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ABSTRACT 

WILDFIRES IN THE NORTHEASTERN UNITED STATES: EVALUATING 
FIRE OCCURRENCE AND RISK IN THE PAST, PRESENT, AND FUTURE 

 
FEBRUARY 2019 

 
DANIEL R. MILLER, B.S., THE OHIO STATE UNIVERSITY 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Raymond S. Bradley 

 
Climate change is one of the most complex and challenging issues facing the 

world today. A changing climate will affect humankind in many ways and alter our 

physical environment, presenting ethical challenges in how we respond. The impact of 

climate change will likely be exacerbated in heavily populated regions of the planet, such 

as the Northeastern United States (NEUS). The NEUS is comprised of complex, 

sprawling urban centers and rural regions, both of which are vital to the economic and 

cultural character of the region. Furthermore, both urban and rural areas in the NEUS 

contain communities that have been historically susceptible to climate change (Horton et 

al. 2014). Over the past 120 years, average temperatures have increased by 2°F, 

precipitation has increased by 10%, and sea levels have also risen (Kunkel 2013).   

One poorly understood consequence of climate change is its effects on extreme 

events such as wildfires. Robust associations between wildfire frequency and climatic 

variability have been shown to exist (Scholze et al. 2006; Westerling et al. 2006), 

indicating that future climate change may continue to have a significant effect on wildfire 

activity. The NEUS has been home to some of the most infamous and largest historic 

“megafires” in North America, such as the Miramichi Fire of 1825 and the fires of 1947 
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(Irland 2013). Although return intervals in most areas of the NEUS are high (hundreds of 

years), wildfires have played a critical role in ecosystem development and forest structure 

in the region (Carlson 2013). Therefore, predicting fire occurrence and vulnerability to 

large wildfires in the NEUS is economically and culturally relevant. However, predicting 

fire occurrence is not a simple task due to the nature of wildfire activity in the NEUS. 

While in most regions of the world, natural factors such as lightning are the driving cause 

of wildfires, it has been estimated that the vast majority (>99%) of wildfires in the NEUS 

are caused by anthropogenic activity and not natural causes (Pyne 1982). Consequently, 

only studying data associated with fire occurrence (i.e. area burned, number of fires) is 

likely inadequate for the investigation the region’s fire risk over time. Furthermore, little 

is known about how the direct (temperature & precipitation trends) and indirect 

(ecosystem-wide species distribution) effects of climate change will impact fire risk in 

the NEUS under future climate scenarios. Fully understanding the natural mechanisms 

that control fire risk and occurrence requires continuous records of past fires and climatic 

variability on centennial to millennial timescales. However, historical fire records in the 

NEUS are temporally limited, and do not provide an adequate analysis of the impacts of 

regional wildfire regimes, prior to human disturbance and anthropogenic climate change. 

We find that regional climatic fire risk for the NEUS can be estimated most 

accurately using the Keetch Byram Drought Index (KBDI) from 20th century historical 

meteorological records from various stations located throughout the region. Regional fire 

risk is then estimated through 2100 AD, using the KBDI and dynamically downscaled 

regional climate models from CMIP5 climate models. Under RCP 8.5, average KBDI and 

max yearly KBDI is shown to increase by 300% and 500%, respectively, in an 
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exponential trend. Under RCP 4.5, KBDI is also expected to increase through 2100 AD 

to a lesser extent. Interestingly, these increases in regional fire risk are present regardless 

of increases in precipitation, indicating that future fire risk in the NEUS is driven largely 

by changes in temperature as opposed to precipitation.  

In order to investigate long-term regional wildfire activity over the past 

millennium, we examine PAHs and macrocharcoal from a varved sedimentary record 

from Basin Pond, Fayette, Maine (USA). We find elevated concentrations of the PAH 

retene were found to be highly correlated with known large-scale regional wildfire events 

that occurred in 1761-1762, 1825, and 1947 (A.D.). To distinguish between biomass 

burning and anthropogenic combustion, we examined the ratio of the PAHs retene and 

chrysene. The new Basin Pond PAH records, along with a local signal of fire occurrence 

from charcoal analysis, offers the prospect of using this multi-proxy approach as a 

method for examining wildfire frequency at the local and regional scale in the NEUS. 

Finally, we report seasonally resolved measurements of brGDGT production in 

the water column, in catchment soils, and in a sediment core from Basin Pond. We utilize 

these observations to help interpret a Basin Pond brGDGT-based temperature 

reconstruction spanning the past 900 years. This record exbibits similar trends to a pollen 

record from the same site and also to regional and global syntheses of terrestrial 

temperatures over the last millennium. However, the Basin Pond temperature record 

shows higher-frequency variability than has previously been captured by such an archive 

in the NEUS, potentially attributed to large scale atmospheric patterns. These new 

records of temperature variability and wildfire activity, when compared to regional 

hydroclimate records, shed insight into pre-historic wildfire risk in the NEUS.   
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CHAPTER 1 

 BACKGROUND: WILDFIRES IN THE NORTHEASTERN UNITED STATES 

The overarching question of this dissertation is “How has fire risk in the 

Northeastern United States fluctuated over time, and how will it continue to evolve with 

anticipated future climate change?” To answer this question, fire risk was investigated on 

different timescales using a variety of methods.  Lacustrine sedimentary archives from 

Maine were used to estimate “pre-historic” (prior to 1750AD) fire risk and occurrence on 

centennial timescales. Meteorological station data from the region were used to estimate 

fire risk indices from 1900-2018AD throughout the region.  Finally, climate model data 

was utilized to investigate future fire risk in the region through 2100AD. 

The Northeastern United States (NEUS) has been home to some of the most 

infamous and largest historic “megafires” in North America, such as the Miramichi Fire 

of 1825 and the fires of 1947 (Irland 2013). Although return intervals in most areas of the 

NEUS are high (hundreds of years), wildfires have played a critical role in ecosystem 

development and forest structure in the region (Carlson 2013). Therefore, predicting fire 

occurrence or vulnerability to large wildfires in the NEUS is economically and culturally 

relevant. However, predicting fire occurrence is not a simple task due to the nature of 

wildfire activity in the NEUS. While in most regions of the world, natural factors such as 

lightning are the driving cause of wildfires, it has been estimated that the vast majority 

(99%) of wildfires in the NEUS are caused by anthropogenic activity and not natural 

causes (Pyne 1982). Consequently, only studying data associated with fire occurrence 

(i.e. area burned, number of fires) is likely inadequate for the investigation the region’s 

fire risk over time. 
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1.1 NEUS Ecosystem and Fire Occurrence in the Historical Period 

The NEUS is a heavily forested region, with approximately 80% forested land 

cover. The region consists of diverse groups of temperate ecosystems and is a transition 

zone between the Northern boreal forest and deciduous forest to the south (Davis et al. 

2017). Coniferous forests are found to the north and at high altitudes (greater than 900 

m), and includes many different dominant species depending on location and altitude (red 

pine, balsam fir, red spruce, white spruce, jack pine, white pine, paper birch). Northern 

hardwood forests dominate the mid-latitudes of the NEUS, mixing with the northern 

coniferous forest at mid-latitudes. Common northern hardwood species include sugar/red 

maple, beech, hemlock, red oak, and white ash.  Finally, northern hardwood forests 

transitions to primarily oak-hickory forest in the southern NEUS (Davis et al. 2017).  

The history of NEUS forests has been studied and documented over the past 

several decades (Carlson 2013; Pyne 1982; Foster & Aber 2004). Prior to European 

settlement of the region, Native American communities had a noticeable anthropogenic 

influence on forests, which included using fire for land clearance practices (Patterson and 

Sassaman 1988).  However, forests in the region have undergone the most drastic 

changes in recent centuries due to European settlement and human activity. Land 

clearance peaked in the mid-19th century, with a steady recovery of forests across the 

region over the past century. This was primarily due to increased forest management 

practices being developed and used throughout the NEUS in recent decades (Carlson 

2013). Consequently, the NEUS has one of the most heavily-developed and forested 

regions in the world, making wildfire risk a noteworthy economic and societal concern.   
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Due to the vast amounts of forested area and typical meteorological conditions in 

the NEUS, the region is prone to increased wildfire activity during the spring and fall 

(Pyne 1982). The vast majority of forests in the NEUS are susceptible to wildfires on 

some time scale, with fire return intervals varying on sub-decadal to millennial timescales 

(Carlson 2013). In some communities found on Cape Cod through southern Maine, 

wildfires are the primary disturbance mechanism and are necessary for stand rejuvenation 

and health. Therefore, prescribed burning practices have been employed throughout the 

NEUS to aid in managing forests and providing a safe alternative to natural wildfires in 

populated forested areas NWCG 2012; Carlson 2013).  This makes future fire risk due to 

changes in climate and meteorological patterns a relevant, pressing issue for many forest 

and fire managers in the region.  

1.2 A Note on “Fire Risk”  

 Before proceeding, it is important to define what the term “fire risk” is referring 

to throughout this dissertation. In the past, fire risk has been defined in numerous ways or 

with different methods (Table 1.1).  Furthermore, fire risk indices have been created to 

attempt to quantify different aspects of “fire risk”, including rate of fire spread, 

probability of ignition, fire severity, or the probability of fires affecting humans 

(Deeming et al. 1972; Van Wagner et al. 1987). One of the primary focuses in this 

dissertation is the direct effects of climate variability on wildfire regimes and wildfire 

risk. Therefore, in this dissertation, “fire risk”, or perhaps more accurately termed 

“climatic fire risk”, will be defined as the risk associated with the direct effects of climate 

and meteorological patterns on establishing conditions that favour wildfires. As detailed 
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in chapters 2 and 3, this definition of fire risk will become more specific once certain fire 

indices are chosen for analysis in this study.    

1.3 Dissertation Layout 

 This dissertation is laid out in six chapters, including this introductory chapter.  

Chapter 2, entitled “Historical Fire Risk in the Northeastern United States”, focuses on 

calculating a suite of fire risk indices and performing an analysis developed to aid in 

interpreting which indices perform best in the NEUS at capturing climatic fire risk. 

Chapter 3, entitled “Modeling fire risk in the Northeastern United States from 1950-

2100”, focuses on using the selected fire risk index from Chapter 2, the Keetch Byram 

Drought Index (KBDI), to estimate climatic fire risk in the NEUS throughout the 21st 

century using an ensemble of climate models from CMIP5. This study reveals that 

climatic fire risk is expecting to drastically increase by 2100AD, regardless of regional 

annual precipitation increases or RCP scenario used. A combination of these chapters is 

currently in preparation to be submitted for publication in the Journal of Wildland Fire.  

 Chapter 4, entitled “Local and Regional Wildfire Activity in Central Maine 

(USA) during the past 900 years”, investigates local and regional fire occurrence from 

analysis of a sedimentary record from Basin Pond, located in Central Maine. Through a 

multi-proxy method, including macrocharcoal and Polycyclic Aromatic Hydrocarbon 

(PAH) analysis, local and regional wildfire outbreaks were noted throughout the 

sedimentary record, including three known wildfires documented in historical records in 

1947, 1825, and 1761-1762 AD. This manuscript was published in the Journal of 

Paleolimnology (Miller et al. 2017).  
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 Chapter 5, entitled “A 900-year New England temperature reconstruction from in 

situ seasonally produced branched glycerol diakyl glycerol tetraethers (brGDGTs)”, 

details a study performed on the Basin Pond sedimentary record, as well its water column 

and catchment soils, investigating temperature variability over time. Results from this 

study indicate that downcore sedimentary brGDGTs are likely produced in the water 

column, as opposed to the catchment soils, with a bloom occurring in September, 

implying that the temperatures reconstructed from the sedimentary record are likely fall-

biased. The Basin Pond temperature record, being the first record of its kind for the 

region, was compared to other regional hydroclimate paleorecords, as well as other 

Northern Hemisphere records, to investigate causes of long-term fluctuations in 

temperatures at Basin Pond. This study was published in the open-access journal Climate 

of the Past (Miller et al. 2018).  

 The final chapter summarizes the work outlined and discussed in this dissertation, 

its impacts, and directions for future studies that could advance the work discussed in this 

thesis. 
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Figure 1.1: Northeastern U.S. Forest Cover through time, broken 
down by state and with region population (red dashed line), 

adapted from Foster and Aber (2004).   

Table 1.1: Various definitions of “fire risk” with sources.   
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CHAPTER 2 

HISTORICAL FIRE RISK IN THE NORTHEASTERN U.S.: EVALUATING 

FIRE RISK INDICES BY COMPARISON TO METEOROLOGICAL DATA 

2.1 Introduction 

Estimating historical fire risk is a complex task, largely due to human disturbance 

and fire suppression activities taking place throughout the same time period that historical 

fire records have been kept in the NEUS (i.e., the 20th century) (Pyne 1982). These 

factors influence fire occurrence (i.e. area burned, number of fires) and create a need for 

an alternative method of investigating the region’s fire risk. In light of this, various “fire 

danger indices” have been introduced in recent decades, with the goal of modeling 

different aspects of a region’s fire risk (table 2.1). These indices range from simple 

meteorological calculations (i.e. Fosberg 1978) to more complex indices incorporating 

atmospheric, meteorological, geographical, and ecological parameters (i.e. Deeming et al. 

1972). Furthermore, fire risk indices vary on the time-scale of the parameters included in 

the indices.  Short-term indices are based on variables that continuously and rapidly 

change, which can be useful in estimating daily or sub-daily fluctuations in fire risk. On 

the other hand, longer-term indices are based on parameters that change little in the short 

term, and have been used to estimate seasonal or fire risk on longer time scales (San-

Miguel-Ayanz et al. 2003).   

All of these indices have been utilized by governmental organizations and fire 

management officials to aid in the prompt dissemination of fire risk among communities 

are useful in preventing recent large fire outbreaks (Carlson 2013, Irland 2013). While 

these variables have provided a useful approach for quantifying wildfire risk in recent 
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decades, little work has been done on reconstructing these indices to assess long-term 

variations. Consequently, current understanding of the usefulness or accuracy of fire 

indices in tracking fire risk in the NEUS, and how regional fire risk has fluctuated in 

historical records, is limited. In this study, we address this outstanding issue by 

performing statistical analysis of fire indices in comparison with meteorological 

parameters from observation stations located throughout the region, and then compare 

selected indices to fire occurrence data (i.e., acres burned and total number of fires per 

year).  Through this analysis, we hope to gain a better understanding of which fire index, 

if any, correlate best with fire occurrence, and which meteorological parameters have the 

most dominant influence on this selected index or indices.   

2.1.1 Fire Index History 

2.1.1.1 Canadian Forest Fire Weather Index System 

The first efforts to quantify fire risk through numerical indices began as early as 

the early 20th century. Much of this research was pioneered by Canadian scientists, who 

developed a preliminary forest fire danger rating system, known as the “Wright system of 

fire-hazard rating”, in the mid-1920’s (Wright 1937; Beall 1990). Since then, five 

different fire danger rating systems have been developed and used in Canadian forests. 

However, the Wright System still forms part of the current Canadian Forest Fire Weather 

Index System (CFFWIS) and was an essential foundation of Canadian fire research (Beall 

1990).  Over the past 90 years, the Canadian system for estimating fire risk has built on 

previous systems using experimental fieldwork and extensive statistical and empirical 

analysis. Currently, the CFFDRS is the accepted national fire danger rating system for 
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Canadian forests, and incorporates two modules: the Canadian Forest Fire Behavior 

Prediction (FPB) System (Taylor et al. 1996) and the Canadian Forest Fire Weather Index 

System (FWI) (Van Wagner 1987). The latter has been in use since 1970 with minor 

revisions and updates occurring in 1976, 1978, and 1984.   

The FWI system incorporates solely meteorological parameters and does not 

include differences in other vegetation or “fixed” parameters, such as fuel type or 

topography (San-Miguel-Ayanz et al. 2003). Six numerical indices are computed in the 

FWI, and require dry-bulb temperature, relative humidity, wind speed, and daily 

precipitation totals to calculate. The first three components – the Fine Fuel Moisture 

Code (FFMC), the Duff Moisture Code (DMC), and the Drought Code (DC) – attempt to 

quantify fuel moisture that track both short and long-term changes in the moisture content 

of fuel with varying drying rates. The final three indices – the Initial Spread Index (ISI), 

Buildup Index (BUI), and the Fire Weather Index (FWI) – all describe potential fire 

behavior, including the rate of spread, fuel load, and fire intensity (San-Miguel-Ayanz et 

al. 2003). More information on all six fire indices in the CFFDRS can be found in table 

2.1.  

2.1.1.2 National Fire Danger Rating System (USA) 

 Work on constructing a fire risk index in the United States began in the mid-20th 

century with the development of the National Fire Danger Rating System (NFDRS).  

First published and applied in 1972, the NFDRS computed three fire behavior indices 

based on a mathematical fire spread model (Rothermel 1972; Deeming et al. 1972).  

Unlike its Canadian counterpart, the NFDRS incorporated both meteorological 

parameters and other aspects of fire risk, including various fuel models, fuel classes and 
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different slope classes.  The NFDRS was updated in 1978 to take into account feedback 

from users and developments in fire science technology (Deeming et al. 1977).  Fire risk 

indices that were computed in the NFDRS include the Burning Index (BI), Spread 

Component (SC), Energy Release Component (ERC), and Ignition Component (IC). The 

NFDRS was updated again in 1988 to calculate fire risk more accurately in the eastern 

United States (Burgan 1988), a region that is more humid and has different fuel loading 

than the western U.S.  The major addition in this release was the Keetch Byram Drought 

Index (KBDI), which addresses the effects of long-term drought on fire danger in the 

eastern U.S., through increasing dead fuel in deep duff layers during times of increased 

drought (Keetch & Byram 1968). More information on the NFDRS indices, including the 

KBDI, can be found in table 2.1.  

2.1.1.3 Other Fire Risk Indices 

  Outside of the NFDRS and CFFDRS, a handful of other indices have been 

developed to estimate different aspects of fire risk. As technology advanced and satellites 

were developed that capture high resolution images of the earth, fire indices were 

developed to assess the status of live versus dead vegetation through “greenness” of the 

vegetation (Burgan et al. 1996). One such index is the Fire Potential Index (FPI), which is 

a numerical rating of available fuel and susceptibility to ignition based on the proportion 

of live to dead vegetation and its moisture content (Burgan et al. 1998).  

Apart from ecological parameters, various indices have been developed that 

utilize different atmospheric variables to assess fire risk.  The Haines Index (HI), an 

atmospheric index designed to measure the instability of air in the lower atmosphere, was 

developed to quantify the probability that land fires will become large and erratic in a 
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given air mass (Haines 1988). At low elevations, the HI is derived from a lapse rate using 

950- to 850 mb temperature differences and a temperature to dew point spread at 850mb. 

The HI gives higher values when there is a greater lapse rate, or temperature gradient, 

between isobars, and was found to strongly correlate with fire occurrence (Haines 1988).   

Lastly, the Fosberg Fire Weather Index (FFWI) was developed as a simple tool 

for estimating short term fire potential from meteorological parameters including 

temperature, wind speed, and relative humidity (Fosberg 1978). An update to this index 

was made to incorporate “fuel availability”, as seen in the KBDI, to account for 

precipitation variability (Goodrick 2002). The simplicity of the FFWI is ideal for 

computing from the output from various meteorological models, as all other factors 

affecting fire risk are assumed constant (i.e. vegetation type). More information on all fire 

indices can be found in table 2.1.  

