 

Database (ESRI 2014) 

Vegetation 

cover 

Spring 

NDVI 

Normalized differenced 

vegetation index (NDVI , 

Apr-May) 

USGS Earth Explorer 

(http://earthexplorer.usgs.gov/) 

Vegetation 

cover 

Winter 

NDVI 

NDVI (Dec-Jan) USGS Earth Explorer  
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Table 2.2. Weighting scenarios for different road classes and urban and undeveloped 

land covers. Weights were assigned to each class/category prior to Gaussian 

smoothing. Undeveloped includes sandhill, scrub, flatwoods, hammock, and 

dry prairie land covers while rural includes unimproved pasture, mixed 

rangeland, and rural land covers. See Appendices 2 and 4 for additional details. 

  

Equal 

Weights 

Strong 

Differences 

Weak 

Differences 

Strong 

Effect 

Weak 

Effect 

No 

Rural 

Roads 

      Primary 1 5 3 5 2 NA 

Secondary 1 2.5 2 5 2 NA 

Tertiary 1 1 1 1 1 NA 

       Urban/Urban Edge 

      High Density 1 5 3 5 2 NA 

Medium Density 1 2.5 2 5 2 NA 

Low Density 1 1 1 1 1 NA 

       Undeveloped Upland 

      Undeveloped 1 NA NA 5 2 1 

Rural 1 NA NA 1 1 0 

 

2.2.5. Characteriziation of Spatial Scales 

To characterize scale-specific responses to our habitat covariates, we used 

Gaussian kernels to calculate the amount of each habitat covariate within ecological 

neighborhoods of varying sizes (Addicott et al. 1987). We used Uniform kernels to 

calculate the SD of AWS and NDVI as measures of habitat heterogeneity. We 

systematically varied the Gaussian bandwidth from 15–75 m using 15-m increments and 

from 100-2000 m using 100-m increments (e.g., DeCesare et al. 2012; Shirk et al. 2014). 

We varied the uniform kernel radii from 30–150 m using 30–m increments and from 

200–4000 m using 200-m increments. We masked out open water pixels prior to 
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smoothing our continuous raster surfaces and following the smoothing of all raster 

surfaces. 

2.2.6. Measuring Habitat Use and Availability 

 For our Level II analyses, we estimate home range selection functions (HRSF, 

Zeller et al. 2012). We measured habitat use by taking the home range-wide average of 

each habitat covariate measured at each scale and habitat availability by randomly 

shifting and rotating each home range 250 times within each snake’s respective study 

area. We defined the extent of our study areas by buffering all telemetry fixes within each 

study area and then merging all the buffers within each study area. To select the buffer 

radius, we measured the maximum distance between the telemetry fixes for each 

individual as an approximation of home range width. We used the 95
th

 percentile of this 

distribution as our buffer radius (3,860 m). We down-weighted each random UD so that 

the sum of the weights of the used UD equaled the sum of the weights of the available 

UD, ensuring a 1:1 ratio of used to available observations (Barbet-Massin et al. 2012; 

Squires et al. 2013). 

For the Level III analyses, we evaluated how individuals selected locations 

relative to available habitats conditional upon the individual’s current location and 

movement potential. We deemed it best to treat our data as points given our relatively 

low tracking intensity and therefore estimated point selection functions (PSF, Zeller et al. 

2012) implemented conceptually as step-selection functions (Johnson et al. 2004; 

Thurfjell et al. 2014). We measured an individual’s habitat use at time t and paired that 

value with a measure of the habitat available to that individual at time t–1, thereby 
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comparing habitat use to what an individual could have used. We measured use at each 

individual’s unique telemetry location. For triangulated locations, we centered a Uniform 

kernel on the estimated location with a radius equal to that location’s predicted linear 

error (Bauder and Barnhart 2014) and took the mean habitat value within that kernel. We 

measured availability using empirically-derived generalized Pareto distribution (GPD) 

kernels centered on the location at t–1 (Zeller et al. 2014). Because the durations between 

successive telemetry locations varied, we allowed the size of the GPD kernel to increase 

as step duration increased. We modeled the relationship between the scale parameter of 

the GPD and the duration (i.e., number of days) between successive telemetry locations 

which showed scale increasing asymptotically with increasing duration (Appendix 5). We 

estimated separate PSFs for each sex and each 6-month season (breeding, Oct.–Mar., and 

non-breeding, Apr.–Sep., Bauder et al. 2016). We used data from individuals monitored ≥ 

105 days during a given season (n = 80), following Bauder et al. (2016a), because our 

home range estimates are unbiased at these sampling durations (Bauder et al. 2015) and 

to ensure the seasonal home range was adequately sampled. This resulted in 728 

observations for breeding season females (n = 34), 969 observations for non-breeding 

season females (n = 28), 841 observations for breeding season males (n = 28), and 983 

observations for non-breeding season males (n = 37). 

2.2.7. Resource Selection Analyses 

 We used a pseudo-optimization approach (McGarigal et al. 2016) to identify the 

characteristic scale for each covariate by fitting a series of single-variable models for 

each covariate across all scales and then retaining the scale with the lowest AIC as the 
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characteristic scale (sensu Holland et al. 2004). For covariates with multiple weighting 

scenarios (Table 2.2) we retained the lowest-AIC scenario. We combined all covariates at 

their characteristic scales to create a multi-variable, multi-scale model for each level. We 

used a non-parametric Kruskal-Wallis test to test for differences in Level III 

characteristic scales among sex*season groups. 

We constrained the range of scales considered for Level III to avoid confounding 

the effects of Level II and Level III selection. We defined the maximum scale for each 

sex*season group by taking the lower 5
th

 percentile of seasonal home range size (HR5) 

for each group and then calculating the radius of a circular home range whose area 

equaled HR5. We then selected the maximum Gaussian bandwidth (h) such that 2×h 

equaled the radius of the circular home range and the maximum Uniform kernel radius 

equaled the radius of the circular home range. The size of HR5 was 12.07 ha (females – 

breeding season), 23.41 ha (females – non-breeding season), 46.44 ha (males – breeding 

season), and 35.10 ha (males – non-breeding season), which corresponded to maximum 

h’s of 105, 135, 195, and 165 m, respectively, and maximum radii of 210, 270, 390, and 

330 m, respectively. We identified the characteristic scale as the scale with the lowest 

AIC that was not part of a monotonic decrease extending beyond the maximum scale. We 

tested for collinearity among covariates at their characteristic scales using Pearson’s 

correlation coefficients (r). If two variables had |r| > 0.60 we retained the variable with 

the lowest AIC. Because urban and roads were moderately correlated with SD of NDVI 

at Level II (r = 0.69 and 0.65, respectively) and yet were of specific interest with regards 

to EIS habitat selection, we evaluated their effects post-hoc by rerunning the analyses 

(see below) including urban or roads as well as SD NDVI. Variance inflation factors 
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were ≤ 3.07 and ≤ 2.95 for the Level II and Level III analyses, including post-hoc 

analyses, respectively.   

 We estimated HRSFs using fixed-effects generalized linear models in R’s glm 

function. We estimated PSFs using paired logistic regression (Compton et al. 2002; Zeller 

et al. 2014) and weighted each pair of used and available locations by the number of 

telemetry fixes observed at that location (median = 1, range = 1–10). We controlled for 

within-individual autocorrelation by grouping all observations by individual and 

computing robust (i.e., empirical) standard errors (Nielson et al. 2002; Hardin and Hilbe 

2003; Fortin et al. 2005) using the coxph function in the R package survival (v. 2.38, 

Therneau 2015).  

 We fit all combinations of our covariates for both Level II and Level III because 

all covariates reflected a priori hypotheses, yet we had no reason to consider any 

particular combination of our covariates. We ranked models using AIC and used AIC 

parameter weights to assess relative variable importance (Burnham and Anderson 2002; 

Giam and Olden 2016). We standardized our data by subtracting each observation from 

the median and dividing it by its 0.05–0.90 quantile range. We report model-averaged 

standardized beta estimates, following Lukacs et al. (2010), across models whose 

cumulative weight summed to > 90% and deemed effects “significant” if their model-

averaged 95% CI did not include zero. 

2.2.8. Predicted Surfaces 

When creating predicted surfaces (e.g., Boyce et al. 2002), the data used to create 

each surface must be of the same type (i.e., have the same interpretation) as the data used 
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to estimate the RSF (e.g., Zeller et al. 2016; Holbrook et al. 2017). For our Level II 

analyses, we therefore re-smoothed our Gaussian/Uniform kernel-smoothed rasters by a 

Uniform kernel equal in area to the median EIS home range (144 ha, radius = 677 m). 

Studies using paired logistic regression typically calculate predicted surfaces using the 

parameter estimates from paired logistic regression in an unpaired framework by 

applying the parameter estimates to habitat data without first differencing used and 

available data (Zeller et al. 2016). Thus, to create Level III predicted surfaces, we 

followed Zeller et al. (2016) to create raster surfaces representing the differences between 

habitat use and context-dependent availability. We used the GPD kernel corresponding to 

a 1-day step duration and applied it to every pixel in our kernel-smoothed raster surfaces. 

We then differenced these GPD kernel-smoothed surfaces (representing availability) 

from the original Gaussian/Uniform kernel-smoothed surfaces (representing use). We 

created Level III predicted surfaces for each sex*season group. We created model-

averaged predicted surfaces using the models in the 90% model set. We also calculated 

the proportion of deviance explained (D
2
) for each model. 

 We evaluated the predictive performances of our Level II and Level III RSF using 

Johnson et al.’s (2006) v-fold cross-validation procedure. Briefly, this approach divides 

relative probability of selection into equal-interval bins and compares the proportion of 

used observations within each bin to the area-weighted expected proportion of available 

points within each bin. We quantified the relationship between used and expected 

proportions using Lin’s (1989) concordance correlation coefficient (CCC) following 

Zeller et al. (2014). Because we were interested in applying the results of our models 

beyond our study areas, we cross-validated our models across study sites (v = 4) such that 
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for v = i, the i
th

 site was used as testing data and the remaining sites as training data. For 

the Level III models, we created our available data by sampling our differenced raster 

surfaces using random points drawn from each study area at a density of 2.5 points/ha. 

For breeding season females, most training models did not converge when cross-

validating by site so we used 4-fold cross-validation without regard to site.  

We multiplied our Level II and Level III predicted surfaces to create a multi-level, scale-

optimized predicted surface of EIS relative probability of selection (Johnson et al. 2004). 

While not truly conditionally nested (DeCesare et al. 2012), our hierarchical multi-level 

design ensures that our surfaces are conceptually hierarchically nested (e.g., Johnson et 

al. 2004; Zeller et al. 2017). 

2.2.9. Road Crossing Analysis 

We modeled the daily probability of crossing a road as a binomial probability 

using the straight-line distance between consecutive telemetry fixes (i.e., one movement 

step) as the sample, trial size equal to step duration (i.e., the number of days between 

consecutive telemetry locations), and number of successes per sample as the number of 

observed road crossings for each step. We only used steps where an individual had 

moved (i.e., step length >0). We assumed that we observed the true number of road 

crossings within each step and that no more than one crossing occurred per day. Because 

the validity of these assumptions decreases with increasing step duration, we only 

considered steps with 2–3 day durations to balance the accuracy of our observations with 

maximizing the number of individuals and steps included. We fit separate models for 

each sex*season group using road class (primary, secondary, tertiary) and Euclidean 
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distance from road as covariates. If the snake did not move during the step, we measured 

the distance to the nearest road. We only included distances that were less than the 

diameter of a circular home range equal in area to the median seasonal home range for 

each group. To account for uncertainty due to maximum step duration, we fit two models 

for each group, one using 2 days and another 3 days as the maximum step duration. We 

then calculated D
2
 for each model and used the normalized D

2
 to calculate weighted 

average predicted probabilities of road crossing. 

2.3. Results 

2.3.1. Level II 

 The characteristic scales of 13 of our 18 covariates (including quadratic effects) 

were ≤ 100 m (Table 2.3). Among the remaining five covariates, model support for a 

single characteristic scale was weak (max. ∆AIC ≤0.90, e.g., AWS in Fig. 2.1). The best 

supported weighting scenarios for undeveloped and urban land covers and urban edge 

was the equal weights scenario while the best supported scenario for roads was the strong 

effect scenario (Table 2.3). Model support was equivocal across all scenarios (max. ∆AIC 

≤2.84, Appendix B) 
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Table 2.3. Characteristic scales (m) for Level II and III selection for 18 habitat 

covariates. Scales refer to Gaussian kernel bandwidth or Uniform kernel radius 

(*). Wetlands and wetland edge were evaluated using linear and quadratic 

effects (
†
). Superscripts denote the following weighting scenarios (Table 2.2): 

a
 

= equal weight, 
b
 = weak differences, 

c
 = strong effect, 

d
 = strong differences. 

 

Level II Level III 

  

Males Females 

  

Non-breeding Breeding Non-breeding Breeding 

Terrestrial 45
a
 15

b
 15

a
 15

b
 15

d
 

Urban 15
a
 15

a
 15

a
 15

d
 15

c
 

Spring NDVI 60 15 15 15 75 

Winter NDVI 60 15 15 15 90 

Citrus 15 15 15 15 15 

Pasture 15 15 15 15 15 

Canals 1200 15 60 15 45 

Wetland Edge 15 45 135 30 75 

Wetland Edge
†
 15 NA NA NA NA 

AWS 800 15 30 15 45 

Roads 15
c
 15

d
 180

d
 30

c
 30

c
 

Citrus Edge 1400 60 15 15 15 

Urban Edge 1100
a
 165

a
 30

a
 15

a
 75

a
 

Wetlands 400 90 15 30 15 

Wetlands
†
 100 NA NA NA NA 

SD of Spring NDVI* 60 45 15 75 75 

SD of Winter NDVI* 60 60 225 90 90 

SD of AWS* 60 150 90 105 150 
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Figure 2.1. Change in ∆AIC across scales for select Level II covariates. Undeveloped 

includes rural land covers. Urban and urban edge use the equal weights 

scenario. 

 

Undeveloped (h = 60 m), SD of spring NDVI (radius = 60 m), and wetland edge 

(h = 15 m) received the strongest support (parameter weights ≥0.54) although only 

undeveloped had model-averaged 95% CI that did not overlap zero (Table 2.4, Fig. 2.2). 

When urban (h = 15 m) was included in the analysis with SD of spring NDVI, SD spring 
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NDVI, undeveloped, and urban had parameter weights of 0.82, 0.72, and 0.66, 

respectively, although the 95% CI for all covariates then included zero (Table 2.4, Fig. 

2.2). When SD spring NDVI was excluded from the analysis, the effect size of urban 

markedly decreased. Roads had very low support when included in the analysis 

(parameter weights = 0.33). The predictive performance of the top model was high (CCC 

= 0.91, 0.54-0.98) when cross-validating by site and D
2
 = 0.11. Model-averaged CCC and 

D
2
 across the 90% model set (n = 125) was 0.88 (range = 0.47–0.99) and 0.09 (range = 

0.03–0.11), respectively. When SD spring NDVI and urban were included together, 

predictive performance decreased slightly (top model: CCC = 0.68, -0.27–0.96, 90% 

model set = 0.72, range = -0.24–0.99) although D
2
 increased slightly (top model = 0.12; 

90% model set = 0.11). The correlation between the predicted surfaces across our four 

study areas with and without urban was high (median r = 0.94, range = 0.88–0.95).  
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Table 2.4. Model-averaged standardized beta estimates, 95% CI, odds ratios, and AIC 

weights (w) for Level II covariates. *Estimates obtained via post-hoc analyses 

(see text for details). Data were standardized by subtracting each observation 

from the median and dividing by the 0.05–0.90 percentile. Estimates were 

model-averaged across the 90% model set 

Excluding Urban 

    

 

Betas 95% CI Odds ratio w 

Undeveloped 1.79 0.23-3.35 5.99 0.87 

SD Spring NDVI 1.06 -0.70-2.82 2.89 0.65 

Wetland Edge 0.67 -0.82-2.16 1.95 0.54 

SD AWS 0.27 -0.82-1.36 1.31 0.36 

Citrus -0.17 -1.26-0.92 0.84 0.33 

AWS -0.13 -1.14-0.88 0.88 0.33 

Winter NDVI 0.08 -0.73-0.89 1.08 0.30 

Pasture 0.02 -0.76-0.80 1.02 0.28 

Urban (without SD NDVI)* -0.31 -1.63-1.01 0.73 0.38 

Roads (with SD NDVI)* -0.12 -1.01-0.77 0.89 0.33 

     Including Urban 

    

 

Betas 95% CI Odds ratio w 

SD Spring NDVI 2.22 -0.20-4.63 9.17 0.82 

Undeveloped 1.22 -0.61-3.06 3.40 0.72 

Urban -1.85 -5.02-1.32 0.16 0.66 

Citrus -0.51 -2.24-1.22 0.60 0.44 

Wetland Edge 0.40 -0.86-1.66 1.49 0.44 

AWS -0.18 -1.29-0.92 0.83 0.35 

SD AWS 0.08 -0.68-0.83 1.08 0.31 

Winter NDVI 0.18 -0.78-1.14 1.20 0.30 
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Figure 2.2. Model-averaged predicted relative probabilities selection and 95% CI for 

Level II using the 90% model set. Values for urban and roads were obtained 

via post-hoc analyses. Covariates were standardized by subtracting each 

observation from the median and dividing by the 0.05–0.90 percentile. 
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2.3.2. Level III 

 Although Level III characteristic scales spanned nearly the entire range of scales 

we considered, the 15-m bandwidth was the most common across all groups (53%, Table 

2.3, Fig. 2.3). This percentage increased slightly when we only considered significant 

covariates (58%) and covariates with parameter weights >0.90 (66%). There was no 

significant difference in characteristic scales among groups (significant covariates only, 

χ
2
 = 0.64, p = 0.89). Model-averaged D

2
 across the 90% model set was 0.22, 0.21, 0.32, 

and 0.22 for breeding and non-breeding season females and males, respectively.  

 Three covariates (SD of NDVI, undeveloped, and urban) received consistently 

strong support (w ≥0.99) across all groups (Table 2.5). While not significant in each 

group, all groups selected increasing SD of NDVI and undeveloped and decreasing urban 

(Fig. 2.4). The degree and direction of selection for the remaining covariates varied 

among groups. Citrus and NDVI received strong support among three groups, with 

avoidance of the former and positive selection for the latter. Both sexes avoided pasture, 

especially during the breeding season (Table 2.5, Fig. 2.4). Males selected wetland edge 

while females tended to select increasing SD of AWS while showing neutral selection for 

roads. While breeding season males showed broad scale (h = 180 m) selection for roads 

(Fig. 2.4) they also exhibited a secondary characteristic scale (h = 15 m, Fig. 2.3) and 

post-hoc analyses indicated avoidance at this finer scale (model-averaged beta = -0.16, 

95% CI -0.54–0.23, w = 0.85).  Breeding season males appeared most selective of their 

habitat use showing significant selection for 7 of 12 covariates included in their analysis 

(Table 2.5). 
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Figure 2.3. Change in ∆AIC across scales for select Level III covariates by sex and 

season. ∆AIC for each group is rescaled so zero represents that group’s 

characteristic scale. Undeveloped, urban, urban edge, and roads use the 

lowest-AIC weighting scenario (see text for details). 
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Table 2.5a. Model-averaged standardized beta estimates, 95% CI, odds ratios (OR), and 

AIC weights (w) for Level III covariates for males. *Estimates obtained via 

post-hoc analyses (see text for details) and were not included in the final model 

set. Data were standardized by subtracting each observation from the median 

and dividing by the 0.05–0.90 percentile. Estimates were model-averaged 

across the 90% model set.  

 

Males 

 

Non-breeding Breeding 

 

Betas CI OR w 

Beta

s CI OR w 

SD Winter 

NDVI 1.50 0.87-2.13 4.48 1.00 1.93 0.6-3.25 6.87 1.00 

Urban -1.21 -2.57-0.16 0.30 1.00 -1.80 -3.25--0.35 0.17 1.00 

Undeveloped 0.90 -0.21-2.02 2.46 0.99 1.16 0.17-2.14 3.18 1.00 

Citrus -1.76 -2.54--0.97 0.17 1.00 -1.51 -3.26-0.24 0.22 1.00 

Winter NDVI 2.19 1.03-3.36 8.94 1.00 1.49 0.47-2.5 4.42 1.00 

Pasture -0.19* -1.02-0.63 0.83 0.53 -0.48 -1.48-0.52 0.62 0.79 

Canals 0.12 -0.35-0.59 1.13 0.47 1.49 0.32-2.66 4.45 1.00 

SD AWS 0.09 -0.42-0.60 1.09 0.39 0.21 -0.71-1.12 1.23 0.58 

Wetland 

Edge 0.79 0.12-1.47 2.20 1.00 1.43 0.33-2.53 4.17 1.00 

AWS -0.06 -0.69-0.56 0.94 0.34 -2.03 -3.85--0.21 0.13 1.00 

Roads -0.18 -0.60-0.25 0.84 0.69 0.43 -0.09-0.96 1.54 0.89 

Urban Edge NA NA NA NA NA NA NA NA 

Wetland -0.18 -1.12-0.76 0.84 0.44 NA NA NA NA 

Citrus Edge NA NA NA NA 0.14 -0.07-0.36 1.15 0.98 
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Table 2.5b. Model-averaged standardized beta estimates, 95% CI, odds ratios (OR), and 

AIC weights (w) for Level III covariates for females. *Estimates obtained via 

post-hoc analyses (see text for details) and were not included in the final model 

set. Data were standardized by subtracting each observation from the median 

and dividing by the 0.05–0.90 percentile. Estimates were model-averaged 

across the 90% model set. 

 

Females 

 

Non-breeding Breeding 

 

Betas CI OR w Betas CI OR w 

SD Winter 

NDVI NA NA NA NA NA NA NA NA 

SD Spring 

NDVI 2.86 1.75-3.98 17.46 1.00 3.40 1.84-4.97 29.96 1.00 

Urban -1.75 -3.40--0.10 0.17 1.00 -0.73 -1.74-0.27 0.48 0.98 

Un-

developed 1.30 0.29-2.30 3.67 1.00 1.22 0.10-2.34 3.39 1.00 

Citrus -0.06 -0.74-0.61 0.94 0.38 -0.56 -2.21-1.08 0.57 1.00 

Winter 

NDVI 1.08 0.26-1.88 2.94 1.00 0.18 -1.63-2.00 1.20 0.39 

Spring 

NDVI NA NA NA NA NA NA NA NA 

Pasture -0.02* -0.31-0.27 0.98 0.28 -0.68 -1.69-0.33 0.51 1.00 

Canals 0.52 -0.14-1.17 1.68 0.99 0.19 -1.06-1.44 1.21 0.53 

SD AWS 0.68 -0.11-1.46 1.97 0.93 1.67 0.03-3.32 5.31 1.00 

Wetland 

Edge 0.01 -0.35-0.35 1.01 0.27 0.02 -0.84-0.89 1.02 0.28 

AWS -0.10 -0.70-0.50 0.90 0.39 -0.24 -1.39-0.90 0.79 0.53 

Roads 0.03 -0.20-0.26 1.03 0.33 0.04 -0.25-0.32 1.04 0.36 

Urban Edge 0.29 -0.11-0.69 1.34 0.96 NA NA NA NA 

Citrus Edge 0.02 -0.07-0.11 1.02 0.41 0.01 -0.05-0.06 1.01 0.29 
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Figure 2.4. Model-averaged predicted relative probabilities of selection for Level III by 

sex and season using the 90% model set. Covariates were standardized by 

subtracting each observation from the median and dividing by the 0.05–0.90 

percentile. Missing covariates were excluded from final analyses due to 

multicollinearity. 

 

 Predictive performance varied across groups. We initially included pasture in our 

analyses for non-breeding season females and males but doing so reduced the model-

averaged CCC from 0.73 to 0.70 and 0.78 to 0.59, respectively. Because the parameter 

weights for pasture were low to moderate (w = 0.28 and 0.53, respectively) and the 

model-averaged 95% CI included zero (β = -0.02, 95% CI = -0.58–0.98, β = -0.19, -1.65–

0.83, respectively), we removed pasture from our final analyses of non-breeding season 
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females and males. Model-averaged CCC was 0.62 (0.56–0.68), 0.70 (0.57–0.79), 0.89 

(0.87–0.96), and 0.73 (0.59–0.82) for breeding and non-breeding season females and 

males, respectively. The correlation between the predicted surfaces across our four study 

areas with and without pasture for non-breeding season females and males was high (r > 

0.99). 

2.3.3. Road Crossing 

 The probability of road crossing decreased with increasing distance from road and 

differed among groups and road classes (Fig. 2.5). All groups had a near-zero probability 

of crossing primary roads and males had a near-zero probability of crossing secondary 

roads. Probability of crossing tertiary roads was 0.23–0.35 when an individual was 

adjacent to a road and became ≤0.01 when distance from road exceeded 340 m for 

breeding season females, 400 m for non-breeding season females, 1,160 m for breeding 

season males, and 880 m for non-breeding season males. 
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Figure 2.5. Predicted probability of road crossing by sex and season as a function of 

Euclidean distance from road and road class. Probabilities were obtained 

using D
2
-weighted averages of predicted values using 2 and 3 day step 

durations. 
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2.4. Discussion 

Our results indicate that EIS in central peninsular Florida showed consistent 

scale-specific responses to habitat selection within two hierarchical levels of selection. 

Within each level, the characteristic scales of selection were predominately the finest 

scales we considered. Because we used the home range as the observation unit in the 

Level II analysis, selection at fine scales suggests that EIS respond most strongly to 

covariates across and slightly beyond the extent of the home range. This equivocal 

support across scales in our Level II analysis may suggest that a multi-scale approach 

using the home range as the observation unit was unnecessary. However, we still 

recommend that researchers conduct multi-scale Level II analyses because species may 

respond to habitat features beyond the extent of their home range (Kie et al. 2002; 

Anderson et al. 2005; Zeller et al. 2017). This may be particularly important if Level II 

selection is assessed using telemetry locations rather than home ranges as the observation 

units.  

In contrast, we observed markedly different support across scales for some covariates in 

our Level III analysis. For example, ∆AIC between the 15- and 30-m bandwidth for 

undeveloped land cover ranged from 6.51–16.00. These results caution against using 

single-scale analyses of habitat selection and highlight the importance of scale 

optimization for all covariates within a given hierarchical level. We recommend that 

researchers constrain the range of potential scales to correspond to a particular 

hierarchical level to avoid confounding selection across hierarchical levels. The broad 

(i.e., h >200 m) characteristic scales we observed in our Level III analyses likely reflect 

confounding effects of second- and third-order selection. These confounding effects can 
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be minimized by using observation units whose grain (i.e., spatial extent) corresponds to 

the hierarchical level of interest (e.g., assessing Level II selection using home ranges as 

the observation unit, Meyer and Thuiller 2006; Meyer 2007). Such an approach also 

ensures that relative probabilities of selection from each level are conditionally nested, 

thereby allowing selection at multiple hierarchical levels to be incorporated into a single 

predicted surface (Fig. 2.6) 
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Figure 2.6. Multi-level scale-optimized predicted surfaces from the Cape Canaveral 

study area. a Level II predicted surface, b–d the normalized products of 

Level II (excluding urban) and III predicted surfaces (rescaled from 0–1) for 

breeding season females, non-breeding season males, and breeding season 

males, respectively. 

 

The need to consider habitat selection at multiple spatial scales is widely 

recognized and many wildlife habitat selection studies employ either multi-level single-

scale or single-level multi-scale analyses. However, McGarigal et al. (2016) found that 
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out of 173 “multi-scale” studies, only 8 were multi-level and scale-optimized. Multi-

level, scale-optimized studies may be implemented in various ways depending on the 

study’s particular objectives (e.g., Leblond et al. 2011; McNew et al. 2013). For example, 

researchers may optimize scale for a subset of covariates at each hierarchical level, 

particularly if previous research can inform the appropriate scale for the remaining 

covariates (Polfus et al. 2011; DeCesare et al. 2012). Alternatively, measuring covariates 

at a single scale within one hierarchical level while optimizing scale for covariates at 

other hierarchical levels may be appropriate in some applications, such as evaluating the 

importance of nest- or location-level factors relative to landscape-level factors (Irvin et 

al. 2013). However, we suggest that, for many research questions, scale-optimization 

across all covariates within each hierarchical level (Zeller et al. 2017) will lead to the 

strongest inferences and predictive abilities.  

Eastern indigo snakes also showed consistent patterns of habitat selection across 

levels, selecting undeveloped upland habitats and habitat edge (measured using SD of 

NDVI) and avoiding urbanized areas. Furthermore, EIS generally avoided citrus and 

pastures and selected increasing NDVI at Level III. The greater support for the equal 

weights scenario for urban at both levels suggest that EIS consistently avoid urbanized 

habitat regardless of development intensity. However, when SD NDVI was excluded 

from the Level II analysis, avoidance of urban was relatively weak while selection for 

undeveloped, wetland edge, and SD AWS increased slightly. Urban was positively 

correlated with SD NDVI at Level II which is consistent with SD NDVI representing 

developed-undeveloped interfaces. Despite their positive correlation, the opposite 

direction of selection for urban and SD NDVI suggests that while EIS select home ranges 
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in areas with high habitat edge they simultaneously avoid selecting home ranges in highly 

urbanized landscapes. The reduced predictive performance of our Level II models when 

urban was included are likely due to cross-validating by study area because the Cape 

Canaveral study area contains a much higher proportion of urban than the other three 

study areas. When our Level II models were cross-validated using 4-fold cross validation 

without regards to study area model performance was high (model averaged CCC = 

0.89). This suggests that the transferability of our Level II HRSF may be limited when 

urban is included in the analysis.  

The best supported weighting scenario for undeveloped upland for Level II 

included natural and rural land covers, suggesting that EIS select upland habitats with 

relatively low levels of anthropogenic disturbance. Multiple studies of medium-bodied 

mammalian carnivores in urbanized landscapes have also reported fine-scale avoidance 

of urban habitats (Riley et al. 2003; Gehrt et al. 2009; Gross et al. 2012). The fine-scale 

Level III avoidance of urban land cover may allow EIS to utilize relatively small patches 

of natural habitats within a matrix of urban land covers, a pattern seen in other snakes in 

urban landscapes (Mitrovich et al. 2009; Anguiano and Diffendorfer 2015). Breininger et 

al. (2011) found that EIS home ranges in suburban landscapes were significantly smaller 

than those in natural landscapes, a pattern consistent with our results.  

We are limited in our ability to discern the mechanisms responsible for EIS 

avoidance of anthropogenic habitats. While it could reflect scarcity of resources, 

anthropogenic habitats often support numerous potential prey and shelter sites (Koenig et 

al. 2001; Kwiatkowski et al. 2008; Pattishall and Cundall 2009). Like other researchers 

(Enge et al. 2013), we have observed EIS in all three urban development classes as well 
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as citrus and pasture. Avoidance of anthropogenic habitats may also reflect risk 

avoidance behavior and/or cumulative effects of road mortality and human persecution 

(Breininger et al. 2012). However, EIS appeared to avoid urban more strongly than roads 

as suggested by the relatively low support for roads across levels. Only non-breeding 

season males avoided roads (albeit non-significantly) and all groups had relatively high 

daily probabilities (≥0.23) of crossing adjacent tertiary roads.  

 Eastern indigo snakes also selected increasing SD of NDVI at both levels, which 

represents selection for habitat edges, either between vegetation communities or between 

vegetated and impervious surfaces (e.g., roads, urban development). Wetland edge and 

SD of AWS were also significantly selected at Level III by males and females, 

respectively. These results are also consistent with our prediction of selection for natural 

habitat heterogeneity. Urban edge was positively correlated with SD NDVI (r = 0.72 at 

Level II and r = 0.51–0.72 at Level III) suggesting that EIS may select urban edges while 

avoidance directly using urban areas. Indeed, predicted Level III surfaces consistently 

showed high predicted selection along developed-undeveloped interfaces. We offer 

several hypotheses to explain these patterns of edge selection. First, heterogeneous 

habitats may spatially concentrate resources and compress home range sizes (Law and 

Dickman 1998; Kie et al. 2002; Hoss et al. 2010). Second, EIS are dietary generalists 

(Stevenson et al. 2010) and habitat edges may increase the diversity and abundance of 

potential prey species. Edge selection has been noted for dietary generalists in many 

mammalian and avian taxa (Marzluff et al. 2004; Stewart et al. 2013; Beatty et al. 2014). 

