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ABSTRACT

MODELING AND OPTIMIZING ROUTING DECISIONS FOR
TRAVELERS AND ON-DEMAND SERVICE PROVIDERS

FEBRUARY 2019

XINLIAN YU

B.S., SOUTHEAST UNIVERSITY

M.S., NANJING UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Song Gao

This thesis investigates the dynamic routing decisions for individual travelers and on-

demand service providers (e.g., regular taxis, Uber, Lyft, etc).

For individual travelers, this thesis focuses on modeling and predicting route choice

decision at two time scales: the day-to-day and within-day. For day-to-day route choice

behavior, methodological development and empirical evidences are presented to under-

stand the roles of learning, inertia and real-time travel information on route choices in a
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highly disrupted network based on data from a laboratory competitive route choice game.

A learning model based on the power law of forgetting and reinforcement is applied. The

learning of routing policies instead of simple paths is modeled when real-time travel in-

formation is available, where a routing policy is defined as a contingency plan that maps

realized traffic conditions to path choices. Using data from a competitive laboratory exper-

iment, model parameter estimates are obtained from maximizing the likelihood of making

the observed choices on the current day based on choices from all previous days. Predic-

tion performance is then measured in terms of both one-step and full trajectory predictions.

Traditionally, the routing policy model within each day is estimated with non-recursive

model which requires prior choice set generation. In practice, sampling choice sets of

routing policies is computationally costly and it does not scale well with the size of the

network. In this thesis, a recursive logit model for route choice is formulated in a stochas-

tic time-dependent (STD) network where the choice of path corresponds is formulated as a

sequence of link choices, without sampling any choice sets. A decomposition algorithm is

proposed for solving the value functions that relies on matrix operations so that the model

can be estimated in reasonable time. Estimation and prediction results of the proposed

model are presented using a data set collected from a subnetwork of Stockholm, Sweden.

Taxis and ride-sourcing vehicles play an important role in providing on-demand mo-

bility in an urban transportation system. Unlike individual travelers, they do not have a

specific destination when there’s no passenger on board. The optimal routing of a vacant

taxi is formulated as a Markov Decision Process (MDP) problem to account for long-

term profit over the full working period at the highest level of spatial resolution. Two

approaches are proposed to solve the problem. One is the model-based approach where a
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model of the state transitions of the environment is obtained from queuing-theory based

passenger arrival and competing taxi distribution processes. An enhanced value iteration

for solving the MDP problem is then proposed making use of efficient matrix operations.

The other is the model-free learning approach, which learns state-action values (and from

that, the best policy) directly from observed trajectory data. This method is model-free,

in that no transition models are needed and the system dynamics are embedded in the ob-

served trajectories. Batch-model RL algorithm is applied to make more efficient use of

collected data by the separation of learning and exploration steps. Both approaches are

implemented and tested in a mega city transportation network with reasonable running

time, and a systematic comparison of the model-based and model-free approaches is also

provided.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Human choices are central to the performance of a transportation system, as individual

travelers and transportation service providers. It is from the interaction of human choices

with the urban physical infrastructure that traffic patterns emerge, with either good or bad

consequences. By understanding and optimizing decision-making process, more efficient

transportation systems can be delivered. On one hand, humans are not automatons and

it is not possible to force their actions. It is therefore essential that we understand the

factors that affect travel-related choices and anticipate the actions of travelers in order to

effectively design and manage the system. On the other hand, an efficient transportation

system requires a lot of quality decision making. Optimization techniques can be applied

to search for better travel decisions to improve mobility and operation efficiency.

Route choice plays a central role in many transport applications, including the de-

sign and implementation of effective intelligent transport systems, on-board navigation

systems, and traffic information broadcasting. Modeling and optimizing route choice de-

cisions are essential to forecast route choice behavior, understand drivers’ reaction and

adaptation to changing environment and improve future traffic conditions in transporta-

tion networks. Modeling and optimizing routing decisions are also challenging given the
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complexity of representing human behavior, the uncertainty and dynamism of network

composition and the large societal scale with thousands of travelers and service providers

to make routing decisions.

Recent advances in information and communication technologies have been influenc-

ing drivers’ route choice behavior greatly. For example, the provision of real-time or even

personalized route guidance information allows drivers to adjust route choice behavior en

route; the use of e-haiing apps(e.g., Uber, Lyft and DidiChuxing) allows both passengers

and taxi drivers to find each other more quickly through smart phones. At the same time,

new data sources such as GPS devices, mobile phone data records, smart card data and

geo-coded social media records have contributed to the availability of high-quality traffic

data at an unprecedented scale. This massive generation of traffic data allows to observe

and understand mobility behavior on an unprecedented level of detail, which provides new

opportunities for obtaining valuable insights and further optimizing operational efficiency

by extracting every ounce of information. Nowadays, the challenge is to figure out how to

use all this data effectively to inform planning activity, improve operations, reduce costs,

and better serve travelers.

1.2 Thesis scope

This thesis investigates the dynamic routing decisions of both travelers and on-demand

service providers (e.g., regular taxis, Uber, Lyft, etc).
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1.2.1 Modeling and Predicting Individual Travelers’ Route Choice Decision

For individual travelers, this thesis focus on the modeling and predicting of route

choice behavior. Two types of route choice models can be defined. One is a fixed se-

quence of road segments, termed a path, while the other is a strategy that specifies road

segments or the full path to take contingent on information on the decision environment,

which is termed as "routing policy" in this thesis. In this thesis, dynamic routing pol-

icy is studied at different time scales according to the divisions of planning period: the

within-day and day-to-day model.

Day-to-day route choice model focus on adjustment behavior of travelers’ repeated

route choice on a daily base. The underlying network conditions is changing everyday.

The traveler gradually learns and updates his/her perception as experiences accumulate

in memory, where a learning model is usually required to capture the updating process.

Long-term longitudinal data is required in order to estimate dynamic day-to-day mod-

els. Longitudinal data is commonly used in other fields (e.g., financial study, health and

employment) but has been used to a limited extent in transportation research due to the

difficulty in collecting such data. In this thesis, a learning-based routing policy model was

developed to capture travelers’ adaptive route choice behavior with real-time information

in a day-to-day learning process. A competitive laboratory behavioral experiment was de-

signed and conducted in a network with stochastic incidents to collect the data associated

with travelers’ route choice decisions for parameter estimation.

Within-day routing policy model adapts en-route choices dynamically based on real-

ized traffic condition. The underlying network distribution is assumed the same over days.

Ding et al. (2015) estimated such a routing policy model with non-recursive model which
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requires prior choice set generation that involves repeated executions of the optimal rout-

ing policy algorithm. However, sampling choice sets of routing policies is computationally

costly and it does not scale well with the size of the network. In this thesis, a recursive

logit model for route choice is formulated in a stochastic time-dependent (STD) network

where the choice of path corresponds to a sequence of link choices, without sampling

any choice sets of routing policies. A decomposition algorithm is proposed for solving

the value functions that relies on matrix operations so that the model can be estimated in

reasonable time.

1.2.2 Optimizing Vacant Taxi Routing Decisions

Taxis and ride-sourcing vehicles play an important role in providing on-demand mo-

bility services due to its great accessibility and convenience in urban areas. By the end

of 2014, there were over 13,000 yellow cabs in New York City (NYC), serving more than

450,000 passengers daily (New York City Taxi, & Limousine Commission. (2014)).

Unlike individual travelers, taxis and ride-sourcing vehicles do not have a clear des-

tination when they do not have a passenger on board. Excessive cruising of empty taxis

not only leads to waste of fuel and time, but also generates additional traffic. The de-

sign and implementation of efficient intelligent routing and participation algorithms for

taxis and ride-sourcing drivers is the key to improve taxi utilization and service quality to

passengers, as well as reduce traffic congestion and energy consumption.

Most studies addressing the taxi routing problem focus on extracting passenger de-

mand pattern from historical GPS trajectories and recommending a location or a sequence

of potential pick-up points for taxi drivers (Powell et al., 2011; Hu, Gao, Chiu and Lin,

2012; Yuan, Zheng, Xie and Sun, 2013; Qu et al., 2014; Hwang et al., 2015). In these
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studies, the routing process ends once the taxi finds a passenger. They do not optimize

routing decisions continuously and adaptively to take into account downstream impacts.

In this thesis, the vacant taxi routing problem is formulated as a Markov Decision

Process (MDP) so that long-term objectives can be taken into account instead of the im-

mediate one of meeting the next customer. Two approaches are proposed to solve the

problem. One is the model-based approach where a model of the state transitions of the

environment is obtained from queuing-theory based passenger arrival and competing taxi

distribution processes. The other is the model-free learning approach, which learns action

values (and from that, the best policy) directly from observed trajectory data. This method

is model-free, in that no transition models are needed and the system dynamics are em-

bedded in the observed trajectories. Both approaches are implemented and tested in a

large-scale network of Shanghai, China, and a systematic comparison of the model-based

and model-free algorithms are also provided.

1.3 Thesis Contributions

The contributions of the thesis to the knowledge base of modeling and optimizing

routing decisions are summarized as follows:

1. Learning Routing Policies in a Disrupted, Congestible Network with Real-Time

Information: an Experimental Approach

An econometric model of learning and choice of routing policies is developed, esti-

mated and evaluated using data from a laboratory experiment of route choice game in a

network disrupted by incidents following a pre-specified distribution. The contributions

are two-fold.
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• Methodologically, a general routing policy learning model based on the power law

of memory decay and reinforcement is developed to account for overlapping of al-

ternatives, extending Path Size Logit to a dynamic context.

• Empirically, the relative importance of learning against inertia is studied system-

atically in a more realistic setting compared to most laboratory experiments in the

literature, where the network is disrupted by incidents, congestible, and has real-time

information on incident occurrence. The comparison of one-step and full-trajectory

predictions highlights the different role of learning in short- and long-term predic-

tions, where one-step prediction entails predicting the next day’s choice, while full-

trajectory prediction entails predicting the next K days’ choices, both of which are

based on observed choices up to today.

2. A Link-based Recursive Route Choice Model for Stochastic and Time Dependent

Networks

A recursive logit model for route choice decision is formulated in a stochastic time-

dependent (STD) network, without sampling any choice set. A decomposition method

is proposed to estimated the model efficiently. Estimation and prediction results are pre-

sented using data from a network situated in the Stockholm, Sweden.

• Methodologically, a recursive logit model for route choice decision is formulated in

a stochastic time-dependent (STD) network where the choice of path corresponds to

a sequence of link choices. A decomposition algorithm is proposed for solving the

value functions that relies on matrix operations so that the model can be estimated

in reasonable time.