2.2 Methods 

Fire indices were reconstructed for selected meteorological stations located 

throughout the NEUS. Automated Surface Observing System (ASOS) stations were the 

dominant type of station utilized in this study for several reasons (NCDC, 2018). First, in 

order to produce accurate representations of fire risk, multiple readings per day are 

needed from each station to capture ‘true’ maximum and minimum daily values of 

selected meteorological variables. ASOS stations record data as frequently as every 10 

minutes to 1 hour, making these datasets ideal. ASOS stations also record meteorological 

parameters such as wind direction, wind speed, and cloud cover, which are frequently 

used in fire indices but are not recorded by a vast majority of weather stations. Finally, 

due to the widespread use of ASOS stations at regional airports and their importance in 



 

12 

providing accurate, real-time data used by the aerospace industry, these stations are 

normally well-maintained and are in ideal locations for monitoring weather conditions.   

Twelve ASOS station datasets were selected based on record length (greater than 

50 years) and geographical location (Figure 1, Table 2). One challenge that arose with the 

ASOS datasets was the completeness of record.  Only eight of the selected stations 

contained >98% of data during the period of record.  To fill in missing geographical gaps 

in the region and to extend records back through the entire 20th century, an additional two 

meteorological stations were selected for analysis.  While these stations do not provide 

multiple observations per day and are missing certain variables (i.e. wind speed, 

direction, and relative humidity), they do provide maximum, minimum, and average daily 

temperatures as well as daily precipitation extending over 100 years.  Due to the 

limitations of these two stations, not all fire indices could be reconstructed using these 

stations.  However, as detailed below, this issue was resolved by the selection of specific 

fire indices.  

Fire indices (Table 1) for each station were calculated using FireFamily Plus 

(FFP) (Bradshaw & McCormick 2013). FFP is software package designed for analyzing 

daily weather observations and calculating all U.S. National Fire Danger Rating System 

(NFDRS), the Canadian Fire Danger Rating System (CFDRS) variables, and other 

widely-used indices such as the Fosberg Fire Weather Index (FFWI) or Keetch-Byram 

Drought Index (KBDI). FFP also has statistical analysis tools to assess relationships 

among weather data, fire indices, and fire occurrence. While FFP is generally used by fire 

management organizations or professionals for short-term forecasting of fire indices, this 

research utilized the tools found in FFP for analysis of long-term datasets. Datasets were 



 

13 

then compiled, organized, and statistically analyzed using R-studio and the R 

programming environment.  

Fire occurrence parameters (area burned per year, number of fires per year) were 

obtained from the National Interagency Fire Center. Unfortunately, these parameters only 

exist for years 2002 – present day for all NEUS states, while records for the state of 

Maine extend back to 1903 (Patterson, personal communication). The reconstructed fire 

index datasets were compared to fire occurrence parameters for the region to assess the 

suitability of each index for the NEUS, as well as to investigate changes in fire risk 

throughout the period of record.  

2.3 Results 

2.3.1 Fire Occurrence  

Fire occurrence data for the NEUS is unfortunately temporally limited to 2002 

AD – present (National Interagency Fire Center, 2018).  However, fire occurrence data, 

while sparse for the entire NEUS, exists for the state of Maine over past 115 years. This 

dataset contains the number of fires per year and total acres burned per year, and is the 

longest record of wildfire occurrence in the region. Number of fires per year was lowest 

in the earliest part of the record (below 100 fires/year) and steadily increased through the 

early 1940s.  From 1945-1955, fire occurrence increased sharply to nearly 1000 

fires/year, before decreasing to approximately 400 fires/year through the early 1970s.  In 

1974, values again increased sharply, and continued to do so until peak values (>1400 

fires/year) were reached in the early 1980s. The number of fires then decreased steadily 

through present day values of 300-500 fires/year (Fig 2.3a).  
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 Total acres burned per year behaves differently than the number of fires per year, 

with maximum values occurring in the early portion of the record with peaks (>200,000 

acres) occurring in 1903 and 1947.  Acres burned per year steadily decreased throughout 

the record, with minimum values (<1,000 acres) occurring from 2006 to present day (Fig 

2.3b).  

2.3.2 Comparison of Fire Indices to Meteorological Data 

 The following 13 fire indices were computed from each meteorological station 

dataset: the Keetch-Byram Drought Index (KBDI), Fosberg Fire Weather Index (FFWI), 

Spread Component (SC), Burning Index (BI), Energy Release Component (ER), Ignition 

Component (IC), Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), 

Drought Code (DC), Initial Spread Index (ISI), Build Up Index (BUI),  Initial Rate of 

Spread (RSI), and the Canadian Fire Weather Index (FWI). Because a majority of these 

indices incorporate multiple types of parameters (i.e. meteorological, vegetation, and 

topographical variables) (see Table 2.1 for more information), the first step of this study 

involved demonstrating which variables are strongly influenced by meteorological 

parameters in this region. In order to assess if certain meteorological data have a 

dominant effect on the fire indices, correlations were calculated between each index and 

the meteorological parameters utilized (temperature, precipitation, wind speed, and 

humidity) during the fire “season”, April 1 – November 1. Correlation coefficients were 

computed for each individual station and then compiled into a “mean” correlation table 

(Table 2.3).  

Temperature was positively correlated with all fire indices, while daily precipitation and 

relative humidity were negatively correlated with each fire index.  Wind speed was the 
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only meteorological parameter that showed mixed correlation between different indices, 

with some showing strong positive correlation (i.e. the FFWI) and others showing a weak 

negative correlation (i.e. the KBDI).  On average, relative humidity showed the strongest 

correlation with all fire indices (R2 = -0.37), temperature showed the second strongest 

correlation (R2 = 0.29), followed by precipitation (R2 = -0.25) and wind speed (R2 = 

0.14). Averages of meteorological correlation coefficients (based on absolute values) for 

each fire index varied from 0.14 (RSI) to 0.44 (FFWI). 

2.3.3 Comparison of Fire Indices to Lagged Meteorological Variables 

 In order to examine any autocorrelations, or “legacy” effects, from meteorological 

variables on each fire index, indices were compared to meteorological data averaged on 

different timescales – daily, weekly (7 days), bi-weekly (14 days), and monthly (30 

days), and seasonal (90 days) moving averages.  Out of the 13 fire indices, three showed 

any indication of a lag effect on the variable.  KBDI, DMC, and DC all demonstrated 

stronger correlations with temperature and precipitation on monthly to seasonal time 

scales than on daily to weekly averages (Tables 2.4 a – c).  This possibly indicates that 

longer-term trends in temperature and precipitation have a substantial effect on these 

three fire indices.   

2.3.4 Comparison of Fire Indices to Eachother 

 Correlations between each fire index was done to demonstrate any “grouping” of 

fire indices, or if there is any fire index that could be representative of other indices 

(Table 2.5). Several of the indices – KBDI, DMC, DC, and BUI – are highly correlated 
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(R2 > 0.67), which indicates that these longer-term indices show similar patterns 

throughout the records. 

2.4 Discussion 

2.4.1 Selection of Fire Risk Indices for Regional Analysis  

 One of the primary goals of the work presented in this chapter has been to assess 

which fire index can best be used to interpret fire risk in the region using meteorological 

data in recent times, and also using climate model data for extrapolating fire risk 

throughout the remainder of the 21st century (see Chapter 3).  To find which fire index 

could be utilized to interpret regional fire risk, results from the analyses listed above were 

be taken into consideration.  First, we can gain insight into which fire indices are best 

reconstructed using only meteorological data (as opposed to topographical or ecological 

variables). When correlating temperature, relative humidity, precipitation, and wind 

speed with each index, the FFWI seems to be most influenced by meteorological 

parameters (R2 = 0.44).  However, it should be noted that while relative humidity and 

wind speed do influence fire activity and risk, these variables have much larger error in 

models projecting future activity as opposed to temperature and precipitation trends.  

When average correlations are computed without including humidity or wind 

speed, a handful of fire indices have much higher correlation coefficient values with 

meteorological parameters. In particular, the five indices with strongest correlation to 

meteorological data (temperature and precipitation) are the KBDI, BUI, DMC, DC, and 

FFMC (R2 = 0.54, 0.61, 0.68, 0.68, and 0.84, respectively). Furthermore, increased 

understanding of trends in climate model data can be obtained when looking at longer-
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term trends (monthly to seasonal) in temperature and precipitation. We find that three 

indices – the KBDI, DMC, and DC – all increase in correlation strength with longer-term 

variability in meteorological data.  Finally, these three indices seem to track eachother as 

well (Table 2.5), indicating that these all can be used to assess fire risk for the region. In 

particular, the KBDI will be used in the remainder of this study due to the reasons listed 

above, the widespread use and popularity of the KBDI in the NEUS and southeastern US 

(Burgan 1988), and the simplicity of the index (which only includes meteorological 

variables and assumes all other topographical and ecological parameters are fixed).  

2.4.2 Fire Risk vs. Fire Occurrence  

With the selection of the KBDI as a representative fire index based on the 

previously mentioned work, a comparison can be done to see how “well” the KBDI 

performs at tracking fire occurrence in the region. Max yearly KBDI and average yearly 

(April 1 – November 1) KBDI values were reconstructed from the Gardiner, ME station 

dataset and compared to Maine wildfire data (number of fires per year, acres burned per 

year) (Figure 2.4). This station was chosen due to the completeness of record, its location 

within the state of Maine, and its length of record.  Both maximum and average KBDI 

values seem to correlate well with number of fires per year (R2 = 0.26 and  0.32, 

respectively), particularly in the “extreme” fire risk years (e.g. the late 1940’s, 1965, and 

2016).  Weaker correlation exists between acres burned and maximum and average KBDI 

values, however (R2 = 0.06 and 0.13). This difference between acres burned and number 

of fires per year could likely be caused by human disturbance and fire suppression 

activities across the state. Regardless, the correlation strength between the KBDI and fire 

occurrence gives promise for the KBDI being used as a representative index of fire risk in 
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this study. 

  Reconstructed KBDI values can also be used to identify any shifts or variability in 

the fire season throughout the record (Figure 2.5).  A shift in the timing of the fire season, 

beginning approximately in 1980 and continuing through recent years, can be seen 

superimposed on the annual variability of the record. However, interpretation of this shift 

is difficult due to the lack of longer-term data sets, which would be necessary to see if 

this is within the realm of natural variability of the fire season.  

2.5 Conclusions 

Analysis of a suite of fire risk indices reconstructed from meteorological 

observations across the NEUS revealed that certain indices performed better at tracking 

fire risk and fire occurrence in the region than others. In particular, the KBDI was shown 

to strongly correlate with fire occurrence, particularly in the “extreme” years seen 

throughout the period of record. Furthermore, the KBDI was shown to be dominantly 

influenced by precipitation and temperature, as opposed to wind speed, relative humidity, 

or other ecological and topographical parameters, indicating that this index can be 

reliably reconstructed using precipitation and temperature data without taking into 

account variations in other parameters. The fire risk “season”, as reconstructed using the 

KBDI, fluctuates on multi-year timescales, with certain years (e.g. 1947) having high fire 

risk late in the season (through October), correlating with large, statewide wildfire 

outbreaks. Finally, the fire season appears to have shifted earlier throughout the late 20th 

century, with most years having season end dates in late August by the beginning of the 

21st century (with the exception of the 2 most recent years). Based on the current time 
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scale of record, it remains unclear if this trend is within the realms of natural variability, 

or if this trend will continue into the future.  
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Figure 2.1: Map of Northeastern U.S. meteorological stations used in this study. 
A) Bedford, MA; B)Boston, MA; C) Westover, MA; D) Portland, ME; E) 

Bangor, ME; F) Caribou, ME; G) Concord, NH; H) Pease, NH; I) Burlington, 
VT; J) New Haven, CT; K) Providence, RI; L) Amherst, MA; and M) Gardiner, 

ME.  More information on each site can be found in table 2.2.  
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Figure 2.2: Fire Occurrence Data for the state of Maine from 1900 – 2017.  A) 
number of fires each year, and B) total acres burned each year.  
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Figure 2.3: A) Comparison of max yearly KBDI (gray) and average yearly KBDI 
(red), B) number of fires in the Maine (black), and C) total acres burned in 
Maine (blue). Bolded KBDI lines are 5 year running averages. Note that in 
extreme years, KBDI tracks fire occurrence (e.g. early 1970s, mid 1960s) 

reasonably well. 

A 

B 

C 
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Figure 2.4: the “fire season”, as seen from the KBDI throughout the year from 
1900 – 2017 from Gardiner, ME. Note the key in the top right corner, indicating 

the color of the daily KBDI values.  A shift in timing of the fire season can be 
seen from the late 1970’s through present day.  
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Table 2.2: List of selected meteorological stations with period of record (POR) 
length given in years. Locations of each station can be viewed in Figure 2.1.  

Table 2.3: Mean correlations between all fire indices and meteorological 
variables from April 1 through November 1, as well as the average correlations 

for each index (based on the absolute value) and for each weather variable.  
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Table 2.4: Mean correlations between moving averages of lagged meteorological 
variables from April 1 - November 1, and daily values of the a) KBDI, b) DMC, 

and c) DC fire indices.  

Table 2.5: Mean correlations between fire indices from April 1 - November 1.  
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CHAPTER 3 
 

MODELING FIRE RISK IN THE NORTHEASTERN UNITED STATES FROM 
1950 – 2100 AD: LARGE INCREASES IN FIRE RISK PROJECTED FOR THE 

NEUS  

3.1 Introduction  

Understanding how future fire risk will change with respect to anthropogenic 

global warming is a critical question for the fire-science community. Furthermore, 

anticipated changes with fire risk pose both social and economic risk in heavily populated 

regions of the world such as the Northeastern United States (NEUS), with direct 

(infrastructure, property, and loss of life) and indirect (forest composition, ecosystem 

impacts, and carbon sequestration) consequences occurring with increased wildfire 

activity (Gould et al., 2013; Hunter-Kerr & DeGaetano, 2018). Therefore, it is imperative 

to accurately assess various aspects of fire risk with anticipated climate change. Past 

research has primarily focused on seasonal to multi-seasonal forecasts of fire risk in 

select regions of the world (i.e. the Western U.S.) (Roads et al. 2005). Recent studies are 

projecting fire risk trends into the future through the use of Regional Climate Models 

(RCMs) and General Circulation Models (GCMs) (Liu et al 2013). However, these 

studies primarily focus on current fire-prone regions like the Western U.S. or on global 

scales (Scholze et al., 2006; Krawchuk et al., 2009; Liu et al., 2010; Moritz et al., 2012; 

Tang et al., 2015; Wang et al., 2015), and have only been conducted in the NEUS over 

the past year (Hunter-Kerr & DeGaetano, 2018).  

One common theme in these studies is the approach in which future fire trends are 

projected. The most popular methods used include (1) predicting fire occurrence through 

statistical relationships between historical fire variables and atmospheric conditions (Liu 
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et al. 2013) and (2) through vegetation modeling using dynamic global vegetation models 

(DGVMs) (Levis et al. 2004, Tian et al. 2010).  Another approach to predicting fire 

trends into the future is utilizing fire indices to quantify fire risk, such as the Haines 

Index (Tang et al., 2015), and the Canadian Forest Fire Weather Index System (CFFWIS) 

(Wang et al., 2015; Hunter-Kerr & DeGaetano, 2017). However, most of these past 

studies have been focused on the U.S. as a whole (Tang et al. 2015) and have been 

performed using course model resolution (Wang et al. 2015). In a study by Hunter Kerr 

and DeGaetano (2017), fire risk was estimated using the CFFWIS for the NEUS through 

employing regional climate models dynamically downscaled from the Coupled Model 

Intercomparison Project (CMIP5).  This study found that overall fire risk, as estimated 

from the FWI of the CFFWIS, will increase in the NEUS throughout the 21st century. 

However, there are several limitations to the CFFWIS. This index in particular was 

developed and tested in regions dominated by boreal forest ecosystems, making its 

application to the NEUS questionable, as this region is comprised of several forest types 

and ecosystems.  Due to inherent differences in fire risk indices and their outputs (see 

Chapter 2 for more detailed descriptions), selecting appropriate indices is a necessary 

step to accurately quantify and interpret regional fire risk into the future.  Furthermore, 

few of these studies attempted to calibrate their modeled fire risk using historical data to 

see how accurately (or inaccurately) fire indices can be estimated using climate model 

output. Overall, little work has been done to understand trends in fire risk in the NEUS 

over the remainder of the 21st century through the use of fire risk indices estimated from 

downscaled climate data. 
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This study employs the Keetch Byram Drought Index (KBDI) to assess climatic 

fire risk in the NEUS. Quantification of the KBDI was performed using the most recent 

set of coordinated climate model intercomparison experiments (CMIP5), relying on the 

Coordinated Regional Climate Downscaling Experiment (CORDEX) to provide 

dynamically downscaled regional scenarios for the NEUS (Giorgi et al., 2009).  Prior to 

regional analysis, four case studies were chosen throughout the region in order to assess 

the accuracy of the modeled versus observed KBDI at different locations with varying 

climate averages and historically normal ranges of KBDI.  Finally, projected changes in 

fire risk for the region were estimated throughout the 21st century using the KBDI and 

compared to results from past studies (Hunter-Kerr & DeGaetano, 2018).  

3.2 Methods and Data Analysis 

3.2.1 Estimating Fire Risk Using the Keetch Byram Drought Index    

Daily fire risk for the NEUS was calculated using the Keetch Byram Drought 

Index (KBDI), a numerical index for estimating the moisture content of upper soils (i.e., 

litter and duff) (Keetch and Byram, 1968). In locations with deep upper soil layers, such 

as the NEUS, the dryness of these fuels in the upper layers is an important factor in fire 

risk and suppression activities.  When dry (i.e., a high KBDI), these fuels can make fire 

suppression extremely difficult, as fire lines tend to fail more readily and creeping fires 

are difficult to extinguish (Keetch and Byram, 1968). Furthermore, under times of 

extreme drought, high KBDI values are correlated with increased risk in fires with 

increased severity and in crowning fires (Keetch and Byram, 1968; see Chapter 2 for 

more details).  Therefore, in the NEUS where deep duff layers dominate the landscape, 
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the KBDI can be an important tool used by fire managers in planning fire suppression 

activities.   

3.2.2 Analysis of Climate Model Data 

 Similar to methods used by Hunter Kerr & DeGaetano (2018), fire risk was 

estimated in this study using climate data obtained from LOcalized Constructed Analogs 

(LOCA)-derived daily RCMs that have been dynamically downscaled by a subset of 

GCMs from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et 

al., 2011; Pierce et al., 2014).    

