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ABSTRACT 

 

DESIGN AND SELF-ASSEMBLY OF RESPONSIVE SCAFFOLDS FOR 

FOOD AND SENSING APPLICATIONS 

FEBRUARY 2019 

UMA SRIDHAR 

INTEGRATED BS-MS, INDIAN INSTITUTE OF SCIENCE EDUCATION 

AND RESEARCH, PUNE 

PH.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Professor Sankaran Thayumanavan 

 

Developing an understanding of how molecules, materials and complex systems contribute to 

biological functions is important since the interpretation of such mechanisms paves the way to 

further the development of materials that replicate natural functions or impart the observed 

properties to synthetic materials. The self-assembly of stimuli-responsive scaffolds based on 

micelles, liposomes, hydrogels and thin films has been of considerable interest. These systems 

need to be endowed with certain design features which influence the self-assembly and the 

responsiveness of the scaffold when subjected to external stimuli which could be physical, 

chemical or biological in nature. This kind of insight is still lacking in our understanding of how 

these systems respond to various stimuli. In this thesis, our objective is to establish structure-

property relationships between the influence of structural design and the target material properties. 

Of interest to us are pH, temperature (chemical) and enzyme/proteins (biological) as stimuli and 

we have performed experiments to validate the responsive features of these systems.  
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The design principles for oligomeric peptides to exhibit a unique temperature-dependent size 

transition were elucidated and it was found that incorporation of aromatic hydrophobic groups 

diminishes the thermo-sensitivity of the peptide nanoassemblies. Since these molecules are 

designed to incorporate FDA (Food and Drug Administration) approved components and the 

assembly is biodegradable, this system has interesting applications in the food industry and in 

cryptic catalysis. 

Parameters that dictate the morphology of calcium cross-linked alginate gels and the release of an 

artificial sweetener, aspartame from these hydrogels were studied. We have validated the effect of 

cross link densities and sizes on the release kinetics of the microgel spheres and bulk hydrogels. 

The release data was fitted to kinetic models available from literature to elucidate the pathway 

constraints which were further, found to dictate the release pathway. Lastly, structure-property 

relationships were developed using libraries of oligomeric amphiphiles to make possible rational 

design of triggers for amplification via liquid crystal (LC) response. To this end, we synthesized a 

wide range of amphiphilic oligomers that responded to a protein, carbonic anhydrase (CA II). The 

mechanism of binding-induced anchoring transition at the LC/aqueous interface was corroborated 

using addition of inhibitor by modulating the strength of binding. The design rules established here 

provide insight into the rational design of oligomers with triggers that can couple specific 

molecular events to LCs to achieve highly amplified responses. This paves way to develop 

principles based on LCs that permit incorporation of feedback for massive amplification that can 

be leveraged for targeting, sensing and triggering. 
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CHAPTER 1 

INTRODUCTION 

1.1 Supramolecular self-assembly 

The study of amphiphilic molecules has garnered significant attention in the past decade due to its 

implications in biomimetic architectures. Developing an understanding of how molecules, 

materials and complex systems contribute to biological functions is important since the 

interpretation of such mechanisms paves the way to further the development of materials that 

replicate natural functions or impart the observed properties to synthetic materials. 

The supramolecular assemblies arising out of the spontaneous organization of these amphiphilic 

molecules is governed by non-covalent interactions such as hydrogen-bonding, ion-dipole 

interactions, van der waals forces, pi-pi interactions, electrostatic interactions and hydrophobic 

effect1,2. Supramolecular self-assembly is dynamic in nature since the moieties involved are 

bridged through reversible interactions and undergo spontaneous assembly-disassembly process 

in response to environmental cues. Owing to the reversible and dynamic nature of non-covalent 

interactions, supramolecular scaffolds have the inherent ability to respond to their environment 

and makes them unique candidates for supramolecular materials. Also, a favorable hydrophilic-

lipophilic balance (HLB) between the hydrophilic and lipophilic moieties in an amphiphiles is 

understood to be the major driving force that governs the assembly-disassembly of the amphiphilic 

molecules to supramolecular scaffolds3.  
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In this thesis, we focus on the design strategies to structure macromolecular scaffolds by means of 

self-assembly that can be leveraged to introduce stimuli-responsive elements within these 

scaffolds.  

1.2 Stimuli responsive supramolecular systems 

The self-assembly of stimuli-responsive scaffolds based on micelles, liposomes, hydrogels and 

thin films has been of considerable interest in areas such as diagnostics4,5 , sensing6,7, drug 

delivery8,9 and cryptic catalysis10,11. These systems need to be endowed with certain design 

features which influence the self-assembly and the responsiveness of the scaffold when subjected 

to external stimuli which could be physical, chemical or biological in nature.  

 

 
 

 

 

 

 

Figure 1.1 Various intrinsic and extrinsic stimuli 
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Stimuli that can exploited for triggering these responsiveness supramolecular scaffolds are diverse 

but are broadly classified as intrinsic/endogenous and extrinsic/exogenous. Intrinsic stimuli 

represent any physiological or pathological variations that occur in target cells or tissues in the 

body. This includes pH, redox, oxidative stress, enzyme and temperature12. External stimuli 

encompass inducements that are externally applied to biological systems such as temperature, 

ultrasound, light, magnetic and electric field13.  

1.3 Exogeneous stimuli 

Exogenous stimuli confer the advantage of being non-invasive unlike their endogenous 

counterparts that has applications in vivo. In addition, since they are applied from an external 

source they can be maneuvered such that the location and the rate of response can be easily 

adjusted. 

1.3.1 Temperature responsive systems 

Thermo-responsive systems that undergo a temperature dependent solubility change have been 

widely studied and explored. Such systems are designed by incorporating a thermo-responsive 

component with poly(N-isopropylacrylamide) (PNIPAM) and poly ethylene glycol (PEG) being 

the most investigated thermo-responsive moieties14,15,16,17.  

The underlying reason for the observed dispersibility is attributed to their propensity to hydrogen 

bond with water. At elevated temperatures, the hydrogen bonding network is disrupted and their 

solubility in the aqueous phase is affected leading to a phase transition that is commonly referred 

to as Lower Critical Solution Temperature (LCST). This differential hydration of PEG/PNIPAM-

containing amphiphiles leads to a change in the hydrophilic-lipophilic balance (HLB) of the 

amphiphile and affects the overall assembly behavior of these amphiphiles18. It is important to note 

that hydrogen bonding is a dynamic process and that makes these phase transitions reversible and 

reproducible. PEG containing assemblies, in addition to their thermo-responsive behavior also 
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confer the advantage of preventing them from being opsonized when in circulation owing to PEG’s 

stealth properties and this has paved way for it to be used in drug delivery, theranostics and sensing 

applications19. 

Dendrons G1-G3 containing a temperature responsive poly ethylene glycol (PEG) as the 

hydrophilic group and decyl group as the hydrophobic moiety were synthesized. In aqueous 

solution, these dendrons were found to self-assemble to form micelle-type aggregates as revealed 

by dynamic light scattering (DLS) and transmission electron microscopy (TEM)20.  

 

 
 

 

 

 

 Figure 1.2 A) Structures of the Amphiphilic Oligomers Used in This Study B) Plot of HT voltage vs 

temperature for molecules 1–6 in water.21 
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Also, the LCST transition for the PEG-containing dendrons namely G1, G2 and G3 were found to 

be 42, 32 and 31 o C respectively. The dependence of the transition temperature on the generation 

of dendron was indeed surprising given that all the dendrons formed assemblies of nearly the same 

size. We further, studied this using a set of linear oligomeric amphiphiles. It was found that the 

covalent attachment of PEG groups provided cooperativity in temperature sensitivity and this 

manifests in temperature sensitivity as well.21 

 

 
 

 

 

 

 
 

 

 

 

 

Figure 1.3 A) Structures of the Amphiphilic dendrimers Used in This Study B) large change in the 

DH of 1 observed for 25 °C (160 nm) and 10 °C (30 nm) assemblies as revealed by DLS (C) The temperature 

sensitivity of 1 was shown to have an inverse effect on the guest exchange dynamics with exchange at 4 °C 

complete within 10 min and virtually no exchange observed at 37 °C.22 

 

 
Figure 0.1 Figure 1.3 A) Structures of the Amphiphilic dendrimers Used in This Study B) large change in 

the DH of 1 observed for 25 °C (160 nm) and 10 °C (30 nm) assemblies as revealed by DLS (C) The 

temperature sensitivity of 1 was shown to have an inverse effect on the guest exchange dynamics with 

exchange at 4 °C complete within 10 min and virtually no exchange observed at 37 °C.22 
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While most of the LCST transition in literature describes a phase change at elevated temperatures 

wherein the soluble molecules fall out of solution, there have been no investigations on the fate of 

these molecules below LCST. Particularly, we found that the first-generation dendron (G1) 

exhibited another temperature responsive transition at a much lower temperature (17.5 o C, termed 

as sub-LCST) below the LCST wherein the size of these aggregates changed from ~160 nm to ~30 

nm as indicated by DLS. By means of a fluorescence resonance energy transfer based (FRET) 

technique, it was found that the encapsulation stability of the amphiphilic dendrons changed in 

 

 
 

 

 

 

 

 
 

 

 

 

 Figure 1.4 Design of Amphiphilic Diblock Copolymer (BCP) and (a) Photograph showing an aqueous 

solution of BCP; left-at room temperature, right-after heating to 40 °C. (b) Turbidity experiment showing 

the change in HT voltage with temperature of BCP and PNIPAM (P3).16 

 

 
Figure 0.2 Figure 1.4 Design of Amphiphilic Diblock Copolymer (BCP) and (a) Photograph 

showing an aqueous solution of BCP; left-at room temperature, right-after heating to 40 °C. (b) 

Turbidity experiment showing the change in HT voltage with temperature of BCP and PNIPAM 

(P3).16 
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response to temperature and the guest molecules were found to exchange faster at lower 

temperatures than at higher temperatures. This was presumed to be because of the PEG units being 

hydrated better at lower temperatures due to stronger hydrogen bonding with water and would 

result in the decreased residence time of the amphiphile in the aggregate. The hypothesis was 

validated using a pyrene label and we found that the dendrons in the aggregate exchange faster at 

lower temperatures22. The generalization of this sub-LCST in PEG containing amphiphilic 

assemblies is one of the current foci and is being pursued in the Thayumanavan laboratory. 

1.3.2 Photo responsive systems  

Light sensitive systems have continued to be promising owing to their potential to be site-specific 

and non-invasive. Therefore, they are used in applications such as drug delivery, theranostics and 

photodynamic therapy (PDT)23,2425. Our group has reported on amphiphilic dendrons that are 

composed of a hydrophobic PEG group and a hydrophobic alkyl chain that contains a 

photodegradable linker. The nanoassemblies formed by these dendrons encapsulate hydrophobic 

guest molecules and upon UV irradiation, the amphiphilic molecules release the encapsulated dye 

molecules26. 

The change in HLB owing to the cleavage of the ortho-nitrobenzyl group in response to light 

results in the formation of carboxylic acid in the amphiphile and the ortho-nitrosobenzaldehyde 

byproduct. This renders the dendron hydrophilic on both the faces and results in disassembly and 

subsequent release of the guest molecule. Similarly, the light-dependent cross-linking of 

hydrophobic coumarin units was observed to result in the stabilization of micellar aggregates that 

could be used to tune the release of guest molecules27. 
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Recently, our group has investigated a supramolecular nano-machine that is capable of performing 

work in the presence of energy input in the form of light and changes structurally when the energy 

source is removed. It falls back into a thermodynamic minimum and can be manipulated to perform 

work when required. To this end, an azobenzene containing block copolymer was designed and 

the hypothesis was validated by means of extensive MD simulations and mechanistic 

investigations28.  

 

 
 

 

 

 

 
 

 

 

 

 

Figure 1.5 A) Schematic representation of the light-induced disassembly of amphiphilic dendritic assemblies 

B) UV/Vis spectra of the G1 dendron upon irradiation with UV light for different time intervals (0–380 s) 

and plot of the absorbance at 320 nm, which illustrates cleavage of the photolabile ester bond.26 

 

 
Figure 0.3 Figure 1.5 A) Schematic representation of the light-induced disassembly of amphiphilic 

dendritic assemblies B) UV/Vis spectra of the G1 dendron upon irradiation with UV light for different 

time intervals (0–380 s) and plot of the absorbance at 320 nm, which illustrates cleavage of the 

photolabile ester bond.26 
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1.4 Endogenous stimuli 

Endogenous stimuli pertain to an environment that is characteristic of a certain physiological 

condition or a certain pathological state29. These include changes in pH, redox gradient and enzyme 

concentration and are discussed below. 

1.4.1 pH responsive systems 

While the physiological pH in the body is 7.4, tumor microenvironments, gastrointestinal tract and 

the lysosomal, endosomal components of a cell are known to be acidic in nature. These pH 

gradation at the cellular and sub-cellular levels provide for opportunities in drug delivery by means 

of responsive molecular designs. Molecules containing ionizable groups such as amines, 

carboxylic acids serve to be the best candidates for this purpose30. Since the charge is directly 

associated with solubility, variations in pH can be exploited to trigger a charge generation or 

removal that alters the HLB. pH responsive assemblies also regularly employ functional groups 

such as acetals, ketals, hydrazines and imines which alter assembly properties upon cleavage 

owing to a change in HLB31,32. 

Our group has reported a facile method to prepare polymeric nanogels that generate a surface 

charge upon decrease in pH. This was achieved by incorporating a 2-diisopropylamino (DPA) unit 

which undergoes a rapid protonation owing to its pKb which is reminiscent of the extracellular 

environment of solid tumors. These nanogels exhibited enhance uptake in an acidic pH 

environment owing to the surface charge generation33. Such materials are of considerable interest 

in drug delivery. 

In addition to various features that are essential in a nanocarrier, size and surface charge have been 

found to play a crucial role in determining its biological fate. In a study, polymeric nanoparticles 

that respond to small changes in pH have been designed and found to exhibit surface charge and 

size variation features. This was achieved using a pH sensitive interparticle In a study, polymeric 
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nanoparticles that respond to small changes in pH have been designed and found to exhibit surface 

charge and size variation features. This was achieved using a pH sensitive interparticle cross-

linking theorugh a reversible imine bond formation. The conversion of amine to imine brought 

about the concomitant burial of the imine moieties leading to the surface charge to be less positive 

resulting in enhanced cellular uptake at pH 6.5 as compared to 7.434. 

In another study, an amphiphilic homopolymer that can degrade both at the side and the main 

chains was designed and subjecting the nanoassemblies arising out of the homopolymer to a pH 

change causes it to lose its encapsulation properties due to the degradation of the β-thioester side 

chain functionalities35. This is interesting because degradable amphiphiles have attracted a lot of 

attention for their implications in drug delivery and diagnostics. 

The effect of substituents on the pH sensitivity of acetal and ketal-based linkers on their 

degradation kinetics was studied using a structure-activity relationship study. A systematic 

investigation through the structural fine-tuning of the linkers allowed for the kinetics of 

degradation to be varied up to more than six orders of magnitude. The trends observed in the small 

molecules also translate to the encapsulation stability of the guest molecules within these linkers 

when incorporated in polymeric nanogels36. 

Nanoscopic systems comprising of polymers and proteins are being actively pursued for protein 

delivery. A polymeric nanogel has been used to sequester and silence a lysosomal protein, α-

glucosidase that has been implicated in the Pompe disease which can be treated by delivery of a 

recombinant enzyme. 
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The encapsulation turns off the enzyme’s activity but is recovered (~ 75%) upon reducing the pH 

to 5. The recovered activity is attributed to the degradation of β-thiopropionate cross-linker upon 

decrease in pH that leads to swelling of the nanogel and a subsequent release of the enzyme37. 

Such strategies for sequestering protein molecules and releasing them at physiological pH opens 

new avenues for CRISPR-Cas9, siRNA, dsRNA and other biologically relevant proteins. 

1.4.2 Redox responsive systems 

Redox responsive systems leverage the difference in the redox potentials that exist in extracellular 

environment (~2-10 µM Gluthathione(GSH)) vs the intracellular milieu (~2-10 mM Glutathione 

(GSH)). This is especially true for the tumor microenvironment where the concentration of GSH 

is much higher that in normal tissues. Therefore, they are lucrative options for intracellular delivery 

and tumor-directed delivery. This is also a viable system for intracellular gene delivery involving 

a plasmid DNA or siRNA since, they need to be protected from the extracellular components and 

 

 
 

 

 

 

 
 

 

 

 

 

Figure 1.6 Substituent effects upon the hydrolysis of benzylidene acetals. (A)Hydrolysis kinetics and the 

first-order reaction fitting curve, (B) Hammett plot. The hydrolysis was performed under TFA condition. The 

solid lines are the fitting curves.33 
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cross the cell membrane to reach cytosol to achieve better transfection efficiencies. Commonly 

used redox-responsive units are disulfide, diselenide or  

ditellurium bonds38,39,40. 

N-acetyl-L-cysteine (NAC) is an anti-inflammatory drug that needs to be administered in high 

doses and causes many side effects. This was circumvented by conjugating NAC to PAMAM  

Figure 1.7 A) Schematic representation of the formation of a covalent polymer network using the protein 

as the template and its traceless and triggered release in a reducing environment. B) Chemical Structures 

of Polymers and the Reaction Scheme for Protein Conjugation, Crosslinking to Generate the 

Nanoassembly, and Its Release in the Presence of a Reducing Agent. 42 
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dendrimers by means of a disulfide linkage, that can cleave in the presence of GSH to release 

NAC41. Thayumanavan group has reported cross-linked polymeric nanogels synthesized through 

RAFT that comprise of oligoethylene glycol methacrylate (OEGMA) and pyridyl disulfide ethyl 

methacrylate (PDSMA). Their redox-responsive nature was investigated using the addition of 

dithiothreitol (DTT). We have exploited this strategy to shrink-wrap proteins and deliver it into an 

intracellular space in response to a redox stimulus42. 

1.4.3 Protein and enzyme responsive systems   

Pathological imbalances are understood to be brought about by aberrations in protein activity and  

 
 

 

 

 

 

 

 Figure 1.8 A) Schematic Representation of MMP-9-Responsive Nanogels and Resulting Activated 

Cell Uptake and GSH Release and (B) Structural Representation of Polymer Nanogels and Stimuli 

Responsiveness.47 

 

 
Figure 0.1 Figure 1.8 A) Schematic Representation of MMP-9-Responsive Nanogels and 

Resulting Activated Cell Uptake and GSH Release and (B) Structural Representation of 

Polymer Nanogels and Stimuli Responsiveness.47 
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supramolecular scaffolds that can respond to variations in protein concentrations are of great 

significance but relatively underexplored43. In this context, non-covalent interaction-based 

changes in the assembly properties of amphiphiles presents greater opportunities since it 

encompasses a larger number of proteins that are implicated in signal transduction pathways.  

The design strategy for such supramolecular assemblies commonly employs the disruption of HLB 

by influencing the molecular interactions through either a cleavage of a functional group (ester, 

amides) or by means of non-covalent interactions44,45,46. Matrix metalloproteinase (MMP), 

Thermolysin and Chymotrypsin are few examples of enzymes prompting extracellular drug release 

 
 

 
 

 

 

 

 
 

Figure 1.9 A) Binding‐induced disassembly with lipophilic ligand containing dendrons. B) a) Sizes of 

G1–DNP (◊) and G2–DNP (▪) dendrons; b) size changes in G1–DNP and G2–DNP dendron based 

amphiphilic assemblies due to the presence of anti‐DNP IgG; ⧫, G1–DNP; □, G2–DNP; ▴, G151 

 

 
Figure 0.2 Figure 1.9 A) Binding‐induced disassembly with lipophilic ligand containing dendrons. 

B) a) Sizes of G1–DNP (◊) and G2–DNP (▪) dendrons; b) size changes in G1–DNP and G2–DNP 

dendron based amphiphilic assemblies due to the presence of anti‐DNP IgG; ⧫, G1–DNP; □, G2–

DNP; ▴, G151 
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when conjugated to supramolecular assemblies47,48,49,50. In our group, we have incorporated 

enzyme-cleavable functional group into the hydrophobic part of a facially amphiphilic dendrimer. 

We hypothesized that the conversion of the hydrophobic group to hydrophilic upon enzymatic 

cleavage would cause a disassembly owing to the disruption of HLB51. Indeed, we have shown 

that this disassembly is accompanied by a release of guest molecule. In addition, we partially cross-

linked these amphiphilic assemblies and monitored the enzymatic cleavage using the release of a 

covalently conjugated fluorophore, 4-methyl umbelliferone (MUF). A clear correlation between 

the kinetics of the enzymatic reaction and that of the guest molecule release was revealed by 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.10 A) Schematic representation of protein AND enzyme gated supramolecular disassembly. B) 

Disassembly of 1 (13 μM) in the presence of anti-DNP IgG (1 μM) and PLE (50 nM): Size change after 8 

h, monitored by DLS.52 

 

 
Figure 0.3 Figure 1.10 A) Schematic representation of protein AND enzyme gated supramolecular 

disassembly. B) Disassembly of 1 (13 μM) in the presence of anti-DNP IgG (1 μM) and PLE (50 nM): 

Size change after 8 h, monitored by DLS.52 
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concurrently monitoring the fluorescence of MUF and that of a non-covalently encapsulated 

fluorophore27. 