6



• Empirically, estimation and prediction results of the proposed model are presented

using a data set collected from a subnetwork of Stockholm, Sweden. Results show

that the model can be estimated efficiently, and gives reasonable results for predic-

tion.

3. A Markov Decision Process Approach to Vacant Taxi Routing with E-hailing

The objective is to develop a methodology for the vacant taxi routing optimization

problem to achieve better optimality, practicality and computationally efficiency. Towards

this end, contributions in modeling, problem formulation and solution algorithm design

are made, detailed as follows.

• Modeling A queueing theory-based model for matching taxis and passengers is

proposed to account for competition from other taxis and use of e-hailing apps. The

routing decisions are based on the physical road network in contrast to cell/zone

based, which enables more practical implementations including the generation of

turn-by-turn guidance.

• Problem formulation The MDP formulation optimizes long-term expected profit

over the complete working period, accounting fully for the impact of current de-

cisions on future return over multiple pickups and drop-offs, and thus is able to

integrate the array of factors (e.g., searching distance, searching time, pick-up prob-

ability, competition from other taxis, revenue from the next passenger) considered

by other studies (Yuan, Zheng, Zhang and Xie, 2013; Hwang et al., 2015) in a single,

theoretically appealing formulation. In the Shanghai case study, the MDP formula-
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tion improves unit profit up to 27% and 8% over the random walk and local hotspot

heuristic respectively; and improve occupancy rate up to 27% and 15% respectively.

• Efficient implementation of the solution algorithm An enhanced value iteration

for solving the MDP problem is proposed making use of efficient matrix operations,

and its efficiency is tested in a mega city transportation network with reasonable

running time. Existing studies handle computational efficiency by either adopting a

cell/zone-based approach, or limiting the search to a local range if the physical road

network is used. Computational efficiency is achieved for the complete network of

a mega city at the highest level of spatial resolution through a recursive problem

formulation and efficient implementation of the solution algorithm.

4. Optimizing Vacant Taxis’ Routing Decisions: a Model-free Reinforcement Learning

Framework

The application of Reinforcement Learning (RL) is examined as a model-free approach

to solve the vacant taxi routing problem. The contributions are detailed as follows.

• A model-free RL algorithm is applied to solve the empty taxi routing problem, in

that no transition models are needed and the system dynamics are embedded in the

observed trajectories. Batch RL algorithm is is applied to make more efficient use

of collected transition samples.

• The algorithm is implemented and tested in a real road network of Shanghai, China,

and a systematic comparison of the model-based and model-free algorithms are also

provided. Results show that batch RL is a sample efficient algorithm for vacant

taxi routing so as to avoid extra modeling assumptions. It could still learn better
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performance policies even from a small sample size. Overall, the performance of

the learned policy increases with sample size.

• Comparison of the model-based and model-free algorithms show that both policies

perform better than random walk despite not having any priori knowledge. Model-

based method is more effective when the model perfectly matches the true dynamics

but often at the cost of larger bias when the dynamics are not modeled accurately;

while model-free method are less efficient but could achieve good asymptotic per-

formance especially where the true dynamics cannot be modeled accurately.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 and 3 investigate individual route choice

behavior at different time scales. Chapter 4 and 5 optimize vacant taxi routing decisions.

In Chapter 2, an econometric model of learning and choice of routing policies is de-

veloped, estimated and evaluated using data from a laboratory experiment of route choice

game in a network disrupted by incidents following a pre-specified distribution.

Chapter 3 proposes a recursive logit model for policy choice in STD networks. A

decomposition algorithm for solving the value functions that relies on matrix operations

is proposed and the model can be solved in reasonable time. Estimation and prediction

results for a network situated in the Stockholm region, Sweden are then presented.

Chapter 4 formulates the vacant taxi routing problem as a Markov Decision Process

(MDP) so that long-term objectives can be taken into account instead of the immediate

one of meeting the next customer. A queueing theory-based model for matching taxis and

passengers is proposed to account for competition from other taxis and use of e-hailing
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apps. An enhanced value iteration for solving the MDP problem is proposed making use

of efficient matrix operations, and its efficiency is tested in a mega city transportation

network with reasonable running time.

Chapter 5 examines the application of a Reinforcement Learning method to solve the

vacant taxi routing problem. This method is model-free, in that no transition models are

needed and the system dynamics are embedded in the observed trajectories. The algo-

rithm is implemented and tested in a mega city transportation network, and a systematic

comparison of the model-based and model-free algorithms are also provided.

A summary of the thesis work and discussions on future directions are given in in

Chapter 6.
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CHAPTER 2

LEARNING ROUTING POLICIES IN A DISRUPTED,
CONGESTIBLE NETWORK WITH REAL-TIME INFORMATION:

AN EXPERIMENTAL APPROACH

Travelers make route choice decisions in an inherently uncertain environment, due to

incidents, adverse weather, special events, and other travelers’ behaviors. As a result, such

decisions depend on travelers’ evolving perceptions of the environment, which are usually

formed by integrating two sources of information: personal experience, and exogenous

travel information. Personal experience has been the primary source, stored in travelers’

declarative memory and can be retrieved later to form perceptions before decisions are

made. In contrast to experience, exogenous travel information provides descriptions of

relevant aspects of the decision environment in text or graphically, e.g., “incident between

Exit 10 and 11" on a variable message sign (VMS), and color-coded maps by Google Traf-

fic. Such information has become increasingly available through radio, smartphone apps,

and in-vehicle navigation systems. This study is concerned with learning for route choice

decisions based on both personal experience and exogenous travel information provided

in real-time.

Travelers choose from a set of route alternatives based on perceived attributes of al-

ternatives such as travel time, where perceptions evolve due to learning. Two types of

route alternatives can be defined. One is a fixed sequence of road segments, termed a path,
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while the other is a strategy that specifies road segments or the full path to take contingent

on information on the decision environment. Various learning models of fixed paths are

present in the literature, including Tang et al. (2017) based on human memory’s power

law of forgetting and reinforcement. Learning models of strategies, however, are not as

prevalent in the literature. In recognition that travelers might be guessing others’ deci-

sions in a competitive route choice game, Selten et al. (2007b) defines strategies where the

path to take depends on how the latest experienced travel time compare with the average

travel time from all past experiences. When real-time traffic conditions are reported, such

as in Lu et al. (2014), strategies are defined where the road segment to take depends on

whether an incident on a downstream road segment is reported by a variable message sign.

Learning of decision strategies in general has been studied in the Psychology literature,

for example, Erev and Barron (2005b). The term “routing policy" is used in this thesis

to refer to a strategy applied in a route choice context, and to differentiate from a general

strategy.

This study builds upon the work in Lu et al. (2014), with three enhancements. First, in

Lu et al. (2014), the learning and choice of routing policies are simplified to ignore over-

lapping of routing policies and the resulting correlations among choice alternatives, which

could result in unrealistic route choice predictions. Secondly, model parameters in Lu et al.

(2014) are estimated by matching aggregate, predicted route shared with observed shares,

and thus precluding rigorous statistical results available from an econometric model es-

timated based on disaggregate data. Thirdly, the learning process in Lu et al. (2014) is

based on exponential decay of memory, a commonly used method in the transportation

community, where the perceived travel time for the current day is a convex combination
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of the previously perceived travel time and the latest experienced travel time. Tang et al.

(2017) uses the power law of memory decay and reinforcement, which is arguably more

psychologically sound, and this study applies this law to the learning of routing policies

instead of paths.

The remainder of this chapter is organized as follows. Section 2.1 provides a literature

review. Next in Section 2.2, the route choice game is described, followed by a descriptive

data analysis. Section 2.3 presents the modeling approach and specification of the utility

function. Section 2.4 presents the estimation and prediction results. Conclusions and

future directions are given in Section 2.5.

2.1 Literature Review

The literature review has three major parts and focus on empirical studies. Routing

policy choice models based on cross-sectional data are first reviewed, since they provide

building blocks for the proposed learning model based on longitudinal data. Next, learn-

ing of fixed paths vs. routing policies are reviewed, recognizing that the majority of the

literature has focused on path learning. Lastly, the literature on impacts of exogenous in-

formation on learning is reviewed, under different settings of the experiments (competitive

vs. non-competitive) and using different evaluation methods (one-step vs. full-trajectory

predictions).

2.1.1 Routing Policy Choice Models without Learning

A number of studies extend the conventional path choice models based on cross-

sectional data to networks with stochastic travel times. A static travel time distribution
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is either specified by experimenters in a laboratory setting, or estimated using surveillance

data from the field. The dynamic relationship between the current choice and past days’

experience is not modeled.

Gao (2005b) develops a routing policy choice model where the user may update his/her

route choice at any node of the road network depending on traffic conditions, and imbeds

the model in a dynamic traffic assignment model. Empirical studies of the routing pol-

icy choice model have been carried out using cross-sectional data from both laboratory

experiments (Razo and Gao, 2010; Razo and Gao, 2013a) and in-vehicle tracking and

monitoring devices in real-life urban networks (Ding-Mastera et al., 2015). Using stated

preference (SP) data, Razo and Gao (2010) shows the existence of strategic route choice

behavior, where a simple hypothetical network is implemented as an interactive graphical

map. Later on, Razo and Gao (2013a) estimates a rank-dependent utility model for ex-

plaining the choice among risky routing policies. Ding-Mastera et al. (2015) estimates a

latent-class routing policy choice model using a taxi data set collected from a subnetwork

of Stockholm, Sweden.

2.1.2 Learning Model: Paths vs. Routing Policies

Almost all learning models for route choice have dealt with fixed paths, instead of

routing policies. Please refer to Bogers et al. (2007) for a detailed description of different

path learning models. A key question in a learning model is how past experiences are

integrated to form a perception of path attributes. The most commonly used method in

the transportation community is to treat the perceived travel time at time t as a convex

combination of the perceived travel time and experienced travel time at time t − 1 (see,

e.g., Nakayama et al., 2001; Bogers et al., 2005; Lu et al., 2011b), which is equivalent to
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assuming an exponential decay of memory. Tang et al. (2017) develops an instance-based

learning (IBL) model based on the power law of forgetting and practice, an arguably more

sound theory (Anderson and Schooler, 1991), which has been shown as a robust learning

process triggered in a wide range of tasks from the simple repeated choice tasks to highly

dynamic ones (Lejarraga et al., 2012). The endogeneity problem of a learning model

due to the missing initial observations is studied in a follow-up paper (Guevara et al.,

Forthcoming). Some other studies have employed more complicated learning mechanism,

e.g., Baysian updating (Kaysi, 1991; Jha et al., 1998; Chorus et al., 2009). However, there

is little empirical support that travelers are capable of carrying out Baysian updating, and

estimation problems of such learning models remain an open question.