3.2.2.1 Downscaling Methods 

 Downscaling, which is a method for taking information at large scales (i.e. global 

scale) and forecasting at small scales (i.e. local scales), can be done with either a 

dynamical or statistical downscaling approach. Statistical downscaling, which finds 

statistical relationships between climate variables and atmospheric conditions and applies 

them to GCM outputs, often fail to capture daily ranges or extremes in climate variables 

(Karmalkar, personal communication). Dynamical downscaling using high-resolution 

climate models on a regional scale, then “fine tunes” the output using observational data 

or low resolution climate model output as boundary conditions (UCAR, 2016). While 

more computationally extensive than statistical downscaling, studies have typically used 

dynamical downscaling as the method to extract sub-regional climate data for future fire 

trend analysis (Liu et al. 2013). Models used in this study were downscaled using the 

LOCA technique, developed to help address some of the issues that arise with statistical 

downscaling (Pierce et al., 2014).  LOCA-derived climate data is available for the 
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continental US at a higher resolution (1/16 degree grid box) and on a daily time scale for 

scenarios incorporating RCP 4.5 and 8.5 (Pierce et al. 2014) Finally, the COordinated 

Regional Climate Downscaling EXperiment (CORDEX) provides dynamically 

downscaled reanalyses, historical simulations, and future projections of regional climate 

scenarios for North America (Giorgi et al., 2009).  

3.2.2.2 Representative Concentration Pathways (RCPs) 

` To better understand the complex interactions between climate, ecosystems, 

human activities, and nature, different future scenarios have been developed to provide 

possible portrayals of how the future climate might change. These scenarios help evaluate 

how future climate may vary given uncertainty in human activities, levels of future 

emissions, and mitigation efforts of emission reduction (Moss et al., 2010).  Past sets of 

scenarios, such as IS92 scenarios (Leggett et al., 1992) and SRES (Nakicenovic et al., 

2000) have been utilized for this purpose, but did not explore the adoption of various 

climate policies in the future (Moss et al., 2010).  Therefore, the most recent set of 

scenarios – the Representative Concentration Pathways (RCPs) – were developed to 

address this issue, and provide four possible emission trajectories with different end-of-

century (2100 AD) radiative forcing target levels (van Vuuren et al., 2011).  

The four scenarios developed include one pathway with maximum mitigation efforts, 

resulting in very low radiative forcing by 2100 AD (RCP 2.6), two medium (emission 

stabilization) scenarios (RCP 4.5 and RCP 6), and one high emission scenario where 

emission production continues as-is through the 21st century (RCP 8.5) (van Vuuren et 

al., 2011).  
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 In this study, RCP 4.5 and 8.5 were used to capture a range of future regional fire 

risk in the NEUS under different emission and mitigation pathways. Traditionally, only 

RCP 8.5 has been utilized in studies quantifying future fire risk, due to the fact that 

current trends in global emissions show yearly increases similar to those estimated in 

RCP 8.5 (i.e. Le Goff et al., 2009; Clarke et al., 2011; Hunter Kerr and DeGaetano, 

2018). However, in order to capture a better range of climate uncertainty and to estimate 

if fire risk changes with different variations in climate, climate data run under RCP 4.5 

emissions was also used in KBDI calculations.  

3.2.2.3 Selection of RCMs for Ensemble Model  

Generally, one of the biggest issues in climate change impact studies at the 

regional (or sub-regional) level is the computational time and cost of utilizing the large 

number of available GCMs (Karmalkar et al., 2018). Therefore, selecting a subset of 

models that accurately captures the variability in uncertainty in the climate projections 

and that perform well in the region is an important first step in regional climate impact 

assessments (Barsugli et al., 2013; Snover et al., 2013; Karmalkar et al., 2018).  

 Selecting a subset of climate models for analysis is not a straightforward process, 

due to the fact that GCM accuracy varies by region (Mason and Knutti, 2011) and that a 

selected subset might reduce the range of uncertainty seen in the model ensemble 

(Weigel et al., 2010). While past studies selected subsets of GCMs through assessing 

their accuracy in reconstructing historical climate variability (McSweeney et al., 2015; 

Monerie et al., 2017), recent work has attempted to develop a process-based methodology 

to identify which models accurately capture circulation features that drive changes in 

climate, so that subsets of GCMs can be identified that are credible and diverse by region 
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(Karmalkar et al., 2018). In a study by Karmalkar and colleagues (2018), this 

methodology was employed on the 36 model simulations that were used in the CMIP5 for 

the NEUS. Overall, 22 of the 36 models were eliminated from the ensemble without 

reducing model performance or the range of uncertainty in projections. The authors 

concluded that the subset selection process of these remaining 14 models must focus on 

retaining the amount of uncertainty sampled in the 36 model ensemble while still 

providing diverse climate scenarios (Karmalkar et al., 2018).  

 This study utilizes 5 of the 14 CMIP5 models found to be “best performing” by 

Karmalkar et al. (2018): (1)bcc-csm1-1, (2)GFDL-ESM2M, (3)GISS-E2-R, 

(4)HadGEM2-CC, and (5)HadGEM2-ES (Karmalkar et al. 2018). These five models 

were chosen for this analysis for several reasons.  First, these models capture the range of 

uncertainty of the ensemble for the NEUS in both temperature and precipitation 

variability (Figure 3.1).  For bcc-csm1-1 and GFDL-ESM2M, these were both found to 

have “good” overall performance (models that ranked in the top half of the 36 models for 

all 4 sets of performance metrics utilized by Karmalkar and colleagues) and essential for 

capturing the range of uncertainty (Karmalkar et al. 2018).  GISS-E2-R and HadGEM2-

CC are “mixed” in performance, but are essential due to the range of uncertainty of 

projections in the ensemble model.  For instance, HadGEM2-CC projects large increases 

in temperature and precipitation in all seasons. Finally, HadGEM2-ES, while having 

“mixed” performance, is designated essential due to its pre-existing use and downscaling 

in the CORDEX project (Karmalkar et al., 2018).   

It is important to note that in an ideal world, all 14 models deemed “essential” 

would be retained and used in the ensemble. However, due to time constraints and costs, 
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the 5 models listed above were selected in order to accurately estimate future climate 

projections for the NEUS, while preserving the range of uncertainty in the 36 model 

ensemble of the original CMIP5 project. Nevertheless, this methodology of using a 5 

model ensemble was tested for a small region of the NEUS against using the 14 member 

ensemble found to be essential in Karmalkar and colleagues (2018). Both the 5- and 14-

member ensembles were extremely similar with minimal differences in projected 

changes.  Therefore, the 5-model ensemble has been utilized to estimate fire risk for the 

NEUS.    

3.2.3 Case Study Site Selection  

 In order to assess the accuracy of the model ensemble for the NEUS, four 

locations were chosen for analysis prior to investigating regional changes in the future. 

This preliminary analysis reconstructed KBDI from the modeled historical period (1950-

2017 AD) and compared it to observed KBDI values for the same time period from 

meteorological stations (see Chapter 2).  The four locations – (1)Amherst, MA, 

(2)Gardiner, ME, (3)Burlington, VT, and (4)Caribou, ME – were chosen to capture the 

range of latitudes and ecosystems found in the region.  Furthermore, these locations all 

have virtually complete, long records (see Chapter 2 for more details), with daily records 

going back well prior to the start of model runs in 1950 AD. Climate data from model 

runs were taken at a 4x4 1/16th degree grid box centered around each meteorological 

station (Figure 3.2) and averaged for the gridded area prior to KBDI calculation.    
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3.2.4 NEUS Regional Projections  

 Regional analysis was performed for the entire NEUS, using the methods detailed 

above, for the time periods 1950-2017, 2018-2058, and 2059-2099. Due to the large 

variability in climate and in KBDI ranges throughout the region, fire risk was also 

evaluated six “sub-regions” in the NEUS – Southern New England (consisting of 

Connecticut, Rhode Island, and Massachusetts), Vermont, New Hampshire, Southern 

Maine, Central Maine and Northern Maine.    

3.3 Results and Discussion 

3.3.1 Evaluating Model Performance using Case Studies  

 Generally, observational KBDI (KBDIobs) and modeled KBDI values (KBDImod) 

for the historical period (1950-2017 AD) follow a seasonal cycle, with peak KBDI 

occurring in August – September (Figure 3.3a-h).  Severity of the seasonal KBDI cycle 

increases to the south, with Amherst, MA and Caribou, ME having the highest (~300) 

and lowest (~100) peak KBDI values of the four studies, respectively. KBDImod consistently 

underestimates KBDIobs at all case study sites, with the biggest discrepancy at the 

northern/inland sites (Burlington and Caribou). At these sites, the percent difference 

between modeled and observed values are as high as 50% during times with maximum 

KBDI values (Figure 3.4 c-d). However, at Amherst and Gardiner, the discrepancy 

between modeled and observed values is minimal, particularly during the NEUS “fire 

season” (April 1 – October 31), where percent difference stay well below 10% for the 

majority of the time period (Figure 3.4 a-b).   
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 KBDImod has a mixed performance at capturing known severe droughts in the 

observational records.  For instance, increases in KBDImod values at Amherst, MA, can be 

seen during times of severe drought including the early 1980s, 2003-2004, and 2015-

2016.  However, other times of known severe drought, such as the 1960’s, are not 

apparent in the KBDImod record (Figure 3.5a). The same holds true for Gardiner, ME, 

where notable severe droughts occurred in 1995, 1978, and the mid 1980s and are seen in 

the KBDI record (Figure 3.5b).  However, at the northern stations, KBDImod  struggles to 

capture any historical droughts using typical KBDI scales (Figure 3.5 c-d).   

 All case studies show increases in average seasonal KBDI values from historical 

levels using both RCP 4.5 and 8.5, with the largest increases occurring in the latter half of 

the 21st century under RCP 8.5 (Fig 3.3 a-h).  Furthermore, maximum KBDI values for 

all case studies increase exponentially towards the latter portion of the 21st century under 

RCP 8.5, while increasing linearly under RCP 4.5.   

3.3.2 Model Reproducibility of Observed Fire Risk 

 In order to interpret future regional fire risk using the KBDI with confidence, it is 

important to assess the accuracy of the KBDI reconstructed from the model ensemble in 

comparison to observed KBDI values from throughout the NEUS.  While the two case 

studies in the southern NEUS (Amherst, MA and Gardiner, ME) seem to reproduce 

average seasonal observed KBDI values with precision, northern case studies from 

Burlington, VT and Caribou, ME have substantially underestimated KBDI values from 

the model ensemble (Fig 3.3).  This could be caused by a variety of reasons, including (1) 

the accuracy of climate data obtained at high spatial resolution from the climate models, 
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(2) assumptions within the calculation of the KBDI, and (3) issues with observational 

data and measurements of climatic parameters made at meteorological stations.  

3.3.2.1 Accuracy of Model Data 

 One issue that arises in any study of future climate scenarios is how the range of 

uncertainty associated with the climate models is propagated throughout the data 

analysis.  While temperature predictions can be made with more accuracy, precipitation 

varies much more widely among models, and is therefore more difficult to estimate with 

confidence (Pierce et al. 2014). One way that the modeled KBDI values are consistently 

underestimated in comparison to observed KBDI could be that the downscaling methods 

used to obtain highly resolved data for the region overpredicted precipitation. While 

choosing a downscaling method can be somewhat subjective, LOCA derived data 

reproduce absolute and relative changes in precipitation that have much smaller error 

(approx. 20 times smaller) than other popular downscaling methods (i.e., BCCA) (Pierce 

et al. 2014). Therefore, LOCA provides downscaled, highly resolved, daily climatic data 

with minimal error. However, it should be noted that LOCA has trouble reproducing 

precipitation in regions that experience very little rainfall or in mountainous regions 

(Pierce et al. 2014).  

 To test the accuracy of the LOCA downscaled precipitation and temperature, 

observed climate data from Caribou, ME (daily precipitation and temperature) was 

compared to the model ensemble and revealed that the models capture yearly historical 

trends reasonably well (Figure 3.12). While the ensemble fails to capture the “extreme” 

years, it accurately follows the multi-year trends in both precipitation and temperature, 
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and gives us confidence in the reproducibility of historical climate using the model 

ensemble.  

3.3.2.2 Assumptions in the Calculation of the KBDI 

 Several issues that are potentially producing bias in the modeled KBDI records lie 

within the calculation of the KBDI itself, including (1) multi-day precipitation events, (2) 

average annual precipitation, and (3) effects of low vs. high daily max temperatures. The 

first issue involves how to account for multi-day precipitation events in the KBDI.  

Originally, the KBDI would only be reduced when when the consecutive 2-day total 

precipitation exceeded 0.2 inches (Keetch and Byram, 1968).  However, calculating the 

index becomes murkier when considering multi-day rainfall events.  For example, if there 

are eight consecutive days of rainfall, with no 2-day totals over 0.2 inches, would this 

result in a reduction to the KBDI? While some managers have rightfully taken this into 

account and have included multi-day precipitation in the KBDI (as was done in this 

study), some have not (FireFamilyPlus 2016), which can lead to overestimated KBDI 

values.  Furthermore, climate model data can exacerbate this issue, as a “drizzle effect” is 

a common issue with model data, where many days are estimated to have small but 

measurable rainfall (Pierce et al. 2014).  

 To test for this issue, observed and modeled daily rainfall were compared from 

the Caribou, ME case study. It was found that while the number of days with rainfall 

exceeding 0.2 inches were very similar between modeled and observed datasets (3,451 

and 3,880 days, respectively), the modeled dataset had drastically more days with any 

measurable rainfall compared to the observed dataset (24,471 and 10,893 days, 

respectively). However, while this could be the reason why modeled KBDI is much 
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lower than observed KBDI, this same test was also performed on the Gardiner, ME case 

study, where modeled and observed KBDI are much closer in value. Similar results to the 

Caribou case study were found, indicating that this “drizzle effect”, if significant enough 

to cause the discrepancy between modeled and observed KBDI, would be a regional 

signal and not localized to the northern areas of the NEUS. 

 Another issue with KBDI calculations is the bracketing of “drought factors” in the 

KBDI into tables using average annual precipitation.  The drought factor, which is how 

much KBDI on a given day increases due to temperature and previous day KBDI, is 

broken up into 5 tables based on annual precipitation – 10-19”, 20-29”, 30-39”, 40-59”, 

and 60+” per year (Keetch and Byram, 1968). Both northern case studies at Burlington, 

VT and Caribou, ME, have average annual precipitation of 36.79” and 38.54”, 

respectively (US Climate Data, accessed 2018).  This puts these locations on the high-end 

of the 30-39” table, while the southern areas fall within the 40-59” table.  While this 

could be causing the discrepancy in northern KBDI values, it is potentially problematic 

when looking into future scenarios where both of these cities cross the 40” per year 

barrier, moving them to the next bracket for calculating the KBDI. To account for this, 

KBDI values were reconstructed for both Burlington and Caribou using both the 30-39” 

and 40-59” tables.  Fortunately, the effects of changing brackets were insignificant, with 

only a 2-3% increase in reconstructed values at each location. Nevertheless, this could be 

a contributing factor to the north-south discrepancy in modeled and observed KBDI and 

should not be overlooked.   

 Finally, a potentially more promising explanation for the discrepancy in the KBDI 

occurs when maximum daily temperatures are cooler, such as in the northern regions.  
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Traditionally, the KBDI is not changed when temperatures are below 50o F (i.e., “drought 

factor” = 0 for days with max temperature below 50o F). Furthermore, daily increases in 

KBDI due to high maximum temperatures are not linear, as seen in the original drought 

factor tables from Keetch and Byram (1968) (Table 3.1). For example, at max 

temperatures of 90oF, additions to the KBDI can be from 0-16, depending on the previous 

day’s KBDI.  However, at max temperatures of 70oF, this addition reduces in range from 

0-5. Due to the lower temperatures observed in the northern regions of the NEUS, this 

issue could be potentially important and have a substantial impact on the modeled KBDI, 

as the model ensemble tends to miss “extreme” years of higher temperatures when 

compared to the observed dataset (Fig 3.12).   

3.3.2.3 Error in Observational Data Measurements  

 When comparing modeled KBDI to observed KBDI, caution must be taken in 

assuming observed KBDI was calculated perfectly and methods of data measurement 

(i.e., max temperature) remained unchanged throughout the period of record (POR). In 

reality, many long-term weather stations in the NEUS have been relocated at least once 

during their POR, with most moves including significant changes in elevation, sun cover, 

or height of measurements off of the ground. The type of thermometer used has become 

increasingly of concern to the calculation of the KBDI.  Mercury thermometers and 

newer thermocouple thermometers produce temperature differences of 5oF, further 

exacerbated by whether or not the thermometer was exposed or encased in some 

protective surround (Patterson, personal communication).  Finally, time of daily 

observation has a significant effect on KBDI, as max daily temperatures are used in the 

calculation. While new ASOS stations record and update conditions rapidly, 
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measurements at old weather stations were done manually, and the timing of observations 

could change daily.  For instance, if one observation was made at 4pm daily, “max 

temperature” would be listed as the temperature at 4pm, which may not necessarily be 

accurate.   

 Unfortunately, station metadata does not always reflect these changes in 

measurement method or relocations, concealing any apparent changes in the 

meteorological data due to measurement methods or station movement. At Burlington 

and Caribou, station movement has been well documented, and show that both stations 

have been relocated several times throughout their POR, sometimes up to miles in 

distance (NCDC, accessed 2018). However, datasets were supposedly “corrected” for 

these changes in location or elevation, but how they were corrected remains unknown. 

Furthermore, prior to ASOS station implementation at these locations, it is unknown what 

time measurements were taken each day.  All of these factors could be contributing to 

bias in the observed KBDI at each location.  However, it should be noted that such issues 

are common at many locations and not just at Burlington and Caribou, and any 

implications associated with observed measurements need to be considered on a case-by-

case basis for the entire NEUS.  

To summarize, despite these issues listed above and discrepancies between 

modeled and observed KBDI in the northern NEUS, modeled KBDI appears successful at 

reproducing average seasonal variability for most locations in the NEUS. Results from 

four case studies tell us that models capture observed data in all locations, and show 

similar trends across models and time frame, indicating a regional response in fire risk 
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into the future, and allow us to look at regional averages and future changes with more 

confidence.  

3.3.3 Northeastern United States Regional KBDI Analysis 

 Regardless of discrepancies between modeled and observed historical KBDI in 

northern areas of the NEUS, the overall trends in KBDI over time are the same 

throughout the region.  Regional analysis of the entire NEUS reveals similar results to 

those seen in the case studies.  Ensemble model runs estimate that NEUS temperature is 

projected to increase by 6 – 10 degrees F, while average annual precipitation increases 

approximately 5 inches per year (Fig 3.6). Using RCP 8.5, a 500% increase from 

historical levels is expected in average annual KBDI values which approach 150 by 2099 

(Figure 3.6). Furthermore, a 300% increase is expected in maximum annual KBDI, with 

end-of-century KBDI between 400-500.  Under RCP 4.5, these increases are lessened but 

still prominent, with 50-100% increases from historical levels for both average and 

maximum KBDI (Figure 3.6).   

The NEUS “fire season” is also expected to substantially lengthen. Increases in 

KBDI are expected throughout the fire season in both RCP scenarios, with 2059-2099 

September peak KBDI increasing by 300% and 100% from historical levels under RCP 

8.5 and 4.5, respectively (Figure 3.7 a-b). By 2100, the region is expected to see KBDI 

values above historical peak KBDI for 141 days (RCP 8.5) and 90 days (RCP 4.5) 

(Figure 3.7). Seasonal timing of peak KBDI does not substantially change in either RCP 

8.5 or 4.5 in the NEUS. Finally, year-to-year fluctuations in regional KBDI are present 

throughout the 1950-2099 time period (Figure 3.8a-b).  However, these fluctuations grow 
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in severity and magnitude towards the end of the 21st century, particularly in scenarios 

under RCP 8.5 (Figure 8b).  