In yet another approach, we synthesized dendrons that contain a single biotin ligand at the focal 

point on its hydrophilic face to study an approach called binding-induced disassembly (BID). 

Studies revealed that an amphiphilic dendron had a very different HLB compared to the dendron-

protein complex which resulted in the binding-induced disassembly and concomitant release of a 

non-covalent guest molecule52,53. We were next, interested in determining whether the placement 

of a hydrophobic ligand that is likely to be buried in the pockets of the micellar aggregate would 

still be available for BID. To test this, we placed the ligand on the hydrophobic part and were able 

to show that BID did exist and was attributed to the equilibrium between the unimeric and the 

aggregated states of the amphiphilic dendrimer assembly54. These results were also validated using 

other oligomeric amphiphiles as well as polymeric systems55,56,57. The design principle was 

extended to a ‘AND’ logic gate-based system that responded to the simultaneous presence of two 

proteins58,593.   

1.5 Summary and thesis overview 

 

In this chapter, an introduction to responsive systems that are built on the fundamentals of 

supramolecular self-assembly were discussed. The self-assembly of stimuli-responsive scaffolds 

based on micelles, liposomes, hydrogels and thin films has been of considerable interest in areas 

such as diagnostics, sensing, drug delivery and cryptic catalysis60,61,62. Developing an 

understanding of how molecules, materials and complex systems contribute to biological functions 

is important since the interpretation of such mechanisms paves the way to further the development 

of materials that replicate natural functions or impart the observed properties to synthetic materials. 

In stimuli responsive applications, the dynamic nature of non-covalent interactions can be utilized 
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to disrupt self-assembly to achieve a response in the presence of a specific stimulus63,64,65,66. The 

origin, significance of each stimulus, the molecular design parameters and a few reported examples 

were explained. 

These systems need to be endowed with certain design features which influence the self-assembly 

and the responsiveness of the scaffold when subjected to external stimuli which could be physical, 

chemical or biological in nature67,68,69,70. This kind of insight is still lacking in our understanding 

of how these systems respond to various stimuli. In this thesis, our objective is to establish 

structure-property relationships between the influence of structural design and the target material 

properties. Of interest to us are pH, temperature (chemical) and enzyme/proteins (biological) as 

stimuli and we have performed experiments to validate the responsive features of these systems.  

In Chapter 2, we have established the design principles for oligomeric peptides to exhibit a unique 

size transition well below the LCST. We have found that incorporation of aromatic hydrophobic 

groups diminishes the thermo-sensitivity of the peptide nanoassemblies. The size transition is 

brought about by a loss of secondary structures at low temperatures and the temperature-dependent 

aggregation properties also gave rise to disparity in terms of guest encapsulation ability upon 

changing temperature. Since these molecules are designed to incorporate FDA approved 

components and the assembly is biodegradable, this system has interesting applications in the food 

industry and in cryptic catalysis. 

In Chapter 3, we have established structure-property relationships pertaining to the release of an 

artificial sweetener, aspartame from microgels and bulk hydrogels of aspartame encapsulated 

calcium cross linked alginate gels. We have, in particular, studied the different parameters that 

dictate the gel architecture and hence, the morphology and the structure of the gels. We have 

validated the effect of cross link densities and sizes on the release kinetics of the microgel spheres 
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and bulk hydrogels. The release data was fitted to kinetic models available from literature to 

elucidate the pathway constraints dictated the release pathway.  

In Chapter 4, structure-property relationships were developed using libraries of polymeric and 

oligomer amphiphiles to make possible rational design of triggers for amplification via LC 

response. To this end, we synthesized a wide range of stimuli-responsive amphiphilic oligomers 

that responded to a protein, carbonic anhydrase (CA II). Dimer was the only amphiphilic oligomer 

that was found to adsorb at the aqueous-LC interface to trigger a homeotropic anchoring transition. 

Moreover, CA II was found to bind to sulfonamide on the interface stronger than BSA resulting in 

the blocking of non-specific binding of bovine serum albumin (BSA) on aqueous-LC interface. 

This mechanism was corroborated using addition of inhibitor which enhanced the release of CA 

II from aqueous-LC interface by modulating the strength of binding. The design rules established 

here provide insight into the rational design of oligomers with triggers that can couple specific 

molecular events to LCs to achieve highly amplified responses. This paves way to develop 

principles based on LCs that permit incorporation of feedback for massive amplification that can 

be leveraged for targeting and triggering. 
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CHAPTER 2 

ROLE OF AROMATICITY IN DETERMINING NANOSCALE 

THERMO-RESPONSIVE BEHAVIOR OF AMPHIPHILIC PEPTIDES 

 

2.1 Background and significance 

Supramolecular assemblies that exhibit excellent biocompatibility and possess dynamic stimuli-

responsive properties present themselves as smart biomaterials1,2. The designs for such systems 

are derived from nature and have important implications in the field of bioimaging, theranostics, 

drug delivery and tissue engineering3,4. Stimuli-responsive polymers emulate biological systems 

wherein an external stimulus results in an observable macroscopic change5,6,7. This includes a 

change in conformation, change in solubility, alteration of the hydrophilic/hydrophobic balance or 

release of a guest molecule8,9,.  Temperature responsive polymers exhibit a volume phase transition 

at a certain temperature and this result of change in their hydration state10,11,12. Polymers that 

become insoluble upon heating are known to exhibit Lower Critical Solution Temperature 

(LCST)13,14,15,16 and those which become soluble upon heating are known to exhibit Upper Critical 

Solution Temperature (UCST)17,18,19. This macroscopic response of the polymer is a result of 

several cooperative interactions that manifests as a large structural change and reflects the nature 

of hydrogen bonding in the polymer in contrast to their solubilization by water20,21,22. This is an 

outcome of an intricate balance between the entropic and enthalpic effects. While entropic effects 

are ascribed to the dissolution process and the ordering of water molecules near the polymer, 

enthalpic effects arise due to a combination of intramolecular and intermolecular forces and due 

to solvation (Hydrogen bonding and hydrophobic interactions)23. The transition temperature is 

strongly dependent on factors such as solvent quality, salt concentration, and molecular weight 
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and concentration24,5. While their self-assembly is determined by a delicate balance of several non-

covalent forces such as hydrogen bonding and hydrophobic interactions, it is possible to integrate 

parameters that evoke a response upon introduction of a stimulus.  

2.1.1 Thermo and inverse thermo responsive supramolecular assemblies 

Oligo and Poly ethylene glycol based hydrophilic functional groups are renowned for exhibiting 

LCST behavior25,16. In our group, we were interested in determining the factors that account for 

the temperature sensitivity of PEG groups and embarked in a study to investigate the 

thermosensitive properties of oligo ethylene based supramolecular assemblies below the LCST. A 

sub-LCST was observed well below the LCST of oligo ethylene glycol based dendrons which was 

accompanied by a change in size of these supramolecular assemblies26. It was interesting to note 

that the host-guest properties were significantly altered at low temperature that affected the guest 

encapsulation stability indicating that the assemblies became a lot more dynamic at low 

temperatures. 

However, the mere presence of PEG groups could not endow these molecules with 

temperature sensitive properties. Therefore, we were inquisitive to investigate the effect of the 

shape of the amphiphiles on their assembly properties and their concurrent temperature-sensitive 

behavior. Design and synthesis of a set of trimeric amphiphiles which differed only in the nature 

of the amide backbone revealed that intra-molecular hydrogen bonding could bestow the 

amphiphiles with conformational rigidity and the size transition so observed correlated with the 

guest encapsulation properties at lower temperatures. The hypothesis was validated using a linear 

trimeric amphiphiles that had conformational rigidity due to the covalently bound backbone. It has 

been discovered of late that trimeric amphiphilic assemblies containing OEG units are also capable 

of exhibiting a morphological transition commonly referred to as sub-LCST, which occurs at 

temperatures well below the LCST. Rigidity of the backbone was found to be imperative for these 
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trimeric amphiphiles to exhibit a sub-LCST behavior which was understood to be brought about 

by intramolecular hydrogen-bonding27. However, most of these systems are neither biocompatible 

nor biodegradable which undermines its use in a lot of biological applications. Therefore, there is 

a growing interest to turn to materials that offer competitive advantages in terms of 

biocompatibility. 

2.1.2 Amphiphilic peptides 

Amphiphilic peptides are an interesting class of supramolecular materials that can undergo 

spontaneous conformational transitions in response to environmental cues such as pH, redox, ion 

concentration and temperature28,29,30,31. Peptides containing amide bonds can self-assemble 

through supramolecular interactions such as H-bonding, π-stacking and hydrophobic 

interactions32,33,34,35 and are biocompatible and biodegradable36,37,38. The design of peptide-based 

self-assembled materials relies on secondary structures such as α-helices and β-sheets14,39,32,40,41 . 

Transitions from one conformation to another can be brought about by change of temperature 

through reorganization of hydrogen bonds42,43. Therefore, they can also show LCST behavior since 

these changes the hydrophilic-lipophilic balance (HLB) leading to a conformational transition and 

an eventual spatial redistribution of hydrophobic and hydrophilic residues. Imparting thermo-

sensitivity to these materials is of considerable interest and peptides modified with oligo ethylene 

glycol (OEG) based functional groups have been explored quite heavily in the recent past owing 

to their lower critical solution temperature (LCST) behavior44,45,46. 

Elastin-like polypeptides (ELP) are a class of biopolymers that are made up of a pentameric 

repeat unit (Val-Pro-Gly-X-Gly) where X is any guest residue except proline47,48,49. ELPs are 

known to undergo a reversible phase transition in aqueous solutions (Tt) depending on the nature 

of the guest residue48,15,50. While hydrophobic amino acids lower the transition temperature (Tt), 

polar/charged amino acids raise Tt51. The LCST is understood by model proposed by Urry 
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wherein, the free ELP chains remain in a disordered random coil and are fully hydrated below the 

transition temperature (Tt). Above Tt, the chains fold due to the hydrophobic effect and adopt a β-

spiral structure17,52. Similarly, Poly-(L-Lysine) displayed a thermal helix-sheet transition between 

20 oC and 40 oC depending on the molecular weight. Below transition temperature, α-helix was 

found to be the predominant structure and a progressive organization into anti-parallel β-sheets 

was observed above Tt
53,54. However, the design of these strategies involves the use of recombinant 

DNA technology. 

While most of the temperature sensitivity is understood to arise only from OEG units, no 

investigations have been done to ascertain the role of hydrophobic units in the aggregation 

properties of peptide nanoassemblies at temperatures below the LCST of OEG units. These 

observations constitute as the preliminary findings of this communication (Scheme 1). 

2.1.3 Design Objectives  

To this end, we synthesized a trimeric peptide AMD-ALIP from lysine and aspartic acid which 

was rendered amphiphilic owing to the choice of tetraethylene glycol (hydrophilic unit) and a 

hydrophobic hexyl unit. The peptide was designed in a way such that the individual components 

of the assembly were biodegradable and the by-products that were formed were also non-toxic i.e. 

GRAS. GRAS (Generally Recognized as Safe) molecules are recognized by the U.S. Food and 

Drug Administration (FDA) to be used as food additives or as medical devices55. The synthetic 

strategy adapted here makes it amenable for various hydrophobic units to be grafted on to the 

amphiphilic peptide in a facile manner. In addition, we also synthesized molecule AMD-AROM 

which differed from AMD-ALIP only in the choice of an aromatic hydrophobic unit (Scheme 2 

and 3). We envisioned that this difference would help us understand the influence of 

hydrophobicity versus aromaticity in dictating the aggregation properties as a function of 

temperature for these peptide nanoassemblies.  



 

32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Scheme 2.1: Structures of different oligomeric peptide amphiphiles used in this study 

 

 
Scheme 1 Scheme 2.2: Structures of different oligomeric peptide amphiphiles used in this study 
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2.2 Materials and methods 

All chemicals and reagents were purchased from commercial sources and were used as received, 

unless mentioned otherwise. 1H NMR spectra were recorded on 400 MHz NMR spectrometer 

using the residual proton resonance of the solvent as the internal standard. Chemical shifts are 

reported in parts per million (ppm). When peak multiplicities are given the following abbreviations 

are used: s, singlet; d, doublet; t, triplet; m, multiplet. 

• Synthesis of 2: 3 g (0.0084 mol) of N-alpha, N-epsilon-Bis(tert-butoxycarbonyl)-L-lysine was 

dissolved in anhydrous dichloromethane in a round bottom flask and cooled to 0 oC under inert 

atmosphere. To this solution, (3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride 

(1.93 g, 0.01 mol), hydroxybenzotriazole (1.35g, 0.01 mol) and 4-dimethylamino pyridine 

(0.205 g, 0.00168 mol) were added and the solution was left to stir for 30 minutes. Benzyl 

alcohol (0.79 mL, 0.0076 mol) was added dropwise to the stirring solution and the reaction 

was further left to stir overnite. The reaction mixture was concentrated in vacuo, extracted 

using dichloromethane and water, followed by washing with 1N hydrochloric acid. The 

 
 

 

 

 

Scheme 2.2: Synthesis of amphiphilic aspartic acid from L-Aspartic acid β-benzyl ester and 3 from N 

alpha,N epsilon-Bis(tert-butoxycarbonyl)-L-lysine 

 

 
Scheme 3 Scheme 2.3: Synthesis of amphiphilic aspartic acid from L-Aspartic acid β-benzyl ester 

and 3 from N alpha,N epsilon-Bis(tert-butoxycarbonyl)-L-lysine 

 

http://www.tcichemicals.com/eshop/en/us/commodity/B2178/
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combined extracts were dried over anhydrous Na2SO4 and the crude product was purified by 

silica gel chromatography using hexane and ethyl acetate as eluents to afford 2 in 80 % yield. 

1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 7.35(m, 5H), 5.05-5.3 (m,3H), 4.5(broad s, 1H), 

4.25 (broad s, 1H), 3.0 (broad d, 2 H), 1.55-1.8(m, 2H),1.49(s, 18H),1.25(m,2H) (M+Na+) from 

ESI spectroscopy: 459.26 

• Synthesis of 3: To a solution of 2 in anhydrous dichloromethane in a round bottom flask, 

trifluoroacetic acid (1:1 vol% DCM: TFA) was added and the reaction was left to stir for 4 

hours. The reaction mixture was concentrated in vacuo followed by pouring into ice cold 

diethyl ether. The product was isolated as a precipitate and washed with diethyl ether twice to 

afford a white dry product 3 in quantitative yield and used as it is. 1H NMR (Acetone-d6, 400 

MHz, TMS): δ (ppm) = 7.35(m, 5H), 5.25(m, 2H), 4.3(m, 1H), 3.7(m,1H), 3.1(t, 1 H), 2.5 (m, 

2H), 1.6 (m, 2H), 1.7(m,2H) (M+Na+) from ESI spectroscopy: 489.13 

• Synthesis of 4: 5 g (0.0223 mol) of L-Aspartic acid β-benzyl ester was dissolved in anhydrous 

methanol in a round bottom flask and cooled to 0 oC under inert atmosphere. To this solution, 

triethylamine (4 mL, 0.025 mol) and di-tert-butyl-dicarbonate (5.38 g, 0.025 mol) were added 

and the solution was left to stir overnite. The reaction mixture was concentrated in vacuo, 

extracted using ethyl acetate and water, followed by washing with saturated NaHCO3. The 

combined extracts were dried over anhydrous Na2SO4 to afford 4 in 90% yield and was used 

as it is. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 7.35(m, 5H), 5.5(broad d, 1H), 5.1(d,2H), 

4.5(broad m, 1H), 3.1(broad m, 1H), 2.9(dd, 1H), 1.5(s,9H) (M+Na+) from ESI spectroscopy: 

346.14   

• Synthesis of 5: 1.55 g (0.0048 mol) of 4 was dissolved in anhydrous dichloromethane in a 

round bottom flask and cooled to 0 oC under inert atmosphere. To this solution, (3-

http://www.sigmaaldrich.com/catalog/product/sigma/g8653?lang=en&region=US
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dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (1.104 g, 0.0057 mol), 

hydroxybenzotriazole (0.78 g, 0.00576 mol) and 4-dimethylamino pyridine (0.12 g, 0.00096 

mol) were added and the solution was left to stir for 30 minutes. Tetraethylene glycol amine 

monomethyl ether (1 g, 0.0048 mol) was added dropwise to the stirring solution and the 

reaction was further left to stir overnite. The reaction mixture was concentrated in vacuo, 

extracted using dichloromethane and water, followed by washing with 1N hydrochloric acid. 

The combined extracts were dried over anhydrous Na2SO4 and the crude product was purified 

by silica gel chromatography using hexane and ethyl acetate as eluents to afford 5 in 67 % 

yield. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 7.35(m, 5H), 6.8(broad peak, 1H), 

5.6(broad d, 1H), 5.1(d, 2H), 4.5(broad peak, 1H), 3.49-3.65(m, 13H), 3.4(m, 2H), 3.3(s, 3H), 

3.0(broad m, 1H), 2.7(broad dd, 1H), 1.5(s,9H)   (M+Na+) from ESI spectroscopy:  535.27  

• Synthesis of 6: Compound 5 (1 g) was dissolved in anhydrous methanol and Pd/C (100mg) 

was added to the reaction mixture. This was left on a Parr apparatus under hydrogen at 45 psi 

for 12 hours. The reaction mixture was filtered over celite and the solvent was evaporated to 

afford an oily viscous liquid 6 in quantitative yield and used as it is. 1H NMR (CD2Cl2, 400 

MHz, TMS): 6.8(broad peak, 1H), 6.0(broad d, 1H), 4.5(broad peak, 1H), 3.49-3.65(m, 13H), 

3.4(m, 2H), 3.3(s, 3H), 3.0(broad m, 1H), 2.7(broad dd, 1H), 1.5(s,9H) (M+Na+) from ESI 

spectroscopy: 445.23   

• Synthesis of 7: 6(1 g, 0.00246 mol) and N-hydroxy succinimide(0.34 g, 0.0030 mol) were 

dissolved in anhydrous dichloromethane in a round bottom flask and cooled to 0 oC under inert 

atmosphere. To this, (3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (0.7 g, 

0.00369 mol) was added and the reaction was further left to stir overnite. The reaction mixture 

was extracted using dichloromethane and water and further, washed with saturated NaHCO3, 
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saturated NaCl, dried over anhydrous Na2SO4 and concentrated to afford 7 in 72% yield. 1H 

NMR (CDCl3, 400 MHz, TMS): 6.8(broad peak, 1H), 5.6(broad d, 1H), 4.5(broad peak, 1H), 

3.49-3.65(m, 13H), 3.4(m, 2H), 3.3(s, 3H), 3.0(broad m, 1H), 2.85(s, 4H), 2.7(broad dd, 1H), 

1.5(s,9H) (M+Na+) from ESI spectroscopy: 542.24   

• Synthesis of 8: 3(0.308 g, 0.00130 mol) and 7(1.309 g, 0.00260 mol) were dissolved in dry 

tetrahydrofuran in a round bottom flask under inert atmosphere. To this, triethylamine (0.72 

mL, 0.0052 mol) was added and was refluxed overnite under inert atmosphere. The reaction 

mixture was extracted using ethyl acetate and water. The organic layers were further washed 

with 1 N HCl and saturated NaHCO3. The crude product was purified by silica gel 

chromatography using dichloromethane and methanol as eluents to afford 8 in 72 % yields. 1H 

NMR was attempted by dissolving the compound in various solvents. However, it was found 

to be sparingly soluble. 1H NMR in acetone denotes all the characteristic peaks for the product 

but the integration does not come out as expected owing to low solubility of the compound. 

(M+Na+) from ESI spectroscopy: 1067.50  
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• Synthesis of 12(AMD-AROM) and 13(AMD-ALIP): To a solution of 8 in anhydrous 

dichloromethane in a round bottom flask, trifluoroacetic acid (1:1 vol% DCM: TFA) was 

added and the reaction was left to stir for 4 hours. The reaction mixture was concentrated in 

vacuo to afford 9.9(0.103g, 0.000105 mol) and 10(0.046 g, 0.000211 mol) or 11 (0.043 g, 

0.000205 mol) were dissolved in anhydrous tetrahydrofuran along with triethylamine (50 µL, 

0.00041 mol) and the reaction mixture was refluxed under inert atmosphere overnite. The 

reaction mixture was extracted using ethyl acetate and water. The organic layers were further 

washed with 1 N HCl  

and saturated NaHCO3. The crude product was purified by silica gel chromatography using 

dichloromethane and methanol as eluents to afford 12 and 13 in 58% and 62 % yield respectively. 