A few studies have addressed routing policy learning where route choices are con-

tingent on either experience or real-time information. Selten et al. (2007b) introduces a

route choice game experiment in a two-route network, and proposes two response modes

based on previous experiences: a direct one in which a traveler switches route following

a bad payoff compared to the average payoff from all previous experiences, and a con-

trary one with the opposite reaction. The rationale for the latter is that in a route choice

game where travelers are competing for good routes, one might gauge other travelers’ re-

sponses and deliberately make a choice opposite to a popular one to avoid congestion.

Klein et al. (2018) develops an agent-based model to study the emergent day-to-day traffic

states in a simulation, assuming that agents are able to learn to comply with the daily route

recommendations delivered by an advanced traveler information systems (ATIS) route rec-

ommendations. The agents’ routing decisions are dependent on previous experiences. The

estimation problem, however, is not addressed.
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Lu et al. (2014) uses a dataset collected from a route choice game in a network subject

to random disruptions, and develops a routing policy learning model where routing policies

are contingent on real-time information instead of past experiences. The same dataset is

used in the current study, and the learning model is enhanced in three aspects as detailed

in the paragraph right before the organization of this chapter.

2.1.3 Impacts of Exogenous Information on Learning

A large number of empirical studies have investigated the relationships between infor-

mation, learning and level of uncertainty in route choice decisions. A detailed review can

be found in Bifulco et al. (2014). Some experiments focus on the effects of feedback infor-

mation in competitive environment (Avineri and Prashker, 2005; Bogers et al., 2007; Qi

et al., 2018). Avineri and Prashker (2005) shows the existence of the payoff variability

effect reinforced by travel time feedback: high payoff variability moves choice behav-

ior toward random choice, which is related to the observation that variance in outcomes

inhibits learning. Bogers et al. (2007) further demonstrates that enriching feedback in-

formation on foregone alternatives greatly expedites the learning process compared to a

treatment without such information. Consistently, Qi et al. (2018) finds that enriching

feedback information on foregone payoffs tend to reduce the proportion of people who

firmly commit themselves to a unique route.

The effects of exogenous travel information have been studied in different experimen-

tal settings. Some are carried out in a competitive setting, where multiple human subjects

make route choices simultaneously in a network, and travel times are determined by their

collective choices based on an underlying performance function that links travel time with

flow. Rapoport et al. (2014) finds that when pre-trip information about route conditions
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(either good or bad) is provided, subjects switch more frequently between two routes in the

treatment with four possible states than with two states. Klein and Ben-Elia (2017) shows

that coupling punishments and rewards with recommendation significantly pushes the net-

work closer to system optimal (SO). Other studies, which are the majority, are carried out

in a non-competitive setting, where the travel time distribution is pre-determined by the

experimenter (see, e.g., Avineri and Prashker, 2006; Ben-Elia et al., 2008; Ben-Elia and

Shiftan, 2010; Shiftan et al., 2011; Mak et al., 2015; Ma and Di Pace, 2017). Avineri and

Prashker (2006) finds that providing static information on the mean travel time on risky

and fast routes makes subjects more likely to choose another route. In contrast, Ben-Elia

et al. (2008) and Ben-Elia and Shiftan (2010) find that respondents learn faster and exhibit

risk seeking behavior with information describing the ranges of travel times. In line with

the above results, Shiftan et al. (2011) shows that when the most up-to-date travel time on

both routes are provided pre-trip, individuals tend to prefer a riskier route if they had more

experience. Ma and Di Pace (2017) shows that payoff variability effect is more prominent

with lower information accuracy. As an exception, Mak et al. (2015) find that subjects’

learning behavior is similar with or without en-route information.

Most of the empirical studies reviewed above evaluate route learning and choice mod-

els based on one-step prediction. A small number of studies have used full-trajectory

prediction, including Selten et al. (2007b), Lu et al. (2014), and Zhang, Liu, Huang and

Chen (2018). However, all these studies estimate model parameters using aggregate data

as mentioned in 2.1.2.
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2.2 Experiment Design and Descriptive Data Analysis

The route choice experiment was designed based on the following principles: First, the

traffic network is disrupted in that an incident could happen on one of the road segments

with a certain probability, and may result in significant congestion. Second, real-time

information on whether the incident occurred or not was provided en-route and a detour

was available to avoid the incident if it did occur. Third, interactions among travelers and

the collective effect of traveler choices on congestion were accounted for through link cost

functions. The more travelers on the link, the higher the link travel time.

The experiment was carried out in a computer laboratory at the University of Mas-

sachusetts Amherst.

2.2.1 Experimental Design

The laboratory experiment simulated a simplified network with random incidents, and

human subjects acted as commuters traveling through this network on weekdays from

work to home. Fig. 2.1 shows a screen shot of the experimental network containing three

possible paths from the origin to destination. Three paths are defined:

• Path 1 (the upper path): Park Avenue;

• Path 2 (the middle path): Detour (Local 1 followed by Local 2);

• Path 3 (the lower path): Highway (Local 1 followed by I-99, an incident could occur

on I-99 with a probability of 0.25).

Two scenarios, Information and No-Information, were designed and the difference was

that, real-time information on whether an incident had occurred (incident indicator) was

18



 

  

Figure 2.1: Screen Shot of the Experiment Interface

only provided in an Information scenario at the bifurcation towards Local 2 and I-99. Re-

cruited participants were students and staff members at the University of Massachusetts

Amherst. Each had to be at least eighteen years old and hold a valid U.S. driver’s license

with at least one year of driving experience. Future studies involving more diversified pop-

ulation groups are needed if conclusions from this exploratory phase are to be generalized

to the general population. A total of 128 participants were divided randomly into 8 groups

(sessions) of 16 members each, and no personal interactions were allowed among them

throughout the experiment. Four groups participated in the Information scenario and the

other 4 groups in the No-Information scenario.

Before each experiment session, participants were instructed about the nature of the

experiment. They were notified that an incident could happen on I-99 with a chance of 1

out of 4, which could lead to a significant congestion. They were told that the travel time

of a road will increase with the number of users on that road due to congestion effect. The

specific link cost function was not revealed to them. Participants in an Information sce-
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nario were told that they would receive information on whether an incident had occurred

on I-99 at the bifurcation towards Local 2 and I-99 where the symbol “i" is located.

The task was described as making a series of work-to-home route choices within

groups of 16 players who independently choose route on each round (or “day") of play

by clicking the appropriate radio button on the screen. Communication between the par-

ticipants was not allowed. At the end of each “day", travel times were calculated based

on actual numbers of users on the links (link flow), from cost functions that participants

did not know. The “day" on which an incident would occur was randomly generated in

each 4-day block. To allow for comparison, the same incident profile was used for each

paired sessions in the No-Information and Information scenario. At the beginning of each

“day", each participant received feedback on actual travel time and the incident indicator

(if applicable) on the experienced path on the previous “day". Thus the participant was

able to learn the travel time distribution from his/her own travel experiences. The table on

the screen in Fig. 2.1 provided participants with the previous day’s actual travel time on

the experienced path. The numbers in the yellow boxes further showed actual travel times

on the links along the experienced path.

The travel time (in minutes) on a given link is a function of the link flow specified in

Eq. (2.1):
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TParkAve(xParkAve) = 33.5 + 2xParkAve

TLocal1(xLocal1) = 0.5xLocal1

TLocal2(xLocal2) = 36.5 + 3.82xLocal2

TI−99(xI−99) =


20 + 0.5xI−99, with probability 0.75 (normal condition)

20 + 27.5xI−99,with probability 0.25 (incident condition)

(2.1)

where xa is the flow on link a, and Ta(xa) the link travel time as a function of flow on link

a. The coefficient to xI−99 is much larger under incident than normal condition, suggesting

that a very high travel time on I-99 could emerge due to the incident.

In each session, participants completed route choices for a total of 120 “days". The

participants were not notified of the total number of “days" in advance, but only a rough

estimate of the duration of the experiment, in order to reduce the likelihood that the par-

ticipants would make “rushed" choices during final “days".

In some route choice experiment, participants are paid based on their performance

in the experiment, with better performance resulting in higher monetary rewards. This

is a direct application of the payment scheme commonly used in experimental economics

where the subjects’ tasks are usually directly related to monetary payoffs, such as choosing

a lottery. It is argued that caution should be exercised in applying the same payment

scheme to a travel choice task, which in the real world involves no monetary rewards.

If performance-based incentives are given, it is implicitly assumed that the same value of

time applies to every participant, which is not always the case and might bring unnecessary

complications. Moreover, there is no solid proof that people would have the same risk

attitude towards monetary gains (or losses) and travel time savings (or losses) and it was
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advisable to be cautious in equating these two. In the current experiment, each participant

was paid a flat payment of $30. Participants were not distracted by any other tasks as in

real life and the provision of feedback travel time on chosen route prompted participants

to pay attention to and thus minimize travel times.

2.2.2 Descriptive Data Analysis

2.2.2.1 Trip Travel Time

Table 2.1: Average Trip Time Mean and Standard Deviation for All Sessions

Session
Mean travel time (min) Standard deviation

No information Information No information Information
1 58.17 42.16 39.23 18.10
2 58.77 40.92 39.76 19.31
3 64.66 42.36 51.99 17.86
4 57.52 43.08 34.62 18.85

Average 59.78 42.13 41.40 18.53
H0: Equality
between Scenarios
(5% one-sided)

Rejected Rejected

Table 2.1 shows the average trip times for all sessions. The No-Information sessions

had an average length of 60 minutes, while the Information sessions had an average length

of 41 minutes. According to the results of Wilcoxon-Mann-Whitney tests, Lu et al. (2011b)

have shown that both the average trip travel time and the standard deviation in the No-

Information scenario are significantly higher than that of the Information scenario.

Fig. 2.2 presents the histogram of trip travel time for each scenario. In the No-Information

scenario, the travel times on Park Avenue and Detour mostly fall between 40 to 60 min

and are slightly skewed. However, the distribution of travel time on Highway exhibits a
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strong positive skew with a very long tail for extremely high travel times during an inci-

dent. In the Information scenario, the distribution of travel time on Park Avenue is similar

to that in the No-Information scenario. The travel time on Detour, however, is slightly in-

creased compared to that in the No-Information scenario. This suggests that some travelers

avoided incidents by using Detour with real-time information.