 Sub-regional analysis reveals a wide range of seasonal KBDI values, with highest 

KBDI occurring in Southern Maine and Southern New England (CT, RI, and MA), and 

lowest KBDI occurring in Northern Maine and Northern Vermont/New Hampshire 

(Figure 3.9, a-l). Furthermore, year-to-year variations in the KBDI are highly variable 

among sub-regions, with large-scale droughts featured in the southern sub-regions (i.e., 

Southern New England, Southern Maine) and almost no droughts observed in the 

northern region (i.e. Northern Maine) under normal KBDI ranges (Figures 10 and 11). 

3.3.4 Fire Season Length and Severity – Implications for Fire Management 

 While interpreting fire risk for the NEUS on a whole is important, sub-regional 

analysis highlights how variable fire risk and climate is within the NEUS. Many “fire-

prone” areas exist throughout the southern NEUS and in southern Maine, with fire return 

intervals of less than 35 years (Figure 3.13) (LANDFIRE and MassGIS, 2013). In these 

locations, a regional analysis of the entire NEUS may underestimate the magnitude of 

change in fire risk associated with climate change, making a sub-regional analysis even 

more important for management decisions. Furthermore, changes in KBDI between sub-

regions are on different scales, indicating the need for sub-regional analysis and 

interpretation.  

 In fire-prone areas such as southern Maine and Southern New England (CT, RI, 

and MA), KBDI is widespread, severe fire risk is modeled to not only appear, but become 

a reoccurring phenomenon in the late 21st century (Figure 10). Under RCP 8.5, these 

areas can expect KBDI to regularly exceed values of greater than 600 for weeks to 
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months from 2059-2099, conditions that are unheard of under present conditions and 

similar to present-day KBDI values seen in the southeastern United States under drought 

conditions. The “fire season” will also lengthen by months in these areas. Average KBDI 

is expected to stay above the maximum historical average KBDI in southern New 

England and Southern Maine for approximately 4 months in each location. Analysis of 

the entire NEUS reveals similar trends to the sub-regional analysis of the southern areas 

detailed above, with large increases in average KBDI towards the end of the 21st century 

(Figures 3.7 and 3.8). This signal has been somewhat muted by the lower KBDI averages 

of the northern areas, but is still a noteworthy response of fire risk to anthropogenic 

climate change.   

It is important to note that there are limitations with using the KBDI as an 

indicator of fire risk.  This study only focuses on climatic fire risk – the vulnerability of 

the region to wildfire due to climatic variables (i.e., temperature and precipitation). Due 

to the complex nature of wildfire, there are many other aspects of fire risk that are not 

accounted for. The KBDI does not capture the “spring” fire season, which is driven by 

wind, dryness, warmth, and availability of fuel, as vegetation has greened early in the 

year. Other fire risk factors, such as spread rates, ignition vulnerability of available fuels, 

or variability in fuel loads and vegetation, are not considered by the KBDI, and thus 

cannot be estimated in this study.  However, prior studies investigating future fire risk in 

the NEUS have used indices attempting to incorporate these factors (i.e. Hunter-Kerr and 

DeGaetano, 2017), and have found similar results to this study, indicating a future 

increase in severity and length of the fire season in the NEUS.  
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In terms of fire management and suppression practices in the fire-prone sub-

regions of the NEUS, increases in fire risk of this magnitude will need to be taken into 

account in the near future.  Due to the nature of fire suppression activities (i.e. controlled 

burns) in these areas, fire managers will need to seriously adjust their “season” of 

controlled burns to address the lengthening and increased severity they will likely see in 

the fire season. Furthermore, as KBDI indicates the dryness of upper soil and therefore is 

associated with the estimated difficulty at suppressing fires already started, increases in 

fire suppression costs will likely go hand in hand with increases in fire risk quantified 

using the KBDI.  

3.4 Conclusions 

Understanding how future fire risk will change with respect to anthropogenic 

global warming in heavily populated regions is a critical question for the fire-science 

community. Projected changes in the KBDI in the NEUS indicate that climatic fire risk 

will increase drastically, with end-of-century annual average and maximum KBDI values 

300% and 500% above historical levels. The fire season is expected to considerably 

lengthen and increase in severity compared to historical levels in all locations of the 

NEUS, especially in the southern areas of the region. Interestingly, this substantial rise in 

regional fire risk is accompanied by moderate increases in annual precipitation, indicating 

that even with generally “wetter” conditions, evapotranspiration processes across the 

NEUS will grow more negative over time due to large increases in temperature. Results 

from this study demonstrate the likely changes that will occur with the wildfire season, 

requiring increased attention for both forest management and wildfire suppression 

activities throughout the remainder of the 21st century.  
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Figure 3.1: Model Projections for percent changes in precipitation and temperature 
from historical averages to 2100 averages, using the 5-member ensemble used in this 

study. Adapted from Karmalkar etl al. (2018) under RCP 8.5 scenarios for the 
NEUS. Due to the fact that the fire season is during the summer/fall months, the 

June-July-August averages were used to estimate model projections. These 5 models 
capture the range of uncertainty in model projections for the NEUS.  
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Figure 3.2a: Map of the NEUS, with 4 case studies indicated: A) Caribou, Maine, B) 
Gardiner, Maine, C)Burlington, Vermont, and D) Amherst, Massachusetts. White 

shaded boxes represent the area used in model projections for comparison to 
observed station data.   

  



 

50 

 
Figure 2b: Map of the NEUS with subregions defined – Southern New England 
(white), Southern Vermont/New Hampshire (yellow), Northern Vermont/New 
Hampshire (green), Soutthern Maine (Red), Central Maine (light blue), and 

Northern Maine (Brown).  
  



 

51 

  

Figure 3.3: Seasonal average KBDI from historical observations (black dashed 
line), modeled runs from 1950-2017 (black line), 2018-2058 (red line), and 2059-

2099 (purple line)  for selected four case study locations – A) Amherst, MA, 
B)Gardiner, ME, C)Burlington, VT, and D)Caribou, ME.  
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Figure 3.4: Anomalies between observed KBDI (solid black line top) and modeled 
KBDI (dashed line) for the historical period (1950-2017 AD), with difference (blue 

line) and percent difference (bottom black line) between model and observed KBDI, 
for the 4 case study locations. Shaded area on each plot represents the “fire season”, 

where KBDI becomes increasingly significant to fire managers. Note the small 
differences between modeled and observed KBDI on plots A and B (Amherst and 

Gardiner), while larger differences occur at C)Burlington and D) Caribou.   
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Figure 3.5: Modeled KBDI from 1950-2099 at A)Amherst, MA , B)Gardiner, ME, 
C) Burlington, VT, and D) Caribou, ME, for RCP 8.5. Note scales and color ranges 
remain constant for each plot: low KBDI values of 0-150 are indicative of little/no 
fire risk (green), increasing to KBDI values of 150-300 (yellow), 300-450 (orange), 
450-600 (red) and then greater than 600 (purple) for maximum KBDI values and 

extreme fire risk.  
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Figure 3.6: Model Ensemble NEUS Climatic Data and KBDI from 1950-2099, under 

both RCP 8.5 and 4.5. a) Mean annual temperatures (black (RCP 8.5) and grey 
(RCP 4.5)), b) Annual Precipitation in inches per year (Dark blue (RCP 8.5) and 
light blue (RCP 4.5)), c) Average annual KBDI (dark red (RCP 8.5) and light red 

(RCP 4.5)), and d) Maximum annual KBDI (purple (RCP 8.5) and pink (RCP 4.5).    
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Figure 3.7: Averaged seasonal KBDI for the NEUS under A) RCP 8.5 and B) RCP 

4.5. Averages have been broken into three time periods: 1950-2017 (black line), 
2018-2058 (red line), and 2059-2099 (purple line).  
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Figure 3.8: Modeled KBDI from 1950-2099 for the NEUS for a) RCP 8.5 and b) 
RCP 4.5. Note scales and color ranges remain constant for each plot: lower KBDI 

are indicated by green, increasing to yellow, orange, red and then purple for 
maximum KBDI values.  
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Figure 3.9: Averaged seasonal KBDI for 
subregions under RCPs 8.5 and 4.5: a-b) 

Southern New England, c-d) central Maine, e-f) 
southern VT-NH, g-h) Northern Maine, i-j) 
Southern Maine, and k-l) Northern VT-NH. 

Averaged time periods include 1950-2017 
(black), 2018-2058 (red), and 2059-2099 

(purple). 
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Figure 3.12: Comparison of modeled and observed climate data from Caribou, ME.  
A)Average temperature for observed (black solid line) and modeled (grey dashed 
line), and B) Annual Precipitation in inches per year for observed (blue solid line) 

and modeled (blue dashed line).  
 
 

Figure 3.13: LANDFIRE Map 
of fire return intervals in the 

NEUS, provided by the 
Northeast Forest and Fire 
Management LLC (2013). 

Note that many areas in the 
southern portion of the NEUS 
have low return intervals for 
fire, in some cases lower than 

35 years.  
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4.1 Abstract 

Climatic and environmental change has a direct effect on wildfire frequencies and 

distributions throughout many regions of the world. Reconstructions from natural 

archives such as lake sediments can extend temporally limited historical records of 

regional wildfire activity over longer timescales through sedimentary charcoal analysis or 

examining polycyclic aromatic hydrocarbon (PAH) concentrations. To date, little work 

has been completed on sedimentary PAH distributions from lacustrine records in the 

Northeastern United States (NEUS), making it difficult to assess how accurately PAHs 

trace fire activity in the region, the spatial scope of the signal (local versus regional), or if 

certain compounds do a more adequate job of tracking fire than others. In this study, we 

examine PAHs and macrocharcoal from a varved sedimentary record from Basin Pond, 

Fayette, Maine (USA). We find that a drastic increase in the concentrations of 17 

measured PAHs occurred during the 19th-20th centuries due to industrialization of the 

region. Additionally, elevated concentrations of the PAH retene were found to be highly 

correlated with known large-scale regional wildfire events that occurred in 1761-1762, 

1825, and 1947 (A.D.). To distinguish between biomass burning and anthropogenic 

combustion sources, we examined the ratio of the PAHs retene and chrysene. Our new 

Basin Pond PAH records, along with a local signal of fire occurrence from charcoal 

analysis, offers the prospect of using this multi-proxy approach as a method for 

examining long-term wildfire frequency at both the local and regional scale in the NEUS.    
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4.2 Introduction 

Wildfires are an important consequence of global climatic and environmental 

change. Understanding fire frequency and anthropogenic impacts on wildfires is critical 

in the context of climate change because they directly impact atmospheric composition, 

ecosystem diversity, and land management practices (Clark and Royall 1995; Gill and 

Bradstock 1995; Werf et al. 2004; Denis et al. 2012; Kirchgeorg et al. 2014). Fire 

frequency is expected to increase in most global warming scenarios, and costs relating to 

wildfire management and damage have been increasing in recent years (U.S. Forest 

Service 2015; National Interagency Fire Center 2016). Furthermore, there is uncertainty 

about how human disturbance, particularly in the Northeastern United States (NEUS), 

has affected natural burning patterns due to our lack of continuous fire history records for 

pre-settlement times (Clark and Royall 1995). Therefore, long term wildfire 

reconstructions are a major factor in understanding climate-wildfire feedbacks and how 

climate influences natural wildfire regimes (Denis et al. 2012).    

While wildfires are a less common phenomena in the NEUS than in other regions 

of the world, large events can occur and significantly impact the landscape. Due to 

limited historical wildfire records in the region, reconstructions from natural archives 

including lake sediments and tree rings are needed to extend fire history over longer 

timescales. In the NEUS, tree-ring studies are temporally limited due to human 

disturbance on forest ecosystems and land clearance practices (Lorimer 1977; Parshall et 

al. 2003; Barton et al. 2012). Therefore, most wildfire reconstructions are based on 

macrocharcoal distributions in lacustrine sediments (Swain 1973; Fahey and Reiners 

1981; Clark and Royall 1995; Clark et al. 1996; Parshall et al. 2003; Pederson et al. 
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2005). Although this method has greatly increased our knowledge of past wildfire 

activity, there are some limitations. Charcoal analysis can require large volumes of 

sediment depending on sediment composition and charcoal abundance (Whitlock and 

Larsen 2001; Denis et al. 2012). Furthermore, many existing charcoal records in the 

NEUS are poorly resolved, not continuously sampled, and only provide a local signal of 

burning (Marlon et al. 2009; Zennaro et al. 2015), making determining a regional signal 

of fire activity difficult.  

Molecular compounds that can be used as markers of burning have become 

increasingly studied in paleoenvironmental reconstructions of wildfire activity (Yunker et 

al. 2002; Denis et al. 2012; Kirchgeorg et al. 2014). One such compound class is 

polycyclic aromatic hydrocarbons (PAHs). PAHs, produced through natural and 

anthropogenic processes, were first found in soils and have since been studied across 

different ecosystems and environments, including lakes (Blumer 1961; Grimalt et al. 

2004; Bianchi and Canuel 2011). Pyrogenic PAHs are made through the incomplete 

combustion of organic material (Page et al. 1999), and can be used to trace regional 

combustion processes such as fossil fuel burning or forest fire activity (Page et al. 1999; 

Yunker et al. 2002; Denis et al. 2012). Therefore, the historical record of certain PAHs, 

or groups of PAHs, in sediment cores can be used as proxies for the frequency and size of 

wildfires in pre-industrial times (Musa Bandowe et al. 2014). However, interpreting PAH 

abundances as proxies for wildfires becomes more complicated when moving into 

modern (post-industrialization) time periods. Industrialization and widespread use of 

fossil fuels has caused increases in concentrations of most PAHs. Fortunately, different 

combustion sources, such as combustion from fossil fuels or biomass combustion, can be 



 

66 

distinguished by the ratios of specific PAHs, such as retene/(chrysene + retene) and 

anthracene/(anthracene + phenanthrene) (Yunker et al. 2002; Yan et al. 2005; Kuo et al. 

2011; Denis et al. 2012). However, to our knowledge, little work on PAH distributions 

from lacustrine sedimentary records have been completed at high-resolution in the 

NEUS, making it difficult to assess how accurately PAHs trace fire activity in the region, 

the spatial scope of the signal (local versus regional), and if certain compounds do a 

better job of capturing fire history than others.  

To address these issues, we present an organic geochemical analysis of a 900-year 

sedimentary record with sub-decadal resolution from Basin Pond, Maine, USA. Past 

studies of Basin Pond have focused on paleoenvironmental reconstructions using pollen 

and charcoal, as well as sedimentological analyses spanning the Holocene (Gajewski et 

al. 1987; Gajewski 1988; Doner 1990; Clark and Royall 1994, 1996; Clark et al. 1996; 

Frost 2005). The goal of this study was to reconstruct a continuous, highly-resolved 

record of local and regional wildfire activity from the NEUS and to better understand 

differences in fire history recorded in lacustrine sediments by PAHs and macrocharcoal. 

We compare our reconstructions with historical records of large regional fires to assess 

the accuracy of the sediment records as wildfire proxies.  

4.2.1 Study Location 

Basin Pond is a small (0.14km2 area) lake with a maximum depth of 32.6m 

located in Fayette, ME (44º28’N, 70 º03’W) at an elevation of 124m above sea level 

(Figure 1) (Gajewski et al., 1987; Frost 2005). Basin Pond has no fluvial inlets, with the 

main sources of water from groundwater and precipitation. The sole outlet is a small, 

dammed stream running westward into the adjacent David Pond (Frost 2005). Most of the 
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0.53km2 catchment area is located within the “Basin Pond Conservation Area” with one 

residential building in the watershed (Frost 2005). The catchment is dominated by a well-

developed forest of deciduous hardwoods and evergreen trees, with hemlock being the 

most abundant species (Frost 2005).  

 Basin Pond is unique in that the sedimentary record is comprised of annual 

laminations, or varves, due to a permanent meromictic water column (Wetzel 1983; Frost 

2005). A persistent chemocline was found throughout the year to be sufficient to prevent 

turnover of the water column during the breakdown of thermal stratification during the 

early spring and late fall. This chemical stratification aids in the permanent anoxic 

conditions at depth, allowing for the preservation of annual couplets in the sedimentary 

record (O’Sullivan 1983). The Basin Pond varves are biogenic in nature, with couplets 

being comprised of a lighter, diatom-rich layer and a darker, humus layer (Frost 2005). 

4.3 Materials and methods 

4.3.1 Core collection  

Primary field work at Basin Pond was conducted in March 2014. Sediment coring 

was performed from ice in the deepest part of the lake at 32m (44º 27’ 27” N, 70º 03’ 09” 

W) using a UWITEC gravity coring system. Core BP2014-3D (52 cm), captured an 

undisturbed sediment-water interface, and was subsampled in the field at 0.5 cm 

resolution for radioisotopic dating. Core BP2014-5D (174 cm) was taken and 

immediately capped. In the Department of Geosciences at University of Massachusetts 

Amherst, cores were split, photographed, and subjected to non-destructive down-core 

logging using an Itrax XRF core scanner at 100-μm resolution.  
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4.3.2 Age model 

The age model for Basin Pond core BP2014-5D is primarily based on a varve 

count chronology of the uppermost 80-cm confirmed through radioisotopic dating of the 

upper sediments and radiocarbon dating of plant macrofossil samples (Figure 2; Table 1). 

Varve counts were completed using X-Ray radiograph images with 100-μm resolution. 

Laminations in the upper 80-cm of the sediment record appear continuous with no 

apparent hiatuses, and were counted three times for the creation of the varve count 

chronology with minimal error. The upper 15-cm of sediment were also dated using 

radioisotopic analysis. Subsamples from core BP2014-3D were freeze dried, 

homogenized, and measured for 210Pb activity on a Canberra GL2020R Low Energy 

Germanium Detector, following the methods detailed by Woodruff et al. 2013. Ages for 

210Pb measurements were estimated assuming a constant rate of supply of unsupported 

210Pb activity (Appleby and Oldfield 1978). In addition, radiocarbon dating of 5 discrete 

samples were conducted on terrestrial macrofossils (Table 1; Figure 2). Radiocarbon age 

estimates were calibrated using the “IntCal13” calibration to years before present in the 

‘R’ program ‘BChron’(Parnell 2016). No corrections for ‘old’ carbon were made on these 

terrestrial macrofossils.  

4.3.3 Organic geochemical analyses 

  One-hundred and thirty-six discrete samples were extracted from core BP2014-

5D at 0.5-cm resolution, continuously from the sediment water interface to 68-cm depth. 

After freeze drying, samples were homogenized and extracted using a Dionex accelerated 

solvent extractor (ASE 200) with a solvent mixture of dichloromethane(DCM) and 

methanol (MeOH) (9:1, v/v). The resulting total lipid extract was then separated into 
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apolar (9:1 hexane:DCM v/v), ketone (1:1 hexane:DCM v/v), and polar (1:1 

DCM:MeOH v/v) fractions using alumina oxide column chromatography.  