Third, habitat edges may increase opportunities for thermoregulation, a pattern noted in 

many north-temperate snakes (Blouin-Demers and Weatherhead 2001a; Row and Blouin-



 

93 

Demers 2006). However, ectotherms in mild climates may be more flexible in their 

thermoregulation (Shine and Madsen 1996) and therefore less reliant on edges or habitat 

openings for thermoregulation (Anderson and Rosenberg 2011). We did not observe a 

consistent increase in selection for SD NDVI during the winter breeding season, although 

the resolution of our land cover data may be poorly suited for testing this 

thermoregulatory hypothesis.  

Our predicted surfaces often showed strong selection along road and urban edges 

reflecting high SD NDVI values. Given that EIS will readily cross tertiary roads, 

selection for anthropogenically-induced habitat edges may prove maladaptive (e.g., 

Mumme et al. 2000). Because EIS are active foragers with large home ranges and high 

movement potential (Breininger et al. 2011; Bauder et al. 2016a), selection for these 

edges likely increases their risk for road mortality and human persecution (Whitaker and 

Shine 2000; Andrews and Gibbons 2008). In particular, male EIS, despite their near-zero 

probability of crossing primary and secondary roads, may be at greater risk of road 

mortality than females because of their greater movement potential and positive selection 

for roads at broader scales, which may lead to a greater absolute number of attempted 

road crossings over tertiary roads.  

We found little evidence to support our prediction that the strength of selection 

for undeveloped uplands increased relative to that of wetlands during the breeding 

season. Level III selection for uplands was consistently strong year-round, whereas only 

males avoided areas with high soil moisture during the breeding season. However, some 

individuals in the Cape Canaveral study area used large expanses of salt marshes during 

the summer and used predominately uplands during the winter. We were unable to 
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directly evaluate Level III selection for wetland in most groups because of 

multicollinearity. While the wetland parameter estimates from single-variable models 

were consistent with our prediction, these estimates were non-significant (P ≥ 0.152). 

This lack of consistent seasonal variation in Level III selection differs from patterns of 

EIS habitat selection at the northern edge of their range (i.e., southern Georgia). During 

the winter, EIS in southern Georgia showed near-exclusive use of xeric sandhills 

supporting gopher tortoise burrows (Speake et al. 1978; Stevenson et al. 2003; Hyslop et 

al. 2014). During the summer, EIS used a greater diversity of habitats particularly 

wetlands where most foraging events were observed (Hyslop et al. 2014). The lack of 

distinct seasonal differences in habitat selection by EIS in central peninsular Florida may 

be driven, at least in part, by relatively mild winter temperatures that allow them to use a 

greater diversity of winter shelter sites (Bauder et al. 2016a).  

 Inter-sex differences in habitat selection can result from differences in 

reproductive behavior, selection of suitable gestation, nesting, or birthing sites, and/or 

differences in resource needs (e.g., Charland and Gregory 1995; Blouin-Demers and 

Weatherhead 2001b; Harvey and Weatherhead 2006). Patterns of selection for the most 

influential covariates (undeveloped upland and urban land covers, SD of NDVI) were 

consistent between sexes, highlighting the importance of these features. The greatest 

difference in patterns of Level III selection between sexes was the greater degree of 

selection by breeding-season males, for which all but one covariate was either significant 

or strongly supported (w >0.90). We suspect this is due to larger male home ranges and 

movement potential during the breeding season (Bauder et al. 2016a) which may 

therefore entail a greater degree of selective use of both preferred and avoided habitats. 
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Varying patterns of selection as a function of home range size have been reported in other 

taxa (Herfindal et al. 2009). Breeding season males strongly selected the weighting 

scenario for undeveloped upland and selected roads at broad scales. This may be due to 

males’ priority in locating females during the breeding season, which may lead them to 

traverse a greater diversity of habitats even if those habitats may be less suitable for other 

activities (e.g., foraging). Variation in home range size may explain other inter-sex 

differences in Level III selection. For example, males selected wetland edge in both 

seasons whereas females exhibited neutral selection of wetland edge and roads. This may 

reflect a hierarchical process of habitat selection wherein smaller female home ranges are 

selected in areas with optimal densities of wetland edge and roads, thereby resulting in 

neutral selection of these features within the home range.  

We acknowledge limitations in our study that may influence our results and 

inferences. Several factors may have influenced the accuracy of our GIS data. First, there 

may have been some degree of temporal mismatch between our telemetry data and GIS 

data may have occurred, although we attempted to minimize this by using GIS data 

contemporaneous with our telemetry data. Visual inspections of our GIS data using aerial 

imagery indicated that our GIS data accurately reflected land cover conditions when our 

telemetry data were collected. Second, within-class heterogeneity in land covers may 

have limited our ability to detect relationships (Gaston et al. 2017). Vegetation cover and 

building densities within urban and rural land covers were highly variable; however, our 

use of multiple weighting scenarios and other covariates (AWS, NDVI) should have 

mitigated this variability. Use of multiple land cover data sources may have introduced 

additional variability, although our reclassification of land cover into five classes should 
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also have reduced this variability. Finally, combining different data types with different 

minimum mapping units may have also obscured Level III relationships. However, our 

use of Gaussian-smoothed surfaces should have reduced this effect by effectively 

increasing grain size. Moreover, the strong Level III relationships we observed suggest 

that insufficient data resolution was not a primary cause of weak relationships. Logistical 

constraints prevented us from assessing selection for field-based microhabitat features 

(e.g., shrub cover, retreat site abundance). Many snake studies have demonstrated 

selection for microhabitat features (Reinert 1984; Moore and Gillingham 2006; Martino 

et al. 2012; Croak et al. 2013) which may be more important than selection for broader-

scale habitat features (Harvey and Weatherhead 2006). The moderate predictive 

performances of our models may reflect our inability to model EIS responses to 

microhabitat features. While it is possible that large home range sizes and high movement 

potential cause EIS to respond more strongly to relatively broad-scale habitat features 

compared to microhabitat features, our study was unable to test this hypothesis. 

 Large tracts of undeveloped upland habitats containing a mosaic of natural 

habitats, particularly wetland-upland mosaics, are likely to prove essential for EIS 

conservation. While EIS exhibit flexible habitat use at multiple levels, our results 

corroborate previously noted negative impacts of habitat loss and fragmentation (Moler 

1992; Breininger et al. 2004). In particular, despite avoidance of urban land covers, EIS 

will readily cross small paved roads and potentially select roadside habitats which may 

increase road mortality. While conservation of “rural” land covers may benefit EIS, such 

benefits are likely contingent upon low road densities and low rates of road-induced 

mortality. Nevertheless, even infrequent road mortality may still contribute to population-
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level declines (Mumme et al. 2000; Row et al. 2007; Fahrig and Rytwinski 2009). Given 

the development pressures on upland habitats within peninsular Florida (Turner et al. 

2006a; Swain and Martin 2014) maintaining and expanding existing conservation 

networks will likely benefit EIS conservation. We encourage additional research to 

determine the spatial requirements for viable EIS populations and the degree of EIS 

connectivity among protected lands within peninsular Florida. 
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CHAPTER 3 

AN INDIVIDUAL-BASED MODEL TO EXAMINE THE POPULATION 

VIABILITY OF EASTERN INDIGO SNAKES IN CENTRAL FLORIDA 

3.1. Introduction 

Understanding the likelihood that populations will persist into the future (i.e., 

population viability) is a key component of many wildlife management and conservation 

efforts (e.g., Bonnot et al. 2011; Bonnot et al. 2013; Olsen et al. 2014). As a population-

level characteristic, population viability is the manifestation of traits and behaviors of 

individuals within those populations. As a result, an accurate understanding of 

population-level processes requires an accurate understanding of individual-level traits 

and behaviors. Moreover, individual-level traits and behaviors are strongly influenced by 

characteristics of the external environment including climate, topography, and habitat 

conditions (Morellet et al. 2013; DeCesare et al. 2014). Anthropogenically-induced 

landscape changes can have strong impacts on individual-level traits that in turn may 

influence population viability such as survival, fecundity, and dispersal (Robinson et al. 

1995; Mumme et al. 2000; Breininger et al. 2012). As a result, spatially-explicit 

assessments of population viability are often required to incorporate the influence of 

landscape characteristics, particularly with regards to real-world populations (e.g., 

Wiegand et al. 2004; Zurell et al. 2012).  

This understanding has been greatly aided in recent decades by population 

viability analyses (PVA, Boyce 1992; Beissinger and Westphal 1998), particularly 

spatially-explicit PVA. Dunning et al. (1995) identified two broad classes of spatially-
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explicit population models, population- and individual-based, which represent two ends 

of a continuum of how variation in individual-level traits and behaviors are represented 

(Bolker et al. 1997). Population-based models (PBM) combine individuals into 

populations or patches within which individuals are assumed to share some or all 

individual-level traits (e.g., survival, reproduction, dispersal rates). However, it is often 

advantageous to explicitly incorporate variation in individual-level traits and behaviors 

by directly simulating the behavior of individuals which can be accomplished using 

individual- or agent-based models (I/ABM). Agent-based models treat individuals as 

unique entities and allow them to interact with other agents and their unique environment 

according to a pre-defined set of rules designed to increase agent fitness (Grimm and 

Railsback 2005; Railsback and Grimm 2011). Individuals may respond according to 

intrinsic (e.g., age, sex, reproductive condition) and/extrinsic (e.g., habitat quality, 

presence of competitors, predators, or mates) conditions (Grimm and Railsback 2005; 

McLane et al. 2011). ABMs therefore allow population-level traits to emerge as the result 

of individual-level processes which makes them well suited to understanding how 

population viability is influenced by landscape factors. Individual-based models have 

been widely used in ecological applications diverse as evaluating foraging theory 

(Lewison and Carter 2004), comparing alternative management options (Toral et al. 

2012), understanding population genetics (Landguth and Cushman 2010), testing theories 

of habitat selection (Railsback and Harvey 2002), and understanding the effects of 

climate change (Stodola and Ward 2017). Additionally, ABMs are increasingly used in 

PVA (e.g., Letcher et al. 1998; Kramer-Schadt et al. 2005; Rossmanith et al. 2007). 
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 Despite their potential, developing ABMs present several challenges, notably the 

requirement of sufficient data on individual traits and behaviors. Such data may be 

difficult to obtain in many situations, particularly for rare or secretive species. However, 

ABMs can benefit from the application of pattern oriented modeling (Wiegand et al. 

2003; Grimm et al. 2005; Grimm and Railsback 2012). POM focuses on identifying 

multiple patterns in the system of interest which represent the underlying structure and 

processes of interest in the system and using these patterns the guide the development, 

complexity, and testing of the model. Developing a model to capture specific patterns can 

ensure structural realism in the model and avoid developing an overly complex model 

(Wiegand et al. 2003). Importantly, observed patterns can be used to calibrate a model to 

ensure that key patterns are satisfactorily reproduced (Wiegand et al. 2003; Topping et al. 

2010). Calibration may also be used to identify unknown parameters (e.g., Watkins et al. 

2015; Bauduin et al. 2016) in a process also known as indirect parameterization or 

inverse modeling (Grimm et al. 2005). For example, Rossmanith et al. (2007) identified 

optimal values of an unknown parameter (pre-breeding survival rate) by identifying a 

narrow range of possible parameter values that allowed the model to accurately reproduce 

the observed values for five population-level patterns (e.g., population age structure, 

nesting success). Chapron et al. (2016) expanded upon this concept by using 

Approximate Bayesian Computation where observed data were used to create model 

informative priors and potential parameter values were retained or rejected based on the 

similarity between observed and simulated summary statistics. In this manner, the authors 

estimated a conversion factor between number of gray wolf (Canis lupus) packs and 

population size that closely matched an observed time-series of population size.  
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 The eastern indigo snake (Drymarchon couperi, EIS) is a federally threatened 

species native to the Coastal Plain of the Southeastern United States but has declined 

throughout its range, primarily due to habitat loss and fragmentation as well as historical 

over-collection for the pet trade (U. S. Fish and Wildlife Service 1978, 2008; Enge et al. 

2013). This species has several life-history attributes that increase its susceptibility to 

anthropogenically-induced landscape changes including a large body size (> 2 m in 

length), a high degree of surface activity, and large home range sizes (Speake et al. 1978; 

Moler 1985; Breininger et al. 2011; Hyslop et al. 2014; Bauder et al. 2016a). Breininger 

et al. (2011) found that EIS home ranges in peninsular Florida were smaller in urbanized 

landscapes while Breininger et al. (2012) found that annual EIS survival was markedly 

less for individuals whose home ranges overlapped primary roads or urban development. 

Studies in the northern part of the EIS’ range (i.e., southern Georgia) found that EIS in 

these areas differ markedly in their habitat use and movement patterns compared to 

peninsular Florida. Specifically, in southern Georgia EIS maintain small home ranges (ca. 

10 ha) centered on xeric sandhills supporting gopher tortoise (Gopherus polyphemus) 

burrows, which are used as overwintering sites, and may undertake long-distance (5–8 

km) migrations between winter and summer habitats resulting in very large annual home 

ranges (up to 1,500 ha, Speake et al. 1978; Stevenson et al. 2003; Hyslop et al. 2009a; 

Stevenson et al. 2009; Hyslop et al. 2014; Bauder et al. 2017). In contrast, EIS in 

peninsular Florida are not dependent upon tortoise burrows for overwintering sites, 

maintain smaller annual home ranges (< ca. 500 ha), move more extensive during the 

winter, and use a greater diversity of habitats (Moler 1985; Breininger et al. 2011; Bauder 

et al. 2016a, 2018). Given this variation in movement and habitat use patterns, regional 
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assessments of EIS population status are essential for an accurate understanding of the 

species’ status.  

Despite its threatened status, relatively few studies have evaluated EIS population 

viability. Hyslop et al. (2012) conducted a PVA for a single population of EIS on 

protected lands in southeastern Georgia using a stage-transition matrix model which 

suggested that the population was stable although population growth rate was most 

sensitive to changes in adult survival. Breininger et al. (2004) created a spatially-explicit 

population model for EIS in eastern peninsular Florida using the software RAMAS GIS 

(Akcakaya 2002). Adopting a population-based approach with a high degree of spatial 

resolution, they divided their landscape into grids approximating the size of an average 

male EIS home range. Each grid cell contained one male and four females and the 

survival of individuals within a grid cell varied depending on the cell’s landscape context. 

Their model indicated that EIS population viability was highly susceptible to the degree 

of habitat edge which led to increased mortality from urban development and primary 

roads. They also identified areas where populations were likely to persist after 50 years 

under three different development scenarios. While the model of Breininger et al. (2004) 

allowed for spatial variation in survival it did not allow for spatial variation in movement 

patterns or space use which could influence spatial variation in population size and 

density. Furthermore, they classified their study area as habitat and non-habitat which 

ignores variation in habitat suitability. 

However, neither of these population models took full advantage of an individual-

based approach to incorporating inter-individual and spatial variation in individual-level 

traits and behaviors. An individual-based approach to modeling EIS populations may be 
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advantageous given the influence of landscape context on movement patterns and 

survival. We therefore developed an ABM for EIS in central peninsular Florida to help 

evaluate EIS population status in this region and to better understand the effects of 

landscape features on population viability. In particular, we incorporate recent data on 

EIS movement patterns and habitat selection (Bauder et al. 2016a, b, 2018) to simulate 

individual movements and space use using a series of probability surfaces representing 

factors hypothesized to influence EIS movements particularly habitat quality and 

resistance. While routinely incorporated habitat quality when simulating individual 

movements (e.g., Kramer-Schadt et al. 2005; Carter et al. 2015; Bauduin et al. 2016), 

fewer have directly incorporated landscape resistance (Watkins et al. 2015). In this paper 

we present an overview our model’s structure calibration. Finally, we use our model to 

identify conservation lands within our study area capable of supporting viable EIS 

populations. 

3.2. Methods 

3.2.1. Study Species and Study Area 

We designed our ABM specifically for EIS in central peninsular Florida. Within 

this region, EIS are surface active year round, may move several hundred meters per day, 

and maintain relatively large home ranges (> 500 ha) with males having larger home 

ranges than females (Breininger et al. 2011; Bauder et al. 2016a). During the breeding 

season (approximately October through March), males actively search for females and 

will engage in male-male combat (Bauder et al. 2016a, b). EIS are dietary generalists and 
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prey upon a wide range of reptiles, amphibians, and small mammals (Stevenson et al. 

2010). EIS in peninsular Florida will also use a wide range of natural and anthropogenic 

habitats including xeric uplands, wetlands, coastal scrub, canal banks, improved and 

unimproved pasture, citrus, and a wide range of rural and urban development intensities. 

However, previous research found that EIS select undeveloped upland habitats with high 

habitat edge while avoiding urban, citrus, and pasture (Bauder et al. 2018). EIS home 

ranges are also smaller and survival is lower in urban landscapes, where individuals are at 

risk from vehicular and human-caused mortality, compared to undeveloped landscapes 

(Breininger et al. 2011; Breininger et al. 2012).  

We developed our ABM using data collected from two studies in central 

peninsular Florida. The first study was conducted at three sites, Cape 

Canaveral/Titusville (28.63°N, 80.70°W; datum = WGS84 in all cases), southern Brevard 

County (27.83°N, 80.58°W), and the Avon Park Air Force Range (27.62°N, 81.32°W), 

from 1998-2003 and included radio telemetry data from 103 EIS snakes. The second 

study was conducted at one site, Highlands County (27.28°N, 81.35°W), from 2011-2013 

and included radio telemetry data from 30 EIS snakes. Together these studies covered a 

wide diversity of landscape features including diverse natural habitat communities (xeric 

oak scrub, mesic pine flatwoods, hardwood hammocks, maritime scrub and hammocks, 

and various wetland habitats) and various anthropogenically disturbed habitats (improved 

cattle pasture, unimproved pasture/woodlands, citrus groves, commercial agriculture, and 

rural and urban development). These studies have produced much information of EIS 

ecology (Breininger et al. 2004; Breininger et al. 2011; Breininger et al. 2012; Bauder et 
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al. 2016a, b, 2018) and we conducted additional analyses as necessary for model 

development and calibration.  

After calibrating our ABM using data from these studies, we applied our model to 

an approximately 115 × 80 km region in central peninsular Florida centered on 

approximately the southern half of the Lake Wales Ridge (LWR) in Polk and Highlands 

Counties (Fig. 3.1). The LWR is a linear topographic feature running approximately 186 

km north-south through central peninsular Florida with an average width of 11.7 km and 

maximum elevation of 64–95 m (White 1970; Weekley et al. 2008). The LWR 

historically was dominated by xeric, fire-adapted scrub and sandhill communities 

supplemented by scrubby flatwoods, mesic flatwoods, and seasonal forested and non-

forested wetlands (Abrahamson et al. 1984; Myers and Ewel 1990; Weekley et al. 2008). 

Areas adjacent to the ridge historically were dominated by flatwoods, prairies, and 

wetland habitats and currently include extensive areas of pasture and agriculture (Myers 

and Ewel 1990). We selected this study area for several reasons. First, it contained two of 

the four study sites from our radio telemetry data and therefore reduced the degree of 

extrapolation in our model’s application. Second, an earlier population viability analysis 

was conducted for the remaining two study areas (Breininger et al. 2004). Third, the 

LWR has produced many EIS observations within at least the past 40 years and likely 

represents an important area for EIS within peninsular Florida (Layne and Steiner 1996; 

Enge et al. 2013). Finally, due to its antiquity and unique habitats, the LWR supports a 

high degree of plant and animal endemism (Christman 1988; Muller et al. 1989; Myers 

1990). However, the LWR has lost approximately 78–85% of its original habitat from 

conversions to urban, citrus, and pasture (Turner et al. 2006b, a; Weekley et al. 2008; 
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Swain and Martin 2014) and supports a high proportion of imperiled taxa (Dobson et al. 

1997). Nevertheless, the LWR features a relatively extensive network of conservation 

lands and connectivity networks (Turner et al. 2006a; Hoctor et al. 2010; Swain and 

Martin 2014; Florida Department of Environmental Protection 2017). An understanding 

of EIS population viability in this region could both assist future conservation efforts as 

well as evaluate the extent to which previous efforts are likely to benefit EIS. 

Figure 3.1. Location of our ABM application study area along the southern Lake Wales 

Ridge in central Peninsular Florida. The insert figure shows the location of 

radio-tracked eastern indigo snakes whose data were used to build and 

calibrate the model. The boundary of the Lake Wales Ridge follows Weekley 

et al. (2008).  
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3.2.2. The Model 

We wrote and implemented the model in R (R Core Team 2017) and provide a 

description of the model and its components following the overview, design concepts, 

and details (ODD) protocol of Grimm et al. (2006; 2010).  

3.2.2.1. Purpose 

The purpose of this model is to simulate the entire life cycle of individual EIS 

including birth, dispersal, maturity, home range formation, intra-home range movements, 

reproduction, and survival. Because the data used in model parameterization and 

calibration were collected from multiple sites within central peninsular Florida this model 

is intended for application throughout this region provided model users recognized and 

accept the degree of interpolation vs. extrapolation involved.  

3.2.2.2. Entities, state variables, and scales 

We defined our study area by buffering all telemetry observations from Bauder et 

al.’s (2018) Highlands and Polk County study areas (i.e., the Highlands and Avon Park 

study areas) by 25 km. We converted all spatial data used in the model (Appendices A–E) 

to 15-m pixel rasters and cropped the outer 2.5 km of our study area to minimize 

boundary effects. This resulted in a study area raster with 7,927 rows and 5,442 columns 

covering approximately 9,706 km
2
. All spatial data within the model was represented as 

raster objects in the R package RASTER (Hijmans 2017). The model used six different 

types of rasters. The first raster represented Level II or second-order (Johnson 1980) 
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habitat selection which was used to select starting locations for new individuals (see 

Dispersal Submodel). The second raster represented Level III or third-order habitat 

selection which was used to simulate intra-home range movements. We used model-

averaged resource selection surfaces (RSS) from Bauder et al. (2018) as our Level II and 

Level III surfaces and used four different Level III surfaces for males and females during 

the breeding and non-breeding seasons (Bauder et al. 2016a, 2018). The third and fourth 

rasters were resistance surfaces representing resistance to dispersal and intra-home range 

movements, respectively. We created our resistance surfaces by subtracting the Level II 

and Level III RSS from one, respectively. We assigned all pixels ≤ 265 m (based on the 

maximum confirmed observed water crossing, 263 m) from land as the maximum 

resistance value (see below) and all other water pixels a value of 9999 to function as a 

barrier. The second two rasters denoted urban land cover and roads and were used to 

inform survival probabilities (see Survival Submodel). We used urban land cover 

surfaces denoting high-, medium-, and low-density urban and a roads surface denoting 

primary, secondary, and tertiary roads (Appendix A). Additional rasters can be 

incorporated into the model depending on the spatial data needed for the models 

objectives. A list of model parameters are provided in Appendix F.  

The model recognized two entities: agents and clutches. Agents represented 

individual EIS > 1 year old. We recorded the following state variables for each agent: 

individual identifier, age (in years), sex, date, starting spatial coordinates, birth date, date 

of maturity, whether or not the agent is alive or dead, the ID of the mother, and multiple 

landscape attributes used to calculate survival probability. We recorded whether each 

female’s home range overlapped the home range of at least one male to determine 
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probability of reproduction. Additional landscape and behavioral data were recorded at 

each time step for each agent (see Movement Submodel) including step length, Level III 

RSS value, number of road crossings by class, and number of urban crossings by class. 

The model can be modified to record additional step-level variables as needed. Clutches 

were stored outside of the modeling environment because of a virtual absence of data on 

juvenile movements and survival and individuals did not enter the model as new agents 

until 1 year of age. For each clutch we recorded a unique identifier, the identifier of the 

mother, the spatial coordinates of the clutch, the date the clutch is laid, clutch size, 

expected hatch date, expected maturity date, and number of surviving juveniles reaching 

adulthood. New agents were added to the modeling environment as individuals mature 

and were probabilistically assigned a sex and starting location (see Dispersal Submodel). 

3.2.2.3. Process Overview and Scheduling 

Our model used a hierarchy of temporal intervals represented as nested “for” 

loops to control model processes and scheduling. All model scheduling followed calendar 

dates using the R package LUBRIDATE (v. 1.7.4, Grolemond and Wickman 2011). Each 

year was divided into two 6-month seasons, breeding and non-breeding beginning 1 Oct. 

and 1 Apr., respectively, between which model parameters and processes are allowed to 

vary (Bauder et al. 2016a, b, 2018). Reporting intervals were used to control the 

calculation of individual- and population-level metrics and state variables requiring 

access to all agents present in the modeling environment (e.g., identification of living, 

neighboring conspecifics). We used four reporting intervals per year beginning 1 Oct., 1 

Jan., 1 Apr., and 1 Jul. We divided our spatial data into tiles and assigned each agent to a 
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tile so that each tile can be run in parallel for a given reporting interval. Spatial data for 

each tile were stored in list objects. Because agents may need to move beyond the extent 

of a given tile, a tile buffer was specified and the spatial data of all tiles within a tile 

buffer were merged together so that agent movements were not constrained by tile edges. 

The model calculated the number of step intervals within a reporting interval and the 

number of time steps within a step interval. The hierarchy of time steps within step 

intervals allowed the number of time steps to vary across step intervals (e.g., daily step 

intervals and 15 minute time steps where the number of time steps varies with day 

length). We used daily (24-hr) step intervals and time steps which were equivalent.  

We began the model on 1 Oct. which we defined as the date new agents would 

mature and enter the modeling environment (Fig. 3.2). At each time step, each agent had 

some probability of moving from its current location and a new location was 

probabilistically selected (see Movement Submodel). Survival was then simulated as a 

function of the intervening landscape features (i.e., roads and urban) crossed by a straight 

line between point t and t+1. At the end of each reporting interval we calculated fixed 

kernel utilization distributions (UD) and 95% volume contour home ranges for each agent 

using the previous 365 days of data. We used the reference bandwidth with unconstrained 

bandwidth matrices (Bauder et al. 2015) in R package KS (v. 1.11.2, Duong 2007) and R 

code from Fieberg (2014). Simulated data were subsampled to one location every four or 

seven days (see Model Calibration) for consistency with our observed data (Bauder et al. 

2016a). If an agent dies, its UD and home range were removed from the model 

environment at the end of the current reporting interval to allow other agents to utilize the 

vacated space. 
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Figure 3.2. Conceptual diagram showing the major model components and their 

sequence. 

 

All nests were laid on 1 Apr. (see Reproduction Submodel) and all nest data were 

stored separate from the model environment. The date at which agents entered the model 

environment was also calculated and new agents entered the model environment at 1 year 

of age. A single survival probability was applied during their first year. All new agents 

were probabilistically assigned starting locations (see Dispersal Submodel) after the UDs 

and home ranges for existing living agents were calculated. All agents were assigned a 

maximum age (12 years, Stevenson et al. 2009) and agents were classified as dead upon 

reaching this age. 
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3.2.2.4. Design Concepts 

3.2.2.4.1. Emergence 

Simulated home range sizes emerged through interactions with the local landscape and 

neighboring agents. While daily movement distances were constrained as a function of 

sex- and season-specific parameters, the suitability and permeability of the landscape 

depended upon the specific landscape context which also influenced the distribution and 

density of conspecifics. Similarly, dispersal distance depended upon both the specific 

landscape context and the distribution of conspecifics. While daily survival rates were 

imposed based on landscape features traversed during daily movement, survival at 

broader temporal scales (e.g., annual survival) was a function of the specific landscape 

context. Population size, density, and their change over time also emerged from 

individual-level processes.  

3.2.2.4.2. Adaptation and Fitness 

Agents increased their fitness by probabilistically moving or dispersing (new agents only) 

to cells with high habitat suitability, low movement costs, and an absence of conspecifics. 

During the breeding season, males are more likely to move to cells containing females. 

However, because cells are selected probabilistically agents have the opportunity to select 

low-quality environments.  

3.2.2.4.3. Learning 

None 
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3.2.2.4.4. Prediction 

None 

3.2.2.4.5. Sensing 

Agent sensory perception for daily movements was defined by a resistance kernel 

representing the daily movement potential given the resistance values of the surrounding 

landscape. A resistance kernel combines a probability distribution (i.e., a standard kernel) 

with a resistance surface and least-cost path analyses to measure the cumulative cost 

distance of moving from a focal cell to any other cell within the extent of the kernel 

(Compton et al. 2007). In a non-resistant landscape, the resistance kernel is equivalent to 

the standard kernel. Our standard kernel was a generalized Pareto distribution (GPD) 

which closely fit the distribution of observed daily movement distances (Bauder et al. 

2016a) and defined the maximum extent of the resistance kernel as the 99
th

 quantile of 

the GPD. Because the landscape was never non-resistant, the effective scale of perception 

was always less than the 99
th

 quantile. For dispersal, an agent’s sensory perception was 

defined using a resistance kernel with a half-normal kernel, following Compton et al. 

(2007), with a maximum extent equal to three standard deviations. We considered that 

this represented the area potentially available to a dispersing individual during its first 

year of life from which it could select and establish home range. 
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3.2.2.4.6. Interaction 

Agents of the same sex interacted by generally avoiding other same-sex individual’s UDs 

while males probabilistically selected cells containing females during the breeding season 

(Bauder et al. 2016b). New agents also avoided the UDs of same-sex individuals when 

dispersing to a starting location. 

3.2.2.4.7. Stochasticity 

All processes related to movement, survival, reproduction, and dispersal are selected 

probabilistically from statistical distributions.  

3.2.2.4.9. Observation 

The model returns a data frame for each agent where each row contains the step-level 

data for each agent. Step level data recorded includes agent identifier, sex, spatial 

coordinates, movement (yes or no), step length, the location’s Level III RSF surface 

value, total number of road crossings cumulatively and by road class, if urban was 

crossed and the highest urban density level crossed, and age. The model also returns data 

on each nest produced including nest identifier, date laid, mother identifier, spatial 

coordinates, number of eggs laid, hatch date, number of eggs hatching, number of 

hatchlings surviving the first year of life, and the date those 1-year olds enter the model 

environment. Finally, the model returns population-level summary statistics at each point 

at which new agents are added to the model environment. These statistics include the 
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total number of living agents, sex ratio, home range, and dispersal distance but additional 

statistics can be reported as specified by the model user. 

3.2.2.5. Initialization 

Each simulation starts with the same number of agents with the same starting 

locations. The number of agents and their starting locations were selected using empirical 

data to approximate carrying capacity. The ages for all starting agents were drawn from a 

uniform distribution from 3-11 years. All simulations began on 1 Oct.  

3.2.2.6. Input Data 

The model initialization data consists of a data frame with the starting spatial 

coordinates, sex, and age of starting agents. The number of starting locations was 

determined separately for males and females. First, we identified suitable and non-

suitable habitat using the Level II RSS surface using the 5
th

 percentile of home range-

wide mean Level II RSS values as a cutoff. We then divided the total area of suitable 

habitat by the median total home range size for each sex and probabilistically selected 

starting locations using the Level II RSS surface. This data frame is add to a named list 

(‘sim’) as the first element named ‘agents.’ All model parameters are added to ‘sim’ as 

the second element named ‘pars.’ All spatial data for each tile are stored as separate 

named lists. Finally, all reporting intervals are stored as a separate list with each element 

containing a LUBRIDATE object of class period with the start and end date of each 

reporting interval.  
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3.2.2.7. Submodels 

The following helper functions and submodels were executed in the following order (Fig. 

3.2). 

3.2.2.7.1. UpdateAgentStatesList() 

This helper function computes and stores the state variables for each agent in a named list 

(‘agent$states’) using the data frame of starting locations. These lists are used to create a 

named list (‘all’) which in turn is appended to sim$agents. New agents entering the 

model are also appended to ‘all.’ The use multiple named lists allow the model to store 

state variables of different data types (e.g., character, numeric, date) for all agents that 

were ever present in the model in one list.  

3.2.2.7.2. ReturnAliveSeqWithTiles() 

This helper function creates and updates a data frame recording select state variables of 

all agents currently in the modeling environment. This data frame is used for quick access 

for particular state variables (e.g., identifying all agents within a particular tile or all 

living agents).  

3.2.2.7.3. CreateAgentRDS() 

Creates a data frame to store time step-level data (e.g., whether or not the agent moved, 

how far the agent moved, the landscape features traversed during that time step) for each 

agent. The number of rows equals the maximum number of allowable time steps for that 
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agent. The list of state variables (‘states’) for each agent is combined with this data frame 

(‘step_data’) into a two-element named list (‘agent’) and stored as an RDS file with a file 

name containing the agent’s identifier.  