Park Avenue and the Detour are denoted as safe routes and Highway as the risky route,

given the former’s much smaller travel time variability compared to the latter one. Ta-

ble 2.2 presents the trip travel time mean and standard deviation of safe routes and risky

route in blocks of 20 “days". Not surprisingly, both travel time mean and standard devia-

tion of risky route are higher than those on safe routes in all blocks in each scenario due

to the significant disruption on Highway. Moreover, the travel time mean and standard de-
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Figure 2.2: Histogram of trip travel time (in min)
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viation of safe routes are almost stable over time, while the travel time mean and standard

deviation for the risky route decreases over time in general in each scenario.

Table 2.2: Trip travel time mean (min) and standard deviation (min) over time

No-Information scenario
1-20 trials 20-40 trials 40-60 trials 60-80 trials 80-100 trials 100-120 trials

Mean_safe 48.16 48.24 47.75 48.47 48.46 47.69
Mean_risky 86.12 73.56 75.63 68.54 67.25 67.23
SD_safe 5.91 4.5 4.21 4.43 4.14 4.26
SD_risky 106.01 81.84 86.55 75.49 73.41 72.97

Information scenario
1-20 trials 20-40 trials 40-60 trials 60-80 trials 80-100 trials 100-120 trials

Mean_safe 46.88 46.57 46.57 46.51 45.92 46.43
Mean_risky 56.08 44.88 45.36 43.58 44.15 41.89
SD_safe 12.08 11.62 10.61 10.99 10.83 11.06
SD_risky 49.89 29.95 27.54 26.78 24.13 22.19

2.2.2.2 Risk Attitude Variations over Time

Figure 2.3: Average proportion of choosing Highway
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Fig. 2.3 presents the average proportion of risky choices (R-rate) in blocks of 20

“days". In the No-Information scenario, the R-rate is lower than 0.5 in all blocks and

decreases in the first five blocks and then increases a little bit in the last block. This in-

creased preference to the safe routes over time, despite the decreased travel time variability

on the risky route and almost constant travel time variability on the safe routes, suggests

that travelers appear more risk averse over time. This might be due to decreased explo-

ration of the environment over time, and the “hot stove" effect where a very bad experience

on the risky route prevents further exploration of that route. Note that the travel time vari-

ability observed by the modeler is likely different from that perceived by the travelers as

they form perceptions based on personal experience only. Therefore it is not possible to

give a definitive answer as to whether travelers true risk attitudes do change over “days"

in the experiment.

The R-rate in the Information scenario is higher than that in the No-Information sce-

nario as shown in Fig 2.3, not surprisingly given the significantly reduced travel time mean

and variability on the risky route in the Information scenario.

2.2.2.3 Responses to Real-Time Information

In a non-congested network, a traveler would stay away from Highway if they know

for sure an incident occurred on it. In a congestible network, however, travelers are com-

peting with others on the choice of the optimal route, where outcomes depend on the joint

actions taken by all travelers involved. Fig. 2.4 presents the observed number of “days"

for each participant when a seemingly bad routing policy is taken, that is, “take Highway

with incident, and take Detour when no incident on Highway". The figure shows a non-

negligible number of instances of this routing policy, suggesting that some travelers could
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Figure 2.4: Observed number of “days" when the “bad routing policy" is taken in the
Information scenario

be guessing other traveler’s responses to the incident indicator and trying to avoid road that

they think others might use. In fact, an individual could still end up with an acceptable

travel time by taking a seemingly bad routing policy if few or no other travelers choose it.

2.3 Modeling Approaches

2.3.1 Routing Policy Learning and Choice Model Considering Overlapping

With real-time information, a traveler is able to plan ahead for traffic information that

he/she will receive in the future (Gao and Chabini, 2006b). Routing policy represents

a traveler’s ability to incorporate real-time information not yet available at the time of

decision. A fixed path is a special routing policy where any action is independent of traffic

conditions. In this section, a routing policy learning and choice model is developed to

capture travelers’ adaptive behavior with real-time information in a day-to-day context.
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In the experimental network, the three fixed paths are also three routing policies 1

through 3. Two additional adaptive policies exists only in Information scenario: Routing

Policy 4: “First take Local 1, and if the incident has occurred, take Local 2, otherwise

take the risky route I-99", which is referred to as “Avoid incident policy"; Routing Pol-

icy 5: “Take the detour when no incident is present, otherwise choose the risky route",

which is referred to as “Ignore incident policy". A routing policy is not observable as it

is a plan in traveler’s mind, and only the result of the plan execution, i.e., the realized

path, can be observed. Given a particular day (situation), a routing policy is realized as

only one fixed path. There are two possible traffic situations in the experimental network,

i.e., S = {incident, normal}. Routing Policy 4 (Avoid Incident policy) is realized as

Detour in incident situation, and Highway in normal situation. And routing Policy 5 (Ig-

nore Incident policy) is realized as Highway in incident situation, and Detour in normal

situation.

We model travelers’ learning from experience using the instance-based learning the-

ory (IBLT), which is originally proposed to describe decisions from experience in complex

dynamic tasks (Gonzalez et al., 2003). It presents a process in which decisions are made

from stored and retrieved experiences (called instances), based upon small samples and

recently and frequently experienced outcomes. An instance is broadly defined by the con-

text, decision and outcome of a previous choice that is encoded in the declarative memory.

Learning resides in the activation mechanism that relies on the frequency and recency of

past choices, i.e., more recent and frequent instances are more active in memory. Based

on their levels of activation, instances that are relevant to the current decision context are

retrieved and blended to produce perceptions of options. Memory decay is captured by the
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power law of forgetting that in found in a number of psychological studies, see e.g., An-

derson and Schooler (1991), Newell and Rosenbloom (1981), Rubin and Wenzel (1996)

and Estes (2014).

Tang et al. (2017) developed the instance-based learning (IBL) model for fixed paths

and test it in a two-path experiment network. Based on the similar idea, we propose an IBL

model for routing policies. An instance is defined here as a past experience of link a on

day t′ and its associated outcome (realized link travel time), Xa(t
′). An instance is stored

in the declarative memory of the traveler, and its activation decays over time following a

power law. Specifically, on day t, its activation is (t− t′)−d, where the decay parameter d

captures the rate of forgetting, in that a smaller d value translates into higher activation in

memory and (t− t′) measures the recency of the experienced travel times. Eq. (2.2) shows

the weight function of an experienced travel time from a past day t′ for traveler n on day

t, where the denominator is a summation of activations over all past experiences on link a.

Eq. (2.3) shows the perceived travel time of routing policy µ for individual n on day

t, which is the sum of perceived travel time on all links involved in policy µ, and the

perceived travel time on link a involved in policy µ is the weighted average of realized

travel time of link a on all previous days when link a is observed and is on the realized

path of policy µ. ∆(a|µ, t′) is an indicator of the latent (routing policy) choice. It is a

binary variable that equals 1 if link a is on the realized path of policy µ on day t′, and

0 otherwise. This formulation also applies to a fixed path model. When µ is a fixed

path, ∆(a|µ, t′) equals 1 when link a is on µ in any traffic situations and 0 otherwise.

In other words, the formulation collapse to the path-based model proposed in Tang et al.

(2017). Note that the formulation ensures that only relevant link experiences are used to
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form perceptions of a routing policy (or path), and thus perceptions are idiosyncratic. In

contrast, day-to-day learning models as used in some studies, particularly those focusing

on theoretical analysis of convergence, generally assume a shared memory of all travelers,

in that the experience on a link from any individual is used to form a single perception

for that link used by any path passing that link (see, e.g. Horowitz, 1984; Cantarella and

Cascetta, 1995; Yang and Zhang, 2009).

Wna(t
′, t) =

(t− t′)−d∑
τ∈Hna(t) (t− τ)−d

(2.2)

Tnµ(t) =
∑

a

(∑
t′∈Hna(t)

(
Wna(t

′, t)Xa(t
′)
)

∆(a|µ, t′)
)

(2.3)

where

t: current day;

t′: a previous day when link a is observed, t′ < t;

d: decay parameter that captures the rate of forgetting, d > 0;

Hna(t): the set of indices of all days before day t when link a is observed for traveler

n;

Wna(t
′, t): weight of the experienced travel time on day t′ for the perceived travel time

on day t for traveler n and link a;

Tnµ(t): perceived travel time of policy µ on day t for individual n;

Xa(t
′): realized travel time of link a on day t′.
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Table 2.3 illustrates the instances used to calculate the perceived travel time for each routing policy for an indi-

vidual. The perceived link travel time corresponding to a routing policy is updated if the link is observed and is on

the realized path of the policy on a given day. For example, on day 4, Detour, consists of Local 1 and Local 2, is

observed with an incident on Highway. Since both Detour and Avoid Incident policy are realized as path Detour on

day 4, the perceived link travel times on Local1 and Local2 corresponding to Detour and Avoid Incident policies are

updated on day 4. The perceived link travel time on Local1 corresponding to Highway and Ignore Incident policies

is also updated on day 4.

Table 2.3: Instances used for perception update for each routing policy on each day for a hypothetical sequence of
observed paths

Day
Observed
path

Observed
links

Routing Policy Incident
Park Avenue Detour Highway

Avoid Incident
policy

Ignore Incident
policy

1 Park Avenue Park Avenue XParkAve(1) - - - - N/A

2 Highway Local1 - XLocal1(2) XLocal1(2) XLocal1(2) XLocal1(2) NoI-99 - - XI−99(2) XI−99(2) -

3 Detour Local1 - XLocal1(3) XLocal1(3) XLocal1(3) XLocal1(3) NoLocal2 - XLocal2(3) - - XLocal2(3)

4 Detour Local1 - XLocal1(4) XLocal1(4) XLocal1(4) XLocal1(4) YesLocal2 - XLocal2(4) - XLocal2(4) -

5 Highway Local1 - XLocal1(5) XLocal1(5) XLocal1(5) XLocal1(5) YesI-99 - - XI−99(2) - XI−99(2)
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To account for overlapping routing policies in a Logit model, a link-based Policy Size

(PoS) correction is added to the systematic utility function. As shown in Eq. (2.4), PoSnµ,

the PoS for individual n and routing policy µ, is the weighted average of Path Size (PS)

over all situations s ∈ S. In each situation s, routing policy is realized as a single path,

represented by the binary variable, ∆(i|µ, s) that equals 1 if policy µ is realized as path

i in situation s and 0 otherwise. The PS in situation s extends the original PS formula-

tion (Ben-Akiva and Bierlaire, 1999b), by using T sna(t), the perceived travel time on link

a in situation s on day t by individual n, to calculate the weight of the size of link a, and

the link size is the inverse of the number of paths using link a among the realized paths for

individual n in situation s. Further details of the realized path set Cs
n is provided below.