PAHs were identified and quantified on a Hewlett Packard 6890 series gas 

chromatograph coupled to an Agilent 5973 mass spectrometer (GC-MS) using a Restek 

Rtx-5ms column (60-m x 250-μm x 0.25-μm). Samples were run in Selected Ion 

Monitoring (SIM) mode, where ion masses of 17 PAHs were targeted (Table 2). Sixteen 

PAHs were identified from a RESTEK SV Calibration Mix PAH Standard, while an 

additional PAH was identified from a CHIRON AS standard (Table 2). External 

calibration curves were created for all 17 PAHs based on varying injection concentrations 

and were used to calculate PAH concentrations in core BP2014-5D. Sedimentary 

compounds were identified by interpretation of characteristic mass spectra fragmentation 

patterns, relative retention times, and by comparison with the PAH standards and the 

literature. Levoglucosan, an organic biomarker that is commonly used to trace vegetation 

burning in sedimentary records (Fabbri et al. 2002; Lopes dos Santos et al. 2013; 

Shanahan et al. 2016), was searched for but not detected in the Basin Pond sediments. 

4.3.4 Charcoal analysis 

Macroscopic charcoal analysis was analyzed on the same core and at the same 

intervals as for organic geochemical analyses. 1-cm3 of wet sediment were taken and 

soaked in a solution of 10% potassium hydroxide (KOH) solution for 2 weeks to oxidize 

non-charcoal organic matter, and then sieved over a 125-μm mesh (Enache and Cumming 

2006; Schlachter and Horn 2010). Charcoal pieces per sample were counted using a 

microscope at 40x magnification. Charcoal classification was determined based on three 

criteria: the macrocharcoal in question had to have been completely black and reflective, 
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breakable upon touch, and have organized plant cellular structure (Whitlock and Larsen 

2001).    

4.4 Results  

Out of the 17 PAHs (Table 2) we searched for, 5 were not present in most 

samples, including naphthalene, acenaphthene, anthracene, indeno(1,2,3-cd) pyrene, and 

dibenz(ah)anthracene. Four PAH were found in most samples throughout the record 

(benzo(b)fluoranthene, pyrene, retene, and chrysene). The remaining 8 compounds 

(phenanthrene, fluoranthene, benzo(k)fluoranthene, benzo(a)anthracene, acenaphthylene, 

benzo(a)pyrene, benzo[ghi]perylene, and fluorene) searched were mainly only found in 

the upper 15-cm of sediment. PAH concentrations were calculated for each of the 12 

detectible compounds. With the exception of retene, all of the PAH distributions are 

extremely similar, varying from 0-1.6μg/g in the upper 15-cm of sediment. Retene was 

the most abundant PAH present and varied in concentration from 0.1-10μg/g sed 

throughout the record.  Charcoal counts varied from 20-250 pieces per cm3 (cc), with the 

highest peak occurring in the upper 5-cm of sediment.  

4.5 Discussion 

Here we examine how local and regional fire history can be recorded in NEUS 

lacustrine sediment records by organic biomarkers in comparison with sedimentary 

charcoal counts. We first examine the known historical wildfire data and subsequently 

provide an in-depth comparison of the Basin Pond macrocharcoal and PAH records. In 

the following discussion, we divide our records into three main periods: pre-historic 
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(1100 AD to 1750 AD), historic (1750 AD to 1950 AD), and modern times (1950 AD to 

present day). 

4.5.1 Historical wildfire data 

In Maine, historical records document several large wildfire events (> 400km2) 

dating back to the mid-18th century (Coolidge 1963). While these have occurred 

throughout the state, we will focus on large wildfires estimated to have occurred within 

80km of Basin Pond. The most recent outbreak in October 1947AD saw numerous fires 

burn over 800km2 acres across southern Maine over a week, and became known as “The 

Week Maine Burned” (Butler 1979). The largest estimated wildfire during the historical 

period occurred in 1825AD and became known as the “Miramichi Fire” (Butler 2014). 

During this event, an estimated 12,000 km2 of land was burned throughout Maine and 

New Brunswick, with roughly 3,350 km2 of land burned in central Maine; this was one of 

the largest wildfires in North American history (Coolidge 1963; Butler 2014). The 

earliest known large wildfire events, noted in historical records, occurred in 1761-1762 

AD throughout southern Maine. The estimated extent of these fire events is less well-

constrained, as maps of the burn regions and historical accounts from individual towns do 

not all agree (Coolidge 1963). Nonetheless, the fires of 1761-1762 AD burned across 

much of the same areas that were burned during the 1947 AD fire outbreak (Figure 1).  

4.5.2 Age model considerations 

A robust chronology is essential to compare the proxy records developed here 

with those of historical fires. While it appears that the varve chronology of Basin Pond is 

continuous, and the varve counts are in good agreement with the 210Pb ages (Figure 2), 
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we note some differences with the radiocarbon ages. Four of the 5 radiocarbon dates 

trend slightly younger than the varve count chronology (Figure 2), with 2 samples (BPR-

022 and BPR-026) having calibrated ages and associated errors that fall entirely outside 

the varve count chronology (by 15 years and 65 years, respectively). The most plausible 

explanation for the discrepancy involves the isotopic fractionation correction. Generally, 

in order to remove the effects of isotopic fractionation in radiocarbon analysis, the 

modern fraction of macrofossils is corrected to the value it would have if its original δ13C 

were -25‰, unless measured on each macrofossil sample. In laboratory analysis, δ13C 

was unreported for all samples, so the fraction modern in each sample was corrected for 

isotopic fractionation using an estimated base value of -25‰. With the exception of the 

basal sample, the Basin Pond macrofossils selected for analysis were eastern hemlock 

needles, which have δ13C values of -29 to -30‰ (Domec et al. 2013). This difference can 

produce calibrated ages skewed younger by several decades. Other possible explanations 

for younger radiocarbon ages include slight error in the varve chronology or the minor 

inclusion of modern carbon during sample processing. With these issues in mind, we use 

the varve count chronology as the age model; we note that the varve chronology is in 

good agreement with the 210Pb ages and that past studies of Basin Pond also utilized the 

varve chronology as an acceptable age model (Gajewski 1987, 1988; Clark 1996; Frost 

2005). 

4.5.3 The basin pond charcoal record 

Macroscopic charcoal analysis has commonly been employed in recent decades as 

an indicator of local fire activity (Whitlock 2001). Wildfire characteristics, such as size 

and intensity, have large influences on charcoal production, distribution, and deposition 
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in lacustrine sediment records. Other factors affecting charcoal transport and deposition 

in lakes include atmospheric patterns at the time of the fire (Gardner and Whitlock 2001) 

and distance from the lake.  In light of these complex factors affecting charcoal 

abundance in lacustrine sediments, past studies have generally found that while large 

charcoal particles (>1000-μm) tend to be deposited near a lake (Clark and Patterson 

1997), smaller particles can be transported much greater distances. In large fires (with 

convective columns >1000m), charcoal particles <200-μm can be transported tens of 

kilometers (Clark 1988; Whitlock 2001). Despite this, there have been instances where 

charcoal analysis fails to detect either known fire events or events detected in other 

natural archives such as tree rings (Holz et al. 2012).  

The Basin Pond charcoal record demonstrates large peaks occurring after both the 

1947 AD and 1825 AD fire events (Figure 3), even though the estimated ranges of burned 

area are thought to be outside the normally accepted range of macrocharcoal distribution. 

The most likely explanation is that the burn area estimates for the historical fire events, 

while reasonably accurate, do not represent all fires that took place in the region during 

those time periods. Importantly, these fire events were not one large fire, but were 

comprised of numerous smaller fires taking place at the same time (Coolidge 1963). The 

estimated burn areas of each are likely not all-inclusive, making it possible that the 1947 

AD and 1825 AD fires could have been within range of Basin Pond for a charcoal signal 

to be recorded. In the pre-historic record, elevated charcoal abundances occur during a 

period from 1510-1630 AD, indicating a possible time of increased local fire activity 

(Figure 4).  
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4.5.4 Basin pond PAH records 

A major feature of the Basin Pond record is a dramatic increase in all PAH 

concentrations between pre-historic and historic times (Figure 3, 4), which is related to 

increased population and industrialization of the region. Industrialization is likely the 

driving factor of the simultaneous increases in all PAHs in the mid-19th century (Figure 

3), as coal and other fossil fuels were increasingly used in the region. Furthermore, 

population increases led to more wood being used as a heat source during winter months, 

which possibly also led to higher PAH concentrations. It is important to note, however, 

that retene shows a slightly different distribution than the other PAHs.  

Retene is produced from the breakdown of abietic acid, which is prevalent in 

conifer tree resin (Ramdahl 1983; Ahad et al. 2015). Here we interpret retene as an 

indicator of biomass burning because conifers, specifically hemlock, are an important 

part of the ecosystem in northern New England and the Basin Pond region (Ramdahl 

1983; Denis et al. 2012). The retene record exhibits several sharp increases in 

concentration superimposed on the overall increasing trend following the fire outbreaks 

of 1761-1762 AD, 1825 AD, and 1947 AD (Figure 4).  

One issue that arises with interpreting PAH distributions in relation to biomass 

burning is that PAHs can be produced by multiple sources (biomass burning or fossil fuel 

combustion). The retene/(chrysene+retene) ratio (hereafter R/C+R) aids in delineating 

between combustion sources and can also be a more robust indicator of past fire history 

than individual PAH concentrations alone, which can show greater variability due to 

multiple sources (Yan et al. 2005; Kuo et al. 2011). The R/C+R ratio has been used by 

past studies to distinguish the sources of PAHs, as lower values (0.15 to 0.5) tend to 
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indicate fossil fuel combustion source while higher values (>0.8) indicate a soft-wood 

combustion source (Yan et al. 2005; Kuo et al. 2011; Denis et al. 2012). All Basin Pond 

pre-historic samples have R/C+R ratios above 0.8, indicating that PAHs largely derive 

from biomass burning (Figure 4). Entering the historic period, the ratio shows a steady 

decrease in the mid-19th century from pre-historic levels (0.95-0.99) to <0.6, only 

disrupted by a sharp increase to above 0.95 after the 1825 AD fire. Values drop 

drastically as industrialization of the region accelerated, and remained lower than 0.8 in 

all but one sample through the rest of the historic period and modern times (Figure 3). 

The sampling following the 1947 AD fire is the only sample in modern times to reach 

above 0.8. Therefore, the R/C+R ratio appears to track wildfire activity in the region 

quite well during the historical and modern periods and results are consistent with 

wildfire events noted by retene concentrations.  

4.5.5 Comparison of wildfire proxies 

Two of three known regional wildfire events (the 1825 AD and 1947 AD fires) 

are evident the Basin Pond retene and charcoal records. The 1761-1762 AD fires, while 

evident in the retene record, are not apparent in the charcoal record (Figure 4). The 1761-

1762 AD event is the earliest known wildfire outbreak in the region, and information on 

the estimated range and magnitude of the fires is limited (Coolidge 1963). If the 1761-

1762 AD event was of smaller magnitude or farther from the site than historical records 

indicate, distribution of charcoal would be limited.  

The macrocharcoal and retene concentrations show a strong similarity throughout 

time, with both records suggesting coeval periods of increased fire activity (Figure 4). 

However, one noticeable difference is that the retene record shows more variability, 
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supporting the idea that each proxy is tracking wildfires on different spatial scales. PAH 

signals can be indicative of regional events, as PAHs can be moved much greater 

distances through aeolian transport than macroscopic charcoal (Page et al 1999). 

Therefore, it is likely that retene is tracking regional fire events, while charcoal is 

primarily tracking fires closer to Basin Pond. The best example of this discrepancy 

between records occurs during the period of increased fire activity from 1510-1630 AD, 

where several peaks in the charcoal record indicate increased burning whereas in the 

retene record, the timing of this increase is slightly longer (Figure 4). The period of 

increased fire activity in the retene record is evident from 1470-1640 AD, beginning 

almost 40 years prior and ending slightly earlier to that indicated by the charcoal record. 

This suggests that while local burning began roughly 500 years ago, regional events had 

been occurring for several decades prior. Furthermore, another increased period of fire 

activity is present in the retene record from 1240-1320 AD, but is not present in the 

charcoal record (Figure 4), indicating that while there were regional fires during this 

period, there was seemingly no local fire activity.  

One interesting difference between the two proxies is the lag of the charcoal 

peaks in comparison to retene after the 1825 AD and 1947 AD fire events. In both fire 

events, retene concentrations exhibit maximum values 4 years and 9 years after the fire, 

respectively. However, in the charcoal record, this peak is delayed to 20 years and 17 

years, respectively. Since all charcoal and PAH samples were from the same depths, this 

suggests that these offsets are real. We hypothesize that this is caused by charcoal and 

PAH having differing transport and environmental residence times. Lag times associated 

with charcoal deposition in sedimentary records are a common occurrence, with lags on 
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the order of several years (Whitlock and Millspaugh 1996, Duffin et al. 2007) to several 

decades (Patterson 1987). In Basin Pond sediments, retene demonstrates sharp increases 

in activity almost immediately after the wildfire events, while charcoal shows a more 

gradual increase over several samples, suggesting that retene is a more rapid indicator of 

wildfires in a sedimentary record than charcoal.  

4.5.6 Retene: a proxy for regional wildfire activity? 

Our data support that retene concentrations are a useful proxy for wildfire activity 

in the Basin Pond record over the past 900 years, yet caution must be taken when 

applying this proxy to longer time scales due to the nature of PAH production. PAH 

profiles are specific to the type of organic matter being combusted (Yang et al. 2007). In 

the case of retene, a large shift in regional forest composition over time may impact the 

PAHs produced from biomass burning. In the NEUS, large shifts in forest composition 

have occurred throughout the Holocene, including regional hemlock declines (Foster et 

al. 2006) or European deforestation in recent centuries (Foster and O’Keefe 2000). These 

shifts may alter the sedimentary PAH profiles and thus influence how PAHs trace fire 

activity in the region. Therefore, we suggest more research should be done on PAHs in 

lacustrine records in the NEUS over longer time scales to investigate how large-scale 

vegetation changes over time may alter sedimentary PAH distributions and the effects on 

how wildfire histories are recorded.   

4.6 Conclusions 

Our analysis of the varved Basin Pond sedimentary record reveals generally good 

agreement between charcoal counts and retene concentrations with historical records of 
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past large fire events occurring in 1761-1762 AD, 1825 AD, and 1947 AD in central and 

southern Maine. We find that retene tracks regional fire activity while macrocharcoal 

counts track localized burning. A dramatic increase in PAH concentrations is seen 

coincidently with industrialization of the region in the historic period (1750AD – present 

day). To distinguish between PAH sources, the retene/(chrysene + retene) ratio allowed 

for the distinction of regional fire events from fossil fuel combustion. Although there are 

differences between the timing of fire events indicated by the retene and charcoal records, 

overall similarities between these records highlight the potential of using retene as a 

proxy for wildfire activity in the NEUS. Furthermore, the use of retene and the 

retene/(chrysene + retene) ratio is a novel method to tracking wildfires in the NEUS, and 

should be investigated in more detail in future wildfire studies in this region, focusing on 

longer timescales and different ecosystems.  
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Table 4.1: Results of radiocarbon analysis of Basin Pond macrofossils from core 

BP2014-5D. The laboratories used were the U.S. Geological Survey’s Eastern 
Geology and Paleoclimate Science Center (USGS), and the Woods Hole 

Oceanographic Institute NOSAMS Facility (OS). 14C ages were converted to 
calibrated ages using the “BChron” package for R (see text for more detail).  

Sample 
Depth (cm) 

Description Lab ID 14C Age 
Calibrated Age Range 

(yrs BP(1950)) 
(1σ)                 (2σ) 

Median Age 
(cal yr BP 

(1950)) 
      

11.5 
Hemlock 
Needle 

OS-
117501 

95 ± 20 49–236 33–253 106 

19 
Hemlock 
Needle 

OS-
117502 

205 ± 25 19–282 1–295 170 

40 
Hemlock 
Needle 

OS-
117504 

310 ± 35 321–431 303–468 384 

68 
Hemlock 
Needle 

OS-
107506 

835 ± 20 715–764 700–781 740 

123 wood 
USGS-
9906 

1700 ± 35 1569–1673 1546–1694 1603 
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Table 4.2: PAH present in laboratory standards and searched for in Basin Pond 
sediments, with major ions for each compound. 

  

Retention Order  Compound  
Major 

Ion Standard Used 
    

I naphthalene 128 Restek 

II acenaphthylene 152 Restek 

III acenaphthene 153 Restek 

IV fluorene 166 Restek 

V phenanthrene 178 Restek 

VI anthracene 178 Restek 

VII fluoranthene 202 Restek 

VIII pyrene 202 Restek 

IX retene 219 Chiron 

X benzo(a)anthracene 228 Restek 

XI chrysene 228 Restek 

XII benzo(b)fluoranthene 252 Restek 

XIII benzo(k)fluoranthene 252 Restek 

XIV benzo(a)pyrene 252 Restek 

XV indeno(1,2,3-cd)pyrene 276 Restek 

XVII dibenz(a,h)anthracene 278 Restek 

XVI benzo[g,h,i]perylene 276 Restek 
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Figure 4.1: Location of Basin Pond, ME and bathymetric map. A) Map of the NEUS 

with Maine highlighted in gray and Basin Pond indicated by a star. B) Map of 
Maine with estimated ranges of known large wildfire events (>400km2 acres burned) 
from historical records within 100km of Basin Pond, adapted from Coolidge (1963). 