3.2.2.7.4. Movement Submodel 

The Movement Submodel determines if and where an agent moves during each time step. 

Movement from the current cell is determined using a Bernoulli draw with a separate 

probability for males and females for each day of the year following Bauder et al. 

(Bauder et al. 2016a). If the agent does not move, its spatial coordinates at time t are 

copied to those of the next time step (t+1) and the agent is given a daily movement 

distance of zero meters. If the agent does move, the maximum extent of its daily 

movement is defined using the 99
th

 percentile of a GPD (see Model Calibration). We 

used different GPD for males and females during the breeding and non-breeding seasons 

(Bauder et al. 2016a).  

This extent was used to create a series of probability surfaces (i.e., kernels) 

representing factors hypothesized to influence EIS movements. We created a habitat 

suitability kernel using the Level III RSS for a given sex and season. Because our Level 

III habitat selection analyses evaluated selection for road density rather than for cells 

containing roads, we depressed the RSS values on all cells containing roads by 

multiplying the RSS values by the probability of an EIS crossing a road of that class 

(primary, secondary, or tertiary) when immediately adjacent to that road. We used the 

road crossing probabilities from Bauder et al. (2018) which varied by sex and season. We 

created a resistance kernel using a resistance surface calculated as one minus the habitat 
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suitability kernel (i.e., Level III RSS). We allowed the resistance values for roads to vary 

by road class independently from the resistance values calculated from the habitat 

suitability kernel (i.e., background resistance). We assigned a maximum resistance value 

to primary roads and then reduced this value for secondary and tertiary using one minus 

the observed road crossing probabilities for those classes (Bauder et al. 2018). We 

combined the background and roads resistances layers and used the combined resistance 

surface to calculate a resistance kernel using a GPD kernel (Compton et al. 2007). 

Although we had empirical estimates of the GPD parameters (shape and scale), our 

observed GPD distributions came from daily movements across a resistant landscape 

whereas the standard kernel of a resistance kernel assumes a non-resistant landscape. Our 

standard GPD kernel must therefore be larger than our observed GPD kernel. To increase 

the size of the standard GPD kernel we used a multiplier parameter which was applied to 

the scale parameter since this parameter had the strongest influence on the spread of the 

GPD kernel. We determined the value of the scale multiplier during model calibration. 

Because the shape and extent of the resistance kernel are also strongly dependent upon 

the resistance values we varied the maximum value of the background resistance surface 

and roads resistance surface during model calibration (see Model Calibration).  

 We created a conspecific kernel using the UDs of same-sex conspecifics. Bauder 

et al. (Bauder et al. 2016b) modeled the probability of using a conspecifics UD using 

GPD models and we used these GPD models to create the conspecific kernel wherein 

values decreased sharply with increasing UD density. While Bauder et al. (2016b) 

evaluated EIS 6-month seasonal home range overlap, we used 12-month home ranges to 

reduce the sensitivity of the conspecific kernel to short-term shifts in space use. However, 
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we applied separate GPD model during the breeding and non-breeding seasons. We also 

updated the UDs every four months. Where multiple UDs overlapped we added their 

density values together. Because the data used in Bauder et al. (2016b) were not collected 

daily, we subsampled our simulated data to match their sampling intensity prior to 

estimating UDs. Finally, we created a female kernel for males during the breeding season 

because males actively search for females during this time (Bauder et al. 2016a, b). We 

assigned all cells within female home ranges a value of two and all cells outside of 

female home ranges a value of one. 

We normalized each of these four kernels to sum to one and calculated their 

product to create a redistribution kernel. We set the center cell value equal to zero to 

ensure the agent moved from its current location. We applied an additional adjustment to 

the movement kernel to reflect the fact that one-dimensional probability distributions do 

not directly correspond to two-dimensional representations of those distributions because, 

in a two-dimensional distribution, surface area increases geometrically with increasing 

distance from the center point. Therefore, the probability density at a given distance from 

the one-dimensional distribution should be divided by the area of the surface 

corresponding to that distance. In the case of the monotonically decreasing GPD, this 

geometric adjustment means that a cross-section of a two-dimensional GPD would show 

a steeper decrease in probability density than the one-dimensional GPD. To make this 

adjustment, we created a raster measuring distance from the center cell and calculated the 

expected number of cells for each distance as 2π×distance. We then divided the 

redistribution kernel by this new raster and renormalized the redistribution kernel to sum 

to one.  
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We sampled a single point from this raster using the strata function from the 

SAMPLING package (Tille and Matei 2016). We set the maximum allowable movement 

distance to 2,020 m based on longest observed daily movement distance and selected a 

new location if the step length exceeded this distance. In addition to the step-level 

attribute data described earlier, we recorded the number of road and urban crossings, the 

number of road crossings by road class, and the maximum road and urban class crossed.  

3.2.2.7.5. Survival Submodel 

The Survival Submodel simulated survival for each agent at each time step based on the 

agent’s state and characteristics of the landscape traversed during its previous movement 

step. Survival was simulated using a Bernouli draw with two possible probability values, 

a background survival and a road/urban crossing survival which was applied if the 

movement stepped crossed roads or urban. If an agent died it was removed from the 

model. Agents were also removed from the model if they reached the maximum age. 

Because daily survival rates as a function of road and urban crossings were unavailable 

we selected the final parameter values through a calibration process. However, we based 

our initial calibration values on annual survival estimates from EIS in peninsular Florida 

reported in Breininger et al. (2012). Breininger et al. (2012) compared survival between 

three landscape classes: conservation areas not intersected by highways (conservation 

core), conservation areas intersected by highways (conservation edge), and rural and 

urban development (suburb). They found that survival varied strongly by landscape class, 

specifically being highest in conservation core and lowest in suburb, but did vary by sex 

or season.  
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3.2.2.7.6. Reproduction Submodel 

The Reproduction Submodel simulated nest laying, hatching, and first-year juvenile 

survival. Female agents were eligible to produce a clutch once they reached three years of 

age (Speake et al. 1987). One Apr. 1, immediately after the conclusion of the breeding 

season, we identified all adult females whose home ranges had overlapped the home 

range of at least one male during the previous breeding season. We used a Bernoulli draw 

to determine if these individuals produced a clutch. Data from captive breeding efforts 

using wild-caught females brought into captivity during the breeding season and held 

until after egg laying found that 95% (Speake et al. 1987) and 88% (Godwin et al. 2011) 

of females laid a clutch. Data also suggest that females are capable of reproducing 

annually (Speake et al. 1987; Hyslop et al. 2009b). We therefore gave females ≥ 4 years a 

0.90 probability of reproducing and gave 3-year old females a 0.50 chance of reproducing 

(Breininger et al. 2004). All eggs were laid on 1 Apr.   

We randomly selected clutch size from a normal distribution with mean = 8.62 

and SD = 1.70 using data provided in Godwin et al. (2011) although this distribution is 

consistent with the mean clutch size of 9.4 eggs/female reported by Speake et al. (1987). 

We rounded all random values to the nearest integer. Although Godwin et al. (2011) had 

a median egg hatching rate of 80.7%, this was under captive conditions and is likely 

lower for wild EIS. Because data on nest survival and hatching rates for wild EIS are 

unavailable we followed Hyslop et al. (2012) and used a nest survival and hatching rate 

of 0.75. We used a first year survival rate of 0.29 calculated from estimates from captive-

born EIS in Smith (1987).  
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 For each nest we recorded nest identifier, mother identifier, date laid, the spatial 

coordinates of nest (defined as the spatial coordinates of the mother on 1 Apr.), spatial 

tile number, and clutch size. Because all nests hatched 1 Oct. of that year and all 

surviving juveniles would enter the model after one year on 1 Oct., we also calculated the 

nest hatching date, number of hatchlings surviving the first year of life, and the date at 

which surviving juveniles would enter the model. Because data on juvenile EIS spatial 

and habitat ecology are unavailable, we stored all nest data outside of the model 

environment until it was time for surviving agents to enter the model.  

3.2.2.7.7. Hatching and Dispersal Submodel 

The Hatching and Dispersal Submodel simulated the addition of new adult agents to the 

modeling environment. We assumed that juvenile EIS were the age class responsible for 

dispersal in contrast to adults which we assumed maintained relatively stable home 

ranges. However, EIS dispersal data is largely lacking although a small adult male of 

unknown age in southern Georgia was observed to move 22.2 km (Euclidean distance) 

between two overwintering locations (Stevenson and Hyslop 2010). We therefore 

assumed that this represented the maximum EIS dispersal distance. We created a 

dispersal kernel analogous to the redistribution kernel to probabilistically select starting 

locations for all new agents. We defined the extent of the dispersal kernel using the 95
th

 

percentile of a half-normal kernel. We selected the standard deviation of the half-normal 

using model calibration (see Model Calibration).  

We used three kernels to create the dispersal kernel. We created a habitat 

suitability kernel using the Level II RSS (Bauder et al. 2018). We created a resistance 
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kernel using a resistance surface calculated as one minus the habitat suitability kernel and 

a half-normal kernel (Compton et al. 2007). We used the maximum resistance value from 

the background resistance layer derived from the Level III RSS. We created a conspecific 

kernel using the UDs of same-sex conspecifics to reflect both the avoidance of same-sex 

conspecifics but also the potential for cannibalism (Smith 1987; Stevenson et al. 2010). 

To create the conspecific kernel we conducted a similar analysis as Bauder et al. (Bauder 

et al. 2016b) to estimate the probability of a seasonal (6-month) home range centroid 

occurring within a same-sex conspecific’s home range. We calculated breeding and non-

breeding home range centroids, defined as the mean of the x/y coordinates, for 85 

individuals (n = 177 6-month home ranges) and then measured the UD density of 

adjacent same-sex conspecifics as described in Bauder et al. (2016b). This resulted in 17 

centroids with non-zero values. We modeled these data using GPD in R package TEXMEX 

(v. 2.4, Southworth and Heffernan 2013) as a function of sex which had 100% of the AIC 

model support compared to the null model. We therefore used separate GPD parameters 

for males and females. We used 6-month home ranges in our analysis, rather than total 

home ranges, to obtain sufficient sample sizes. To create the dispersal kernel we 

normalized all three kernels before taking their product after which we again normalized 

the dispersal kernel to sum to one. We selected each agent’s potential starting location 

using the strata function from the SAMPLING package (Tille and Matei 2016) and set the 

maximum allowable dispersal distance to 22.2 km (Stevenson et al. 2009).  

We added mechanism to represent density dependent mechanisms by giving each 

new agent a probability of successfully recruiting to their potential starting location as a 

function of the density of conspecifics surrounding that location. We buffered each 
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potential starting location by 894 and 501 m for males and females, respectively. These 

buffers represented median total home ranges for each sex. We then overlaid all same-sex 

conspecific home ranges, giving pixels within home ranges values of one, and calculated 

conspecific home range density within each buffer. We then specified the relationship 

between one minus the probability of recruiting and conspecific home range density 

using a logistic function with an inflection and scale parameterization. The median 

proportion of 6-month 95% UD volume contour home range overlap across seasons was 

smaller for males than for females (0.09 and 0.22, respectively, Wilcoxon sign-rank test P 

= 0.0581, Bauder et al. 2016b). We therefore used inflection points equal to the observed 

median proportion of home range overlap and scale parameters of  0.05. Buffers 

completely overlapped by conspecific home ranges therefore had a recruitment 

probability of zero and buffers without conspecific home ranges had a recruitment 

probability of one. We used this probability in a Bernoulli draw to determine if the new 

individual would be added to the model at that location. 

3.2.3. Analysis of Observed Patterns 

 We used five patterns to calibrate our ABM using a POM approach: the 

relationships between home range size and landscape covariates, home range size for 

male and female EIS, within-individual 6-month home range overlap, annual survival as 

a function of landscape covariates, and maximum dispersal distance. Within our ABM 

these patterns are emergent properties arising from interacts among individuals and 

between individuals and their unique landscape context. 



 

125 

3.2.3.1. Home Range Size Analyses 

 We modeled the relationships between EIS total home range size and multiple 

landscape covariates using a multi-scale approach. We used total home range estimates 

from 83 EIS used by Bauder et al. (2018). These individuals were tracked for ≥ 258 days 

(median = 533, max = 1,346) with ≥ 17 telemetry observations (median = 62, max = 

264). Home range sizes were estimated using 95% UD volume contours and 

unconstrained reference bandwidth matrices and median home range size was 144 ha 

(15–1,129 ha). To measure landscape composition, we placed Uniform kernels of varying 

radii around the centroid of each snake’s x/y coordinates. We systematically varied 

kernel radii from 50–1,600 m at 100 m increments. We measured the proportion of 

Urban, Undeveloped, Wetland, Citrus, Pasture, and Wetland Edge land covers within 

each kernel, calculated mean available water storage at 150 cm (AWS), and the mean and 

SD of spring NDVI. We excluded Citrus because of insufficient data. See Appendices A–

D for additional descriptions of land cover data sources and covariates. We fit linear 

regression models using the log of home range size as the response variable and sex, 

number of days tracked, and one landscape covariate as independent variables. We used 

the beta estimates and their 95% CI as our pattern metrics (Appendix G). To describe 

male and female home range size we calculated the median, inter-quartile range (IQR), 

and range of observed total home range sizes for each sex. 

3.2.3.2. Within-Individual Home Range Overlap 

 We used data from Bauder et al. (2016a) to calculate overlap in 6-month home 

ranges within individuals which included 140 home range-dyads from 47 individuals. We 
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calculated the volume of intersection (VI) between each dyad which ranged from 0–1 

(Fieberg and Kochanny 2005). We used the VI between consecutive breeding and non-

breeding seasons (B-NB), between breeding seasons (B-B), between non-breeding 

seasons (NB-NB), and between breeding and non-breeding seasons separated by 12 

months. We quantified observed patterns using the median and IQR of VI for each sex. 

 

3.2.2.3. Survival 

 We re-analyzed the survival data of Breininger et al. (2012) by combining their 

data and with data from 30 Highlands County snakes. We used the phi formulation of a 

multi-state model where survival was the probability of remaining in the observed-alive 

state to account for uncertainty in a snake’s state (dead or alive) when detected 

underground (Brownie et al. 1993; Williams et al. 2002; Breininger et al. 2012). We 

modeled survival as a function of sex, season, and landscape class (core, edge, and 

suburb) and encounter probability as a function of sex, season, landscape class, state 

(alive or dead), and a binary covariate indicating if the snake had received a transmitter 

during the previous occasion (TSI). We fit models using MSURVIV (J. Hines, personal 

communication) and pooled data into weekly capture occasions which we then converted 

to annual estimates as needed. Because the model where survival varied by landscape 

class and encounter probability varied interactively by landscape class and TSI had an 

AICc model weight of 0.95 we made inferences solely from this model.  

While annual survival for EIS in the suburb and edge classes was less than in the 

core class (0.5791, SE = 0.1008; 0.6584, SE = 0.1088; 0.8928, SE = 0.0456, 
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respectively), our primary interest was in how survival varied as a function of road and 

urban density. Because we had no way to disentangle the effects of each landscape 

feature on EIS survival, we created a binary development raster indicating if a pixel 

included roads or urban. To obtain survival estimates as a function of development, we 

first calculated the mean development value across all snakes in each landscape class. 

Because we were unsure of the scale at which to measure development, we measured 

development using the same multi-scale approach described in the home range analysis. 

We then fit a non-linear least-squares model to our three data points using the nls 

function in R. We used hyperbolic deterministic functions and identified the AIC-best 

scale for each landscape covariate. Given our very limited sample size our purpose was 

not to make inferences regarding scale-specific effects of landscape features on EIS 

survival but rather have an objective means with which to select the scale at which to 

measure development for model calibration.   

3.2.2.4. Dispersal Distance 

 The only available data on EIS dispersal is a single observation from a large 

protected area in southeastern Georgia. An adult (140 cm snout-vent length) male was 

recaptured at overwintering site (i.e., xeric sandhill) 22.2 km (Euclidean) from its 

overwintering site the previous winter. While the age of this individual and its actual 

dispersal distance were unknown, we used this observation as a maximum dispersal 

distance in our ABM. 
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3.2.4. Model Calibration 

 We calibrated our ABM using the Cape Canaveral study area. We selected this 

study area particular to mitigate the computational costs of running the ABM across all 

four of our study areas but also because the Cape Canaveral study area had the greatest 

variation in roads and urban densities and the vast majority of telemetered EIS in 

developed landscapes were from the Cape Canaveral study area. We therefore assumed 

that landscape condition across our Cape Canaveral study area would be representative of 

the range of landscape conditions in our application study area. We defined our 

calibration study areas by buffering the extent of our observed telemetry observations in 

the Cape Canaveral study area by 5,000–8,000 m so as to obtain comprehensive coverage 

of available landscape features while avoiding artifacts of the study area edges. We 

assumed that our observed data were collected within populations at approximately 

carrying capacity and therefore generated agent starting locations in the following 

manner. First, we used our Level II RSS (Bauder et al. 2018) to quantify the area of 

potentially suitable habitat using the 5
th

 percentile of observed home range-wide average 

Level II RSS values (0.3485). For each study area, we then divided this area by the 

median home range size for each sex (males = 250.85 ha, females = 78.83 ha) to calculate 

the number of starting agents. Finally, we probabilistically selected starting locations for 

each agent using the Level II RSS. This resulted in 936 starting agents.  

We used a POM approach estimate the values for six model parameters with 

unknown values: maximum resistance value for background resistance, maximum roads 

resistance value, the scale multiplier parameter of the GPD movement resistance kernel, 

daily background survival rate, daily road/urban crossing survival rate, and the standard 
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deviation of the half-normal dispersal resistance kernel (Appendix F). The maximum 

resistance value (upBound) was varied at increments of five from 5–40. The maximum 

roads resistance value (Roads) was either allowed to take the value of upBound or was 

varied at increments of 50 from 50–200. The scale multiplier (Scale) was varied at 

increments of 0.5 from 2–4. We parameterized daily survival rates by converted our 

observed survival estimates for the core and suburb landscape classes into daily survival 

estimates and used those daily estimates as starting values for the background and 

roads/urban crossing survival. We then iteratively adjusted the daily survival rates as 

needed. We varied the SD of the half-normal kernel used to calculate the resistance 

kernel for dispersal in an iterative manner beginning with SD = 11.325 which was the SD 

of a half-normal kernel whose 95
th

 quantile was approximately 22.2 km. 

We used an iterative process to calibrate our ABM. Although calibration occurred 

throughout model development, key trends relating to the suitability of different 

parameter values were apparent even at early model development versions. We therefore 

report select results from early model versions to illustrate how certain parameter values 

and combinations influenced our simulated patterns. First, we held survival and dispersal 

constant at reasonable values based on our observed data and systematically varied 

upBound, Roads, and Scale. We calculated our home range related patterns from our 

simulated data for each parameter scenario and then visually compared the simulated 

patterns to those from our observed data. After identifying a range of parameter scenarios 

that reasonably reproduced our observed home range patterns we systematically varied 

our daily survival parameters within this relatively narrower parameter space. We 

estimated weekly survival rates as functions of development from our simulated data 
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using binomial known-fate models (Cooch and White 2017) in the R package RMark 

(Laake 2013). Because had only three estimates of observed survival (for snakes in core, 

edge, and suburb landscapes), we calculated predicted survival for our simulated agents 

at landscape covariate values corresponding to the mean landscape covariate values for 

core, edge, and suburb EIS. We then compared the observed estimates and 95% CI to the 

predicted simulated estimates and their 95% CI. Lastly, we adjusted the SD of the half-

normal kernel for the dispersal resistance kernel until the 95
th

 quantile of simulated 

dispersal distances approximated 22.2 km.   

3.2.5. Model Application 

 We then used our final calibrated model to evaluate the effects of landscape 

features on EIS occupancy across our LWR study area and EIS occupancy and 

persistence across the current network of conservation lands. Our objective was not to 

evaluate occupancy or persistence on specific conservation lands but rather the use the 

distribution conservation lands as sampling units representing a diversity of landscape 

contexts.  

To evaluate EIS occupancy across our LWR study area, we probabilistically 

selected starting points at a density approximating carrying capacity as described above 

and ran the ABM for 15 years. Because of computational costs we only conducted a 

single iteration but consider the large extent of our LWR study area and its landscape 

diversity to allow us to consider our simulated data as consisting of multiple replicates 

across different landscape conditions.  
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We calculated home range estimates (95% UD volume contours using the 

unconstrained reference bandwidth) for agents surviving to the end of the simulation 

period using the last 18 months of simulated data to represent the locations of surviving 

agents on the landscape. We then randomly selected 999 points across our LWR study 

area separating each point by 2,025 m to ensure a measure of spatial independence and 

buffered each random point by 1,013 m to represent survey plots approximating the 

median size of a conservation land (322 ha). We used plot sizes of 322 ha and considered 

a plot occupied if it was overlapped by any amount of ≥ 1 male and female home range.  

To evaluate the effects of landscape features on plot occupancy, we measured 

several landscape covariates within concentric Uniform kernels with 977, 1277, 1577, 

1877, 2177, 2477, 2777, and 3077 m radii centered on each plot. We measured the 

density of urban (equal weights scenario), undeveloped upland, wetland, pasture, citrus, 

wetland edge, and roads using the equal weights and strong effects weighting scenarios of 

Bauder et al. (2018, Chapter 2). We also measured the proportion of each plot/buffer 

overlapped by conservation lands using a GIS layer from the Florida Natural Areas 

Inventory (Florida Natural Areas Inventory 2018). We modeled our data using 

generalized linear models with binomial error distributions and conducted a multi-stage 

analysis to identify the most influential spatial scales and landscape covariates. First, we 

identified the characteristic scale (Holland et al. 2004) for each landscape covariate by 

fitting single-variable models and identifying the scale with the strongest AIC support. 

Then we fit multi-variable models to all-subsets of non-correlated covariates (r < 0.70) 

whose single model at the characteristic scale had greater AIC-support than the null 

(intercept only) model and calculated model-averaged effect sizes and AICc parameter 
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weights to identify influential covariates. Because roads and urban were highly 

correlated, we retained urban because it had the greatest AIC support.  

 To evaluate the extent to which conservation lands may support EIS, we 

calculated the model-averaged predicted occupancy for each of our 999 random plots. 

We then calculated the proportion of the plot that overlapped conservation land and 

classified plots as having 0%, 1-99%, or 100% overlap with conservation lands. We then 

tested for significant differences in model-averaged predicted occupancy and influential 

landscape covariates across these three categories. Finally, we created separate spatially-

explicit estimates of simulated EIS occupancy of 322 ha plots by calculating the model-

averaged predicted occupancy across the entire LWR study area. 

 To evaluate EIS occupancy on conservation lands, we determined occupancy for 

each conservation land for each year of the last 12 years of our 15-year model run. We 

only considered the last 12 years to minimize the impacts of initial individual starting 

locations on our results and to allow the first cohort one year to develop home ranges. We 

excluded one conservation land (Lake Wales Ridge Wildlife and Environmental Area, 

LWRWEA) because the GIS polygons representing the LWRWEA included 

approximately seven disjunct polygons or clusters of smaller polygons and spread over 

approximately 45 km north-south. Our final sample size was therefore 156 conservation 

lands. We used four criteria to determine occupancy: at least one male-female pair with ≥ 

50% or ≥ 95% of their daily locations overlapping the conservation land and at least five 

male-female pairs with  ≥ 50% or ≥ 95% of their daily locations overlapping the 

conservation land. The latter criteria approximate the quasi-extinction threshold of 10 

adults and sub-adults used by Breininger et al. (2004). We calculated overlap using 
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individuals that were alive on Sept 30 of each year (the day before new recruits were 

added to the model) and then used their locations for the previous 365 days. We then 

modeled the data for each criterion using a binomial GLM with the proportion of 12 

years occupied as the response variable and size of the conservation land as the 

independent variable. We fit our models using the bias-reduction method of Firth (1993) 

implemented in the BRGLM package (Kosmidis 2017) to avoid issues of complete 

separation. This analysis assumes recolonization can occur between years. We then 

calculated the size of a conservation land with a predicted probability of 0.99 which 

represents the probability of occurring on a conservation land for all 12 years.  

 To evaluate EIS persistence on conservation lands, we identified all conservation 

lands occupied by EIS, according to our four occupancy criteria, on the third year of 

simulation. We discarded the first two years of simulated data so that the data used in the 

persistence analysis included data only after the first recruits were added to the model 

environment which should minimize artifacts due to individual starting locations. We 

then calculated the number of years until extinction starting at the fourth year of the 

simulation so that an area occupied in year 3 and extinct in year 4 would have zero years 

until extinction. We discarded all conservation lands where individuals persisted for the 

remaining 12 years to allow for parametric modeling of persistence probability. We used 

a geometric distribution to model number of years until extinction as a function of 

conservation land size. Because the geometric distribution is a special case of the 

negative binomial distribution when the overdispersion parameter is one, we used the glm 

function specifying family using the negative.binomial function from the MASS package 

(v. 7.3-49, Venables and Ripley 2002) with theta=1. We then calculated the size of 
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conservation land needed for a 0.95 probability of persisting for 12 years by calculating, 

across a range of conservation land sizes, the predicted number of years till extinction 

from our negative binomial model and considering this value the expected number of 

“failures” before observing a single success (i.e., extinction). We then calculated the 

probability of persisting for all 12 trials (i.e., years) as one minus the expected probability 

of extinction calculated using the pnbinom function. We performed these calculations for 

each of our four occupancy criteria.   

3.3. Results 

3.3.1. Model Calibration 

Our observed patterns indicated that male EIS had significantly larger total home 

ranges than females and that SD NDVI, urban, and SD AWS had significant negative 

relationships with total home range size (Appendix G). Total home range size was 

significantly positively associated with undeveloped and wetlands. Our AICc-best scales 

describing relationships between our observed survival estimates and landscape 

covariates were 400 m for roads, 1,100 m for urban, and 1,100 m.  

Simulated total home range size and its relationship with landscape covariates 

were highly sensitive to the maximum background and roads resistance value and the 

GPD scale multiplier (Appendices H–K). Simulated total home ranges were largest when 

background resistance was lowest and scale multiplier was highest (Appendices H–I). 

Even under ideal parameter scenarios, female simulated home ranges were often larger 

than female observed home ranges. The negative relationships between total home range 
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size and SD NDVI and urban were generally best approximated when background 

resistance was low (5 or 10) and maximum roads resistance was high (100 or 200, 

Appendices J–K). While the significant negative relationships between total home range 

size and these covariates were reproduced under these parameter scenarios, the effect 

sizes were generally underestimated, particularly for SD NDVI. The degree to which 

relationships between total home range size and other landscape covariates were 

accurately simulated was more variable (Appendices J–K). While the observed direction 

of the relationship was often simulated correctly the magnitude of the effect was 

generally underrepresented.  

Within-individual 6-month home range overlap was generally under simulated 

and this overlap decreased with increasing duration (Appendix L). Simulated weekly 

survival for agents in the lowest development class (i.e., low urban and road densities) 

was lower than observed survival while simulated weekly survival for agents in the 

highest development class more closely approximated observed weekly survival 

(Appendix M).  

Based on visual assessments of our simulated patterns, we selected a maximum 

background resistance value of 10, a maximum roads resistance of 200, a scale multiplier 

of 3.5, a daily background survival of 0.99995 and a daily roads/urban crossing survival 

of 0.99000 as our final parameter scenario for model application (Fig. 3.3). Median 

dispersal distance under this scenario was 4.86 km with a maximum dispersal of 19.88 

km. At the end of a 15-year simulation in the Cape Canaveral study area, population size 

declined from an initial 936 individuals to 292 individuals (133 males and 159 females). 

Sex ratio began strongly female biased (3.18:1) but became more even throughout the 
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simulation. Median daily step length was 100 m for males and 75 m for females. 

Observed and simulated annual survival for snakes in Core landscapes was 0.8928 and 

0.8884, respectively, and observed and simulated annual survival for snakes in Suburb 

landscapes was 0.5791 and 0.6158, respectively. 
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Figure 3.3. Comparison of observed (Obs) and simulated (Sim) patterns under the final 

parameter scenario for the Cape Canaveral study area. Upper right panel 

show the beta estimates and 95% CI from multiple regression analyses of 

total home range size as a function of landscape covariates. Lower left panel 

shows within-individual 6-month home range overlap between consecutive 

breeding and non-breeding seasons (B-NB), consecutive breeding seasons 

(B-B), consecutive non-breeding seasons (NB-NB), and breeding and non-

breeding seasons separated by 12 months (B-NB2). Lower right panel shows 

observed (points) and predicted (lines) weekly survival as a function of 

development intensity (Dvlp). Error bars represent 95% CI around the 

observed estimates while dashed lines represent 95% CI around the predicted 

values from the simulated data. 

 

3.3.2. Model Application 

Simulated EIS occupancy, defined as at least one male and one female, of 322 ha 

plots was 56%. Of the 13 covariates used to model simulated occupancy, the 

characteristic scale for 10 of those covariates was at the largest scale we considered 
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(3,077 m). Three covariates, urban, undeveloped upland, and SD NDVI, had the strongest 

influence on simulated EIS occupancy with parameter weights ≥ 0.97 and model-

averaged 95% CI that excluded zero (Table 3.1). Occupancy was positively associated 

with undeveloped upland and negatively associated with urban and SD NDVI (Fig. 3.4). 

While conservation lands did not strongly influence simulated EIS occupancy and high-

occupancy areas were present outside of conservation lands, model-average predicted 

occupancy was consistently higher on conservation lands (Fig. 3.5). Model-averaged 

predicted occupancy was significantly higher on plots partially or completely overlapping 

conservation lands than on plots not overlapping conservation lands (P < 0.0001). Urban 

was significantly lower on plots partially or completely overlapping conservation lands 

(P ≤ 0.0057) while upland was significantly greater on plots partially or completely 

overlapping conservation lands (P < 0.0001). SD NDVI was significantly lower on plots 

completely overlapping conservation lands compared to plots not overlapping 

conservation lands (P < 0.0001) but plots partially overlapping conservation lands had 

significantly higher SD NDVI than plots not overlapping conservation lands (P = 

0.0118). Our map of predicted occupancy of 322 ha plots for our study area showed 

lower occupancy along the more developed portions of the LWR (Fig. 3.6).  
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Table 3.1. Model-averaged z-score standardized beta estimates, 95% CI, and AICc 

parameter weights (w) for the effects of landscape covariates on simulated EIS 

occupancy of 322 ha plots across the southern LWR. 

Covariate Betas 95% CI w 

Urban -0.82 -1.08 - -0.56 1.00 

Upland 0.28 0.12 - 0.44 0.99 

SD NDVI -0.26 -0.43 - -0.09 0.97 

SD AWS 0.04 -0.10 - 0.18 0.43 

Cons Lands 0.04 -0.10 - 0.18 0.42 

NDVI 0.03 -0.08 - 0.14 0.37 

Citrus -0.02 -0.13 - 0.09 0.36 

Wetlands 0.02 -0.09 - 0.13 0.34 

AWS 0.02 -0.09 - 0.13 0.33 

Wetland Edge 0.00 -0.08 - 0.08 0.27 
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Figure 3.4. Model-averaged predicted relationships between simulated EIS occupancy of 

322 ha plots and the top supported landscape covariates. Solid lines represent 

model-averaged predicted occupancy and dashed lines are model-averaged 

95% CI. Different line colors represent different proportions of conservation 

lands in a 3,077 m buffer centered on the plot centroid. All other covariates 

were held constant at their mean value. 
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Figure 3.5. Relationships between simulated EIS occupancy, landscape covariates, and 

conservation lands. The top left panel shows the relationship between model-

averaged predicted occupancy for all 999 random 322 ha plots as a function 

of the proportion of the plot overlapping conservation lands. The other three 

panels show the distribution of landscape covariate values for plots not 

overlapping (No), partially overlapping (Inter), and completely overlapping 

(Yes) conservation lands. 
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Figure 3.6. Model-averaged predicted occupancy of 322 ha plots for the Lake Wales 

Ridge study area. Primary, secondary, and tertiary roads are shown for 

reference. 
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Occupancy and persistence of conservation lands showed a strong relationship 

with conservation land size while the strength of this relationship varied depending on 

our occupancy criterion (Fig. 3.7). For our analyses allowing re-colonization, the 

minimum sizes of conservation lands needed for 12 years of occupancy were 1,700 ha (1 

pair with 50% overlap), 3,200 ha (1 pair with 95% overlap), 4,100 ha (5 pairs with 50% 

overlap), and 8,500 ha (5 pairs with 95% overlap). For our analyses not allowing re-

colonization, the minimum sizes of conservation lands needed for EIS to persist all 12 

years were 2,600 ha (1 pair with 50% overlap), 4,300 ha (1 pair with 95% overlap), 3,900 

ha (5 pairs with 50% overlap), and 5,000 ha (5 pairs with 95% overlap). The median sizes 

of conservation lands where EIS persisted all 12 years were 3,482 ha (1 pair with 50% 

overlap), 10,795 ha (1 pair with 95% overlap), 11,508 ha (5 pairs with 50% overlap), and 

16,792 ha (5 pairs with 95% overlap).  
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Figure 3.7. Relationships between simulated EIS occupancy/persistence and size of 

conservation lands for four different criteria of occupancy. The left panel 

shows the predicted proportion of years occupied for the final 12 years of a 

15-year model run and assumes re-colonization. The right panel shows the 

predicted probability of persisting for all of the final 12 years and assumes no 

re-colonization after a conservation land goes extinct. 
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3.4. Discussion 

3.4.1. Model Calibration 

Our ABM builds upon previous population modeling studies for EIS (Breininger 

et al. 2004; Hyslop et al. 2012) by incorporating variation in individual-level traits and 

behaviors in a spatially explicit manner. This feature is important given the influence of 

landscape context on EIS home range size and survival (Breininger et al. 2011; 

Breininger et al. 2012). Accurately incorporating these landscape influences is important 

for understanding spatially explicit population dynamics for several reasons. First, spatial 

variation in survival directly determines spatial variation in population viability. Second, 

spatial variation in home range size combined with low levels of conspecific overlap 

directly determines population density within a given area. While it is unclear how same-

sex conspecific overlap varies according to landscape development (Bauder et al. 2016b), 

assuming a constant home range across a range of landscape development intensities 

could underestimate density in more developed landscapes. This assumption would also 

reduce population viability in small patches of natural habitat because home ranges 

would be larger and road/urban crossing rate higher than expected given the landscape 

context which would lead to greater mortality risk. Our model therefore adds to a 

growing body of research using ABM to address questions related to population viability.  