12(M+Na+) from ESI spectroscopy: 1063.62, purity from HPLC  and 13(M+Na+) from ESI 

spectroscopy: 1075.53, purity from HPLC 

• Temperature dependent Dynamic light scattering study (DLS): The stock solutions of 

AMD-ALIP (1.23 mM), AMD-AROM (1.86 mM) respectively, were made by a standard 

 
 
 

 

 

 
 
 

 

Scheme 2.3: Synthesis of amphiphilic peptides AMD-AROM (13) and AMD-ALIP (12) 
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method of dispersing the weighed compound in required amount of HPLC grade water in a 

scintillation vial with a stir bar followed by sonication and vortex for 5 minutes. DLS was 

performed on a Malvern nano-zeta sizer instrument with a 637 nm laser with non-invasive 

backscattering technology detected at 173˚.All sizes are reported as the hydrodynamic 

diameter (DH) and were repeated in triplicate. Variable temperature DLS experiments were 

performed by equilibrating the aqueous solutions for 5 minutes at the respective temperature 

before the size measurements.  

• Temperature dependent Transmission electron microscopy (TEM) study: For TEM 

studies, concentrations same as that for DLS measurements were used. Briefly, one drop 

(10µL) of each sample was drop casted on carbon coated Cu grid and allowed to dry for 24 

hours (at ambient temperature) before imaging them. For the size measurement at low 

temperature, the same sample was incubated at 5˚C following which it was drop casted and 

allowed to dry before imaging. TEM images were recorded on a JEOL-2000FX machine 

operating at an accelerating voltage of 100 kV. 

• Temperature dependent Circular Dichroism (CD) studies: CD spectra of the peptide nano 

assemblies were recorded on JASCO J-1500 spectrophotometer. In a typical experiment, 200 

µL of the peptide amphiphiles solution (concentrations same as that in DLS and TEM 

measurements) was injected into a quartz cuvette of 1-mm path length, equilibrated at 25 ºC 

and 5 ºC for 5 min and scanned from 180 to 250 nm (scan rate: 20 nm/min, interval: 0.2 nm, 

average of three spectra). 

• Fluorescence study to determine temperature, pH and salt dependent guest release: The 

stock solutions of AMD-ALIP (1.23 mM) and AMD-AROM (1.86 mM) respectively, were 

made by a standard method of dispersing the weighed compound in required amount of HPLC 
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grade water and diluted with pH 3 phosphate-citrate buffer (500mM) just before the 

measurement in a scintillation vial with a stir bar. 100 µL of DiI stock (1mM in acetone) was 

then added to the vial in a dropwise manner. The contents were sonicated for 5 minutes and 

vortexed for 2 minutes, following which they were left to stir for 8 hours at room temperature 

uncapped to facilitate the evaporation of acetone. The excess insoluble DiI was removed by 

filtration using a membrane with a pore size of 0.450µm. The solution was then transferred to 

a cuvette and emission spectrum was recorded at specified time intervals at 25 ºC and 5 ºC. 

Concomitant DLS size measurements were also performed to corroborate the guest release. 

• pH dependent DLS: The peptide nanoassemblies were incubated in 1N HCl (1 mL) for 30 

minutes following which the DLS was recorded at 25 ºC and 5 ºC.  

• pH dependent CD and degradation studies: The peptide nanoassemblies were incubated in 

1N HCl (1 mL) for 30 minutes following which the CD spectra was recorded at 25 ºC and 5 

ºC. For the degradation studies, samples were prepared in the above-mentioned way and then 

lyophilized. The samples were dissolved in water and methanol mixture and the degradation 

products were studied using ESI mass spectroscopy.  

• Salt dependent DLS and CD studies: The peptide nanoassemblies were incubated with 

kosmotropic salt (Sodium sulfate was made as a 2M stock in HPLC grade water) and 

chaotropic salts (Sodium thiocyanate and Urea was made as a 2M stock in HPLC grade water) 

and diluted with the peptide assemblies such that their concentration in the final solution was 

1M. The solutions were left to sit for 15 minutes before performing DLS and CD 

measurements.  The solutions were found to become turbid in about 30 minutes after adding 

the respective salts. 
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2.3 Results and discussion 

2.3.1 Characterization of self-assembly of peptides 

 

To study the aggregation properties of AMD-ALIP and AMD-AROM, the peptides were dispersed 

in water at different concentrations and the critical aggregation concentrations (CAC) were 

calculated using DiI, a hydrophobic dye as a spectroscopic probe11. The stock solutions of AMD-

ALIP (1.23 mM), AMD-AROM (1mM) respectively, were made by a standard method of 

dispersing the weighed compound in required amount of HPLC grade water in a scintillation vial 

with a stir bar followed by sonication and vortex for 5 minutes. 

The contents were sonicated for 5 minutes and vortexed for 2 minutes, following which they were 

left to stir for 8 hours at room temperature uncapped to facilitate the evaporation of acetone. The 

excess insoluble DiI was removed by filtration using a membrane with a pore size of 0.450µm. 

The intensity at the maxima (584 nm for AMD-AROM and 569 nm for AMD- 

 

 

 
 

 

 
Figure 2.0.2: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 2.0.3: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 2.0.4: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 2.0.5: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 2.0.6: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 2.0.7: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 2.0.8: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 2.0.9: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

Figure 2.1: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 

 

 
Figure 0.1 Figure 2.1: Critical aggregation concentrations of peptides a) AMD-ALIP and b) AMD-AROM 
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ALIP) were plotted as a function of concentration of the peptide amphiphiles and the inflexion 

point was noted to be the critical aggregation concentration or CAC (Figure 1).  

 

2.3.2 Temperature dependent aggregation and circular dichroism 

We, then, investigated the size of these assemblies (AMD-ALIP and AMD-AROM) at different 

temperatures above the CAC using dynamic light scattering (DLS). Both molecules were found to 

self-assemble into aggregates ̴ 58 nm and ̴ 70 nm in size at 25 ºC. When the temperature was 

decreased, we found the peptide nanoassembly formed by molecule AMD-ALIP to have a sudden 

size transition at 5 ºC with the assemblies now having a size of 15 nm.   

Interestingly, nanoassemblies formed by molecule AMD-AROM did not exhibit this kind of a 

sharp transition and their size changed from about 68 nm at 25 ºC to 60 nm at 5 ºC which was a  

 
 

 

 

 

 

 
Figure 2.0.30: Temperature-dependent size variation observed using dynamic light scattering 

(DLS) of a) AMD-ALIP and d) AMD-AROM. Corresponding TEM images of b) AMD-ALIP and 

Figure 2.2: Temperature-dependent size variation observed using dynamic light scattering (DLS) of a) 

AMD-ALIP and d) AMD-AROM reveals a temperature dependent size transition at 5 oC in case of AMD-

ALIP assemblies. Corresponding TEM images of b) AMD-ALIP and e) AMD-AROM at 25 ºC and c) 

AMD-ALIP and f) AMD-AROM at 5 ºC indicates spherical assemblies 

 

 
 

Figure 0.58 Figure 2.2: Temperature-dependent size variation observed using dynamic light scattering 

(DLS) of a) AMD-ALIP and d) AMD-AROM. Corresponding TEM images of b) AMD-ALIP and e) 

AMD-AROM at 25 ºC and c) AMD-ALIP and f) AMD-AROM at 5 ºC indicates spherical assemblies 
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rather small change compared to molecule AMD-ALIP (Figure 2). It must be noted here that the 

molecules AMD-ALIP and AMD-AROM were structurally very similar and the only contrast was 

with respect to their hydrophobic units. We reasoned that this observation could arise out of the 

change in the hydrodynamic radius of these assemblies at lower temperatures. This arises from the 

fact that peptide amphiphiles are known to exhibit polymorphism56,. So, we subjected these peptide 

nanoassemblies to examination using Transmission Electron Microscopy (TEM) and found that 

the assemblies exist as spherical non-hollow aggregates and sizes corroborate with that obtained 

from DLS (Figure 2b-f). 

Intrigued by this observation, we hypothesized that this could arise due to the nature of secondary 

structures that were formed by molecules AMD-ALIP and AMD-AROM at 25 ºC and 5 ºC that 

gave rise to different hydrodynamic volumes that manifested in their different sizes as observed 

by light scattering. The hypothesis arises from the fact that the self-assembly of peptides is known 

to depend heavily on temperature and peptides are known to undergo irreversible changes in the 

assembly characteristics upon heating or cooling to extreme temperatures accompanied by a 

concomitant loss in activity57,58,59. To test this hypothesis, we utilized circular dichroism wherein 

 
 

 

 

 

 
Figure 2.0.1:Temperature dependent circular dichroism (CD) for a) AMD-ALIP indicates 

formation of β-sheets with significant reduction of intensity at 5 ºC while b) AMD-AROM exhibits 

a signature α-helix conformation with the same intensity at 25 ºC and 5 ºC. 

 

 

 

Figure 2.3: Temperature dependent circular dichroism (CD) for a) AMD-ALIP indicates formation of β-

sheet like structures with significant reduction of intensity at 5 ºC while b) AMD-AROM exhibits a signature 

α-helix like conformation with the same intensity at 25 ºC and 5 ºC. 
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we characterized solutions of molecules AMD-ALIP and AMD-AROM at 25 ºC. While assemblies 

formed by molecule AMD-ALIP exhibited a typical β-sheet secondary structure60,61,62,63,64 

organization, the assemblies arising from molecule AMD-AROM was found to exist as α-

helix63,65,66,67,68 (Figure 3). We, further, investigated the evolution of secondary structures at 5 ºC.  

Interestingly, the intensity of β-sheet organization was found to decrease substantially at 5 ºC for 

amphiphilic assemblies of molecule AMD-ALIP alluding to the role of the hydrophobic units in 

the molecular organization of the peptide nanoassemblies since hydrophobic interactions are 

known to be stronger at higher temperature23,69,70,57
. On the other hand, the intensity of the 

secondary structure i.e. α-helix for assemblies of molecule AMD-AROM at 5 ºC was found to be 

the same as that at 25 ºC alluding to the role of the aromatic group in imparting rigidity to the 

assemblies making them less sensitive to temperature changes71,63,72. Aromatic interactions have 

indeed, been reported to diminish temperature responsive behavior of dendrimer-based 

amphiphilic assemblies73.  

 

2.3.3 Role of hydrophobic unit in thermo responsive behavior 

To allow for a direct correlation between the influence of aromatic hydrophobic groups and 

temperature sensitivity, solutions of AMD-ALIP and AMD-AROM were mixed to see if there is 

a sharp transition upon gradual introduction of the temperature-insensitive AMD-AROM peptide 

into the AMD-ALIP solution. 

The temperature of a single mixed micelle solution was decreased from 25 oC to 5 oC in 5 oC 

intervals. The AMD-ALIP and AMD-AROM solutions were allowed to equilibrate at each 

temperature and the presence or absence of a temperature-dependent size transition was observed 

by DLS.  
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As observed before, the AMD-ALIP peptide nanoassemblies showed a size transition at 5 oC which 

was absent in case of AMD-AROM. Upon addition of AMD-AROM peptide nanoassemblies into 

a solution of AMD-ALIP peptide nanoassemblies (1:1 volume:volume ratio), we observed 

aggregates of sizes ~140 nm from DLS which was understood to arise from the mixed assemblies 

formed from AMD-ALIP and AMD-AROM. Further, upon decreasing the temperature of the 

solution, a gradual decrease in size was observed with the assemblies now, exhibiting a size of ~80 

nm at 5 oC. This indeed, reveals that the introduction of a temperature-sensitive AMD-ALIP 

assemblies into the temperature-insensitive AMD-AROM assemblies results in a temperature-

sensitive size transition. This suggests that incorporation of aromatic hydrophobic units in a 

peptide diminishes the temperature sensitivity of the nanoassemblies 

 

 
 

Figure 2.4: Variable temperature DLS of AMD-AROM and AMD-ALIP where AMD-AROM: 

AMD-ALIP is 1:1 reveals that incorporation of a peptide containing an aliphatic hydrophobic 

group(AMD-ALIP) results in a size transition of an aromatic group containing peptide 

nanoassembly. 
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2.3.4 Reversibility of size transition 

It is also interesting to note that the size transition observed for molecules AMD-ALIP and AMD-

AROM are sharp yet irreversible over repeated heating and cooling cycles (Figure 4). 

Concomitantly, circular dichroism studies for the molecules suggest that the extent of secondary 

structure formation reaches a minimum at 5 ºC and does not revert to its original intensity even 

after several cycles of heating and cooling (Figure 4). These studies indeed, reveal that the peptide 

nanoassemblies are ‘kinetically trapped’ at 25 ºC indicating the possibility of transition between 

the kinetic traps and thermodynamic states under appropriate external stimuli74,75,76.   

 
 

 

 

 

 

 

 

 

 

Figure 2.5: DLS sizes for a) AMD-ALIP and b) AMD-AROM indicate that the size transition is irreversible 

over several heating and cooling cycles and that the peptide nanoassemblies are ‘kinetically trapped’ at 25 ºC 
. 
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Kinetics affects the mode of molecular packing; such that different pathways lead to different 

morphologies and function.  

2.3.5 Hydrophobic guest encapsulation and release 

The stock solutions of AMD-ALIP (1.23 mM), AMD-AROM (1.86 mM) respectively, were made 

by a standard method of dispersing the weighed compound in required amount of HPLC grade 

water in a scintillation vial with a stir bar. 40 µL of DiI stock (1mM in acetone) was then added to 

the vial in a dropwise manner. The contents were sonicated for 5 minutes and vortexed for 2 

minutes, following which they were left to stir for 8 hours at room temperature uncapped to 

facilitate the evaporation of acetone. 

The excess insoluble DiI was removed by filtration using a membrane with a pore size of 0.450µm. 

The emission wavelength of pristine DiI in water and that of DiI encapsulated in the amphiphilic 

peptide assemblies is shown in Figure 5. Finally, we were interested in investigating the 

implications of the temperature dependent aggregation properties of the peptide nanoassemblies 

in their encapsulation stabilities the implications of the temperature dependent aggregation 

properties of the peptide nanoassemblies in their encapsulation stabilities 

 
 

 

 

 

 

 

 

 
Figure 2.6: Fluorescence spectra of DiI encapsulated in peptide nanoassemblies against pristine DiI 

Figure 2.6: Fluorescence spectra of DiI encapsulated in peptide nanoassemblies against pristine DiI 

in water for AMD-ALIP(a), AMD-AROM(b) 

 

 
Figure 0.29 Figure 2.6: Fluorescence spectra of DiI encapsulated in peptide nanoassemblies 

against pristine DiI in water for AMD-ALIP(a), AMD-AROM(b) 
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We expected that the difference in their aggregation properties would manifest in different 

encapsulation stabilities at 25 ºC and 5 ºC since host-guest interactions are driven by solvophobic 

interactions77. Indeed, we observed that the change in the aggregation properties at 5 ºC for 

molecule AMD-ALIP was accompanied by release of the guest, DiI indicating that the assemblies 

at 5 ºC had a weak propensity to encapsulate hydrophobic guests as compared to the ones at 25 ºC. 

Meanwhile, molecule AMD-AROM which did not exhibit a size transition was found to have 

similar guest encapsulation properties at 25 ºC and 5 ºC (Figure 6). 

2.4 Conclusions 

In summary, we have established the design principles for oligomeric peptides to exhibit a unique 

size transition well below the LCST. We have found that incorporation of aromatic hydrophobic 

groups diminishes the thermo-sensitivity of the peptide nanoassemblies. The size transition is 

understood to be brought about by a significant loss of secondary structures at low temperatures 

which results in assemblies with a different hydrodynamic volume than those at ambient 

temperatures that is manifested in their aggregation properties. Concurrently, the peptide 

nanoassemblies were found to degrade under acidic conditions owing to the presence of ester and 

 
 

 

 

Figure 3.2 Degradation pathways of aspartame at different pH 

 

Figure 2.7: Guest encapsulation ability at 25 ºC and 5 ºC for a) AMD-ALIP and b) AMD-AROM 
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amide linkages in the backbone. The temperature-dependent aggregation properties of these 

peptide nanoassemblies also gave rise to disparity in terms of guest encapsulation ability upon 

decreasing temperature. Because the molecules are designed to incorporate FDA approved 

components, the assembly is biodegradable, and the degraded by-products are safe. The 

supramolecular structural requirements established in this study have drawn significant attention 

since these assemblies offer themselves as excellent means for the release of flavor molecules at 

low temperatures when encapsulated in these assemblies and this is currently being pursued in 

collaboration with a beverage industry. 
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2.6 NMR Spectrum of molecules 

Figure 2.8: 1H NMR spectrum of starting material (top) and molecule 2 (bottom) 
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Figure 2.9: 1H NMR spectrum of molecule 3 (top) and molecule 4 (bottom) 
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Figure 2.10 : 1H NMR spectrum of molecule 5 (top) and molecule 6 (bottom) 
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AMD-ALIP 

Figure 2.11 : 1H NMR spectrum of molecule 7 (top) and ESI-MS of molecule AMD-ALIP 

(bottom) 
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AMD-AROM 

Figure 2.12 : ESI-MS of molecule AMD-AROM 
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CHAPTER 3 

ALGINATE HYDROGELS FOR THE STABLE ENCAPSULATION 

AND RELEASE OF ARTIFICIAL SWEETENERS IN BEVERAGES 
 

3.1 Background and significance 

Aspartame (N-L-aspartyl-L-phenylalanine-1-methyl ester) is a low-calorie sweetener obtained 

from two naturally occurring amino acids: L-phenylalanine and L-aspartic acid and is used widely 

in beverages and dietary products1-2. It does not have a bitter or metallic aftertaste and is about 180 

times sweeter than sugar3. Hence, the quantity of aspartame required to impart the same amount 

of sweetness is minuscule in spite of the fact that it has the same caloric value of 4 kcal (17 kJ) per 

gram as that of cane sugar4. This makes it attractive as a low-calorie sweetener. 

However, the stability of aspartame in solution is affected by pH, temperature and buffer over time 

and decomposition follows pseudo-first order kinetics5,6. Aspartame is reported to be most stable 

between pH 4-5 with a substantial decrease in stability under more acidic and neutral conditions. 

Below pH 3, which is typical of beverage formulations, the amide bond cleaves to form the methyl 

ester of phenyl alanine and aspartic acid (Figure 3.1)7,8,9. Moreover, it cannot be used in products 

that require baking or frying since aspartame degrades at higher temperatures10. However, the 

structure of aspartame is imperative for its sweetness to be perceived and this follows form the 

AH-B-γ model proposed by Kier in 197211.To circumvent this, industries resort to the addition of 

excess aspartame in food products to compensate for its degradation.  However, this is not safe 

since several health issues such as headaches, migraines and memory loss have been implicated 

with an excess use of aspartame and this calls for decreased aspartame consumption4,12,13,1.  
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Encapsulation aims to preserve the stability of the active component during processing or storage 

conditions and serves as means to provide uniform taste, increased shelf-life, and protection from 

harsh conditions and in some cases, taste masking14. Schroeder at al. have shown that the stability 

of aspartame is enhanced in the presence of β-cyclodextrin (β-CD) to the formation of inclusion 

complexes between aspartame and β-CD15. However, the downfall with using cyclodextrins is that 

they can themselves be broken down into the body to yield glucose. The glucose released hence, 

has a caloric value which defeats the whole purpose of using a non-caloric sweetener such as 

aspartame.  The microencapsulation of aspartame by double emulsion followed by complex 

coacervation was also found to enhance the stability of aspartame at 80 oC16 however, the release 

profile could not be controlled. Therefore, there is a dire need for encapsulation systems that can 

release aspartame in a sustained manner so as to maintain a steady state concentration of aspartame 

in the beverage over time.  

Biomolecules such as polysaccharides such as starch and its derivatives, plant extracts and marine 

extracts have been explored heavily in the recent past in the food industry and have been certified 

 

Figure 3.1 Degradation pathways of aspartame at different pH 

 

 

 

 

Figure 3.82 Degradation pathways of aspartame at different pH 
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as Generally Recognized as Safe (GRAS) materials17. Alginate is a naturally occurring anionic 

polysaccharide derived from brown seaweed. It contains blocks of (1-4) linked β-D-mannuronic 

acid (M) and α-L-guluronic acid (L) monomers. The polymer is composed of three different forms 

of polymer segments: consecutive G, consecutive M and alternating G and M residues18. It is used 

extensively in tissue repair and regeneration due to its biocompatibility, biodegradability and non-

antigenicity19. Owing to its anionic nature, it has a propensity to interact with cross-linking agents 

such as divalent metal ions like Ca2+ and also with cationic polyelectrolytes. The pH responsive 

behavior accounts for the high swelling ratios due to chain expansion from the presence of ionic 

carboxylate groups on the backbone and had been widely used in the form of alginate hydrogels 

and microspheres18, 20,21,22. 