Shaded locations indicate the fires of 1761-1762 AD (yellow), 1825 AD (blue), and 
1947 AD (red). Orange shading indicates regions effected by both the 1761-1762 AD 

and 1947 AD fires. C) Bathymetric map of Basin Pond.    
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Figure 4.2: A) Age-depth model for the sedimentary record of Basin Pond, with age 

measured in Years AD. Black markings indicate dated positions through varve 
counting (varve counts every 4-cm are marked), radiocarbon dating, and lead-210 
dating. Grey shading indicates the 95% confidence interval at any given depth. B) 

Age model for 1920AD – present day. Gray points indicate 210Pb dates with 
associated errors, while black points are varve counts.  
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Figure 4.3: Fire reconstructions from the historical period (1725AD to present day). 
From top to bottom: charcoal counts per cm3 sediment (red triangles), the 

retene/(chrysene + retene) ratio (green circles), retene concentrations (black 
squares), chrysene concentrations (blue diamonds), and the top 5 most abundant 

PAH (excluding retene and chrysene) measured in the sedimentary record. All PAH 
concentrations are reported in μg / g sediment extracted. 
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Figure 4.4: Fire reconstructions from Basin Pond, ME since 1100 AD; a) charcoal 

counts per cm3 sediment (red triangles), b) the retene/(chrysene + retene) ratio 
(green circles), c-d) retene (black squares and black dashed squares) and e) 

chrysene concentrations (blue diamonds), measured in μg / g sediment extracted. 
Due to the drastic increase in retene concentrations in the historic period from 

background levels, pre-historic retene has been plotted twice (dashed black line) in 
panels c and d. Note the difference in the y-axis scale between plots c and d and also 
the scale break in plot d. The retene/(chrysene + retene) ratio, shown in plot b, used 
as an indicator of PAH combustion source, remains above 0.8 throughout the pre-
historic record, while decreasing below 0.8 from regional industrialization marked 

with several increases to above 0.8 following fire events (0.8 marked by dashed, 
horizontal line). Fire events of 1761-1762 AD, 1825 AD, and 1947 AD are marked by 

dashed vertical lines. Increased periods of fire activity outside of those noted in 
historical records, which are suggested by our data, are shaded in yellow. 
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5.1 Abstract 

Paleotemperature reconstructions are essential for distinguishing anthropogenic 

climate change from natural variability. An emerging method in paleolimnology is the 

use of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in sediments to 

reconstruct temperature but their application is hindered by a limited understanding of 

their sources, seasonal production, and transport. Here, we report seasonally resolved 

measurements of brGDGT production in the water column, in catchment soils, and in a 

sediment core from Basin Pond, a small, deep inland lake in Maine, USA. We find 

similar brGDGT distributions in both water column and lake sediment samples but the 

catchment soils have distinct brGDGT distributions suggesting that (1) brGDGTs are 

produced within the lake and (2) this in situ production dominates the downcore 

sedimentary signal. Seasonally, depth-resolved measurements indicate that most brGDGT 

production occurs in late fall, and at intermediate depths (18-30 meters) in the water 

column. We utilize these observations to help interpret a Basin Pond brGDGT-based 

temperature reconstruction spanning the past 900 years. This record exbibits similar 

trends to a pollen record from the same site and also to regional and global syntheses of 

terrestrial temperatures over the last millennium. However, the Basin Pond temperature 

record shows higher-frequency variability than has previously been captured by such an 

archive in the Northeastern United States, potentially attributed to the North Atlantic 

Oscillation and volcanic or solar activity. This first brGDGT- based multi-centennial 

paleo-reconstruction from this region contributes to our understanding of the production 

and fate of brGDGTs in lacustrine systems. 
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5.2 Introduction 

Anthropogenic climate change is one of the most complex and challenging issues 

facing the world today and its impacts will likely be exacerbated in heavily populated 

areas, such as the Northeastern United States (NE US) (Fig. 1), a region comprised of 

communities that have been historically susceptible to climate change (Horton et al., 

2014). Here, over the past 120 years average temperatures have increased by ~1°C, 

precipitation has increased by 10%, and sea levels have risen by ~40 cm (Kunkel, 2013; 

NOAA, 2014). While historical records document the temperature increase of the past 

century, they are not long enough to capture the underlying variability of the pre-

anthropogenic period.  Therefore, high-resolution paleotemperature records, such as those 

developed from lacustrine sedimentary sequences, are needed to investigate how current 

climate change compares to long-term natural variability.  A regional synthesis of NE US 

late Holocene climate variability by Marlon et al. (2017) reviews temperature 

reconstructions from terrestrial sediment records using methods such as pollen 

(Gajewski, 1987; Webb et al., 2003; Oswald et al., 2007), testate amoeba (Clifford and 

Booth, 2013), and leaf wax hydrogen isotopic ratios (Huang et al., 2004, Shuman et al., 

2006; Gao et al., 2017). However, these climate proxies may also reflect changes in 

parameters other than temperature (i.e., precipitation, humidity, evapotranspiration, and 

vegetation) (Gajewski, 1988; Hou et al., 2008; Marlon et al., 2017). Therefore, additional 

quantitative paleotemperature records are needed to accurately assess past temperature 

variability in the NE US (Marlon et al., 2017). 

Branched glycerol dialkyl glycerol tetraethers (brGDGTs), found globally in 

lakes, soils, rivers, and peats, provide an independent terrestrial paleothermometer well-
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suited to this task (e.g. Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2013; 

Buckles et al., 2014; De Jonge et al., 2015).  BrGDGTs are comprised of two ether-linked 

dialkyl chains containing zero to two methyl branches (prefixes I, II, and III) and zero to 

two cyclopentane moieties (suffixes a, b, and c) (Sinninghe Damsté et al., 2000). 

Although the source organisms are unknown, these compounds are thought to be 

produced by Acidobacteria (e.g., Sinninghe Damsté et al., 2011; Sinninghe Damsté et al., 

2018).  Noting a strong correlation between mean annual air temperature (MAAT) and 

the degree of methylation of brGDGTs in global soils, Weijers et al. (2007) proposed that 

sedimentary brGDGTs could be used as a proxy for past soil temperature, which in many 

cases is similar to mean annual air temperature. This motivated the development and later 

refinement of two indices, based on the degree of methlyation and cyclization of 

brGDGTs (MBT and CBT), which were correlated to temperature and pH, respectively 

(e.g. Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014a).  

More recently, improved chromatographic separation techniques for brGDGTs 

have been developed and indicated the presence of 5- and 6-methyl brGDGT isomers (De 

Jonge et al., 2013; De Jonge et al., 2014; Hopmans et al., 2016). The 6-methyl isomers 

may be abundant in environmental samples (De Jonge et al., 2014b), and failure to 

account for the presence of these compounds can have a significant influence on 

reconstructed temperatures (De Jonge et al., 2013; De Jonge et al., 2014a). Importantly, 

De Jonge et al. (2014a) demonstrated that soil pH (CBT) does not have an influence on 

the degree of methylation (MBT) and that earlier observations suggesting an influence of 

pH on methylation (Weijers et al., 2007) were the result of incomplete isomer separation. 

A new index based on the 5-methyl brGDGTs (MBT’5ME) was developed and calibrated 
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to temperature using a global soils dataset (De Jonge et al., 2014).  MBT’5ME and 5-

methyl fractional abundances have recently been calibrated for temperature 

reconstruction in lakes from East Africa (Russell et al., 2018) and China (Dang et al., 

2018), respectively. 

Initially, brGDGTs were presumed to be exclusively produced in soils, and 

subsequently washed into lakes or marine environments via erosion by rivers and streams 

(Hopmans et al., 2004). Further research demonstrated these compounds are also 

produced in situ in lakes and rivers (e.g. Tierney and Russell, 2009; Bechtel et al., 2010; 

Tierney et al., 2010; Zhu et al., 2011; Loomis et al., 2012; Schoon et al., 2013; Zell et al., 

2013).  Although some studies suggest that distinct brGDGTs are produced within the 

water column of lakes (Colcord et al., 2015; Weber et al., 2015) and show that their 

production is seasonally biased (e.g. Buckles et al., 2014; Loomis et al., 2014), relatively 

limited work has been done to understand their in-situ production and its consequences 

for the sedimentary brGDGT record (Zhang et al., 2016). Knowledge of brGDGT 

production and seasonality is important for appropriately calibrating and interpreting 

downcore records, yet few studies have combined modern observations of brGDGT 

distributions in the environment with a paleoclimate reconstruction for a temperate lake 

system. 

Here we examine brGDGT abundances and distributions in catchment soil 

samples and at varying depths in the water column throughout the year at an inland lake 

in the NE US (Fig. 1). We collected samples from 2014–2015 to assess the seasonality 

and location of brGDGT production in and around Basin Pond, ME. We then use our 

observations to help interpret a 900 year-long relative temperature record, providing the 
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first decadally-resolved brGDGT-derived lacustrine paleoclimate reconstruction for this 

region. 

5.3 Site information and field sampling 

5.3.1 Study Site 

Basin Pond, located in Fayette, ME (44º 28’ N, 70º 03’ W, elevation 124 m above 

sea level), is a small, deep lake with an area of 0.14 km2 and a maximum depth of 32.6 m 

(Fig. 1). Basin Pond is fed from groundwater and precipitation, with one small, dammed, 

outlet stream running westward into the adjacent David Pond (Frost, 2005). Most of the 

0.53 km2 catchment area is dominated by a well-developed deciduous hardwood and 

evergreen forest, with only one residential building. Mean annual air temperature at Basin 

Pond is ~5.9°C and average annual precipitation is ~1150 mm (NOAA, 2014).     

Basin Pond contains a unique sedimentary sequence comprised of annual 

laminations (varves) due to permanent water column stratification (Wetzel, 1983; Frost, 

2005) resulting from a persistent thermocline. This stratification causes permanent 

bottom water anoxia, which enhances the preservation of annual laminations throughout 

the record (O’Sullivan, 1983). The Basin Pond varves are biogenic, with couplets 

comprised of a lighter, diatom-rich summer layer and a darker, humic winter layer (Frost, 

2005). 

The extent of anthropogenic impacts to Basin Pond and its catchment area have 

varied over the study interval. Although people were certainly present in Maine for the 

past 900 years, European-settler land clearance did not begin until the mid-1700s (Foster 

and Aber, 2004). It is uncertain whether the Basin Pond catchment was affected by this 
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process. Due to its relatively remote location in New England, Maine experienced 

substantially less deforestation compared with the other NE US states (Foster and Aber, 

2004). However, polycyclic aromatic hydrocarbons (PAHs) reflecting regional 

anthropogenic activity indicate that industrialization is notable in the Basin Pond 

sedimentary record (Miller et al., 2017). Furthermore, the lake’s natural chemistry was 

disrupted in the 1950s, when Basin Pond was treated with a chemical piscicide, Rotenone 

(United States Geological Survey, 1996). Today, the lake is lightly used for recreation by 

members of the Basin-David-Tilton Ponds Association.  

5.3.2 Sediment Coring 

Sediment coring was performed from ice in March 2014, in the deepest part of the 

lake at 32 m (44º 27’ 27” N, 70º 03’ 09” W), using a UWITEC gravity coring system. 

Core BP2014-3D (52 cm) captured an undisturbed sediment-water interface and was 

subsampled in the field at 0.5 cm resolution for radioisotopic dating. Core BP2014-5D 

(174 cm) was immediately capped upon retrieval. Cores were split, photographed, and 

non-destructive down-core logging was performed using an Itrax XRF core scanner with 

a Molybdenum tube at 100 μm resolution in the Department of Geosciences at University 

of Massachusetts Amherst. Cores were kept refrigerated for one month prior to 

subsampling.  Subsamples were stored frozen in WhirlPak bags until extraction. 

5.3.3 Sediment trap construction, deployment and retrieval  

Sediment traps were designed and constructed at University of Massachusetts 

Amherst. Sediment trap collection cones were made of high density polyethylene 

(HDPE) with a diameter of ~1 m (Fig. 1) and attached to 4L bottles for settling 
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particulate matter (SPM) collection (Fig. 1). Note that our definition of SPM includes 

both material suspended in the water column and settling into the traps. Five sediment 

traps were deployed on May 27, 2014 at 6, 12, 18, 24, and 30 meter depth (Fig. 2). SPM 

was collected from all traps on 7/2/14, 8/16/14, 9/14/14 and 6/5/15. Each trap 

continuously accumulated SPM from deployment until collection and therefore each 

sample represents material collected over 36, 40, 28, and 264 days, respectively. The 

length of the last sampling period of 264 days was due to ice cover at the lake; sediment 

trap recovery was not possible until ice out. SPM labels on Figures 2, 3, & 5 and 

throughout the discussion are referred to by the month that was the midpoint of each 

collection period. Thus, the four sampling periods listed above are referred to 

respectively as June, July, September, and January SPM. Catchment soil samples were 

also collected around the perimeter of the lake at the time of initial trap deployment. All 

soil and water SPM samples were kept frozen until analysis. 

5.4 Methods 

5.4.1 Sedimentary Age Model 

Subsamples for past climate reconstruction were taken every 0.5 cm from the 

uppermost 68 cm of core BP2014-5D. The age model for Basin Pond is based on 210Pb, 

varve counts, and five 14C dates and was previously published by Miller et al., (2017). 

The sediment examined here ranges in age from modern to ~1100 BP, with a sampling 

resolution of 4 to 13 years (median: 7) (Miller et al., 2017). 
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5.4.2 Laboratory Methods 

Overall, 10 catchment soil, 19 SPM sediment trap samples, and 136 sediment core 

samples were analyzed. Soil and lake sediment samples were freeze-dried and 

homogenized prior to extraction. For SPM samples, water from each collection bottle was 

filtered through a 47mm, 0.3-µm combusted Sterlitech glass fiber membrane filter, and 

dried prior to extraction.  For most samples, a total lipid extract (TLE) was obtained 

using a Dionex Accelerated Solvent Extractor (ASE 200) with a mixture of 

dichloromethane (DCM)/ methanol (MeOH) (9:1, v/v). For four SPM samples, plastic 

filters were washed and sonicated with HPLC-grade water, which was subsequently 

extracted with DCM three times. TLEs from SPM and catchment soil samples were 

separated into apolar (9:1 DCM/hexane v/v) and polar (1:1 DCM/MeOH v/v) fractions, 

while the lake sediment samples were separated into apolar, ketone (1:1 hexane/DCM) 

and polar fractions using alumina oxide column chromatography. For all samples, one 

half of each polar fraction was filtered through 0.45µm PTFE syringe filters using 99:1 

hexane/isopropanol (v/v). 0.1 μg of C46 GDGT internal standard was added to each polar 

fraction prior to analysis. The other half of each polar fraction was derivatized using 

bistrimethylsiyltrifluoroacetamide (BSTFA), and algal biomarkers were identified with a 

Hewlett-Packard 6890 Series gas chromatograph coupled to an Agilent 5973 mass 

spectrometer (GC-MS) using a Restek Rtx-5ms (60m x 250µm x 0.25 µm) column. Algal 

biomarkers, (iso)loliolide, C30 1, 13 n-alkyl diol, dinosterol/stanol, and β-sitosterol/stanol, 

were quantified with an Agilent 7890A dual gas chromatograph-flame ionization detector 

(GC-FID) equipped with two Agilent 7693 autosamplers and two identical columns 

(Agilent 19091J-416: 325 oC: 60m x 320µm x 0.25 µm, HP-5 5% Phenyl Methyl 
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Siloxan). For both the GC-MS and GC-FID, helium was used as the carrier gas. The 

ovens began at a temperature of 70 oC, increased at 10 oC min -1 to 130 oC, increased 

again at 4 oC min -1 to 320 oC, and then held for 10 minutes. The GCs were run in 

splitless mode. Compounds were quantified using an external calibration curve where 

squalane was injected at multiple concentrations ranging from 2 to 100 ng/μl; r2 values 

for linearity tests were >0.99. 

5.4.3 brGDGT analysis 

Polar fractions were analyzed on an Agilent 1260 high performance liquid 

chromatograph (HPLC) coupled to an Agilent 6120 Quadrupole mass selective detector 

(MSD). Compound separation was achieved using the method of Hopmans et al. (2016). 

The technique uses two Waters UHPLC columns in series (150 mm × 2.1 mm × 1.7 μm) 

and isocratically elutes brGDGTs using a mixture of hexane (solvent A) and hexane: 

isopropanol (9:1, v:v, solvent B) in the following sequence: 18% B (25 minutes), linear 

increase to 35% B (25 minutes), linear increase to 100% B (30 minutes). Mass scanning 

was performed in selected ion monitoring (SIM) mode. brGDGTs were quantified with 

respect to the C46 standard, assuming equal ionization efficiency for all compounds. For 

calculation of MBT’5ME, CBT’5ME, and the Isomer Ratio (IR), the following equations 

were used from De Jonge et al. (2014a&b):  

MBT′��� = 	 	
��������

�������������������������
       Eq. (1) 

 

CBT′��� = 	−log	�
������

������
�       Eq. (2) 
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IR = 	
��������������������������������

�����������������������������������������������������������
   Eq. (3) 

 

For samples measured in duplicate (n=32), the maximum MBT’5ME difference was < 

0.01, while the maximum CBT’5ME was 0.01; thus analytical error associated with proxy 

application is insignificant. 

5.4.4 Time Series Analysis 

To analyze the variance in the data presented here, we used the Astrochron R 

package (Meyers, 2012). Pre-processing of the data was kept to a minimum to avoid 

introducing spurious signals. The downcore brGDGT reconstruction was re-interpolated 

to 7-yr resolution (equivalent to median resolution of the raw data, see results) prior to 

spectral analysis. The published PAGES2k datasets were analyzed with their published 

chronologies, which is 1 year resolution for most regions and 10 years for the North 

American tree-ring based reconstruction (PAGES2k, 2013). Each of these reconstructions 

were smoothed to 7 year averages for easier comparison to our record. 

5.5 Results 

BrGDGTs were present in all soil, SPM and sediment core samples analyzed. In 

contrast, isoprenoid GDGTs, on which the TEX86 temperature proxy is based (Schouten 

et al., 2002), were absent in a majority of samples or present in very low abundances 

compared to the brGDGTs. Therefore, TEX86 could not be utilized as a temperature 

proxy at Basin Pond. 
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5.5.1 Catchment Soils 

BrGDGTs Ia and IIa dominated distributions in the catchment soil samples, with 

relative abundances of 65% ±13% and 28% ±7%, respectively (Fig. 2). The next largest 

relative abundances were IIIa and Ib, comprising 3% ±6% and 3% ±1%, respectively 

(Fig. 2). Total brGDGT concentrations in soils ranged from 1.5 to 7.3 (median = 2.2) µg 

gsed-1. 

5.5.2 SPM 

BrGDGTs Ia, IIa and IIIa dominated distributions in the SPM samples, with 

relative abundances of 28% ±8%, 37% ±7%, and 30% ±8%, respectively (Fig. 2). The 

next largest relative abundances were Ib and IIb, each comprising 2% ±<1%. In June and 

July 2014, group I brGDGTs were the most abundant, whereas in September 2014 and 

January 2015 reductions in group I brGDGTs were accompanied by increases in group III 

brGDGTs (Fig. 2). Overall, fluxes of brGDGTs were highest in September 2014 (ranging 

from 0.36 to 15.2 ng m2 day-1 at different depths) (Fig. 3). In June and July 2014, total 

brGDGT fluxes at various depths ranged from 0.009 to 0.04 ng m2 day-1 and 0.04 to 0.14 

ng m2 day-1, respectively (Fig. 3).  

BrGDGT fluxes and distributions also varied as a function of depth (Fig. 3,4, 5). 

In general, summed brGDGT fluxes increase with depth, with up to an order of 

magnitude higher fluxes at 30 m compared to 6 m for all dates (Fig. 3). BrGDGT fluxes 

in the upper and lower water column peaked in September with fluxes of 0.4 to 0.6 ng m2 

day-1 and 7 to 16 ng m2 day-1, respectively. The average distributions also changed as a 

function of depth. Group I brGDGTs comprised 30% of the distributions at all depths. 

Group II brGDGTs had the greatest abundance at 12 and 18 m water depth (Fig. 5), 
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comprising up to 50% of the distribution. Group III brGDGTs comprised an average of 

30% with a peak of 35% at 30 m, and a minimum at 18 m of <20%. These distributions 

lead to variations in MBT’5ME and CBT’5ME indices as a function of depth (Fig. 5). 

MBT’5ME varied from 0.34 to 0.46, and peaked at 24 m water depth (Fig. 4). CBT’5ME 

varied from 1.1 to 1.6, peaked at 12 m and then decreased with depth (Fig. 4). 

5.5.3  Surface sediment samples 

To represent surface sediments, we averaged the measurements from the 

uppermost 5 cm of Core BP2014-5D, corresponding to approximately 70 years (Miller et 

al., 2017). BrGDGTs Ia, IIa, and IIIa dominate the distribution, with relative abundances 

of 27%, 32%, and 33%, respectively (Fig. 3). The next largest relative abundances are 

IIb, Ib, and IIIb (3%, 2%, and 1%, respectively). MBT’5ME values in surface sediments 

range from 0.35 to 0.45 (Fig. 6).  

