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ABSTRACT 

DIRECT IMPRINTING OF NATURE-INSPIRED SURFACES FOR 
BIOINTERFACIAL APPLICATIONS 

 
FEBRUARY 2019 

 
FEYZA DUNDAR 

 
B.S., KOC UNIVERSITY 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor James J. Watkins 

 
There are three major challenges for the design of patterned surfaces for 

biointerfacial applications: (i) durability of antibacterial/antifouling mechanisms, (ii) 

mechanical durability, and (iii) lifetime of the master mold for mass production of 

patterned surfaces. In this dissertation, we describe our contribution for the development 

of each of these challenges.  

The bioinspired surface, Sharklet AFÔ, has been shown to reduce bacterial 

attachment via a biocide-free structure-property relationship effectively. Unfortunately, the 

effectiveness of polymer-based sharkskin surfaces is challenged over the long term by both 

eventual bacteria accumulation and a lack of mechanical durability. To address these 

common modes of failure, hard, multifunctional, antifouling, and antibacterial shark-skin 

patterned surfaces were fabricated via a solvent-assisted imprint patterning technique. A 

UV-crosslinkable adhesive material was loaded with titanium dioxide (TiO2) nanoparticles 

(NPs) from which shark skin microstructures were imprinted on a polyethylene 

terephthalate substrate. Furthermore, hard, multifunctional, antifouling, and antibacterial 

shark skin patterned surfaces were fabricated using inks comprised of zirconium dioxide 
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(ZrO2) NPs and TiO2 NPs. The ZrO2 NPs provide an extremely hard and durable matrix in 

the final structure, while the TiO2 NPs provide active antibacterial functionality in the 

presence of UV light via photooxidation. The dynamic water contact angle, mechanical, 

antibacterial, and antifouling characteristics of the shark skin patterned surfaces were 

investigated as a function of TiO2 content. We then demonstrated the multifunctional shark 

skin system’s suitability for use as an antifouling biosensor. 

Lastly, we described the design of a durable, hard master mold for pattern transfer. 

The lifetime of many of the current molds is limited by a lack of mechanical durability as 

well as cost. In this study, ZrO2 NPs were imprinted on a variety of substrates using a 

solvent-assisted patterning technique and subsequently annealed to increase the 

mechanical durability of the mold. Polymer replications were demonstrated using the hard 

ZrO2 mold with thermal and UV nanoimprinting lithography techniques, and injection 

molding. After up to 115,000 injection molding cycles, there was no delamination or 

breakage in the ZrO2 mold. The high hardness and durability, as demonstrated through the 

many replication cycles, suggests that the ZrO2 mold has excellent potential for use in the 

mass production of patterned polymer replicas. We also explored the nanopatterning of 

stainless steel using the ZrO2 mold. The solution-processability and simple patterning 

technique of ZrO2 NPs enable large-area and cost-effective fabrication of the hard molds 

which can be used for the variety of nano and micro-replication technologies. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Antifouling and Antibacterial Surfaces 

Bacteria, which make up the oldest fossils are known, have existed for more than 3.5 

million years. Although some bacteria are essential for the ecosystem, harmful bacteria 

often cause severe complications in health-care, food processing, and in many other 

industries.1 Unfortunately, bacterial contamination causes millions of infections and 

23,000 deaths every year in the US alone. Once bacteria attach to a surface, colony 

formation subsequently follows, which ultimately results in biofilm formation. Bacteria 

and biofilms are very complex systems and often are not trivial to deal with.2 There are 

two major approaches to designing antimicrobial surfaces: antifouling and antibacterial. 

Antifouling refers to a system that prevents an organism from attaching to a surface, 

whereas, the term antibacterial often refers to a biocidal surface that kills bacteria upon 

contact of via leaching chemicals. 

Antibacterial agents, including silver (Ag), copper (Cu), photocatalytic titanium 

dioxide (TiO2), and zinc oxide (ZnO) have been shown to be bactericidal. The antibacterial 

characteristics of these materials result from several mechanisms including toxic ions, 

electrostatic forces, and the generation of reactive oxygen species.3,4 For example, Ag NPs 

release Ag+ ions, which can inactivate a broad-spectrum of bacteria from gram-positive to 

gram-negative by damaging the bacterial cell membrane. Moreover, antimicrobial 

peptides5, antimicrobial enzymes6 and various antibiotics have exhibited contact-based 

killing activities. However, antibacterial agents/surfaces often suffer from limited 

antimicrobial durability and stability due to the complete leaching of active chemicals 
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and/or as a result of the accumulation of dead bacteria.7 Furthermore, antibacterial agents 

often cause more resistant bacteria.8  

Antifouling surfaces may prevent or resist fouling through several mechanisms 

including chemistry, topography, and the mechanics of the surface, all of which cause non-

favorable interactions between the bacterial cell and the substrate.9–11 For example, 

poly(ethylene glycol) (PEG) is one of the gold-standards of coatings which resists protein 

adsorption as a result of low water interfacial energy (less than 5 mJ.m-2).12 The common 

properties of protein-adsorption-resistant surfaces are reported as being polar, hydrogen-

bond acceptors electrically neutral, and having no hydrogen-bond donors,.13,14 Moreover, 

increasing polymer grafting density and chain length also enhances the antifouling 

properties.15,16 Bacterial attachment on a substrate is facilitated through an adsorbed protein 

layer, and therefore surfaces that resist protein adsorption often resist bacterial attachment. 

However, although PEG displays excellent protein resistance, it often fails in reducing 

bacterial colonization.17 Zwitterionic polymers have been demonstrated as alternative 

materials for non-fouling surfaces due to their enhanced mechanical and chemical stability 

compared to PEGs. Their non-fouling behavior is explained with the presence of a water 

layer, which delays the adsorption of proteins and therefore the adhesion of bacteria.18 

However, no such surface has been able to prevent 100% of bacterial attachment. This can 

be partially attributed to the lack of sufficient mechanical and antimicrobial durability of 

the current coatings, which prevents antifouling characteristics over sustained periods of 

time. 

 

Nature-inspired coatings19,20, based on microtopography, have caught the attention of 

researchers for their potential to overcome current antimicrobial challenges. Some marine 
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mammals and fast swimming fishes have distinct topographies on their skin, which result 

in a non-fouling property.21 Sharks are one of the most widely studied animals because of 

their non-fouling skin. For example, shark-skin inspired surfaces have been used in drag 

reduction, which results from alignment of the longitudinal grooves parallel to the flow 

direction.19 It has been reported that shark-skin texture on a commercial aircraft reduced 

fuel consumption by up to 2% by reducing the drag by up to 8%.22 Rough topographies 

exhibiting antifouling characteristics via structure-property relationships often revealed 

that patterned surfaces have significantly reduced bacterial attachment compared to smooth 

films of the same material. It has been found that feature size and pattern design are critical 

factors affecting antifouling behavior. For example, one of the commercialized antifouling 

microtopographic designs, Sharklet, is inspired by shark-skin and has been shown to inhibit 

the attachment of a variety of microorganism including Ulva, Escherichia coli (E. coli), 

Staphylococcus aureus (S. aureus), and platelet cells up to 70-85% after a 24 h incubation 

period. However, none of the reported microtopographies is a long-term antifouling 

solution due to certain intrinsic characteristics such as mechanical and antimicrobial 

durability. When given sufficient amount of time, biofilms still form. Thus, further 

development and understanding of advanced antibacterial and antifouling surfaces are 

needed to obtain new high-performance, durable coatings.  

In this thesis, we describe the design of multifunctional shark-skin-patterned surfaces 

with antifouling and antibacterial activities. Moreover, we discuss the development of 

advanced biosensors which take advantage of the antifouling characteristics of the 

multifunctional shark-skin surface. Challenges and needs persisting in the field are 

explained in more detail in the following chapters. 
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1.2 Overview of Patterning Techniques 

Nano/micro topographies can be fabricated via various techniques23 including 

photolithography, ion-beam lithography, e-beam lithography, nanoimprint lithography 

(NIL)24, and dip-pen nanolithography25. Among the many patterning techniques, NIL 

stands out as a low-cost, scalable method that lends itself well to the mass production of 

new high-performance materials. NIL can be divided into many sub-groups, but thermal-

NIL and UV-NIL are the most common replication techniques.  The general process chain 

of NIL starts with fabrication of a silicon (Si) master mold via e-beam lithography. Then, 

the Si master mold is replicated into a soft or hard working stamp. Then, the working stamp 

is used to replicate many nano/micro patterns into the desired polymer material. The 

polymer material is shaped into the desired pattern in its viscous state. Thermoplastic 

polymer films can be patterned at above their glass transition temperature (Tg) within 

several minutes using a hard stamp.  Thermal-NIL often suffers from incomplete-

replication, long cycle times, and short stamp lifetimes. In UV-NIL, low viscosity 

monomers fill the working stamp via capillary action and are rigidified through 

crosslinking under a UV light.. Thus, better replication quality is enabled, along with a 

shorter cycle time. Thermal and UV-NIL are capable of patterning not only polymers, but 

also inorganic sol-gels, which gives them material versatility. The scalability of NIL 

techniques is evident in that roll-to-roll (R2R) thermal-NIL and R2R UV-NIL have been 

developed for large-scale applications. Alternatively, injection molding enables the 

fabrication of nano/micropatterned surfaces for mass production of 3-dimensional objects. 

For example, compact disks (CDs) and micro-optical components (smartphone cameras) 

have been developed based on injection molding of micro/nanopatterns. 
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Nanoimprinting and injection molding techniques have two main challenges which 

limits the use of patterned surfaces in practical applications. First, the lifetime of a single 

working stamp is not sufficient to produce the millions of replicas that are required for 

cost-efficiency. Second, fabrication of seamless patterned surfaces over large areas is 

limited. In this thesis, we will address on the development of durable working stamps. 

In our group, we have developed a solvent-assisted NP imprinting technique, which 

enables direct imprinting of crystalline NPs and offers practical solutions for battery26,27, 

in optics26,28 and, antimicrobial29 applications. The advantage of the imprinting of NPs over 

sol-gels is less shrinkage, which leads stable, crack-free nano/micropatterns. The process 

is briefly as follows: a NP dispersion is coated on a substrate, a soft poly(dimethylsiloxane) 

(PDMS) is placed onto the coating, and then NPs fill the stamp via capillary action. The 

advantages of using PDMS as the working stamp material consist of: (i) conformal contact 

with planar and nonplanar surfaces, (ii) solvent absorption, (iii) low surface energy which 

allows easy demolding. Additionally, the formulation of the NP dispersion is essential to 

obtain high fidelity replicated features. Typically, we select a combination of low and high 

volatility solvents in which the highly volatile solvent allows fast film formation and the 

low volatility solvent enables the capillary action and filling of the PDMS inverse stamp. 

Moreover, solvent compatibility to the PDMS, surface tension of the solvents, and the 

viscosity of the NP dispersion are important factors that affect imprinting quality. For 

example, the high surface tension of water and the limited absorption of water by PDMS 

makes it challenging to imprint water-based NP dispersions. Thus, we imprint the patterns 

using organic solvents or conduct a solvent exchange of NPs from aqueous-based to 

organic solvents.  
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1.3 Materials of Interest 

1.3.1 Titanium Dioxide (TiO2) Nanoparticles 

TiO2 is an excellent photocatalyst, which has been used to decompose organic 

compounds under illumination. In 1921, Renz reported for the first time that under sunlight 

illumination, TiO2 is reduced in the presence of organic compounds and that the TiO2 

turned from white to grey and blue.30 Later, the photoelectrolysis of water by TiO2 was 

reported in 1972.31 The photocatalytic mechanism of TiO2 is shown in Figure 1.1. Under 

illumination, upon adsorption of photons, electrons are excited from the valence band to 

the conduction band, leaving a hole in the valence band. In the presence of water, reactive 

oxygen species (ROS) are formed. There are three main phases of TiO2; anatase, rutile, and 

brookite. The anatase phase has been shown to be the most effective photocatalyst, with a 

band gap  of approximately 3.2 eV, which can be activated under illumination at a 

wavelength below 385 nm. TiO2 has been widely used in many applications including 

water purification, air cleaning, disinfection and self-cleaning.32  

TiO2 + hn ® ecb- + hvb+  (1.1) 

O2 + ecb- ® O2-×   (1.2) 

hvb+ + H2O ® ×OH + H+  (1.3) 

×OH + ×OH ® H2O2   (1.4) 

O2-×  + H2O2 ® ×OH + OH- + O2 (1.5) 

O2-× + H+ ® ×OOH   (1.6) 

Figure 1.1. Scheme of the reaction mechanism of a TiO2 photocatalyst upon light exposure.33 
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Matsunaga et al. first demonstrated antimicrobial activity of TiO2 in 1985.34 Since 

then it has been reported that TiO2 can be used to inactivate bacteria, fungi, algae, and 

viruses under a weak UVA illumination. The killing mechanism of TiO2 toward bacteria 

has been studied and it has been reported that the lethal action of ROS results in bacterial 

membrane and cell wall damage, ultimately resulting in the death of the bacteria. Several 

great references on the photocatalytic killing activity of TiO2 have been provided by Foster 

and Fu et al.33,35 

In this thesis, we describe a multifunctional surface that combines topographical 

antifouling properties with the photocatalytic advantages of TiO2 NPs to obtain 

antibacterial functionality and long-term durability.  
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CHAPTER 2 
 

BIOINSPIRED PHOTOCATALYTIC SHARK-SKIN SURFACES WITH 

ANTIBACTERIAL AND ANTIFOULING ACTIVITY VIA NANOIMPRINT 

LITHOGRAPHY 

Adapted from Arisoy, F. D.; ; Kolewe, K. W.; Homyak, B.; Kurtz, I. S.; Schi, J. D.; 

Watkins, J. J. Bioinspired Photocatalytic Shark-Skin Surfaces with Antibacterial and 

Antifouling Activity via Nanoimprint Lithography. ACS Appl. Mater. Interfaces 2018, 10 

(23), 20055–20063. 

2.1 Introduction 

Pathogenic microorganisms are transferred to at-risk patients through direct patient 

or clinician contact with contaminated high-touch surfaces1,2 resulting in healthcare-

associated infections (HAIs).3 Although commercial antibiotics are the most common way 

to kill bacteria, their misuse and overuse has led to widespread antibiotic resistance, which 

results in greater than 2 million infections and 23,000 deaths in the United States, per 

year.4–6 New coatings for high-touch surfaces, such as bed rails, door knobs, etc, that both 

limit the attachment of microorganisms and inactivate the persistent microbes are in high 

demand.7,8 

Drawing inspiration from nature,9–12 many biomimetic surface topographies have 

been shown to reduce microbial adhesion through a biocide-free structure-property 

relationship.13–15 For example, the diamond-like riblets on the skin of sharks reduce drag 

and facilitate self-cleaning.16–18 Brennan et al. fabricated Sharklet AFTM, synthetic 

microstructures in silicone by replicating a silicon wafer mold prepared using 
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photolithography.19 Because of their unique hierarchical design and engineered roughness 

index (ERI),20 Sharklet AFTM patterned surfaces effectively inhibited the adhesion of the 

zoospores, Ulva (~5 µm diameter)  and Staphylococcus aureus (S. aureus) (1 µm 

diameter).19–22 Furthermore, Reddy et al. reported that silicone Sharklet AFTM surfaces 

reduced surface coverage by the Gram-negative bacteria Escherichia coli (E. coli) by up 

to 55% and the colony size by 76% compared to smooth films, after a 24 h incubation 

period.23 However, Sharklet AFTM patterned surfaces share a limitation intrinsic to all 

microtopographic patterned surfaces: given a sufficient amount of time, bacteria will 

accumulate on the surface. For this reason, microtopography alone is insufficient and there 

is a need to develop multifunctional coatings that are antifouling and antibacterial. 

 Photocatalytic materials, including titanium dioxide (TiO2), are effective 

antimicrobial agents that inactivate a wide array of microorganisms including both Gram -

positive and -negative bacteria, fungi and viruses.24,25 TiO2-based nanocomposites have 

been extensively studied for a variety of applications, including surface disinfectants.26–28 

When TiO2 absorbs UV light, redox reactions with H2O or OH- molecules form reactive 

hydroxyl radicals and superoxide ions, respectively.29,30 Interaction of these reactive 

species with the outer membrane of bacteria induce rupture and subsequent cell death.25 

The benefits of using TiO2 nanoparticles (NPs) compared to other well-known antibacterial 

agents (silver, copper, etc) are their low cost, wide availability, and ability to be 

incorporated into transparent coatings. These advantages make TiO2 an attractive candidate 

for use in high-touch antimicrobial surface coatings. 

 In this work, we developed multifunctional surfaces by synergistically combining 

the antibacterial activity of TiO2 with adhesion-resistant biomimetic shark skin 

microtopography. To the best of our knowledge, this work represents the first reported use 
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of antibacterial NPs in shark skin patterned surfaces. Orthogonal shark skin surfaces were 

fabricated using solvent-assisted nanoimprint lithography (NIL)31,32 on flexible 

polyethylene terephthalate (PET) substrates from polymer and ceramic composite 

dispersions. Polymeric shark skin composites containing 10 wt% and 50 wt% TiO2 NPs 

were prepared using Norland Optical Adhesive (NOA). Ceramic shark skin was prepared 

with 90 wt% TiO2 NPs using tetraethyl orthosilicate (TEOS) as a binder. We further 

investigated the wettability, mechanical, antibacterial, and antifouling characteristics of the 

composites and shark skin patterned surfaces as a function of TiO2 composition. Scalable 

and low-cost photocatalytic shark skin patterned surfaces offer high antimicrobial 

performance towards the development of light-assisted, environmentally friendly 

antifouling and antibacterial surface coatings.  