 Using a POM approach, we were able to identify combinations of unknown 

parameters that produced simulated patterns of movement and survival approximating 

patterns from our observed data. However, among the patterns used to calibrate our 

model there was variation in the degree to which those patterns were approximated. 
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While we were able to reproduce a significant negative relationship between total home 

range size and SD NDVI and urban, as well as a significant effect of sex with larger male 

home range sizes, this required increasing the maximum resistance of roads to relatively 

high values. Because most urbanized areas of our calibration landscapes also had high 

road densities this effectively gave urban areas a higher resistance than the surrounding 

landscapes. This indicates that our background resistance surface, which was derived 

from a within-home range RSS, was a poor representation of resistance to individual 

movements. We suspect this is the case because avoided habitats may not necessarily 

have high resistance to movement. For example, wetlands were generally avoided but 

observed total home ranges were larger in landscapes with more wetlands. This may 

suggest that EIS are capable of moving through wetlands even if they do not selectively 

use wetlands. A more ideal approach to estimating a resistance surface for simulating 

within-home range movements might have been a path selection function wherein 

landscape features traversed across observed movement steps are compared to those from 

random steps (Zeller et al. 2012). However, our telemetry points were collected on 

average at 2–7 day intervals which makes the assumption of straight-lined movement 

between consecutive telemetry locations very tenuous. Additionally, we assumed a linear 

inverse relationship between habitat suitability and resistance which other studies may 

not be appropriate (Keeley et al. 2016; Zeller et al. 2018). An alternative approach was 

used by Watkins et al. (2015) in an ABM for jaguars (Panthera onca) where they used 

separate expert opinion-based estimates of habitat quality (i.e., food availability) and 

resistance. Researchers could also use a POM directly to calibrate resistances surfaces.  
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While increasing maximum roads resistance clearly improved our model’s ability 

to simulate EIS home ranges, increasing the maximum roads resistance has the potential 

to reduce road crossing rates and therefore reduce the number of simulated road 

mortalities which could in turn overestimate survival of agents in more developed 

landscapes. However, this did not appear to be the case as we were able to identify 

parameter values for daily road/urban crossing survival that resulted in weekly survival 

estimates in our simulated data that were similar to observed weekly survival estimates 

for EIS in our least- and most-developed landscapes. Interestingly, our simulated data 

more closely approximated the relationship between survival and urban and development 

than the relationship between survival and roads. This may be an artifact of the high 

roads resistance layer which may have led to fewer than expected road crossings thereby 

allowing urban to be the primary driver of mortality in our ABM.  

 Our model was unable to reproduce the observed levels of within-individual 

seasonal home range overlap which suggests that simulated agents displayed a lower 

degree of home range fidelity than we observed in our telemetry data. This may have 

contributed to the larger than expected female total home ranges in our simulated data. 

We suspect our model’s inability to reproduce within-individual home range overlap is 

due to the lack of an explicit mechanism for simulating home range fidelity. Rather, our 

model relies on the avoidance of same-sex conspecifics and the presence of a population 

at or near carrying capacity to constrain the movements of individuals over long temporal 

scales (e.g., months and years). Other ABM simulating animal home ranges rely on a 

resource- and/or mate-acquisition approach for generating realistic patterns of movement 

and home range size (Carter and Finn 1999; Wang and Grimm 2007; Malishev et al. 
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2018). For example, Carter et al. (2015) developed an ABM for simulating male and 

female tiger home ranges where within-sex home range overlap was low but male home 

ranges contained multiple female home ranges. Each landscape cell was assigned a 

resource value (prey biomass) and females sought to include sufficient pixels within their 

home range to reach a threshold of prey acquisition. Males then established and updated 

their home ranges so as to overlap the home ranges of multiple females. Under such an 

approach stable home ranges are possible because individuals only move beyond their 

home ranges if their home range no longer contains sufficient resources (e.g., through 

depletion or exclusion by competitors). We opted not to pursue a resource-acquisition 

approach in our ABM because data on EIS food intake rates, energy requirements, 

metabolic costs, and prey availability are unavailable although such parameters could 

potentially be evaluated through POM.  

3.4.2. Effect of Landscape Features on Long-term EIS Occupancy 

At the end of our 15 year model application run on the LWR study area EIS were 

present throughout our study area and all conservation lands ≥ 250 ha were occupied by 

50–295 individuals during the last 18-months of model simulation. While our moderate 

occupancy levels suggest that much of our study area is capable of supporting EIS for at 

least 15 years, this also indicates that substantial portions of our study area did not 

support EIS for the entire simulation. EIS occupancy was most strongly influenced by the 

three landscape covariates that also most strongly influenced multi-level EIS habitat 

selection (Bauder et al. 2018). In particular, urban had the strongest effect on simulated 

EIS occupancy and this effect was strongest at a very broad scale (3,077 m) suggesting 
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that the long-term presence of EIS within an area the size of a median conservation land 

is affected by processes operating far beyond the boundaries of that conservation land. 

While the amount of conservation land surrounding the plot did not strongly influence 

occupancy, plots on conservation lands had more consistently higher predicted 

occupancy values than plots partially or not overlapping conservation lands. This 

indicates that while substantial potential EIS habitat occurs outside of the current network 

of conservation lands along the LWR, the existing network nevertheless does represent 

an important contribution towards EIS conservation. 

 Our analysis of EIS occupancy and persistence on conservation lands indicates 

that substantial tracts of relatively undeveloped land are required to support EIS for a 

relatively short period of time as the 12 years of simulated data we use approximates the 

life span of an EIS. As expected, the more stringent our occupancy criteria (i.e., more 

pairs with higher levels of overlap), the larger an area had to be to be occupied for the 

entire simulation period. Our simulation study provides the first empirical estimates of 

minimum reserve size for EIS. Moler (1992) recommended that EIS conservation focus 

on protecting large tracts of conservation land and suggested 1,000 ha as a minimum 

threshold while the U.S. Fish and Wildlife Service suggested 10,000 ha (2008). While 

both of these estimates appeared to lack strong empirical justification, our results suggest 

that 1,000 ha is too small to support even a single pair of EIS. In their PVA, Breininger et 

al. (2004) did not report the spatial extents of viable populations but did report that quasi-

extinction (i.e., < 10 adults and subadults) occurred in many potential reserves. Using our 

occupancy criterion of five pairs with ≥90% overlap, our results suggest that 5,000–9,000 

ha may be required to maintain EIS. Combined with our observation that the median 
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sizes of conservation lands occupied for all 12 years of our simulation were >10,000, our 

results suggest that the larger estimate provided by the U.S. Fish and Wildlife Service is 

more beneficial for EIS conservation. Because we used existing conservation lands for 

our analyses, our results do not apply to conservation lands in isolation because many 

conservation lands abutted other conservation lands or unprotected areas of otherwise 

suitable habitat. However, our persistence analysis assumes no re-colonization following 

extinction which is approximates completely isolated conservation lands.  

3.4.3. Scope and Limitations 

We acknowledge several potential limitations to our model which pertain to 

inferences made using our simulated data. The reliability of absolute predictions (e.g., 

change in population size) from population models are strongly dependent upon the 

accuracy and precision of life history parameter estimates (Beissinger and Westphal 

1998; Brook et al. 2000; Coulson et al. 2001). Many of our model parameter values had 

high uncertainties or lacked empirical estimates, particularly with regards to juvenile 

movement and survival. Data on wild pre-adult EIS are scarce as is the case with most 

snake species (Parker and Plummer 1987; Shine and Bonnet 2009). However, Hyslop et 

al. (2012) found that predicted EIS population growth rate from a stage-transition matrix 

model was relatively insensitive to pre-adult survival, clutch size, nesting success, and 

breeding probability. Species with high adult survival, late-maturation, low fidelity, and 

high longevity are generally more sensitive to changes in adult survival than reproductive 

output (Oli and Dobson 2003; Tack et al. 2017). This trend has been observed in other 

snake species (Webb et al. 2002; Gregory 2009). However, we acknowledge the 



 

151 

uncertainty of our survival estimates and particularly in the shape and magnitude of the 

relationship between survival and continuous landscape covariates. An additional 

limitation is that we do not know the trajectories of the populations from which our 

observed data were collected. If our IBM was calibrated to data from a declining 

population our IBM would assume stable parameter values over time which might in turn 

lead to an overestimation of the simulated population’s trajectory.  

 Our inferences regarding landscape effects on EIS occupancy and persistence are 

likewise conditional upon the parameter values and assumptions within our IBM. An 

arguably more ideal approach to evaluating landscape effects on EIS occupancy would be 

to measure occupancy directly in the field. However, EIS within peninsular Florida are 

extremely difficult to detect and existing occurrence records are likely biased towards 

areas of high field use or accessibility (e.g., with road access). Our use of an IBM 

therefore provides a way to measure occupancy as a result of dynamic population 

processes with perfect detection. This approach is arguably more informative for EIS 

conservation than using habitat suitability models because the latter do not incorporate 

demographic processes. For example, a comparison between our predicted resource 

selection surfaces (Chapter 2) and our predicted occupancy map (Fig. 3.6) showed that, 

while relative probabilities of selection could be high within developed landscapes 

occupancy of these areas was low. This highlights the importance of incorporating habitat 

selection data with demographic data when evaluating long-term occupancy or 

persistence.  
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CHAPTER 4 

LANDSCAPE GENETICS OF EASTERN INDIGO SNAKES ALONG THE 

SOUTHERN LAKE WALES RIDGE OF CENTRAL FLORIDA 

 

4.1. Introduction 

Anthropogenic landscape changes are widely recognized as leading causes of 

species imperilment (Fischer and Lindenmayer 2000). In addition to reducing population 

viability through direct habitat loss, anthropogenic landscape changes often fragment and 

isolate populations (Fahrig 2003; Villard and Metzger 2014) which can in turn inhibit 

dispersal and reduce genetic connectivity (i.e., gene flow, Lowe and Allendorf 2010) 

among habitats and populations (Epps et al. 2005; Proctor et al. 2005; Clark et al. 2010). 

While limited gene flow may be maladaptive in some circumstances (e.g., in facilitating 

local adaptation, Frankham et al. 2011; Richardson et al. 2016), it is widely recognized 

that gene flow is beneficial under many circumstances for reducing the effects of genetic 

drift and inbreeding depression while maintaining future adaptive potential (Keller and 

Waller 2002; Hogg et al. 2006; Sexton et al. 2011). It is therefore important to understand 

the impacts of anthropogenic landscape features on genetic connectivity to aid in the 

implementation of mitigation strategies (Keller et al. 2015) and identification of potential 

barriers and corridors (Epps et al. 2007; Cushman et al. 2009; Zeller et al. 2017). 

However, species’ responses to particular landscape features with regards to genetic 

connectivity can vary widely among taxa and landscapes (e.g., Short-Bull et al. 2011; 



 

153 

Balkenhol et al. 2013; Trumbo et al. 2013), highlighting the importance of species- and 

landscape-specific analyses.  

 Landscape genetics provides a conceptual and analytical framework for 

understanding landscape effects on genetic connectivity (Manel et al. 2003; Storfer et al. 

2007). Landscape genetics analyses predominately involve three broad steps: 1) 

describing the genetic similarity (i.e., genetic distance) between individuals or 

populations, 2) describing the landscape distance (Shirk et al. 2018) between sampling 

units as a function of the degree to which one or more landscape feature is hypothesized 

to influence genetic distance, and 3) statistically relating genetic distance to landscape 

distance to identify the most influential landscape features driving the genetic-landscape 

signal (Balkenhol et al. 2016). Hypothesized effects of landscape features are often 

represented using resistance surfaces where landscape features (e.g., land cover, 

elevation) are assigned resistance values such that higher values represent a greater 

impediment to multi-generational gene flow (Spear et al. 2010). The relationship between 

the original landscape feature and resistance values may take on a variety of functional 

forms (e.g., linear, monomolecular, power, Peterman et al. 2014) which allow the 

modeling of non-linear relationships and detection of threshold effects (Keller et al. 

2015). Landscape distance (i.e., cost or resistance distance) is then measured using the 

cumulative cost along one or more potential paths between genetic samples (i.e., isolation 

by resistance, Adriaensen et al. 2003; McRae 2006; McRae et al. 2008).  

Because the correct resistance values and functional form are unknown, 

parameterizing resistance surfaces is a central issue in landscape genetics (Spear et al. 

2010; Zeller et al. 2012; Spear et al. 2016). Many studies use expert opinion or previous 
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research to select a limit number of resistance surfaces representing different landscape 

features, resistance values, and/or functional forms which are then statistically evaluated 

against genetic data (Zeller et al. 2012; Spear et al. 2016). In some cases, predicted 

surfaces from habitat or species distribution models may be directly converted into 

resistance surfaces (e.g., Shafer et al. 2012; Weckworth et al. 2013; Mateo-Sanchez et al. 

2015a). Resistance values or functional forms may be iteratively varied in univariate or 

multivariate space to identify optimal values (e.g., Cushman et al. 2006; Shirk et al. 2010; 

Wasserman et al. 2010; Castillo et al. 2014; Row et al. 2015). However, iteratively 

examining the complete parameter space for multiple resistance surfaces quickly 

becomes computationally intractable although a few studies have conducted partial 

optimizations with ≤ 4 surfaces over relatively large parameter spaces (Wang et al. 2009; 

Shirk et al. 2010). Fortunately, recent developments now allow for the formal 

optimization of multiple resistance surfaces, including the range of resistance values and 

their functional transformations, directly from the genetics data (Peterman et al. 2014; 

Peterman 2018).  

Ecological patterns and processes can vary markedly depending on the spatio-

temporal scale (i.e., grain or extent, Turner and Gardner 2015) of analysis (Wiens 1989; 

Levin 1992; Martin et al. 2016) and multiple studies have documented varying scale-

specific effects of landscape features on animal movements and habitat selection 

(Thompson and McGarigal 2002; Boyce et al. 2003; Leblond et al. 2011; Zeller et al. 

2016). However, the role of scale, particularly spatial scale, has received comparatively 

little attention in landscape genetics studies (Balkenhol et al. 2009; Anderson et al. 2010; 

Segelbacher et al. 2010; Jaquiery et al. 2011). Inferences regarding landscape effects on 
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genetic connectivity will be most reliable when the scale at which landscape features are 

measured (scale of analysis sensu Dungan et al. 2002) corresponds to the scale at which 

genetic connectivity responds to those features (scale of phenomenon sensu Dungan et al. 

2002; Anderson et al. 2010; Galpern and Manseau 2013). Previous studies have used a 

variety of approaches to evaluate scale-specific landscape-genetic signals including 

variable-width transects between pair-wise genetic locations (Murphy et al. 2010; 

Emaresi et al. 2011; van Strien et al. 2014; Villemey et al. 2016), scale-specific 

functional transformations (Shirk et al. 2010; Wasserman et al. 2010; Castillo et al. 

2014), sampling at hierarchically nested spatial scales (Millette and Keyghobadi 2014), 

subsampling points within pre-specified distance bins (Angelone et al. 2011; Keller et al. 

2013), hierarchical Bayesian models (Coster et al. 2015), and patch-based landscape 

graphs (Galpern et al. 2012b). However, previous studies have generally included 

variables measured at a single scale within the same statistical model or measured a 

subset of landscape features at multiple scales. Moreover, transect-based approaches 

restrict inter-sample cost distances to a single linear feature and although Keller et al. 

(2013) used least-cost transect analysis to circumvent these shortcomings.  

An alternative approach is to define the landscape surfaces in terms of ecological 

neighborhoods (Addicott et al. 1987) so that a single pixel conveys information about its 

surrounding pixels. This is analogous to varying the grain of the analysis (sensu 

Anderson et al. 2010; Zeller et al. 2012). Neighborhoods can be represent using kernels 

(e.g., Uniform or Gaussian, Row et al. 2015; Winiarski et al. In review-b) or by 

aggregating the original surface pixels into larger pixels (Cushman and Landguth 2010; 

Galpern et al. 2012b; Milanesi et al. 2017a; Milanesi et al. 2017b). Landscape distances 
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can then be measured at multiple scales and used to fit multi-variable, multi-scale 

models. Previous studies have used pseudo-optimization approaches the best scale is 

selected for each covariate in isolation and then covariates are combined into multi-

variable, multi-scale models (Row et al. 2015; Zeller et al. 2017). Because the optimal 

scale may differ between single- and multi-variable models, a more ideal approach is to 

simultaneously optimize multiple resistance surfaces at different spatial scales. This 

approach was used by Winiarski et al. (In review-b) for two species of sympatric pond-

breeding salamander who found that simultaneously optimized multi-scale surfaces 

outperformed multi-scale surfaces derived using pseudo-optimization.  

 Because gene flow is ultimately driven by the movements of individuals, 

landscape factors influencing individual movements and habitat selection may also 

influence genetic connectivity (Chetkiewicz et al. 2006). As a result, many studies have 

used predicted surfaces from habitat or species distribution models to create resistance 

surfaces for landscape genetics analyses (Zeller et al. 2012; Spear et al. 2016). However, 

habitat selection is an individual-level process whereas genetic connectivity is the 

manifestation of movement and successful reproduction over multiple generations. 

Genetic connectivity is generally driven by dispersal whereas habitat selection studies 

primarily examine selection at or within the level of a home range (Spear et al. 2016). 

Landscape features with high permeability may facilitate dispersal without providing the 

resources for home range establishment and reproduction. These factors may lead to 

discordant results between habitat selection and landscape genetic studies (Wasserman et 

al. 2010; Geisler et al. 2013; Reding et al. 2013; Mateo-Sanchez et al. 2015; Roffler et al. 

2016). However, some studies have found that resistance surfaces from habitat selection 
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models may correlate well with genetic diversity (Shafer et al. 2012; Weckworth et al. 

2013) or that features influencing movement also influence genetic connectivity 

(Cushman et al. 2006; Cushman and Lewis 2010). Because movement, habitat selection, 

and genetic connectivity may all have multiple scales of phenomenon (Dungan et al. 

2002), it is important to incorporate multi-scale analyses when comparing landscape 

factors influencing these processes.   

 In this study, we use a recently developed optimization approach (Peterman et al. 

2014; Peterman 2018) to evaluate the multi-scale influences of landscape features on 

genetic connectivity of a large-bodied, imperiled, terrestrial snake, the eastern indigo 

snake (Drymarchon couperi, hereafter EIS). This approach uses genetic algorithms 

(Scrucca 2013) and linear mixed-effects models (Clarke et al. 2002; van Strien et al. 

2012) to simultaneously optimize the resistance values and functional transformations of 

one or more resistance surfaces. Winiarski et al. (Winiarski et al. In review-a) found that 

this multi-surface optimization correctly returned the true resistance surface even with 

correlation among landscape features. Multiple landscape features represented at different 

spatial scales can therefore be simultaneously optimized within a single optimization 

procedure. This may be important as the optimal univariate scale for a landscape feature 

may differ from its multi-variable optimal scale, particularly if the correlation between 

landscape features increases with spatial scale.  

Our first objective was to evaluate hypothesized relationships between natural and 

anthropogenic landscape features at different spatial scales (i.e., grain sizes, Anderson et 

al. 2010; Zeller et al. 2012), represented by kernel-smoothed surfaces, in a multi-variable 

optimization. We predicted that multi-variable, multi-scale surfaces would outperform 
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single-variable models and multi-variable, single-scale models. Our second objective was 

to compare the performance of resistance surfaces derived directly from landscape 

features with those derived from multi-scale resource selection functions (RSF, Bauder et 

al. 2018) estimated at different orders or levels of selection (Johnson 1980; McGarigal et 

al. 2016). We predicted greater support for resistance surfaces from RSFs derived at 

higher levels of selection (i.e., home range selection) compared to those derived from 

RSFs at lower levels of selection (i.e., within home range selection). Male EIS actively 

search for females during the breeding season (Bauder et al. 2016a) so we also predicted 

that RSF surfaces for males during the breeding season would have the strongest 

association with genetic distance. Our third objective was to use our RSF surfaces and 

optimized resistance surfaces to determine the degree to which existing conservation 

lands facilitate EIS genetic connectivity (Cushman et al. 2009; Zeller et al. 2017) and to 

combine spatially-explicit estimates of EIS habitat selection (Chapter 2), occupancy 

(Chapter 3), and genetic connectivity to provide a spatially-explicit index of EIS 

conservation value. Finally, we estimated the spatial scale(s) of genetic autocorrelation 

across all samples and for males and females to test for evidence of sex-biased dispersal. 

4.2. Methods 

4.2.1. Study Species 

The EIS is native to the southeastern Coastal Plain of the United States and has 

undergone substantial declines with robust populations persisting in southern Georgia and 

peninsular Florida (Enge et al. 2013) and on-going reintroduction efforts in southern 
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Alabama and the Florida Panhandle (Godwin et al. 2011). These declines were largely 

due to habitat loss, fragmentation, and degradation (U. S. Fish and Wildlife Service 1978, 

2008). While previous studies have described historical range-wide patterns of genetic 

structure (Krysko et al. 2016; Folt et al. In review) little is known about how landscape 

features influence contemporary EIS genetic connectivity. EIS are large-bodied (> 2 m), 

active-foragers (> 1 km daily movements) with large home ranges (> 500 ha) and year-

round surface activity in peninsular Florida (Breininger et al. 2011; Hyslop et al. 2014; 

Bauder et al. 2016a). Within peninsular Florida, males maintain larger home ranges than 

females, show little intra-sex home range overlap, and increase the frequency and extent 

of their movements to locate females during the September–March breeding season 

(Breininger et al. 2011; Bauder et al. 2016a, b). EIS select undeveloped terrestrial 

habitats and avoid urban habitats at multiple spatial scales (Bauder et al. 2018) suggesting 

that large tracts of terrestrial habitats are necessary for viable population (Moler 1992; 

Breininger et al. 2004). However, EIS in peninsular Florida will utilize a variety of 

anthropogenc habitats including urban and rural developments, pasture, and citrus 

(Breininger et al. 2011; Enge et al. 2013; Bauder et al. 2018). While such habitats may 

permit genetic exchange among otherwise suitable habitats, EIS in developed landscapes 

are at increased risk of road mortality (Breininger et al. 2012). As with many snake taxa 

(Parker and Plummer 1987), virtually nothing is known about EIS dispersal or how age 

and sex influence genetic connectivity although a 22.2 km inter-population dispersal 

event was documented in southern Georgia (Stevenson and Hyslop 2010). However, the 

presence male mate-searching movements suggest that adult males may be important 
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facilitators of genetic connectivity (Rivera et al. 2006; Keogh et al. 2007; Clark et al. 

2008).   

4.2.2. Study Area 

We collected our samples across an approximately 50 × 20 km area encompassing 

approximately the southern third of the Lake Wales Ridge (LWR, Fig. 4.1) which has 

consistently produced EIS observations over the past 40 years and likely represents an 

important region for EIS conservation (Enge et al. 2013). The LWR is a linear 

topographic feature running approximately 186 km north-south through central 

peninsular Florida with an average width of 11.7 km and maximum elevation of 64–95 m 

(White 1970; Weekley et al. 2008). The LWR historically was dominated by xeric, fire-

adapted scrub and sandhill communities supplemented by scrubby flatwoods, mesic 

flatwoods, and seasonal forested and non-forested wetlands (Abrahamson et al. 1984; 

Myers and Ewel 1990; Weekley et al. 2008). Lakes are widespread throughout the ridge. 

Due to its antiquity and unique habitats, the LWR supports a high degree of plant and 

animal endemism (Christman 1988; Muller et al. 1989; Myers 1990). However, the LWR 

has lost approximately 78–85% of its original habitat from conversions to urban, citrus, 

and pasture (Turner et al. 2006b, a; Weekley et al. 2008; Swain and Martin 2014) and 

supports a high proportion of imperiled taxa (Dobson et al. 1997). The LWR has been the 

focus of substantial habitat prioritization and conservation efforts (Hoctor et al. 2010; 

Florida Department of Environmental Protection 2017) resulting in a relatively extensive 

network of conservation lands (Turner et al. 2006b; Swain and Martin 2014). While 

many conservation areas were designated for scrub-dependent species or large 
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mammalian carnivores (Hoctor et al. 2010; Florida Department of Environmental 

Protection 2017), these lands likely benefit EIS by protected terrestrial upland habitats 

(Bauder et al. 2018). A spatially-explicit understanding of EIS genetic connectivity along 

the LWR therefore represents a timely contribution to regional conservation efforts. 

Current landscape conditions within our study area include the aforementioned 

natural habitats as well as a range of rural and urban development intensities, citrus, 

improved and unimproved cattle pasture, and agriculture. Many large cattle ranches in the 

area provide large contiguous blocks of relatively undeveloped habitat.  
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Figure 4.1. Map of our landscape genetic study area along the southern Lake Wales 

Ridge in Highlands County, Florida. Triangles represent samples collected 

from the Archbold Biological Station (ABS) while circles represent all other 

samples. The insert map shows the location of the Lake Wales Ridge 

(following Weekley et al. 2008) and our study area in relation to peninsular 

Florida while the primary map shows the location of samples used in our 

analyses. 
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4.2.3. Sample Collection and Laboratory Methods 

We collected EIS tissue samples (scale clips or shed skins) between 2010 and 

2014 throughout our study area. Most samples were collected during a radio telemetry 

study wherein 90% of captures were opportunistic although some individuals were 

captured while road-cruising and during visual surveys around gopher tortoise (Gopherus 

polyphemus) burrows (Bauder and Barnhart 2014). Although we attempted to collect 

samples uniformly across our study area, extremely low detection rates meant that 

samples were often clustered in areas with greater field effort or areas with radio-tracked 

individuals. Additionally samples, particularly road-killed individuals, were collected by 

authorized project partners.  

 We sent samples to the University of Idaho’s Laboratory for Ecological, 

Evolutionary, and Conservation Genetics for processing. We extracted DNA using the 

Oiagen DNeasy blood and tissue extraction kit and genotyped individuals at 15 

microsatellite loci (Shamblin et al. 2011) using Genemapper software. Many samples did 

not amplify at all 15 loci so we re-ran select samples to verify questionable genotypes. 

We retained samples that amplified at ≥ 13 loci. Because some of our samples were from 

shed skins from individuals with unknown identity, we used CERVUS v.3.0.3 (Kalinowski 

et al. 2007) and the R (v. 3.4.2, R Core Team 2017) package ALLELEMATCH (v. 2.5, 

Galpern et al. 2012a) to test for potential duplicate samples after excluding loci with 

≥10% null alleles. In CERVUS, we set the number of mismatching loci to five and the 

minimum number of loci needed for a match to three. CERVUS identified 18 pairs of 

potential duplicates. We used the amUniqueProfile function in ALLELEMATCH to select 

the optimal number of mismatching loci which was eight. ALLELEMATCH selected 13 
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clusters including 32 samples. All samples identified by CERVUS were also identified by 

ALLELEMATCH and all samples amplified all retained loci. After excluding scale clips 

from confirmed different individuals, six shed skin samples remained that were classified 

as potential duplicates. We excluded five of these shed skin samples but retained the sixth 

because it was 22.5 km from its putative duplicate samples.  

4.2.4. Genetic Analyses 

We calculated the proportion of null alleles per locus using MICRO-CHECKER v. 

2.2.3 and the Brookfield 1 method (Van Oosterhout et al. 2004) and retained loci with < 

10% null alleles. We tested for genotypic disequilibrium between all pairs of loci using 

GENEPOP (v. 4.2.1, Rousset 2008). We tested each locus for deviations Hardy-Weinberg 

proportions (HWP) using the hw.test function in the PEGAS package (v. 0.10, Paradis 

2010), calculated FIS using the F.stat function in the DEMELERATE package (v. 0.9-3, 

Kraemer and Gerlach 2017), calculated number of alleles, observed and expected 

heterozygosity using the df2genind function in the ADEGENET package (v. 2.1.1, Jombart 

2008), and calculated allelic richness using the allel.rich function in the POPGENREPORT 

package (v. 3.0.0, Adamack and Gruber 2014). We tested the significance of deviations 

from HWP and FIS using sequential Bonferroni corrections with α = 0.05 (Holm 1979). 

While conformity to HWP is not required when calculating genetic distance based on 

mathematical dissimilarity between genotypes (Shirk et al. 2017), understanding causes 

of nonconformity may elucidate causes of underlying genetic structure including 

population (i.e., a Wahlund effect) or family structure (Allendorf et al. 2013). We 

therefore tested for deviations from HWP and calculated FIS for individuals on the 
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Archbold Biological Station (ABS, Fig. 1) and the rest of the study area. We tested for 

isolation-by-distance (IBD) across all samples, samples from ABS, and samples outside 

of ABS by modeling genetic distance (see below) against Euclidean distance using linear-

mixed effects models with maximum-likelihood population-effects (MLPE) (Clarke et al. 

2002; van Strien et al. 2012) using the LME4 package (v. 1.1-17, Bates et al. 2014). We 

also report the Mantel r (Mantel 1967) and its exact p value calculated with 10,000 

permutations using the mantel function in the VEGAN package for comparison with other 

studies.   

4.2.5. Genetic Distance 

We calculated an individual-based genetic distance using principle components 

(PC) analysis following Shirk et al. (2010; 2017). We converted our genotype data into a 

data frame with n columns (n = number of unique alleles) and specifying allelic usage as 

0, 1, or 2. We replaced missing values with its respective column mean. We then 

calculated PC on these allelic data using the dudi.pca function from the ADE4 package (v. 

1.7-10, Dray and Dufour 2007) and calculated genetic distance as the Euclidean distance 

among a particular number of PC axes. While Shirk et al. (2017) found that genetic 

distance calculated using > 1 PC axes approach performed as well or better than other 

individual-based genetic distance measures, particularly with small sample sizes and 

weak underlying genetic structure, little guidance currently exists for selecting an optimal 

number of PC axes. We therefore calculated the number of significant PC axes using the 

broken stick and latent root criteria and retained the smaller number of PC axes. 
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Furthermore, because the amount of variation explained by successive PC axes decreases, 

we weighted our retained axes by their eigen values.  