PoSnµ(t) =
∑
s∈S

(∑
i∈Cn

(∑
a∈Γsi

T sna(t)∑
a∈Γsi

T sna(t)

1∑
j∈Csn

δaj

)
∆(i|µ, s)

)
P (s) (2.4)

where

S: the set of situations.

P (s): the objective probability of situation s.

Cn: the universal path choice (without duplicate paths).

Γsi : the set of links on path i in situation s.

T sna(t): perceived travel time of link a on day t for individual n in situation s. Only

experiences corresponding to situation s are extracted as instances to calculate T sna(t) as

shown in Eq. (2.5), where Hs
na(t) is the set of indices up to day t in situation s when link

a is experienced by individual n.
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T sna(t) =
∑

t′∈Hs
na(t)

( (t− t′)−d∑
τ∈Hs

na(t) (t− τ)−d

)
Xa(t

′) (2.5)

Cs
n: realized path set for individual n in situation s. It varies with situation s and could

include duplicate paths in each situation since a routing policy can be realized as different

paths in different situations and different routing policies can be realized as the same path

in situation s. For example, C̃incident
n ={path1, path2, path3,

path2, path3} and C̃normal
n ={path1, path2, path3, path3, path2}. Note that the duplica-

tion of paths is corrected using Path Size.

δaj: link-path incidence variable, which equals 1 if link a is on realized path j and 0

otherwise.

The decay parameter d in an IBL model captures the rate of forgetting. The higher the

value of the d parameter, the faster the decay in memory. Gonzalez and Dutt (2011) tests

the IBL model with two datasets, each including a repeated-choice paradigm and a sam-

pling choice paradigm. The results indicate similarity of the d values for the sampling and

repeated-choice paradigms within each dataset. This supports the similarity of the cogni-

tive processes involved in IBL. To simplify the estimation process, the decay parameter

is fixed to a value previously estimated on a route-choice dataset (Tang et al., 2017), that

is, d = 0.8. The d value 0.8 is also within the range of default or common values in the

ACT-R architecture in Gonzalez and Dutt (2011) and Wong et al. (2010).

2.3.2 Estimation Approach

A routing policy is a plan in a traveler’s mind and not observable. The routing policy

model must be estimated based on path observations and thus a latent-choice specification
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is needed, in that all routing policies whose realized paths on a given day match the path

observation should be considered. Eq. (2.6) describes the likelihood of observing path i

for individual n on day t as the sum of the likelihood of choosing policies from the routing

policy choice set C̃n that are realized as path i on day t, where Pnµ(t) is the probability of

choosing routing policy µ for individual n on day t and ∆(i|µ, t) is a binary variable that

equals 1 if policy µ is realized as path i on day t and 0 otherwise.

Pni(t) =
∑
µ∈C̃n

Pnµ(t)∆(i|µ, t) (2.6)

To account for repeated route choice observations from the same traveler, a Mixed

Logit model is applied, where random parameter for the alternative specific constants

(ASCs), ηnµ, are included in the utility function to model the panel effect. L(in1, . . . , int, . . . , inT )

is the likelihood of the sequence of observed paths for individual n,

Ln(in1, . . . , int, . . . , inT ) =∫
η

T∏
t=1

( ∑
µ∈C̃n

exp
(
Vnµ(t) + ηnµ + lnPoSnµ(t)

)∑
ω∈C̃n

exp
(
Vnω(t) + ηnω + lnPoSnω(t)

)∆(int|µ, t)
)
f(η)dη,

(2.7)

where int is the observed path for individual n on day t, Vnµ(t) the systematic utility

without the overlapping correction. ηnµ varies over individual and is constant over choice

alternatives for the same individual, and follows a normal distribution N(αµ, σ
2
µ), where

αµ is the mean and σi the standard deviations (s.d). Note that ηnµ for one alternative is

normalized to 0. f(η) denotes the probability density function of η. The Mixed Logit

probability is the weighted average of the Logit function evaluated at different values of η,

with the weights given by the density function f(η).

34



The Mixed Logit model is estimated by maximizing the likelihood of observed paths

over a panel dataset with N individuals,
∑N

n=1 Ln. As the integral over a normal distribu-

tion has no close form expression, simulated maximum likelihood estimation with Halton

draws is carried out (Bhat, 2001; Train, 2000).

2.3.3 Systematic Utility Specification

Two types of route choice models are considered for the Information scenario: path and

routing policy choice model. The path choice model assumes that a traveler chooses a fixed

path at the origin and follows it till the end, ignoring any real-time information provided

en-route. While the routing policy choice model assumes that a traveler chooses a routing

policy at the origin, suggesting that s/he is able to plan ahead for traffic information that

will be received in the future.

The models are linear in the parameters, applied to both No Information and Informa-

tion scenarios. The explanatory variables are given in Table 2.4, and discussions follow.

Table 2.4: Model Specification

Variable Definition

ASC
alternative-specific constant, set to 0 for Park Avenue;
random parameter following a normal distribution over individuals.

Perceived Travel Time generic variable (in hour).

Stickiness
specific to three fixed paths;
1 if the path was observed on the previous day; 0 otherwise.

Post-incident Response
specific to Highway;
1 if Highway was observed and incident happened on Highway
on the previous day; 0 otherwise.

• Learning “Perceived Travel Time" calculated by Eq. (2.3) in Section 2.3.1 repre-

sents learning based on experience.
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• Inertia It has been argued that during routine activities, people tend to “place higher

value on an opportunity if it is associated with the status quo" (Samuelson and Zeck-

hauser, 1988), as it can provide significant energy saving to cognitive thinking. Em-

pirical evidence exists that inertia plays a significant role in people’s behavior (see,

e.g. Bamberg and Schmidt, 2003). Inertia in route choice has been extensively stud-

ied and a review of empirical evidence can be found in Srinivasan and Mahmassani

(2000). The impact of inertia in the presence of ATIS has been modeled recently

in the joint day-to-day evolution of departure time and mode choices by Liu et al.

(2017).

A variable, Stickiness, is defined as a lagged dependent variables (LDV) for each

path, to model inertia. It equals 1 on day t, if the path was chosen on day t− 1, and

0 otherwise. As noted in Train (2002), the only problem is the necessity to assume

initial conditions. Here Stickiness is calculated from the second day since the first

observation has no preceding choice.

• Immediate Response to an Incident A sudden and large change in the decision

environment, such as an incident in the highly disrupted network, might make past

experiences immediately less informative for decisions in the near future.

This immediate adaption by is modeled by a dummy variable, “Post-incident Re-

sponse", specific to Highway. It is an LDV, and equals equals 1 on day t if the

traveler experienced an incident on day t− 1 and 0 otherwise.

The main model specification above examines the combined effects of inertia, post-

incident response and learning. Three variants to the main model are also studied. They
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are obtained by including some of the attributes from the main model. Table 2.5 summaries

all the model specifications.

Table 2.5: Systematic Utility Specifications

Attributes
ASC Stickiness Post-incident response Instance-based learning(IBL)

Main model
√ √ √ √

Variant # 1
√

Variant # 2
√ √ √

Variant # 3
√ √ √

2.4 Results

37



Table 2.6: Estimation results of the main model

Coef. Description
No-Information Information

Path Model Path Model Routing Policy Model
Value t value Value t value Value t value

βTT Perceived Travel Time (hour) -0.224 -2.66 -0.76 -5.54 -4.2 -8.31
βSTICK Stickiness 27.1 93.19 24.2 71.45 24.8 3.78
βPOSRES Post-incident Response -12.9 -62.17 -11.5 -50.39 -8.34 -6.51
αDetour mean of ASCDetour -0.656 -6.53 0.459 0.37 -3.75 -2.08
αHighway mean of ASCHighway -0.23 3.47 0.548 7.73 -1.96 -5.65
αAvoideIncPolicy mean of ASCAvoideIncPolicy 1.46 15.08
αIgnoreIncPolicy mean of ASCIgnoreIncPolicy -2.32 -3.71
σDetour s.d.ASCDetour 0.601 9.18 -0.529 -3.97 1.39 2.61
σHighway s.d.ASCHighway 0.296 0.067 0.177 1.43 0.685 3.53
σAvoideIncPolicy s.d.ASCAvoideIncPolicy 0.627 0.54
σIgnoreIncPolicy s.d.ASCIgnoreIncPolicy 1.3 4.52
No. of draws 500 500 500
No. of observations 7680 7680 7680
No. of parameters 7 7 11
No. of individuals 64 64 64
Null log-likelihood -8437.342 -8437.342 -8437.342
Final log-likelihood -3083.71 -3898.78 -2969.23
Rho-squared 0.634 0.544 0.648
Adjusted Rho-squared 0.633 0.543 0.647
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2.4.1 Estimation results

Models are estimated using Python BIOGEME 2.4 (Bierlaire and Fetiarison, 2009).

The estimation results of the main model in both the No-Information and Information

scenarios are presented in Table 2.6, where both a path model and routing policy model

are estimated in the Information scenario, while only a path model is applicable in the

No-Information scenario given the lack of real-time information.

The coefficient of Stickiness (βSTICK) is significant at the 5% level and positive for all

models in both scenarios. It suggests that travelers tend to repeat the choice from the pre-

vious day when everything else is equal. The coefficient of Perceived Travel Time (βTT )

calculated from the IBL model is significant (at the %5 level) across models, suggesting

that travelers learn from experience. The coefficient of Post-incident Response (βPOSRES),

capturing travelers’ immediate response to an experienced incident on Highway, is signif-

icant at the 5% level across models. The negative sign indicates that travelers on average

respond negatively immediately after the incident, which is on top of the negative impact

already captured by the perceived travel time where the weight for the most recent out-

come is the highest. A more in-depth look into the data reveals that a small number of

travelers stay on Highway immediately after encountering the incident, which might be

due to a misconception of negative correlation of incidents over days, that is, an incident

on day t means no incident on day t+ 1, while objectively incidents on different days are

independent.

In the Information scenario, the routing policy model (ρ2 = 0.647) fits the data much

better than the path model (ρ2 = 0.543). This suggests that travelers are able to look ahead

for real-time information that will be available in the future and account for it in the current
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decision. Specifically, the incident indicator at the bifurcation towards Highway and Local

2 allows the travelers to respond depending on the outcome of the incident indicator. Such

flexibility makes the branch that contains Highway and Detour more attractive than either

one of them as a standalone path alternative. In later discussions, the routing policy model

will be used as the default model for the Information scenario.