2.2 Experimental Section 

2.2.1 Materials 

All materials were used as received without further purification. Titanium dioxide (TiO2, 

anatase phase) nanoparticles (5-30 nm diameter) 15 wt% dispersed in water were 

purchased from Nanostructured & Amorphous Materials Inc. (Houston, TX). Norland 

Optical Adhesive 60 (NOA) was purchased from Norland Products, Inc. (Cranbury, NJ). 

N-methyl-2-pyrrolidone (NMP, ReagentPlus 99%), M9 minimal salts (M9 media), 

phosphate buffered saline (PBS, 10× sterile biograde), and 98% tetraethyl orthosilicate 

(TEOS) were purchased from Sigma-Aldrich (St. Louis, MO). Poly(vinyl alcohol) (PVOH, 

80% hydrolyzed, 6 kg mol−1) was purchased from Polysciences, Inc. (Warrington, PA). 

Methanol (MeOH) and poly(tetrafluoroethylene) (PTFE) filters (0.45 μm) were purchased 

from Fisher Scientific (Hampton, NH). Polyethylene terephthalate (PET) roll (ST 505, 125 
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µm thick films), Dupont, were purchased from Tekra Corporation (New Berlin, WI). 

Heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane was acquired from Gelest 

(Morrisville, PA). Sylgard 184 silicone elastomer kit (polydimethylsiloxane (PDMS)) was 

purchased from Dow Corning (Midland, MI).  

2.2.2 Solvent Exchange of TiO2 Nanoparticle (NP) Dispersion  

The details of solvent exchange can be found in previous publications from our group.31 

Briefly, TiO2 (100 g of 15 wt%) aqueous dispersion was added into a 250 mL bottle. NMP 

(50 g) and MeOH (50 g) were added to the dispersion and mixed. The mixed solution was 

placed under air flow overnight until majority of the solvent was removed, resulting in a 

slurry. The amount of the solvent and solid were calculated and subsequently, NMP and 

MeOH were added in a 1:1 weight ratio to the slurry mixture to obtain an approximately 

15 wt% TiO2 dispersion. The dispersion was sonicated (~30 min) until stable TiO2 NP 

dispersions were obtained. The final TiO2 concentration was calculated as 15.2 wt% and 

remained stable for a year. 

2.2.3 PDMS Mold Fabrication 

Sample compositions are named as NOA (100 wt% NOA), TiO2-10 (10 wt% TiO2/90 wt% 

NOA), TiO2-50 (50 wt% TiO2/50 wt% NOA), and TiO2-C (90 wt% TiO2/10 wt% TEOS). 

In order to fabricate shark skin patterns from NOA, TiO2-10, TiO2-50, and TiO2-C with 

the same dimensions, two different masters (Master 1 and Master 2) were used as further 

explained in the results and discussion section. 

Master 1: Soft PDMS replica molds were fabricated using the standard fabrication 

method.33 PDMS was prepared by mixing Sylgard 184 at a 1:10 ratio of curing agent to 

base, then poured onto a Sharklet nickel (Master 1; height: 3 µm, width: 2 µm, pitch: 4 
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µm) mold (provided by Sharklet Technologies) and placed into an oven to be crosslinked 

at 70 °C for 3 h. The PDMS was then peeled off from the Master 1 to obtain a soft mold of 

the inverse Sharklet structure. The inverse Sharklet PDMS mold was used to imprint TiO2-

50 and TiO2-C shark skin patterns. 

Master 2: A TiO2-50 patterned shark skin sample used as a master mold (Master 2; height: 

1.6 µm, width: 1.3 µm, pitch: 4 µm). TiO2-50 was placed in an oxygen (O2) plasma cleaner 

for 2 min, then the surface modified with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)-

dimethylchlorosilane at 60 °C for 12 h to obtain an anti-sticking surface. The inverse shark 

skin PDMS mold was prepared from Master 2 using the same procedure given above. 

Inverse shark skin PDMS mold was used to imprint NOA and TiO2-10 shark skin patterns. 

2.2.4 Shark Skin Pattern Fabrication Using Solvent-Assisted NIL 

PET substrates were cleaned using ethanol and isopropanol then exposed to O2 plasma for 

3 min and used as substrate for the imprints. TiO2 composite dispersions were prepared 

using solvent-exchanged 15.2 wt% TiO2 (NMP/MeOH). To prepare NOA shark skin 

patterns, a 20 wt% NOA solution in NMP was spin-coated onto a PET substrate, then an 

PDMS stamp (replica from Master 2) was placed on top. TiO2-10 (10 wt% TiO2/90 wt% 

NOA) dispersion was prepared as a 17 wt% (solids) dispersion in NMP/MeOH and spin-

coated to form an 800 nm film. A PDMS mold (replica from Master 2) was then placed on 

top. A TiO2-50 (50 wt% TiO2/50 wt% NOA) dispersion was prepared as 30 wt% (solids) 

dispersion in NMP/MeOH and spin-coated to form an 800 nm film. A PDMS mold (replica 

from Master 1) was then placed on top. TiO2-C (90 wt% TiO2/10 wt% TEOS) dispersion 

was prepared as 17 wt% solid in NMP/MeOH and spin-coated to form an 800 nm film. A 

PDMS mold (replica from Master 1) was then placed on top. The assemblies were placed 
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on a 50 °C hot plate for 30 min to evaporate residual solvents. NOA, TiO2-10, and TiO2-

50 assemblies were UV cured to obtain crosslinked structures (UV light wavelength: 365 

nm, with an energy of 11 J/cm2).31 TiO2-C assembly was NIR (Adphos, 3 KW) irradiated 

(10 s) to quickly obtain silica binding. For each case, PDMS was gently peeled off from 

the coating and the shark skin patterns were obtained. NOA, TiO2-10, TiO2-50, and TiO2-

C dispersions were used to fabricate smooth films with the same chemistry as the patterned 

samples. UV or NIR curing procedures were conducted for corresponding samples.  

2.2.5 Materials Characterization 

To prepare thin films for transmission electron microscopy (TEM) imaging, glass 

substrates were coated with a PVOH sacrificial layer and placed on a hot plate for 1 min. 

Thin films (~100 nm) of TiO2-10, TiO2-50, and TiO2-C composites were spin-coated onto 

PVOH. Films were floated on water after PVOH was dissolved and picked-up by carbon 

coated copper grids for TEM. In addition to composite films, solvent exchanged TiO2 NPs 

in NMP/MeOH were diluted further with NMP/MeOH and drop casted on a carbon coated 

copper grid for TEM characterization. TEM was performed in bright field imaging mode 

using a JEOL 2000 FX TEM operated at an accelerating voltage of 200 kV. To measure 

the mechanical properties of NOA, TiO2-10, TiO2-50, TiO2-C films, dispersions of each 

polymer and ceramic composite were spin-coated into films of 800 to 1200 nm on PET 

substrates. The hardness and reduced modulus of films were determined using a Hysitron 

TriboIndenter (TI 950) by averaging 30 indentations obtained under rate control (10 µN/s) 

using a Berkovich tip (100 nm) for each film.  Significant difference was determined by 

analysis of variance (ANOVA) with Tukey test. Values of p<0.05 was considered to be 

significant. The concentration of TiO2 NPs was confirmed by thermogravimetric analysis 

(TGA, TA Instruments Q50) using the following temperature program under air: heating 
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from room temperature to 700 °C, with a rate of 10 °C/min. Scanning electron microscopy 

(SEM) was performed on a field emission SEM (Magellan 400). The NOA and TiO2-10 

shark skin samples were gold sputtered using a sputter coater (CR 108) for 45 s prior to 

imaging. The TiO2-50 and TiO2-C shark skin samples were imaged as-produced in the 

SEM. 3D optical profilometer (Zygo, Nexview) was used to measure feature dimensions. 

Contact angle measurements were acquired using a VCA Optima surface 

analysis/goniometry system. Prior to testing, shark skin patterned samples were kept in the 

dark for 14 days to minimize UV effects. Static, advancing, and receding water contact 

angles were determined from parallel and orthogonal directions using 6 independent 

measurements at room temperature (5 µL water drops were used).  

2.2.6 Antifouling Performance 

The fouling resistance of shark skin patterned NOA, TiO2-10, TiO2-50, and TiO2-C 

composites, as well as smooth chemistry controls were evaluated with a bacterial 

attachment assay using the model bacteria, Escherichia coli K12 MG1655 (E. coli, 

expressing green fluorescent protein).34 E. coli was cultured overnight in Luria-Bertani 

broth (Sigma-Aldrich) then washed and re-suspended in M9 media to a final concentration 

of 1 × 108 cells/mL. Samples were placed at the base of separate wells in 6-well polystyrene 

plates (Fisher Scientific) and inoculated with 5 mL of E. coli suspended in M9 media. 

Following a 24 h incubation period at 37 ºC, the growth media was removed using a 

sterilized glass pipette and samples were rinsed repeatedly with PBS before analysis. 

Samples were analyzed using a Zeiss Microscope Axio Imager A2M (20× and 50× 

magnification, Thornwood, NY). The surface area coverage of attached bacteria was 

quantified by analyzing 10–15 randomly acquired images over at least three parallel 

replicates using ImageJ 1.45 software (National Institutes of Health, Bethesda, MD).  
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2.2.7 Antibacterial Activity 

The antibacterial activity of the samples were evaluated using a using a standard assay 

modified to expose the samples to UV light.35 Smooth thin films of TiO2-10, TiO2-50, and 

TiO2-C were evaluated in parallel with controls including NOA, PET, and glass slides (data 

not shown). Samples were placed at the base of separate wells in 6-well polystyrene plates  

to which 5 mL of M9 media containing E. coli or S. aureus (1 × 108 cells/mL) were added 

before incubating for 1 h at 37 °C under UV light (F15W/T8 McMaster-Carr, 15W 365 nm 

wavelength). Samples were held at a 15 cm fixed distance from the UV source. UV light 

intensity was measured using a UV light meter (Thorlabs GM10HS, Hamamatsu S2281 

probe) and determined to be 1.0 mW/cm2. Following photoactivation, the samples were 

removed and stained with propidium iodide (PI) for 15 min to identify the dead cells before 

being throughly washed with PBS to remove excess stain. The loss of viability was 

visualized using a Zeiss Microscope Axio Imager A2M, quantified using ImageJ software, 

and the percentage of dead cells (or loss of viability) was calculated from the ratio of the 

number of cells stained with PI divided by the total number of cells.35 

Statistics: Significant differences between samples were determined with an unpaired 

Student t-test. Significance is denoted in the graphs using asterisks and defined in the figure 

captions.  

 

2.3 Results and Discussion 

2.3.1 Polymer and Ceramic Composite Shark Skin Pattern Fabrication 

Orthogonal shark skin microstructures were successfully imprinted using TiO2 loaded 

dispersions via solvent assisted NIL,31,32 as shown in Figure 2.1. The Master 1 mold 
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(height: 3 µm, width: 2 µm, pitch: 4 µm) and the Master 2 mold (height: 1.6 µm, width: 

1.3 µm, pitch: 4 µm) consist of riblets, with different lengths ranging from 4-16 µm (Figure 

2.2). While Master 1 (Nickel mold) was provided by Sharklet Technologies, Master 2 

(TiO2-50) was made of a TiO2-50 shark skin patterned sample. The soft PDMS molds were 

replicated from the masters, and therefore contain the inverse structure of the master and 

can be used to imprint the original-tone pattern on PET substrates. Dispersions of NOA, 

TiO2-10, TiO2-50, and TiO2-C were spin-coated onto PET substrates with sufficient 

residual solvent so that the coating had an appropriate viscosity (liquid enough) to fill the 

PDMS when placed in contact on top of the coating. The PDMS mold was kept on the 

substrate until the shark skin microstructures were formed, which was about 30 min, 

although the pattern transfer process was not optimized for cycle time. Other publications 

from our group show NIL patterning of titania surface patterns with cycle times of a few 

minutes or less.32,36 NOA, TiO2-10, and TiO2-50 assemblies were cured under UV exposure 

and ceramic TiO2-C shark skin assemblies were cured under NIR irradiation. After 

completing the curing process, the PDMS mold was peeled off, revealing microstructured 

shark skin patterned films. The mechanism behind the pattern formation via solvent 

assisted NIL is a result of the capillary force that drives the solution to form into the shape 

of the mold.31,32 As the solvent evaporates through the air-permeable PDMS stamp, the 

patterned structures form.  
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Figure 2.1. Schematic representation of the fabrication process of shark skin patterns using a 
PDMS soft stamp on flexible PET substrates. 

 

Our goal was to fabricate all shark skin patterned surfaces with the same dimensions 

as the TiO2-C shark skin microstructures. Notably, as the solvent evaporates during 

imprinting, the TiO2 NPs pack and shrink more than the polymer. Depending on the amount 

of solvent during imprint, the dimensions of the features change, resulting in features with 

dimensions less than the mold dimensions. Whereas, polymer materials can be imprinted 

with a perfect replication of the master mold.37 Thus, to make NOA and TiO2-10 imprints 

with the same dimensions as TiO2-C, we used a different master mold (Master 2) than the 

one used for TiO2-50 and TiO2-C shark skin patterned structures (Master 1).  
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Figure 2.2. Optical profilometry images and dimensions of (a) Master 1 (nickel mold)  and (b) 
Master 2 (TiO2-50 mold). 

 

The use of stable dispersions is a key requirement to obtain uniform filling of the 

stamp, which results in reproducible, well-replicated structures. Due to the high surface 

tension of aqueous solutions, wetting interactions between the solution and PDMS mold 

are not favorable without the use of surfactants. Organic solvents such as N-methyl-2-

pyrrolidone (NMP) and methanol (MeOH) have lower surface tension, which makes them 

preferable for solvent-assisted NIL. Moreover, the use of organic solvents and an elevated 

temperature (50 °C) increased solvent evaporation in solvent-assisted NIL, decreasing the 

overall imprint time. Thus, solvent exchange was conducted from water to a solvent 

mixture of NMP/MeOH yielding a stable dispersion of 10-15 wt% TiO2 NPs. MeOH, 

which is highly volatile, allows for fast film formation, while NMP, which is less volatile, 

evaporates more slowly and therefore, allows sufficient time for the imprinting process. 

Furthermore, NMP is a common solvent to disperse both NOA and TiO2 NPs. Relative 
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humidity (RH) is also an important parameter to consider when trying to obtain 

reproducible patterned surfaces. At high RH (above 30%), spin-coated films become 

thinner.32 Optimum humidity was determined as below 20% RH. Spin-coating speed and 

time can be adjusted according to RH to obtain desirable thickness and fluidity of the film.  

2.3.2 Characterization of the Composites 

NOA is a UV curable optical adhesive material that has been used as matrix for NP 

composites.31,38 In our study, we chose NOA as a model nanoimprint lithography matrix 

for several reasons, including that NOA can homogeneously disperse TiO2 NPs, NOA 

cures in several seconds to minutes depending on film thickness and light intensity, and 

NOA has favorable mechanical properties, such as high modulus.31,39 TiO2-10 and TiO2-

50 shark skin microstructures were prepared as 10 wt% and 50 wt% TiO2 loading to NOA. 

The loading of TiO2 NPs in samples TiO2-10 and TiO2-50 was measured by TGA and 

confirmed to be 10 wt% and 50 wt%, respectively (Figure 2.3). 

 

Figure 2.3. TGA of NOA, TiO2-10, TiO2-50, and TiO2-C. 
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Fully ceramic TiO2-C samples were prepared using a 90 wt% TiO2 and 10 wt% 

TEOS dispersion, in which TEOS polymerizes under NIR irradiation to create a SiO2 

binder to obtain ceramic coatings. The resulting crosslinked silica structures generated 

upon heating prevent deformation of microstructures after immersing the films in an 

aqueous solution. The samples without NIR curing were not stable in water overnight. 

Light sintering has several advantages compared to thermal sintering such as rapid process 

times and ability to sinter directly on flexible polymeric substrates. In previous works, NIR 

heating of TiO2 NPs was performed on metallic and fluorine doped tin oxide (FTO) glass 

substrates. NIR light was absorbed by the substrates and heat the film up to 700 °C in 12.5 

s.40,41 The PET substrate does not absorb NIR, however due to absorption of TiO2 above 

1800 nm42, heat radiation makes silica binding form quickly (10 s). Through NIR light 

annealing, ceramic TiO2-C shark skin structures were obtained on flexible PET substrates.  

TEM images of TiO2 NPs and TiO2-10, TiO2-50, and TiO2-C films are shown in 

Figure 2.4. The average TiO2 NP size was calculated to be 8.7 ± 4.5 nm by measuring at 

least 100 particles across multiple TEM images. The TEM micrographs indicate that the 

TiO2-10 composites exhibit a homogeneous dispersion of NPs, without any agglomeration; 

this is in contrast what was observed for the TiO2-50 composite. In the ceramic sample, 

TiO2-C, a high concentration of nanoparticles was observed, and as expected, the quick 

NIR treatment did not change the average size of the NPs. 
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Figure 2.4. TEM images of low and high magnifications (a, b) TiO2 NPs (drop casted from solvent 
exchanged TiO2 (NMP/MeOH) dispersion), as well as the (c, d) TiO2-10, (e, f) TiO2-50, (g, h) 
TiO2-C composite films. 