4.2.6. Spatial Autocorrelation Analysis 

To assess the spatial scale(s) of genetic relatedness, we conducted spatial 

autocorrelation analyses using GenAlEx 6.5 (Peakall and Smouse 2006, 2012). We 

calculated the genetic autocorrelation coefficient (r) for multiple distance bins to test the 

null hypothesis that genotypes are randomly distributed in space within each bin. We 

calculated bootstrapped 95% CI around r using 9,999 bootstrap iterations and calculated 

the 95% CI around the null hypothesis using 9,999 random permutations. We considered 

spatial autocorrelation significant if r was outside of the 95% CI for the null hypothesis 

and if the bootstrapped 95% CI did not include zero (Peakall et al. 2003). We performed 

these analyses using both the default genetic distance (Smouse and Peakall 1999) and our 

PC-based genetic distance. We conducted separate analyses for males and females to test 

for sex-biased dispersal (Banks and Peakall 2012). We identified juveniles as individual 

with a snout-vent length ≤ 90 cm and excluded these individuals from the tests of sex-

biased dispersal. We used 2, 3, and 4 km distance bins for all autocorrelation analyses. To 

further test for evidence of sex-biased dispersal we calculated mean assignment index 

(mAIc) and FST between adult samples from ABS and all other samples and tested for 

significance with 1,000 permutations using the function sexbias.test in HIERFSTAT 

(Goudet et al. 2002). 
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4.2.7. Resistance Surfaces 

We defined our study area by buffering the maximum extent of our samples by 8 

km which is over twice the 95
th

 percentile of observed total home range width (3,860 m, 

Bauder et al. 2018) and greater than the maximum observed distance between an 

individual’s telemetry observations in our study area (7.25 km, D. Breininger, 

unpublished data).  

 We used landscape features hypothesized to influence EIS genetic connectivity 

based on previous research (Bauder et al. 2018, additional details provided in Chapter 3 

Appendices A-E). We used a Florida land cover map (Knight 2010; Kawula 2014), 

National Wetlands Inventory data (U. S. Fish and Wildlife Service 2014), and the 

National Hydrography Dataset’s GIS flowline data (U. S. Geologic Survey 2014) to 

represent different land cover classes. We combined and reclassified these three data 

sources into separate land cover surfaces for Urban, Undeveloped Upland, Wetland, 

Citrus, Improved Pasture, and Open Water following Bauder et al. (2018). We used the 

2016 TIGER roads layer (U. S. Census Bureau 2016) to map paved roads and reclassified 

roads to approximate the road classes from the 1998 U.S. Geologic Survey’s (USGS) 

1:24,000 roads layer (U.S. Geological Survey 1990) used by Bauder et al. (2018, Chapter 

3 Appendix A). We measured soil moisture using available water storage (AWS) at 150 

cm from the Soil Survey Geographic Database (SSURGO) accessed through the 

SSURGO Downloader 2014 (ESRI 2014). We downloaded Normalized Vegetation 

Difference Index (NDVI) data calculated from LANDSAT 8 OLI/TIRS using the U.S. 

Geologic Survey’s Earth Explorer data base via the bulk order service 

(https://espa.cr.usgs.gov/ordering/new/). We masked clouds and cloud shadows from 

https://espa.cr.usgs.gov/ordering/new/
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each image using its associated pixel_qa band which uses the Fmask algorithm of Zhu 

and Woodcock (2012) and Zhu et al. (2015) and a default cloud probability of 22.5%. We 

calculated a mean winter NDVI using images from 11 Dec. 2014, 29 Jan. 2015, 28 Nov. 

2015, 16 Dec. 2016, and 2 Feb. 2017 and a mean spring NDVI using images from 14 

May 2013, 2 Apr. 2015, 6 May 2016, 7 April 2017, and 9 May 2017. We resampled 

NDVI from 30 m to 15 m pixels and converted all vector data sources to 15 m rasters. 

 We smoothed our land cover, AWS, and NDVI surfaces using Gaussian kernels at 

60, 600, 1200, and 1800 m bandwidths to represent different ecological neighborhoods. 

All surfaces were smoothed across an area whose edges were ≥ 17 km from our samples 

to minimize boundary effects. The 600 m bandwidth approximates the size of an average 

EIS home range. We also calculated the SD of AWS and NDVI using 60, 600, 1200, and 

1800 m radii Uniform kernels. Because we considered Open Water as non-habitat for 

EIS, we masked all Open Water pixels prior and subsequent to smoothing. All pixel 

values therefore represent exclusively terrestrial landscape features. We aggregated all 

smoothed surfaces to 60 m pixels using the aggregate function in R package RASTER 

(Hijmans 2017), taking the mean pixel value, as a compromise between resolution and 

computing time for a total of 663,315 pixels (603 × 1105) within our study area. We 

created a proportional Open Water surface (Water_Prop) so that each 60-m pixel 

represented the proportional area of Open Water within that pixel. We likewise converted 

our binary 15-m roads surface into a 60-m proportional roads layer. Because Bauder et al. 

(2018) found that EIS responded most strongly when primary and secondary roads were 

weighted higher than tertiary roads, we created a weighted proportional roads layer by 
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first assigning all primary and secondary roads a value of five and all tertiary roads a 

value of one.  

 To create categorical land cover maps, we combined the Urban, Undeveloped, 

Wetland, Citrus, Pasture, and Open Water 15-m pixel surfaces. We created an additional 

four surfaces including roads to test different hypotheses about the restrictive effects of 

roads on EIS gene flow. We created 60-m pixel road surfaces directly from our TIGER 

roads layers to ensure that roads, as linear habitat features, would be represented without 

gaps. Our first surface included primary and secondary roads as a seventh category while 

our second surface included only primary roads as a seventh category. Our third surface 

included separate categories for primary and secondary roads. Our fourth surface 

included primary and secondary roads as a seventh category and tertiary roads not 

overlapping urban as an eighth category to test the hypothesis that tertiary roads had a 

different restrictive effect than urban.  

 We used predicted RSF surfaces from Bauder et al. (2018) representing selection 

of home ranges across the study area (second-order or Level II selection) and locations 

within the home range (third-order or Level III selection, Johnson 1980, Chapter 3 

Appendix E). We evaluated Level II surfaces derived from analyses including and 

excluding urban (Bauder et al. 2018). Level III surfaces were created and evaluated for 

breeding and non-breeding season males and females. Because the Level II and III 

surfaces were hierarchically nested, we created scale-integrated resource selection 

functions (SRSF) following DeCesare et al. (2012) by linearly rescaling each surface 

from 0–1,  multiplying a Level III and Level II surface together, and then normalizing the 

SRSF surface to sum to one. For each RSF and SRSF surface we evaluated surfaces 
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created using predicted values from the binomial generalized linear model and the 

exponential form from Manly et al. (2002) to test for differences in the functional form of 

the RSF surface. We therefore evaluated four Level II, 16 Level III, and 16 SRSF 

surfaces.  

4.2.8. Resistance Surface Optimization and Evaluation 

We optimized our resistance surfaces using the R package RESISTANCEGA (v. 

4.0-4 to v. 4.1-11, Peterman 2018) which employs a genetic algorithm in the GA package 

(v. 3.0.2, Scrucca 2013) to optimize the functional transformation and maximum value of 

one or more resistance surfaces. Briefly, RESISTANCEGA applies one of eight functional 

transformations to the resistance surfaces, calculates landscape distance from the 

transformed surface, fits a linear mixed-effects model using the maximum likelihood 

population effects parameterization in LME4, and uses the log-likelihood as the objective 

function in the optimization. Multiple resistance surfaces are scaled from 0–10, 

transformed separately, and added together. The composite surface is then rescaled by 

dividing by the minimum value to range from one to x and then used to calculate 

landscape distance. Optimizing each resistance surface independently avoids issues of 

multicollinearity among surfaces. RESISTANCEGA can accommodate continuous and 

categorical surfaces. We initially calculated landscape distance using commuteDistance 

from the GDISTANCE package (v. 1.2-2, van Etten 2017) which is functionally equivalent 

to the resistance distance calculated by CIRCUITSCAPE (McRae 2006; McRae et al. 2008; 

Kivimaki et al. 2014) but quicker and can be run in parallel. However, we began using 

CIRCUITSCAPE v. 5.0.0 written with the JULIA programming language (v. 0.6.4, accessed 
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1 Aug 2018 at https://julialang.org/) midway through analyses to allow for increased 

optimization efficiency while running in parallel. We recalculate landscape distance 

using commuteDistance and the optimized resistance surfaces for all optimizations 

completed using JULIA and refit their MLPE models to ensure all models were fit to data 

on the same scale. Using commuteDistance or CIRCUITSCAPE avoids the assumption that 

individuals have complete knowledge of all potential paths and always select the lowest-

cost path, as is the case with using least-cost paths (Adriaensen et al. 2003), which may 

be more appropriate for evaluating multi-generational gene flow. We used default 

parameterizations in RESISTANCEGA except that we set the maximum allowable 

resistance value to 3,500 and we increased the population multiplier and number of 

allowable runs without improvement to 20 and 30, respectively. For optimizations with 

four or more surfaces we required 40 runs without improvement.  

We used two approaches for evaluating our RSF/SRSF surfaces. First, we linearly 

rescaled all RSF/SRSF surfaces from 0–1 and converted each surface to a resistance 

surface by subtracting all values from one. We then measured landscape distance using 

commuteDistance and used those distances to fit a MLPE model. Second, we used 

ResistanceGA to optimize the functional form and maximum resistance values of those 

RSF/SRSF surfaces. This allowed us to test the appropriateness of estimating resistance 

directly from a RSF/SRSF surface. 

 Because of computational restrictions, we specified our optimizations to evaluate 

a limited number of landscape features reflecting specific a priori hypotheses at all-

possible combinations of spatial scale. We included Water_Prop in all optimizations. Our 

first hypothesis was that EIS genetic connectivity would be influenced by Urban, 
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Undeveloped, and Wetland land covers. Our second hypothesis was that EIS genetic 

connectivity would be influenced by landscape features most influencing EIS habitat 

selection, specifically Undeveloped, Urban, and SD NDVI. Our final hypothesis was that 

EIS genetic connectivity would be most influenced by Undeveloped, Wetlands, and 

Pasture which we hypothesized would most facilitate EIS genetic connectivity even 

though EIS showed neutral or negative selection for Wetlands and Pasture. We conducted 

a post hoc analysis testing for an effect of primary/secondary roads by re-running our top 

multi-surface optimizations with a binary surface denoting primary/secondary roads. We 

also optimized each of our five categorical land cover surfaces. Absolute values of 

Pearson correlation coefficients between surfaces included in the same optimization were 

< 0.35. 

We ranked the MLPE model from each optimization using AIC adjusted for 

small-sample sizes (AICc, Burnham and Anderson 2002) and report the marginal R
2
 (i.e., 

the proportion of variance explained by fixed-effect factors) for mixed-effects models 

(Nakagawa and Schielzeth 2013; Johnson 2014). To evaluate the sensitivity of model 

rankings to the spatial distribution of sample points we conducted a bootstrapping 

procedure wherein we randomly subsampled 75% of our samples without replacement, 

refit each model using its optimized resistance surface, and recorded the average rank of 

each model and the proportion of times each model was selected as the AICc-best model 

(π) using 10,000 bootstrap iterations. To evaluate the importance of each landscape 

feature within a multi-surface optimization, we calculated the percent contribution of 

each surface by dividing each transformed resistance surface by the sum of the composite 

resistance surface.  
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 We conducted a multi-stage analysis to test our hypotheses. We first compared 

optimizations within each set of candidate surfaces (i.e., categorical surfaces, RSF-based 

surfaces, and smoothed-land cover surfaces representing each hypothesis) to identify the 

best-supported surface in each set. We determined support using π as a more conservative 

metric than AICc because π often indicated more model selection uncertainty than AICc. 

For the RSF/SRSF surfaces, we first compared all models within each model set 

(predicted or exponentiated values with or without optimization) and then compared the 

top models across all sets. For the hypotheses utilizing smoothed-land cover surfaces, we 

conducted an additional series of steps. We included Water_Prop in all optimizations. 

First, for a given land cover (e.g., undeveloped, SD NDVI), we compared optimizations 

at each scale to identify the characteristic scale (Holland et al. 2004) for that land cover. 

Second, we ran multi-surface single-scale optimizations for each of our hypotheses where 

each smoothed land cover surface was represented at the same scale. Finally, we ran 

multi-surface pseudo-optimized multi-scale optimizations for each of our four multi-

surface hypotheses were each land cover surface was included at its characteristic scale.  

4.2.9. Connectivity Modeling and EIS Conservation Index 

We identified resource patches by taking the mean of all four Level III RSF 

surfaces and then multiplying them by the Level II RSF surface to create a population-

level SRSF. We then calculated the HR-wide average SRSF value for our 83 total home 

ranges and used the 5
th

 and 50
th

 percentiles as liberal and conservative thresholds, 

respectively, to determine habitat suitability. We retained patches at least the size of a 

median male home range (251 ha) as we wanted each patch to have the potential of 
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supporting at least one reproductive pair (male and female). We then used a resistance 

kernel-based approach to identify potential corridors among patches (Compton et al. 

2007; Zeller et al. 2017). We probabilistically sampled 5,000 random points across our 

study area using our SRSF to ensure that most points fell in areas of relatively high 

habitat suitability. We linearly rescaled our resistance surface from 1–100 and built 

resistance kernels around each source using a half-normal standard kernel and a SD equal 

to two times the maximum observed EIS dispersal distance (22.2 km, Stevenson and 

Hyslop 2010). We then linearly rescaled our resistance kernel surface from 1–100 and 

took the 50
th

 and 75
th

 percentiles as thresholds for identifying corridors. We visually 

examined the degree of spatial overlap between habitat patches, potential corridors, and 

conservation lands. To create a spatially-explicit index of conservation value, we linearly 

rescaled our population-level SRSF surface, a predicted surface for EIS occupancy of 322 

ha plots (Chapter 3), and our final connectivity surfaces from 0–1 and took the geometric 

mean.  

4.3. Results 

We obtained a total of 107 samples that amplified at ≥ 13 loci. Estimated 

frequency of null alleles was 15% at Dry14 and 11% at Dry68 so we excluded these two 

loci when identifying potential duplicate samples. Null allele frequencies were ≤ 8% at 

the remaining 13 loci (Appendix A). After removing potential duplicate shed skin 

samples (n = 5), two of 105 tests for genotypic disequilibrium were significant following 

sequential Bonferroni correction. Three loci (Dry14, Dyr68, and Dry58) remained out of 

HWP following Bonferroni correction (P ≤ 0.003) although one locus (Dry70) was 
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marginally out of HWP (P = 0.06, Table 4.1). Null allele frequencies estimated after 

removing potential duplicates were > 10% for Dry14 (15%) and Dry68 (11%) and ≤ 8% 

for all other loci (Table 4.1). Six loci had marginally significant (p < 0.10) FIS values 

after Bonferroni correction. Only Dry14 and Dry68 were significantly out of HWP for 

both ABS samples and all other samples and only these two loci for ABS samples had 

significantly positive FIS values (Appendix B). We excluded Dry14 and Dry68 from 

subsequent analyses but examined the sensitivity of our IBD and spatial genetic 

autocorrelation tests to the particular loci retained.  

Tests for IBD were significant across all samples (β1 = 0.0417, 95% CI = 0.0394–

0.0441, r = 0.50, p < 0.0001) and all samples outside of ABS (β1 = 0.0401, 95% CI = 

0.0340–0.0462, r = 0.15, p = 0.0224) but were not significant for samples from ABS (β1 

= 0.0023, 95% CI = -0.0021–0.0066, r = -0.05, p = 0.7916). These results were similar 

when juveniles were excluded (all samples: β1 = 0.0449, 95% CI = 0.0421–0.0476; r = 

0.48, p < 0.0001; excluding ABS: β1 = 0.0455, 95% CI = 0.0390–0.0520, r = 0.18, p = 

0.0120; ABS: β1 = 0.0016, 95% CI = -0.0040–0.0071, r = -0.13, p = 0.9730). These 

conclusions were identical regardless of the number of loci retained (Appendix C).  
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Table 4.1. Genetic summary statistics across all samples excluding putative duplicates (n 

= 102). A = number of alleles, AR = allelic richness, HO = observed 

heterozygosity, HE = expected heterozygosity, HWP = p value for test of 

Hardy-Weinberg proportions adjusted using sequential Bonferroni correction, 

FIS = inbreeding coefficient, FIS p = p value for test significance of FIS adjusted 

using sequential Bonferroni correction, nulls = estimated percentage of null 

alleles. 

Locus A AR HO HE HWP FIS FIS p nulls 

Dry24 7 6.93 0.62 0.71 0.7024 0.14 0.0799 5.80% 

Dry30 6 5.47 0.53 0.65 0.2502 0.19 0.0360 7.89% 

Dry44 5 4.92 0.54 0.57 1.0000 0.05 1.0000 1.55% 

Dry55 5 5.00 0.48 0.47 1.0000 0.00 1.0000 -0.12% 

Dry68 7 6.67 0.55 0.73 0.0000 0.24 0.0150 11.67% 

Dry06 8 7.65 0.65 0.63 1.0000 -0.01 1.0000 -0.75% 

Dry48 12 11.31 0.70 0.73 1.0000 0.05 1.0000 2.22% 

Dry58 14 13.63 0.75 0.87 0.0026 0.14 0.0260 6.61% 

Dry59 10 9.14 0.61 0.72 0.2130 0.16 0.0549 6.99% 

Dry65 8 7.66 0.39 0.45 1.0000 0.13 0.1518 4.05% 

Dry69 6 5.86 0.62 0.63 1.0000 0.02 1.0000 0.67% 

Dry05 8 7.65 0.67 0.68 0.0902 0.03 1.0000 1.01% 

Dry14 5 4.75 0.37 0.61 0.0000 0.40 0.0150 17.70% 

Dry35 8 8.00 0.75 0.79 1.0000 0.06 0.8741 2.36% 

Dry70 6 5.93 0.64 0.73 0.0612 0.13 0.1169 5.75% 

 

4.3.1. Genetic Spatial Autocorrelation 

Spatial autocorrelation analyses indicated significant positive autocorrelation 

through 12 km (Fig. 4.2) and this pattern was identical regardless of the number of loci 

used (results not shown). Adult males (n = 45) showed positive autocorrelation to 

approximately 12 km and this pattern was significant at the 3 and 4 km distance bins 

(Fig. 4.3). Adult females (n = 36) showed significant positive autocorrelation only at the 

first two distance bins, regardless of bin width (4–8 km, Fig. 4.3). However, the 

bootstrapped 95% CI only slightly overlapped zero in the 4–6 km and 6–8 km bins. The 
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tests of Goudet et al. (2002) were not significant (p > 0.60). These patterns remained 

consistent regardless of the number of loci used (Appendix D).     
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Figure 4.2. Correlograms showing the spatial scale(s) of genetic autocorrelation. The 

genetic autocorrelation coefficient (r) is calculated at 2, 3, and 4 km distance 

bins, panels A, B, and C, respectively, up to distances of 30, 30, and 40 km. 

Error bars represent bootstrapped 95% CI around r for each distance bin and 

gray lines are the 95% CI around the null hypothesis of no genetic 

autocorrelation calculated using randomization tests. Bins with significantly 

positive values of r are distances at which genetic autocorrelation is greater 

than expected by chance. 
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Figure 4.3. Correlograms showing the spatial scale(s) of genetic autocorrelation for adult 

males (n = 45, black) and adult females (n = 36, gray). The genetic 

autocorrelation coefficient (r) is calculated at 2, 3, and 4 km distance bins, 

panels A, B, and C, respectively, up to distances of 30, 30, and 40 km. Error 

bars represent bootstrapped 95% CI around r for each distance bin. Bins with 

significantly positive values of r are distances at which genetic 

autocorrelation is greater than expected by chance. 
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4.3.2. Categorical Surface Optimization 

All optimized categorical surfaces performed better than the IBD model (ΔAICc = 

144.70). One surface, the surface combining primary and secondary roads and keeping 

tertiary roads separate, had the majority of the model support (cumulative AICc w and π = 

1.00 and 0.99, respectively, Table 4.2). Support for the surface without roads was low (π 

= 0.02). Wetland, roads, urban, and water consistently had the highest resistance values 

(Table 4.3).  

Table 4.2. Model rankings for optimized categorical land cover surfaces. The number of 

model parameters is given by K, w is the AICc model weight, Avg. Rank is the 

average model ranking across 1,000 bootstrap iterations, π is the proportion of 

bootstrap iterations where the model was the top model, mR
2
 is the marginal 

R
2
, and cR

2
 is the conditional R

2
. Prim = primary roads, Sec = secondary 

roads, and Tert = tertiary roads. 

 

Surface K AICc 

Δ 

AICc w 

Avg. 

Rank π mR2 cR2 

Prim/Sec + Tert 

Roads 9 -14915.11 0.00 1.0000 1.01 0.9936 0.44 0.87 

Prim/Sec Roads 

Combined 8 -14865.98 49.13 0.0000 2.66 0.0032 0.48 0.92 

Prim + Sec Roads 9 -14861.09 54.02 0.0000 2.40 0.0021 0.47 0.91 

No Roads 7 -14815.79 99.32 0.0000 3.96 0.0011 0.49 0.91 

Prim Roads 8 -14787.36 127.75 0.0000 4.98 0.0000 0.48 0.91 

IBD 2 -14721.57 193.54 0.0000 NA NA 0.09 0.76 
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Table 4.3. Optimized resistance values from the two best-supported categorical land 

cover surfaces. Undeveloped had the lowest resistance and therefore was 

assigned a value of one. Prim = primary roads, Sec = secondary roads, and Tert 

= tertiary roads. The order of columns from left-to-right reflects a priori 

hypothesized rankings of each land cover from lowest to highest resistance.  

Surface Wetland Pasture Citrus 

Tert. 

Road 

Sec. 

Road Urban 

Prim. 

Road Water 

Prim/Sec + Tert 

Roads 1401 1007 357 1664 2670 1629 2670 3010 

Prim/Sec Roads 

Combined 1069 650 390 NA 2262 1448 615 2683 

Prim + Sec 

Roads 922 765 282 NA 3203 1243 3203 2429 

No Roads 628 428 144 NA NA 1095 NA 3360 

Prim Roads 675 682 340 NA NA 1552 1717 2783 

 

4.3.3. Resource Selection Surface Optimization 

Regardless of the functional form of the RSF/SRSF surface or whether 

optimization was used, the Level II RSF or SRSF had greater support than the Level III 

RSF surfaces. Within the non-optimized surfaces, the Level II RSF surfaces contained 

virtually all the model support (Table 4.4 and Appendix E). Within the optimized 

surfaces using predicted values, the SRSF surfaces using breeding season female and 

non-breeding season male Level III RSF had most of the model support (cumulative w 

and π = 1.00 and 0.82, respectively, Table 4.5). Within the optimized surfaces using 

exponentiated values, the Level II RSF including urban received virtually all the model 

support (w and π = 1.00 and 0.98, respectively, Appendix F). The top-ranked model using 

optimized predicted surfaces strongly outperformed all other top-ranked RSF/SRSF 

models (Table 4.6). The inverse-reverse monomolecular transformation was selected for 

all optimized surfaces (Appendix G). 
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Table 4.4. Model rankings for resource selection function (RSF) and scale-integrated 

resource selection function (SRSF) surfaces using predicted values without 

optimization. RSF surfaces reflect second- and third-order habitat selection 

(Level II and III, respectively) while SRSF surfaces are the normalized product 

of Level II and Level III surfaces. Level II surfaces were estimated with and 

without urban land cover. Level III surfaces were estimated for breeding (Brd.) 

and non-breeding (NonBrd.) seasons for each sex.The number of model 

parameters is given by K, w is the AICc model weight, Avg. Rank is the 

average model ranking across 1,000 bootstrap iterations, π is the proportion of 

bootstrap iterations where the model was the top model, mR
2
 is the marginal 

R
2
, and cR

2
 is the conditional R

2
. 

Surface K AICc 

Δ 

AICc w 

Avg. 

Rank π mR2 cR2 

Level II (w/Urban) 2 -14821.9 0 0.6593 1.25 0.6094 0.15 0.78 

Level II 2 -14820.5 1.32 0.3407 1.75 0.3846 0.16 0.79 

Male Brd. SRSF 2 -14797.5 24.4 0 3.33 0.0019 0.13 0.78 

Male NonBrd. SRSF 2 -14795.1 26.72 0 4.04 0.0013 0.13 0.78 

Female Brd. SRSF 2 -14792.9 28.92 0 5.54 0.0007 0.13 0.78 

Male Brd. SRSF 

(w/Urban) 2 -14792.3 29.59 0 5.44 0.0009 0.12 0.77 

Female NonBrd. SRSF 2 -14790.3 31.57 0 7.15 0.0004 0.12 0.78 

Male NonBrd. SRSF 

(w/Urban) 2 -14787.6 34.22 0 7.53 0.0004 0.12 0.77 

Female Brd. SRSF 

(w/Urban) 2 -14784 37.86 0 8.97 0.0002 0.12 0.77 

Female NonBrd. SRSF 

(w/Urban) 2 -14782.2 39.67 0 10 0.0001 0.11 0.77 

Male NonBrd. Level III 2 -14756.6 65.25 0 11.16 0 0.1 0.76 

Female Brd. Level III 2 -14752.4 69.44 0 12.21 0 0.09 0.77 

Female NonBrd. Level 

III 2 -14751 70.81 0 12.69 0 0.09 0.77 

Male Brd. Level III 2 -14733.2 88.68 0 13.94 0 0.11 0.77 

IBD 2 

-

14721.2

8 

100.6

2 0 NA NA 0.09 0.76 
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Table 4.5. Model rankings for resource selection function (RSF) and scale-integrated 

resource selection function (SRSF) surfaces using predicted values optimized 

using RESISTANCEGA. RSF surfaces reflect second- and third-order habitat 

selection (Level II and III, respectively) while SRSF surfaces are the 

normalized product of Level II and Level III surfaces. Level II surfaces were 

estimated with and without urban land cover. Level III surfaces were estimated 

for breeding (Brd.) and non-breeding (NonBrd.) seasons for each sex.The 

number of model parameters is given by K, w is the AICc model weight, Avg. 

Rank is the average model ranking across 1,000 bootstrap iterations, π is the 

proportion of bootstrap iterations where the model was the top model, mR
2
 is 

the marginal R
2
, and cR

2
 is the conditional R

2
. 

Surface K AICc 

Δ 

AICc w 

Avg. 

Rank π mR2 cR2 

Female Brd. SRSF 

(w/Urban) 4 -14958.22 0.00 0.980 1.88 0.505 0.33 0.85 

Male NonBrd. SRSF 

(w/Urban) 4 -14949.94 8.28 0.016 2.52 0.266 0.33 0.85 

Female NonBrd. SRSF 

(w/Urban) 4 -14947.30 10.92 0.004 3.34 0.032 0.35 0.86 

Level II (w/Urban) 4 -14941.57 16.65 0.000 3.78 0.056 0.33 0.85 

Male Brd. SRSF 

(w/Urban) 4 -14937.30 20.92 0.000 3.88 0.138 0.36 0.85 

Female Brd. SRSF 4 -14900.08 58.14 0.000 6.89 0.000 0.26 0.83 

Male NonBrd. SRSF 4 -14896.70 61.52 0.000 7.21 0.001 0.24 0.82 

Female NonBrd. SRSF 4 -14894.46 63.76 0.000 8.27 0.000 0.27 0.84 

Male Brd. SRSF 4 -14892.53 65.69 0.000 8.19 0.000 0.29 0.83 

Level II 4 -14887.77 70.45 0.000 9.17 0.002 0.28 0.84 

Female Brd. Level III 4 -14817.99 140.23 0.000 11.36 0.000 0.15 0.79 

Female NonBrd. Level 

III 4 -14808.47 149.75 0.000 11.62 0.000 0.20 0.80 

Male NonBrd. Level 

III 4 -14789.36 168.86 0.000 12.90 0.000 0.17 0.78 

Male Brd. Level III 4 -14768.88 189.34 0.000 13.99 0.000 0.13 0.78 

IBD 2 -14721.28 236.94 0.000 NA NA 0.09 0.76 
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Table 4.6. Model rankings for the top resource selection function (RSF) and scale-

integrated resource selection function (SRSF) surfaces. RSF surfaces reflect 

second- and third-order habitat selection (Level II and III, respectively) while 

SRSF surfaces are the normalized product of Level II and Level III surfaces. 

Level II surfaces were estimated with and without urban land cover. Level III 

surfaces were estimated for breeding (Brd.) and non-breeding (NonBrd.) 

seasons for each sex.The number of model parameters is given by K, w is the 

AICc model weight, mR
2
 is the marginal R

2
, and cR

2
 is the conditional R

2
. 

Surface K AICc 

Δ 

AICc w mR2 cR2 

Female Brd. SRSF (w/Urban) Pred 

Optim 4 -14958.22 0.00 0.984 0.33 0.85 

Male NonBrd. SRSF (w/Urban) Pred 

Optim 4 -14949.94 8.28 0.016 0.33 0.85 

Level II RSF (w/Urban) Exp Optim 4 -14903.30 54.92 0.000 0.33 0.85 

Level II RSF Exp Optim 4 -14869.95 88.27 0.000 0.29 0.84 

Level II RSF (w/Urban) Pred Raw 2 -14821.85 136.37 0.000 0.15 0.78 

Level II RSF Pred Raw 2 -14820.53 137.69 0.000 0.16 0.79 

Level II RSF Exp Raw 2 -14769.17 189.05 0.000 0.12 0.77 

Level II RSF (w/Urban) Exp Raw 2 -14748.86 209.36 0.000 0.10 0.77 

IBD 2 -14721.28 236.94 0.000 0.09 0.76 

 

4.3.4. Smoothed Land Cover Optimization 

The AICc-best scales for the single-surface optimizations with Water_prop were 

1800 m for undeveloped, wetland edge, and SD NDVI, 1200 m for pasture, 600 m for 

urban, and 60 m for wetland (Fig. 4.4 and Appendix I). The wetland edge surfaces 

smoothed at 1200 and 1800 m received virtually all the model support among single 

surface optimizations (cumulative w = 0.99, Appendix I). Because the relative support for 

different multi-surface single-scale optimizations varied depending on whether 

optimizations were ranked using AICc or through bootstrap resampling, we used the 

proportion of bootstrap iterations that an optimization was selected as the AICc-best 

optimization (hereafter π) to evaluated support among candidate optimizations. The best 
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supported scales for the multi-surface single-scale optimizations were 1800 m for 

Upland+Wetland Edge+SD NDVI, 1800 m for Upland+Urban+Wetland, 1800 m for 

Upland+Urban+SD_NDVI, and 1200 m for Upland+Wetland+Pasture (Fig. 4.5 and 

Appendix J). The 1800 m multi-surface single-scale optimization was also the pseudo-

optimized optimization for Upland+Wetland Edge+SD NDVI while the pseudo-

optimized optimizations for the other three hypotheses included surfaces at different 

scales. These multi-surface multi-scale pseudo-optimized optimizations had greater 

empirical support for Upland+Urban+Wetland and Upland+Wetland+Pasture but not for 

Upland+Urban+SD NDVI (Fig. 4.5). When comparing all multi-surface optimizations, 

the Upland+Urban+SD NDVI optimization at 1800 m had the greatest empirical support 

with π = 0.66 and w = 0.92 (Appendix J). The second ranked optimization, using π, was 

the pseudo-optimized optimization for Upland+Urban+Wetland smoothed at 1800, 600, 

and 60 m, respectively, with π = 0.13 and w = 0. Across all optimizations, the median 

proportional contributions of surfaces to the optimized resistance surface were 0.47, 0.29, 

0.18, 0.36, and 0.03 for SD NDVI, Upland, Urban, Wetland, and Water, respectively. 

Including a binary primary/secondary roads surface did not substantially improve 

empirical support for the multi-surface optimizations as the maximum π for an 

optimization with primary/secondary roads (Upland+Urban+SD NDVI at 1800 m) was 

0.12 (additional results not presented). When we compared the best-supported 

optimizations across all our hypotheses, the multi-surface optimizations at broad spatial 

scales always outperformed single-surface, RSF-based, or categorical land cover 

optimizations (Table 4.7).  
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Figure 4.4. Model support for individual land cover surfaces smoothed with Gaussian 

kernels with 60, 600, 1200, and 1800 m bandwidths. Bootstrapped Proportion 

is the proportion of bootstrap iterations where a model was the AICc-best 

model in the set. Water_prop was included in each optimization. 
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Figure 4.5. Model support for multi-surface optimizations. The first optimizations in 

each panel have all land cover surfaces smoothed with Gaussian kernels with 

600, 1200, or 1800 m bandwidths except Water_prop which was also 

included in each optimization. Pseudo Opt. represents the multi-surface, 

multi-scale optimizations with each surface at its pseudo-optimized scale. 