5.5.4 Sediment Core 

BrGDGT concentrations in these samples ranged from 1.2 to 21.1 (median: 8.09) 

µg gsed-1. MBT’5ME ranged from 0.34 to 0.50 (median: 0.39). MBT’5ME values fluctuate 

around a stable mean from 1100-1400 AD, then broadly decrease from ~1400 AD until 

the present day (Fig. 7). Decadal variability is superimposed on the long-term decreasing 

trend (Fig. 7). Prominent, multi-decadal low- MBT’5ME value events are apparent from 

1420–1444, 1500–1520, 1593–1627, 1762-1829, and 1908–1950 AD (Fig. 7). 

Multidecadal high- MBT’5ME events are observed from 1261–1283, 1317–1351, 1556–

1583, 1632–1657, 1829–1846 and 1958–1987 AD(Fig. 7). The brGDGT concentrations 

in the core range from 1.2-21.1 µg gsed-1, with a median of 8.2 µg gsed-1. 
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5.5.5 BrGDGT isomer ratios 

The UHPLC method we utilized for brGDGT analysis (Hopmans et al., 2016) 

allows for the separation of 5- and 6-methyl brGDGT isomers (DeJonge et al., 2013; 

DeJonge et al., 2014). Analysis of the relative abundances of these isomers has also been 

used to identify different production sources of brGDGTs (e.g. soils vs. water column; 

DeJonge et al., 2014; Weber et al., 2015). The summed IR (equation 3) for soils, lake 

water and sediments at Basin Pond are significantly different. The IR value for soils is 

very low and averages 0.03, while the water samples and sediments are higher and 

average 0.26 and 0.30, respectively (Fig. 6). 

5.5.6 Algal biomarkers 

Samples in the upper 17cm of the sediment core were analyzed for the following 

algal lipid biomarkers: (iso)loliolide, C30 1, 13 n-alkyl diol, dinosterol/stanol, and β-

sitosterol/stanol. Concentrations of (iso)loliolide ranged from 31-426 µg gsed-1 

(median=171). C30 1, 13 n-alkyl diol concentrations ranged from 8-1378 µg g sed-1 

(median=475). Dinosterol/stanol concentrations ranged from 12-5663 µg g sed-1 

(median= 1384). Concentrations of β-sitosterol/stanol concentrations ranged from 3-7955 

µg g sed-1(median=1465).  

5.6 Discussion 

5.6.1 Sources and seasonal production of Basin Pond brGDGTs  

It is important to constrain brGDGT sources before interpreting lacustrine 

sedimentary records. Multiple lines of evidence suggest brGDGTs deposited in Basin 

Pond sediments are predominantly produced within the water column, in agreement with 



 

100 

prior studies (e.g. Tierney and Russell, 2009; Buckles et al., 2014; Loomis et al., 2014). 

First, we observe significant differences in the fractional abundances of brGDGTs 

between soil, SPM and lake sediments (Figs. 2, 5), suggesting in situ production occurs in 

both soil and lacustrine environments, but that soil-derived brGDGTs do not exert a large 

influence on the Basin Pond sedimentary record. Average distributions of brGDGTs 

reveal that lake sediments and SPM are similar in group I and III content, while the soils 

differ substantially (Figs 2, 5). The relative amounts of 5- and 6-methyl brGDGTs also 

differs between soils and lake water and sediment (Figs 2, 5), and as seen in the average 

IR values (Fig. 6).  MBT’5ME and CBT’5ME values for lake sediment and soils are distinct, 

while SPM samples are similar to lake sediment samples, consistent with in situ brGDGT 

production within Basin Pond (Fig. 6). The degree of cyclization (mean CBT’5ME = 1.2) 

is significantly lower in lake sediments than in soil samples (mean CBT’5ME= 1.5) (p 

value = 0.021 from two-tailed t-test), and brGDGTs are more methylated (p value = 

0.003) in lake sediments (mean MBT’5ME = 0.38) than in soils (mean MBT’5ME = 0.7) 

(Fig. 6). This agrees with differences in brGDGT distributions recorded in other 

temperate (Tierney et al., 2012; Wang et al., 2012; Loomis et al., 2014) and tropical 

(Tierney and Russell, 2009; Loomis et al., 2012; Buckles et al., 2014) lakes and 

catchment area soils, and suggests in situ production of relatively more cyclized and 

methylated brGDGTs within lakes.  In agreement with previous studies, we also note 

higher brGDGT concentrations in lake sediments (median – 8.2 µg gsed-1) in comparison 

to watershed soils (median= 2.2 µg gsed-1) (e.g. Sinninghe Damsté et al., 2009; Tierney 

and Russell, 2009) pointing to in situ brGDGT production. 
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BrGDGT fluxes at all depths are generally low throughout the summer months 

(June–July). A large flux increase at depth (18–30 m) occurs during September, when the 

lake is strongly stratified. Thus any transfer of brGDGTs from lower depths to the upper 

water column likely would be minimal. This suggests annual seasonal production of 

brGDGTs in Basin Pond, with a fall bloom occurring at intermediate (18–30 m) depths. 

Therefore, brGDGT temperatures recorded in the lake sediments likely reflect a 

seasonally biased (fall), rather than mean annual, temperature. We make the following 

observations based on these results. First,  peak brGDGT flux is observed at 18-30 m 

water depth, suggesting that the organisms producing the most brGDGTs thrive in the 

mid to upper water column (Fig. 3). Secondly, peak brGDGT production occurs in 

September, suggesting that the sedimentary record will be biased toward brGDGTs 

produced during this period (Fig. 3). Finally, for the four time-periods sampled, brGDGT 

distributions (as described by MBT’5ME) correlate with temperature (Fig. S1). 

Interestingly, at depth the water temperature shows little to no seasonal cycle, remaining 

at approximately 4 °C for the entire year (Frost, 2005).  Therefore, if maximum brGDGT 

production is indeed occurring here, it is possible that another parameter, which covaries 

with temperature on a seasonal scale (i.e. light duration, water chemistry, nutrient 

availability), may drive, or contribute to, the distribution of brGDGTs produced at depth 

at Basin Pond. However, the sediment trap at this depth represents an integrated signal of 

SPM produced in the water column, which could also be driving the temperature 

correlation at depth. 

Although few studies are available for comparison, Loomis et al. (2014) studied 

brGDGTs in another temperate lake in the NE US (Lower King Pond, Vermont). 
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brGDGT production in Lower King Pond peaked during fall and spring and was linked to 

seasonal full water column mixing events (Loomis et al., 2014), which do not occur at 

Basin Pond (Frost, 2005). Moreover, Basin Pond is ten times larger by area and four 

times deeper than Lower King Pond. Similar to Lower King Pond, brGDGT production 

at Basin Pond seems to be seasonal, and calibration of brGDGTs against seasonal (in this 

case, fall) temperatures is a necessary area of future work to accurately reconstruct past 

absolute temperature change for this location. If the behaviour of brGDGTs in Lower 

King Pond and Basin Pond is representative of all temperate lakes, then calibration to fall 

or spring temperature may be the most appropriate choice for these settings.  

5.6.2 Calibration of the 900 year brGDGT record to temperature 

Numerous studies have provided strong evidence for in situ brGDGT production 

in lakes and have shown that application of the global soils calibration to lacustrine 

sediments often yields temperatures that are unrealistically cold (e.g. Tierney and Russell, 

2009; Bechtel et al., 2010; Blaga et al., 2010; Tierney et al., 2010a,b; Tyler et al., 2010; 

Pearson et al., 2011). Therefore, many lacustrine brGDGT calibrations have been 

developed (Tierney et al., 2010; Zink et al., 2010; Pearson et al., 2011; Sun et al., 2011; 

Loomis et al., 2012, Foster et al., 2016). However, many of these are based on relatively 

few samples or are geographically restricted (e.g. Tierney et al., 2010; Zink et al., 2010; 

Foster et al., 2016). Furthermore, at present, all available lacustrine brGDGT calibrations 

except for two (Dang et al., 2018; Russell et al., 2018) were developed using older HPLC 

methods that did not fully separate brGDGT isomers. As we measured our brGDGTs 

following the newer method of Hopmans et al. (2016), we investigated Basin Pond 

temperature reconstructions using only those calibrations based on the same technique. 
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The Dang et al. (2018) calibration is based on alkaline Chinese lakes and reconstructs 

temperatures ranging from 4-9 oC, while the Russell et al. (2018) calibration is based on 

African lakes and yields temperatures ranging from 10-14 oC (Fig. 7). The African lakes 

calibration from Russell et al. (2018) is based on MBT’5ME while the Chinese lakes 

calibration of Dang et al., (2018) is based on fractional abundances of brGDGTs; 

therefore these two calibrations yield somewhat different trends with the Dang et al. 

(2018) calibration showing muted variability and some discrepancies from the other 

proxy records (i.e. during the last 50 years) (Figure 7).  

Importantly, caution must be taken when interpreting the Basin Pond 

reconstructed temperatures using either of these calibrations because application of an 

African or Chinese calibration to lakes in the NE US is questionable as these regions are 

climatically different and their lakes differ in terms of stratification and mixing regimes. 

Furthermore, brGDGTs from Basin Pond are characterized by distinct brGDGT 

distributions from both the African (Russell et al., 2018) and alkaline Chinese lake 

sediments (Dang et al., 2018) (Figure 8). This suggests that application of either of these 

calibrations to Basin Pond sediments may not be appropriate. Local temperature data are 

available for Basin Pond over the period our measurements were made, but the SPM 

dataset presented here is not large enough to develop a robust local MBT’5ME to 

temperature calibration (see Supplement). We thus present our results in the following 

discussion and figures simply in terms of the MBT’5ME index, which provides a relative 

temperature indicator, where higher values reflect relatively higher temperatures and vice 

versa (De Jonge et al., 2014b).  
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Our interpretation of the 900-year MBT’5ME record is as follows. Based on the 

SPM samples, we argue that the downcore brGDGT reconstruction is likely weighted 

toward September temperature change in the NE US. We note that brGDGTs are present 

at all depths measured but peak at 18-30 m depth, indicating that the compounds reaching 

the lake floor represent an integrated signal from the entire water column. Although 

brGDGT concentrations vary down core, they are not correlated with reconstructed 

MBT’5ME values (p=0.25), indicating that brGDGT production and MBT’5ME variability 

are largely decoupled. We observe an overall stepped cooling trend recorded by generally 

decreasing MBT’5ME values over the past 900 years (Fig. 9). Using the calibration of 

Russell et al. (2018), this overall cooling is on the order of 3.0 o C; however, for the 

reasons discussed earlier, we advise that caution must be taken when interpreting 

absolute temperature changes from applying this calibration to Basin Pond sediments.  

5.6.3 Comparison to Regional Hydroclimate Records in the NE US 

Regional hydroclimate in the NE US has been reconstructed at several sites on 

similar timescales as the Basin Pond record. The MBT’5ME record indicates an overall 

cooling from ~1300 AD to ~1900 AD (Fig. 9), which is also observed in pollen-derived 

temperature reconstructions from Basin Pond (Gajewski, 1988). Both records also 

indicate two major cooling steps, although the exact timing of these differs between 

records, which may be attributable to age model differences (Fig. 9). Apparent 

differences between the Basin Pond records are likely also associated with sampling 

resolution;  the pollen record has varying and generally much lower sample resolution in 

comparison to our MBT’5ME record. Furthermore, some of the differences in MBT’5ME 

and pollen reconstructions may be caused by differences in proxy seasonality, with pollen 
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representing a summer signal (Gajewski, 1988) and MBT’5ME likely representing a fall 

signal.  

The general long-term cooling trend from Basin Pond is also observed in a 

hydrogen isotope-based temperature reconstruction from Little Pond, Massachusetts (Gao 

et al., 2017). Both records show higher temperatures between 1300-1400 AD (Fig. 9). 

Bog records provide additional, high-resolution reconstructions of hydrological 

conditions in the NE US over this time period via analysis of testate ameoba (a proxy for 

water table depth) and the Sphagnum/Vascular Ratio (SVR) (Nichols and Huang, 2012; 

Clifford and Booth, 2013). The testate ameoba records show that the last 400 years (i.e., 

1600–2000 AD) have been generally wetter than the preceding 400 years (1200-1600 

AD). However, unlike the temperature reconstructions, these records do not show a long-

term linear trend (Fig. 9). 

These cooling and wetting trends are surprising given the record of fire history at 

Basin Pond (Miller et al., 2017), which shows five periods of increased charcoal 

deposition since 1100 AD (Fig. 9).  It is important to note that wildfire activity is a 

complex phenomena, with multiple factors affecting fire occurrence apart from climate 

variability (Marlon et al., 2017). However, our data suggest that fire activity in the NE 

US may be influenced more by shorter-term (multi-decadal) variations in climate, 

particularly seasonal cooling superimposed on dry conditions, as opposed to longer-term, 

multi-centennial climate trends. Surprisingly, the first 200 years of the record (1100–

1300 AD) are dominated by warm and dry conditions, but no fire events were recognized 

during this period. Three fire events (Fig. 9g), between ~1300 and ~1700 AD, are 

associated with regionally dry conditions (Fig. 9d-f). Although average Basin Pond 
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MBT’5ME values are higher on a multi-centennial time-scale during this interval, the fire 

events themselves occur synchronously with multi-decadal cold periods (Fig. 9a-c). 

Furthermore, two recent fire events occurred during the historical period, which is 

reconstructed as relatively cool and wet (Fig. 9). Therefore, it appears that at Basin Pond, 

temperature did not exert a major influence over fire occurrence. 

5.6.4 Comparison with Northern Hemisphere records  

A compilation of Northern Hemisphere temperature records for the last 2000 

years reveals sustained warmth from 830–1100 AD, just prior to the beginning of our 

reconstructions (PAGES2k, 2013). Northern Hemisphere climate then entered a cooler 

phase, though the timing of this transition varied regionally between 1200 and 1500 AD 

(PAGES2k, 2013). North American pollen data show elevated, though decreasing, 

temperatures through 1500 AD (Gajewski, 1988; PAGES2k, 2013) (Fig. 10). From 1100-

1400 AD, Basin Pond MBT’5ME values are high in contrast with European and Arctic 

temperature reconstructions. From 1500-1900 AD, MBT’5ME values are lower, in better 

agreement with other Northern Hemisphere reconstructions. Moreover, the decadal to 

centennial scale variability observed in MBT and other records during this time may be 

linked to variability in Atlantic Multidecadal Oscillation (AMO) and North Atlantic 

Oscillation (NAO) indices (Figure 8). We note that the brGDGT MBT’5ME values are 

better correlated with regional tree-ring records and compilations of European and Arctic 

temperatures, which all show warm anomalies, followed by cooling, earlier this century. 

Thus, the multi-centennial structure of the brGDGT record from Basin Pond is supported 

by other local, regional, and global records (PAGES2k, 2013). On a multi-decadal scale, 

there is variability potentially associated with volcanic events recognized as having a 
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global impact. Five intervals during the last millennium were defined as ‘volcanic-solar 

downturns’: 1251–1310, 1431–1520, 1581–1610, 1641–1700, and 1791–1820 AD 

(PAGES2k, 2013). All but the most recent (1908–1950 AD) of the cool events are 

present in the Basin Pond MBT’5ME record during these periods (or within the age model 

uncertainty) (Fig. 10 highlighted in blue).  

There is some similarity between the Basin Pond reconstruction and other 

Northern Hemisphere reconstructions (PAGES2k, 2013) (Fig. 10). The brGDGT record 

is also peppered with warm (high MBT’5ME) anomalies; many of these seem to be 

coherent with tree-ring based reconstructions of North American climate (i.e. 1300, 1550, 

1830 AD) and are sometimes associated with negative phases of the NAO (Fig. 10). The 

sensitivity of the Basin Pond sediment record to regional scale climatic variations is 

highlighted by time series analysis. Multispectral taper method analysis reveals a 

persistent cycle in the brGDGT-based temperature reconstruction with a period of 57–63 

years (Fig. 10). The Northern Hemisphere tree-ring compilation also shows a cyclicity 

with a period of 60 years (Fig. 10). However, the fact that the two datasets are not 

significantly correlated indicates the variability at 60-year periods is not exactly in-phase 

over the 900 year period covered by the two records. Cross-correlation analysis indicates 

that the correlation between the two datasets is strongest when the tree-ring 

reconstruction is lagged by 42 years relative to the Basin Pond temperature record 

(r=0.33, p=0.04). Significant spectral peaks with a similar period exist in the annually-

resolved records from Europe (period = 65 yr), Asia (period = 58 yr) and the Arctic 

(period = 58 yr) (PAGES2k, 2013). However, the same analyses applied to South 

American, Australasian, and Antarctic reconstructions do not show spectral peaks at this 
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period (PAGES2k, 2013). Thus, it appears that the Basin Pond brGDGT record captures 

variability that is representative of, but not necessarily in-phase with, the Northern 

Hemisphere at large. One possible mechanism to explain this is the North Atlantic 

Oscillation (NAO), which exhibits a quasi-periodic oscillation of ~60 yr (Sun et al., 

2015). While the NAO has some regionally coherent climatic effects, the signature of 

positive and negative NAO modes is spatially heterogeneous and complex; this could 

explain the phase offset in the ~60 yr band between the Basin Pond record and the other 

Northern Hemisphere reconstructions. 

Another possible driver of the MBT’5ME changes we see is the AMO, which is 

based on sea surface temperature anomalies in the North Atlantic and shows variability in 

quasi-periodic 60–80 yr cycles (Trenberth et al., 2017). An AMO reconstruction spanning 

the last 400 years shows some similarities to the MBT’5ME reconstruction from Basin 

Pond. Although the records do not show a strong cross correlation (r=0.08, p=0.53), they 

feature apparently synchronous cool and warm periods (i.e. 1550 - 1650 AD and 1780 – 

1830 AD) (Fig. 10). This suggests that climate at Basin Pond is coupled to Atlantic sea 

surface temperatures on multi-decadal timescales. Thus, the record presented here may 

prove useful in the future for reconstructing changes in the AMO earlier in the 

paleorecord.  

5.6.5 20th Century temperature, brGDGT Reconstructions and Algal Community 
Shifts 

Daily temperature averages from meteorological stations in the state of Maine 

were accessed and obtained through the National Climatic Data Center from 1895 – 

present day (NOAA, 2014) (Fig. 5.11). Average temperatures in Maine have warmed by 
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~1.5ºC since 1895 AD (Fig. 11). The temperature increase is dominated by changes from 

1895-1945 AD and 1985-present; for the forty intervening years mean temperatures were 

more stable, with a slight cooling observed during fall (Fig. 5.11). Interannual variability 

of +/- 1ºC is observed throughout the record, with the most pronounced variability during 

the winter (NOAA, 2014).  

Interestingly, variations in MBT’5ME values for the last 100 years do not agree 

with instrumental observations. The brGDGT-based reconstruction shows stable values 

from 1900-1950 AD, followed by an abrupt increase (warming) in MBT’5ME of 0.1 until 

approximately 1975 AD (three data points), and a subsequent continual decrease since 

then (five data points) (Fig. 5.11). In contrast, instrumental records indicate a slight 

cooling, or at least a stabilization of warming, starting at the same time (1960s-70s) when 

the MBT’5ME values are increasing (Fig. 5.11). We note decreasing MBT’5ME values in 

the upper 3.5 cm (Fig. 5.11). Low MBT’5ME values in surface and core top sediments 

have been noted in other studies as well (e.g. Sinninghe Damsté et al., 2012; Tierney et 

al., 2012), indicating that this feature occurs in different regions and environments, and 

may be driven by mechanisms associated with brGDGT production or preservation.  