The ratio of βTT to βSTICK indicates the relative importance of learning compared with

inertia, as Perceived Travel Time blends past experiences on any given alternative, while

Stickiness simply entails repeating the previous choice, the opposite of learning. The ratio

is numerically small, and a closer look at the data reveals that a dominating number of

travelers keep staying on Park Avenue, an alternative with low variability and acceptable

travel time. It is intuitive that travelers find sticking with such an alternative attractive, as

it saves cognitive cost (Gao et al., 2011) yet provides reasonable travel time. Across sce-

narios, the ratio is larger in the Information scenario than in the No-Information scenario.

As shown in Table 2.1, travel time variability is smaller in the Information scenario. It

follows that learning plays a larger role in a less uncertain, but not deterministic (in which

case there is no learning), environment. These findings corroborate with results in the lit-

erature (Ben-Elia et al., 2008; Ben-Elia and Shiftan, 2010; Tang et al., 2017), and suggest

that providing real-time information promotes learning and more optimal behaviors and as

an extension might potentially improve the performance of the system.

Table 2.7 shows the goodness-of-fit (measured by ρ2) for the three variants to the main

model. Not surprisingly, the main model has the best fit (highest ρ2) among the four mod-

els for each scenario. Interestingly, Variant # 1, although a simple model with Stickiness

only, fits the data quite well for each scenario, which suggests that inertia plays an impor-
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tant role in predicting the next day’s choice based on all previous days’ choices. Variant #

2 is as good as the main model in the No-Information scenario, while not as much in the

Information scenario, suggesting that without real-time information, immediate response

to incident is the dominating behavior for travelers taking the risky branch, which together

with the inertia on the safe route explain much of the observed choices. When real-time

information is available, Variant # 2 is worse than the main model, suggesting that real-

time information alleviates the myopic response to an incident. Variant # 3 has the lowest

ρ2 in either scenario, suggesting that in a highly disrupted network, long-term learning

might be a poor predictor of the immediate response, as the high level of variability might

lead people to behave less rationally.

2.4.2 Prediction Evaluation

In Section 2.4.1, model parameter estimates are obtained by maximizing the likelihood

of predicting choice on day t given all previous days’ choices up to day t−1, which can be

referred to one-step prediction, measured by adjusted Rho-square ρ2. Such a prediction is

suitable for short-term operational applications as the data keeps coming in, e.g., providing

personalized route guidance to a traveler as his/her behaviors are continuously monitored

by, e.g., a smartphone.

However, a full-trajectory prediction is needed for long-term planning applications and

policy evaluations, i.e., predicting choices on day t through t + K given previous days’

choices up to day t − 1. Therefore, models are also compared in terms of full-trajectory

prediction.

The estimated models are used to generate a sequence of 120 days’ predicted route

choices for each of the 64 participants, where initial route choices were randomly gener-
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ated based on the observed proportion of path share on the first day. The accuracy of the

prediction is measured by the Mean Square Distance (MSD) of the model’s predicted pro-

portion of risky routes (Highway and Detour combined) compared with the observed pro-

portion of risky routes. The larger the MSD value, the worse the full-trajectory prediction.

Specifically, the 120 days are divided into blocks of m trials and let NumBlock = 120/m

denote the number of blocks. The MSD is then calculated as

MSD =
1

R

R∑
r=1

∑NumBlock
j=1 (P pred

j − P obser
j )

NumBlock
(2.8)

where R is the number of simulations, P pred
j and P obser

j the average of predicted and

observed proportion of risky route choices across all 64 participants in the jth block for

each simulation, respectively. The MSDs are averaged across blocks of 10, 20 and 30 days

to verify the robustness of the comparison results, at a given value of R at 200. Table 2.7

presents the MSDs of all models for each scenario with R = 200 and m = 5.

Table 2.7: Prediction Evaluation Results (One-step measured by ρ2; Full-trajectory
measured by MSD)

No-Information Information
Path Model Path Model Routing Policy Model
ρ2 MSD ρ2 MSD ρ2 MSD

Main Model 0.633 0.0187 0.543 0.0203461 0.647 0.00912
Variant # 1 0.608 0.0523 0.534 0.0502146 0.625 0.0503
Variant # 2 0.633 0.0402 0.543 0.0365489 0.623 0.0331
Variant # 3 0.273 0.0304 0.240 0.e0306 0.413 0.0298

The main model performs best in both one-step and full-trajectory prediction in both

scenarios with the largest ρ2 and smallest MSD. Variant #1, with a good one-step fit, has

the largest MSD value, suggesting that inertia cannot explain long-term behavioral adjust-
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ments and learning must be included. In other words, a model that predicts that you simply

repeat yesterday’s choice does well in the short term, due to the updated observations be-

fore each prediction. It however does not do well in the long term as it cannot capture the

learning from experience over time. Variants#2 and #3 differ by the inclusion/exclusion

of inertia and learning. Variant#2 performs better in one-step prediction than Variant #3

does, but worse in full-trajectory prediction. The reversed prediction performance suggests

that learning is a critical factor in long-term prediction.

2.5 Summary

In this chapter, methodological development and empirical evidences are presented to

understand the roles of learning, inertia and real-time travel information on route choices

in a highly disrupted network based on data from a laboratory competitive route choice

game. A learning model based on the power law of forgetting and reinforcement is applied.

The learning of routing policies instead of simple paths is modeled when real-time travel

information is available, where a routing policy is defined as a contingency plan that maps

realized traffic conditions to path choices. A deterministic correction to the Logit model

in a learning context is developed, generalizing the cross-sectional counterpart to account

for overlapping routing policies.

Model parameter estimates are obtained from maximizing the likelihood of making the

observed choices on the current day based on choices from all previous days. Prediction

performance is then measured in terms of both one-step and full-trajectory predictions.

Based on choices up to today, one-step prediction entails predicting the next day’s choice,

while full-trajectory prediction entails predicting the next K days’ choices. Three ma-
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jor conclusions are drawn. First, the routing policy learning model can capture travelers’

learning and choice behavior better than a path-based model under real-time travel infor-

mation, as it accounts for travelers’ forward-looking capabilities. Secondly, inertia exists

where travelers stick to previously chosen routes and do not necessarily minimize travel

time. Inertia plays a dominant role in one-step prediction, and a less important role in full-

trajectory prediction, suggesting that learning is more important in longer term prediction.

Third, relative importance of learning compared with inertia is more prominent in a less

uncertain, but not close to deterministic, environment. Therefore decreasing uncertainty

by providing real-time information could encourage learning and potentially more optimal

decisions for individuals and the system.

A major direction for future research is to estimate and evaluate the proposed routing

policy model using real world data. Such longitudinal data has become increasingly avail-

able with the prevalence of smartphone-based tracking. A major challenge in extending

the study from the laboratory to real world is the generation of the choice set of routing

policies, which is perceivably a very large set. Choice set generation methods as stud-

ied in Ding-Mastera et al. (2014) can be applied to generate static choice sets that do not

change from day to day. Furthermore, a learning process can be operationalized to explic-

itly model the formation and adjustment of choice set (see, e.g., Han et al., 2011). The

methods developed in Guevara et al. (Forthcoming) would be applied to correct for the

endogeneity problem due to missing initial observations, a common problem in a longitu-

dinal dataset.
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CHAPTER 3

A LINK-BASED RECURSIVE ROUTE CHOICE MODEL FOR
STOCHASTIC AND TIME DEPENDENT NETWORKS

This is a collaborative work with Dr.Tien Mai from Université de Montréal and CIR-

RELT, Canada.

Predicting path choices in road networks is of importance in many transport applica-

tions. Discrete choice models based on the random utility maximization framework are

often used for this purpose and the model parameters can be estimated by maximum like-

lihood using GPS trajectory data. The route choice modelling literature mainly focuses

on networks where link or path attributes are static and deterministic even though most

models can be extended to a deterministic and time-dependent case. Even in this simple

network setting it is challenging to design models that can be consistently estimated and

that can produce accurate forecasts in short computational time, in particular for large-

scale networks. However, the assumption of static and deterministic networks is restric-

tive since many transport systems are inherently uncertain, for instance, due to variations

in demand, incidents and weather.

In this Chapter, a recursive logit model is proposed in stochastic and time-dependent

(STD) networks (i.e. link travel times are random variables with time-dependent distri-

butions) which is considerably more challenging than the static and deterministic case
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(Fosgerau et al., 2013b) . Estimation and prediction results are presented for a real case

study in the city of Stockholm.

3.1 Literature review

3.1.1 Route choice in an STD network: reaction to information

Real-time information is now common in traffic information systems and it allows

travelers to adapt to actual traffic conditions and potentially mitigate the adverse effect of

uncertainty. Interested readers may refer to (Ben-Elia et al., 2010; Ben-Elia et al., 2013;

Ben-Elia and Avineri, 2015b; Li et al., 2017; Delle Site, 2018).

Modeling route choice in an STD network can be approached in two ways: as a path

or as a routing policy. A path is a pre-specified set of concatenated links. Travelers who

follow a path make decisions a priori and take a fixed set of links, regardless of the net-

work conditions revealed during their trips. In contrast, travelers who follow a routing

policy make decisions en route, depending on actual network conditions. A large number

of models have been proposed, including the Multinomial Logit (MNL), and its correc-

tions to deal with the overlapping problem, e.g., the C-Logit model (Cascetta et al., 1996)

and Path Size Logit model (Ben-Akiva and Bierlaire, 1999a). More complicated mod-

els continue to be developed such as Multinomial Probit (Bolduc and Ben-Akiva, 1991),

Error Component model (Frejinger and Bierlaire, 2007a), latent route choice model with

network-free data (Bierlaire and Frejinger, 2008), model assuming a universal choice set

estimated based on a sampling approach (Frejinger et al., 2009a), model assuming a uni-

versal choice set estimated through repeated link choices based on a dynamic discrete
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choice approach (Fosgerau et al., 2013b), and cross-nested logit based on sampling of

choice sets (Lai and Bierlaire, 2015b).

In contrast, a routing policy choice model was first developed in (Gao, 2005a) where

the user may update his/her route choice at any node of the road network depending on

traffic conditions, and imbedded in a dynamic traffic assignment model. In contrast, the

least expected travel time path ignores the possible information collected during the trip,

and thus is generally less effective than an optimal routing policy. Indeed, a path is a

special routing policy, in which the next link for a given node is chosen a prior. (Gao

et al., 2008b) studied two types of models that account for travelers’ adaptation to real-time

information: an adaptive path model and a routing policy choice model based on synthetic

data and a simplified network. Empirical studies of the routing policy choice to this date

have only been carried out with SP data (Razo and Gao, 2010; Razo and Gao, 2013a).