 

The mechanical properties of composites were characterized using 

nanoindentation.43,44 During the measurements, indentation depth did not exceed 10% of 

the film thickness to prevent substrate effects. Hardness and reduced modulus values are 

shown in Table 2.1. The hardness of NOA and TiO2-10 were determined to be 279 ± 14 

MPa and 278 ± 32 MPa, respectively. There was not a significant difference in the hardness 

and modulus values between NOA and TiO2-10. However, as the loading of TiO2 NPs 

increased, from TiO2-10 to TiO2-50, the hardness decreased significantly from 278	±	32 

MPa to 204	±	81 MPa and modulus decreased from 4.6 ± 0.4 GPa to 4.0 ± 0.8 GPa, 

potentially due to a decreased crosslinking density of the NOA matrix. Under UV exposure, 

the TiO2 present in the composite materials may be preventing full curing due to the UV 

absorption of TiO2. The hardness and modulus of the fully-ceramic TiO2-C films were 

determined to be 490 ± 68 MPa and 16 ± 2 GPa, respectively, which were significantly 

higher than the polymeric composite materials. As expected, the fully ceramic nature of 
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these films gave rise to ~75% and ~233% increase in hardness and reduced modulus 

respectively, compared to the polymeric composite materials.  

 
 
Table 2.1. Nanomechanical analysis of composite materials. Standard deviation is displayed.  

NOA TiO2-10 TiO2-50 TiO2-C 

Hardness (MPa) 279a±14 278a±32 204b±81 490c±68 

Reduced 
Modulus (GPa) 

4.8a±0.2 4.6a±0.4 4.0a±0.8 16b±2 

Superscript letters within a row indicate statistically significant differences at p<0.05 level 
(Tukey’s HSD). 

 

2.3.3 Characterization of Shark Skin Patterned Surfaces 

The SEM micrographs of shark skin patterned surfaces in NOA (Figure 2.5a), TiO2-10 

(Figure 2.5b), TiO2-50 (Figure 2.5c, 2.5d), and TiO2-C (Figure 2.5e, 2.5f) are shown in 

Figure 2.5. The dimensions of the shark skin imprints were determined using an optical 

profilometer and from SEM imaging. The height, width and spacing of riblets were ~1.6 

µm, 1.3 µm and 2.7 µm, respectively (Figure 2.5). All the features were replicated 

uniformly in size and shape over a large area (4 cm × 4 cm). Digital pictures of the shark 

skin patterns on PET substrates are shown in Figure 2.6. We have also prepared NOA* 

(100% NOA) shark skin with the same dimensions of the Master 1 as a control patterned 

surface, Figure 2.7. The antifouling properties of NOA* (height: 3 µm, width: 2 µm, 

spacing: 2 µm) patterned surfaces were compared with NOA (height: 1.6 µm, width: 1.3 

µm, spacing: 2.7 µm) patterned surfaces to understand if increasing the spacing between 

the features would affect the adhesion of E. coli. 
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Figure 2.5. SEM images and dimensions of shark skin patterns with different composites. (a) NOA 
(top view), (b) TiO2-10 (top view), (c) TiO2-50 (45° tilted), (d) TiO2-50 (45° tilted, high mag), (e) 
TiO2-C (top view), (f) TiO2-C (cross section), and (g) optical profilometry images and dimensions 
of shark skin patterned surfaces. 

 

 

Figure 2.6. (a, b) Digital photos of NOA, TiO2-10, TiO2-50, and TiO2-C shark skin patterns on a 
PET substrate (4 cm × 4 cm). 
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Figure 2.7. SEM micrographs of NOA* (100% NOA) shark skin surfaces as a control patterned 
surface (a) top view, (b) 45° tilted. Imprints were conducted using a PDMS mold from Master 1 
(height: 3 µm, width: 2 µm, pitch: 4 µm). 
 

After imprints were successfully achieved, their advancing, receding and static 

water contact angles were determined, and the results are shown in Figure 2.8. As the 

concentration of TiO2 NPs in the patterned surfaces increased, the static contact angle 

decreased from 139° to 106°. This is due to high affinity of TiO2 for water. The contact 

angles were recorded parallel and perpendicular to features due to anisotropy of the 

surfaces. Difference in contact angle from different direction is expected and can be 

explained by the energy barrier, which was observed for discontinuous gradient surfaces, 

consistent with Sharklet AFTM surfaces.45 In addition, a higher contact angle hysteresis 

(CAH) was observed for the photocatalytic shark skin microstructures (~100°) compared 

to the NOA shark skin surface (~30°). This can be explained by chemical heterogeneous 

composition and the interaction between TiO2 NPs and water.46,47 Despite the high CAH 

observed in the photocatalytic shark skin surfaces, these surfaces demonstrated a great 

ability to resist the initial attachment of bacteria. Overall, the antifouling property of shark 

skin patterned surfaces is closely linked to the organisms’ size relative to the surface 

topography and potentially, also due to biological mechanisms. The CAH of a surface does 

not play the key role in repelling microbes from patterned surfaces.15,48–50  
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Figure 2.8. Water contact angle analysis of shark skin patterned surfaces. (a) Schematic 
representation of perpendicular and parallel directions to the shark skin patterns. (b) Static water 
contact angle on shark skin patterned surfaces, (c) Advancing water contact angle perpendicular 
and parallel to the of shark skin patterned surfaces. (d) Receding water contact angle perpendicular 
and parallel to the of shark skin patterned surfaces. Error bars denote standard deviation. 

 

2.3.4 Antifouling Activity of Shark Skin Patterned Surfaces  

The 24 h antifouling properties of shark skin patterned surfaces were tested using 

the model Gram-negative microorganism, E. coli, and compared to smooth chemistry 

controls Figure 2.9 and Figure 2.10. Bacterial adhesion is influenced by many factors 

including the topography, chemistry, and mechanical properties of a surface.34,51,52 Shark 

skin patterned surfaces (of all composite chemistries) reduced bacterial surface area 

coverage to less than 1% of the total surface area of the sample. NOA, TiO2-10, TiO2-50, 

and TiO2-C shark skin patterned surfaces displayed surface area coverages of 0.67 ± 
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0.20%, 0.57 ± 0.18%, 0.58 ± 0.17%, and 0.79 ± 0.22%, respectively. Compared to smooth 

films with the same chemistry, shark skin patterned NOA surfaces reduced bacterial area 

coverage by up to 85% and TiO2-10, TiO2-50, and TiO2-C surfaces reduced bacterial area 

coverage by up to 70%. Compared to flat PET controls, shark skin patterned surfaces 

reduced E. coli attachment by up to 80% (Figure 2.10).  

 
Figure 2.9. The 24 h area coverage of surface-adhered E. coli on smooth films (S) versus patterned 
surfaces (P) of NOA, TiO2-10, TiO2-50, and TiO2-C. An asterisk (*) denotes 95% significance 
between smooth and patterned samples. Error bars denote standard error. 

 

Although smooth TiO2 composites decreased the bacterial attachment up to 60% 

compared to NOA smooth samples, there was no significant difference between the 

antifouling activity of the NOA, TiO2-10, TiO2-50, and TiO2-C shark skin patterned 

surfaces. These results indicate that surface topography dominated over the chemical 

composition of the shark skin surfaces. Moreover, doubling the height, and increasing the 

aspect ratio and spacing of the features, NOA* (height: 3 µm, aspect ratio: 1.5, spacing: 2 

µm), did not elicit a statistically significant difference in E. coli area coverage compared 

to NOA (height: 1.6 µm, aspect ratio: 1.2, spacing: 2.7 µm) shark skin surfaces (Figure 

2.10). While Schumacher et al., found that increasing the aspect ratio of PDMS Sharklet 
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AFTM surfaces significantly reduced the attachment of Ulva spores and barnacle cyprids by 

up to 42%-45%, this was due to the larger size of their organism.53  

 

Figure 2.10. The total area coverage of surface-adhered E. coli on smooth (S) and patterned (P) 
NOA surfaces, as well as on PET controls. The dimensions of NOA (P) surfaces are height: 1.6 
µm, width: 1.3 µm, and spacing: 2.7 µm, whereas NOA* (P*) dimensions are height: 3 µm, width: 
2 µm, and spacing: 2 µm. Two asterisks (**) indicates that values are significantly different at 0.01 
level. Standard error is provided. 

 

The E. coli that adhered to the surfaces was observed between the features (Figure 

2.11), consistent with previous studies.23 If the spacing between the features is larger than 

the width of the bacteria, bacteria falls between the patterns and attaches to the spaces 

rather than being repelled by the features.15,54,55 However, due to physical disturbance of 

the microstructures, cell to cell interactions decrease and delays colony formation. In the 

long term, the bacteria can still form a biofilm if the adhered bacteria continue to live on 

the engineered surfaces, thus, a killing mechanism is needed to inactivate the settled 

microbes. 
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Figure 2.11. Fluorescent micrographs show that E. coli adhered between the patterned features. 
All scale bars are 20 µm. 

 

2.3.5 Antibacterial Activity of TiO2 NP Composites 

The photocatalytic antibacterial activity of flat films was evaluated using the model 

microbial species E. coli and S. aureus, Figure 2.12. All composite compositions that 

contained TiO2 NPs (TiO2-10, TiO2-50, and TiO2-C) showed significant antibacterial 

activity, 90 ± 4%, 83 ± 6%, and 93 ± 2%, respectively for E. coli, and 83 ± 5%, 80 ± 8%, 

and 80 ± 7%, respectively for S. aureus after 1 h of UV light exposure. The control samples, 

flat PET and NOA, showed only baseline inactivation, ~5% killing. Notably, there was not 

a significant difference in the killing efficiency between the lowest, TiO2-10, and the 

highest, TiO2-C, TiO2 concentration samples. The concentration, size, and phase of TiO2, 

the polymer matrix, and additives are the main factors that influence antibacterial activity 

of TiO2 NPs.26,56,57 In our experiments, we used anatase phase TiO2 NPs, which were 

reported to exhibit higher photocatalytic activity compared to rutile phase NPs.26,58 
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Figure 2.12. Loss of (a) E. coli and (b) S. aureus viability after 1 h of UV exposure to planar TiO2-
10, TiO2-50, and TiO2-C films. Control PET and NOA surfaces (no TiO2) are also provided. Two 
asterisks (**) denotes 99% significance between control and TiO2-containing samples. Error bars 
denote standard error. 
 

Another important factor is how homogeneous the dispersion of NPs is within the 

matrix. Kubacka et al. reported that by using only 2 wt% TiO2 NPs (~9 nm) in ethylene-

vinyl alcohol copolymer composite, they had a 6.3 log reduction of P. aeruginosa after 30 

min due to well distributed NPs.59 A homogeneous dispersion of nanoparticles increases 

the available surface area, diffusion of reactive hydroxyl radicals and superoxide ions, and 

therefore, increases their photocatalytic activity. Here, composites were prepared without 

using any ligands or dispersing agents and still resulted in a sufficiently homogeneous 

dispersion using a straightforward solution processing technique. Alternatively, one could 

also incorporate metal NPs such as copper or silver into the TiO2 composite material. In 

this way, the band gap decreases and absorption of light shifts towards the visible light.60,61 

Another factor that influences antibacterial performance is the UV source and source 

intensity.57 Here we used a UV lamp (365 nm) with a weak light intensity of  1.0 mW/cm2, 

which still had an excellent antibacterial activity in 1 h. Notably, while  TiO2 is known to 

have degradative effects on organic materials, with low enough UV intensity, polymer 

composites can maintain their performance. Here, while the degradation kinetics of 
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polymer composites was not investigated because it was beyond the scope of this project, 

we hypothesize that because the UV exposure was sufficiently low, minimal degradation 

occurred.   

2.4 Conclusions 

We have presented a simple strategy to fabricate multifunctional shark skin surfaces 

with antifouling and antibacterial properties. Moreover, ceramic shark skin coatings (TiO2-

C) were successfully imprinted on a flexible PET substrate and cured using only 10s of 

NIR irradiation. We studied the wetting and mechanical properties of shark skin patterned 

surfaces as a function of TiO2 loading in the composites. Introduction of TiO2 NPs 

increased CAH from 30o to 100o on shark skin surfaces. The hardness and reduced modulus 

were not significantly altered by increasing TiO2 NPs up to 50 wt%; however, the hardness 

of ceramic TiO2-C sample increased by up to 2 times compared with NOA, TiO2-10, and 

TiO2-50. Shark skin surfaces reduced the attachment of E. coli by 70-85% and killed 85-

95% of E. coli and S. aureus after 1 h of UV light exposure. To the best of our knowledge, 

this work represents the first reported use of antibacterial NPs in shark skin patterns. The 

combination of passive and active strategies on a single surface is a most promising 

material design strategies to control bacterial fouling. Our fabrication technique is a roll-

to-roll compatible method that can be scaled up to be used for practical applications.  
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CHAPTER 3 

DIRECT PATTERNING OF BIOINSPIRED, PHOTOCATALYTIC, DURABLE, 

CERAMIC SURFACES WITH ANTIFOULING AND ANTIBACTERIAL 

ACTIVITY 

3.1 Introduction 

Healthcare-associated infections (HAIs),1,2 which are the result of bacterial 

contamination on high-touch surfaces, are a significant challenge, causing 2 million 

infections and 23,000 deaths, as well as being responsible for additional billions of dollars 

in healthcare costs in the United States every year.3 Typical hospital cleaning protocols 

only decrease bacterial contamination from 74% to 66%.4 Antibiotics and disinfectants 

have been used to decrease bacterial contamination; however, the excessive use antibiotics 

has led to the increased resistance of bacteria to treatments.5 Although there have been 

many efforts to reduce HAIs, there continues to be demand for high-performance, hard, 

antifouling, and antimicrobial coatings that are durable, non-toxic, and cost-effective. 

Metallic materials have been widely studied for hard, durable, antimicrobial 

coatings.6 Inorganic antibacterial coatings, such as those of copper, have been fabricated 

using electroless plating7, cold spraying8, and chemical vapor deposition9. Copper-based 

coatings contain a broad spectrum of antibacterial properties, thus are quite effective at 

killing bacteria; however, dead bacteria still adhere to the surface, conditioning the surface 

or masking the antibacterial surface chemistry and subsequently leading to biofilm 

formation. In addition, leakage of the active components limits the duration of 

antimicrobial activity and leads to environmental concerns. Moreover, it is often difficult 

to fabricate transparent coatings that contain metal additives.  



 40 

Due to the toxicity of metals and their poor antimicrobial activity for long-term 

applications,10 biocide-free approaches such as bacteria-release surfaces, micro/nano 

topographies, or biomimetic surfaces, have recently received attention.11 For example, a 

bioinspired shark skin surface made from silicone, Sharklet AFTM effectively reduced the 

area coverage of zoospores, Ulva, Staphylococcus aureus (S. aureus) and Escherichia coli 

(E. coli) by up to 55-86% after a 24 h incubation period.12–16 However, two main challenges 

still remain. First, the limited long-term mechanical durability of the soft patterned surfaces 

restricts their use on high-touch surfaces (i.e., hospital bed rails, door handles, etc). Second, 

although these coatings prevent the initial fouling of organisms, over a longer periods of 

time bacteria will accumulate. Thus, there is a need to develop multifunctional, 

antibacterial and antifouling coatings that are hard and wear-resistant and therefore more 

suitable for long-term, practical applications. One way to increase the hardness and 

improve the antimicrobial property of patterned surfaces is by incorporating functional 

inorganic nanoparticles within a hard matrix. Functional nanoparticles can be used as 

antibacterial agents as well as a means to improve mechanical properties.17,18 

Doll et al. fabricated shark skin coatings in titanium using ultra-short pulse laser 

ablation.19 They showed that micropatterned titanium surfaces reduced S. aureus area 

coverage significantly compared to smooth titanium surfaces. However, due to the high 

cost of laser ablation, it is not practical to implement laser-ablated microstructures in the 

production of large area coatings. On the other hand, soft nanoimprint lithography (NIL) 

offers a cost-effective, rapid, and scalable method compared to other current techniques, 

such as ion-beam etching and laser ablation. NIL enables imprinting of a wide range of 

materials such as polymers20 and inorganic materials21. Recently, our group developed a 
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direct metal-oxide imprinting technique and has demonstrated its use for a variety of 

applications including optical22,23 and battery24,25 applications. 

We fabricated hard, ceramic shark-skin-patterned surfaces using solvent-assisted 

soft NIL. While we previously reported titania and titania/polymer antimicrobial 

surfaces17, here we use zirconium dioxide (ZrO2) NPs to form the  matrix its  low-cost and 

the outstanding thermal, chemical, and wear-resistant characteristics of ZrO2.26 Non-toxic 

titanium dioxide (TiO2) NPs were incorporated as an antibacterial agent for its excellent 

photocatalytic activity under a UV light exposure. TiO2 containing coatings are transparent 

yet can inactivate a wide range of microorganism including Gram-positive/Gram-negative 

bacteria, fungi, and viruses.27,28 Thus, orthogonal ZrO2/TiO2 (90 wt%/10 wt%) shark-skin 

microstructures were fabricated on glass substrates and sintered to obtain hard ceramic 

microstructures. Wettability, mechanical properties, antifouling, and antibacterial 

properties of ZrO2/TiO2 shark-skin-patterned surfaces were investigated. Scalable and low-

cost photocatalytic hard ceramic shark-skin-patterned surfaces offer durable, light-assisted 

antimicrobial coatings for practical applications.  

3.2 Experimental section 

3.2.1 Materials 

All materials were used as received without further purification. Zirconium dioxide 

nanoparticles (ZrO2 NPs, 50wt% in ethanol (EtOH)) with an average diameter of 5 nm) 

were purchased from Pixelligent (Baltimore, MD).  Titanium dioxide (TiO2, anatase phase) 

NPs (5-30 nm diameter), 15 wt% dispersion in water, were purchased from Nanostructured 

& Amorphous Materials Inc. (Houston, TX). N-methyl-2-pyrrolidone (NMP, ReagentPlus 

99%), EtOH, 1, 2 Propanediol, M9 minimal salts (M9 media), and phosphate buffered 
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saline (PBS, 10× sterile biograde) were purchased from Sigma-Aldrich (St. Louis, MO). 