In this study, we aim to establish the critical differences between the release profiles of aspartame 

from microgels and bulk hydrogels of aspartame encapsulated calcium crosslinked alginate gels. 

We will, in particular, study the different parameters that dictate the gel architecture and hence, 

the morphology and the structure of the gels. We anticipate that the surface area characteristics 

 
Scheme 3. 1 Schematic for alginate and calcium cross-linked microgel beads and 

hydrogels for aspartame encapsulation and release 
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arising out of the differences in the gel architecture will manifest in disparate release kinetics and 

mechanisms of release23,24 between the microgels and bulk hydrogels (Scheme 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

68 
 

 

3.2 Materials and methods 

All chemicals and reagents were purchased from commercial sources and were used as received, 

unless mentioned otherwise. Low viscosity sodium alginate (ALG) (CAS Number: 9005-38-3; 

Brookfield viscosity 4−12 cps (1% in H2O at 25 °C)) was purchased from Sigma-Aldrich (U.S.A.). 

Alginate solutions were prepared by adding 10mg of sodium alginate into HPLC grade water 

followed by sonication and then left to stir overnight until all the alginate dissolved. Aspartame 

stock solutions were prepared by dissolving a pre-determined amount of aspartame in HPLC water 

acidified with 1N HCl and then diluted to obtain the desired concentrations. Calcium chloride 

stock solutions were prepared by dissolving a measured amount of calcium chloride in HPLC 

grade water.  

• Fabrication of microgel beads: For the preparation of microgel beads, alginate and aspartame 

solutions were mixed together in a 7 mL scintillation vial to afford various compositions of 

alginate and aspartame.  This solution was then drawn into a syringe with different needle pore 

sizes (0.45 mm, 0.7 mm and 1 mm) and added into a bath of calcium chloride dropwise. The 

beads were then separated, freeze dried and stored at 5 oC. The amount of alginate, mode of 

addition, cross-linking time and concentration of cross-linker were varied to obtain microgel 

beads through I to V (Table 3.1).  

• Fabrication of bulk hydrogels: For the preparation of bulk hydrogels, alginate and aspartame 

solutions were first mixed together in a 7 mL scintillation vial to afford various compositions 

of alginate and aspartame such that the total volume of the combined solution was 2 mL. To 

this solution, a predetermined amount of calcium chloride was added to afford a range of cross 

linking densities. The resultant solution was vortexed briefly to ensure mixing of the contents 
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and left to sit for 5-10 minutes upon which visible gelation was observed. The hydrogels so 

obtained were freeze dried and stored at 5 oC (Table 3.2) 

• Size determination of microgel beads: The shape of the microgel beads was determined using 

an optical microscope, OM BX51. In a typical experiment the freeze dried microgel beads were 

subjected to imaging and the dimensions of one microgel bead was recorded. This was repeated 

for 10 other beads and the dimensions of the beads are reported using Image J software as the 

mean of 10 measurements.  

• Determination of encapsulation/loading efficiency for microgel beads and hydrogels: For 

measuring the encapsulation efficiency of the beads, the absorbance of aspartame in the 

supernatant after isolating the beads was measured using a UV-Vis spectrometer (𝐴𝑠).This was 

then subtracted from the initial amount of aspartame 𝐴𝑡𝑜𝑡𝑎𝑙 added to determine the amount of 

aspartame loaded (𝐴𝑙𝑜𝑎𝑑) in the beads to facilitate the calculation of loading in terms of 

weight % according the equation: 

𝐸𝐸(𝑏𝑒𝑎𝑑) =
𝐴𝑙𝑜𝑎𝑑 ∗ 100

𝐴𝑡𝑜𝑡
 

𝑊ℎ𝑒𝑟𝑒 𝐴𝑙𝑜𝑎𝑑 = 𝐴𝑡𝑜𝑡𝑎𝑙 −

 𝐴𝑠 𝑤ℎ𝑒𝑟𝑒 𝐴𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑠𝑝𝑎𝑟𝑡𝑎𝑚𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡.  

 The bulk hydrogels, on the other hand, encapsulated all the aspartame that was initially added. 

Therefore, this too was converted to weight % loading according to the equation: 

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙) % = (
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑠𝑝𝑎𝑟𝑡𝑎𝑚𝑒 𝑖𝑛 𝑚𝑖𝑐𝑟𝑜𝑔𝑒𝑙 𝑏𝑒𝑎𝑑𝑠 𝑜𝑟 𝑏𝑢𝑙𝑘 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑔𝑒𝑙 𝑏𝑒𝑎𝑑𝑠 𝑜𝑟 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙
) ∗

100     
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• Scanning electron microscopy analysis of hydrogels: For Scanning electron microscopy 

(SEM) analysis, the freeze-dried hydrogels were sputtered with gold using Sputter coater 

CRX108 so as to afford a 5 nm layer for 10 minutes and then, imaged using FE-SEM 

Magellan 400.  

• Size exclusion chromatography (SEC) experiments: SEC experiments were carried out 

on an Agilent Infinity 1260 with 100 mM pH 7 phosphate buffer as the mobile phase with 

a flow rate of 1mL/min with a 20 µL injection loop equipped with a UV-Vis and RI 

detector. Bio SEC-5 column from Agilent Technologies with a molecular weight cut off of 

100 Da was used as the stationary phase. The calibration curve was established for 

aspartame solutions in triplicate. 

• Statistical Analysis: All experiments were carried out in triplicate using freshly prepared 

samples. The mean and standard deviations were calculated from these values and all 

measurements are reported as mean ± SD. 

• Release experiments: The effect of morphology on the loading and release kinetics of 

aspartame was studied in alginate-based microbeads and hydrogels. Size Exclusion 

Chromatography (SEC) was used to monitor the amount of aspartame released at 25 oC. 

Aspartame loaded microbead/hydrogel was placed in a 7 mL vial such that the total 

concentration of aspartame in a 7 mL solution was 5 mg. The vial was then gently filled 

with 6 mL of phosphate-citrate buffer at pH 2.3 and 4.3 and incubated in a 

ThermoScientific Precision incubator at 25 oC for 6 weeks.  

The amount of aspartame released into the buffer at a given time was determined by measuring 

the absorbance intensity of aspartame in the aqueous solution surrounding the microbeads or 

hydrogel. A calibration curve prepared by measuring the intensities of known concentrations was 
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used to determine the concentration of released aspartame. The results reported here are 

normalized and converted to percent cumulative release. 
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3.3 Results and discussion 

3.3.1 Microgel beads: Influence of alginate composition, mode of addition, cross-linking 

time and concentration of cross-linker  

The microgel beads I to V prepared (Table 3.1) were subjected to optical microscopy analysis to 

ascertain the effect of alginate, mode of addition, cross-linking time and concentration of cross-

linker on the size of the beads.  The sizes of the beads were found to be in the range of 1.5 to 2mm 

depending on the fabrication conditions.  

Increase in cross-linking time and increasing the concentration of alginate (II and V respectively) 

both had a negligible effect on the sizes of the beads when compared to I(control). However, the 

concentration of the cross-linker and the mode of addition i.e. the diameter of nozzle were both 

found to affect the bead size. In particular, the microgel beads with the lowest concentration of the 

cross linker had the largest sizes ̴ 2mm. This follows from the fact that the beads having a lower 

amount of cross linking would be loosely held as compared to the ones with a higher extent of 

cross linking and hence, the sizes observed. It is also understandable that the diameter of the nozzle 

 

 

Table 3.1 Fabrication of calcium cross linked alginate microgel beads I to V 

 

 

 

Table 3.162: Fabrication of calcium cross linked alginate hydrogels 
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would dictate the sizes of the droplet formed and therefore, larger nozzles resulted in bigger beads 

(Figure 3.2). 

We then, compared the aspartame loading efficiencies for microbeads I to V. While increasing the 

alginate composition had no effect on the aspartame encapsulation efficiency when compared to 

I, increasing the cross linking time and the size of the nozzle during addition into the cross linking 

solution resulted in substantial decrease in loading.  A larger nozzle afforded beads with bigger 

sizes yet with a lower cross-linking density as compared to I since the volume change is significant 

(Figure 3.2). The ineffective cross linking network formed in this case paves way for aspartame 

molecules have a less tortuous path for diffusion during the time frame of the cross linking process 

explaining the decrease in loading efficiency25.  

 

Increasing the cross-linking time results in a similar process where the loosely held aspartame 

molecules diffuse into the aqueous milieu leading to a drastic decrease in the encapsulation of 

 
 

Figure 3.2: Loading efficiency and sizes of beads I to V as a function of alginate composition, mode of 

addition, cross-linking time and concentration of cross-linker  
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aspartame.  However, decreasing the concentration of cross-linker resulted in an increase in 

aspartame loading. This can be attributed to the increase in the free volume inside the microgel 

beads owing to a lower degree of cross linking, facilitating the residence of more aspartame 

molecules23. 

3.3.2 Bulk Hydrogels: Influence of alginate composition, mode of addition, cross-linking 

time and concentration of cross-linker  

The hydrogels were found to have an aspartame loading of 100% by weight irrespective of the 

fabrication conditions (Figure 3.3) and the loading content was calculated to be between 30-60 

wt%.  

 

 

 

 

 

 

 

 

 

 

 

 

They were, then, subjected to Scanning electron microscopy (SEM) analysis to ascertain the effect 

of alginate, mode of addition, cross-linking time and concentration of cross-linker on their 

morphology.   

 

Table 3.2 Fabrication of calcium cross linked alginate hydrogels 
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We first subjected alginate alone to SEM analysis and observed that alginate without any cross- 

linking was a porous polymer with a loose network structure with very large pore structures and 

hollow cavities. Gel F, on the other hand, had a denser yet non-homogeneous structure with 

organized and disorganized domains arising out of the high degree of cross linking (Figure 3.4).  

The gel is understood to be non-homogeneous owing to the kinetics of gelation with calcium 

chloride. The extent of cross linking and the morphology of the domains rely upon the diffusion 

of calcium ions to diffuse through the polymer matrix which is restricted upon cross linking of the 

outer layers resulting in dense layers on the outside and looser networks in the underlying layers 

of the bulk hydrogels26,27. 

 
 

Figure 3.3 : SEM images of A) Alginate showing loose networks as compared to B) Gel F which exhibits 

ordered yet inhomogeneous networks 
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3.3.3 Resolution of aspartame and degradation products by size exclusion chromatography 

To study the effect of morphology of the microgel and bulk hydrogels on the release kinetics of 

aspartame, we resorted to the technique size exclusion chromatography (SEC). However, it was 

necessary to establish this as a viable technique for the separation and quantification of aspartame 

from it by products, phenylalanine methyl ester and aspartic acid since SEC separates based on 

molecular weight and the molecular weight difference between aspartame and its degradation 

products is significantly small. Indeed, aspartame and phenylalanine methyl ester could be 

resolved by employing SEC (Figure 3.5). Further, a calibration curve for aspartame was 

established with a confidence value of 0.99. The limit of detection (LOD) and limit of 

quantification (LOQ) for this technique were calculated to be 0.035 mg/mL and 0.116 mg/mL 

respectively. The slope of the calibration curve was found to be 1129 with the intercept value as -

0.41. The calibration curve so established has been used throughout to ascertain the extent of 

release or degradation of aspartame from either the microgel beads or the bulk hydrogels.  

 
Figure 3.4: A) Resolution of aspartame and phenylalanine methyl ester using SEC B) Calibration curve for 

aspartame using SEC 

 

 

 
Figure 3.5: A) Resolution of aspartame and phenylalanine methyl ester using SEC B) Calibration curve 

for aspartame using SEC 
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3.3.4 Release kinetics and release mechanism of microgel beads 

The release of active agents from a hydrophilic matrix is understood to be brought about by 

wetting, penetration of solution into the matrix (swelling), polymer stress relaxation, diffusion 

through matrix, disintegration, dissolution, or erosion of matrix19,28. In that, the chemical 

composition, geometry, preparation technique and environmental conditions during release 

influence the modes of release20,29. To understand the parameters that affect the rate of release of 

aspartame from the microgel beads, the beads were incubated in a phosphate-citrate buffer and the 

amount of aspartame was assessed as a function of alginate composition, mode of addition, cross-

linking time and concentration of cross-linker using the size exclusion chromatography method 

established in section 2.5.3 and is presented in Figure 6. The beads were also incubated at pH 4 as 

a control since aspartame is known to be the most stable at that pH and this could be used to 

understand the relative rates of aspartame degradation at pH 2 and 4. 

 
Figure 3.5: Release profiles of microgel beads I and II. Compared to control I, increase in cross-

linking time results in a greatest burst release.  
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Regardless of the parameter that was varied, we observed that the microgel beads had a rapid initial 

release followed by a slower release very typical of a burst-release profile. Microgel beads with a 

greater time allowed for crosslinking i.e. II had a lower burst release at pH 2 compared to the 

control I, which had a comparable release at pH 2 and 4 (Figure 3.6).  However, the burst release 

for II at pH 4 was found to be ̴ 70% compared to ̴ 50 % in case on control I while the burst release 

at pH 2 for I and II were comparable. Therefore, it suffices to say that increase in cross-linking 

time does not reflect in the release profile at pH 2 while it affects the release profile at pH 4. This 

is understandable since the cross-links are active only at pH 4 and not at pH 2 owing to the loss of 

the negative charges on the carboxylate. 

Increasing the concentration of alginate or decreasing the concentration of the cross-linker on the 

other hand, had no effect on the release rates at pH 2 and 4. This alludes to the presence of a 

threshold concentration of the cross-linker that is required to maintain the structural integrity of 

the microgel beads that translates into a difference in the kinetics of release. Upon increasing the 

size of the beads, we found that the burst release at pH 4 for III to decrease to 30% from 50 % 

when compared to I (Figure 3.7). This follows from the fact that the beads owing to their bigger 

 

Figure 3.6: Release profiles for microgel beads IV and III. Increasing the size of the beads results in a 

higher burst release at pH 2 than at pH 4 while decreasing the concentration of the cross-linker has no 

effect on the release kinetics at pH 2 or 4. 
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size and the cross-links now provided a tortuous path for the encapsulated aspartame molecules 

resulting in a larger diffusivity path length accounting for the slower initial release rates30,31. 

However, at pH 2, the cross-linking density no longer plays a role and the release is dictated 

primarily by the diffusivity path length. 

3.3.5 Mechanism of release of aspartame for microgel beads 

The burst release phenomenon observed in the microgel beads is understood to arise due to the 

loosely entrapped and surface-associated active agents. We then, wanted to elucidate the model 

and mechanism of aspartame release from the beads. This is exacerbated by the presence of 

solvent/polymer interactions, multidimensional diffusion resulting in changes in the free volume 

of the beads due to solvent transport i.e. polymer swelling/deswelling and multicomponent 

transport instead of single solute diffusion23,32. Therefore, we fitted the release of aspartame in 

15mM phosphate-citrate buffer to several release models and obtained a correlation coefficient 

that was an accurate representation of the release model. 

Through this exercise, we found that the microgel beads through I to V followed the Korsmeyer-

Peppas model of release which is denoted by the equation: 

𝑀𝑡

𝑀∞
= 𝑘𝑡(𝑛), 𝑓𝑜𝑟

𝑀𝑡

𝑀∞
< 0.6 
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Here, Mt is the cumulative amount of aspartame released at an arbitrary time t, M∞ is the 

cumulative amount of the substance released at an infinite time, and k is a constant incorporating 

structural and geometric characteristics of the device, and n is an exponent characterizing the 

mechanism with which the release kinetics can be described21,33. 

From Table 3.3, it can be inferred that the microgel beads obey the Korsmeyer-Peppas model 

irrespective of the pH and the regression analysis value (R2) was found to range from 0.87 to 0.93. 

The Korsmeyer-Peppas model relates the values of n obtained upon fitting the release data to the 

above-mentioned equation. While a value of 0.45 for ‘n’ indicates diffusion-controlled drug 

release that corresponds to diffusion-controlled drug release, a value of 0.89 indicates swelling 

controlled drug release that is reminiscent of Case II transport. For values of n that falls between 

 
Table 3.3: Release models and corresponding correlation coefficients for the microgel beads. The release 

kinetics for the microgel beads I to V obey the Korsmeyer-Peppas model with a R2 value of > 0.88. 
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0.45 and 0.89, the mechanism of release is understood to be a juxtaposition of Fickian and Case II 

transport21,23. For the microgel beads I to V, we calculated the value of n to be ̴ 0.1 indicating that 

the release mechanism deviates from a fickian trend given the complexity of the microstructure of 

the beads owing to the H-bonding interactions of alginate and aspartame and the cross-linking 

density arising out of the calcium ions (Figure 3.8 and 3.9). 

 

This alludes to the fact that at values of n< 0.5, the rate of water penetration into the microgel 

beads is less than the polymer chain relaxation rate34. Therefore, the diffusion of aspartame is 

 
 

Figure 3.7: Korsmeyer-Peppas release model fitting for microspheres II and V. The slope of the 

graphs reveal the mechanism of aspartame release. Both gels II and V deviate from Fickian diffusion 

 

 

 
Figure 3.8: Korsmeyer-Peppas release model fitting for microspheres II and V 

 

 

 

 
Figure 3.8: Mechanism of release of aspartame from microgel beads II and V 
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brought about by the relaxation of the polymer chains at pH 2 owing to the de-crosslinking and 

not by the swelling of the polymer matrix (Figure 3.10).  

We next, fitted the release data to various models of release to understand the mechanism of release 

of aspartame. 

3.3.6 Mechanism of release of aspartame for bulk hydrogels 

Release of a guest from a polymer matrix is understood to depend on a plethora of processes such 

as drug-polymer affinity, cross link density, relative drug molecular weight and size, glass 

transition temperature and molecular relaxation of the hydrogels31,35. The release is brought about 

by interplay of factors such as diffusion, swelling and shrinkage and the morphology and the 

structure of the hydrogel are implicated in the release kinetics of a drug from a hydrogel 

matrix24,36,37. 

We were therefore, interested in investigating the mechanism of release of aspartame from cross-

linked alginate matrices in 15 mM phosphate-citrate buffer and fitted the release to several release 

 
 

Figure 3.9: Higuchi release model for microspheres I and III 

 

 
Figure 3.10: Higuchi release model for microspheres I and III 

 

 
Figure 3.10: Higuchi release model for microspheres I and III 
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models to obtain a correlation coefficient that we believed to be an accurate representation of the 

release models.  

Gels B, C and D differ only in the initial amount of aspartame loading and upon incubating them 

in 15 mM phosphate-citrate buffer, we found that the gels invariably have two regimes of release: 

a burst release in the first 5 days and then a sustained release profile over the next five weeks. 

While the release at pH 2 and pH 4 was found to be similar for Gel B, the release at pH was found 

to more than that at pH 4 for Gel C and D. Therefore, it can be concluded that at high aspartame 

loading, the release at pH 2 and pH 4 is comparable (Figure 3.11). 

 
Figure  3.10: Cumulative release profiles of aspartame from gels B, C and D at pH 2 and 4 

reveal two regimes of release: a burst release in the first five days and a sustained release over 5 

weeks. 
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For the same initial aspartame loading, we expected that an increase in the cross-linking density 

would manifest in a slower burst release than a system with a higher degree of cross-linking since 

the network structure is understood to be stiffer resulting in a tortuous path for the guests. However, 

upon incubating Gels F and H in buffer, we found the trend to be reversed. Gel F which had a 

higher degree of cross-linking was found to have a higher initial burst release compared to Gel H 

which had the lowest degree of cross-linking (Figure 3.12).We were intrigued by the observation 

that the rate of release of aspartame is the least amongst the hydrogels for the lowest cross linking. 

Therefore, we reasoned that this could arise out of a balance of interactions that serve to stabilize 

or destabilize the hydrogel matrix. At pH 4, the dipole-ion interactions arising out of the cross-

linking between the carboxylates of the alginate and the calcium ions would contribute to stabilize 

the hydrogel matrix.  However, it is worthwhile to mention that not all the carboxylates on the 

alginate are expected to be cross-linked owing to their occlusion because of the chain 

entanglements in the alginate network. The uncrosslinked carboxylates would now, serve to 

destabilize the hydrogel matrix because of electrostatic interactions. At pH 2, the crosslinking 

 
 

Figure 3.11: Cumulative release of aspartame from Gels F and H at pH 2 and pH 4. A faster release is 

observed for gel F as compared to gel H 

 

 
Figure 3.12: Cumulative release of aspartame from Gels F and H at pH 2 and pH 4 
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between the carboxylates on the alginate and the calcium ions weakens owing to the protonation 

of the carboxylates that serve to weaken the matrix. However, this paves way for the carboxylic 

acid groups to be stabilized by intramolecular hydrogen bonding which is represented in Fig 3.14. 