Traffic prediction models where routing policy choices are assumed for travelers have also

been studied using simplified networks either in an equilibrium context (Gao, 2012a) or a

disequilibrium context (Boyer et al., 2015).

3.1.2 Computation challenge: choice set generation and estimation

Based on the characteristics of route choice studies, we categorize our problem as

a study on adaptive routing policy with real-time information in stochastic and time-

dependent network. Ding-Mastera et al. (2015) estimated such a routing policy model with

non-recursive model which requires prior choice set generation that involves repeated ex-

ecutions of the optimal routing policy algorithm. Even if the process is done only once for

multiple simulations, the computer memory required to store generated routing policies

could be a concern in very large networks.

47



Due to the stochasticity, multiple states could be reached given a current state and thus

the expected utility needs to sum over all possible next states in the Bellman equation.

The estimation of the RL model requires solving a system of non-linear equations within

a dynamic programming framework, which is considerably more complex than solving

linear equations than in the deterministic case.

While the non-recursive model can accommodate a wide range of systematic utility

specifications, including non-additive attributes, the recursive model however by design

can only accommodate additive attributes, which make extra efforts needed to include

important attributes such as travel time variability (generally not additive when correla-

tion among link travel times exist) and to employ non-linear utility function such as the

prospect theory (Tversky and Kahneman, 1992). This property largely increases the diffi-

culty to solve the policy model.

Other than the above computation complexity, the time-dependency in link travel time

also adds complexity to algorithmic development for applications in large-scale networks.

In order to make the node-based state transition happen between intervals, time needs to

be discretized into small enough intervals which greatly expands the state space.

In this chapter, the above estimation challenge is addressed by developing a two-level

states space representation and propose a decomposition method that allows to reduce the

number of linear systems to be solved when tackling the DP problem of the RL model.
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3.2 Recursive Logit for Stochastic and Time-Dependent Networks

3.2.1 Network Settings

The whole period of interests within a day is divided into discrete time intervals. Let

t denote a time interval which is represented as a non-negative integer, t = bx/δc, where

x is the original wall-clock time and δ is the length of a time interval which is equal to the

shortest link travel time.

Let G = (N ,A, T ,P) be an stochastic time-dependent (STD) network, whereN is the

set of nodes, A is the set of links, T is the set of time intervals over the period of interest

{0, 1, . . . , |T | − 1}, and P is the probabilistic description of link travel times. Beyond

time period |T | − 1, travel times are assumed to be static and deterministic. Each node

k ∈ N has a set of outgoing nodes A(k). Similarly to the RL model in deterministic

networks (Fosgerau et al., 2013b), an absorbing state is associated with destinations by

adding a dummy node d to the network, and denote Ñ = N ∪ {d}.

Along the line of previous work (Gao and Chabini, 2006b), the probabilistic descrip-

tion of link travel times are represented by a joint distribution of time-dependent random

variables. Define a support point as a distinctive value that a discrete random variable can

take, or a distinctive vector of values that a discrete random vector can take depending on

the context. The joint probability distribution P of all link travel times is characterized

by a set of support points: P = {v1, v2, . . . , vR}, where vr is a vector with a dimension

|T | × |A|, r = 1, 2, . . . , R, and R is the number of support points. The rth support point

has a probability of pr and
∑R

r=1 pr = 1. This choice is motivated by the fact that observed

travel times are usually aggregated and stored in a discrete number T of time segments for

practical purposes (Rilett and Park, 2001).
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In this study, the information is composed of link travel times and are reveled during

the execution of the routes. We formulate the route choice problem under perfect online

information (POI), i.e., the current-information includes travel times on all links up to the

current decision time (Gao and Huang, 2012b).

Let τ̂kj(t) denote the random travel time on link (k, j) at time t. At time t, the traveler

has knowledge of the realizations of τ̂kj(t)(∀(k, j) ∈ A) until t. Each joint realization of

the (t + 1) ∗ |A| random variables, τ̂kj(t′)(∀(k, j) ∈ A, t′ ≤ t), corresponds to a unique

subset of {v1, v2, ..., vR}. To represent the concept of information, event collection q is

introduced as a subset of support points that are compatible with the realized travel times,

q = {vr|τ̂kj(t) = πkj(t),∀(k, j) ∈ A, t′ ≤ t for a certain t}, where πkj(t) is the realization

of τ̂kj(t). As more information (i.e. t increases) is collected, q can split into multiple event

collections. When q becomes a singleton, the network collapse to a deterministic network.

Let q(t) be the set of all possible event collections at time t, and the element of q(t) is an

event collection. Specifically, q(|T | − 1) = {{v1}, {v2}, ..., {vR}}.

An illustrative example is shown in Figure 3.1 and Table 3.1 with three nodes, three

links and three time periods (t=0,1,2). Table 3.2 shows the scheme of event collections.

Each cell in the represents a event collection. At time 0, there is only one possible event

collection q(0) = {v1, v2, v3}, as travel times on all links are the same across the two

support points at time 0. At time 1, , when more link travel time realizations are available,

it splits into two event collections, q(1) = {v1, v2, v3}. At time 2, similarly, {v2, v3}

further splits into two event collections, {v2} and {v3} and there are three event collections

in total. Each event collection contains a single support point, implying that the network

becomes deterministic beyond time period 2.
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Figure 3.1: An illustrative small network

Table 3.1: The joint probability distribution of all link travel times (p1 = p2 = p3 = 1
3
)

Time Link v1 v2 v3

0 (a, b) 1 1 1
0 (a, c) 2 2 2
0 (b, c) 1 1 1
1 (a, b) 1 2 2
1 (a, c) 3 1 1
1 (b, c) 2 2 2
2 (a, b) 1 2 1
2 (a, c) 3 1 2
2 (b, c) 2 2 1

3.2.2 Recursive logit model

Define the set of states by S and a state in S by s = (k, t, q), where k denotes current

node, t denotes current time and q denotes current information set.

Consider an individual traveler travelling from an origin to a destination d. The traveler

starts from a state (k, t, q) and reached the next state by choosing an action a (next node)

from the set of outgoing nodes A(k). The traveler will also have a potentially different

event collection at node a, which accounts for realized link travel times between t and

the arrival time at the end of link (k, a). The arrival time t′ at node a is uniquely deter-

mined by q′, and vice versa. The traveler continues the routing decision process based on

dynamically involved event collections.

51



Table 3.2: The scheme of the event collection

t=0 v1 v2 v3

t=1 v1 v2 v3

t=2 v1 v2 v3

At each state s = (k, t, q) ∈ S, an instantaneous utility, u(a|k, t, q) = v(a|k, t, q) +

µε(a), is associated with the action of choosing node a ∈ A(k), where the random terms

ε(a) are assumed i.i.d. extreme value type I (also known as the Gumbel distribution) with

zero mean and they are independent of everything else in the model with scale parame-

ter µ. The traveler aims at maximizing the sum of instantaneous utility u(a|k, t, q) and

expected downstream utilities, which is defined by taking the continuation of this process

into account via the Bellman’s equation (Bellman, 1957).

V (k, t, q) = E

[
max
a∈A(k)

{
v(a|k, t, q) + ρ

∑
q′∈q(t′)

V (a, t′,q′)Pr (q′ |q) + µε(a)
}]
, (3.1)

where ρ > 0 is a discount factor, t′ is the arrival time at the chosen node a, and t′ =

t+τ(a|k, t, q), where τ(a|k, t, q) is the travel time between node k and node a conditional

on state (k, t, q), in which τ(a|k, t, q) is deterministically specified based on the POI.

Moreover, q′ is one of the possible event collection at t′ and q(t′) is the set of all possible

event collections at t′. Note that at the destination V (d, t,q) = 0, ∀t,q, where d is the

destination of the trip.

The probability of transforming to q′ from q, P (q′|q), is computed as
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P (q′ |q) =

∑
vr|vr∈q′∩q pr∑
vr|vr∈q pr

, (3.2)

where pr is the probability of support point vr.

The value functions are then given recursively by a logsum according to the Gumbel

distribution property, as shown in Eq.(3.3).

V (k, t, q) =


µ ln

(∑
a∈A(k) exp

(
1
µ
(v(a|k, t, q) + ρ

∑
q′∈q(t′) V (a, t′,q′)Pr (q′ |q)

))
∀(k, t,q) ∈ S, k 6= d

0 k = d

(3.3)

The transition probability between two states (a, t′,q′) and (k, t, q) is the product of the

probability of transforming to q′ from q and the probability that the traveler chooses node

a from state (k, t, q). The probability that the traveler chooses node a from state (k, t, q)

is given by a multinomial logit model. And we can further simplify the denominator, and

represent it by the value function according to Eq.(3.3).

P (a, t′,q′|k, t, q) =
exp

(
1
µ

(
v(a|k, t, q) + ρ

∑
q′∈q(t′) V (a, t′,q′)Pr(q′|q)

))
∑

a′∈A(k) exp
(

1
µ

(
v(a′|k, t, q) + ρ

∑
q′∈q(t′) V (a′, t′,q′)Pr(q′|q)

))Pr(q′|q)

= exp

 1

µ

v(a|k, t, q) + ρ
∑

q′∈q(t′)

V (a, t′,q′)Pr(q′|q)− V (k, t, q)

Pr(q′|q).

(3.4)

Given an observations σ = {(k1, t1,q1), . . . , (kI , tI ,qI)}, the probability of σ is
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P (σ) =
I−1∏
i=1

P (ki+1, ti+1,qi+1|ki, ti,qi).

It is important to note that, in the deterministic RL model presented in (Fosgerau et al.,

2013a), the value functions in the path probability cancel out and the IIA property holds.

However in stochastic RL model, when we take the log of the state probability in (3.4),

the value functions do not cancel out, so the IIA does not hold.

The log-likelihood function could be derived as follows

LL(β) =
1

Nobs

Nobs∑
n=1

In−1∑
i=0

lnP (kni+1, t
n
i+1,q

n
i+1|kni , tni ,qni ). (3.5)

The first order derivatives are required for an efficient optimization algorithm for estimat-

ing the model parameters. They can be obtained by taking the first derivative of (3.5) and

computed via the first derivatives of the probabilities P (kni+1, t
n
i+1,qni+1|kni , tni ,qni ). The

gradient of P (a, t′,q′|k, t, q) with respect to a parameter β is

∂ lnP (a, t′,q′|k, t, q)

∂β

=
1

µ

−∂V (k, t, q)

∂β
+
∂v(a|k, t, q)

∂β
+ ρ

∑
q′∈q(t′)

∂V (a, t′,q′)
∂β

Pr(q′|q)

 . (3.6)

Thus, the value V (k, t, q) and ∂V (k,t,q)
∂β

are needed to compute the log-likelihood and its

gradients. We discuss the computation of the value functions as well as their gradients in

the following section.