Bootstrapped Proportion is the proportion of bootstrap iterations where a 

model was the AICc-best model. 
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Table 4.7. Model rankings for the AICc-best ResistanceGA optimizations from each hypothesis. Surface abbreviations are: 

Undvlpd = Undeveloped, SRSF = scale-integrated resource selection function, NonBrd = Non-breeding season. 

Surfaces with Pseudo Optim for scale contain surfaces smoothed at their AICc-best scale from the single-scale 

analysis and are therefore multi-surface, multi-scale optimizations.The number of model parameters is given by K, 

w is the AICc model weight, Avg. Rank is the average model ranking across 10,000 bootstrap iterations, π is the 

proportion of bootstrap iterations where the model was the top model,  mR2 is the marginal R2, and cR2 is the 

conditional R2. 

Surfaces Scale K AICc Δ AICc w Avg. Rank π mR2 cR2 

Undvlpd + Urban + SD NDVI 1800 13 -14987.98 0.00 0.9972 1.42 74.83 0.33 0.80 

Undvlpd + Urban + Wetland Pseudo Opt. 13 -14949.63 38.35 0.0000 3.04 17.74 0.34 0.80 

Undvlpd + Wetland Edge + SD NDVI 1800 13 -14976.22 11.76 0.0028 2.44 4.85 0.28 0.81 

Female NonBrd. SRSF (w/Urban) Pred NA 4 -14958.22 29.76 0.0000 5.67 1.52 0.33 0.85 

Undvlpd + Wetland + Pasture 1200 13 -14930.82 57.16 0.0000 5.18 0.65 0.34 0.83 

Wetland 60 7 -14905.49 82.49 0.0000 7.95 0.28 0.35 0.80 

Prim/Sec + Tert Roads NA 9 -14915.33 72.65 0.0000 8.00 0.10 0.44 0.87 

Wetland Edge 1800 7 -14940.65 47.33 0.0000 5.33 0.03 0.30 0.80 

Undvlpd 1800 7 -14913.60 74.38 0.0000 8.12 0.00 0.25 0.80 

SD NDVI 1800 7 -14897.63 90.35 0.0000 9.07 0.00 0.15 0.77 

Urban 600 7 -14893.50 94.48 0.0000 9.83 0.00 0.29 0.82 

Pasture 1200 7 -14846.74 141.24 0.0000 11.94 0.00 0.16 0.78 
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Figure 4.6. Functional transformations for each landscape covariate surface from the 

AICc-best ResistanceGA optimization. PC values represent the proportional 

contribution of each surface to final optimized surface. 

 

4.3.5. Connectivity Modeling 

Because the optimized surface using undeveloped, urban, and SD NDVI 

smoothed at the 1,800 m bandwidth had the vast majority of empirical support, we used 

this resistance surface to map potential corridors (Fig. 4.7). Connectivity was greatest 
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across approximately the southern half of the study area where the vast majority of 

habitat patches were connected. However, connectivity was markedly reduced in the 

northern half of the study area. Using the 50
th

 percentile cutoff, an area of potential 

corridor extended north along the western edge of the LWR. However, while most 

conservation lands contained both habitat patches and potential corridors, the proportion 

of habitat patches and corridors within conservation lands was relatively low. Our overall 

index of conservation value also indicates conservation lands in the southern portion of 

our study area have greater overall indices compared to conservation lands in the 

northern portion of our study area (Fig. 4.8).  
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Figure 4.7. Distribution of potential EIS habitat patches and corridors using the linear 

rescaled optimized resistance surface including undeveloped, urban, and SD 

NDVI smoothed with a 1,800 m bandwidth in relationship to primary and 

secondary roads and conservation lands. Habitat patches were defined using 

the 5
th

 and 50
th

 percentiles of a multi-level resource selection surfaces. The 

left panel shows the continuous connectivity surface. The middle panel shows 

corridors defined using the 50
th

 percentile of the resistance kernel surface and 

the right panel shows corridors defined using the 75
th

 percentile of the 

resistance kernel surface. 
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Figure 4.8. Comparison of spatially-explicit representations of different aspects of EIS 

ecology and an index of overall conservation value. Panel A represents a 

population-level scale-integrated resource selection function, Panel B 

represents predicted occupancy after 15 years simulated using an individual-

based model, and Panel C represents the genetic connectivity surface. Panel 

D is the geometric mean of the three surfaces representing an index of overall 

conservation value. 
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4.4. Discussion 

Our results strongly indicate that EIS gene flow is influenced by multiple 

landscape features operating at spatial extents at or above the scale of the home range. 

Optimizations using multiple landscape features represented at relatively broad spatial 

scales out performed optimizations with multiple landscape features at relatively fine 

spatial scales (i.e., categorical land cover surfaces) and optimizations using two landscape 

features at relatively broad scales (i.e., the single surface optimizations). This suggests 

that even when evaluating the effects of multiple landscape features on genetic 

connectivity one must consider the effects of those features at multiple spatial scales. 

This broadly concurs with other landscape genetics studies which found that landscape 

features most strongly influence genetic connectivity at multiple spatial scales including 

scales beyond the original spatial resolution of the land cover data (Row et al. 2015; 

Zeller et al. 2017).  

 Our best multi-surface optimization included undeveloped uplands, urban, and a 

landscape feature representing habitat edge: SD NDVI. These three landscape features 

were the most influential covariates influencing EIS multi-level, multi-scale habitat 

selection suggesting that similar landscape features influence EIS movement at a range of 

biological levels ranging from within-home range movements to multi-generational gene 

flow. It is striking that while the landscape features influencing these processes was 

similar, the scale at which these features operate varied markedly. The 1800 m bandwidth 

received relatively strong empirical support across our analyses. Pseudo-optimized multi-

surface multi-scale optimizations varied in their degree of empirical support but never 

strongly outperformed the single-scale multi-surface optimizations. This also indicates 
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that landscape influences in EIS gene flow generally operate at broad spatial scales. 

While the mechanisms (e.g., juvenile dispersal or male mate-searching movements) 

responsible for EIS gene flow are unclear, a small adult male EIS in southern Georgia 

was observed to disperse 22.2 km between overwintering sites within a large tract of 

protected lands (Stevenson and Hyslop 2010), indicating that EIS dispersal may occur at 

relatively broad spatial scales. Our genetic autocorrelation analysis also indicates 

significant positive spatial autocorrelation to approximately 12 km.  

SD NDVI consistently had a relatively strong proportional contribution to the 

optimized resistance surface. An inverse Ricker transformation was most commonly 

selected for SD NDVI indicating lowest resistance at intermediate values of SD NDVI. 

High values of SD NDVI often represented urban-vegetation interfaces whereas low SD 

NDVI values often represented small amounts of habitat edge. This strong influence of 

habitat heterogeneity is consistent with results of Bauder et al. (2018) who found that EIS 

selected high habitat heterogeneity for both Level II and III selection. Moler (1985) also 

observed radio-tracked EIS predominately using habitat edges. Mosaics of upland and 

wetland habitats provide a diversity of potential foraging habitats for a dietary generalist 

such as the EIS (Stevenson et al. 2010) and edge-selection patterns are known in other 

mammalian and avian dietary generalists (Marzluff et al. 2004; Stewart et al. 2013; 

Beatty et al. 2014). Upland habitats (e.g., scrub, flatwoods) also often support gopher 

tortoises (Gopherus polyphemus) whose burrows are regularly used by EIS, particularly 

as overwintering sites (Layne and Steiner 1996; Hyslop et al. 2009a) although they are 

not essential as overwintering sites in peninsular Florida (Bauder et al. 2016a).  
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 An alternative explanation for the higher performance of optimizations with 

broad-scale landscape features may be suggested by the distribution of 

anthropogenically-disturbed habitats relative to predicted corridors. Predicted corridors 

from our top surface formed a single contiguous area rather than exhibit discrete patches. 

This is consistent with the effects of smoothing landscape features in our study area with 

large (i.e., 1,800 m) bandwidths. However, most potential corridors (i.e., areas of low 

resistance) did not overlap undeveloped upland or wetland edge land covers but rather 

overlapped improved pasture, citrus, and, to a lesser extent, urban land covers (Fig. 4.9). 

This may suggest that the greater empirical support for broad spatial scales may be less a 

reflection of broad-scale associations with particular landscape features but rather an 

indication of relatively extensive gene flow across our study area. While our spatial 

genetic autocorrelation analysis does suggest EIS gene flow can occur over broad spatial 

extents (i.e., up to approximately 12 km) within our study area, we do not think this 

explanation is entirely sufficient to explain the greater support for the 1800 m bandwidths 

for several reasons. First, bootstrap resampling, which should mitigate artifacts of the 

spatial-distribution of sampling points, still indicated predominately strong support for 

the optimization with undeveloped upland, urban, and SD NDVI. Second, resistance 

values from our categorical land cover surfaces indicated that pasture and citrus were the 

second and third least resistant land cover surfaces suggesting that these land covers 

impede gene flow to a lesser degree than wetlands, urban, open water, and primary and 

secondary roads. While our results suggest that much of our study area may facilitate EIS 

gene flow, even in the presence of anthropogenically disturbed habitats, we nevertheless 
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suggest that conservation efforts target potential corridors in undeveloped habitats 

because of their potential to also serve as EIS habitat. 

 

Figure 4.9. Distribution of potential EIS habitat patches and corridors using the 

optimized resistance surface including undeveloped, wetland edge, and SD 

NDVI smoothed with a 1,800 m bandwidth after removing corridors 

overlapping improved pasture, citrus, and urban land covers. Habitat patches 

were defined using the 5
th

 and 50
th

 percentiles of a multi-level resource 

selection surfaces. The left panel shows the continuous connectivity surface. 

The middle panel shows corridors defined using the 50
th

 percentile of the 

resistance kernel surface and the right panel shows corridors defined using the 

75
th

 percentile of the resistance kernel surface. 

 

 

Contrary to our a priori expectations, wetlands were consistently negatively 

associated with EIS gene flow although optimizations with wetlands had comparatively 

low empirical support. Decreasing monomolecular transformations were most frequently 
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selected for wetlands and resistance values for wetlands in the categorical land cover 

optimizations were greater than for citrus and pasture. This restrictive effect of wetlands 

was surprising given observations of EIS using and foraging in wetland habitats in both 

peninsular Florida (Bauder et al. 2018) and southern Georgia (Speake et al. 1978; Hyslop 

et al. 2014). However, EIS in peninsular appeared to avoid large tracts of wetlands 

(Bauder et al. 2018). We are unsure of the mechanisms that might lead to wetlands 

restricting EIS gene flow, although given this species’ range-wide association with 

terrestrial upland habitats it may simply reflect a species-specific avoidance of extensive 

mesic habitats. However, when we overlaid our wetland land cover surface on our top-

ranked optimized resistance surface many wetland areas were included within potential 

corridors. 

Although our RSF-based optimizations, particularly our SRSF-based 

optimizations, incorporated multiple landscape features at different spatial scales, all of 

these optimizations were outperformed by our top multi-surface, broad-scale 

optimization. This was surprising given that SRSF surfaces integrate selection occurring 

at different hierarchical levels (DeCesare et al. 2012; McGarigal et al. 2016) and that our 

habitat selection analyses evaluated selection at multiple spatial scales (i.e., extents) 

within each level (Bauder et al. 2018). While the optimization using female breeding 

season SRSF had higher AICc rank that our multi-surface optimization with undeveloped, 

urban, and wetlands, bootstrapping results suggested that the SRSF model may have had 

poorer performance. Our results are consistent with those of several other studies 

reporting that resistance surfaces derived directly from habitat models were poorly 

associated with genetic connectivity (Wasserman et al. 2010; Reding et al. 2013; Mateo-
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Sanchez et al. 2015a; Roffler et al. 2016). We suggest two potential mechanisms for this 

pattern in our results. First, dispersing individuals may respond differently to landscape 

features than resident individuals with established home ranges (Elliot et al. 2014; Mateo-

Sanchez et al. 2015a, b; Zeller et al. 2018). Several studies have found that particular 

landscape features showing strong associations with habitat selection showed weak 

associations with genetic connectivity (Coulon et al. 2008; Wasserman et al. 2010). 

However, two of the three landscape features in our AICc-best multi-surface, broad-scale 

optimization (Undeveloped and SD NDVI) had a strong influence on both EIS home 

range selection (i.e., Level II) and within-home range selection (i.e., Level III, Bauder et 

al. 2018). Urban also strongly influenced EIS selection at both levels. This suggests that 

these features are important both for habitat selection and dispersal. Keeley et al. (2016) 

found that resistance surfaces derived from RSF and SSF identified dispersal paths for 

habitat specialists (bighorn sheep) but not habitat generalists (elk). The broadly generalist 

patterns of EIS habitat selection in peninsular Florida may therefore contribute to the 

lower performance of our RSF-based optimizations. A second mechanism, therefore, is a 

mismatch in the scales at which particular landscape features influence dispersal versus 

habitat selection. While data on EIS dispersal are largely lacking, an observation of a 

small adult EIS in southern Georgia dispersing 22.2 km (Euclidean distance) between 

overwintering sites suggests that EIS dispersal may occur over broad scales (Stevenson 

and Hyslop 2010). It is therefore reasonable to assume that the scale at which landscape 

features influence dispersal is relatively large although additional data are needed to test 

this hypothesis.  
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Despite the relatively poor performance of RSF-based surfaces, our prediction 

that surfaces including Level II selection would outperform surfaces only reflecting Level 

III selection was supported, both for optimized surfaces and surfaces derived from the 

raw resource selection surfaces. If EIS genetic connectivity is indeed more strongly 

influenced by landscape features at relatively broad spatial extents, then surfaces 

reflecting Level II selection may more closely approximate these broader scales as Level 

II selection by definition represents selection at broader scales (i.e., selection of home 

ranges within the study area, Johnson 1980). The higher performance of optimized 

surfaces relative to raw resource selection surfaces was also found by Beninde et al. 

(2016) for common wall lizards (Podarcis muralis) in an urban landscape. While many 

studies assume a linear relationship between habitat suitability and resistance (Beier et al. 

2008), more recent studies have shown that negative exponential transformations, similar 

to inverse-reverse monomolecular transformation, between habitat suitability and 

resistance also outperformed linear transformations (Keeley et al. 2016; Zeller et al. 

2018). A negative exponential relationship is consistent with a tendency for dispersing 

individuals to traverse both marginal and high quality habitats (Elliot et al. 2014). But we 

also found marked differences in model performance when using predicted values from 

the exponential RSF or the binomial GLM used to estimate the RSF, with the latter 

outperforming the former regardless of whether the resistance surface was optimized. 

Resource selection functions using use-available designs generally assume an underlying 

exponential model which allows estimation of the selection coefficients using a binomial 

GLM or GLMM (Manly et al. 2002; Johnson et al. 2006; Avgar et al. 2017). Under a use-

availability design the intercept from a binomial GLM/GLMM is non-interpretable so 
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predicted probabilities from the binomial GLM/GLMM do not reflect the underlying 

exponential model(Lele and Keim 2006; Avgar et al. 2017). However, this does not 

necessarily imply that the exponential model is required to generate predicted values to 

create resistance surfaces as evidenced both by our results and the demonstrated benefits 

of non-linearly transforming habitat suitability surfaces to create resistance surfaces 

(Keeley et al. 2016; Zeller et al. 2018). We suspect the superior performance of using the 

predicted GLM values may be due to logit link function of the binomial GLM/GLMM 

wherein the slope of the predicted relationship declines at extreme values similar to the 

negative exponential function at moderate-high values. However, the practice of 

evaluating different non-linear transformations of habitat suitability surfaces may ensure 

that results are robust to the manner in which the habitat suitability values were predicted.  

 Our prediction that SRSF or Level III surfaces for males, particularly breeding 

season males, was not supported. Amongst our optimized predicted surfaces, breeding 

season male SRSF surfaces ranked the lowest of the SRSF surfaces. While bootstrapped 

model weights suggested moderate model uncertainty, breeding season female and non-

breeding season male SRSF surfaces received the most support. Our analysis of sex-

specific dispersal did not show strong evidence for sex-biased dispersal suggesting that 

male mate-searching movements may not be the primary driver in EIS gene flow. 

However, near-absence of dispersal data for EIS limited our ability to infer the relative 

importance of juvenile dispersal or male-mate searching movements in influencing EIS 

gene flow.  

 We acknowledge several limitations and caveats to our methods and results which 

call for caution when interpreting our results. First, EIS in our study area are extremely 
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difficult to detect. Despite an intensive radio telemetry study and marking 38 EIS over a 

35 month period, we only recaptured three non-radio tracked individuals and 7,849 km of 

driving roads through suitable habitat yielded only four individuals. As a result, our 

sampling gaps do not necessarily represent EIS distributional gaps and a lack of samples 

from areas where a species is present may limit one’s ability to correctly infer the effects 

of landscape features on gene flow (Anderson et al. 2010; Oyler-McCance et al. 2013). 

However, our use of bootstrap resampling in evaluate model support should help mitigate 

against artifacts of the spatial arrangement of our sampling points. Second, our study area 

covered a relatively limited spatial extent, only approximately twice the distance of a 

maximum EIS dispersal which reduces the potential variation in genetic distance due to 

landscape features and limits the applicability of our results to other areas. Third, the 

magnitude and/or direction of the effects of particular landscape features may vary within 

species across different landscapes (Short-Bull et al. 2011; Richardson et al. 2016) so we 

stress caution when inferring the results of our study to other parts of the EIS distribution, 

particularly areas with known differences in EIS spatial and habitat ecology (i.e., 

southern Georgia). Finally, our landscape variables were represented at relatively coarse 

spatial resolution (i.e., 60-m pixels) and limited thematic resolution (i.e., six land cover 

classes), although our use of our use of NDVI and AWS should have captured additional 

within-class heterogeneity in vegetation structure and soil moisture. This may be 

important if species respond strongly to fine-scale/micro-habitat features such as 

vegetation structure or shelter site availability. For example, Milanesi et al. (2017) found 

the three-dimensional habitat models including LiDAR-derived vegetation structure 
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variables performed better than two-dimensional models with land cover data for 

capercaillie (Tetro urogallus). 

 Our study illustrates the importance of considering a multi-scale approach in 

landscape genetics. While scale-specific effects are now widely recognized and evaluated 

in wildlife habitat selection (McGarigal et al. 2016), the effects of scale have traditionally 

received less attention in landscape genetics (Balkenhol et al. 2009; Segelbacher et al. 

2010; Jaquiery et al. 2011) although recent studies suggest that this trend is reversing 

(Row et al. 2015; Zeller et al. 2017). While multi-surface pseudo-optimized multi-scale 

optimizations did not strongly outperform broad-scale multi-surface single-scale 

optimizations, this pattern may be specific to our study system and we still encourage 

future researchers to consider a multi-scale approach. We also note that a true 

optimization where scale is simultaneously varied for different landscape features may 

outperform a pseudo-optimization approach. Winiarski et al. (Winiarski et al. In review-

b) examined all possible combinations of two landscape features and six scales for two 

species of vernal pool breeding salamanders using RESISTANCEGA. For one species, the 

all-combinations best scale for one covariate (surface curvature) was different (500 m) 

and had greater empirical support than the pseudo-optimized scale for this covariate 

(1000 m). RESISTANCEGA currently incorporates an option for smoothing surfaces at 

different scales using a Gaussian kernel and optimizing the kernel bandwidth as an 

additional parameter (Peterman 2018). We recommend future research evaluating this 

feature as a way to simultaneously optimize the spatial scale for multiple landscape 

features.   
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Together with previous research (Bauder et al. 2018), our results highlight the 

importance of extensive tracts of undeveloped upland habitat with high habitat 

heterogeneity for both EIS habitat selection and genetic connectivity. While existing 

conservation lands in the southern Lake Wales Ridge should promote EIS gene flow by 

protecting potential corridors, our corridor modeling indicates that large areas of potential 

corridor do not have formal protection. Given anticipated increases in development 

across Florida landscapes in the near future, (Zwick and Carr 2006), additional land 

protection may substantially benefit EIS both in protecting habitat and in promoting 

genetic connectivity. However, much potential EIS habitat and/or corridors are 

anthropogenically-influenced land covers, predominately improved pasture, citrus, and 

urban. While this suggests that such lands, particularly pasture and citrus, may facilitate 

genetic connectivity, anthropogenic lands with high road densities may also act as 

population sinks for EIS (Chapter 3; Breininger et al. 2004; Breininger et al. 2012). This 

should lead to increased focus on remaining potential habitat and corridors in 

undeveloped upland land covers for conservation prioritization.  
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APPENDIX A. SAMPLE SIZES AND TRACKING INTENSITY FOR 

DRYMARCHON COUPERI HOME RANGE ESTIMATION. 

Sample sizes for estimation of annual and seasonal home ranges of male (M) and female 

(F) telemetered Drymarchon couperi in peninsular Florida. The mean (61 SD), and range 

of number of fixes and number of days tracked (calculated across home ranges) are also 

presented. 

 

 

Number of 

snakes 

Number of 

home 

ranges Number of fixes Number of days 

 

Tot-

al M F M F 

Mean ± 

SD Range 

Mean ± 

SD Range 

Annual, 

Highlands 

12 9 3 9 3 103 

± 20 

64–

131 

309 ± 

47 

255–

365 

Annual, 

Brevard 

59 31 28 43 41 30 

±11 

12–

64 

341 ± 

53 

255–

365 

6-mo, 

Highlands 

19 12 7 21 15 56 

±11 

35–

84 

160 ± 

22 

108–

180 

6-mo, 

Brevard 

59 30 29 57 71 19 ± 

4.9 

11–

34 

161 ± 

19.2 

105–

182 

3-mo, 

Highlands 

24 17 7 45 25 32 ± 

7 

18–

49 

86 ± 4 73–

91 
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APPENDIX B. DRYMARCHON COUPERI ANNUAL HOME RANGE ESTIMATES 

Annual home range size estimates (ha, mean ± 1 SD and range) and number of radio telemetry fixes for Drymarchon couperi 

in central Florida by sex and study location (Highlands and Brevard). Home range estimators are the 100% minimum convex 

polygon (MCP) and the 95% volume contour of a fixed kernel utilization distribution (FK UD). Utilization distributions were 

estimated using the plug-in and reference bandwidths with unconstrained bandwidth matrices. For individuals with multiple 

annual home ranges we averaged their home range sizes and then included this value in the final average. 

 

 

n No. of fixes MCP (ha) 95% FK UD (plug-in) (ha) 

95% FK UD (reference) 

(ha) 

Group  Mean ± SD Mean ± SD Range Mean ± SD Range Mean ± SD Range 

Highlands, 

males 

9 99 ± 19 245.69 ± 

138.95 

27.71–456.17 272.76 ± 

167.03 

30.28–557.51 353.84 ± 

202.44 

39.16–456.17 

Highlands, 

females 

3 117 ± 19 60.71 ± 

49.64 

27.23–117.74 66.40 ± 

59.65 

23.70–134.55 84.41 ± 

70.85 

32.48–117.74 

Brevard, 

males 

28 31 ± 9 121.08 ± 

97.49 

6.18–371.58 220.97 ± 

187.23 

11.96–679.86 270.57 ± 

227.89 

14.32–818.13 

Brevard, 

females 

31 30 ± 12 47.72 ± 

37.65 

10.27–151.11 81.28 ± 

75.32 

13.01–315.44 101.77 ± 

85.38 

19.43–352.21 

Males 40 45 ± 32 149.12 ± 

118.53 

6.18–456.17 232.62 ± 

182.12 

11.96–679.86 289.30 ± 

222.70 

14.32–818.13 

Females 31 39 ± 28 48.97 ± 

38.15 

10.27–151.11 79.84 ± 

73.23 

13.01–315.44 100.09 ± 

83.20 

19.43–352.21 

Total 71 43 ± 30 105.40 ± 

104.65 

6.18–456.17 165.90 ± 

163.10 

11.96–679.86 206.70 ± 

198.82 

14.32–818.13 
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APPENDIX C. EXAMPLES OF DRYMARCHON COUPERI WITHIN-

INDIVIDUAL SEASONAL HOME RANGE OVERLAP 

Examples of 6-mo home ranges for Drymarchon couperi showing the degree of spatial 

overlap among seasons. Home ranges are the 95% volume contours of fixed kernel 

utlization distributions with an unconstrained reference bandwidth. Panel A is a male 

from Brevard, Panel B is a female from Brevard, Panel C is a male from Highlands, and 

Panel D is a female from Brevard. Panels A and B show the most extreme cases of 

seasonal shift in space observed in our study for males and females, respectively. 

Telemetry fixes from the non-breeding season are denoted as ●, ♦, and ○ and fixes from 

the breeding season are denoted as ■ and ▲. 
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APPENDIX D. DESCRIPTION OF LAND COVER DATA SOURCES 

Our first data source was the Cooperative Land Cover Map (CLC) developed by 

the Florida Natural Areas Inventory and Florida Fish and Wildlife Conservation 

Commission (Knight 2010; Kawula 2014). The CLC was based on land cover maps 

produced by Florida’s Water Management Districts (WMD) and supplemented with local 

land cover maps which were often mapped with greater accuracy and thematic resolution. 

Minimum mapping unit was 0.20 ha. We used CLC v. 3.0 (Florida Fish and Wildlife 

Conservation Commission and Florida Natural Areas Inventory 2014) for our Highlands 

data. We assumed that land cover changes within large protected areas (e.g., Kennedy 

Space Center, Sebastian River State Park Buffer Preserve, Avon Park Bombing Range) 

were trivial between 1998–2002 and 2013 and therefore used CLC data within these 

areas. However, because of subsequent land cover changes in the remainder of our 

Brevard study area following the collection of our telemetry data, we used land cover 

data from regional water management districts collected at the same time as our telemetry 

data. We used the St. John’s Water WMD from 2000 (St. John’s River Water 

Management District [SJRWMD] 2002) for the Cape Canaveral and Indian River study 

areas and 2004 land cover data from the South Florida WMD (South Florida Water 

Management District 2004) and Southwest Florida WMD (Southwest Florida Water 

Management District 2004) for the Avon Park study areas. Minimum mapping units were 

0.81 ha. We visually inspected all our study areas to ensure that no obvious changes were 

unaccounted for and manually redigitized or reclassified habitat patches where necessary 

to ensure that our habitat data was as accurate as possible to the on-ground conditions 

when our telemetry data were collected. All CLC and WMD layers were obtained as 
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shapefiles but because the CLC data is also provided as a 15-m raster we converted all 

GIS data to 15-m rasters.  

We supplemented the wetlands land cover with the 2014 National Wetlands 

Inventory (NWI) GIS data (U. S. Fish and Wildlife Service 2014). Minimum mapping 

units was 0.40 ha. We visually inspected the Cape Canaveral, Indian River, and Avon 

Park study areas and manually removed newer water bodies, primarily anthropogenic 

ponds, in the NWI data that were not present when the telemetry data were collected. 

However, after these manual corrections, we still found some discrepancies between the 

NWI and CLC/WMD data. Because the direction of these discrepancies was not 

consistent between data sources, we adopted a conservative approach where we classified 

a pixel as wetland if it was mapped as a wetland by either the NWI or CLC/WMD data. 

  



 

209 

APPENDIX E. DESCRIPTION OF ADDITIONAL HABITAT COVARIATES. 

We mapped paved roads using the 1998 U.S. Geologic Survey’s 1:24,000 roads 

layer (www.fgdl.org, accessed 1 Jun 2015) and reclassified road categories into primary, 

secondary, and tertiary roads (U.S. Geological Survey 1990, Appendix C).  

We mapped linear wetland features (i.e., rivers, streams, canals, and ditches) 

using the National Hydrography Dataset’s GIS flowline data at the 1:24,000 scale (U. S. 

Geologic Survey 2014). We hypothesized that both large canals and rivers containing 

permanent standing water and smaller, intermittently flooded canals could both be 

important for eastern indigo snakes. While the NHD data mapped canals of both types, it 

drastically underrepresented smaller, intermittently flooded canals and ditches. One of us 

(JMB) manually digitized all canals, both permanent and intermittent, using natural color 

and color infrared aerial imagery concurrent to the telemetry data of each study area. We 

took a conservative approach to mapping canals in that if there was uncertainty as to the 

presence of a canal it was not mapped. We manually measured the width of all mapped 

NHD features (both canals and natural rivers/streams) and classified features >15 m wide 

containing standing water as open water. We classified all other canals, ditches, and 

streams as canals. We combined open water classes from the CLC/WMD data, 

permanently flooded, tidal, and subtidal wetlands from the NWI data (Federal 

Geographic Data Committe 2013), and NHD features > 15 m containing standing water 

as open water.  

We measured soil moisture using available water storage (AWS) at 150 cm from 

the Soil Survey Geographic Database (SSURGO) accessed through the SSURGO 

Downloader (ESRI 2015). The minimum mapping units ranged from 0.40–4.05 ha. 

http://www.fgdl.org/
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Because pixel values of zero represent no data (typically open water), we first used our 

binary open water surface to mask out all open water pixels and filled in remaining zero-

value pixels using the average of the surrounding cells in a 7x7 moving window. 

We used the normalized differenced vegetation index (NDVI) to characterize 

vegetation cover. We calculated NDVI from LANDSAT 5 and 7 imagery converted to 

surface reflectance (Masek et al. 2006) and downloaded from the U.S. Geologic Survey’s 

Earth Explorer data base (http://earthexplorer.usgs.gov/, accessed 15 May 2016). We 

calculated NDVI during the winter (December–January) and spring (April–May). We 

were unable to calculate NDVI for summer because of high cloud cover. Because 

telemetry data were collected over periods of approximately 3–4 yr at each study area, we 

calculated NDVI from 2–4 seasons from each study area and then averaged NDVI across 

their respective seasons to minimize the impacts of season-specific idiosyncrasies in 

NDVI. All habitat layers in vector format (land cover, roads, AWS) were converted to 

rasters with 15 m pixels and we resampled NDVI from 30 m to 15 m pixels. 

  

http://earthexplorer.usgs.gov/
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APPENDIX F. RECLASSIFICATION OF ROAD CLASSES. 

Reclassified road classes from the U.S. Geologic Survey’s 1998 1:24,000 scale road GIS 

data. Additional details are provided in U.S. Geologic Survey (1990). 

 

Major 

Attribute 

Code 

Minor 

Attribute 

Code Description New Class 

170 201 Primary route, class 1, symbol undivided Primary 

170 202 

Primary route, class 1, symbol divided by center 

line Primary 

170 203 

Primary route, class 1, symbol divided, lanes 

separated Primary 

170 607 Underpass Primary 

170 609 Toll road Primary 

170 613 In service facility or rest area Primary 

170 205 Secondary route, class 2, symbol undivided Secondary 

170 206 

Secondary route, class 2, symbol divided by 

centerline Secondary 

170 207 

Secondary route, class 2, symbol divided, lanes 

separated Secondary 

170 208 

Secondary route, class 2, one way, other than 

divided highway Secondary 

170 402 Cloverleaf or interchange Secondary 

170 209 Road or street, class 3 Tertiary 

170 217 Road or street, class 3, symbol divided by centerline Tertiary 

170 218 Road or street, class 3, divided, lanes separated Tertiary 

170 221 Road or street, class 3, one way Tertiary 

170 401 Traffic circle Tertiary 

170 210 Road or street, class 4 

Not 

included 

170 219 Road or street, class 4, one way 

Not 

included 

170 211 Trail, class 5, other than four-wheel drive vehicle 

Not 

included 

170 213 Footbridge 

Not 

included 
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APPENDIX G. RELATIONSHIPS BETWEEN GENERALIZED PARETO 

DISTRIBUTION SCALE PARAMETER AND NUMBER OF DAYS BETWEEN 

TELEMETRY LOCATIONS. 

To empirically estimate the relationship between duration and GPD kernel size, we 

subsampled our telemetry data at intervals of 1–75 days. At each subsampled interval, we 

calculated the step length between successive locations, estimated the two parameters of 

the GPD (shape and scale) and modeled their relationship with step duration. Shape was 

invariant with respect to step duration but scale monotonically increased with increasing 

step duration. We modeled this relationship using the Michaelis-Menton function to 

predict scale as a function of step duration. Because the parameters of the GPD varied 

interactively by sex and season, we estimated separate Michaelis-Menton functions for 

each sex*season group. We recognized a breeding (October–March) and non-breeding 

(April–September) season. We held scale constant at its mean value for each sex*season 

group.  
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APPENDIX H. MODEL SUPPORT FOR WEIGHTING SCENARIOS. 

Model support for different weighting scenarios for roads, urban, urban edge, and undeveloped upland for Level II (HRSF) and 

III selection. The characteristic (i.e., AIC-best) scales (m) and the ∆AIC for each scenario are reported. 