Methanol (MeOH) and poly(tetrafluoroethylene) (PTFE) filters (0.45 μm) were purchased 

from Fisher Scientific (Hampton, NH). Heptadecafluoro-1,1,2,2-

tetrahydrodecyl)dimethylchlorosilane was acquired from Gelest (Morrisville, PA). Sylgard 

184 silicone elastomer kit (polydimethylsiloxane (PDMS)) was purchased from Dow 

Corning (Midland, MI).  

 

3.2.2 Methods 

Preparation of ZrO2/TiO2 Nanoparticle (NP) Dispersion Ink 

ZrO2 NPs were diluted to 30 wt% ZrO2 with EtOH and diluted further to 24 wt% with 1,2 

propanediol. The ZrO2/TiO2 NP composite dispersion was prepared to achieve a 10 wt% 

TiO2 loading to solid content. TiO2 NPs were used from a stock dispersion (14 wt% in 

NMP/MeOH) that was solvent-exchanged from a water dispersion (15 wt% in water). The 

detailed solvent-exchange procedure is in our previous publication.22 The ZrO2/TiO2 

dispersion was sonicated for 10 min and a stable, 22.5 wt% NP dispersion was obtained. 

 

Fabrication of PDMS mold and ZrO2/TiO2 Shark Skin Microstructures 

To prepare PDMS molds, Sylgard 184 was mixed in a 1:10 ratio of curing agent to base,29 

then poured onto a Sharklet AFTM nickel (height: 3 µm, width: 2 µm, pitch: 4 µm) master 

mold (provided by Sharklet Technologies), and placed into an oven to be crosslinked at 70 

°C for 3 h. 

The ZrO2/TiO2 NP dispersion was spin-coated onto a glass substrate to form a 700 nm film. 

The inverse Sharklet PDMS mold was placed onto the still-wet, spin-coated film. As the 

remaining solvent evaporates through the mold, the rigid shark skin structures were 
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formed. The stamp/substrate assembly was placed on a hot plate (~50 °C) for 5-10 min. 

The PDMS mold was peeled off and ZrO2/TiO2 composite microstructures were obtained. 

After the imprinting step, ZrO2/TiO2 shark-skin-patterned surfaces were sintered at a 

variety of temperatures (300 °C to 1000 °C) to obtain hard ceramic structures. Here, 

ZrO2/TiO2 shark skin structures and smooth films were prepared on a glass substrate and 

sintered at 500  °C  for 2 h and cooled to room temperature over 2 h and then used for 

further experiments. 

 

Parylene HT conformal coating 

Parylene HT, also named AF-4 (poly(α, α, α′, α′-tetrafluoro-para-xylylene) conformal 

coating was conducted on the ZrO2/TiO2 shark-skin-patterned surfaces and smooth films 

by Specialty Coating Systems (Indianapolis, IN, USA).  Before coating, samples were 

treated with an adhesion promoter (AdPro PlusVR , SCS). 

 

3.2.3 Characterization and Evolution of Shark Skin Microstructures 

3.2.3.1. Characterization: 

The 22.5 wt% ZrO2/TiO2 NP dispersion was diluted with EtOH and drop casted on a carbon 

coated copper grids for transmission electron microscopy (TEM) imaging. TEM was 

performed in bright field imaging mode using a JEOL 2000 FX. TEM was operated at an 

accelerating voltage of 200 kV. Scanning electron microscopy (SEM) was performed on a 

field emission scanning electron microscope (Magellan 400). 3D optical profilometry 

(Zygo, Nexview) was used to measure feature dimensions. The thickness of Parylene HT 

was determined by SEM cross-section imaging. Contact angle measurements were 

acquired using a VCA Optima surface analysis/goniometry system. Advancing and 
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receding water contact angles were determined using 6 independent measurements on 

different samples from parallel and perpendicular directions to features (5 µL of water drop 

was used) at room temperature. To measure the mechanical properties of ZrO2/TiO2, the 

dispersion was spin coated into 800 nm films on silicon wafers. Films of Parylene HT (25 

µm thick) were used to measure the hardness and reduced modulus properties of Parylene 

HT using a Hysitron TriboIndenter (TI 950) by averaging 30 indentations obtained under 

rate control (10 µN/s) using a Berkovich tip (100 nm) for each film. Indentation depth was 

kept less than 10% of the film thickness to prevent substrate effects. Significant difference 

was determined by analysis of variance (ANOVA) with Tukey test. Values of p<0.05 was 

considered to be significant. 

 

3.2.3.2. Antifouling Performance  

The fouling resistance of shark-skin patterned composites, as well as smooth surface 

control samples were evaluated with a bacterial attachment assay using the model bacteria, 

Escherichia coli K12 MG1655 (E. coli, expressing green fluorescent protein).30 E. coli was 

cultured overnight in Luria-Bertani broth (Sigma-Aldrich) then washed and re-suspended 

in M9 media to a final concentration of 1 × 108 cells/mL. Samples and controls were placed 

at the base of separate wells in 6-well polystyrene plates (Fisher Scientific) and inoculated 

with 5 mL of E. coli suspended in M9 media. Following a 24 h incubation period at 37 ºC, 

the growth media was removed using a sterilized glass pipette and samples were rinsed 

repeatedly with PBS before analysis. Samples were analyzed using a Zeiss Microscope 

Axio Imager A2M (20× and 50× magnification, Thornwood, NY). The surface area 

coverage of attached bacteria was quantified by analyzing 10–15 randomly acquired 
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images over at least three parallel replicates using ImageJ 1.45 software (National Institutes 

of Health, Bethesda, MD).  

 

3.2.3.3. Antibacterial Activity 

The antibacterial activity of the TiO2 containing samples was evaluated using a using a 

standard antibacterial assay modified to enable exposure of the samples to UV light.31 

Smooth  ZrO2/TiO2 films were evaluated in parallel with TiO2-free ZrO2 control samples 

and glass slides. The samples were placed at the base of separate wells in 6-well 

polystyrene plates  to which 5 mL of M9 media containing E. coli (1 × 108 cells/mL) were 

added before incubating for 1 h at 37 °C under UV light (F15W/T8 McMaster-Carr, 15W 

365 nm wavelength). The samples were held at a 15 cm fixed distance from the UV source. 

UV light intensity was measured using a UV light meter (Thorlabs GM10HS, Hamamatsu 

S2281 probe) and determined to be 1.0 mW/cm2. Following photoactivation, the samples 

were removed and stained with propidium iodide (PI) for 15 min to identify the dead cells 

before being throughly washed with PBS to remove excess stain. The loss of viability was 

visualized using a Zeiss Microscope Axio Imager A2M, quantified using ImageJ software, 

and the percentage of dead cells (or loss of viability) was calculated from the ratio of the 

number of cells stained with PI divided by the total number of cells.31 

3.3 Results and Discussion 

3.3.1 Fabrication of ZrO2/TiO2 Shark Skin Patterned Surfaces 

 
To imprint ceramic, shark-skin-patterned surfaces via solvent-assisted NIL, the ink 

needs to be optimized to ensure NPs are well-dispersed in a mixture of solvents with low 
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and high volatilities. The highly volatile solvent provides fast film formation during spin-

coating while the low-volatility solvent evaporates slowly, giving sufficient time for the 

imprinting process. ZrO2 NPs (50 wt% in EtOH) were diluted with EtOH (30 wt% ZrO2) 

and then with 1,2 propanediol (1,2PD) to obtain 24 wt% ZrO2 NPs in an EtOH/1,2PD 

solvent mixture. The TiO2 NP dispersion (14 wt%) was mixed with the ZrO2 NP dispersion 

(24 wt% in EtOH/1,2PD) to achieve a 10 wt% TiO2 loading relative to total solids. Thus, 

a stable 90 wt% ZrO2/10 wt% TiO2 (ZrO2/TiO2) composite dispersion was prepared. The 

size of the NPs were determined to be 5.8 ± 0.8  nm in TEM (Figure 3.1a). Dynamic light 

scattering (DLS) shows that the particle size distribution is between 5-40 nm, which 

indicates that the ZrO2 NPs forms tiny clusters in the solvent system (Figure 3.1b). 

 

Figure 3.1. (a) TEM image of ZrO2/TiO2 NPs, (b) DLS measurement of ZrO2/TiO2 nanoparticles 
size distribution, digital image of the ZrO2/TiO2 ink. 

	

Shark-skin-patterned surfaces were fabricated using ZrO2/TiO2 NP  dispersion via 

solvent-assisted NIL,22,32  scheme is shown in Figure 3.2. First, a soft PDMS mold was 

replicated from a nickel Sharklet AFTM master mold. The nickel master mold consists of 2 

µm width and 3 µm height riblets, with different lengths ranging from 4-16 µm, separated 

by a fixed 2 µm distance between features. The ZrO2/TiO2 NP dispersion was spin-coated 
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onto a glass substrate and the PDMS mold was placed onto the spin-coated film containing 

residual solvents, which provides enough fluidity to allow capillary forces to drive the 

nanoparticles into the mold.24,32 As the solvent evaporated through the mold, rigid shark 

skin microstructures were formed in a few minutes. Then, the PDMS stamp was peeled off 

and ceramic ZrO2/TiO2 composite microstructures were obtained. After the imprinting 

process, ZrO2/TiO2 shark skin films were sintered at 500°C for 2 h to obtain hard, ceramic, 

shark-skin-patterned surfaces. 

 

 
Figure 3.2. (a) Schematic representation of the fabrication process of ZrO2/TiO2 shark-skin-
patterns using soft PDMS stamp, SEM micrographs of ZrO2/TiO2 shark-skin-patterned surfaces 
(b) ZrO2/TiO2 shark-skin-patterned surface, low magnification (top view), (c) ZrO2/TiO2 shark-
skin-patterned surface, higher magnification (top view), (d) Cross section image of shark-skin-
patterned surface after annealing at 500 °C. 
 

SEM micrographs and the feature dimensions of the ZrO2/TiO2 shark-skin-

patterned surfaces are shown in Figure 3.2 and Figure 3.3. The features were successfully 

replicated uniformly in size and shape over a large area, which was limited by the size of 

the stamp. Direct imprinting of NPs offers some advantages over imprinting sol-gel 

precursors. The transition from the sol to gel phase results in a height reduction up to 

approximately 60%, and subsequent calcination to obtain crystalline NPs results in 

additional height reduction (~80%), which causes unstable nano/micro structures and 

cracks formation.21,33–35 Herein, ZrO2/TiO2 shark-skin-patterned surfaces had only 33% 
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shrinkage in height compared to height of the master mold. The shrinkage is due to solvent 

that drives the imprinting process and post heat treatment. As the solvent evaporated 

through the stamp, crystalline NPs pack firmly and results in empty space between the 

mold and NPs. Before sintering the patterned surfaces, shrinkage in height was 7% (Figure 

3.3).  After sintering the patterned shark skin film at 500°C, 29% shrinkage was observed 

in the height of the ZrO2/TiO2 shark-skin-patterned surfaces (Figure 3.2d).  

 

Figure 3.3. Optical profilometry images and height profile of (a) the ZrO2/TiO2 before annealing 
and (b) the ZrO2/TiO2 after annealing, (c) Parylene HT coated ZrO2/TiO2. 
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Hardness and reduced modulus of the smooth films of ZrO2/TiO2 were 

characterized as a function of temperature after sintering at 300, 500, 750, and 1000 °C 

using nanoindentation, shown in Figure 3.4. After sintering the ZrO2/TiO2 film at 500 °C, 

the hardness and modulus of the ZrO2/TiO2 coating significantly increased from 0.61 ± 

0.03 GPa and 18 ± 2 GPa  to 3.7 ± 0.4 GPa and 88 ± 9 GPa, respectively. Moreover, the 

hardness and modulus increased significantly up to 13 ± 2 GPa and 160 ± 7 GPa, 

respectively when sintered at 1000 °C. The glass substrates were durable up to 500 °C, so 

the experiments were continued with sintered smooth and shark skin patterned surfaces at 

500 °C. Typical shark-skin patterned surfaces are made of PDMS14, which has very low 

hardness (H) and modulus (Er)  (H= ~0.2-0.5 MPa and Er=~1.7–3.0 MPa)36,37, so they 

easily wear and can only be used for limited amounts of time. By contrast, the excellent 

mechanical properties of the ZrO2/TiO2 shark-skin-patterned surfaces combined with their 

self-cleaning nature imparted by the photocatalytic activity of TiO2 NPs suggests that these 

surfaces will be durable and functional over extended periods of time. 

 

Figure 3.4. Nanoindentation analysis of PDMS37, ZrO2/TiO2 film before and after annealing at 
300°C, 500°C, 750°C, and 1000°C. Hardness and reduced modulus of the films are given.  
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To determine the wettability of shark-skin-patterned surfaces, advancing and 

receding water contact angles were measured and are shown in Table 3.1. The hydrophilic 

or hydrophobic characteristics of surfaces can be influenced by using rough and/or 

patterned surfaces.38–40 Our ZrO2/TiO2 shark-skin-patterned surfaces displayed 

superhydrophilic behavior with a water contact angle of  less than 5°, while the smooth 

ZrO2/TiO2 film had 31 ± 1° advancing and 16 ± 2° receding contact angle. Thus, we 

obtained superhydrophilic shark-skin-patterned surfaces using a hydrophilic ZrO2/TiO2 

NPs. Superhydrophilic surfaces have been used as antifouling surfaces and their 

performance is explained in part by the  presence of a water layer that prevents the adhesion 

of cells to the surface.36,41,42 In our previous study,17 we demonstrated that hydrophobic 

shark-skin-patterned surfaces also had great antifouling performance although they had a 

high contact angle hysteresis (~101°). Overall, both superhydrophilic and hydrophobic 

shark skin patterned surfaces exhibited excellent bacteria release performances despite 

their different wettability characteristics.43,44 These results suggest that shark-skin-

patterned surfaces can be modified with different chemistries and be used for functional 

devices while maintaining their bacteria resistant characteristics.  

Table 3.1. Wetting analysis of ZrO2/TiO2 smooth and shark-skin-patterned surfaces. Standard 
deviation is displayed. 

	
Advancing Water Contact Angle Receding Water Contact Angle 

ZrO2/TiO2 (smooth) 31	±	1°	 16	±	2°		

ZrO2/TiO2 (shark-skin) Less	than	5	°	 Less	than	5	°	
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3.3.2 Antifouling and Antibacterial Activity  

The antifouling activity of shark-skin-patterned surfaces was evaluated after 24 h 

using E. coli, a model Gram-negative bacteria, (Figure 3.5). The ZrO2/TiO2 shark-skin-

patterned surfaces displayed surface area coverage of 0.20 ± 0.05%. ZrO2/TiO2 shark-skin-

patterned surfaces showed a decrease in bacterial attachment up to 95% compared to an 

uncoated glass substrate and 85% compared to smooth ZrO2/TiO2 films. 

The antibacterial activity of the ZrO2/TiO2 smooth films was tested using the model 

bacteria, E. coli (Figure 3.6). The tests were performed under a UV lamp (365 nm) with 

an intensity of 1.0 mW/cm2. The control sample, ZrO2/TiO2 under dark, showed only 

baseline inactivation, ∼ 5% killing after 1 h. The ZrO2/TiO2 composite films showed 

significant antibacterial activity with 82 ± 2 % lethality for E.coli after 1 h UV light 

illumination. The excellent antibacterial performance of ZrO2/TiO2 films under the low UV 

dose is a result of the high photocatalytic activity of the high surface area, small TiO2 NPs 

(8-15 nm). This antibacterial activity of TiO2 is due to formation of hydroxyl radicals upon 

light irritation in the presence of water. The photocatalytic activity of TiO2 in turn depends 

on several criteria including particle size, the crystalline phase of the NPs, and UV dose.28 

Here, sintering of ZrO2/TiO2 NPs was conducted at 500 °C. Although sintering at this 

temperature may have resulted in some transition from the anatase to the less-catalytic 

rutile phase of TiO2, we expect that impact of low levels of the transition on the 

antimicrobial properties of the surface to be negligible. However, the  phase of NPs is not 

the only criteria to obtain best performance.45 For example, Degussa P-25 has a great 

photocatalytic activity due to high surface area despite having 80 % anatase and 20 % rutile 

phases.46 Overall, 10 wt% TiO2 NP incorporation resulted in excellent antibacterial activity 

in 1 h with a very low UV dose.  
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Figure 3.5. Representative micrographs of E. coli attached to after a 24 hr incubation period on a 
flat ZrO2/TiO2 surface (ZrO2 S), shark skin patterned ZrO2/TiO2 surfaces (ZrO2 P). There was a 
significant reduction in bacterial adhesion on patterned surfaces (P) in comparison to smooth 
surfaces (S). Error bars denote standard error. One asterisk (*) indicates that values are significantly 
different at 0.05 level and two asterisks (**) indicates that values are significantly different at 0.01 
level. 
	
	
	

 

Figure 3.6. Loss of E. coli viability after 1 hr UV-exposure to films containing TiO2 exhibited 
excellent antimicrobial functionality, with  82% killing efficiency. Control glass surfaces (no TiO2) 
and ZrO2/TiO2 “dark” control displayed less than 7% killing. Error bars denote standard error. 
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3.3.3 Parylene HT-Coated Shark-Skin-Patterned Surfaces  

ZrO2/TiO2 shark-skin-patterned surfaces were coated conformally with a layer of  

Parylene HT, which known as gold-standard antifouling coating and widely used in 

medical devices.47 Parylene HT conformal coating was conducted by Specialty Coating 

Systems, Inc. using chemical vapor deposition (CVD) onto the shark skin microstructures 

as 145 nm in thickness. SEM micrographs of Parylene HT-coated ZrO2/TiO2 shark-skin-

patterned surfaces are shown in Figure 3.7. Hardness and reduced modulus of Parylene 

HT were determined to be 0.3 ± 0.1 GPa and 2.6 ± 0.4 GPa, respectively. Parylene HT is 

a hard polymer and relatively easy to make a conformal coating compared to other types 

of antifouling coatings such as PDMS and polyethylene glycol (PEG).  
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Figure 3.7. SEM micrographs of Parylene HT coated ZrO2/TiO2 shark-skin-patterned surfaces (a) 
top view, (b) cross section, (c) Representative micrographs of E. coli attached to after a 24 hr 
incubation period on a smooth Parylene HT coated ZrO2/TiO2 surface (S), Parylene HT coated 
shark-skin-patterned ZrO2/TiO2 surfaces (P). 