Indeed, hydrogen bonding interactions in hydrogels have been reported to impart resilience and 

stiffness to hydrogels also resulting in segregated domains38. 

We were, next interested in elucidating the model of release of aspartame from these hydrogel 

matrices. To this end, we fitted the release kinetics to several release models reported in literature 

and obtained the correlation coefficients or R2 values for the plots. We found that the hydrogel B 

obeyed the Higuchi’s model of release with a R2 value of 0.94 and 0.96 at pH 2 and 4 respectively. 

Hydrogels C, D, F and H were found to follow the Korsmeyer-Peppas model of release with a R2 

value  ̴0.9 at both pH 2 and 4 (Table 3.4). 

 environment40,41. The slight deviation from Higuchi’s model could be explained by the complexity 

of the heterogeneous system involved together with the capacity of the alginate to interact with the 

aspartame while the prime reason for the release is undertsood to be diffusion. That is the reason 

why in these special cases, diffusion is not the only factor to consider in the release process. 

 

 

Figure 3.12: Release of aspartame from gel H at pH 2 and 4 when fitted to Korsmeyer-Peppas 

model 
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The model indicates that the release of aspartame is solely due to diffusion from the matrix and 

that the mode of diffusion is Fickian. This explains the two regimes of release in the kinetics plots. 

The burst release arises from the loosely bound aspartame to the matrix while the sustained release 

is brought about the release of aspartame upon slow erosion of the hydrogel matrix. The two 

populations of differentially bound aspartame are a result of the fast yet indiscriminate gelation 

kinetics of the cross-linking reaction between alginate and calcium that gives rise to disparate 

network stuctures in the hydrogel matrix (Figure 3.13). 

For Gels C, D, F and H, the mode of release was found to be correlate with the Korsmeyer-Peppas 

model. Interestingly, the values of ‘n’ which are indicative of the drug release mechanism were 

found to be pH dependent in the case of Gel C. 

While the value of n was calculated to be 0.68 at pH 2, the same was found to be 1.2 at pH 4. This 

alludes to the presence of two different mechanisms of release depending on the pH. 

At pH 2, the value of n falls between 0.45 and 0.89 which is indicative of an anomalous of non-

fickian diffusion. This means that there is an interplay of diffusion and erosion-controlled release 

 
 

Figure 3.13: Release of aspartame from Gel B at pH 2 and 4 when fitted to Higuchi’s model 
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of aspartame from the hydrogel matrix42. The diffusion and polymer relaxation rates are 

comparable and the effect of cross-linking here is understood to be negligible. 

At pH 4, the value of n alludes to a mechanism referred to as  Super Case 2 transport. This process 

is understood to be brought about by the erosion of the polymer chain and this paves way for the 

aspartame molecules to be released. Another mechanism could be a case where the aspartame 

release is zero-order such that release rate is constant and controlled by polymer relaxation. In the 

case of Gel C at pH 4,the cross-linking density dictates the release rate since the release of 

aspartame molecules is brought about solely due to polymer relaxation . Also, since the aspartame 

release is zero order and therefore, concentration dependent, the initial aspartame loading has been 

evaluated to play a major role in the release kinetics. 

 

 

 

 

 

 

 

 
 

Figure 3.14: Schematic for the proposed H-bonding stabilization in Gel H 

 

 

 

 

 
 

Figure 3.14: Schematic for the proposed H-bonding stabilization in Gel H 
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3.4 Conclusions 

In conclusion, we have elucidated the critical differences in the release of an artificial sweetener, 

aspartame between microgels and bulk hydrogels of aspartame encapsulated calcium cross linked 

alginate gels. We have, in particular, studied the different parameters that dictate the gel 

architecture and hence, the morphology and the structure of the gels. Biopolymer  hydrogels were 

prepared by ionotropic gelation and were investigated as systems that facilitate sustained release 

of aspartame. A Size Exclusion Chromatography (SEC) based method was developed to calculate 

the release of aspartame  from cross- linked hydrogels. H-bonding stabilized hydrogels were found 

to increase the shelf-life of aspartame and the mechanism of release was found to be follow the 

Korsmeyer-Peppas model. 

 

 

Table 3.4: Release models and corresponding correlation coefficients for the hydrogels. Bulk 

hydrogels obey the Korsmeyer-Peppas model of release with a R2 value > 0.8 
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CHAPTER 4 

AMPLIFICATION AND OPTICAL REPORTING OF INTERFACIAL 

MOLECULAR EVENTS USING LIQUID CRYSTALS 
 

 

4.1 Background and significance 

Responsive or “smart” materials undergo changes in internal order and properties through their 

interactions with external influences such as, electrical and magnetic fields 1-3, temperature 4, pH 

5-7, electrolyte composition 7-10, and UV irradiation 11-14. These emerging classes of materials find 

potential applications as sensors 9-14, actuators 12-13, and for controlled release of active chemical 

agents 6-8,14.  Liquid crystals (LCs) present themselves as opportunities for the design of responsive 

materials due to their ability to amplify molecular-level events into the macroscopic scale 27-28.  In 

this context, the interactions of monomeric amphiphiles 17-18, 24-26 and polymeric amphiphiles18-24 

with the interfaces of LC films and droplets have been extensively studied in the past.  These 

classes of amphiphiles have been reported to adsorb at the LC interfaces and trigger changes in 

ordering of the LCs that manifests in quantifiable optical signals. 

LCs are anisotropic condensed phases that possess both the mobility of a fluid and the long-range 

order of crystalline solids 17-20.  The long range orientational order present in a nematic LC phase, 

where the constituent molecules align along a preferred direction called the director, gives rise to 

elasticity and tendency of the LC director to assume an unperturbed, homogeneously aligned state 

27-28. When amphiphilic adsorbates anchor at the LC interface, the elastic properties of the LC 

transmit and amplify this change in LC anchoring throughout the volume of the LC that lies within 

~100 nm of the interface.  Since LCs exhibit a phenomenon called ‘birefringence’ 31-32, the optical 

appearance of the LC, as observed using polarized optical microscopy, changes with the director 
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profile within the LC 39.  Therefore, it is possible to interpret the presence and behavior of 

amphiphiles at a LC/aqueous interface by observing the optical appearance of the LC film.  

Previous work in this context was motivated by the long-term goal of designing responsive LC 

systems based on stimuli-triggered changes in the degree of oligomerization of amphiphiles hosted 

at LC interfaces 26-28.  Most of the work in the field of stimuli-responsive assemblies is inspired by 

their implications in biological applications. Pathological imbalances are understood to be brought 

about by aberrations in protein activity and supramolecular scaffolds that can respond to variations 

in protein concentrations are of great significance 42. In this context, non-covalent interaction-

based changes in the assembly properties of amphiphiles presents greater opportunities since it 

encompasses a larger number of proteins that are implicated in signal transduction pathways 43-45. 

However, a key barrier to the rationale design of such systems is, however, a gap in understanding 

of how oligomeric amphiphiles interact with LCs.  Whereas, as noted above, the behaviors of 

amphiphilic polymers and monomers have been widely studied at LC interfaces, oligomers have 

been less investigated.  Past studies have established, however, that the interactions of 

adsorbates/absorbates with nematic LCs are strongly dependent on the configurational degrees of 

freedom of the adsorbate/absorbate and the extent to which they are modified by the orientationally 

ordered environment of the LC 33-37.  For example, it is well known that flexible polymers segregate 

from nematic LCs because the structured environment of the LC reduces the configurational 

degrees of freedom of the polymer chain (entropic penalty) 38-39.  A recent study from our group 

has implicated that the degree of oligomerization impacts the anchoring of the amphiphiles with 

the LC. Herein, we study the interactions of oligomeric amphiphiles with nematic LC films, 

focusing on the hydrophilic-lipophilic balance (HLB) changes of the amphiphiles with the LC, 

upon introduction of a complementary enzyme. The hypothesis rests on the idea that the HLB of 
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an oligomer containing a small molecule ligand (complementary to a specific protein) would be 

significantly altered upon protein binding because a small molecule would be replaced by a rather 

large hydrophilic surface presented by the protein47-48. This nanoscopic event manifests itself as a 

disassembly event that can be leveraged to result in a macroscopic observable at the LC interface 

as an ordering transition.   

4.1.1 Design objectives 

The molecular structures of the oligomers used in our study are shown in Scheme 4.1.  Each 

amphiphilic unit is composed of a hydrophobic decyl side chain (red parts in Scheme 4.1) and a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Illustration of the proposed mechanism for anchoring transition in the presence of 

oligomeric amphiphiles at the LC-water interface 
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hydrophilic pentaethylene glycol (PEG, blue parts in Scheme 4.1) side-chain linked via an 

aromatic core.   

The monomer (O1), dimer (O2), and trimer (O3) are composed of these amphiphilic units, linked 

through an amide. In addition, the presence of side chain functionality confers responsiveness to 

this system as is chosen as a p-carboxy benzene sulfonamide that binds to an enzyme, carbonic 

anhydrase with a micromolar binding affinity49. In the Thayumanavan group, amphiphilic 

assemblies decorated with a ligand have been found to disassemble in response to a ligand-protein 

interaction. This, also known as binding induced disassembly is understood to be brought about 

by a change in the hydrophilic-lipophilic balance (HLB) of the amphiphilic assembly in response 

to the binding event and can be leveraged to bring about a molecular release event as well46-47. 

 

 

 

 

 

 

 

 

In the experiments performed below, we compare the behaviors of the oligomers at the same 

concentration of amphiphilic repeat units, thus revealing the effects of degree of oligomerization 

 

Scheme 4.1: Molecular structure of the dimeric amphiphile with the hydrophobic, hydrophilic 

moieties along with the sulfonamide ligand (complementary to enzyme carbonic anhydrase) 
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on the response of the LC.  This amphiphilic scheme was chosen for its facile synthesis in addition 

to facilitating the easy inclusion of various responsive side-chain functionalities, which can be 

chosen depending on the desired external stimulus. 

 

4.2 Materials and methods 

All chemicals and reagents were purchased from commercial sources and were used as received, 

unless mentioned otherwise. 1H NMR spectra were recorded on 400 MHz NMR spectrometer 

using the residual proton resonance of the solvent as the internal standard. Chemical shifts are 

reported in parts per million (ppm). When peak multiplicities are given the following abbreviations 

are used: s, singlet; d, doublet; t, triplet; m, multiplet. Nematic liquid crystals, 4’pentyl-

cyanobiphenyl (5CB) was purchased from HCCH (Jiangsu Hecheng Display Technology Co., 

LTD).  Dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP) was 

purchased form Sigma-Aldrich.  Transmission electron microscopy (TEM) grids were purchased 

from Electron Microscopy Sciences.  The polymeric alignment layer (PI2555) was purchased from 

HD Microsystems. 

 

• Synthesis of 16: 20 g (0.150 mol) of 3,5 dihydroxy benzoic acid in a round bottom flask was 

dissolved in 500 mL ethanol under inert atmosphere. To this, 5 mL concentrated sulphuric acid 

(H2SO4) and the resultant solution was left to reflux overnite. The reaction mixture was 

concentrated in vacuo, extracted using ethyl acetate and water. The combined extracts were 

dried over anhydrous Na2SO4 and the crude product was obtained in 76 % yield. 1H NMR 

(CDCl3, 400 MHz, TMS): δ (ppm) = 7.25-7.37 (m, 2H), 6.75 (t, 1H), 5.2(broad s, 2 H), 4.35 

(m, 2H), 1.41 (t, 3H). (M+Na+) from ESI spectroscopy: 203.06 
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• Synthesis of 15: 8 g (0.0439 mol) of 2 was taken in a round bottom flask and dissolved in 500 

mL anhydrous acetone under inert atmosphere. To this, potassium carbonate (K2CO3) ( 1.456g 

, 0.0105 mol) and 18-crown-6 (0.927g, 0.0035 mol) were added and the resultant solution was 

left to reflux. After 30 minutes, decyl bromide (1.8 mL, 0.0088 mol) was added dropwise to 

mixture which was then left to reflux overnite. The reaction mixture was concentrated in vacuo, 

extracted using ethyl acetate and water. The combined extracts were dried over anhydrous 

Na2SO4 and the crude product was purified by silica gel chromatography using hexane and 

ethyl acetate as eluents to afford 3 in 40 % yield. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) 

= 7.17-7.16 (m, 2H), 6.75 (t, 1H), 5.2 (broad s, 2 H), 4.35 (m, 2H), 4.04 (t, 2H), 1.8 (m, 2H), 

1.41 (m, 12H), 0.89 (t, 3H). (M+Na+) from ESI spectroscopy: 345.21 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2: Synthesis of precursors 13-16 
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• Synthesis of 14: 2.1 g (0.0078 mol) of 3 was taken in a round bottom flask and dissolved in 

200 mL anhydrous acetone under inert atmosphere. To this, potassium carbonate (K2CO3) 

(1.16 g, 0.00843 mol) and 18-crown-6 (1.41 g, 0.0054 mol) were added and the resultant 

solution was left to reflux. After 30 minutes, propargyl bromide (1.38 mL, 0.00930 mol) was 

added dropwise to mixture which was then left to reflux overnite. The reaction mixture was 

concentrated in vacuo, extracted using ethyl acetate and water. The combined extracts were 

dried over anhydrous Na2SO4 and the crude product was purified by silica gel chromatography 

using hexane and ethyl acetate as eluents to afford 4 in 95 % yield. 1H NMR (CDCl3, 400 MHz, 

TMS): δ (ppm) = 7.17-7.2 (m, 2H), 6.75 (t, 1H), 4.7(s, 2H), 4.35 (m, 2H), 3.98 (t, 2H), 2.5 (s, 

1H), 1.41 (m, 12H), 1.8 (m, 2H), 0.89 (t, 3H). (M+Na+) from ESI spectroscopy: 383.23 

 

• Synthesis of 13: 2 g (0.0056 mol) of 4 was taken in a round bottom flask and dissolved in 100 

mL tetrahydrofuran under inert atmosphere. To this, potassium hydroxide pellets (0.93 g, 0.017 

mol) dissolved in water (20 mL) was added and the reaction was left to reflux until completion 

which was monitored by TLC. The reaction mixture was concentrated in vacuo and extracted 

using ethyl acetate and 1N hydrochloric acid (HCl). The combined extracts were dried over 

anhydrous Na2SO4 and concentrated to afford the crude product in 85 % yield. 1H NMR 

(Acetone-d6, 400 MHz, TMS): δ (ppm) = 7.16 (m, 2H), 7.18 (m, 2H), 6.75 (t, 1H), 4.7(s, 2H), 

4.04 (t, 2H), 2.5 (s, 1H), 1.41 (m, 9H), 1.8 (m, 2H), 0.89 (t, 3H). (M+Na+) from ESI 

spectroscopy: 355.20 
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• General procedure for synthesis of Oligomers (7-12): To a solution of compound 13 in 

methylene chloride was added excess of thionyl chloride and the mixture was refluxed for 4 

hours. The reaction mixture was then concentrated in vacuo to remove unreacted excess of 

thionyl chloride. The crude acid chloride product obtained was then dried for an additional 2 

hours under vacuo and redispered in methylene chloride. To this solution of acid chloride was 

then added appropriate equivalents of the corresponding amine and triethylamine and stirred 

at room temperature for 24 hours. The reaction mixture was then concentrated in vacuo and 

the residue was dissolved in water and extracted twice with ethyl acetate, the combined extracts 

were then dried over anhydrous Na2SO4. Upon evaporation of the solvent, the crude product 

was obtained in 7 (65 %), 8 (72 %), 9 (78 %), 10 (87 %), 11 (85 %) and 12(88 %). 

 

 

 
Scheme 4.3: Synthesis of oligomers 7-12 

 

 

 

 

 

 

 

 

Scheme 4.3: Synthesis of oligomers 7-12 
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7: 1H NMR (DMSO-d6, 400 MHz, TMS): δ (ppm) = 6.9 (s, 2H), 6.6 (m, 1H), 6.1(broad peak, 1H), 

4.7 (s, 2H), 3.9 (t, 2H), 3.0 (s, 3H), 2.5 (s, 1H), 1.8 (m, 2H), 1.2-1.4 (m, 14 H), 0.89 (t, 3H) (M+Na+) 

from ESI spectroscopy: 368.48 

 

8: 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = = 6.9 (s, 2H), 6.6 (m, 1H), 4.7 (s, 2H), 3.9 (t, 

2H), 3.1 (s, 3H), 2.9 (s, 3H), 2.5 (s, 1H), 1.8 (m, 2H), 1.2-1.4 (m, 14 H), 0.89 (t, 3H) (M+Na+) 

from ESI spectroscopy: 382.51 

 

9: 1H NMR (DMSO-d6, 400 MHz, TMS): δ (ppm) = 9.65(broad peak, 2H), 6.9 (s, 4H), 6.35 (s, 

2H), 4.7(s, 4H), 3.95 (m, 4H), 3.5 (m, 4H), 2.5 (s, 2H), 1.65 (m, 4H), 1.2-1.4 (m, 28H), 0.89 (t, 

6H) (M+Na+) from ESI spectroscopy: 711.45 

 

10: 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 6.9 (m, 4H), 6.6 (t, 2H), 4.7(s, 4H) 3.95 (t, 4H), 

3.5 (m, 4H), 2.5 (s, 3H), 1.8(m, 4H), 1.65 (m, 4H), 1.2-1.4( m, 28H), 0.89 (t, 6H) (M+Na+) from 

ESI spectroscopy: 739.48 

 

11: 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 6.9 (s, 6H), 6.35 (s, 3H), 4.7(s, 6H), 3.95 (m, 

6H), 3.1(m, 4H), 2.9 (m, 4H), 2.5 (s, 3H), 1.65 (m, 6H), 1.2-1.4 (m, 42H), 0.89 (t, 9H) (M+Na+) 

from ESI spectroscopy: 1068.68 

 

12: 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 6.9 (s, 6H), 6.35 (s, 3H), 4.7(s, 6H), 3.95 (m, 

6H), 3.2-3.4 (m, 7H), 2.9-3.1 (m, 7H), 2.5 (s, 3H), 1.65 (m, 6H), 1.2-1.4 (m, 42H), 0.89 (t, 9H) 

(M+Na+) from ESI spectroscopy: 1096.71 
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• Synthesis of 17: 5g (0.0257 mol) of tetraethylene glycol was dissolved in anhydrous 

tetrahydrofuran in a round bottom flask and cooled to 0 oC. To this, triethylamine (7 mL, 

0.0514 mol) was added and the reaction mixture was left to stir for 30 minutes. Mesyl chloride 

(4 mL, 0.0514 mol) was dissolved in 2 mL anhydrous tetrahydrofuran and added drop wise to 

the stirring solution. The mixture was left to stir overnite. The reaction mixture was then 

concentrated in vacuo and the residue was dissolved in water and extracted twice with ethyl 

acetate, the combined extracts were then dried over anhydrous Na2SO4. Upon evaporation of 

the solvent, the crude product was obtained in 89 % yield. 1H NMR (CDCl3, 400 MHz, TMS): 

δ (ppm) = 4.35 (m, 4H), 3.5-3.8 (m, 12 H), 3.1 (s, 6H) (M+Na+) from ESI spectroscopy: 373.07 

 

• Synthesis of 18: To 10g (0.0285 mol) of 17 in 20 mL dimethylformamide, 80 mL water and 

sodium azide (9.26 g, 0.0142 mol) was added and the reaction was left to stir overnite. The 

reaction mixture was then extracted with 50 mL diethyl ether twice. The combined organic 

layer was washed with water, dried over anhydrous Na2SO4 and concentrated under reduced 

pressure to obtain 18 as yellow oil in 73 % yield. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) 

= 3.5-3.8 (m, 12 H), 2.75 (t, 4H) (M+Na+) from ESI spectroscopy: 299.23 

 
 

Scheme 4.4 Synthesis of sulfonamide-PEG ligand 21  

 

 

 
Scheme 4.4 Synthesis of sulfonamide-PEG ligand 21 
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• Synthesis of 19: To a solution of 18 (4g, 0.0144 mol) in diethylether: tetrahydrofuran: 1N HCl 

(50 mL: 10 mL: 50 mL) was added a solution of triphenylphosphine (4 g, 0.0144 mol) in 

diethyl ether using an addition funnel. The reaction was left to stir for 8 hours following which 

the organic layer was discarded. The aqueous layer was extracted twice with diethyl ether. The 

pH of the aqueous layer was adjusted to 12 using 1M NaOH and again extracted with 

dichloromethane. The combined organic layer was dried over anhydrous Na2SO4 and 

concentrated under reduced pressure to obtain 19 as yellow oil in 52 % yield. 1H NMR (CDCl3, 

400 MHz, TMS): δ (ppm) =3.5-3.8 (m, 14 H), 3.3 (t, 2H), 2.7 (t, 2H) (M+Na+) from ESI 

spectroscopy: 241.31 

 

• Synthesis of 20: To a solution of p-carboxy benzene sulfonamide (3g, 0.015 mol) in anhydrous 

tetrahydrofuran was added N-hydroxy succinimide (2.07 g, 0.018 mol) and left to stir for 30 

minutes. The reaction mixture was then cooled to 0 oC and (3-dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (3.7 g, 0.0195 mol) was added to the reaction mixture and 

was left to stir overnite. The reaction mixture was then concentrated in vacuo, the residue was 

dissolved in water and extracted twice with ethyl acetate. The combined extracts were washed 

with saturated sodium bicarbonate solution and brine and concentrated to afford 20 as a white 

solid in 92 % yield. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 7.75 (s, 2H) 7.9 (s, 2H), 2.8 

(s, 4H). (M+Na+) from ESI spectroscopy: 321.37 

 

• Synthesis of 21: To a solution of 19 (0.88g, 0.004 mol) and 20 (1g, 0.003 mol) in anhydrous 

tetrahydrofuran was added triethylamine (0.52 mL, 0.004 mol) and the resultant mixture was 

left to reflux until completion of the reaction as indicated by TLC. The reaction mixture was 
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then concentrated in vacuo and the residue was dissolved in water and extracted twice with 

ethyl acetate. The combined extracts were then washed with 1N HCl, saturated sodium 

bicarbonate and dried over anhydrous Na2SO4. Upon evaporation of the solvent, the crude 

product was obtained in 89 % yield. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 7.75-7.9 

(m, 4H), 5.8 (broad peak, 2H), 3.5-3.8 (m, 15 H), 3.35 (m, 2H) (M+Na+) from ESI 

spectroscopy: 424.14 

 

• General procedure for synthesis of Oligomers (1-6): To a solution of compound 21 in a 7 

mL vial in tetrahydrofuran was added the respective oligomers through 7-12. To this, 1 

equivalent of copper sulphate pentahydrate and 1 equivalent of sodium ascorbate (with respect 

to the oligomers 7-12) dissolved in 1 mL water was added and the reaction mixture was left to 

stir overnite. The reaction mixture was extracted using ethyl acetate, water and the combined 

extracts were then dried over anhydrous Na2SO4. Upon evaporation of the solvent, the crude 

product was obtained in 1(81%), 2 (85%), 3 (72%), 4 (74%), 5 (53%), 6 (55%) yields 

respectively. 