 

  HRSF Breeding Females Non-breeding Females Breeding Males Non-breeding Males 

  ∆AIC Scale ∆AIC Scale ∆AIC Scale ∆AIC Scale ∆AIC Scale 

Roads 

          Equal Weight 0.08 2000 1.03 30 12.5 30 0.56 15 5.18 75 

Strong Differences 0.00 2000 0.87 30 11.68 30 0.00 180 0.00 15 

Weak Differences 0.05 2000 1.34 15 10.18 30 0.38 15 2.96 15 

Strong Effect 0.00 15 0.00 30 0.00 30 1.35 15 1.94 15 

Weak Effect 0.08 2000 1.51 30 6.96 30 0.61 15 4.35 15 

           Urban 

          Equal Weight 0.00 15 9.89 15 53 15 0.00 15 0.00 15 

Strong Differences 0.96 15 1.14 15 0.00 15 26.52 15 23.49 45 

Weak Differences 0.67 15 1.73 15 14.87 15 21.57 15 14.63 45 

Strong Effect 0.58 15 0.00 15 30.72 15 39.85 15 8.73 60 

Weak Effect 0.30 15 3.06 15 36.66 15 21.42 15 2.20 45 

           Urban Edge 

          Equal Weight 0.00 1100 0.00 75 0.00 15 0.00 30 0.00 165 

Strong Differences 0.11 15 15.68 45 3.43 30 36.53 60 23.37 15 

Weak Differences 0.25 15 13.63 45 2.06 30 28.43 45 23.10 15 

Strong Effect 0.29 15 22.90 30 3.28 30 32.69 60 23.22 15 

Weak Effect 0.23 1200 14.65 45 0.46 30 19.04 45 22 15 

           Undeveloped Upland 

          No Rural 2.93 45 2.73 15 3.98 15 62.88 15 5.05 15 



 

 

2
1
4
 

Strong Difference 2.14 45 0.00 15 0.62 15 47.27 15 2.19 15 

Weak Difference 1.02 45 0.94 15 0.00 15 24.71 15 0.00 15 

With Rural 0.00 45 12.8 15 9.37 15 0.00 15 2.2 15 
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APPENDIX I. DESCRIPTION OF LAND COVER DATA SOURCES AND 

CREATION OF RESOURCE SELECTION FUNCTION SURFACES. 

We selected our landscape covariates based on a previous study on EIS habitat 

selection (Bauder et al. 2018). We used the Cooperative Land Cover Map (CLC) v.3.2 

shapefile (published October 2016) developed by the Florida Natural Areas Inventory 

and Florida Fish and Wildlife Conservation Commission (Knight 2010; Kawula 2014, 

accessed 19 Apr 2017 at http://myfwc.com/research/gis/applications/articles/Cooperative-

Land-Cover). The CLC was based on land cover maps produced by Florida’s Water 

Management Districts and supplemented with local land cover maps which were often 

mapped with greater accuracy and thematic resolution. We used the data “as-is” with the 

exception of four polygons classified as Roads (Site Codes 1840 and 1842) that, after 

visual inspection, were reclassified as Unimproved Pasture. We converted the CLC 

shapefile (and all subsequent shapefiles) to 15 m raster images. We then used the 2014–

2016 National Wetlands Inventory (NWI) GIS data (U. S. Fish and Wildlife Service 

2014, available at https://www.fws.gov/wetlands/data/Mapper.html) and the National 

Hydrography Dataset’s (NHD) GIS flowline data at the 1:24,000 scale (U. S. Geologic 

Survey 2014) to define canals, wetlands, and open water. We first identified all Open 

Water pixels using the CLC and NWI data following the classification schemes in 

Appendices B and C. We then classified all NHD features as Canal or Open Water using 

their FCODEs and intersection with CLC/NWI Open Water or Wetland pixels as 

described in Appendix D. Having identified all Canal and Open Water pixels, we then 

removed all CLC pixels classified as Roads (Site Codes 1840–1842), Cultural Riverine 
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(4200), and Ditch (4220) by replacing them with the modal pixel value in a 7x7 pixel 

moving window. 

We combined and reclassified these data sources into separate land cover surfaces 

for Urban, Undeveloped, Wetland, Citrus, Improved Pasture, and Open Water following 

Bauder et al. (2018). Because of inconsistent discrepancies between the CLC and NWI 

with regards to wetland classification, we adopted a conservative approach where we 

classified a pixel as wetland if it was mapped as a wetland by either data source. Because 

Bauder et al. (2018) found that different urban development intensities had no influence 

on multi-scale EIS habitat selection we also combined all urban development intensities.   

 We used the 2016 TIGER roads layer (U. S. Census Bureau 2016) to map paved 

roads and reclassified roads to approximate the road classes from the 1998 U.S. Geologic 

Survey’s (USGS) 1:24,000 roads layer (U.S. Geological Survey 1990) used by Bauder et 

al. (2018). Specifically, we considered route type codes (i.e., RTTYP) “U” as primary 

roads, “S” and “C” as secondary roads, and “M” and “O” as tertiary roads. The TIGER 

and USGS roads were very similar for primary and secondary roads although there were 

some relatively minor and inconsistent differences for tertiary roads between the two data 

sources.  

 We measured soil moisture using available water storage (AWS) at 150 cm from 

the Soil Survey Geographic Database (SSURGO) accessed through the SSURGO 

Downloader 2014 (ESRI 2014, accessed 14 June 2017 at 

http://www.arcgis.com/home/item.html?id=4dbfecc52f1442eeb368c435251591ec). We 

converted the downloaded shapefiles into 15 m pixel rasters. Because pixel values of zero 

represent no data (typically open water or wetland), we used a two step process to fill 
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these pixels. First, we replace all zero-value AWS pixels that intersected wetlands with 

the mean AWS value across all wetland pixels. Second, we used our binary Open Water 

raster to mask all AWS pixels intersecting open water and filled in remaining zero-value 

pixels using the average of the surrounding cells in a 7x7 moving window. We then 

calculated the standard deviation of AWS (SD AWS) using a Uniform kernel with the 

focal function in RASTER package (Hijmans 2017).  

 We downloaded Normalized Vegetation Difference Index (NDVI) data calculated 

from LANDSAT 8 OLI/TIRS using the U.S. Geologic Survey’s Earth Explorer data base 

via the bulk order service (https://espa.cr.usgs.gov/ordering/new/, accessed June 2016). 

We used LANDSAT 8 imagery to correspond as closely as possible to the date of our 

CLC land cover data. We masked clouds and cloud shadows from each image using its 

associated pixel_qa band which uses the Fmask algorithm of Zhu and Woodcock (2012) 

and Zhu et al. (2015) and a default cloud probability of 22.5%. Following Bauder et al. 

(2018), we calculated a mean winter NDVI using images from 11 Dec. 2014, 29 Jan. 

2015, 28 Nov. 2015, 16 Dec. 2016, and 2 Feb. 2017 and a mean spring NDVI using 

images from 14 May 2013, 2 Apr. 2015, 6 May 2016, 7 April 2017, and 9 May 2017. We 

assigned cloud/cloud shadow pixels as NA and took the arithmetic mean for each across 

all images. Remaining NA pixels made up a small percentage of our study area (< 1%) 

and were typically associated with impervious surfaces and buildings so we assigned 

remaining NA pixels as the mean across all images prior to masking clouds/cloud 

shadows. After this step, approximately 0.01% of pixels were still NA; we replaced these 

with the mean of a 3 × 3 moving window. We then resampled NDVI from its original 30 

m pixel resolution to 15 m pixels using ArcGIS 10.5. 

https://espa.cr.usgs.gov/ordering/new/
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APPENDIX J. CLASSIFICATION SYSTEM FOR COMBINING LAND COVER 

CATEGORIES FROM THE FLORIDA NATURAL AREAS INVENTORY’S 

COOPERATIVE LAND COVER MAP. 

Reclassified land cover types and their corresponding Florida Land Cover Classification 

System (FLCS) categories at both the Site and State level from the Florida Natural Area 

Inventory’s (FNAI) Cooperative Land Cover map v.3.2. Additional details of the FLCS 

classes are provided in Knight (2010) and Kawula (2014). We used the land covers 

Urban, Undeveloped, Wetland, Citrus, Improved Pasture, and Open Water to create 

resource selection function surfaces following Bauder et al. (2018). Land covers not 

listed were not included in our study area. 

 

Site 

Level 

FLCS 

Code Site Level Description State Level Description 

Reclassified 

Category 

1110 Upland Hardwood Forest 

Upland Hardwood 

Forest Undeveloped 

1111 Dry Upland Hardwood Forest 

Upland Hardwood 

Forest Undeveloped 

1112 Mixed Hardwoods 

Upland Hardwood 

Forest Undeveloped 

1120 Mesic Hammock Mesic Hammock Undeveloped 

1122 Prairie Mesic Hammock Mesic Hammock Undeveloped 

1123 Live Oak Mesic Hammock Undeveloped 

1124 Pine - Mesic Oak Mesic Hammock Undeveloped 

1125 Cabbage Palm Mesic Hammock Undeveloped 

1130 Rockland Hammock Rockland Hammock Undeveloped 

1131 Thorn Scrub Rockland Hammock Undeveloped 

1140 Slope Forest Slope Forest Undeveloped 

1150 Xeric Hammock Xeric Hammock Undeveloped 

1200 High Pine and Scrub High Pine and Scrub Undeveloped 

1210 Scrub Scrub Undeveloped 

1211 Oak Scrub Scrub Undeveloped 

1212 Rosemary Scrub Scrub Undeveloped 

1213 Sand Pine Scrub Sand Pine Scrub Undeveloped 

1214 Coastal Scrub Coastal Scrub Undeveloped 

1220 Upland Mixed Woodland High Pine and Scrub Undeveloped 

1230 Upland Coniferous High Pine and Scrub Undeveloped 

1231 Upland Pine Upland Pine Undeveloped 

1240 Sandhill Sandhill Undeveloped 

1300 Pine Flatwoods and Dry Prairie Pine Flatwoods and Dry Undeveloped 
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Prairie 

1310 Dry Flatwoods Dry Flatwoods Undeveloped 

1311 Mesic Flatwoods Mesic Flatwoods Undeveloped 

1312 Scrubby Flatwoods Scrubby Flatwoods Undeveloped 

1320 Pine Rockland Pine Rockland Undeveloped 

1330 Dry Prairie Dry Prairie Undeveloped 

1340 Palmetto Prairie Palmetto Prairie Undeveloped 

1400 Mixed Hardwood-Coniferous 

Mixed Hardwood-

Coniferous Undeveloped 

1410 Successional Hardwood Forest 

Mixed Hardwood-

Coniferous Undeveloped 

1500 Shrub and Brushland Shrub and Brushland Undeveloped 

1510 Other Shrubs and Brush Shrub and Brushland Undeveloped 

1600 Coastal Uplands Coastal Uplands Undeveloped 

1610 Beach Dune Coastal Uplands Undeveloped 

1620 Coastal Berm Coastal Uplands Undeveloped 

1630 Coastal Grassland Coastal Uplands Undeveloped 

1640 Coastal Strand Coastal Strand Undeveloped 

1650 Maritime Hammock Maritime Hammock Undeveloped 

1660 Shell Mound Coastal Uplands Undeveloped 

1670 Sand Beach (Dry) Sand Beach (Dry) Sand 

1710 Sinkhole 

Barren and Outcrop 

Communities Barren 

1720 Upland Glade Upland Glade Barren 

1740 Keys Cactus Barren 

Barren and Outcrop 

Communities Barren 

1750 Bare Soil 

Barren and Outcrop 

Communities Barren 

1760 Exposed Rock 

Barren and Outcrop 

Communities Barren 

1800 Cultural - Terrestrial Cultural - Terrestrial HiUrban 

1810 Mowed Grass Cultural - Terrestrial LowUrban 

1811 Vegetative Berm Cultural - Terrestrial LowUrban 

1812 Highway Rights of Way Cultural - Terrestrial LowUrban 

1821 Low Intensity Urban Low Intensity Urban LowUrban 

18211 Urban Open Land Low Intensity Urban Undeveloped 

18211

1 Urban Open Forested Low Intensity Urban Undeveloped 

18211

2 Urban Open Pine Low Intensity Urban Undeveloped 

18212 Residential, Low Density Low Intensity Urban LowUrban 

18213 Grass Low Intensity Urban LowUrban 

18213

1 Parks and Zoos Low Intensity Urban LowUrban 
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18213

2 Golf courses Low Intensity Urban LowUrban 

18213

3 Ballfields Low Intensity Urban LowUrban 

18213

4 Cemeteries Low Intensity Urban LowUrban 

18213

5 Community rec. facilities Low Intensity Urban LowUrban 

18214 Trees Low Intensity Urban Undeveloped 

1822 High Intensity Urban High Intensity Urban HiUrban 

18221 

Residential, Med. Density - 2-5 

Dwelling Units/AC High Intensity Urban MedUrban 

18222 

Residential, High Density > 5 

Dwelling Units/AC High Intensity Urban HiUrban 

18223 Commercial and Services High Intensity Urban HiUrban 

18224 Industrial High Intensity Urban HiUrban 

18225 Institutional High Intensity Urban HiUrban 

1830 Rural Rural Undeveloped 

1831 Rural Open Rural Undeveloped 

18311 Rural Open Forested Rural Undeveloped 

18311

1 Oak - Cabbage Palm Forests Rural Undeveloped 

18312 Rural Open Pine Rural Undeveloped 

1832 Rural Structures Rural LowUrban 

1833 Agriculture Rural Agriculture 

18331 Cropland/Pasture Cropland/Pasture Agriculture 

18331

1 Row Crops Cropland/Pasture Agriculture 

18331

2 Field Crops Cropland/Pasture Agriculture 

18331

21 Sugarcane Sugarcane Agriculture 

18331

3 Improved Pasture Low Intensity Urban 

Improved 

Pasture 

18331

4 Unimproved/Woodland Pasture Rural Undeveloped 

18331

5 Other Open Lands - Rural Cropland/Pasture Fallow 

18331

51 Fallow Cropland Cropland/Pasture Fallow 

18332 Orchards/Groves Orchards/Groves Citrus 

18332

1 Citrus Orchards/Groves Citrus 

18332

2 Fruit Orchards Orchards/Groves Citrus 
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18332

3 Pecan Orchards/Groves Citrus 

18332

4 Fallow Orchards Orchards/Groves AbndCitrus 

18333 Tree Plantations Tree Plantations Undeveloped 

18333

1 Hardwood Plantations Tree Plantations Undeveloped 

18333

2 Coniferous Plantations Tree Plantations Undeveloped 

18334 Vineyard and Nurseries Vineyard and Nurseries Nurs 

18334

1 Tree Nurseries Vineyard and Nurseries Nurs 

18334

2 Sod Farms Vineyard and Nurseries Nurs 

18334

3 Ornamentals Vineyard and Nurseries Nurs 

18334

4 Vineyards Vineyard and Nurseries Nurs 

18334

5 Floriculture Vineyard and Nurseries Nurs 

18335 Other Agriculture Other Agriculture SpecFarms 

18335

1 Feeding Operations Other Agriculture SpecFarms 

18335

2 Specialty Farms Other Agriculture SpecFarms 

1840 Transportation Transportation Roads 

1841 Roads Transportation Roads 

1842 Rails Transportation Roads 

1850 Communication Communication LowUrban 

1860 Utilities Utilities LowUrban 

1870 Extractive Extractive HiUrban 

1871 Strip Mines Extractive HiUrban 

1872 Sand & Gravel Pits Extractive HiUrban 

1873 Rock Quarries Extractive HiUrban 

1874 Oil & Gas Fields Extractive HiUrban 

1875 Reclaimed Lands Extractive HiUrban 

1876 Abandoned Mining Lands Extractive HiUrban 

1877 Spoil Area Extractive Spoil 

1880 Bare Soil/Clear Cut Bare Soil/Clear Cut Spoil 

2100 Freshwater Non-Forested Wetlands 

Freshwater Non-

Forested Wetlands Wetlands 

2110 Prairies and Bogs Prairies and Bogs Wetlands 

2111 Wet Prairie Prairies and Bogs Wetlands 

21111 Wiregrass Savanna Prairies and Bogs Wetlands 

21112 Cutthroat Seep Prairies and Bogs Wetlands 
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2112 Mixed Scrub-Shrub Wetland Prairies and Bogs Wetlands 

21121 Shrub Bog Prairies and Bogs Wetlands 

2113 Marl Prairie Prairies and Bogs Wetlands 

2114 Seepage Slope Prairies and Bogs Wetlands 

2120 Marshes Marshes Wetlands 

2121 Isolated Freshwater Marsh 

Isolated Freshwater 

Marsh Wetlands 

21211 Depression Marsh 

Isolated Freshwater 

Marsh Wetlands 

21212 Basin Marsh 

Isolated Freshwater 

Marsh Wetlands 

2122 Coastal Interdunal Swale Marshes Wetlands 

2123 Floodplain Marsh Floodplain Marsh Wetlands 

21231 Freshwater Tidal Marsh Floodplain Marsh Wetlands 

2124 Slough Marsh Marshes Wetlands 

2125 Glades Marsh Marshes Wetlands 

2130 Marshes (Continued) Marshes Wetlands 

2131 Sawgrass Marshes Wetlands 

2140 

Floating/Emergent Aquatic 

Vegetation 

Freshwater Non-

Forested Wetlands Wetlands 

2141 Slough 

Freshwater Non-

Forested Wetlands Wetlands 

2142 Water Lettuce 

Freshwater Non-

Forested Wetlands Wetlands 

2145 Duck Weed 

Freshwater Non-

Forested Wetlands Wetlands 

2146 Water Lily 

Freshwater Non-

Forested Wetlands Wetlands 

2150 Submergent Aquatic Vegetation 

Freshwater Non-

Forested Wetlands Wetlands 

2200 Freshwater Forested Wetlands 

Freshwater Forested 

Wetlands Wetlands 

2210 Cypress/Tupelo(incl Cy/Tu mixed) 

Cypress/Tupelo(incl 

Cy/Tu mixed) Wetlands 

2211 Cypress Cypress Wetlands 

2212 Tupelo 

Cypress/Tupelo(incl 

Cy/Tu mixed) Wetlands 

2213 Isolated Freshwater Swamp 

Isolated Freshwater 

Swamp Wetlands 

22131 Dome Swamp Dome Swamp Wetlands 

22131

2 Gum Pond Dome Swamp Wetlands 

22132 Basin Swamp Basin Swamp Wetlands 

2214 Strand Swamp Strand Swamp Wetlands 

2215 Floodplain Swamp Floodplain Swamp Wetlands 
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22151 Freshwater Tidal Swamp Floodplain Swamp Wetlands 

2220 Other Coniferous Wetlands 

Other Coniferous 

Wetlands Wetlands 

2221 Wet Flatwoods Wet Flatwoods Wetlands 

22211 Hydric Pine Flatwoods Wet Flatwoods Wetlands 

22211

1 Cutthroat Grass Flatwoods Wet Flatwoods Wetlands 

22211

2 Cabbage Palm Flatwoods Wet Flatwoods Wetlands 

22212 Hydric Pine Savanna Wet Flatwoods Wetlands 

2222 Pond Pine 

Other Coniferous 

Wetlands Wetlands 

2230 Other Hardwood Wetlands 

Other Hardwood 

Wetlands Wetlands 

2231 Baygall Baygall Wetlands 

22311 Bay Swamp Baygall Wetlands 

22312 South Florida Bayhead Baygall Wetlands 

2232 Hydric Hammock Hydric Hammock Wetlands 

22321 Coastal Hydric Hammock Hydric Hammock Wetlands 

22322 Prairie Hydric Hammock Hydric Hammock Wetlands 

22323 Cabbage Palm Hammock Hydric Hammock Wetlands 

2233 Mixed Wetland Hardwoods 

Freshwater Forested 

Wetlands Wetlands 

22331 Bottomland Forest 

Freshwater Forested 

Wetlands Wetlands 

22332 Alluvial Forest 

Freshwater Forested 

Wetlands Wetlands 

2234 Titi Swamp 

Other Hardwood 

Wetlands Wetlands 

2240 Other Wetland Forested Mixed 

Freshwater Forested 

Wetlands Wetlands 

2241 Cypress/Hardwood Swamps 

Freshwater Forested 

Wetlands Wetlands 

2242 Cypress/Pine/Cabbage Palm 

Freshwater Forested 

Wetlands Wetlands 

2300 Non-vegetated Wetland Non-vegetated Wetland Wetlands 

2400 Cultural - Palustrine Cultural – Palustrine Wetlands 

2410 Impounded Marsh Cultural – Palustrine Wetlands 

2420 Impounded Swamp Cultural – Palustrine Wetlands 

2430 Grazed Wetlands Cultural – Palustrine Wetlands 

2440 Clearcut Wetland Cultural – Palustrine Wetlands 

2450 Wet Coniferous Plantations Cultural – Palustrine Wetlands 

3000 Lacustrine Lacustrine Open Water 

3100 Natural Lakes and Ponds Natural Lakes and Ponds Open Water 

3110 Limnetic Natural Lakes and Ponds Open Water 



 

224 

3111 Clastic Upland Lake Natural Lakes and Ponds Open Water 

3112 Coastal Dune Lake Natural Lakes and Ponds Open Water 

3113 Flatwoods/Prairie/Marsh Lake Natural Lakes and Ponds Open Water 

3114 River Floodplain Lake/Swamp Lake Natural Lakes and Ponds Open Water 

3115 Sinkhole Lake Natural Lakes and Ponds Open Water 

3116 Coastal Rockland Lake Natural Lakes and Ponds Open Water 

3117 Sandhill Lake Natural Lakes and Ponds Open Water 

3118 Major Springs Natural Lakes and Ponds Open Water 

3120 Littoral Natural Lakes and Ponds Open Water 

3200 Cultural - Lacustrine Cultural - Lacustrine Open Water 

3210 Artificial/Farm Pond Cultural - Lacustrine Open Water 

3211 Aquacultural Ponds Cultural - Lacustrine Open Water 

3220 Artificial Impoundment/Reservoir Cultural - Lacustrine Open Water 

3230 Quarry Pond Cultural - Lacustrine Open Water 

3240 Sewage Treatment Pond Cultural - Lacustrine Open Water 

3250 Stormwater Treatment Areas Cultural - Lacustrine Open Water 

3260 Industrial Cooling Pond Cultural - Lacustrine Open Water 

4000 Riverine Riverine Open Water 

4100 Natural Rivers and Streams 

Natural Rivers and 

Streams Open Water 

4110 Alluvial Stream 

Natural Rivers and 

Streams Open Water 

4120 Blackwater Stream 

Natural Rivers and 

Streams Open Water 

4130 Spring-run Stream 

Natural Rivers and 

Streams Open Water 

4140 Seepage Stream 

Natural Rivers and 

Streams Open Water 

4160 Tidally-influenced Stream 

Natural Rivers and 

Streams Open Water 

4170 Riverine Sandbar 

Natural Rivers and 

Streams Open Water 

4200 Cultural - Riverine Cultural – Riverine 

CulturalRiver

ine 

4210 Canal Cultural – Riverine Open Water 

4220 Ditch/Artificial Intermittent Stream Cultural – Riverine Ditch 

5000 Estuarine Estuarine Estuarine 

5100 Subtidal Estuarine Estuarine 

5200 Intertidal Estuarine Wetlands 

5210 Exposed Limestone Estuarine Estuarine 

52111 Keys Tidal Rock Barren Keys Tidal Rock Barren Estuarine 

5212 Non-vegetated Estuarine Estuarine 

5220 Tidal Flat Tidal Flat Wetlands 

5221 Mud Tidal Flat Estuarine 



 

225 

5222 Sand Tidal Flat Estuarine 

5230 Oyster Bar Estuarine Estuarine 

5240 Salt Marsh Salt Marsh Wetlands 

5250 Mangrove Swamp Mangrove Swamp Wetlands 

5251 Buttonwood Forest Mangrove Swamp Wetlands 

5252 Scrub Mangrove Scrub Mangrove Wetlands 

5310 Estuarine Ditch/Channel Cultural – Estuarine Open Water 

5320 Estuarine Artificial Impoundment Cultural – Estuarine Open Water 

6000 Marine Marine Marine 

6100 Surf Zone Marine Marine 

7000 Exotic Plants Exotic Plants Undeveloped 

7100 Australian Pine Exotic Plants Undeveloped 

7200 Melaleuca Exotic Plants Undeveloped 

7300 Brazilian Pepper Exotic Plants Undeveloped 

7400 Exotic Wetland Hardwoods Exotic Plants Wetlands 

9100 Unconsolidated Substrate 

Unconsolidated 

Substrate UnconSub 
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APPENDIX K. NATIONAL WETLANDS INVENTORY (NWI) ATTRIBUTE 

CODES CLASSIFIED AS OPEN WATER. 

All other attribute codes within our study area were classified as Wetland. 

NWI Attribute Code Open Water 

L1AB4H Yes 

L1AB4Hx Yes 

L1AB6H Yes 

L1ABH Yes 

L1ABHx Yes 

L1UBH Yes 

L1UBHh Yes 

L1UBHx Yes 

L1UBKx Yes 

L2AB3/4H Yes 

L2AB3H Yes 

L2AB3Hx Yes 

L2AB4H Yes 

L2AB4Hsx Yes 

L2AB5H Yes 

L2ABH Yes 

L2ABHx Yes 

L2ABKx Yes 

L2EMH Yes 

L2UBHh Yes 

L2UBHsx Yes 
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APPENDIX L. CLASSIFICATION SYSTEM FOR CLASSIFYING PIXELS AS 

CANALS AND OPEN WATER. 

National Hydrography Data (NHD) polylines were first reclassified into a NHD Class 

and converted into 15-m pixel rasters. This raster was added to a reclassified raster of the 

Florida Natural Area Inventory’s Cooperative Land Cover (CLC) map. The summed 

pixel values were then used for the final classification of Canals and Open Water. See 

Appendix B for the CLC reclassification codes. 
 

NHD FCODE NHD Feature Type Original NHD Feature Description NHD Class 

33400 Connector Feature type only: no attributes 0 

33600 Canal/Ditch Feature type only: no attributes 1 

33601 Canal/Ditch Canal/Ditch type: aqueduct 1 

46000 Stream/River Feature type only: no attributes 1 

46003 Stream/River Hydrographic category: intermittent 1 

46006 Stream/River Hydrographic category: perennial 3 

46007 Stream/River Hydrographic category: ephemeral 1 

55800 Artificial Path Feature type only: no attributes 2 

 

CLC Class NHD Class Final Classification 

Other 0 None 

Other 1 Canal 

Other 2 None 

Other 3 Canal 

Open Water 0 Open Water 

Open Water 1 Open Water 

Open Water 2 Open Water 

Open Water 3 Open Water 

Wetland 0 None 

Wetland 1 Canal 

Wetland 2 None 

Wetland 3 Canal 

Stream 0 Open Water 

Stream 1 Canal 

Stream 2 Open Water 

Stream 3 Open Water 

Cultural Riverine (4200) 1 Canal 

Cultural Riverine (4200) 2 Canal 

Cultural Riverine (4200) 3 Canal 
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Canal (4210) 0 Open Water 

Canal (4210) 1 Open Water 

Canal (4210) 2 Open Water 

Canal (4210) 3 Open Water 

Ditch (4220) 1 Canal 
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APPENDIX M. CREATING RESOURCE SELECTION FUNCTION SURFACES. 

We followed the procedures of Bauder et al. (2018) to create resource selection 

surfaces using the land cover data described above. We created surfaces representing 

Level II (i.e., second order, Johnson 1980) selection using home range selection functions 

where the unit of observation was an individual’s “total” home range polygon estimated 

using the 95% volume contour of a fixed kernel utilization distribution with the 

unconstrained bandwidth matrix. Each land cover surface was first smoothed using 

Gaussian kernel with a bandwidth corresponding to its characteristic scale as described in 

Bauder et al. (2018). We then smoothed these surfaces again using a Uniform kernel with 

a 677 m radius which corresponded to an average-sized total home range. This ensured 

that the value of each pixel approximated the home range-wide average value. We then 

created predicted surfaces using the 90% model set from Bauder et al. (2018) and 

summed the AIC-weighted predicted values to obtain model-averaged predicted values. 

We used the predicted probabilities but emphasize that these probabilities represent 

relative, not absolute, probabilities of selection.  

 We created surfaces representing Level III (i.e., third-order, Johnson 1980) 

selection using the paired-design described in Bauder et al. (2018). Our surfaces that 

were Gaussian smoothed at their characteristic scales represented habitat use. Habitat 

availability surfaces were created by re-smoothing the Gaussian-smoothed surfaces with 

a generalized Pareto distribution representing the extent of available habitats within one 

day’s movement. We then differenced the used and available surface for each landscape 

covariate and calculated model-averaged predicted probabilities using the 90% model set 

as described above. We created separate Level III surfaces for males and females during 
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the breeding and non-breeding season and varied the size of the generalized Pareto 

distribution for each group.   
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APPENDIX N. PARAMETER VALUES FOR THE INDIVIDUAL-BASED MODEL. 

Values of POM parameters were calibrated using pattern oriented modeling. 

Parameter Value Description/Reference 

Maximum Age 12 years Stevenson et al. (2009) 

Birth Day 1-Oct 

Date at which eggs hatch and new individuals enter the model (Speake et al. 

1978, Godwin et al. 2011) 

Female Attraction 2 

Value assignd to all pixels within a female's 95% fixed kernel home range 

during the breeding season 

Dispersal SD POM 

Standard deviation of the half-normal standard kernel used to create the 

resistance kernel for dispersal 

Maximum Dispersal Distance 22,200 m Stevenson and Hyslop (2010) 

Maximum Background 

Resistance POM 

Maximum resistance value assigned to non-road pixels for calculating the 

resistance kernel for movement and dispersal 

Maximum Roads Resistance 

Value POM 

Maximum resistance value assigned to road pixels for calculating the 

resistance kernel for movement and dispersal 

Scale Multiplier POM 

Value by which the scale parameter of the generalized Pareto distribution 

standard kernel was multiplied to create the movement resistance kernel 

Maximum Daily Movement 

Distance 2,020 m D.R. Breininger (unpublished data) 

Water Barrier Distance 265 m 

Distance from land at which open water is considered a barrier (D.R. 