 

Parylene-HT conformal coated shark-skin-patterned surfaces had hydrophobic 

surface with 155 ± 4° and 51 ± 3° advancing and receding contact angles, respectively 

(Figure 3.7). Parylene HT-coated ZrO2/TiO2 shark-skin-patterned surfaces displayed 

surface area coverages of 0.22 ± 0.07% after 24 h E. coli incubation. Parylene HT-coated 

shark-skin-patterned surfaces decreased the bacterial attachment up to 70% compared to 

Parylene HT smooth films. Despite different surface wettability of the ZrO2/TiO2 and 

Parylene HT-coated ZrO2/TiO2 shark-skin surfaces (superhydrophilic versus hydrophobic), 

both decreased the bacterial attachment significantly compared to smooth films, which 

supported our previous study that the antifouling performance of shark-skin-patterned 

surfaces are not directly linked with surface wettability characteristics.17,48 Although 

Parylene HT-coated shark-skin-patterned surface reduced the bacterial attachment 
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significantly compared to smooth Parylene HT films, in the long term, the bacteria can still 

form a biofilm on the engineered Parylene HT surfaces; thus, a killing mechanism is still 

needed to inactivate the settled microbes.14 In the future, Parylene HT-coated shark-skin-

patterned surfaces can be modified with desired enzymes, antibacterial biomolecules and 

be used as functional biosensors or medical implants. 

3.4 Conclusions  

In summary, we have fabricated hard, ZrO2/TiO2 ceramic, shark-skin-patterned 

surfaces possessing both antifouling and antibacterial functionality using a simple and cost-

effective patterning technique. Moreover, superhydrophilic shark skin patterned surfaces 

were obtained with less than 5° water contact angle. The hardness and reduced modulus of 

the ZrO2/TiO2 films were increased to 13 GPa and 160 GPa, respectively. The shark-skin-

patterned surfaces reduced the attachment of E. coli by 85-95% and killed 80% of E. coli 

after 1 h of UV light exposure. In addition, conformal Parylene-HT coated shark-skin-

patterned surfaces reduced the attachment of E. coli by 70% compared to smooth 

antifouling Parylene-HT surfaces. Both the excellent antimicrobial performance and the 

superior mechanical properties of these ZrO2/TiO2 ceramic, shark-skin-patterned surfaces 

will provide durability and functionality over the long term. 
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CHAPTER 4 

NANOCERIA-BASED SHARK-SKIN PATTERNS WITH BIOSENSING AND 

ANTIFOULING ACTIVITIES 

4.1 Introduction 

Hydrogen peroxide (H2O2) is an essential analyte in medical diagnosis, in fact, 

many illnesses such as cancer or neurodegenerative diseases can be diagnosed at an early 

stage with an accurate H2O2 detection.1 There is considerable interest in H2O2 biosensing 

not only as a disease biomarker but also as an intermediate analyte for many enzymatic 

reactions. Moreover, antifouling biosensors are in high demand not only in health-care but 

also in many industries such as in food processing and pharmaceuticals. However, the 

biggest challenge of the current sensors is stability in a biological environment. The 

sensitivity of the sensor decreases due to adhesion of proteins (e.g., albumin, fibrinogen, 

fibronectin, and collagen) and cells (red blood cells, macrophages, bacteria).2 Within a few 

weeks, an avascular fibrous capsule is formed around the device and reduces the mass 

transfer of the analyte significantly.3 Thus, there is a need for a long-term durable 

antifouling surface for any sensor to be able to obtain accurate and reliable results in 

biological media.  

Cerium dioxide (CeO2) is a biocompatible, low-cost material and has been widely 

applied in catalysis, in fuel cells, as a metal polishing agent, and in photochemistry.4 CeO2 

has an ability to switch oxidation states between III and IV which makes CeO2 a perfect 

catalyst to reduce H2O2 by mimicking the enzyme, superoxide dismutase (SOD).5,6 CeO2 

nanoparticles (NPs) have been explored for non-enzymatic H2O2 sensors and showed great 
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catalytic responses with high selectivity.7–9 However, the stability of the sensors in a 

biofouling environment continued to be a big issue that has not been well-addressed.8,10  

  Antifouling properties of a surface is influenced by many factors including the 

surface chemistry, topography, and mechanical characteristics.11,12 Protein adsorption on 

CeO2 NPs is highly favorable at neutral pH due to the high isoelectric point of CeO2 NPs.13 

Charge interactions can be prevented with an antifouling hydrogel coating such as poly 

(ethylene glycol) (PEG) and poly (hydroxyethyl methacrylate) (PHEMA).14–16 PEG and 

PHEMA show resistance to protein adsorption and cell adhesion due to low interfacial 

energy with water.17,18 Moreover, hydrogels perform well as protective coatings that do not 

block the analyte transfer required for sensor performance. However, protein adsorption 

and subsequent cell accumulation on the smooth hydrogels nevertheless do occur after a 

sufficient amount of time due to defects or the complex biological environment. The 

commercially available, bioinspired, micropatterned surface, Sharklet AFTM, has been 

shown to prevent adhesion of Ulva spores, bacteria, and platelet cells.19–21 A conformal, 

pin-hole-free, uniform hydrogel coating can be deposited onto a shark-skin surface via 

initiated chemical vapor deposition (iCVD). Yague et al. demonstrated that a synthesized 

PHEMA hydrogel crosslinked with EGDA, p(HEMA-co-EGDA), via iCVD resulted in 

obtaining mechanically stable hydrogel films.22 Hydrogel coatings including PHEMA have 

been demonstrated to be resistant to protein adsorption while allowing for the permeation 

of small analytes for sensing.23 Thus, the combined characteristics of the antifouling 

hydrogel and shark-skin electrode on a single surface will prevent protein adsorption and 

cell adhesion for a long-term biosensor device. 

 In this study, we designed an antifouling H2O2 biosensor based on enzyme-mimetic 

CeO2 NPs. CeO2 NPs were dispersed in a solvent and CeO2 shark-skin patterns were 
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imprinted using solvent-assisted soft nanoimprint lithography.24,25 To decrease protein 

adsorption, a conformal coating of p(HEMA-co-EGDA) hydrogel was deposited onto the 

CeO2 shark-skin electrodes via iCVD. Excellent H2O2 sensing, with high selectivity and 

sensitivity, was demonstrated. Non-enzymatic antifouling CeO2 shark-skin electrodes offer 

long-term durable, low-cost devices for H2O2 detection for early diagnosis of many 

diseases. Antifouling shark-skin electrodes can be applied to other types of analytes by 

incorporating corresponding sensing materials and can also be scaled up for many other 

practical applications.  

4.2 Experimental Section 

4.2.1 Materials 

All materials were used as received without further purification. Cerium dioxide 

(CeO2) (20wt% in water) nanoparticles (NPs) (10-20 nm diameter) were purchased from 

Nyacol Nano Technologies, Inc (Ashland, MA). N-methyl-2-pyrrolidone (NMP, 

ReagentPlus 99%), M9 minimal salts (M9 media), potassium hexacyanoferrate (III), 

potassium hexacyanoferrate (II) trihydrate, and phosphate buffered saline (PBS, 10× sterile 

biograde were purchased from Sigma-Aldrich (St. Louis, MO). Methanol (MeOH) and 

poly(tetrafluoroethylene) (PTFE) filters (0.45 μm) were purchased from Fisher Scientific 

(Hampton, NH). Heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane was 

acquired from Gelest (Morrisville, PA). Sylgard 184 silicone elastomer kit 

(polydimethylsiloxane (PDMS)) was purchased from Dow Corning (Midland, MI).  
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4.2.2 Methods  

Solvent Exchange of CeO2 Nanoparticle (NP) Dispersion  

The details of solvent exchange can be found in previous publications from our 

group.26 Briefly, CeO2 (100 g of 20 wt%) aqueous dispersion was added into a 250 mL 

bottle. NMP (50 g) and MeOH (50 g) were added to the dispersion and mixed. The mixed 

solution was placed under air flow overnight until the majority of the solvent was removed. 

The mass of the solvent and solids were calculated and subsequently, NMP and MeOH 

were added to the mixture in a 1:0.5 weight ratio to obtain an approximately 25 wt% CeO2 

dispersion. The dispersion was sonicated (30 min) until a stable CeO2 NP dispersion was 

obtained. The final CeO2 concentration was calculated as 25.2 wt% and remained stable 

for over a year. 

 

Fabrication of PDMS mold and CeO2 Shark Skin Microstructures 

To prepare PDMS molds, Sylgard 184 was mixed in a 1:10 ratio of curing agent to 

base, then poured onto a Sharklet AFTM nickel (height: 3 µm, width: 2 µm, pitch: 4 µm) 

master mold (provided by Sharklet Technologies), and then placed into an oven to be 

crosslinked at 70°C for 3 h. The CeO2 NP dispersion was spin-coated onto a gold-sputtered 

silicon wafer.  The spin coating conditions were optimized to achieve a 700 nm dry film. 

The inverse Sharklet PDMS mold was placed onto the still-wet, spin-coated film. As the 

remaining solvent evaporates through the mold, the rigid shark skin structures were 

formed. The stamp/substrate assembly was placed on a hot plate (50°C) for 5-10 min. The 

PDMS mold was peeled off and CeO2 shark-skin-patterned surfaces were obtained. After 

the imprinting step, CeO2 shark-skin-patterned surfaces were sintered at 500 °C for 1 h and 

then used for further experiments. 
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P(HEMA-co-EGDA) Hydrogel Coating via iCVD 

Thin films were deposited by using a commercial iCVD facility (GVD Corp.). The 

CeO2 shark-skin-patterned and smooth films were placed on a heat controlling stage, with 

constant temperature at 26℃. A mixed vapor flow containing the vaporized tert-butyl 

peroxide (TBPO) initiator, HEMA and EGDA were transferred into the vacuum chamber 

(base pressure 30 mTorr) by mild heating. TBPO, HEMA and EGDA were heated at 30℃, 

35℃ and 55℃ respectively. The total pressure in the chamber during the deposition was 

controlled to be 60 mTorr and the flow rates were 0.5 sccm, 1.5 sccm and 0.5 sccm for 

TBPO, HEMA and EGDA, respectively. The temperature of the heating filament array was 

approximately 187.8℃, confirmed by an attached thermocouple. The target deposition 

thickness was 40-60 nm, as monitored by in-situ interferometry.   

4.2.3 Characterization  

Material Characterization 

The 25.2 wt% CeO2 NP dispersion was diluted with NMP and drop casted on 

carbon coated copper grids for transmission electron microscopy (TEM) imaging. TEM 

was performed in bright field imaging mode using a JEOL 2000 FX. TEM was operated at 

an accelerating voltage of 200 kV. Scanning electron microscopy (SEM) was performed 

on a field emission scanning electron microscope (Magellan 400). 3D optical profilometry 

(Zygo, Nexview) was used to measure feature dimensions. Thermogravimetric analysis 

(TGA, TA Instruments Q50) of CeO2 NPs was conducted using the following temperature 

program under air: heating from room temperature to 500°C, at a rate of 10 °C/min. 
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Electrochemical Tests 

 Electrochemical measurements (cyclic voltammetry (CV) and chronoamperometry 

(CA)) were performed using a CHI 660E electrochemical workstation with a three-

electrode system: a working electrode, a Pt wire counter electrode and an Ag/AgCl 

reference electrode. CV was performed in 40 mL PBS (pH 7.4) with a potential range of 

0.8 V to −0.8 V at a scan rate of 50 mV/s. CA was conducted in 40 mL PBS (pH 7.4) at -

0.4 V, based on the redox activity implicated in CV scans, and H2O2 was added at different 

concentrations to generate a calibration curve. The CA measurements were run with the 

addition of 1 mM H2O2 and interfering species (1 mM ascorbic acid (AA), and uric acid 

(UA)). 

 

In-Situ Protein Adsorption Test 

 In-situ antifouling tests were performed using the CeO2 shark-skin electrode and 

p(HEMA-co-EGDA) coated CEO2 shark-skin electrode in 2.5 mg/ml bovine serum 

albumin (BSA) in the presence of 2.5 mM/2.5 mM [Fe(CN)6]4−/[Fe(CN)6]3− redox probe 

and CV was recorded at every 15 min for 1 h.  

 

Antifouling Performance 

The fouling resistance of p(HEMA-co-EGDA) coated shark-skin-patterned 

surfaces, as well as smooth-surface control samples were evaluated with a bacterial 

attachment assay using the model bacteria, Escherichia coli K12 MG1655 (E. coli, 

expressing green fluorescent protein).27 E. coli was cultured overnight in Luria-Bertani 

broth (Sigma-Aldrich) then washed and re-suspended in M9 media to a final concentration 

of 1 × 108 cells/mL. Samples and controls were placed at the base of separate wells in 6-
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well polystyrene plates (Fisher Scientific) and inoculated with 5 mL of E. coli suspended 

in M9 media. Following a 24 h incubation period at 37ºC, the growth media was removed 

using a sterilized glass pipette and samples were rinsed repeatedly with PBS before 

analysis. Samples were analyzed using a Zeiss Microscope Axio Imager A2M (20× and 

50× magnification, Thornwood, NY). The surface area coverage of attached bacteria was 

quantified by analyzing 10–15 randomly acquired images over at least three parallel 

replicates using ImageJ 1.45 software (National Institutes of Health, Bethesda, MD).  

4.3 Results and Discussion 

4.3.1 CeO2 Shark-Skin and p(HEMA-co-EGDA) Coating  

Ceria NPs were imprinted in shark-skin-patterned surfaces via solvent-assisted soft 

NIL.25 After the successful imprinting and annealing of CeO2 shark-skin-patterned 

surfaces, iCVD was conducted to obtain conformal p(HEMA-co-EGDA) hydrogel onto the 

shark-skin surfaces. The scheme of the imprinting process is shown in Figure 1. Direct 

imprinting of NPs requires several criteria to obtain complete, uniform, and reproducible 

replication. First, the NP-based dispersion needs to be stable in low and high volatility 

solvents with low surface tensions. Second, the dispersion must have a relatively high 

concentration, depending on the NP size, (~10-25 wt%) to be able to imprint micron-

thickness features. Here, the solvent exchange of the CeO2 NPs was conducted from an 

aqueous dispersion to NMP/MeOH solvent mixture, and a ~25 wt% stable dispersion was 

obtained. Imprinting conditions were discussed in detail in our previous 

publications.24,25,28,29 Dynamic light scattering (DLS) shows that the particle size 

distribution in NMP/MeOH is between 5-30 nm, which indicates that the CeO2 NPs stay 

in small clusters in the NMP/MeOH solvent mixture (Figure 2a). 
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Figure 4.1. Schematic representation of the fabrication process of shark skin patterns using a 
PDMS soft stamp on gold coated Si wafers. 

 

SEM micrographs of CeO2 shark-skin patterned surfaces and p(HEMA-co-EGDA) 

coated CeO2 shark-skin patterned surfaces are shown in Figure 2. The shark-skin patterns 

were successfully replicated uniformly in size and shape. The dimensions of the shark skin 

imprints were determined through optical profilometry and SEM imaging. The height, 

width, and spacing of the riblets were ~2 µm, ~1 µm and ~3 µm, respectively. Conformal, 

uniform, and pinhole-free p(HEMA-co-EGDA) coverage was observed on the patterned 

surfaces . The thickness of the coating was determined to be ~50 nm via cross-sectional 

SEM imaging (Figure 2d). 
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Figure 4.2. (a) DLS measurement of CeO2 NP size distribution, digital image of the CeO2 ink. 
SEM micrographs of (b) cross-section of CeO2 shark-skin-patterned surface, (c) p(HEMA-co-
EGDA) coated CeO2 shark-skin-patterned surface, (d) cross-section of 50 nm p(HEMA-co-EGDA) 
coating on CeO2 shark-skin-patterned surface. 

 

In order to obtain a stable hydrogel film in the buffer solution, the composition of 

EGDA crosslinker in P(HEMA-co-EGDA) was adjusted to be approximately 10% and 

confirmed in the FTIR calculating the intensity ratio of hydroxyl peaks and carbonyl 

peaks.22 Yague et al. reported that mesh size of P(HEMA-co-EGDA) hydrogel was 

between 0.5 nm and 2 nm depending on crosslinking amount.22 Low amount of EGDA 

enables crosslinking of HEMA without decreasing mesh size of hydrogel significantly for 

sensing of the analytes. Therefore, we obtained a stable hydrogel film in the buffer 

solutions.  

4.3.2 Electrochemical Activities 

P(HEMA-co-EGDA)-coated CeO2 shark-skin electrodes were tested to detect 

H2O2. CV curves are shown before and after the addition of 1 mM H2O2 (Figure 3a), in 
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which the current clearly increases with the addition of H2O2 as a result of the catalytic 

reduction of H2O2.  Figure 3b shows the CA  plots of the P(HEMA-co-EGDA)-coated 

CeO2 shark-skin electrodes upon successive additions of 1 mM H2O2 in a PBS solution 

(pH=7.4) at -0.4 V. A working voltage of -0.4 V was selected to obtain a significant current 

response and to avoid interference species.9 A sufficiently good response time, between 1-

2 s, was observed as a result of having thin hydrogel coating of approximately 50 nm. 