• Synthesis of 22: 5g (0.0257 mol) of tetraethylene glycol monomethyl ether was dissolved in 

anhydrous tetrahydrofuran in a round bottom flask and cooled to 0 oC. To this, triethylamine 

(7 mL, 0.0514 mol) was added and the reaction mixture was left to stir for 30 minutes. Mesyl 

chloride (4 mL, 0.0514 mol) was dissolved in 2 mL anhydrous tetrahydrofuran and added drop 

wise to the stirring solution. The mixture was left to stir overnite. The reaction mixture was 

then concentrated in vacuo and the residue was dissolved in water and extracted twice with 

ethyl acetate, the combined extracts were then dried over anhydrous Na2SO4. Upon 

evaporation of the solvent, the crude product was obtained in 89 % yield. 1H NMR (CDCl3, 
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400 MHz, TMS): δ (ppm) = 4.35 (m, 4H), 3.5-3.8 (m, 12 H), 3.3 (s, 3 H), 3.1 (s, 3H) (M+Na+) 

from ESI spectroscopy: 309.11 

 

• Synthesis of 23: To 10g (0.0285 mol) of 22 in 20 mL dimethylformamide, 80 mL water and 

sodium azide (9.26 g, 0.0142 mol) was added and the reaction was left to stir overnite. The 

reaction mixture was then extracted with 50 mL diethyl ether twice. The combined organic 

layer was washed with water, dried over anhydrous Na2SO4 and concentrated under reduced 

pressure to obtain 23 as yellow oil in 73 % yield. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) 

= 3.5-3.8 (m, 12 H), 3.3 (s, 3 H), 2.75 (t, 2H) (M+Na+) from ESI spectroscopy: 256.14 

 

 

 

• General procedure for synthesis of Oligomers (1’): To a solution of compound 23 in a 7 mL 

vial in tetrahydrofuran was added oligomer 11. To this, 1 equivalent of copper sulphate 

pentahydrate and 1 equivalent of sodium ascorbate (with respect to the oligomer 11) dissolved 

in 1 mL water was added and the reaction mixture was left to stir overnite. The reaction mixture 

was extracted using ethyl acetate, water and the combined extracts were then dried over 

anhydrous Na2SO4. Upon evaporation of the solvent, the crude product was obtained in 1’ 

(81%),  

 

 

 

Scheme 4.6: Synthesis of oligomer with sulfonamide ligand 1’ 

Scheme 4.5: Synthesis of control PEG linker 23  
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Monomer: 1H NMR (Acetone d6, 400 MHz, TMS): δ (ppm) = 8.5 (m. 1H), 8.1 (d, 2H), 8.0 (d, 2H), 

7.9 (s, 1H), 7.1 (m, 2H), 6.75 (m, 1H), 6.5 (s, 1H), 5.2 (s, 2H), 4.5 (t, 2H), 3.5- 4 (m, 16 H), 2.97 

(d, 3H), 1.75 (m, 2H), 1.48(m, 2H), 1.18-1.32 (m, 12 H), 0.89 (t , 3H) 13C NMR (125 MHz; 

Acetone d6): δ 168.48, 168.09, 161.09, 142.57, 136. 27, 134.93, 128.15, 127. 05, 117.20, 109.83, 

109.39, 106.09, 69.93, 68.75, 57.68, 50.11, 42.23, 31.87, 29.27, 25.73, 22.42, 13.52 (M+Na+) from 

ESI spectroscopy: 769.92 

 

Me monomer: 1H NMR (Acetone d6, 400 MHz, TMS): δ (ppm) = 8.1 (d, 2H), 8.0 (d, 2H), 7.9 (s, 

1H), 7.1 (m, 2H), 6.75 (m, 1H), 6.5 (s, 1H), 5.2 (s, 2H), 4.5 (t, 2H), 3.5- 4 (m, 16 H), 3.1 (s, 3H), 

2.9 (s, 3H), 1.75 (m, 2H), 1.48(m, 2H), 1.18-1.32 (m, 12 H), 0.89 (t , 3H) 13C NMR (125 MHz; 

Acetone d6): δ 168.48, 168.09, 161.09, 142.57, 136. 27, 134.93, 128.15, 127. 05, 117.20, 109.83, 

109.39, 106.09, 69.93, 68.75, 57.68, 50.11, 42.23, 35.94, 29.27, 25.73, 22.42, 13.52 (M+Na+) from 

ESI spectroscopy: 783.95 

 

Dimer: 1H NMR (Acetone d6, 400 MHz, TMS): δ (ppm) = 8.5 (m. 2H), 8.21 (d, 4H), 7.98 (m, 2H), 

7.89 (d,4H), 7.23 (s, 4H), 7.07 (m, 4H), 6.75 (s, 2H), 5.2 (s, 4H), 4.5 (t, 4H), 3.5- 4 (m, 32 H), 1.77 

(m, 4H), 1.42 (m, 4H), 1.2-1.3 (m, 24 H), 0.89 (t , 6H) 13C NMR (125 MHz; Acetone d6): δ 168.48, 

168.09, 161.09, 142.57, 136. 27, 134.93, 128.15, 127. 05, 117.20, 109.83, 109.39, 106.09, 69.93, 

68.75, 57.68, 50.11, 42.23, 39.99, 29.27, 25.73, 22.42, 13.52 (M+Na+) from ESI spectroscopy: 

1513.71 
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Me-dimer: 1H NMR (Acetone d6, 400 MHz, TMS): δ (ppm) = 8.21 (d, 4H), 7.89 (d,4H), 7.23 (s, 

4H), 7.07 (m, 4H), 6.75 (s, 2H), 5.2 (s, 4H), 4.5 (t, 4H), 3.5- 4 (m, 32 H), 2.9 (s, 6H), 1.77 (m, 4H), 

1.42 (m, 4H), 1.2-1.3 (m, 24 H), 0.89 (t , 6H) 13C NMR (125 MHz; Acetone d6): δ 168.48, 168.09, 

161.09, 142.57, 136. 27, 134.93, 128.15, 127. 05, 117.20, 109.83, 109.39, 106.09, 69.93, 68.75, 

57.68, 50.11, 45.90, 35.34, 29.27, 25.73, 22.42, 13.52 (M+Na+) from ESI spectroscopy: 1543.94 

 

Trimer: 1H NMR (Acetone d6, 400 MHz, TMS): δ (ppm) 8.5 (m. 3H), 8.1 (d, 6H), 8.0 (d, 6H), 7.9 

(s, 3H), 7.1 (m, 3H), 6.75 (m, 2H), 6.5 (s, 2H), 5.2 (s, 6H), 4.5 (t, 6H), 3.67 (t, 4H), 3.52 (m, 4H) 

3.6- 4 (m, 48 H), 2.97 (d, 9H), 1.75 (m, 6H), 1.48(m, 6H), 1.18-1.32 (m, 36 H), 0.89 (t , 9H) 13C 

NMR (125 MHz; Acetone d6): δ 168.48, 168.09, 161.09, 142.57, 136. 27, 134.93, 128.15, 127. 05, 

117.20, 109.83, 109.39, 106.09, 69.93, 68.75, 57.68, 50.11, 47.87, 38.33, 29.27, 25.73, 22.42, 

13.52 (M+Na+) from ESI spectroscopy: 2404.14 

 

Me-trimer: 1H NMR (Acetone d6, 400 MHz, TMS): δ (ppm) = 8.1 (d, 6H), 8.0 (d, 6H), 7.9 (m, 

3H), 7.1 (m, 3H), 6.75 (m, 2H), 6.5 (s, 2H), 5.2 (s, 6H), 4.5 (t, 6H), 3.71 (m, 4H), 3.6- 4 (m, 48 H), 

2.87 (s, 6H), 1.75 (m, 6H), 1.48(m, 6H), 1.18-1.32 (m, 36 H), 0.89 (t , 9H) 13C NMR (125 MHz; 

Acetone d6): δ 168.48, 168.09, 161.09, 142.57, 136. 27, 134.93, 128.15, 127. 05, 117.20, 109.83, 

109.39, 106.09, 69.93, 68.75, 57.68, 50.11, 47.87, 46.21, 34.39, 29.27, 25.73, 22.42, 13.52 

(M+Na+) from ESI spectroscopy: 2446.06  
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• General procedure for critical aggregation concentration (CAC) determination: The 

stock solutions of oligomers 1-6 respectively, were made by a standard method of dispersing 

the weighed compound in 100µL acetone and then adding a predetermined amount of HPLC 

grade water in a scintillation vial with a stir bar. 40 µL of Nile Red stock (1mM in acetone) 

was then added to the vial in a dropwise manner. The contents were sonicated for 5 minutes 

and vortexed for 2 minutes, following which they were left to stir for 8 hours at room 

temperature uncapped to facilitate the evaporation of acetone. The excess insoluble Nile Red 

was removed by filtration using a membrane with a pore size of 0.450µm. The intensity at the 

maxima was plotted as a function of concentration of the amphiphiles and the inflexion point 

was noted to be the critical aggregation concentration or CAC.  

  

Scheme 4.7: Structures of oligomers with sulfonamide ligand  
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• Size determination using Dynamic light scattering study (DLS): The stock solutions of 

oligomers 1-6 respectively, were made by a standard method of dispersing the weighed   

compound in 100µL acetone and then adding a predetermined amount of HPLC grade water 

in a scintillation vial with a stir bar. The contents were sonicated for 5 minutes and vortexed 

for 2 minutes, following which they were left to stir for 8 hours at room temperature uncapped 

to facilitate the evaporation of acetone. DLS was performed on a Malvern Nano-Zetasizer 

instrument with a 637 nm laser with non-invasive backscattering technology detected at 

173˚.All sizes are reported as the hydrodynamic diameter (DH) and were repeated in triplicate. 

The reported sizes are an average of three individual DLS measurements. 

 

 

 

 

 

Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 
Scheme 4.8: Structures of methylated oligomers with sulfonamide ligand  

 



 

112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 a : CAC(top) and DLS(bottom) profiles for molecule 1(left) and 2(right) 

 

 

 

• CAC and DLS profiles for molecules 1-6 
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Figure 4.2 b : CAC(top) and DLS(bottom) profiles for molecule 3(left) and 4(right) 
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Figure 4.2 c : CAC(top) and DLS(bottom) profiles for molecule 5(left) and 6(right) 

 

• Monitoring disassembly using Dynamic light scattering study (DLS): The solution of 

oligomers was diluted to the required concentration using pH 7.4 phosphate buffer (PBS) so 
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that the concentration of the buffer was 50 mM in the resultant solution. For the dimer, to a 0.4 

mL solution of oligomer in PBS buffer was added 0.6 mL of a 50µM bovine carbonic 

anhydrase (bCA) solution such that final concentration of the dimer and bCA in the solution 

was 10 µM and 20 µM respectively (Aldrich, 7.5 mg/mL pH 7.4 PBS buffer) and mixed well. 

The DLS experiment was performed as a function of time and the disassembly was monitored 

by the change in size of aggregates over time. Prior to the DLS experiment, the dust in the 

oligomers solution was removed by passing it through a syringe filter (0.22 µm). The 

temperature was maintained at 25 oC throughout the experiment. 

 

• Preparation of LC films.  LC films were prepared by depositing nematic 4’-pentyl-4-

biphenylcarbonitrile (5CB) into a gold TEM grid (10 µm in thickness) placed on glass 

substrates that were coated with either DMOAP or a polyimide (PI) that was rubbed to achieve 

unidirectional planar alignment.  Subsequently, the LC film was immersed into an aqueous 

bath containing 10 mM phosphate buffered saline (PBS) at pH 7.4 and the relevant amphiphilic 

oligomer.  To prevent evaporation of the aqueous solutions and keep the concentration of 

oligomers in the solution during the experiments, a glass slide was used to cap off the bath and 

we seal the bath with Dow Corning 748 Sealant.  After the well is capped and sealed, the well 

is placed onto the microscope and a time lapse is taken to observe the state of the LC film over 

time. 
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4.3 Result and discussion 

 

The oligomers synthesized according to Scheme 1-5 were characterized using 1H and 13C NMR 

and mass spectroscopy.  

4.3.1 Characterization of self-assembly and binding-induced disassembly (BID) 

To study the aggregation properties of the oligomers, they were dispersed in water at different 

concentrations and the critical aggregation concentrations (CAC) were calculated using Nile Red, 

a hydrophobic dye as a spectroscopic probe. We, then, investigated the size of these assemblies 

above the CAC using dynamic light scattering (DLS). The amphiphiles were found to self- 

assemble into aggregates and the critical aggregation concentrations and the sizes of the aggregates 

formed by these assemblies are listed in Table 4.A. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Table 4.1: CACs and sizes of aggregates from oligomers 1-6  

 
Table 4.A: CACs and sizes of aggregates from oligomers 1-6  
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Next, we investigated the behavior of the aggregates formed by the dimer in the presence of a 

complementary protein, carbonic anhydrase. To this end, we subjected aqueous solutions of these 

aggregates above critical aggregation concentration to the enzyme carbonic anhydrase such that 

the molar ratio of the ligand: protein was maintained at 1:1. We then, monitored the change in the 

aggregation properties using dynamic light scattering. It was found that the amphiphilic assemblies 

disassembled in the presence of bovine carbonic anhydrase and the disassembly occurred in a 

period of 4 hours as observed from DLS (Fig 4.2).   
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Figure 4.3: Principle of binding-induced disassembly (BID) and disassembly of dimer with 

complementary protein bovine carbonic anhydrase as monitored by DLS 
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4.3.2 Anchoring transition in the presence of the oligomers at the aqueous-LC interface 

We then, performed experiments to determine if the amphiphilic oligomers would partition to LC 

interfaces and influence the ordering of LCs.  To this end, LC films (10 µm in thickness) were 

prepared by depositing nematic 4’-pentyl-4-biphenylcarbonitrile (5CB) into a gold TEM grid 

placed on a glass substrate functionalized with dimethyloctadecyl[3-(trimethoxysilyl)propyl] 

ammonium chloride (DMOAP).  The DMOAP functionalization was performed to impose a 

homeotropic orientation of 5CB at the treated substrate40-41. Subsequently, the LC film was 

immersed into a bath containing 10 mM phosphate buffered saline (PBS) at pH 7.4 and the dimeric 

amphiphilic oligomer (Fig 4.3). We first investigated the influence of the dimeric oligomer 

dispersed in an aqueous solution on the orientation of 5CB at the LC/aqueous interface by 

characterizing optical appearance of the LC films using polarizing optical microscopy (POM)18-20. 

The LC film, when immersed under aqueous PBS (no oligomer), exhibited a Schlieren texture 

with dark brushes (Fig 4.3) that correspond to regions of the LC where the director is either parallel 

or perpendicular to one of the crossed polarizer20.   

 
Figure 4.4: Polarized light microscopy images of aqueous-LC interface decorated with dimeric 

oligomers exhibiting a homeotropic anchoring transition 
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Because 5C B anchors with a perpendicular orientation (homeotropic) at the DMOAP-coated glass 

substrate, the bright optical appearance of the LC film is consistent with past reports of planar 

anchoring of nematic 5CB at the interface to the bulk aqueous phases with neutral pH and low 

ionic strength7-10.  

Next, we wanted to investigate the stability of the homeotropic anchoring. This was achieved by 

introducing the LC coated TEM into an aqueous solution of the dimeric amphiphile and  

observing the homeotropic anchoring over several days. It was found that the homeotropic 

anchoring so observed was stable up to four days. The resultant homeotropic anchoring was 

maintained for several days without showing evidence of birefringent domains (Fig 4.4). 

4.3.3 Binding-induced transition at the aqueous-LC interface in the presence of carbonic 

anhydrase and dimer 

We then, explored how the binding of a complementary protein, carbonic anhydrase would affect 

the anchoring transition of a film of 5CB. Our hypothesis was that the binding of the protein to the 

dimeric would result in desorption of the amphiphiles and would give rise to birefringent  domains 

 

Figure 4.5 : Stability of aqueous-LC interface decorated with dimer (A) 0 day, (B) 1 day, (C) 2 day, 

and (D) 4 day. 

 

 

 

 

Figure 5:  

 

 

Figure 4.4: Stability of aqueous-LC interface decorated with dimer (A) 0 

day, (B) 1 day, (C) 2 day, and (D) 4 day. 

 

 

 

 

Figure 5:  
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typical of a planar anchoring. To test this, 5 CB coated TEM grids were incubated in an aqueous 

solution of the dimeric amphiphile. After attaining homeotropic anchoring, carbonic anhydrase 

was introduced into the system such that the moles of the ligand (sulfonamide) to the protein was 

1: 1 and the anchoring transition resulting thereof, was monitored. It was found that the interface 

changed to bright from dark indicative of desorption of amphiphiles and thereby, binding of the 

dimeric amphiphile to the complementary ligand. 

To test whether the desorption of the dimer from the LC interface was indeed due to the 

sulfonamide-bCA binding, we imaged the response of the aqueous- LC interface decorated with 

the dimer with non-complementary proteins, Bovine Serum Albumin (BSA) and Lysozyme at the 

same concentrations as bCA. The responses of the aqueous-LC interface to these non-

complementary enzymes is shown in Fig 4.5. It was interesting to note that while lysozyme did 

not evoke a response in terms of an anchoring transition, BSA was found to induce a change in the 

LC ordering and this manifested in a bright field image of the LC film that was absent in case of 

lysozyme.  

We reasoned that such an observation could arise due to the non-specific nature of the protein-

ligand interaction and one important factor that needs to be accounted for is the electrostatic 

interaction between the non-specific enzymes and the sulfonamide48-49. The pI values of the 

proteins used in this study are given in Table 4.1. It is interesting to observe that both BSA and 

bCA that induce an ordering transition at the aqueous-LC interface have a pI of 5.4 and 5.3 

respectively, while lysozyme that doesn’t induce an ordering transition has a pI of 11.35 
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At pH 7.4, which is the pH at which the experiments are performed, BSA and bCA will have a net 

negative charge while lysozyme would have a net positive charge. If BSA and bCA did evoke a 

response at the aqueous-LC interface, this would mean that the LC itself should have a net positive 

charge for the non-specific interaction to occur. 