Breininger, unpublished data) 

Male Recruitment Buffer 894 m 

Radius of circular uniform kernel used to calculate conspecific home range 

density for males to determine probability of recruitment 

Female Recruitment Buffer 501 m 

Radius of circular uniform kernel used to calculate conspecific home range 

density for females to determine probability of recruitment 

Male Logistic Scale 0.05 

Scale parameter of a logistic function used to calculate probability of 

recruitment as a function of conspecific home range density  

Male Logistic Inflection 0.09 

Inflection parameter of a logistic function used to calculate probability of 

recruitment as a function of conspecific home range density  

Female Logistic Scale 0.05 

Scale parameter of a logistic function used to calculate probability of 

recruitment as a function of conspecific home range density  



 

 

2
3
2
 

Female Logistic Inflection 0.22 

Inflection parameter of a logistic function used to calculate probability of 

recruitment as a function of conspecific home range density  

Combine Method Product 

Method used to combine probability surfaces to create the redistribution and 

dispersal kernels 

Min. Number of Steps 10 

Minimum number of daily time steps required to calculate a utilization 

distribution (UD)/home range 

UD Bandwidth 

Unconstrain

ed Reference Bauder et al. (2010) 

UD Number of Days 365 days Number of days prior to current date used to calcualte a UD/home range 

UD Sample 7 days Subsampling rate to calculate UD/home range 

Nesting Date 1 Apr. Speake et al. (1978), Godwin et al. (2011) 

Mean Clutch Size 8.62 Godwin et al. (2011) 

SD of Clutch Size 1.7 Godwin et al. (2011) 

Age at First Reproduction 3 years Speake et al. (1978), Godwin et al. (2011) 

Annual Probability of 

Reproducing at 3 years 0.5 Breininger et al. (2004), Hyslop et al. (2012) 

Annual Probability of 

Reproducing at ≥4 years 0.9 Speake et al. (1978), Godwin et al. (2011) 

Nest Survival 0.75 Hyslop et al. (2012) 

Hatching Rate 0.75 Hyslop et al. (2012) 

Hatching Sex Ratio 50:50:00 

 Age of Entering the Model 1 year Age at which new agents are added to the model environment 

First-year Survival 0.29 Smith (1987) 

Daily Probability of Movement Variable Varied by day as described in Bauder et al. (2016) 

Movement Kernel GPD Scale - 

Breeding Season Males 271.3252 Bauder et al. (2016) 

Movement Kernel GPD Shape - 

Breeding Season Males 0.0580 Bauder et al. (2016) 

Movement Kernel GPD Scale - 

Non-Breeding Season Males 252.0699 Bauder et al. (2016) 

Movement Kernel GPD Shape - 

Non-Breeding Season Males -0.0540 Bauder et al. (2016) 
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Movement Kernel GPD Scale - 

Breeding Season Females 158.2161 Bauder et al. (2016) 

Movement Kernel GPD Shape - 

Breeding Season Females -0.0208 Bauder et al. (2016) 

Movement Kernel GPD Scale - 

Non-Breeding Season Females 163.8718 Bauder et al. (2016) 

Movement Kernel GPD Shape - 

Non-Breeding Season Females -0.0229 Bauder et al. (2016) 

Consp Kernel GPD Scale - 

Breeding Season Males 0.0000002 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Consp Kernel GPD Shape - 

Breeding Season Males 4.5937584 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Consp Kernel GPD Scale - Non-

Breeding Season Males 0.0000005 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Consp Kernel GPD Shape - 

Non-Breeding Season Males 3.7454979 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Consp Kernel GPD Scale - 

Breeding Season Females 0.0000034 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Consp Kernel GPD Shape - 

Breeding Season Females 3.1503287 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Consp Kernel GPD Scale - Non-

Breeding Season Females 0.0000879 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Consp Kernel GPD Shape - 

Non-Breeding Season Females 0.2461834 

Parameters for the GPD used to create the conspecific kernel for movement 

(Bauder et al. 2016) 

Primary Road Crossing - 

Breeding Season Females 0.000000456 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Secondary Road Crossing - 

Breeding Season Females 0.298734900 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Tertiary Road Crossing - 

Breeding Season Females 0.354970100 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Primary Road Crossing - Non-

breeding Season Females 0.000000580 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Secondary Road Crossing - Non- 0.090127770 Probability of crossing a road when distance from road = 0 m (Bauder et al. 
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breeding Season Females 2018) 

Tertiary Road Crossing - Non-

breeding Season Females 0.253403900 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Primary Road Crossing - 

Breeding Season Males 0.000000003 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Secondary Road Crossing - 

Breeding Season Males 0.000000008 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Tertiary Road Crossing - 

Breeding Season Males 0.314752200 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Primary Road Crossing - Non-

breeding Season Males 0.000000003 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Secondary Road Crossing - Non-

breeding Season Males 0.000000006 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Tertiary Road Crossing - Non-

breeding Season Males 0.226624200 

Probability of crossing a road when distance from road = 0 m (Bauder et al. 

2018) 

Consp Kernel GPD Scale - 

Males (Dispersal) 

6.885351E-

30 Parameters for the GPD used to create the conspecific kernel for dispersal 

Consp Kernel GPD Shape - 

Males (Dispersal) 51.0532207 Parameters for the GPD used to create the conspecific kernel for dispersal 

Consp Kernel GPD Scale - 

Females (Dispersal) 0.0000439 Parameters for the GPD used to create the conspecific kernel for dispersal 

Consp Kernel GPD Shape - 

Females (Dispersal) 0.8434534 Parameters for the GPD used to create the conspecific kernel for dispersal 

Daily Background Survival Rate POM 

 Daily Roads/Urban Crossing 

Survival Rate POM 
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APPENDIX O. OBSERVED BETA ESTIMATES AND 95% CONFIDENCE 

INTERVALS FOR RELATIONSHIPS BETWEEN TOTAL HOME RANGE SIZE 

AND LANDSCAPE COVARIATES. 

Beta estimates are denoted with β while “Stand.” represents z-score standardized betas. 

AICc model weights are denoted by w. Beta estimates for the intercept, sex (level = 

Male), and Days (number of days tracked) were included in every model and model 

averaged across all models. A single landscape covariate was included in each model.  

 

LC β 

Lower 

95% CI 

Upper 

95% CI Stand. β 

Stand. 

Lower 

95% CI 

Stand. 

Upper 95% 

CI w 

Intercept 5.810 5.106 6.513 4.085 3.649 4.522 1.000 

Sex 1.042 0.732 1.352 1.042 0.732 1.352 1.000 

SD NDVI -17.418 -22.503 -12.332 -0.525 -0.678 -0.372 0.998 

Urban -2.100 -2.885 -1.315 -0.450 -0.619 -0.282 0.002 

SD AWS -0.153 -0.240 -0.067 -0.322 -0.505 -0.140 0.000 

Wetlands 1.785 0.742 2.827 0.311 0.130 0.493 0.000 

Un-

developed 1.442 0.562 2.321 0.300 0.117 0.484 0.000 

Pasture -1.304 -2.909 0.301 -0.155 -0.346 0.036 0.000 

Wetland 

Edge 3.017 -1.176 7.209 0.140 -0.055 0.335 0.000 

NDVI 1.104 -1.672 3.880 0.080 -0.121 0.281 0.000 

Days 0.001 0.000 0.001 0.001 0.000 0.001 1.000 
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APPENDIX P. SIMULATED TOTAL HOME RANGE SIZES HOLDING THE SCALE MULTIPLIER CONSTANT 

Scale multiplier is three while maximum background resistance (Back) and maximum roads resistance (Rds) are varied. 

Horizontal gray lines represent the observed median (solid) and inter-quartile ranges (dashed) of observed total home range 

size. Simulations were run on the Cape Canaveral study area. 
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APPENDIX Q. SIMULATED TOTAL HOME RANGE SIZES VARYING THE SCALE MULTIPLIER CONSTANT 

Horizontal gray lines represent the observed median (solid) and inter-quartile ranges (dashed) of observed total home range 

size. Simulations were run on the Cape Canaveral study area.  
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APPENDIX R. BETA ESTIMATES AND 95% CI FOR LANDSCAPE COVARIATE EFFECTS ON TOTAL HOME 

RANGE SIZE 

Scale multiplier is three while maximum background resistance (Back) and maximum roads resistance (Rds) are varied. 

Simulations were run on the Cape Canaveral study area. 
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APPENDIX S. BETA ESTIMATES AND 95% CI FOR LANDSCAPE COVARIATE EFFECTS ON TOTAL HOME 

RANGE SIZE VARYING THE SCALE MULTIPLIER 

Simulations were run on the Cape Canaveral study area 
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APPENDIX T. WITHIN-INDIVIDUAL 6-MONTH HOME RANGE OVERLAP 

B-NB represent consecutive breeding and non-breeding season home ranges, B-B represent consecutive breeding season home 

ranges, NB-NB represent consecutive non-breeding season home ranges, and B-NB2 represent breeding and non-breeding 

seasons separated by 12 months. Horizontal gray lines represent the observed median (solid) and inter-quartile ranges (dashed) 

of observed total home range size. Simulations were run on the Cape Canaveral study area. 
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APPENDIX U. WEEKLY SURVIVAL ESTIMATES AS A FUNCTION OF LANDSCAPE COVARIATES 

Survival was estimated as a function of roads, urban, and development (Dvlp) measured within 400, 1,100, and 1,100 m radius 

Uniform kernels, respectively, centered on each agent’s total home range centroid using known-fate models. BackS represents 

background daily survival while Rd/UrbS represents road/urban crossing daily survival. Error bars and dashed lines are 95% 

CI around observed estimates and predicted values from the simulated data, respectively. 
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APPENDIX V. CHARACTERISTIC SCALES FOR SIMULATED EIS 

OCCUPANCY AS A FUNCTION OF MULTI-SCALE LANDSCAPE 

COVARIATES. 

Occupancy was measured using 999 randomly placed plots with 1.013 m radii. 

Landscape covariates were measured using concentric Uniform kernels with radii from 

677–3,077 m.ConsLands are the proportion of conservation lands. Roads_EQ are roads 

with all three road classes given equal weight, and Roads_SE are roads with primary and 

secondary roads given five times the weight as tertiary roads.  

  



 

 

243 

 

APPENDIX W. SUMMARY GENETIC DIVERSITY STATISTICS ACROSS ALL 

SAMPLES (N = 107) INCLUDING PUTATIVE DUPLICATES.   

Statistics are presented for each of the 15 loci examined: A = number of alleles, AR = 

allelic richness, HO = observed heterozygosity, HE = expected heterozygosity, HWP = P 

value for test of Hardy-Weinberg proportions using sequential Bonferroni correction, FIS 

= inbreeding coefficient, FIS P = P value for test significance of FIS using sequential 

Bonferroni correction, nulls = estimated percentage of null alleles.  

 

Locus A AR HO HE HWP FIS FIS P nulls 

Dry24 7 6.93 0.62 0.71 0.8208 0.14 0.0440 6.02% 

Dry30 6 5.47 0.54 0.65 0.3645 0.17 0.0799 6.79% 

Dry44 5 4.92 0.54 0.57 1.0000 0.05 1.0000 1.79% 

Dry55 5 5.00 0.47 0.47 1.0000 0.00 1.0000 -0.28% 

Dry68 7 6.86 0.54 0.72 0.0000 0.25 0.0150 11.96% 

Dry06 8 7.65 0.63 0.63 1.0000 0.01 1.0000 0.06% 

Dry48 12 11.31 0.67 0.73 1.0000 0.08 0.4615 3.30% 

Dry58 14 13.63 0.74 0.87 0.0000 0.16 0.0150 7.62% 

Dry59 10 9.14 0.59 0.72 0.0384 0.19 0.0240 8.35% 

Dry65 8 7.66 0.39 0.46 1.0000 0.14 0.1349 4.49% 

Dry69 6 5.92 0.62 0.63 1.0000 0.01 1.0000 0.33% 

Dry05 8 7.65 0.65 0.68 0.0840 0.05 1.0000 1.68% 

Dry14 5 4.75 0.36 0.61 0.0000 0.41 0.0150 18.17% 

Dry35 8 8.00 0.74 0.79 1.0000 0.07 0.4336 3.20% 

Dry70 6 5.93 0.64 0.73 0.0385 0.12 0.1349 5.29% 
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APPENDIX X. SUMMARY GENETIC DIVERSITY STATISTICS FROM 

SAMPLES WITHIN AND OUTSIDE OF THE ARCHBOLD BIOLOGICAL 

STATION (ABS) 

Statistics are presented for each of the 15 loci examined: HWP = P value for test of 

Hardy-Weinberg proportions using sequential Bonferroni correction, FIS = inbreeding 

coefficient, FIS P = P value for test significance of FIS using sequential Bonferroni 

correction. 

 

 

ABS (n = 62) 

 

Other (n = 40) 

 

 

HWP FIS FIS P HWP FIS FIS P 

Dry24 1.0000 0.08 0.8389 0.1056 0.23 0.1739 

Dry30 1.0000 0.14 0.5961 0.5423 0.21 0.2815 

Dry44 1.0000 0.03 1.0000 1.0000 0.02 1.0000 

Dry55 1.0000 -0.01 1.0000 1.0000 -0.05 1.0000 

Dry68 0.0030 0.22 0.0993 0.0286 0.23 0.0497 

Dry06 1.0000 -0.02 1.0000 1.0000 -0.02 1.0000 

Dry48 1.0000 0.06 0.9041 0.6408 -0.06 1.0000 

Dry58 0.4200 0.10 0.3229 0.0126 0.14 0.1788 

Dry59 0.4499 0.14 0.5563 0.5423 0.16 0.1739 

Dry65 1.0000 0.11 0.6706 1.0000 0.11 0.9509 

Dry69 1.0000 0.01 1.0000 1.0000 -0.01 1.0000 

Dry05 0.5560 0.04 1.0000 1.0000 0.01 1.0000 

Dry14 0.0336 0.34 0.0993 0.0000 0.44 0.0497 

Dry35 1.0000 0.09 0.6706 1.0000 0.00 1.0000 

Dry70 0.3185 0.16 0.3229 0.5423 0.07 1.0000 
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APPENDIX Y. COMPARISON OF ISOLATION-BY-DISTANCE TESTS 

ACROSS DATA SETS.  

Estimates of the intercept and slope and 95% CI from MLPE linear mixed-effects models 

and Mantel’s r comparing genetic distance to Euclidean geographic distance. Genetic 

distance was calculated using weighted principle components axes. Data sets with 107 

samples include potential duplicates, data sets with 102 samples exclude potential 

duplicates, and data sets with 88 samples exclude potential duplicates and juveniles. Data 

sets with 13 loci exclude Dry14 and Dry68, those with 12 loci exclude Dry14, Dry68, and 

Dry30, and those with 11 loci exclude Dry14, Dry68, Dry58, and Dry59. 
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APPENDIX Z. ESTIMATES OF THE INTERCEPT AND SLOPE AND 95% CI 

FROM MLPE LINEAR MIXED-EFFECTS MODELS AND MANTEL’S R 

COMPARING GENETIC DISTANCE TO EUCLIDEAN GEOGRAPHIC 

DISTANCE.  

Genetic distance was calculated using weighted principle components axes. Data sets 

included all samples excluding Archbold Biological Station (ABS) (Other, n = 40), 

samples within ABS (ABS, n = 62), Other samples excluding juveniles (n = 39), and 

ABS samples excluding juveniles (n = 49). Data sets with 13 loci exclude Dry14 and 

Dry68, those with 12 loci exclude Dry14, Dry68, and Dry30, and those with 11 loci 

exclude Dry14, Dry68, Dry58, and Dry59. 
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APPENDIX AA. GENETIC AUTOCORRELATION COEFFICIENTS 

CALCULATED WITH DIFFERENT NUMBERS OF LOCI 

Genetic autocorrelation coefficients calculated at different bin widths (km) with and 

without juveniles and different numbers of loci. Analyses were run across all samples and 

separately by each sex (adults only). Values marked in bold had bootstrapped 95% CI 

that were greater than zero. Data sets with 13 loci exclude Dry14 and Dry68, those with 

12 loci exclude Dry14, Dry68, and Dry30, and those with 11 loci exclude Dry14, Dry68, 

Dry58, and Dry59. 

 

All individuals (n = 102) 

      Bin 

(km) 15 loci 

15 loci, 

Adults 13 loci 

13 loci, 

Adults 12 loci 

12 loci, 

Adults 11 loci 

11 loci, 

Adults 

2 0.061 0.066 0.062 0.072 0.060 0.072 0.056 0.065 

4 0.040 0.043 0.037 0.042 0.034 0.040 0.035 0.041 

6 0.038 0.044 0.036 0.040 0.034 0.038 0.030 0.029 

8 0.022 0.030 0.021 0.031 0.021 0.030 0.023 0.034 

10 0.021 0.028 0.022 0.029 0.026 0.032 0.014 0.025 

12 0.021 0.024 0.021 0.022 0.024 0.025 0.017 0.020 

14 -0.012 -0.003 -0.005 0.003 -0.004 0.005 -0.006 0.000 

         Bin 

(km) 15 loci 

15 loci, 

Adults 13 loci 

13 loci, 

Adults 12 loci 

12 loci, 

Adults 11 loci 

11 loci, 

Adults 

3 0.051 0.056 0.051 0.059 0.049 0.058 0.046 0.053 

6 0.042 0.047 0.039 0.045 0.037 0.043 0.035 0.038 

9 0.021 0.029 0.021 0.029 0.022 0.030 0.020 0.030 

12 0.021 0.026 0.023 0.026 0.025 0.028 0.018 0.024 

15 -0.014 -0.008 -0.004 0.000 -0.004 0.001 -0.006 -0.003 

18 -0.032 -0.028 -0.028 -0.026 -0.026 -0.023 -0.032 -0.032 

21 -0.027 -0.019 -0.021 -0.014 -0.026 -0.018 -0.023 -0.017 

         Bin 

(km) 15 loci 

15 loci, 

Adults 13 loci 

13 loci, 

Adults 12 loci 

12 loci, 

Adults 11 loci 

11 loci, 

Adults 

4 0.050 0.055 0.049 0.057 0.047 0.056 0.045 0.053 

8 0.029 0.037 0.028 0.035 0.027 0.034 0.027 0.032 

12 0.021 0.025 0.022 0.025 0.025 0.028 0.016 0.023 

16 -0.017 -0.012 -0.008 -0.006 -0.007 -0.003 -0.009 -0.007 

20 -0.025 -0.016 -0.019 -0.013 -0.022 -0.014 -0.022 -0.019 
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Adult males (n = 45) 

   Bin (km) 15 loci 13 loci 12 loci 11 loci 

2 0.057 0.056 0.050 0.051 

4 0.043 0.041 0.034 0.039 

6 0.057 0.049 0.043 0.038 

8 0.019 0.019 0.016 0.025 

10 0.054 0.047 0.056 0.031 

12 0.025 0.026 0.027 0.027 

14 -0.037 -0.024 -0.020 -0.042 

     Bin (km) 15 loci 13 loci 12 loci 11 loci 

3 0.048 0.050 0.043 0.043 

6 0.057 0.048 0.042 0.042 

9 0.024 0.021 0.021 0.023 

12 0.040 0.039 0.041 0.033 

15 -0.033 -0.023 -0.020 -0.044 

18 -0.037 -0.028 -0.024 -0.025 

21 -0.014 -0.003 -0.002 0.000 

     Bin (km) 15 loci 13 loci 12 loci 11 loci 

4 0.050 0.048 0.042 0.045 

8 0.038 0.034 0.029 0.032 

12 0.039 0.036 0.041 0.029 

16 -0.042 -0.032 -0.029 -0.045 

20 -0.009 0.001 0.003 0.001 

     Adult females (n = 36) 

   Bin (km) 15 loci 13 loci 12 loci 11 loci 

2 0.039 0.055 0.059 0.072 

4 0.064 0.059 0.062 0.064 

6 0.024 0.024 0.029 0.006 

8 0.018 0.023 0.023 0.030 

10 0.000 0.009 0.002 -0.007 

12 -0.024 -0.027 -0.028 -0.027 

14 -0.026 -0.025 -0.029 -0.002 

     Bin (km) 15 loci 13 loci 12 loci 11 loci 

3 0.051 0.058 0.062 0.067 

6 0.033 0.036 0.038 0.031 

9 0.013 0.014 0.013 0.014 
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12 -0.015 -0.007 -0.012 -0.012 

15 -0.020 -0.008 -0.006 0.008 

18 -0.020 -0.028 -0.029 -0.037 

21 -0.037 -0.040 -0.048 -0.060 

     Bin (km) 15 loci 13 loci 12 loci 11 loci 

4 0.050 0.057 0.060 0.068 

8 0.021 0.023 0.026 0.019 

12 -0.011 -0.008 -0.012 -0.016 

16 0.001 0.010 0.012 0.020 

20 -0.035 -0.038 -0.043 -0.055 
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APPENDIX AB. MODEL RANKINGS FOR RAW RESOURCE SELECTION 

FUNCTION (RSF) AND SCALE-INTEGRATED RESOURCE SELECTION 

FUNCTION (SRSF) SURFACES USING EXPONENTIATED VALUES.  

RSF surfaces reflect second- and third-order habitat selection (Level II and III, 

respectively) while SRSF surfaces are the normalized product of Level II and Level III 

surfaces. Level II surfaces were estimated with and without urban land cover. Level III 

surfaces were estimated for breeding (Brd.) and non-breeding (NonBrd.) seasons for each 

sex. The number of model parameters is given by K, w is the AICc model weight, Avg. 

Rank is the average model ranking across 1,000 bootstrap iterations, π is the proportion 

of bootstrap iterations where the model was the top model, mR
2
 is the marginal R

2
, and 

cR
2
 is the conditional R

2
. 

 

Surface K AICc 

Δ 

AICc w 

Avg. 

Rank π mR2 cR2 

Level II 2 -14769.17 0.00 1.0000 1.00 0.9910 0.12 0.77 

Level II (w/Urban) 2 -14748.86 20.31 0.0000 2.00 0.0085 0.10 0.77 

Female NonBrd. 

SRSF (w/Urban) 2 -14722.37 46.80 0.0000 3.03 0.0001 0.09 0.76 

Female Brd. SRSF 

(w/Urban) 2 -14722.23 46.94 0.0000 4.37 0.0001 0.09 0.76 

Female Brd. SRSF 2 -14722.23 46.94 0.0000 4.60 0.0001 0.09 0.76 

Female NonBrd. 

SRSF 2 -14721.83 47.34 0.0000 6.00 0.0000 0.09 0.76 

Male NonBrd. SRSF 2 -14721.52 47.65 0.0000 7.01 0.0000 0.09 0.76 

Male NonBrd. SRSF 

(w/Urban) 2 -14721.44 47.73 0.0000 8.06 0.0000 0.09 0.76 

Female Brd. Level III 2 -14721.32 47.85 0.0000 9.04 0.0000 0.09 0.76 

Male NonBrd. Level 

III 2 -14721.29 47.88 0.0000 9.94 0.0000 0.09 0.76 

Female NonBrd. 

Level III 2 -14721.24 47.93 0.0000 10.95 0.0000 0.09 0.76 

Male Brd. SRSF 2 -14721.18 47.99 0.0000 12.12 0.0000 0.09 0.76 

Male Brd. SRSF 

(w/Urban) 2 -14721.16 48.01 0.0000 13.03 0.0000 0.09 0.76 

Male Brd. Level III 2 -14721.15 48.02 0.0000 13.84 0.0000 0.09 0.76 
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APPENDIX AC. MODEL RANKINGS FOR RESOURCE SELECTION 

FUNCTION (RSF) AND SCALE-INTEGRATED RESOURCE SELECTION 

FUNCTION (SRSF) SURFACES USING EXPONENTIATED VALUES 

OPTIMIZED USING RESISTANCEGA.  

RSF surfaces reflect second- and third-order habitat selection (Level II and III, 

respectively) while SRSF surfaces are the normalized product of Level II and Level III 

surfaces. Level II surfaces were estimated with and without urban land cover. Level III 

surfaces were estimated for breeding (Brd.) and non-breeding (NonBrd.) seasons for each 

sex. The number of model parameters is given by K, w is the AICc model weight, Avg. 

Rank is the average model ranking across 1,000 bootstrap iterations, π is the proportion 

of bootstrap iterations where the model was the top model, mR
2
 is the marginal R

2
, and 

cR
2
 is the conditional R

2
. 

 

Surface K AICc 

Δ 

AICc w 

Avg. 

Rank π mR2 cR2 

Level II (w/Urban) 4 -14903.3 0 1.00 1.02 0.97 0.33 0.85 

Level II 4 -14870 33.35 0 1.98 0.03 0.29 0.84 

Female NonBrd. SRSF 

(w/Urban) 4 -14737.1 166.17 0 3.07 0 0.09 0.77 

Female Brd. SRSF 

(w/Urban) 4 -14735.5 167.76 0 4.27 0 0.09 0.77 

Female Brd. SRSF 4 -14735.4 167.95 0 4.66 0 0.09 0.77 

Female NonBrd. SRSF 4 -14727.8 175.51 0 6 0 0.09 0.77 

Male NonBrd. SRSF 4 -14721.4 181.92 0 7 0 0.09 0.76 

IBD 2 -14721.3 182.02 0 NA NA 0.09 0.76 

Male NonBrd. SRSF 

(w/Urban) 4 -14719.70 183.56 0 8 0 0.08 0.76 

Female Brd. Level III 4 -14717.2 186.07 0 9.71 0 0.08 0.76 

Male NonBrd. Level III 4 -14717 186.3 0 10.17 0 0.09 0.76 

Male Brd. Level III 4 -14717 186.31 0 11.66 0 0.09 0.76 

Male Brd. SRSF 4 -14717 186.31 0 12.01 0 0.09 0.76 

Male Brd. SRSF 

(w/Urban) 4 -14717 186.31 0 11.96 0 0.09 0.76 

Female NonBrd. Level 

III 4 -14717 186.32 0 13.49 0 0.09 0.76 
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APPENDIX AD. OPTIMIZED FUNCTIONAL TRANSFORMATIONS FOR THE 

AICC-BEST RSF/SRSF SURFACES USING PREDICTED AND EXPONENTIAL 

SURFACES.  

The Best Predicted Optimized surface was the SRSF surface for breeding season females 

including urban while the Best Exponential Optimized surface was the Level II RSF 

including urban. 
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APPENDIX AE. MODEL RANKINGS FOR INDIVIDUAL LAND COVER SURFACES  

Each surface was smoothed with Gaussian kernels with 60, 600, 1200, and 1800 m bandwidths. Water_prop was included in 

each optimization. w is the AICc model weight, Avg. Rank is the average model ranking across 1,000 bootstrap iterations, π is 

the proportion of bootstrap iterations where the model was the top model, mR
2
 is the marginal R

2
, and cR

2
 is the conditional 

R
2
. Water and Other are the percent contributions of Water_prop and the smoothed land cover surface, respectively. Total 

Delta and Total w are the ΔAICc and model weight across all individual land cover surfaces.  

 

Landscape 

Feature 

Scal

e AICc 

Δ 

AICc w 

mR

2 cR2 Water Other π 

Avg. 

Rank 

Total 

Δ 

Total 

w 

Wetland Edge 1200 

-

14945.85 0.00 

0.573

0 0.30 

0.8

2 

0.003

8 

0.996

2 

23.4

0 1.80 0.00 0.5730 

Wetland Edge 1800 

-

14945.21 0.64 

0.416

1 0.30 

0.8

0 

0.003

5 

0.996

5 

64.2

0 1.51 0.64 0.4161 

Wetland Edge 600 

-

14937.92 7.93 

0.010

9 0.34 

0.8

4 

0.004

0 

0.996

0 

12.4

0 2.69 7.93 0.0109 

Wetland Edge 60 

-

14866.39 79.46 

0.000

0 0.18 

0.7

8 

0.114

5 

0.885

5 0.00 4.00 79.46 0.0000 

Undeveloped 1800 

-

14918.17 0.00 

0.892

1 0.25 

0.8

0 

0.124

2 

0.875

8 

72.2

0 1.51 27.68 0.0000 

Undeveloped 1200 

-

14912.55 5.62 

0.053

7 0.24 

0.8

1 

0.121

9 

0.878

1 2.10 2.44 33.30 0.0000 

Undeveloped 60 

-

14912.06 6.11 

0.042

0 0.25 

0.8

2 

0.140

7 

0.859

3 

17.4

0 2.89 33.79 0.0000 

Undeveloped 600 

-

14909.58 8.59 

0.012

2 0.24 

0.8

1 

0.110

0 

0.890

0 8.30 3.16 36.27 0.0000 

Wetland 60 

-

14905.49 0 

0.987

5 0.35 0.8 0.468 0.532 72.6 1.423 40.36 0.0000 

Wetland 1800 

-

14896.36 9.13 

0.010

3 0.27 

0.7

9 

0.433

9 

0.566

1 23 2.197 49.49 0.0000 

Wetland 1200 

-

14893.33 12.16 

0.002

3 0.34 0.8 

0.430

3 

0.569

7 4.2 2.485 52.52 0.0000 

Wetland 600 - 25.54 0.000 0.27 0.8 0.450 0.549 0.2 3.895 65.9 0.0000 
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14879.95 0 2 8 

SD NDVI 1800 

-

14902.20 0.00 

0.992

1 0.15 

0.7

7 

0.431

2 

0.568

8 

65.9

0 1.49 43.65 0.0000 

SD NDVI 600 

-

14891.88 10.32 

0.005

7 0.27 

0.8

1 

0.270

8 

0.729

2 

22.3

0 2.45 53.97 0.0000 

SD NDVI 60 

-

14889.06 13.14 

0.001

4 0.26 

0.8

2 

0.144

8 

0.855

2 

11.0

0 3.07 56.79 0.0000 

SD NDVI 1200 

-

14887.93 14.27 

0.000

8 0.15 

0.7

7 

0.394

4 

0.605

6 0.80 3.00 57.92 0.0000 

Urban 600 

-

14898.06 0.00 

0.925

7 0.29 

0.8

2 

0.514

1 

0.485

9 

44.6

0 1.79 47.79 0.0000 

Urban 1200 

-

14892.89 5.17 

0.069

8 0.29 

0.8

2 

0.500

3 

0.499

7 

21.0

0 2.35 52.96 0.0000 

Urban 1800 

-

14887.43 10.63 

0.004

6 0.23 

0.7

8 

0.454

3 

0.545

7 

34.4

0 1.95 58.42 0.0000 

Urban 60 

-

14868.54 29.52 

0.000

0 0.23 

0.7

9 

0.513

0 

0.487

0 0.00 3.91 77.31 0.0000 

Pasture 1200 

-

14851.31 0.00 

0.994

5 0.16 

0.7

8 

0.513

1 

0.486

9 

94.9

0 1.06 94.54 0.0000 

Pasture 1800 

-

14840.33 10.98 

0.004

1 0.12 

0.7

7 

0.223

5 

0.776

5 0.00 2.31 105.52 0.0000 

Pasture 600 

-

14838.07 13.24 

0.001

3 0.13 

0.7

7 

0.207

5 

0.792

5 5.00 2.74 107.78 0.0000 

Pasture 60 

-

14831.37 19.94 

0.000

0 0.13 

0.7

6 

0.423

6 

0.576

4 0.10 3.90 114.48 0.0000 
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APPENDIX AF. MULTI-SURFACE OPTIMIZATION MODEL RANKINGS  

Scale indicates the bandwidth (m) of the Gaussian kernel used to smooth each land cover surface. Pseudo Opt. indicates 

pseudo-optimized multi-scale optimizations. Water_prop was included in each optimization. w is the AICc model weight, Avg. 

Rank is the average model ranking across 10,000 bootstrap iterations, π is the proportion of bootstrap iterations where the 

model was the top model, mR
2
 is the marginal R

2
, and cR

2
 is the conditional R

2
. The following columns indicate the 

proportional contribution of each surface to the final optimized resistance surface: UN = undeveloped uplands, UR = urban, 

SD = SD NDVI, WT = wetland, WE = wetland edge, PA = pasture, WA = water.  

 

Surface Scale 

Δ 

AICc w 

Avg. 

Rank π mR2 cR2 UN UR SD WT WE PA WA 

Upland + Urban + SD 

NDVI 1800 0.00 0.92 1.93 66.42 0.33 0.80 0.20 0.26 0.51 NA NA NA 0.03 

Upland + Urban + 

Wetland 

Pseudo 

Opt. 37.84 0.00 5.63 13.36 0.34 0.80 0.57 0.14 NA 0.19 NA NA 0.10 

Upland + Urban + SD 

NDVI 

Pseudo 

Opt. 5.06 0.07 3.68 7.48 0.35 0.83 0.25 0.17 0.54 NA NA NA 0.04 

Upland + Urban + 

Wetland 1800 42.96 0.00 6.53 4.78 0.40 0.81 0.23 0.24 NA 0.53 NA NA 0.01 

Upland + SD NDVI + 

Wetland Edge 1800 11.83 0.00 4.02 3.75 0.28 0.81 0.16 NA 0.42 NA 0.40 NA 0.02 

Upland + Urban + 

Wetland 1200 40.91 0.00 6.51 2.29 0.37 0.81 0.26 0.19 NA 0.52 NA NA 0.02 

Upland + Wetland + 

Pasture 1200 56.69 0.00 10.25 0.74 0.34 0.83 0.29 NA NA 0.50 NA 0.14 0.07 

Upland + Wetland + 

Pasture 

Pseudo 

Opt. 64.20 0.00 10.69 0.56 0.30 0.80 0.63 NA NA 0.17 NA 0.09 0.11 

Upland + Urban + 

Wetland 600 39.72 0.00 7.62 0.49 0.38 0.83 0.46 0.11 NA 0.34 NA NA 0.10 

Upland + SD NDVI + 

Wetland Edge 600 53.89 0.00 10.73 0.12 0.28 0.82 0.34 NA 0.17 NA 0.47 NA 0.01 

Upland + Wetland + 1800 65.68 0.00 12.10 0.01 0.31 0.82 0.46 NA NA 0.37 NA 0.13 0.04 
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Pasture 

Upland + Urban + SD 

NDVI 1200 30.12 0.00 6.22 0.00 0.31 0.80 0.23 0.25 0.51 NA NA NA 0.01 

Upland + SD NDVI + 

Wetland Edge 1200 46.08 0.00 8.85 0.00 0.28 0.81 0.12 NA 0.25 NA 0.63 NA 0.01 

Upland + Urban + SD 

NDVI 600 57.37 0.00 10.54 0.00 0.26 0.79 0.32 0.18 0.47 NA NA NA 0.03 

Upland + Wetland + 

Pasture 600 95.73 0.00 14.71 0.00 0.24 0.81 0.72 NA NA 0.08 NA 0.14 0.06 
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