Montero et al. analyzed two different thicknesses of pHEMA hydrogel coatings, 100 and 

200 nm, and showed that the sensing performance of 100 nm hydrogel was significantly 

better than 200 nm thickness due to faster diffusion and hydration process.30  

A calibration curve was obtained with the addition of 0.125 mM-1.0 mM 

concentrations of H2O2 solution. The calibration curve was linear in the range of 0.1-1.0 

mM H2O2 with a correlation coefficient of 0.999 and a sensitivity of 44.1 µA.cm-2.mM-1 

(Figure 3c). The sensitivity obtained in this study was higher than many reported CeO2-

based non-enzymatic H2O2 sensors.8,9 The detection limit was estimated to be 6 µM at a 

signal-to-noise ratio of 3. Finally, the selectivity of the sensor was tested with the addition 

of 1 mM ascorbic acid (AA) and uric acid (UA), which are common interference species. 

There was no significant current change as shown in Figure 3d. Thus, non-enzymatic 

CeO2-based shark-skin sensors showed excellent selectivity and sensitivity. The stability 

of the electrodes was investigated in protein and cell-based buffer solutions.   
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Figure 4.3. (a) CV of CeO2 shark-skin biosensor before and after addition of 1mM H2O2 in PBS 
(pH:7.4). (b) chronoamperometric response of continuous addition of 1mM H2O2 in PBS (pH:7.4) 
at -0.4V. (c) amperometric response as a function of H2O2 concentration. (d) with addition of 
interfering species (ascorbic acid (AA) and uric acid (UA)) and H2O2.  
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4.3.3 Antifouling Activities 

 

Figure 4.4. In-situ antifouling test for 1 h. CV of (a) CeO2 shark-skin electrode, (b) P(HEMA-co-
EGDA) coated CeO2 shark-skin electrode in 2.5 mg/ml BSA in Fe(CN6)4-/3-. 

  

To evaluate the protein adsorption resistance of the p(HEMA-co-EGDA), we ran 

in-situ antifouling tests in a protein medium. CV measurements of the CeO2 shark-skin and 

p(HEMA-co-EGDA) coated CeO2 shark-skin electrodes were taken in a 2.5 mg/ml BSA 

solution at every 15 min for 1 h. The current decreased significantly due to the fouling of 

BSA on the CeO2 shark-skin electrode (Figure 4a). This result is due to the favorable 

charge interaction between BSA and CeO2. CeO2 has a high isoelectric point (IEP) of 9.5, 

which is positively charged at pH 7.4. The IEP of BSA is 4.7 and negatively charged at pH 

7.4. Thus, immobilization of proteins on a CeO2 surface is favored due to strong 

electrostatic interaction. In highly concentrated protein mediums, excessive fouling occurs 

which causes a decrease in sensitivity and leaching of the CeO2. However, our p(HEMA-

co-EGDA)-coated CeO2 shark-skin electrode did not show any significant current decrease 

in the 2.5 mg/ml BSA solution (Figure 4b). Thus, the BSA adsorption on the electrodes 

was decreased using p(HEMA-co-EGDA) hydrogel; however, it is well-known that despite 
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having a great protein resistance, after a sufficient amount of time, the cells (e.g., bacteria 

and platelet) can still accumulate on the electrode surface in the absence of a secondary 

mechanism to prevent cell attachment.  

 

Figure 4.5. The 24 h area coverage of surface-adhered E. coli on p(HEMA-co-EGDA) coated 
CeO2 smooth films versus shark-skin-patterned surfaces. An asterisk (*) denotes 95% significance 
between smooth and patterned samples. Error bars denote standard error. 
 

To demonstrate the effectiveness of microtopography against cell adhesion, we 

performed an antifouling test using a model bacteria cell, Escherichia coli (E. coli) for 24 

h (Figure 5). Our results indicate/show that P(HEMA-co-EGDA)-coated CeO2 shark-skin 

electrodes significantly decreased the E. coli attachment by up to 90% compared to smooth, 

p(HEMA-co-EGDA)-coated CeO2 electrodes. In the previous chapters (Chapter 2 and 

Chapter 3), we discussed the antifouling behavior of shark-skin-patterned surfaces in more 

detail. Briefly, the antifouling characteristics of shark-skin-patterned surfaces are 

dominated by the relationship between bacterial cell and pattern feature sizes, rather than 

surface chemistry and wettability. Topography and surface chemistry have been studied 

for antifouling performance, however, there are not many reports on combined biosensing 

and antifouling activities. Herein, we have shown that the combination of an antifouling 
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hydrogel coating with a non-enzymatic shark-skin topography offers excellent protein- and 

cell-resistant surfaces, which are ideal for biosensing applications.  

4.4 Conclusions  

We have presented a simple strategy to fabricate multifunctional shark skin surfaces 

with both biosensing and antifouling activities. To the best of our knowledge, this work 

represents the first reported antifouling shark skin patterns that also exhibit biosensing 

activity. Non-enzymatic CeO2 shark-skin-electrodes were fabricated via a straight-forward, 

solvent-assisted imprinting method. Excellent H2O2 sensing by the shark-skin electrodes, 

with strong selectivity towards AA and UA, was demonstrated, and  BSA adsorption on 

CeO2 shark-skin surfaces was decreased by depositing a conformal p(HEMA-co-EGDA) 

hydrogel coating. Moreover, p(HEMA-co-EGDA) coated shark-skin-patterned surfaces 

reduced the attachment of E. coli by 90% after a 24 h incubation. Protein- and cell-resistant 

shark-skin electrodes offer long-term, stable biosensors for many practical applications. 
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CHAPTER 5 

LOW-COST, DURABLE MASTER MOLDS FOR THERMAL-NIL, UV-NIL, AND 

INJECTION MOLDING 

5.1 Introduction 

Micro- or nanopatterned surfaces have a wide range of applications in optical 

devices, biosensors, structural colors, microfluidics, and self-cleaning.1–4 Various 

nanopatterning techniques, lithographic methods, inkjet printing, and direct writing have 

been explored; however, large area production of patterned surfaces at low cost remains a 

challenge.5,6 Nanoimprint lithography (NIL)7,8 and micro/nano injection molding9,10 have 

been the most promising of these replication techniques due to scalability speed, and high-

resolution capabilities. However, master mold life-time is too short to fabricate millions of 

replicas within a short cycle time. For both NIL and micro/nano injection molding, the 

mold requires frequent replacement because of a lack of mold strength,  which limits the 

commercial production of large-area, patterned surfaces.11,12  

Silicon, quartz, and nickel are the most common hard molds in NIL. Hard molds 

are preferred over soft or hybrid molds due to high strength and durability. However, 

silicon-based molds are brittle and often have limited durability. Above the glass transition 

temperature (Tg) of thermoplastic polymers, polymers soften and can be molded with a 

hard stamp via thermal-NIL in several minutes. Moreover, UV-NIL is a more precise 

replication technique in which monomers are crosslinked after filling the cavities in a UV-

transparent mold, resulting in rigid, patterned polymer replicas. Both thermal-NIL and UV-

NIL suffer from limited mold lifetime due to stress accumulation from the repetitive direct 

patterning process.13  
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Injection molding is desired over NIL because it possesses the capability of 

producing millions of parts in a short time.14  Steel master mold inserts have been used for 

pattern transfer in injection molding processes; however, fabrication of the steel molds with 

micro- or nanopatterns over large areas is challenging and requires multiple steps and long 

processing times.15 On the other hand, electroformed nickel molds have been used as an 

alternative to the steel molds. Although the nickel molds can be fabricated at the lower cost 

compared to the steel molds, the nickel molds easily wear after 10,000 replication cycles.16 

Additional protective coatings, titanium nitrate (TiN),  has been applied on the Nickel 

molds in CD/DVD industry, but unfortunately the coating was durable only up to 15,000-

20,000 cycles.17 the Bulk metallic glass molds (BMG)16,18 and hydrogen silsesquioxane 

(HSQ) on steel19 have also been demonstrated as alternative hard molds for injection 

molding. BMG molds were durable only up to 20,000 mold cycles with the cycle time less 

than 10 s.20 Not only are these mold limited in durability, but also require the use of a 

sacrificial silicon-based master mold to fabricate BMG molds, limiting low-cost 

nanopattern production over a large area. Hydrogen silsesquioxane (HSQ) is an 

organosilicon imprint resist that has been used for e-beam etching processing and in optical 

applications.21 Hobaek et al. showed that HSQ could be coated on steel surfaces and 

patterned using nanoimprint lithography.19 Sol-gel imprinted inorganic materials often 

suffer because of high shrinkage which causes cracking.22,23 Although nano/micro-

patterned surfaces can be imprinted with high resolution and low roughness using HSQ 

resist, the lower modulus value of HSQ (27.9 GPa) compared to BMG and Nickel (~180-

200 GPa) results in reduced mechanical durability and fewer cycles in the injection 

molding.19,24 Thus, the current molds (steel and nickel) and alternative molds (BMG and 

HSQ) had either scalability or durability problems.  Consequently, there is scientific and 
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commercial interest in developing novel process routes for durable and low-cost molds for 

mass production of micro- or nanopatterned surfaces. 

We fabricated a UV-transparent, nano/micropatterned zirconium dioxide (ZrO2) 

hard mold via solvent-assisted patterning technique and demonstrated successful pattern 

replication in polymer replicas using thermal-, UV-assisted NIL, and injection molding. 

ZrO2 has outstanding thermal, chemical, and wear-resistant characteristics, which makes 

the ZrO2 an excellent mold material for pattern transfer applications.25 Recently, we 

developed a method of direct imprinting of metal oxide nanoparticles and used the 

patterned surfaces for antibacterial applications26, batteries27,28, and in optics29,30.  In this 

study, the hardness and modulus of ZrO2 films were determined as a function of annealing 

temperature. A variety of nano and micro features were imprinted in ZrO2 on a variety of 

surfaces including flat and curve, and subsequently, the ZrO2 molds were used for the next 

imprints. Moreover, a ZrO2 nanopatterned mold was used for 115,000 injection molding 

cycles without any deformation. This low-cost, durable, and large area patterned ZrO2 mold 

enables replication of a variety of nano/micro features for commercial and scientific 

applications.  

5.2 Experimental Section 

5.2.1 Materials 

All materials were used as received without further purification. Zirconium dioxide (ZrO2 

50 wt% in ethanol (EtOH)) nanoparticles (NPs) (5 nm in diameter) were purchased from 

Pixelligent (Baltimore, MD).  Poly(tetrafluoroethylene) (PTFE) filters (0.45 μm) and EtOH 

were purchased from Fisher Scientific (Hampton, NH). 1H,1H,2H,2H-

Perfluorodecyltriethoxysilane (FDTS) was acquired from Gelest (Morrisville, PA). 
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Sylgard 184 silicone elastomer kit (polydimethylsiloxane (PDMS)) was purchased from 

Dow Corning (Midland, MI). 1,2 propanediol, Propylene glycol monomethyl ether acetate 

(PGMEA), and Poly(methyl methacrylate) (PMMA) (molecular weight 199,000 g/mol) 

were purchased from Sigma-Aldrich (St. Louis, MO). Norland Optical Adhesive 60 (NOA) 

was purchased from Norland Products, Inc. (Cranbury, NJ). Poly(ethylene terephthalate) 

(PET) film (ST 505, 125 μm thick films), Dupont, was purchased from Tekra Corporation 

(New Berlin, WI). Kapton (polyimide) film was purchased from American Durafilm 

(Holliston, MA).  Stainless steel substrates (304 and 316L) were purchased from 

Stainlesssupply (Monroe, NC). Stainless steel wafers (316, diameter: 85 mm), steel inserts 

(2 cm x 2 cm, cube) and Si master molds were obtained/purchased from NIL Technologies 

(Kongens Lyngby, Denmark).  

5.2.2 Methods 

5.2.2.1 ZrO2 Ink Formulation and ZrO2 Master Mold Fabrication 

To prepare PDMS molds, Sylgard 184 was mixed in a 1:10 ratio of curing agent to base, 

then poured onto various Silicon/Nickel master molds and placed into an oven to be 

crosslinked at 70oC for 3 h. The 50 wt% ZrO2 dispersion was diluted with ethanol and 1,2 

propanediol down to between 25 to 10 wt%. The mixture was sonicated for 15 min, and a 

stable dispersion was obtained. Substrates were cleaned with hexane, acetone, and 

isopropanol, respectively, followed by 5-10 min of O2 plasma. The ZrO2 dispersion was 

spin coated onto the substrate, and then PDMS mold was placed onto the top of the coating. 

The stamp/coating assembly was placed on a hot plate (50 °C) for a few minutes to get rid 

of all residual solvent. Then the PDMS mold was peeled off, and a patterned structure was 

obtained on the substrate. The patterned surfaces were annealed at 300oC - 1000 oC for 2 
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h. Afterwards, the annealed patterned surface was fluorinated in order to create an anti-

stick surface for the next imprints. The same procedure was conducted on the various type 

of substrates such as steel, glass, ceramics, and Kapton. The annealing temperature was 

limited based on the properties of the substrate material. 

 

5.2.2.2 Solution Deposition Planarization of Rough Surfaces 

A ZrO2 nanoparticle solution (10-20 wt%) was spin coated onto the rough steel substrate 

as a thin layer (~400-500 nm in thickness), and after complete solvent removal, it was 

sintered at 350-500oC for 15 min. The same procedure was repeated on the same steel via 

layer by layer coating until the roughness was sufficiently reduced. 

 

5.2.2.3 Pattern Transfer Using ZrO2 Master Mold 

Thermal-NIL: Poly(methyl methacrylate) (PMMA, 199,000 g/mol) was dispersed in 

anisole at 30 wt% and spin coated onto the PET substrate to obtain a PMMA film. Thermal-

NIL of the PMMA film was performed using Nanonex imprinting tool (NX-2000). The 

ZrO2 mold was placed on the top of the PMMA film and thermal imprint was conducted 

under a pressure of 300 PSI at 140°C for 2 min. The ZrO2 mold was peeled off easily and 

inverse patterned surfaces were obtained. 

UV-NIL: UV-curable Norland Optical Adhesive (NOA60) was spin coated onto a PET 

substrate and the ZrO2 mold was placed on the top of the coating. Then, UV-NIL was 

performed at RT under 365 nm UV light for 5-10 min using the Nanonex tool. The ZrO2 

mold was peeled off and inverse replicas were obtained. 

Injection molding: Before polymer injection molding, the insert with nanopatterned ‘ZrO2' 

was coated with FDTS in order to reduce friction during demolding in the polymer 



 82 

injection molding process. Acrylonitrile butadiene styrene (ABS) was dried for 2 h at 80°C 

before use. Parts were polymer injection molded in ABS (Tg = 105°C) with black dye in a 

65 tons Battenfeld HM 65/350 machine using a constant temperature process. The mold 

temperature was set at 85°C and 70°C for the fixed and ejector side, respectively. A tool 

insert with nanopatterned ‘ZrO2’ was fitted on the fixed side. The melt temperature was 

243°C. The injection time was 0.7 s at a 20 mm/s injection speed. Injection pressure 

reached 598 bar and holding pressure was 600 bar for 2 s. The mold was cooled for 10 s 

before the mold opened and the part was ejected. The cycle time was 15.2 s, and more than 

114,000 parts were molded. 

5.2.3 Characterization of ZrO2 Dispersion, Mold and Polymer Replicas 

A diluted ZrO2 dispersion was drop casted on carbon-coated copper grids and transmission 

electron microscopy (TEM) imaging was performed in bright field imaging mode using a 

JEOL 2000 FX. The ligand concentration of ZrO2 NPs was confirmed by 

thermogravimetric analysis (TGA, TA Instruments Q50) using the following temperature 

program under air: heating from room temperature to 800 °C, with a rate of 10 °C/min. 

Mechanical properties of the ZrO2 films were determined using a Hysitron TriboIndenter 

(TI 950) by averaging 30 indentations obtained under rate control (10 µN/s) using a 

Berkovich tip (100 nm) for each film. Imprinted patterned surfaces were characterized by 

scanning electron microscopy (SEM) using an FEI Magellan 400 FESEM. 3D optical 

profilometry (Zygo, Nexview), cross-sectional SEM, and atomic force microscopy (AFM) 

were used to measure feature dimensions. 
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5.3 Results and Discussion 

5.3.1 Fabrication of the ZrO2 Master Mold  

A ZrO2 mold was imprinted by solvent-assisted NIL26,27,30 and polymer 

nano/micropatterns were replicated using the ZrO2 mold as a working stamp via thermal-

NIL, UV-NIL, and injection molding (Figure  5.1). To imprint the ZrO2 mold, ZrO2 NPs 

must be well-dispersed and stabilized in a mixture of high and low volatility solvents. The 

highly volatile solvent provides fast film formation and the low volatility solvent gives 

sufficient time for the imprinting.26 A stable dispersion of ZrO2 NPs was obtained after 

diluting the 50 wt% ZrO2 dispersion with EtOH (high volatile solvent) and 1,2 PD (low 

volatile solvent). A TEM image of the NPs is shown in Figure 5.2a and 5.2b. The average 

diameter of the NPs was determined to be 5.2 ± 0.3 nm. Dynamic light scattering (DLS) 

shows that the particle size distribution in EtOH/1,2 PD is between 5-20 nm, which 

indicates that the ZrO2 NPs forms tiny clusters in the solvent system (Figure 5.2c). The 

ligands on the ZrO2 NPs enabled to have stable NPs up to 50 wt% solid concentration, 

which enabled to imprint variety of structures from nano to micron features. The weight 

percentage of the ligands was determined to be 16 % in total solid and confirmed by 

thermogravimetric analysis (TGA) (Figure 5.2d). 