 

 
 

 

Figure 4.6: The images of the response of aqueous-LC interface decorated from H-dimer (20 μM) with (A) 

Carbonic anhydrase II (4 μM), (B) BSA (4 μM), and (C) lysozyme (4 μM). The schematic illustrations of the 

response of aqueous-LC interface to (D) Carbonic anhydrase II (4 μM), (E) BSA (4 μM), and (F) lysozyme 

(4 μM). All magnified images were represented on the middle and white bar in the magnified images 

represented 100 μm. 
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To test if the LC response was indeed because of the electrostatic interactions between the LC 

interface and the proteins of interest, we recorded the zeta potential of 5 CB droplets in milliQ 

water, PBS at pH 7.4 and when incubated with 20 µM dimer and found that the zeta potential 

values were -70, -37 and -40 mV respectively. In other words, the LC interface contains a net 

negative charge when incubated with the dimer and this, rules out the possibility of there being 

electrostatics driven complex formation at the aqueous-LC interface. We further wanted to 

investigate if the non-specific binding of BSA on the aqueous-LC interface is blocked due to the 

binding between bCA and sulfonamide. To this end, we performed an experiment wherein we first 

decorated the LC interfaces with the dimeric amphiphiles and incubated it with bCA (0.4 µM) for 

2 hours. We then, introduced 1 µM BSA into the system and observed the appearance of an 

 
 

Table 4.2: Molecular weights and pI values of proteins CA II, BSA and lysozyme(Table 1) and  Zeta 

potential measureents of the the LC-aqueous interface (Table 2) 
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anchoring transition using Polarized Light Microscopy (PLM). Interestingly, we found that the 

non-specific response from BSA was completely suppressed suggesting that interfaces that are 

pre-saturated with bCA blocked any non-specific response from BSA. To test this hypothesis 

further, we performed a control experiment wherein the dimer decorated LC interfaces were 

treated with a premixed solution of bCA (1 µM) and BSA (1 µM).  It was observed that even in 

this case, the non-specific response from BSA was indeed suppressed (Fig 4.6). Finally, we 

incubated the dimer decorated LC interfaces with a premixed solution lysozyme (1 µM) and BSA 

(1 µM) and found the appearance of bright domains corresponding to the non-specific binding of 

BSA with the dimer.  

These experiments indeed, reveal that saturating the LC interface with a complementary binding 

protein i.e. bCA suppresses the non-specific binding with other proteins. This is brought about 

because bCA binds faster to the dimer than BSA and hence, pre-saturates the LC interface. If this 

were to be true, then there would exist a threshold concentration of bCA below which the binding 

of BSA would not be suppressed. 

 
 

Figure 4.7: (A) The relative intensities of aqueous-LC interface decorated with dimer with different 

concentration of CA II and BSA 
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 To investigate this possibility, we incubated the dimer decorated LC interfaces with a premixed 

solution of bCA and BSA such that the concentrations of bCA were varied from 0-0.4 µM while 

the concentration of BSA was fixed to be 1 µM. We then, recorded the relative intensities of the 

aqueous-LC interfaces decorated with different concentrations of bCA and found that the threshold 

concentration of bCA required to block the non-specific binding with BSA was 0.4 µM (Fig 4.7). 

4.3.4 Competitive inhibition experiment to determine kinetics of binding of complementary 

vs non-complementary proteins 

To gain more insight into the specific binding between the sulfonamide-containing dimer and the 

protein bCA, we designed a competitive inhibition experiment. We use two commercially 

available inhibitors ethoxzolamide and benzenesulfonamide that have KD (dissociation constant) 

values of 0.1 nM and 970 nM respectively and the KD values indicate that both these molecules 

 
Figure 4.8: The polarized light microscopy images of anchoring transition of aqueous-LC interface 

decorated from dimer (20 μM) with (A) Carbonic anhydrase II (0.4 μM) – Dimer complex after 

contacting with BSA (1μM), (B) Carbonic anhydrase II (1 μM) and BSA (1 μM) simultaneously, 

and (C) lysozyme (1 μM) and BSA (1 μM) simultaneously. Time interval to add CA II (0.4 μM), 

BSA (1 μM), and lysozyme (1 μM) onto the well. All samples were incubated for 2 hour and 

observed by polarized light microscopy. 
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bind strongly to bCA compared to the sulfonamide moiety on the dimer which has a higher KD 

value than the inhibitor molecules50.  

We hypothesize that if the anchoring transition at the LC interface is brought about indeed by the 

specificity in binding between the dimer molecule and bCA, then an inhibitor molecule that has a 

higher propensity of binding should be able to replace the dimer molecules from binding to bCA. 

To investigate this possibility, we performed an experiment wherein we incubated the dimer 

decorated aqueous-LC interfaces with bCA (0.4 µM) and then subjected them to a sequential 

addition of the non-specific protein, BSA (1 µM) followed by 4 µM ethoxzolamide or 

benzenesulfonamide.  

We then, monitored the relative intensities of the interfaces with time with the inhibitors. If our 

hypothesis above were to be true, we should observe a bright domain at the LC interface since the 

inhibitors would deplete the interface of any bCA and that would then, facilitate the non-specific 

binding of BSA to the dimer at the aqueous-LC interface. We indeed, found that the release of 

bCA was enhanced in the presence of inhibitors such as ethoxzolamide and benzenesulfonamide 

which manifested as a bright domain in the LC film corresponding to the non-specific binding of 

BSA as was revealed by PLM. 
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4.3.5 Digestion of carbonic anhydrase using Thermolysin to probe non-specific binding 

Finally, we used an enzyme Thermolysin (TLN) that could preferentially digest bCA and would 

allow BSA to bind non-specifically to the dimer at the aqueous-LC interface. Thermolysin is an 

extracellular metalloendopeptidase containing four calcium ions and uses Zinc and Calcium as 

cofactors50. The enzyme hydrolyzes peptide bonds on the N-terminal side of hydrophobic amino 

acid residues and is quite stable up to 80 oC 51.  

A solution of bCA and Thermolysin was obtained by mixing 0.4 µM bCA and 0.1, 0.5 and 1 pM 

TLN respectively and this solution was incubated at 65 oC for one hour. To this, 1 µM BSA was 

added and the resulting solution was added to the dimer decorated aqueous-LC interface. 

Following this, the relative intensity of aqueous-LC interface was monitored with different 

concentrations of TLN (Fig 4.8). It was observed that upon increasing TLN concentration, the 

intensity of the bright domain increased suggesting that TLN indeed digests bCA to allow for the 

non-specific binding of BSA and the threshold concentration of TLN required to digest bCA was 

found to be 0.1 pM. This mechanism of degradation was also corroborated using gel 

 
 

Figure 4.9: The relative intensity of aqueous-LC interface of (A) All control samples, (B) The relative 

intensity of aqueous-LC interface with different concentration of TLN, (C) the schematic illustration 

of experimental system with TLN, CA II, and BSA, (D) the schematic illustration of role of TLN in 

the mixture of CA II (0.4 μM) and BSA (1 μM) 

 

 

 
Figure 4.9: The relative intensity of aqueous-LC interface of (A) All control samples, (B) The 

relative intensity of aqueous-LC interface with different concentration of TLN, (C) the schematic 

illustration of experimental system with TLN, CA II, and BSA, (D) the schematic illustration of 

role of TLN in the mixture of CA II (0.4 μM) and BSA (1 μM) 

 

 

 



 

127 
 

electrophoresis experiments. We found that similar concentrations of TLN (as the experiment 

mentioned above) when incubated with 0.4 µM bCA at 65 oC for one hour resulted in lighter bands 

in gel electrophoresis whose intensity could then be extrapolated to relate to the extent of 

degradation. 

4.4 Conclusions 

In conclusion, dimer was the only amphiphilic oligomer that was found to adsorb at the aqueous-

LC interface to trigger a homeotropic anchoring transition. Tiny particles appeared on the interface 

in response to the addition of bCA and in case of BSA, the interface changed to bright. The specific 

binding between CA II and sulfonamide on aqueous-LC interface was found to prevent the non-

specific binding of BSA, and the threshold concentration of CA II was calculated to be 0.4 µM. In 

addition, CA II was found to bind to sulfonamide on the interface stronger than BSA resulting in 

the blocking of non-specific binding of BSA on aqueous-LC interface. This mechanism was 

corroborated using addition of inhibitor which enhanced the release of CA II from aqueous-LC 

interface by modulating the strength of binding. Digestion of bCA by an enzyme Thermolysin was 

found to induce an anchoring transition from homeotropic to planar owing to the non-specific 

binding with BSA. The design rules established here provide insight into the rational design of 

oligomers that can be used as triggers to create responsive LCs wherein microscopic events could 

be translated into macroscopic observables. 
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4.6 NMR spectrum of molecules 

Figure 4.10: 1H NMR of molecules 15(top) and 14(bottom) 
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Figure 4.11: 1H NMR of molecules 13(top) and 7(bottom) 
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Figure 4.12: 1H NMR of molecules 8(top) and 9(bottom) 
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Figure 4.13: 1H NMR of molecules 10(top) and 11(bottom) 
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Figure 4.14: 1H NMR of molecules 12(top) and 21(bottom) 
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Figure 4.15: 1H NMR of molecules 1(top) and 2(bottom) 
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Figure 4.16: 1H NMR of molecules 3(top) and 4(bottom) 
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 Figure 4.17: 1H NMR of molecules 5(top) and 6(bottom) 
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Figure 4.18: 13C NMR of molecules 1(top) and 2(bottom) 
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Figure 4.19: 13C NMR of molecules 3(top) and 4(bottom) 
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Figure 4.20: 13C NMR of molecules 5(top) and 6(bottom) 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

 

5.1 Summary 

 
The self-assembly of stimuli-responsive scaffolds based on micelles, liposomes, hydrogels and 

thin films has been of considerable interest in areas such as diagnostics, sensing, drug delivery and 

cryptic catalysis1,2,3. These systems need to be endowed with certain design features which 

influence the self-assembly and the responsiveness of the scaffold when subjected to external 

stimuli which could be physical, chemical or biological in nature4,5. This kind of insight is still 

lacking in our understanding of how these systems respond to various stimuli. In this thesis, our 

objective is to establish structure-property relationships between the influence of structural design 

and the target material properties. Of interest to us are pH, temperature (chemical) and 

enzyme/proteins (biological) as stimuli and we have performed experiments to validate the 

responsive features of these systems.  

In Chapter 2, we have established the design principles for oligomeric peptides to exhibit a unique 

size transition well below the LCST. We have found that incorporation of aromatic hydrophobic 

groups diminishes the thermo-sensitivity of the peptide nanoassemblies. The size transition is 

brought about by a loss of secondary structures at low temperatures and the temperature-dependent 

aggregation properties also gave rise to disparity in terms of guest encapsulation ability upon 

changing temperature. Since these molecules are designed to incorporate FDA approved 

components and the assembly is biodegradable, this system has interesting applications in the food 

industry and in cryptic catalysis. 
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In Chapter 3, we have established structure-property relationships pertaining to the release of an 

artificial sweetener, aspartame from microgels and bulk hydrogels of aspartame encapsulated 

calcium cross linked alginate gels. We have, in particular, studied the different parameters that 

dictate the gel architecture and hence, the morphology and the structure of the gels. We have 

validated the effect of cross link densities and sizes on the release kinetics of the microgel spheres 

and bulk hydrogels. The release data was fitted to kinetic models available from literature to 

elucidate the pathway constraints dictated the release pathway.  

 

In Chapter 4, structure-property relationships were developed using libraries of polymeric and 

oligomer amphiphiles to make possible rational design of triggers for amplification via LC 

response. To this end, we synthesized a wide range of stimuli-responsive amphiphilic oligomers 

that responded to a protein, carbonic anhydrase (CA II). Dimer was the only amphiphilic oligomer 

that was found to adsorb at the aqueous-LC interface to trigger a homeotropic anchoring transition. 

Moreover, CA II was found to bind to sulfonamide on the interface stronger than BSA resulting in 

the blocking of non-specific binding of bovine serum albumin (BSA) on aqueous-LC interface. 

This mechanism was corroborated using addition of inhibitor which enhanced the release of CA 

II from aqueous-LC interface by modulating the strength of binding. The design rules established 

here provide insight into the rational design of oligomers with triggers that can couple specific 

molecular events to LCs to achieve highly amplified responses. This paves way to develop 

principles based on LCs that permit incorporation of feedback for massive amplification that can 

be leveraged for targeting and triggering. 
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5.2 Future directions 

 

5.2.1 Role of linker in thermo responsive behavior 

In Chapter 2, we found that incorporation of a hydrophobic aromatic unit diminishes temperature 

sensitivity. From the observations so far in Chapter 2, we were interested in incorporating an ester 

linkage in the peptide backbone and examining the thermo-responsive behavior of those 

assemblies. This is because the amide bond is known to be planar and hence, rigid owing to the 

partial double bond character arising out of the delocalization of the lone pair of electrons of the 

nitrogen atom of the amide group6,7,8,9. Considering this, we designed and synthesized molecule 4 

(Scheme 1) with similar amphiphilic functionalities.  

 
 

Scheme 5.1: Synthesis of amphiphilic peptide 4 

 

 
 

Scheme 5.1: Synthesis of amphiphilic peptide 4 
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A benzyl alcohol group was chosen as the hydrophobic group since it is GRAS and used widely 

in food products and a pentaethylene glycol was used as the hydrophilic functionality.  

Molecule 4 differs from molecule 1 in the fact that the hydrophobic functionality (benzyl alcohol) 

is tethered to the peptide backbone solely by means of an ester linkage which is biodegradable. 

 
Figure 5.1:a) Temperature-dependent size variation for molecule 4 from DLS b) 

CD spectrum for molecule 4 indicates higher ordered structures at 25 ºC with a 

substantial loss at 5 ºC. TEM images for molecule 17 at c) 25 ºC and d) 5 ºC 

support the data obtained 

 

 

 

 

 
Figure 5.0.1:a) Temperature-dependent size variation for molecule 4 from 

DLS b) CD spectrum for molecule 4 indicates higher ordered structures at 25 

ºC with a substantial loss at 5 ºC. TEM images for molecule 17 at c) 25 ºC and 
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We, then, dispersed molecule 4 in water and studied the temperature-dependent aggregation 

properties using light scattering. Molecule 4 too, was found to self-assemble into aggregates ̴ 140 

nm at 25 ºC which corroborated with the transmission electron microscopy (TEM) data as well. 

 Upon decreasing temperature, molecule 4 was found to exhibit a sharp size transition at 5 ºC akin 

to molecule 12 with the size at 5 ºC being ̴ 80 nm. Circular dichroism studies suggest the presence 

 

Scheme 5.2: Synthesis of control molecule 5 

 

 

 

Figure 5.2: DLS sizes for molecule 4 indicate that the size transition is irreversible over several heating 

and cooling cycles and that the peptide nanoassemblies are kinetically trapped at 25 ºC 

 

 

 

Figure 5.2: DLS sizes for molecule 4 indicate that the size transition is irreversible over several 

heating and cooling cycles and that the peptide nanoassemblies are kinetically trapped at 25 ºC 
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of ordered structures typical of oligo-esters i.e. 225 nm for π–π* transition10-11 and a significant 

loss of secondary structure was observed at low temperatures (Figure 1). Therefore, one could say 

that the rigidity of the hydrophobic unit and the linker structure both, dictate the overall rigidity of 

the peptide nanoassemblies in addition of the presence of the oligoethylene glycol and therefore, 

the aggregation properties at low temperatures. If our hypothesis were to be true, we should be 

able to validate the same using the control molecule 5 shown in Scheme 2. We will perform 

temperature dependent DLS and CD experiments to notice if there is any change in the aggregation 

properties of the control amphiphile upon change in temperature.  

5.2.2 pH dependent degradation of peptide nanoassemblies 

We anticipated that the peptide nanoassemblies would hydrolyze and degrade owing to the choice 

of biodegradable ester and amide linkages in the backbone12,13.  

 

 
Figure 5.3: CD spectra of a) molecule 12, b) molecule 13 and c) molecule 17 upon incubation in acidic 

medium show that the nanoassemblies adopt a different secondary structure than their native 

conformation 

 

 

 



 

151 
 

It is worthwhile to note that acid-catalyzed hydrolysis of the peptide nanoassemblies gives rise to 

different secondary structures for molecules 1, 2 and 4 (Figure 3) than that previously observed 

and hence, different aggregation properties (Figure 3). If our hypothesis were to be true, we should 

observe peaks corresponding to the degraded oligomers when subjected to mass spectroscopy 

analysis. Mass spectroscopy needs to be performed to observe if the hydrolysis of the peptide 

nanoassemblies proposes the formation of charged by-products and introducing a charge on a 

peptide backbone14,15which might explain the sudden change in the nature of secondary structures 

formed upon hydrolysis. 

5.2.3 Triggerable Multi-Scale Responses via Liquid Crystallinity 

In Chapter 4, we have developed structure-properties relationships for the design of oligomeric 

and polymeric amphiphiles that couple a range of stimuli to LC responses and LC-based principles 

that permit incorporation of feedback for massive amplification. We now, intend to leverage  

 

 
Figure 5.4: Simulations indicate that oligomeric dimer disrupts ordering of LC interface 
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structure-property relationships for oligomeric and polymer amphiphiles to rationally design LCs 

systems that respond to a range of stimuli to combine designs of triggerable oligomeric and 

polymeric amphiphiles with amplification schemes based on release of microcargo (e.g., release 

of initiator of polymerization). Exploration of non-equilibrium states of LCs for amplification with 

a particular focus on mechanical triggers (e.g., foot of an insect, acoustic event) is also of interest 

to us. Moving forward our objective is to design oligomeric and polymeric amphiphiles that 

integrate multiple stimuli-responsive groups. 

5.2.4 Understanding the mechanism for the dimer to cause the LC homeotropic anchoring 

Our group has always been interested in understanding structure-property relationships at the 

molecular level, and we were intrigued by the fact that the dimeric amphiphilic oligomer was the 

only amphiphile that cause a homeotropic anchoring transition at the LC-aqueous interface. To 

understand this, we have initiated MD simulation experiments in collaboration. Preliminary studies 

suggest that the dimer disrupts the ordering of the LC interface through a change in easy axis 

(Figure 5.4) and this is a new mechanism that has never been reported before.  
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5.3 Materials and methods 

All chemicals and reagents were purchased from commercial sources and were used as received, 

unless mentioned otherwise. 1H NMR spectra were recorded on 400 MHz NMR spectrometer 

using the residual proton resonance of the solvent as the internal standard. Chemical shifts are 

reported in parts per million (ppm). When peak multiplicities are given the following abbreviations 

are used: s, singlet; d, doublet; t, triplet; m, multiplet 

• Synthesis of 4’: 5 g (0.0223 mol) of L-Aspartic acid β-benzyl ester was dissolved in anhydrous 

methanol in a round bottom flask and cooled to 0 oC under inert atmosphere. To this solution, 

triethylamine (4 mL, 0.025 mol) and di-tert-butyl-dicarbonate (5.38 g, 0.025 mol) were added 

and the solution was left to stir overnite. The reaction mixture was concentrated in vacuo, 

extracted using ethyl acetate and water, followed by washing with saturated NaHCO3. The 

combined extracts were dried over anhydrous Na2SO4 to afford 4 in 90% yield and was used 

as it is. 1H NMR (CDCl3, 400 MHz, TMS): δ (ppm) = 7.35(m, 5H), 5.5(broad d, 1H), 

5.1(d,2H), 4.5(broad m, 1H), 3.1(broad m, 1H), 2.9(dd, 1H), 1.5(s,9H) (M+Na+) from ESI 

spectroscopy: 346.14   

• Synthesis of 14: Same procedure as compound 7.Yield:78% 1H NMR(CDCl3, 400 MHz, 

TMS): δ (ppm) = 7.35(m, 5H), 6.2(broad peak, 1H), 5.1(d,2H), 4.5(broad m, 1H), 3.65(broad 

m, 1H), 2.9(dd, 1H), 2.8(m,4H), 1.5(s,9H)  (M+Na+) from ESI spectroscopy: 443.15 

• Synthesis of 15: Same procedure as compound 8. Yield:69% 1H NMR was attempted by 

dissolving the compound in various solvents. However, it was found to be sparingly soluble. 

1H NMR in acetone denotes all the characteristic peaks for the product but the integration does 

http://www.sigmaaldrich.com/catalog/product/sigma/g8653?lang=en&region=US
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not come out as expected owing to low solubility of the compound. (M+Na+) from ESI 

spectroscopy: 869.35 

• Synthesis of 4: Same procedure as compound 1 and 2. Yield: 60% (M+Na+) from ESI 

spectroscopy: 1253.60 

To study the aggregation properties of 12 and 13, the peptides were dispersed in water at different 

concentrations and the critical aggregation concentrations (CAC) were calculated using DiI, a 

hydrophobic dye as a spectroscopic probe. The stock solutions of 12(1.23 mM), 13(1.86 mM) and 

17(1.38 mM) respectively, were made by a standard method of dispersing the weighed compound 

in required amount of HPLC grade water in a scintillation vial with a stir bar followed by 

sonication and vortex for 5 minutes. The required concentrations were prepared by a serial dilution 

of this stock with water, sonicated for 30 minutes and left to equilibrate at ambient temperature for 

1 hour. 40 µL of DiI stock (1mM in acetone) was then added to the vial in a drop wise manner. 