Tierney et al. (2012) note a similar pattern in the brGDGT distributions of Salt Pond (RI) 

surface sediments that we observe at Basin Pond where the shallow surface sediments are 

characterized by more methylated brGDGTs. These authors suggest that more methylated 

brGDGTs present in shallow lake sediments do not survive diagenesis and they also note 

that deeper sediments yielded reasonable brGDGT reconstructed temperatures (Tierney et 

al., 2012). This hypothesis requires further testing and additionally, other influences such 

as changes in brGDGT producer, post-depositional mobility and/or overprinting of the 
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brGDGT signal, biotic and abiotic compound diagenesis, and anthropogenic impacts to 

lake ecosystems should be examined as well. Despite the uncertainties about the 

MBT’5ME record during the last 100 years, we believe that the Basin Pond brGDGT 

record is useful for describing regional climate evolution over the last millennium in the 

NE US. 

It is possible that land-use change and other anthropogenic impacts have affected 

the brGDGT record over the last 100 years. However, known land use change in the 

Basin Pond catchment is minimal over the past century (Gajewski, 1988). A complicating 

factor is the addition of the piscicide rotenone to the lake in 1955 to remove fish species 

in competition with trout (USGS, 1996). While the estimated lifetime of rotenone in the 

water column is short (days to weeks), it has been shown to have lasting long-term 

(years) effects on zooplankton communities and lake productivity (Kiser, 1963; 

Andersen, 1970; Sanni and Waervagen, 1990).   

In lacustrine environments, some classes of lipid biomarkers, specifically sterols 

and stanols, can give valuable insight into variability of lake productivity of certain types 

of algae throughout time. Many sterols (and their saturated counterparts, stanols) are 

indicative of certain groups of source organisms, in particular, specific phytoplankton 

groups (e.g. Volkman et al., 1998; Volkman, 2003). For example, dinosterol and 

dinostanol are found in dinoflagellates and are not produced in higher plants, and are 

therefore used as a biomarker for dinoflagellate species (Volkman et al., 1998). The 

compounds isololiolide and loliolide are known to be anoxic degradation products of 

diatom pigments (Klok et al., 1984; Repeta, 1989) while long-chain alkyl diols are 

produced by eustigmatophyte (yellow-green) algae (Volkman et al., 1998). At Basin 
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Pond, several algal biomarker concentrations, including isololiolide/loliolide, 

dinosterol/stanol, and C30 1,13 n-alkyl diol, decrease following the rotenone treatment in 

1955 AD while β-sitosterol (a biomarker of higher plants) increases (Fig. 5.11) 

suggesting a shift in the overall algal community structure. Additionally, after 1955 

contributions of the different algal biomarkers are remarkably stable in comparison to 

earlier times (Fig. 5.11). Due to the widespread shift in algal community, we posit that 

bacterial communities and therefore brGDGT production may also have been impacted. 

However, brGDGT concentrations do not clearly respond to the rotenone treatment, and 

additional knowledge of brGDGT producers would be required to further investigate this 

idea. 

5.7 Conclusions 

We find evidence for seasonally-biased, in situ production of branched gylcerol 

dialkyl glycerol tetraethers (brGDGTs) in a lake in central Maine, NE US. BrGDGTs are 

mostly produced in September at Basin Pond, and their downward fluxes in the water 

column peak at 30 m water depth. A downcore brGDGT-based reconstruction reveals 

both gradual and transient climate changes over the last 900 years and records cooling 

and warming events correlated with other Northern Hemisphere records and the NAO 

and AMO indices. This suggests inland Maine climate is sensitive to hemispheric climate 

forcing as well as changes in regional atmospheric pressure patterns and North Atlantic 

sea surface temperatures. Our new MBT’5ME temperature reconstruction, supported by a 

pollen record from the same site, reveals a prominent cooling trend from 1100–1900 AD 

in this area. Comparison with regional hydroclimate records suggests that despite 

increasingly cool and wet conditions persisting at Basin Pond over the last 900 years, fire 
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activity has increased. Although recent fire activity is likely anthropogenically triggered 

(i.e. via land-use change), our results imply an independent relationship between climate 

and NE US fire occurrence over the study interval.  Thus, the paleotemperature 

reconstruction presented here alongside site-specific knowledge from Basin Pond informs 

our understanding of climatic variability in NE US beyond the era of human influence. 

5.8 Data Availability  

BrGDGT data, including fractional abundances of 5- and 6-methyl isomers, BIT 

Index values, MBT’5Me values, CBT’5Me values, 5-methyl isomer ratio (IR), total 

brGDGT concentrations, and temperature calibrations (Dang et al., 2018; Russell et al., 

2018) from Basin Pond watershed soils, SPM, and sediment samples are available at the 

National Oceanic and Atmospheric Administration National Centers for Environmental 

Information (NOAA NCEI) Paleoclimate Database.  Concentrations of 

isololiolide/loliolide, C30 1,13 Diol, sitosterol/sitostanol, and dinosterol/dinostanol from 

the Basin Pond sediment core are also provided where measured. To access these data, 

please visit: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets. 
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5.12 Supplementary Information 

5.12.1 MBT’5ME Calibration to Local Temperature 

As addressed previously, the Basin Pond MBT’5ME record is presented without 

calibration to temperature. While the primary goal of this study was to understand the 

spatial and temporal variations in brGDGT production in Basin Pond in order to address 
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potential seasonal bias in a novel 900 year temperature reconstruction, developing a 

brGDGT to temperature calibration for Basin Pond (or a regional calibration for the NE 

US) is an important aspect of research that merits focus in future projects and work. As a 

first step towards this, we investigated a preliminary lake-specific calibration for 

MBT’5ME to air temperature using the SPM samples collected in this study, which shows 

promise. We compared MBT’5ME values to average daily air temperatures recorded at the 

closest weather station over each collection interval (Table 5.1, Figure 5.12a). 

Measurements of water column temperature were not made. We note that during the 

January 2015 (late fall through spring) sample, only temperatures from ice-free dates 

were used in the average, as brGDGT production likely decreases drastically or ceases 

during times when the lake is ice covered. This is an assumption about brGDGT 

production that should be more thoroughly investigated in future work. Ice-in and ice-out 

dates (Table 5.1) were provided by the Maine Volunteer Lake Monitoring Program 

(MVLMP).  

Through linear regression, we find a positive relationship between MBT’5ME and 

average temperature for each time period, with a correlation coefficient of ~ 0.4 (Fig 

5.12a).  We applied this calibration downcore and compared to the two calibrations 

discussed in the manuscript (Fig 5.12b); the MBT’5ME African lakes calibration (Russell 

et al., 2018) and a calibration from Chinese Lakes (Dang et al., 2018). The Basin Pond 

calibration has a similar slope to that of Russell et al. (2018), resulting in nearly identical 

reconstructed temperature trends, with temperature values offset by ~1-2oC (Figure 

5.12b). While the Russell et al. (2018) calibration produces slightly lower than observed 

temperatures, the Dang et al. (2018) calibration produces far lower temperatures (10 oC) 
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than observed. The Dang et al. (2018) calibration also produces different temperature 

trends than those reconstructed by the MBT’5ME calibrations (see section 5.5.2). Although 

the dataset is too short (4 data points) for a robust lake-specific calibration of MBT’5ME 

against temperature, these initial results are promising, and provide support for future 

efforts to develop a calibration of MBT’5ME to air and water temperature at Basin Pond. 

Currently, a new multi-year sampling campaign is underway in Basin Pond, with the goal 

of getting more data for a MBT’5ME -temperature correlation to produce a reliable 

calibration. This campaign includes water column temperature measurements. 
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Figure 5.1: Map of Basin Pond. (a) The location of Basin Pond (BP) (white star) in 
Maine, USA. Locations of three other sites are labelled: Little Pond (LP; Gao et al. 
2017), Great Heath Lake (GH; Nichols and Huang, 2012; Clifford and Booth, 2013), 
and Saco Bog (SB; Clifford and Booth, 2013). (b) Bathymetric profile (6 m contours) 
of Basin Pond with position of floating sediment traps (circles), surface soil samples 
(squares), and core BD-2014-5D used for the downcore temperature reconstruction 
in this study (star). The pond has an area of approximately 0.14 km2. (c) Schematic 
of sediment traps utilized in this study.  
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Figure 5.2: Temporal variation of the relative abundance of group I, II and III 
brGDGTs in SPM (green shaded bars), sediment (black bars), and catchment soil 
samples (white bars).  As in the plot of June SPM, the brGDGT groups III, II, and I, 
are displayed from left to right for each collection period and sediment and soil 
samples. Sediment and soil samples were collected in Spring of 2014. Green shaded 
bars for SPM samples reflect averages for each date samples were collected, 
measured in July 2014 (lightest green), August 2014, September 2014 and June 2015 
(darkest green). For each category, brGDGT groups III, II, and I are shown in that 
order (left to right). Lines in each bar represent the relative abundance of 5- and 6- 
methyl brGDGTs, with cross hatching representing 6- methyl abundances. 
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Figure 5.3: Time series of brGDGT fluxes for each of the sediment traps in Basin 

Pond. brGDGT fluxes at 6m (a), 12m (b), 18m (c), 24m (d), and 30m (e) are shown. 
There is no data for trap (e) in July 2014.  Note the change of scale for (d) and (e), 

indicating fluxes an order of magnitude higher for the lowermost traps. Green bars 
correspond to the time periods in Figure 2. Blue bars correspond to the depth 

ranges in Figure 5.  
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Figure 5.4: Hydrolab-measured temperature and pH profiles for Basin Pond 

compared with flux weighted average brGDGT-based reconstructions. (a) Fall lake 
temperature profile, showing the mixed layer extending to ~9 m water depth, 

followed by the thermocline (9-15 m) and a cold deep layer (15-32 m). (b) Fall pH 
profile. the pH ranges from ~7.5 at the surface to ~6.2 at depth. (c) Flux weighted 
average MBT values measured at sediment traps. (d) Flux weighted average CBT 

values measured at sediment traps. (e) brGDGT fluxes measured at sediment traps. 
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Figure 5.5: Spatial variation in the water column of the relative abundance of 
groups I, II and III brGDGTs in SPM as a function of water depth. As in the plot of 

June SPM, the brGDGT groups III, II, and I, are displayed from left to right for 
each collection period and sediment and soil samples. For each group, the relative 
abundance at depths of 6 m (lightest blue), 12 m, 18 m, 24 m, and 30 m (darkest 
blue) is plotted next to the average surface sediment (black) and catchment soil 

(white). For each category, brGDGT groups III, II, and I are shown in that order 
(left to right). Lines in each bar represent the relative abundance of 5- and 6- methyl 

brGDGTs, with cross hatching representing 6- methyl abundances. 
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Figure 5.6: BrGDGT-based proxies measured on surface sediments (black), SPM 

(gray), and catchment soils (white). (a) Cyclization of Branched Tetraethers (CBT), 
(b) Methylation of branched tetraethers (MBT’5ME), and (c) the Isomer Ratio (IR). 
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Figure 5.7: Comparison of Basin Pond MBT’5ME with newly published temperature 

calibrations. (a) Core BP2014-5D plotted using the African Lakes calibration 
(Russell et al., 2018), and the (b) Chinese lakes calibration (Dang et al., 2018). (c) 

Basin Pond MBT’5ME values. 
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Figure 5.8: Ternary diagram of brGDGT distributions of lake sediments (Dang et 
al., 2018; Russell et al., 2018) and global soils (Peterse et al., 2012) and Basin Pond 

sediments.  
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Figure 5.9: The Basin Pond MBT’5ME record compared with other paleoclimate 
records from the NE US. (a) MBT’5ME (this study). Colored bars indicate the three 
main periods discussed in the text. (b) Pollen-based reconstruction of temperature at 
Basin Pond (Gajewski, 1988). (c) Deuterium isotope (δD)-based temperature 
reconstruction at Little Pond (Gao et al., 2017). (d) Great Heath aridity 
reconstruction based on the Sphagnum/Vascular Ratio (SVR) (Nichols and Huang, 
2012). (e) Water table reconstruction from Great Heath (Clifford and Booth, 2013). 
(f) Water table reconstruction from Saco Bog (Clifford and Booth, 2013). (g) 
Charcoal counts from Basin Pond (Miller et al., 2017). 
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Figure 5.10: The Basin Pond MBT’5ME record compared with regional and global 
records of temperature change. (a) Tree-ring based reconstruction of the AMO 
Index (Gray et al., 2004). (b) NAO Index reconstruction (Sun et al., 2015). (c–f) 
Regional temperature stacks based on composite proxy reconstructions for the 
Arctic (c), Europe (d), and North America (pollen, (e); tree rings, (f). The records 
have been standardized to have the same mean (0) and standard deviation (1) from 
1190–1970 AD (PAGES2k 2013). (g) MBT’5ME (this study).    
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Figure 5.11: Comparison of historical temperature records for the state of Maine, 
MBT’5ME reconstruction, and algal lipid biomarkers in Basin Pond. (a) Relative 
abundance of four major algal lipids. (b) MBT’5ME record. (c) Maine state-wide 
average temperature (NOAA, 2014). The black line indicates the rotenone treatment 
of the lake in 1955. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

127 

 
 

Figure 5.12: a) Comparison of MBT’5Me values from all SPM samples (averaged for 
each date range) to average air temperatures during each time period. The equation 

for the plotted linear regression line, along with the correlation coefficient, are 
shown.  b) Downcore reconstructed temperatures (in oC) from the Basin Pond 

calibration (long dashed line), the Russell et al. 2018 African lakes calibration (short 
dashed line), and from the Dang et al. 2018 Chinese lakes calibration (solid line).  

 
 

(a)

(b)
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Table 5.1: Meteorological data used for calculating MBT’5Me to temperature 
calibration at Basin Pond, ME from June 2014 through June 2015 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

This dissertation describes a variety of methods and studies addressing climatic 

fire risk in the Northeastern United States in pre-historic times, historical records, and 

into the future. We find that regional climatic fire risk for the NEUS can be estimated 

most accurately using the Keetch Byram Drought Index (KBDI) from 20th century 

historical meteorological records from various stations located throughout the region. The 

KBDI was demonstrated to capture extreme years of fire risk throughout the 20th century, 

with increased KBDI occurring during years of high fire occurrence and low KBDI 

values occurring during wet and cool years with little to no fire occurrence. Regional fire 

risk is then estimated through 2100 AD, using the KBDI and dynamically downscaled 

regional climate models from CMIP5 climate models. Under RCP 8.5, average KBDI and 

max yearly KBDI is shown to increase by 300% and 500%, respectively, in an 

exponential trend. Under RCP 4.5, KBDI is also expected to increase through 2100 AD 

to a lesser extent. Interestingly, these increases in regional fire risk are present regardless 

of increases in precipitation, indicating that future fire risk in the NEUS is driven largely 

by changes in temperature as opposed to precipitation.  

Employing sedimentary PAHs to investigate regional fire occurrence, as outlined 

in Chapter 4, highlighted the value of a multi-proxy approach to reconstructing fires in 

sedimentary records from the region. In order to investigate long-term regional wildfire 

activity over the past millennium, we examined PAHs and macrocharcoal from a varved 

sedimentary record from Basin Pond, Fayette, Maine (USA). We found elevated 

concentrations of the PAH retene were highly correlated with known large-scale regional 
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wildfire events that occurred in 1761-1762, 1825, and 1947 (A.D.). To distinguish 

between biomass burning and anthropogenic combustion, the ratio of the PAHs retene 

and chrysene was examined. The new Basin Pond PAH records, along with a local signal 

of fire occurrence from charcoal analysis, offers the prospect of using this multi-proxy 

approach for examining wildfire frequency at the local and regional scale in the NEUS. 

Finally, in Chapter 5, seasonally resolved measurements of brGDGT production 

in the water column, in catchment soils, and in a sediment core from Basin Pond were 

reported. These observations were used to help interpret a Basin Pond brGDGT-based 

temperature reconstruction spanning the past 900 years. This record exbibits similar 

trends to a pollen record from the same site and also to regional and global syntheses of 

terrestrial temperatures over the last millennium. However, the Basin Pond temperature 

record shows higher-frequency variability than has previously been captured by such an 

archive in the NEUS, potentially attributed to large scale atmospheric patterns. These 

new records of temperature variability and wildfire activity, when compared to regional 

hydroclimate records, shed insight into pre-historic wildfire risk in the NEUS.   

6.1 Future Work  

This dissertation highlights the importance and usefulness of utilizing the Keetch 

Byram Drought Index (KBDI) to estimate future fire risk by forest and fire managers to 

determine how fire management and suppression practices need to change. For example, 

in the Bar Harbor/Acadia National Park locality, an area that has been drastically altered 

by wildfires (i.e., the 1947 wildfires), future fire risk is a critical question managers face, 

particularly in a widely visited National Park where there are high populations of visitors 

during the fire season. This method of modeling fire risk using the KBDI can be a 
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valuable tool for forest and fire managers in making informed decisions about changes in 

fire suppression practices in the near future, particularly in coastal or southern areas of 

the NEUS that have deep duff and upper soil layers. Because the KBDI estimates upper 

soil moisture, extreme end-of-century values will be critical for fire suppression activities 

in these areas, as suppressing creeping, smouldering, or underground fires (as seen in 

regions with deep duff layers), which cost much more to suppress than above ground 

wildfires. Sub-regional, high resolution analyses of these wildfire-prone areas should be 

done on a case-by-case basis using the KBDI in the future, and compared with other fire 

indices commonly employed that take into account other aspects of fire risk (i.e. 

ecological parameters).  

The Basin Pond temperature study, as outlined in Chapter 5, provides the 

foundation for a brGDGT temperature calibration for the Northeastern United States.  

Currently, numerous water samples are being collected on a biweekly basis at Basin 

Pond, in order to further develop the preliminary calibration presented in Chapter 5. 

Furthermore, work on Sebago Lake, a large, deep lake located in southern Maine, will aid 

in further advancing the development of a refined NEUS temperature calibration for 

brGDGTs. This will ultimately make brGDGT analysis in this region a reliable and 

accurate method to reconstruct temperature, which will be a valuable addition to the 

paleoclimate community. Finally, future work within the brGDGT-community is needed 

to constrain brGDGT producers.  With a better understanding of where, when, and what 

are the primary producers of these compounds, temperature reconstructions can be more 

accurately constrained and interpreted.  
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Employing sedimentary PAHs to investigate regional fire occurrence, as outlined 

in Chapter 4, highlighted the value of a multi-proxy approach to reconstructing fires in 

sedimentary records from the region. To date, the vast majority of studies have focused 

on sedimentary charcoal analysis, which unfortunately have spatial limitations, limiting 

their ability to investigate regional fire outbreaks. Using PAHs provides an alternative to 

charcoal analysis, and reconstruct regional outbreaks of wildfires. Furthermore, 

alternative emerging methods, such as black carbon or analysis of molecular compounds 

such as levoglucosan, can be used to investigate regional and “super-regional” fire 

activity.  These methods should be employed by future studies to gain better 

understanding of the spatial extent of PAHs and other wildfire proxies, as well as any 

regional fire outbreaks in pre-historic times in the NEUS.  
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