 84 

 

Figure 5.1. Schematic representation of patterning the hard ZrO2 master mold and subsequent 
pattern transfer using the ZrO2 mold. 
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Figure 5.2. (a) TEM image of ZrO2 NPs (drop casted from diluted ZrO2 dispersion). (b) DLS 
measurement of ZrO2 nanoparticles size distribution, digital image of the ZrO2 ink. (c) TGA of 
ZrO2 nanoparticles. 

 

To increase the durability of the ZrO2 mold, the ZrO2 molds were annealed at 

various temperatures. As the annealing temperature increased from 300°C to 1000°C, 

hardness and reduced modulus values significantly increased (Table 5.1). Before annealing 

the ZrO2 film, the hardness and modulus values were only 0.36 ± 0.02 GPa and 14 ± 2 GPa, 

respectively. After annealing the ZrO2 film at 500°C, the hardness and modulus of the ZrO2 

coating significantly increased to 4.3 ± 0.6 GPa and 82 ± 6 GPa, respectively. Moreover, 

the hardness and modulus values increased significantly up to 11 ± 2 GPa and 120 ± 10 

GPa, respectively, when sintered at 1000°C. The resulting high hardness and modulus 

values of the ZrO2 mold suggest them to be durable and therefore suitable for high pressure 
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and rapid imprinting conditions. Denser films were obtained without any significant grain 

growth (Figure 5.3).  

 

Table 5.1. Nanomechanical analysis of ZrO2 as a function of annealed temperature. Standard 
deviation is displayed.  

As spun 300 °C 500 °C 750 °C 1000 °C 

H (GPa) 0.36 ± 0.02 2.3 ± 0.2 4.3 ± 0.6 6.4 ± 0.7 11 ± 2 

Er (GPa) 14 ± 2 53 ± 8 82 ± 6 112 ± 6 120 ± 10 

 

Direct NP patterning has several advantages compared to the imprinting of sol-gel 

precursors.  Densification of sol-gel precursor causes a high amount of shrinkage (~60-

80%), leading to cracks and defects upon calcination.23,31 Previously, we demonstrated that 

direct imprinting of NPs demonstrated only 10-30% shrinkage, which enabled successful 

imprinting of a variety of geometries.30 Another advantage of using ZrO2 NPs as a mold is 

that the surface of the metal oxides can be easily modified with anti-sticking materials, 

unlike the steel and Nickel mold surfaces. The low surface energy of the fluorinated master 

molds prevents the adhesion of polymer materials on the mold surface. Moreover, the ZrO2 

mold can be used at high temperatures for embossing up to several thousand degrees.  
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Figure 5.3. SEM micrographs of sintered ZrO2 films at 300°C, 500°C, 750°C, and 1000°C for 2h 
under air. 

5.3.2 Thermal Imprint using ZrO2 Mold 

A soft PDMS stamp was replicated from a structural-color patterned Si master mold 

(250 nm in height, Figure 5.4a) and a ZrO2 mold (140 nm in height, Figure 5.4b) was 

imprinted using the PDMS mold on a Si wafer. After post-annealing of the ZrO2 mold, 

thermal-NIL was conducted using the ZrO2 mold and replicated structural colors in PMMA 

were obtained (Figure 5.4c and Figure 5.5). The beautiful colors are due to diffraction of 

light, which is well-known as structural colors that are inspired from nature (e.g., butterfly 

wings).32 Thus, colorful surfaces and objects can be obtained without using any pigments 

or dye at low-cost. The same spot on the ZrO2 mold was imaged in the SEM after 

imprinting ZrO2 NPs, after 15 consecutive imprints, and after 30 consecutive imprints 

(Figure 5.6).  There was no measurable difference in the quality of the obtained inverse 

nanostructure and also the ZrO2 master mold after 30 consecutive imprints using the same 

ZrO2 master mold.  
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Figure 5.4. Images of (a) Si master mold. (b) ZrO2 mold on a Si wafer. (c) PMMA inverse 
structures of the ZrO2 master on a PET substrate. 

 
 

 

Figure 5.5. SEM micrographs of (a) imprinted ZrO2 line pattern (width: 500 nm, pitch: 1300 nm), 
(b) PMMA replica of the ZrO2 line pattern, (c) imprinted ZrO2 hole pattern, (d) PMMA replica of 
the ZrO2 hole pattern. Thermal-NIL was conducted to obtain PMMA replicas. 
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Figure 5.6. (a) Height profile of the ZrO2 mold. SEM micrographs of (b) patterned ZrO2 
nanoparticles on Si wafer using solvent-assisted soft NIL, 45° tilted, (c) top view, (d) inverse 
PMMA structures using hard ZrO2 mold via thermal NIL. (e) The same ZrO2 mold after 15 
consecutive imprints. (f) Inverse PMMA structures as the 15th replica. (g) The same ZrO2 mold 
after 30 consecutive imprints. (g) Inverse PMMA structures as the 30th replica. 

 

Sharklet AFTM surfaces are one of the micropatterned antifouling surfaces which 

have been commercialized and applied on catheters to reduce bacterial attacment33,34. 

However, the primary challenge limiting the mass production of Sharklet AFTM patterned 

surfaces is the short lifetime of the current nickel molds. To address this problem, ZrO2 
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shark-skin patterns were imprinted on a rough steel substrate and annealed at 500°C to 

obtain a hard ZrO2 mold which is used for the next imprints. Herein, ZrO2 shark-skin-

patterned surfaces (height: 2µm, width: 1µm, spacing: 3 µm)  had only 33% shrinkage in 

height compared to the height of the Silicon master mold (height: 3 µm, width: 2µm, pitch: 

2µm). Figure 5.7 shows SEM images of a ZrO2 shark-skin-patterned surface and a PMMA 

inverse shark-skin patterned surface fabricated using the ZrO2 mold. The SEM images 

demonstrate the ability of the ZrO2 mold to precisely replicate mold features ranging from 

µm to nm size scales. These results suggest that ZrO2 structures have high strength and 

durability, making them ideal for using a master mold for thermal imprinting. Moreover, 

ZrO2 can be patterned using the soft PDMS mold onto a variety of substrates including 

curved and flexible substrates, such as on the watch glass is shown in Figure 5.7e, and the 

Kapton film shown in Figure 5.7f. 

To make NP-based imprints on curved surfaces, microtransfer molding (μTM)7 is 

conducted. A soft PDMS mold was coated with ZrO2 NP dispersion (5-25 wt% in PGMEA) 

and the ZrO2 coated PDMS was placed conformally onto a curved glass. Pattern transfer 

was successfully made in less than a minute using only PGMEA (considered a highly 

volatile solvent) at room temperature.  ZrO2 structural color patterns on a curved glass are 

shown in Figure 5.7e. Imprinting time can be adjusted using a mixture of solvents or 

different coating techniques. 
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Figure 5.7. SEM images of (a) patterned ZrO2 NPs on steel using solvent-assisted soft NIL, (b) 
higher magnification with 45o tilt, (c) inverse PMMA structures using hard ZrO2 mold via thermal 
NIL, and (d) higher magnification. (f) Digital photos of ZrO2 imprint on a curved watch glass (e) 
Digital photo of ZrO2 master mold on Kapton film. SEM images of (g) patterned metal oxide 
nanoparticles on Kapton film, (h) and inverse PMMA structures using hard metal oxide mold via 
thermal NIL. 

 
The high surface roughness of (commercially available) steel limits the imprinting 

of nanofeatures. To overcome this problem, planarization of the steel was conducted with 

the ZrO2 dispersion using solution deposition planarization technique35. After each spin 

coating step, the coating was sintered before the next coating. A layer-by-layer coating was 

repeated until the surface roughness was reduced sufficiently. Therefore, crack-free NP-

based thick coatings were fabricated with the thicknesses exceeding critical crack 

thicknesses.36 The surface profile of the bare steel substrate and after each coating step are 

shown in Figure 5.8. The surface roughness of the steel was able to be decreased from 280 

nm to 33 nm after 3-4 consecutive coatings (Figure 5.9b). Then, ZrO2 nanopatterned lines 

were imprinted on the planarized steel and we obtained a hard, ZrO2 nanopatterned mold 

on the steel substrate. Replicated PMMA nanopatterned lines were successfully obtained 

using the ZrO2 mold on steel (Figure 5.9d). 

 



 92 

 

Figure 5.8. Surface profile images of  (a) a bare steel surface. (b) After 1st coating layer on the 
steel. (c) After 2nd coating layer on the steel. (d) After 3rd coating layer on the steel. (e) After 4th 
coating layer on the steel. 

 

 

 

Figure 5.9. (a) Digital photo and optical profile of nanopatterned ZrO2 on a rough steel substrate. 
(b) Roughness versus the number of planarizing coatings. (c) Digital photo and optical profile of 
nanopatterned ZrO2 on the planarized steel substrate, and (d) A digital photo of nanopatterned ZrO2 
and polymer replica and optical profile of the polymer replica. 
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5.3.3 UV-NIL using ZrO2 Mold 

Current molds for UV-NIL lack durability mainly as a result of limited mechanical 

properties, which in turn limits the fast production of UV-curable, patterned surfaces. ZrO2 

is a transparent material in the UV spectrum and has a high hardness that makes it an ideal 

mold material for UV-NIL. ZrO2 shark-skin patterns were imprinted on a glass substrate 

and annealed at 500°C. NOA, a UV-curable resist, was spin-coated on a PET substrate, the 

ZrO2 mold was placed onto the coating, and UV-NIL was successfully conducted, resulting 

in a replica of the ZrO2 mold (Figure 5.10). There was no visible delamination or 

contamination on the ZrO2 mold. Thus, hard ZrO2 patterns on flexible Kapton substrates 

can be easily used as molds for UV-NIL in the roll-to-roll NIL process.  

Moreover, not only line or shark-skin patterns, but also any arbitrary geometry can 

be imprinted using the ZrO2 NP dispersion. ZrO2 ink concentration and coating conditions 

were adjusted to obtain the desired thickness for target pattern geometry. We have 

successfully imprinted pillars, meshes, microlenses, arbitrary shapes, and high aspect ratio 

structures in ZrO2. Pattern dimensions were varied from ~100 nm to ~100µm (Figure 

5.11). For example, Figure 5.12 shows ZrO2 imprinted structures with as 2:1, 4:1, and 6:1 

aspect ratios, and using the ZrO2 molds inverse replicated structures in NOA were 

fabricated via UV-NIL.  
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Figure 5.10. (a) SEM image of ZrO2 shark-skin on glass using solvent-assisted soft NIL and a 
digital photo of ZrO2 shark-skin mold on glass (b) SEM image of inverse NOA structures using 
hard ZrO2 shark-skin mold via UV-NIL.  
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Figure 5.11. SEM micrographs of variety patterned nano/microstructures using ZrO2 dispersion. 
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Figure 5.12. SEM micrographs of various aspect ratio structures (2:1, 4:1, and 6:1). Imprinted 
ZrO2 shark-skin, line pattern, and high aspect ratio pillars and corresponding NOA replicas of the 
ZrO2 shark-skin, line pattern, and high aspect ratio pillars. UV-NIL was conducted to obtain NOA 
replicas. 

5.3.4 Injection Molding using ZrO2 Mold 

A polished steel block was successfully patterned with a ZrO2 structural color 

pattern via solvent-assisted soft NIL. After successful imprinting of the ZrO2 patterns, the 

ZrO2-patterned steel block was post-annealed at 450°C for 2h. Discoloration of the steel 

block was observed after the post-annealing step due to the characteristics of the steel used 

in the experiment. To overcome discoloration of the steel, annealing can be done under an 

inert environment or different grades of steel can be used.  

Injection molding was conducted using the ZrO2-patterned steel insert to fabricate 

114,965 replicas with 15.2 s cycle time. Crack generation and delamination can often occur 

due to defects in the mold. There was no measurable delamination even near the defect 

sites (Figure 5.13). This result is due to the great anti-wear characteristics of ZrO2, which 

result from its high hardness and modulus. An SEM image of the ZrO2 mold insert after 

114,965 cycles is shown in Figure 5.13c. There was no line breakage or contamination. In 

such a repeatable and fast process, some degree of crystallization of ZrO2 might have 

occurred; however, a more uniform ZrO2 imprint on a steel insert would exhibit a uniform 
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crystallization and better optical impression. Successfully replicated patterned ABS 

polymers are also shown in Figure 5.13d-g. The line height of the ZrO2 patterned steel 

insert and molded ABS patterned replica was measured in AFM and the height was 

determined to be ~170 nm (Figure 5.14).  A defect in the patterned ABS was imaged in 

the optical microscope at 28,751st, 50,990th, 87,380th, and 114,965th replica and there were 

no measurable differences. The successful results exhibit that ZrO2 patterned steel inserts 

can be a low-cost and durable mold for the injection molding process.    

 

Figure 5.13. (a) Digital photo of patterned ZrO2 nanoparticles on a steel block using solvent-
assisted soft NIL. SEM micrographs of patterned ZrO2 nanoparticles on a steel block (b) before 
injection molding (c) after 114,965 injection molding cycles. Digital photos and optical 
micrographs of nanopatterned polymer replicas (d) after 28,751 cycles, (e) after 50,990 cycles, (f) 
after 87,380 cycles, and (g) after 114,965 cycles. 
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Figure 5.14. AFM height profile of (a) ZrO2 patterned steel insert, (b) a molded ABS polymer. The 
height was determined to be ~170 nm for both ZrO2 mold and replicated polymer. 

5.4 Conclusions  

Hard and durable micro/nano-patterned ZrO2 molds were fabricated using a cost-

effective and straightforward solvent-assisted soft NIL method. The hardness and reduced 

modulus of the ZrO2 films were increased up to 11 GPa and 120 GPa, respectively. Solution 

deposition planarization was conducted to reduce the roughness of the steel from 280 nm 

to 33 nm. Thus, nanopatterned surfaces were obtained on the planarized steel surfaces. A 

hard transparent ZrO2 mold was successfully replicated using thermal-NIL and UV-NIL; 

initial roll-to-roll (R2R) results indicate excellent potential for R2R-NIL processing for 

high volume production. Moreover, the ZrO2 patterned steel insert was successfully used 

for injection molding to produce 115,000 polymer replicas without any deformation. Our 

technique is solution processable, can be applied to any surfaces from flat to curved as well 

as from smooth to rough substrates, and can be used for many nano-replication 

technologies. 
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CHAPTER 6 

NANOPATTERNING OF STEEL VIA HARD ZIRCONIA MOLD 

6.1 Introduction 

Stainless steel (SS), such as 304 and 316, is used in many industrial applications 

including food processing and pharmaceutical plants because of its strength, wear-

resistance, and relatively low-cost. However, fouling of SS surfaces, resulting from 

bacterial contamination and organic residues,  is the biggest threat for product safety, 

resulting in millions of dollars in costs dedicated to cleaning the SS tanks and pipes in 

plants daily. The typical cleaning procedure is often referred to as clean-in-place (CIP), 

which generates a tremendous volume of wastewater.1  Reducing the amount of wastewater 

discharge and preventing contamination of foulants is essential instead of treating the 

contamination.  

 Variety types of self-cleaning or antifouling surfaces have been fabricated using 

many different methods, including femtosecond laser ablation2,3, deposition4,5, 

electrochemical etching8, and therefore micro/nanopatterned surfaces, spray coated, and 

slippery liquid-infused porous surfaces (SLIPS)6,7 were obtained. Antifouling coatings, 

notably polyethylene glycol (PEG) and poly(tetrafluoroethylene) (PTFE),  are undesired 

due to lacking long-term durability and the potential release of toxic chemicals, 

respectively. For example, Pei et al. reported that SS-PEG substrate could not prevent 

biofilm formation despite being resistant to protein adsorption.9 Zhao et al. demonstrated 

that PTFE coatings, which possess low surface energy, reduced the E. coli attachment by 

90% after a 5 h incubation period compared to bare SS 304.10 However, it has been shown 

that perfluorochemicals are harmful and accumulate in the body, which limits the use of 
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fluoro-based chemical in practical applications.11 There are only a few SLIPS on SS 

reported for food processing which were fabricated using femtosecond laser ablation and 

impregnated with lubricating oil. Despite their effectiveness to prevent bacterial 

contamination and easy cleanability, SLIPS have several disadvantages.12 First, a shear 

force for cleaning can remove all the lubricants, subsequently leaving the porous surface 

open for contamination. Second, the laser ablation fabrication of porous SS surfaces is not 

practical over a large area. 

 Bioinspired hierarchical micro/nanopatterned surfaces have been shown to be 

potential antifouling (e.g., Sharklet AFTM) and self-cleaning (e.g., lotus leaf) surfaces.13 

Antifouling behavior is a result of the structure-property relationship. The fabrication of 

nanopatterned surfaces in SS has been conducted via several techniques such as pulsed 

electron beam irradiation, femtosecond laser ablation, and ion-beam etching. However, 

expensive and long fabrication times make these non-ideal for any large area patterning 

applications. Alternative, low-cost SS patterning techniques including microextrusion, 

microforming, and coining/embossing have been reported, but have only demonstrated low 

resolution features, with a minimum feature size of 10 µm.14 Moreover, the fabrication of 

current molds (e.g., diamond and silicon carbide (SiC)) to make patterned steel surfaces is 

also an expensive and time-consuming process.15,16 Thus, it is extremely desirable to 

develop a scalable method to fabricate high resolution, micro/nanopatterned SS surfaces at 

a low cost. 

 We present a straightforward and cost-effective SS patterning technique using a 

hard micro/nanopatterned zirconium dioxide (ZrO2) mold. A ZrO2 patterned mold was 

fabricated via a solvent-assisted imprinting technique using a ZrO2 nanoparticle (NP)-

based ink on a zirconia substrate, and then annealed to obtain a super-hard ceramic 
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patterned-mold. The ZrO2 patterned mold was pressed into a 304 SS substrate using a 

hydraulic press and replicated patterns were obtained in the SS. As expected, restorative 

stress from residual elastic stress in the SS substrate lessened replication fidelity; however, 

we demonstrated that hard patterned ZrO2 molds offer low-cost nanofabrication of hard 

steel sheets with up to 25% pattern transfer yield at room temperature.  