The contents were sonicated for 5 minutes and vortexed for 2 minutes, following which they were 

left to stir for 8 hours at room temperature uncapped to facilitate the evaporation of acetone. The 

excess insoluble DiI was removed by filtration using a membrane with a pore size of 0.450µm. 

The intensity at the maxima (589 nm) were plotted as a function of concentration of the peptide 

 
Figure 5.5: Critical aggregation concentrations of peptide 4 
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amphiphiles and the inflexion point was noted to be the critical aggregation concentration or CAC 

(Figure 5).  

• Temperature dependent Dynamic light scattering study (DLS): The stock solution of 4 

(1.38 mM) respectively, were made by a standard method of dispersing the weighed compound 

in required amount of HPLC grade water in a scintillation vial with a stir bar followed by 

sonication and vortex for 5 minutes. DLS was performed on a Malvern nano-zeta sizer 

instrument with a 637 nm laser with non-invasive backscattering technology detected at 

173˚.All sizes are reported as the hydrodynamic diameter (DH) and were repeated in triplicate. 

Variable temperature DLS experiments were performed by equilibrating the aqueous solutions 

for 5 minutes at the respective temperature before the size measurements.  

• Temperature dependent Transmission electron microscopy (TEM) study: For TEM 

studies, concentrations same as that for DLS measurements were used. Briefly, one drop 

(10µL) of each sample was drop casted on carbon coated Cu grid and allowed to dry for 24 

hours (at ambient temperature) before imaging them. For the size measurement at low 

temperature, the same sample was incubated at 5˚C following which it was drop casted and 

allowed to dry before imaging. TEM images were recorded on a JEOL-2000FX machine 

operating at an accelerating voltage of 100 kV. 

• Temperature dependent Circular Dichroism (CD) studies: CD spectra of the peptide nano 

assemblies were recorded on JASCO J-1500 spectrophotometer. In a typical experiment, 200 

µL of the peptide amphiphiles solution (concentrations same as that in DLS and TEM 

measurements) was injected into a quartz cuvette of 1-mm path length, equilibrated at 25 ºC 

and 5 ºC for 5 min and scanned from 180 to 250 nm (scan rate: 20 nm/min, interval: 0.2 nm, 

average of three spectra). 
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5.4 NMR spectrum of molecules  

Figure 5.6 : 1H NMR of molecules 4’(top) and 14(bottom) 
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Figure 5.7: ESI-MS of molecule EST-AROM(4’) 
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APPENDIX 

 EFFECT OF HOFMEISTER IONS ON THE SIZE, SUB-LCST AND 

ENCAPSULATION STABILITY OF TRIMERIC OLIGOMERS 
 

 

 

A.1 Background and significance 

 
A1.1 Hofmeister effect 

The effects of salts and osmolytes on the folding of proteins and colloidal structures in aqueous 

solutions have been long studied1. In as early as 1888, the identity and concentration of anions 

present in solution has been found to induce a plethora of macromolecular phase transition. This 

ability of an anion to affect this macromolecular phase transition in aqueous solution generally 

follows a trend which is commonly referred to as the Hofmeister series. This series has been 

implicated in protein crystallization, ion exchange, surface tension of electrolytes or bubble 

coalescence2. The series ranks the relative influence of ions on the physical behavior of a wide 

variety of aqueous processes. This behavior is more pronounced for anions than cations. Ions on 

the left are called ‘Kosmotropes’, which tend to precipitate proteins and prevent unfolding of 

 
 

Figure A.1: The Hofmeister series showing Kosmotropes and Chaotropes 

 

 
 

Figure A.1: The Hofmeister series showing Kosmotropes and Chaotropes 
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proteins. Ions on the right are called ‘Chaotropes’, which increase the solubility and promote the 

denaturation of proteins3.    

Kosmotropes are referred to as water structure makers because they have the propensity to 

strengthen hydrogen-bonding network of bulk water owing to their large hydration energies. 

Chaotropes on the other hand, break the hydrogen bonding network owing to their small hydration 

energies. While the molecular origin is not fully understood, the Hofmeister series is associated 

with ion hydration in homogeneous and heterogeneous environments while its molecular origin 

has not been completely understood. 

A1.2 Effect of Hofmeister ions on water soluble polymers 

The implications of the findings of the Hofmeister series have been well-established in the 

biological realm. However, the chemical explorations have been vastly unexplored. For example, 

addition of salts has been demonstrated to lower the Lower Critical Solution Temperature (LCST) 

of water soluble polymers such as poly ethylene glycol (PEG) and poly n-isopropyl acrylamide 

(PNIPAM) and the effect is in accordance with the findings of the Hofmeister series. LCST is 

understood to be brought about due to the hydrophobic collapse of the PEG and PNIPAM polymer 

chains owing to their reduced hydrogen-bonding interaction with water3,4. While variations in 

macroscopic phase transitions or LCST have been extensively studied, changes in the aggregation 

properties of polymeric aggregates upon addition of salts has not been well established. In the 

Thayumanavan research group, studies have demonstrated that the size and the core density of a 

polymeric aggregate containing oligoethylene glycol (OEG) and pyridyl sulfide (PDS) units as 

side chain functionalities can be fine-tuned by an appropriate choice of chaotropes or 

kosmotropes5. Further, the encapsulation stability of hydrophobic guest molecules  
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were found to depend on the salts used during preparation of the polymeric aggregates. While 

chaotropic anions afforded aggregates with higher encapsulation stability, the reverse was found 

to be the case for Kosmotropes. Salt-dependent hydration of the OEG groups was attributed to be 

the cause for changes in the core density of the polymeric aggregate giving rise to the leaky 

character of the polymeric aggregate. 

A1.3 Hypothesis and design principle 

 

Oligo and Poly ethylene glycol based hydrophilic functional groups are renowned for exhibiting 

LCST behavior. In our group, we were interested in determining the factors that account for the 

temperature sensitivity of PEG groups and embarked in a study to investigate the thermosensitive 

properties of oligo ethylene based supramolecular assemblies below the LCST. A sub-LCST was 

observed well below the LCST of oligo ethylene glycol based dendrons which was accompanied 

by a change in size of these supramolecular assemblies6,7. It was interesting to note that the host-

guest properties were significantly altered at low temperature that affected the guest encapsulation 

stability indicating that the assemblies became a lot more dynamic at low temperatures. This was 

 
Figure A.2: Effect of Hofmeister Ions on the Size and Encapsulation Stability of Polymer 

Nanogels 

 

 
Figure A.2: Effect of Hofmeister Ions on the Size and Encapsulation Stability of 

Polymer Nanogels 

 

 
Figure A.2: Effect of Hofmeister Ions on the Size and Encapsulation Stability of 

Polymer Nanogels 
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hypothesized to arise due to increased hydration of PEG chains at lower temperatures. While the 

effect of Hofmeister series on LCST has been studied extensively, there is a dearth of studies that 

relate the effects of the Hofmeister series to sub-LCST. In this study, we embark on a study to 

reveal the same. 

 

 

 
 

Figure A.3: Sub-LCST and trimers exhibiting a change in aggregation properties below sub-

LCST 
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A.2 Materials and methods 
 

A2.1 Synthesis and Characterization 

All chemicals and reagents were purchased from commercial sources and were used as received, 

unless otherwise mentioned. 1H-NMR spectra were recorded on 400 MHz Bruker NMR 

spectrometer using the residual proton resonance of the solvent as the internal standard. Chemical 

shifts are reported in parts per million (ppm). When peak multiplicities are given the following 

abbreviations are used: s, singlet; d, doublet; t, triplet; m, multiplet. 13C-NMR spectra were proton 

decoupled and measured on a 500 MHz Bruker spectrometer with 125 MHz frequency by using 

carbon signal of the deuterated solvent as the internal standard. 1H NMR of the methylated 

amphiphiles showed incorrect integrations and were rounded to the expected values. To clearly 

confirm the formation and purity of those products mass spectrometry was performed and reported.  

Molecules 1, 2 and 3 were synthesized following the previously reported procedure7. 

 

A2.2 Dynamic Light Scattering 

DLS was performed on a Malvern nano-zeta sizer instrument with a 637 nm laser source with non-

invasive backscattering technology detected at 173⁰. All sizes are reported as the hydrodynamic 

diameter (DH) and were repeated in triplicate. All samples were prepared in water at pH 7 by brief 

sonication and vortexing at room temperature. Variable temperature DLS experiments were 

performed by equilibrating the aqueous solutions for 6 minutes at the respective temperature before 

the size measurements. Salt dependent DLS was performed by making a 1M stock solution of 

Na2SO4, NaCl, NaSCN and diluting it with the amphiphile solution to acquire the desired 

concentration. 
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For cloud point measurement, the polymer (10 mg/mL) in water or salt solution was used. The 

temperature was increased from 10 to 60 °C in 2 °C increments. Equilibration time at each 

temperature was 10 min. Above the LCST, the polymer chains collapse into a globule and produce 

a more compressed particle with a higher refractive index, so scattering intensity was monitored 

as a function of temperature to determine the LCST behavior of polymer solution. For size 

distribution measurement, we used the polymer (10 mg/mL) or nanogel (1 mg/mL) solution in 

water or each salt solution, which contains a specific salt concentration. The measurement was 

kept constant at 25 °C throughout the experiment. Dust was eliminated by filtering the solution 

through 0.45 μm membrane filter. 

 

A2.3 Guest Exchange experiments using FRET 

FRET studies were performed on a PTI spectrofluorometer with a XenoFlash power supply and 

Quantum TC125 temperature control. Dye loading (DiI and DiO) in the micelles was always done 

at 1 wt % of the corresponding amphiphile as follows: 20 μL of 0.5 mg/mL dye (DiO or DiI) in 

acetone was added to a 20 mL glass vial containing 1 mg of amphiphile, to this mixture was added 

additional 40 μL of acetone to homogeneously mix all the components. The acetone was then 

evaporated using a mild argon flow, followed by addition of calculated amount of water to make 

25 μM amphiphile solutions.  

Temperature dependent guest exchange experiments were done as follows: 25 μM amphiphile 

solution loaded with DiO was equilibrated at corresponding temperature in the fluorimeter cell for 

6 minutes, similarly 25 μM amphiphile solution containing DiI was equilibrated at the same 
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 temperature outside using an ice bath or hot water bath for 6 minutes, upon equilibration DiI 

containing solution was briskly transferred into a 1 mL syringe and added to DiO containing 

solution. DiO was excited at 440 nm, and DiI emission was monitored at 567 nm at different time 

points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme A.1: Structures of the trimeric amphiphiles used in the study 
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A.3 Results and discussion 
A.3.1 Effect of Hofmeister ions on the aggregation properties of trimers 

The oligomers were synthesized and characterized in accordance with the procedure mentioned in 

section A.2. We, then, investigated the size of these assemblies in the presence of three salts at 25 

ºC namely kosmotropic (sodium sulfate), weakly kosmotropic (sodium chloride) and chaotropic 

(sodium thiocyanate) using dynamic light scattering (DLS). Kosmotropes namely, sodium sulfate 

and sodium chloride were found to induce aggregation of these assemblies and gave rise to 

assemblies which were about 1 µm in size from DLS. On the other hand, sodium  

 

 
Figure A.4: Dynamic light scattering (DLS) of trimer (T) in the presence of kosmotropic (sodium 

sulfate), weakly kosmotropic (sodium chloride) and chaotropic salts (sodium thiocyanate) 
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sulfate), weakly kosmotropic (sodium chloride) and chaotropic salts (sodium thiocyanate) 
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thiocyanate which is a chaotrope was found to reduce the size of these assemblies to about 10 nm 

in size.  

This result interestingly coincides with a previous finding wherein the OEG chains in these 

oligomeric assemblies were hypothesized to be hydrated better at lower temperatures and 

chaotropic anions are understood to bring about a similar effect5. This is taken to be because of 

better hydration of OEG chains upon introduction of chaotropic ions and a subsequent change in 

the hydrophilic-lipophilic balance (HLB) resulting in the change in the aggregation properties of 

the oligomeric trimers. On the other hand, kosmotropes which are understood to dehydrate OEG 

 

 

Figure A.5: Correlation coefficients as given by Dynamic light scattering (DLS) of trimer (T) in the 

presence of kosmotropic (sodium sulfate), weakly kosmotropic (sodium chloride) and chaotropic 

salts (sodium thiocyanate) 

 

 

 

 

Figure A.5: Correlation coefficients as given by Dynamic light scattering (DLS) of trimer (T) 
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chains induce inter-aggregate crosslinking resulting in larger assemblies. Also, the threshold 

concentration required to induce aggregation of these assemblies is found to be ~ 50 mM. 

A.3.2 Effect of Hofmeister ions of the sub-LCST of trimers 

Because the Hofmeister ions change the LCST of these OEG containing amphiphiles, we 

hypothesized that the behavior so observed would hold true even for the sub-LCST behavior for 

the trimers. To test this hypothesis, we subjected these trimer solutions containing 500 mM sodium 

sulfate/sodium chloride/sodium thiocyanate to different temperatures and recorded the sizes of 

these aggregates at different temperatures. 

 

Figure A.6: Dynamic light scattering (DLS) of cyclic trimer (CT) in the presence of kosmotropic 

(sodium sulfate), weakly kosmotropic (sodium chloride) and chaotropic salts (sodium thiocyanate) 
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We found that the sizes of the aggregates at different temperatures could not be determined because 

 

Figure A.7: Correlation coefficients as determined by dynamic light scattering (DLS) of 

cyclic trimer (CT) in the presence of kosmotropic (sodium sulfate), weakly kosmotropic 

(sodium chloride) and chaotropic salts (sodium thiocyanate) 
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of cyclic trimer (CT) in the presence of kosmotropic (sodium sulfate), weakly 

kosmotropic (sodium chloride) and chaotropic salts (sodium thiocyanate) 

 

 

 

 

Figure A.8: Correlation coefficients as determined by dynamic light scattering (DLS) of trimer (T) in 

the presence of 500 mM kosmotropic (sodium sulfate), weakly kosmotropic (sodium chloride) and 

chaotropic salts (sodium thiocyanate) at different temperatures 
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the correlation coefficients obtained from DLS measurements were not reliable and this suggests 

that the size measurement is not possible for the trimer. As for the cyclic trimer, the sizes could be 

obtained reproducibly however, the correlation coefficient were still not reliable. Hence, the results 

obtained herewith are not conclusive. 

 Our explanation for the observed discrepancies in the correlation coefficients stems from an 

earlier research wherein several research groups have reported a change in viscosity upon addition 

of salts8. It is important to note that the principle of dynamic light scattering rests on the Stokes-

Einstein equation and the hydrodynamic radius is calculated assuming the solution viscosity to be 

the same. If the solution viscosity were to change based on the concentration of salts involved, 

then approximating the viscosity to be the same for all the salt concentrations and that too at 

 

Figure A.9: Correlation coefficients as determined by dynamic light scattering (DLS) of 

cyclic trimer (CT) in the presence of 500 mM kosmotropic (sodium sulfate), weakly 

kosmotropic (sodium chloride) and chaotropic salts (sodium thiocyanate) at different 

temperatures 

 

 

 

Figure A.9: Correlation coefficients as determined by dynamic light scattering (DLS) 

of cyclic trimer (CT) in the presence of 500 mM kosmotropic (sodium sulfate), weakly 
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different temperatures would lead to erroneous results. This explains the trends seen in the 

correlation coefficients observed in the above DLS measurements. 

A.3.3 Dynamics of exchange using Foster Resonance Energy Transfer (FRET) 

 Considering the salt-dependent aggregation behavior, we were interested in investigating the 

implications of this behavior in guest exchange. While we did not anticipate any difference sin the 

encapsulation of guest molecules based on minor salt dependent variations in the assembly, we 

expected such changes to affect the dynamics of guest exchange between the host and the bulk 

solvent which is referred to as the encapsulation stability. We hypothesize that if the solvation of 

the host were to differ upon addition of salts, then the encapsulation stability should follow suit 

since guest encapsulation are governed by solvophobic interactions. 

 

 

Figure A.10: Working principle of the FRET-based method to determine the dynamics of exchange in 

supramolecular assemblies 
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If the oligomer were to be more hydrophilic upon addition of chaotropes, then the dynamics of 

exchange should be faster than in case of weakly kosmotropic or kosmotropic salts. The dynamics 

of guest exchange and thus, the leakage coefficient can be measured using a Foster Resonance 

Energy Transfer (FRET)-based method9. Here, two separate solutions of the host-guest assembly 

are mixed: one comprising of a FRET donor dye (DiO) and the other container containing an 

acceptor dye (DiI). If there were to be a rapid exchange of these dye molecules upon mixing such 

that the donor and acceptor would result in the same supramolecular assembly, this would lead to 

 

Figure A.11: Absorbance of DiI in dye-loaded trimer (T) upon addition of kosmotrope (Na2SO4 and 

NaCl) and chaotropes (NaSCN) 
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a decrease in the donor emission and a concomitant increase in the acceptor emission when the 

donor molecule is excited. On the other hand, when there is no guest exchange, there will be no 

evolution of the relative emission intensities of the donor and acceptor over time. 

To test this hypothesis, we first tested the encapsulation stability of the trimers by monitoring the 

absorption spectrum of the guest molecule (DiI). We measured the leakage and precipitation of the 

dye molecule. 

 

Figure A.12: Absorbance of DiI in dye-loaded cyclic trimer (CT) upon addition of kosmotrope 

(Na2SO4 and NaCl) and chaotropes (NaSCN) 
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The solution that contains kosmotropes such as sodium sulfate and sodium chloride should 

dehydrate the exposed OEG groups thus, rendering the nanogels less leaky. Chaotropes on the 

other hand, would render the assembly leakier because more OEG groups would be hydrated. 

Indeed, we found this to be the case (Fig 11 and 12). In both the trimer and the cyclic trimer, there 

is little or no dye leakage in the presence of only kosmotropes. Therefore, the encapsulation 

stability of guest molecules is dependent on the nature of the salt used for the preparation of the 

nanogels. 

Figure A.13: Overlap integral for DiO and DiI in dye-loaded trimer (T) upon addition of kosmotrope 

(Na2SO4 and NaCl) and chaotropes (NaSCN) 
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FRET or Forster Resonance Energy transfer is based on the principle of transfer of excitation 

energy of a donor to a nearby acceptor in a non-radiative manner through dipole-dipole interactions 

and the resonance frequencies of the donor-acceptor need to be similar10. We next, investigated if 

this FRET-based method could indeed be used for the system of interest to us. To this end, we 

tested if the basic prerequisites of FRET were met by the dye-loaded oligomeric system that we 

are using here. One of the most important prerequisites for FRET to be conclusive is the overlap 

integral between the donor emission and the acceptor absorbance spectrum11. Because the salts 

change the hydrophilicity of the interior of the assembly, we anticipated shifts in the emission 

spectrum of the dyes DiO and DiI due to the change in the microenvironment of the interior of the 

assembly12. We measured the emission spectrum of the donor (DiO) and the absorbance spectrum 

 

Figure A.14: Overlap integral for DiO and DiI in dye-loaded cyclic trimer (CT) upon addition 

of kosmotrope (Na2SO4 and NaCl) and chaotropes (NaSCN) 

 

 

Figure A.14: Overlap integral for DiO and DiI in dye-loaded cyclic trimer (CT) upon 

addition of kosmotrope (Na2SO4 and NaCl) and chaotropes (NaSCN) 
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of the acceptor (DiI) in the presence of different salts and extrapolated the overlap integral (Figure 

13 and 14). 

Note that there are no shifts observed in the acceptor absorbance spectrum and it remains the same 

irrespective of the choice of salt. However, there is a drastic shift in the emission spectrum of the 

donor (DiO) in various salts and this alludes to the change in the extent of the overlap integral. 

There is a bathochromic shift observed for the donor (DiO) in case of kosmotropic salts while that 

is absent in case of water and chaotropes (NaSCN). Therefore, the extent of overlap is more for 

kosmotropes than chaotropes and that would result in a faster FRET for the kosmotropes. Note 

that this defies our previous hypothesis in which chaotropes were thought to make the assemblies 

more leaky and result in the faster exchange of the hydrophobic guest molecules. Therefore, it 

suffices to say that this technique is not viable to study the dynamics of exchange of the trimeric 

oligomers.  

A.4 Conclusions  

We observed that there are subtle differences in the aggregation states of OEG-functionalized 

amphiphilic oligomers in aqueous phase, endowed by the presence of various salts. Salt-dependent 

hydration of the OEG units in the nanogel was hypothesized to cause variations in dynamics of 

monomer aggregate equilibrium, which then determine the leaky character of the aggregates. A 

FRET-based method was evaluated to study the dynamics of monomer-aggregate equilibrium and 

needs to be assessed further. 
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