6.2 Experimental Section 

6.2.1 Materials 

All materials were used as-received without further purification. Zirconium dioxide 

(ZrO2 50wt% in ethanol (EtOH)) nanoparticles (NPs) (5 nm in diameter) were purchased 

from Pixelligent (Baltimore, MD).  Poly(tetrafluoroethylene) (PTFE) filters (0.45 μm) and 

EtOH were purchased from Fisher Scientific (Hampton, NH). ZrO2 substrates (3.5mol.% 

YSZ, 10x10x0.5 mm, one side polished) were purchased from MTI corporation 

(Richmond, CA). Stainless steel sheets (304 (#8 polished, 0.4 mm in thickness) and 316L 

(#8 polished, 1.02 mm) were purchased from Stainlesssupply (Monroe, NC). SUS304 

(polished, 0.02 mm in thickness) was purchased from TDC Corporation (Miyagi, Japan). 

Heptadecafluoro-1,1,2,2-tetrahydrodecyl) dimethylchlorosilane was acquired from Gelest 

(Morrisville, PA). Sylgard 184 silicone elastomer kit (polydimethylsiloxane (PDMS)) was 

purchased from Dow Corning (Midland, MI). 1,2 propanediol and propylene glycol 

monomethyl ether acetate (PGMEA) were purchased from Sigma-Aldrich (St. Louis, MO). 
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6.2.2 Methods 

6.2.2.1 ZrO2 Ink Formulation and ZrO2 Master Mold Fabrication 

To prepare PDMS molds, Sylgard 184 was mixed in a 1:10 ratio of curing agent to 

base, then poured onto various silicon/nickel master molds and placed into an oven to be 

crosslinked at 70oC for 3 h. The 50wt% ZrO2 dispersion was diluted with ethanol and 1,2 

propanediol down to 25-10 wt%. The mixture was sonicated for 15 min and a stable 

dispersion was obtained. Substrates were cleaned with hexane, acetone, and IPA 

respectively and then treated with O2 plasma for 5-10 min. The ZrO2 dispersion was spin 

coated onto the substrate, and then a PDMS mold was placed onto the top of the coating. 

The stamp/coating assembly was placed on a hot plate (50°C) for a few minutes to remove 

all residual solvent. Then, the PDMS mold was peeled off and the patterned structure was 

obtained on the substrate. The patterned surfaces were annealed at 300oC - 1000oC for 2 

hours. The annealed patterned surface was then fluorinated achieve a non-stick surface, to 

be suitable for the subsequent imprints. The same procedure was conducted on various 

types of substrates such as steel, ceramics, and tungsten carbide. The annealing temperature 

was limited based on the substrate material. 

 

6.2.2.1 Patterning of A Steel Using the ZrO2 Mold 

 A hydraulic press was used for patterning steel. A piece of rubber was placed under 

the steel sheet (SS 304), and a ZrO2 patterned mold was placed onto the steel. Pattern 

transfer into the steel was conducted under 2000 PSI (with up to 5 s hold, at a constant 

pressure rate). Using the same ZrO2 mold, 3-4 additional pattern transfers were conducted. 

All the pattern transfers into the steel were performed at room temperature (20°C). 
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6.2.3 Characterization  

 A diluted ZrO2 dispersion was drop casted on carbon-coated copper grids and 

transmission electron microscopy (TEM) imaging was performed in bright field imaging 

mode using a JEOL 2000 FX. Mechanical properties of the ZrO2 films were determined 

using a Hysitron TriboIndenter (TI 950) by averaging 30 indentations obtained under rate 

control (10 µN/s) using a Berkovich tip (100 nm) for each film. Imprinted patterned 

surfaces were characterized by scanning electron microscopy (SEM) using an FEI 

Magellan 400 FESEM. 3D optical profilometry (Zygo, Nexview) was used to measure 

feature dimensions. 

6.3 Results and Discussion 

ZrO2 NPs were imprinted via a solvent-assisted patterning technique using inks 

comprised of ZrO2 nanoparticles (NPs). The schematic process of the solvent-assisted 

imprinting technique is shown in Figure 1a. Imprinted patterns were annealed at 1000°C 

for 2h to obtain a hard and durable mold. Direct imprinting of ZrO2 NPs in a variable 

geometry has been shown in the previous chapter (Chapter 5), where NP characteristics 

and imprinting conditions were discussed in detail. The hardness and modulus values of 

annealed ZrO2 were determined to be 11 ± 2 GPa and 120 ± 10 GPa, respectively. As an 

example, the shark-skin pattern was imprinted in ZrO2 on a ceramic substrate, and used as 

a mold for the pattern transfer. 
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Figure 6.1. Schematic representation of the fabrication process of (a) ZrO2 patterned mold using 
soft PDMS stamp, (b) patterned steel using the hard ZrO2 patterned mold. 

 

The pattern transfer into an SS304 steel substrate was conducted using a hydraulic 

press at room temperature (20°C). A scheme of the embossing process is shown in Figure 

1b, in which a thin rubber sheet was placed between the steel substrate and press surface 

to ensure conformal contact between the ZrO2 mold and the steel substrate. A ZrO2 shark-

skin-patterned mold was pressed into the steel substrate and the single mold was able to be 

used more than 3 times without noticeable damage. Digital images of the ZrO2 shark-skin-

patterned mold and consecutive pattern transfers into the steel substrates are shown in 

Figure 2.  

SEM micrographs and the feature dimensions of the ZrO2 shark-skin-patterned 

surfaces are shown in Figure 3a and b. The features were successfully replicated 

uniformly in size and shape. The height of the ZrO2 features was determined to be 2 µm. 

Figure 3c and d shows that patterned steel had an approximately 500 nm depth after 

pressing at 2000 PSI at 20°C. This lessened replication fidelity at room temperature was 

expected due to characteristics of the steel and pressing conditions. Full replication was 
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constrained because of many influences including springback, which is caused by elastic 

recovery of the steel.  Moreover, the flow of the steel depends on the geometry of the 

pattern, hardness and grain size of the steel being used, pressing pressure, and pressing 

rate.14  Microforming of steel has been discussed in detail recently; however, there is no 

definitive study on sub- micron feature deformation in steel.14 

 
 
Figure 6.2. Digital images of (a) ZrO2 patterned mold, (b) steel patterned surface, (c) subsequent 
patterning of the steels using the single ZrO2 patterned mold. 
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Figure 6.3. SEM micrographs, optical and height profilometry of the (a,b) ZrO2 patterned mold, 
(c.d) patterned steel substrates using the ZrO2 mold.  

 

 

Figure 6.4. SEM micrographs of patterned steel surfaces from different spots (a,c) low mag, (b.d) 
high mag. 
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Figure 6.5. Optical profilometry of the patterned steel surfaces using a single ZrO2 patterned mold. 
(a) The first patterned steel, SS304-1, (b) The third patterned steel, SS304-3 

 
 

Springback is affected by the thickness of the steel substrate.17 To further study this 

effect, we compared the pattern transfer quality of the two steel substrates with different 

thicknesses, SS304 (0.4 mm) and SUS304 (0.02 mm). Figure 6 shows the optical 

profilometry of SS304 and SUS304 after pattern transfer under the same embossing 

conditions. The height of the features in SUS304 was determined to be approximately 200-

400 nm, whereas the height of the features in SS304 was ~500-600 nm. This result 

suggested that as the thickness of the steel is decreased, the amount of the springback 

increases. Diehl et al. reported that above a thickness of 0.2 mm, there is a positive 

correlation between springback and thickness due to the increasing share of surface grains; 

however, below 0.2 mm thickness, springback increases with decreasing the thickness due 

to increased strain gradient.18  

In order to gain greater insight into the effect of thickness of steel during pressing, 

we conducted a nanoindentation test on SS304 and SUS304. Load versus displacements 

curves of SS304 and SUS304 were compared under the same conditions (load: 2000µN 

and rate: 200 µN/s). Contact depth in SUS304 was only approximately 60 nm, while SS304 
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had a contact depth of approximately 100 nm. Thus, nanomechanical analysis of SS304 

and SUS304 confirmed that the flow of steel identical loading conditions are highly 

dependent on the thickness of the steel substrates. Moreover, nanoindentation hardness 

values of SS304 and SUS304 were determined to be 3.9 ± 0.3 GPa and 6.1 ± 0.7 GPa, 

respectively, which were significantly less than the hardness value of the ZrO2 mold (11 ± 

2 GPa). 

 

Figure 6.6. Comparison of steel sheet thicknesses under the same pressing conditions. Height 
profiles of steel surfaces (a) patterned SS304, (b) patterned SUS 304. 

 

Figure 6.7. Load versus displacement curves of (a) SS304 under rate control (200 µN/s), (b) SS304 
versus SUS304. 

 Lastly, uneven pressure distribution during pressing may be the cause of  non-

uniform pattern transfer into the steel.  The resulting frictional stress during nanopattern 
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transfer is much higher compared to embossing of features with micron or larger sizes, and 

could be decreased by using a lubricant.19 In the future, compression/embossing tests into 

steel can be conducted using heat-assisted embossing or compression. At elevated 

temperatures such as at 680°C, the springback effect can be decreased, and a better 

replication quality can be obtained in the steel.20 In summary, this study demonstrates that 

by using a hard ZrO2 mold, nanopatterning of steel is feasible at low-cost. We believe that 

this research will attract significant attention in scientific and commercial areas.  

6.4 Conclusions  

To the best of our knowledge, this work represents the first reported scalable 

method for fabricating nanopatterned steel surfaces at room temperature. The hard 

micro/nanopatterned ZrO2 mold enabled deformation of the steel substrate/surface, and we 

were therefore able to obtain micro/nanopatterned steel surfaces. The results indicated that 

the thickness of steel substrates is as critical as the characteristics of the steel, embossing 

temperature, and pattern geometry. Our hard ZrO2 mold and technique offer the possibility 

of large-area, low-cost patterning of steel and can be used for many applications including 

self-cleaning and antifouling stainless steel surfaces, which would be of specific interest to 

the food processing and pharmaceutical industries. 
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CHAPTER 7 

INNOVATION CORPS PROJECT 

7.1 Project Aim  

The aim of National Science Foundation (NSF) Innovation Corps (I-Corps) project 

was to understand market opportunity for a technology that was developed in our 

laboratory. Our technology (Chapter 5) enables cost-efficient production of 

micro/nanopatterns that can be used for functional surfaces such as antimicrobial, self-

cleaning, structural color, high-performance optical coatings and so on. At the beginning, 

our primary aim was to find the right market for such variety of applications. To conduct 

market research, at least 100 potential customer interviews were targeted as a requirement 

of NSF I-Corps program. Those interviews were arranged to test the value propositions for 

each customer segments. The major focus in the customer discoveries was to learn their 

current needs and problems, and understand if our technology can fit for their problems. 

The next goal was to figure out how our technology will fit for the market. 

Another aim of the project was to train the Ph.D. student (myself) as an 

entrepreneur and improve my entrepreneurship skills. 

7.2 Major Activities and Results  

We interviewed more than 100 people  (at least: 74 in person, 27 phone interviews). 

At the beginning, we thought our technology can be interested by several different 

customer segments; optical product designer, antimicrobial product designer, and 

structural color product designer (Figure 7.1). The value proposition was cost efficient, 

higher performance and no toxicity for kids, respectively for each customer segments. Due 
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to restricted time of the project, we had to focus on one specific customer segment instead 

of being in all over the area. Thus as a team, we decided to continue with the antimicrobial 

product designer segment, specifically for food service industry. Bacterial contamination 

is a big risk in the food industry that can easily harm their prestige such as seen for Chipotle. 

The value proposition was to reduce the risk and fear of bacterial contamination. However, 

after conducting interviews we learned that even they have antimicrobial coatings, they 

had to continue regular cleaning/disinfectant protocols, for example, employees still had to 

wash their hands. All the response was nice to have antimicrobial coatings but was not 

truly impactful and exciting.  

 

Figure 7.1: First business canvas model at the beginning of the project. 

 

Next step was to test our hypothesis for food processors where heavily food 

production happens. The value proposition was to reduce the risk and fear of bacterial 

contamination and also reduce cleaning time and water consumption. Not only food 

processors but also brewers were our potential customer segment. During the interviews, 

we learned that amount of the cleaning time and wastewater were the major problems rather 

• Optical product 
designer

v Antimicrobial 
product designer

Ø Structural color 
product designer

• Contracts with 
manufacturers

• Technical 
Assistance/training

• Web Channels
• manufacturers

Business Model Canvas, Version 1 

• Cost efficient, 
higher 
performance

v Low cost 
antimicrobial 
coatings

Ø No toxicity for kids 



 117 

than the risk and fear of bacterial contamination (Figure 7.2). For example, a microbrewer 

told us that he spends 14-16 hours for cleaning of a fermenter tank. An intermediate size 

brewer (Independent Fermentations) said that they spend 6-8 hours cleaning per tank. 

Moreover, we learned that Rodney Strong achieved 40% water savings and time with 

polished stainless steel tanks. Upon all these interviews, our customer segment was 

determined to be the food processors/brewers, and the value proposition was determined 

to be “reduced cleaning time and water consumption”. One of the biggest excitement was 

when a quality director from a small size food processor told us they spend 130,000 gallons 

for cleaning per plant, which costs $13,000/per day. They cannot discharge excess amount 

of wastewater, and it affects their production as well. Only 10% saving of water makes 

them save $1.5M in 3 years (ROI: 3 years), which they were ready to pay. We also 

conducted interviews with tank and steel manufacturers as potential partners to figure out 

market fit (Figure 7.3). 

 

 

Figure 7.2: Food processor visit. (From left to right: microbiologist, project engineer, quality 
director, and entrepreneur lead. 
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The value proposition has been significantly changed. We thought that it was 

“reduced the risk and fear of bacterial contamination” while we learned that it is “reduced 

wastewater”  for food processors/brewers. Our final proposition was “Provide an 

antifouling, easy to clean surface in stainless steel for food processors and microbreweries 

providing 40-50% reduced water usage resulting in compelling ROI from significantly 

reduced operating costs”. Therefore, as a result of interviews, we figured out our value 

proposition for the right market (Figure 7.4).   

The product design had to be significantly changed according to interviews. We 

understood that a product that can satisfy the target customer needs should be made in steel 

(same material with tanks). We learned that technology/product needs to be changed 

according to customer needs rather than only trying to find a right customer for a specific 

product. A more detail study can be found in Chapter 6 which was a result of this NSF I-

Corps project.  

 
 

 

Figure 7.3: Distribution channel diagram as a result after conducting more than 100 customer 
interviews. 
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 Figure 7.4: Final business canvas model at the end of the 5 weeks training program. 

 
During the customer interviews, we found out that one of the huge interest of 

nanopatterned surfaces is in high-performance optical lenses. We expanded the project 

towards to optical area. For example, we started to work with one of the fortune 500 

companies soon after the training term. In a short time, we developed a different product 

(high refractive index slanted structures) that is likely to be commercialized by next year. 

We filed several more intellectual property disclosures upon our findings/experiments as a 

result of the project and prepared a few manuscripts to be shared with scientific community.  

  

Generated	by	LaunchPad	Central

LaunchPad	Central

Key	Partners

Steel	tank

manufacturers

Steel	rolling

operator

Nanoimprint

Companies

manufacturers

Key	Activities

Marketing

Build	a

prototype

Manufacturing

Value	Propositions

reduce	waste

water

reduce	fear	of

bacterial

contamination

cost	effective

antimicrobial

surface

Customer	Relationships

Technical

Assistance/training

Contracts

with

manufacturers

product

satisfaction

Customer	Segments

food

processors,

microbreweries,

food	package

designers	for

food

infrastructure

healthcare

designers	for

Key	Resources

Manufacturing

tools

Chemical

supply

IP-patents

Channels

Face-to-face

meetings

Manufacturers

Cost	Structure

Education,	marketing

Manufacturing

Revenue	Streams

Direct	sale

Service



 120 

CHAPTER 8 

FUTURE WORK 

 
 Patterned surfaces are very useful in many applications whereas smooth surfaces 

cannot have performance high enough comparing to patterned surfaces as it is discussed in 

this dissertation. There are a number of directions for future work to conduct. For example, 

while the shark skin pattern has been studied as an antifouling surface in the past, this 

dissertation demonstrated that shark skin pattern can be effectively used in a 

multifunctional application by combining antifouling and sensing characteristics on a 

single surface. The industrial and scientific communities have been developing 

multifunctional devices, but there is not a simple characterization technique that can serve 

as an easy and fast tool to evaluate the long-term performance of multifunctional devices. 

Future work should focus on how to develop effective characterization methods for 

multifunctional devices/surfaces.  

 We have shown that a variety of materials can be imprinted on a variety of surfaces 

including a curved substrate. Further study is still needed to demonstrate the feasibility of 

patterned structures on complex surfaces to use these patterns on the existing tools such as 

current injection molding tools. 

 Moreover, we have demonstrated that a ZrO2 master mold can be used to obtain 

nanopatterned steel surfaces (Chapter 6), but additional work needs to be done to illustrate 

the functionality of patterned steel surfaces. Even though most of the current studies are 

focused on how to make patterned steel surfaces, there is not much work done on the 

application of patterned steel surfaces. One of the reasons for this might be the fabrication 

techniques which is quite expensive. Our low-cost steel patterning technique will enable 
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and foster the study of variety of patterned steel or glass surfaces for different applications 

including self-cleaning and antifogging surfaces.  
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