The resulting model is expensive to estimate and apply because the state space is large

and the destination and state specific value functions need to be solved. In the following
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a decomposition algorithm is presented in which the state space is decomposed into two

sub-set of states, one describing the physical network and the deterministic attributes and

another one describing the probabilistic transitions between states (event collection and

travel time distributions). This allows to efficiently reformulate and simplify the computa-

tion of the value functions as well as the state choice probabilities.

3.3 Decomposition Method for the Maximum Likelihood Estimation

The nested fixed point algorithm proposed by (Rust, 1987) is used to solve the recur-

sive model (RL). The general idea is to combine an outer iterative nonlinear optimization

algorithm for searching over the parameter space with an inner algorithm for solving the

expected expected maximum utilities (or the value functions). As mentioned, compared

to other recursive route choice models proposed previously (Fosgerau et al., 2013b; Mai

et al., 2015c; Mai, 2015), the most challenging issue when estimating the RL in STD net-

works comes from the stochasticity of the network. More precisely, Bellman equation in

(3.1) becomes complicated to be solved. In the following, a way to decompose the com-

putation of the value functions into several simple steps is proposed, so that the Bellman

equation can be solved efficiently.

The computations of the value functions and their gradients is first formulated, then

these computations is decomposed into sequences of simple matrix operations, which al-

lows to quickly compute the log-likelihood function and estimate the RL model.
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3.3.1 Computation of the Value Functions

Consider the stochastic network with the set of states S = {(k, t, q)| k ∈ N , t ∈ T,q ∈

Q}. Let lso denote by Sd the set {(d, t,q); ∀t,q}, set of destination states. For each node

s = (k, t, q) ∈ S, define mappings n(s) = k ∈ N , π(s) = t, and i(s) = (q), i.e., n(s)

refers to the physical node in the transportation network associated with state s, π(s) refers

to the time, and i(s) refers to the travel information q ∈ Q. With these mapping, define the

set of arcs in the stochastic network as AS = {(s, s′)| n(s′) ∈ A(n(s)), Pr(i(s
′)|i(s)) >

0)}. In other words, two nodes s and s′ in S are connected if their corresponding physical

nodes are connected, and the transforming probability between i(s) and i(s′) is greater

than zero. Moreover, define the transforming probabilities between two states s, s′ ∈ S as

Pr(s
′|s) =


Pr(i(s)|i(s′)) if (s, s′) ∈ AS

0 otherwise .

The Bellman equation can be written as

V (s) =


µ ln

(∑
a∈A(k)
k=t(s)

exp

(
1
µ
v(a|s) + ρ

µ

∑
s′∈S

n(s′)=a
V (s′)Pr(s

′|s)
))

s ∈ S\Sd

0 s ∈ Sd.

If define a vector Z of size |S| with element Zs = exp(V (s)
µ

), ∀s′ ∈ S, the value of Z can

be computed be solving the following recursive equation

Zs =


∑

a∈A(k)
k=t(s)

exp
(

1
µ
v(a|s)

)∏
s′∈S

n(s′)=a
Z
ρPr(s′|s)
s′ if s ∈ S\Sd

1 if s ∈ Sd.
(3.7)
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Now define matrices M and U of size |S| × |Ñ | with entries

Msa = exp

(
1

µ
v(a|s)

)
, Usa =

∏
s′∈S

n(s′)=a

Z
ρPr(s′|s)
s′ ,∀s ∈ S, a ∈ Ñ , (3.8)

and a vector b of size |S| with zero values for states s ∈ S\Sd and one values for des-

tination ones, i.e., bs = 1 if s ∈ Sd. The recursive formulation in (3.7) can be written

as

Z = (M ◦ U)e+ b, (3.9)

where e is a vector of size (|Ñ |) with unit entries, and ◦ is the element-by-element product.

Based on this recursive equation, the value of Z can be estimated by iteratively perform

(3.9) until we get a fixed point solution. More precisely, at the beginning (iteration l = 0),

we start with an initial value Z0. At iteration l, suppose that the current value of vector Z

is Z(l), we update the next value Z l+1 by performing the two following steps.

1. Compute U (l) by (3.8), using Z(l),

2. Z(l+1) ← (M ◦ U (l))e+ b.

The iterative process is stopped when a fixed point solution is found, i.e., ||Z(l+1)−Z(l)|| ≤

γ for a given threshold γ > 0. It can be shown that if the discount factor ρ < 1, then the

method converges to an fixed point solution after a finite number of iterations (Rust, 1987).

3.3.2 First Order Derivative

The first-order derivation of the log-likelihood function is critical for the maximum

likelihood estimation. In this section, the gradients of the value functions as well as the
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log-likelihood function is derived. In particular, similar to the computation of the value

functions, the computation of the gradients is formulated as matrix operations, which then

can be decomposed into a sequence of simpler steps.

First the analytical formula of ∂Zs/∂β, s ∈ S is derived, with respect to the model

parameters β. From (3.9)

Zs = bs +
∑
a∈A(k)
k=t(s)

e
1
µ
v(a|s)

∏
s′∈S

n(s′)=a

Z
ρPr(s′|s)
s′ , ∀s ∈ S. (3.10)

Define a matrix K(|S| × |Ñ |) with entries

Ksa = e
1
µ
v(a|s)

∏
s′∈S

n(s′)=a

Z
ρPr(s′|s)
s′ , ∀s ∈ S, a ∈ Ñ .

Then

lnKsa =
1

µ
v(a|s) + ρ

∑
s′∈S

n(s′)=a

Pr(s
′|s) lnZs′ , ∀s ∈ S, a ∈ Ñ . (3.11)

Taking the first derivative of (3.11) with respect to a parameter βq we obtain

∂Ksa

∂βq
= Ksa

 1

µ

∂v(a|s)
∂βq

+
∑
s′∈S

n(s′)=a

ρPr(s
′|s)

Zs′

∂Zs′

∂βq

 . (3.12)

Note that

Zs = bs +
∑
a∈A(k)
k=t(s)

Ksa, ∀s ∈ S. (3.13)
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So if take the derivative of (3.13) and substitute to (3.12), then

∂Zs
∂βq

=
∑
a∈A(k)
k=t(s)

Ksa

 1

µ

∂v(a|s)
∂βq

+
∑
s′∈S

n(s′)=a

ρPr(s
′|s)

Zs′

∂Zs′

∂βq


=
∑
a∈A(k)
k=t(s)

1

µ
Ksa

∂v(a|s)
∂βq

+
∑
s′∈S

(
ρKsaPr(s

′|s)
Zs′

)
∂Zs′

∂βq
.

(3.14)

So, if define two matrices J(|S| × |Ñ |), D(|S| × |Ñ |) with entries

Jsa =
1

µ
Ksa

∂v(a|s)
∂β

and Dss′ =

(
ρKsaPr(s

′|s)
Zs′

)
, ∀s, s′ ∈ S, a ∈ Ñ (3.15)

then (3.14) can be written in a matrix form as

∂Z

∂βq
= Je+D

∂Z

∂βq
, (3.16)

or equivalently,
∂Z

∂βq
= (I −D)−1Je (3.17)

where I is the identity matrix. So the gradients of Z can be obtained by solving the system

of linear equations in (3.17). Note that

∂V (s)

∂βq
=

µ

Zs

∂Zs
∂βq

, ∀s ∈ S.

This allows to compute the gradient of the log-likelihood function through (3.5) and (3.6).
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3.3.3 Decomposition-based Estimation Algorithm

The value functions and their gradients can be obtained by performing (3.9) and (3.16).

However, these matrix operations are costly to perform, due to the large number of states.

In this section, a way to decompose these operations into simpler ones is presented in order

to accelerate the computations.

In order to perform the value iteration method and compute the gradients presented

in the previous sections we need to compute several matrices. Some of them are easy to

obtained, e.g., matrix M , but some are not straightforward to compute quickly, e.g. U , K.

The process to simplify these operations is given in the following. First, define a matrix

F (|S| × |S|) with entries

Fss′ = Pr(s
′|s), ∀s, s′ ∈ S,

and note that

lnUsa =
∑
s′∈S

n(s′)=a

ρPr(s
′|s) lnZs′ , ∀s ∈ S, a ∈ Ñ . (3.18)

Moreover, to deal with the sum in (3.18) we define a matrix T of size |S| × |Ñ | where its

entries are

Tsk =


1 if k = n(s)

0 otherwise
∀s ∈ S

and the other elements equals zeros. Three propositions are introduced to support the

computations

Proposition 1. Given a matrix X of size |S|× |S|, and a matrix U(|S|× |Ñ |) with entries

Usa =
∑

s′∈S
n(s′)=a

Xss′ , ∀s ∈ S, a ∈ Ñ , then U = X × T .
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Proof. Indeed, each element sa of matrix X × T can be computed as

(X × T )sa =
∑
w∈S

XswTwa.

Moreover, according the the definition of T we have, given w ∈ S, Twa = 1 if and only if

n(w) = a, so, we have the following result

(X × T )sa =
∑

w∈S,n(w)=a

Xsw = Usa.

Proposition 2. Given matrices X, Y of size |S| × |S|, and a matrix U(|S| × |Ñ |) with

entries Xss′ = UsaYss′ , ∀s, s′ ∈ S, a = n(s’), then X = (U × T T) ◦ Y , where T is the

transpose operator.

Proof. Each element ss′ of (U × T T) ◦ Y can be computed as

[(U × T T) ◦ Y ]ss′ = Yss′
∑
a∈Ñ

UsaT
T
as′ = Yss′UsaTs′a = Yss′Usa,

where a = n(s′).

Proposition 3. Given matrices X, Y of size |S| × |S|, and a vector b(|S|) with entries

Xss′ = Yss′bs′ , ∀s, s′ ∈ S, then X = Y × diag(b), where diag(b) a square diagonal

matrix with the elements of vector b on the main diagonal.
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Proof. Each element ss′ of Y × diag(b) can be computed as

[Y × diag(b)]ss′ =
∑
w∈S

Yswdiag(b)ws′ = Yss′diag(b)s′s′ = Yss′bs′ .

The result is obtained.

Now, for the sake of simplicity, given a matrix X of size |S| × |S|, denote by ln(X)

and exp(X) two matrices of the same size with X with elements

[exp(X)]ss′ =


exp(Xss′) if (s, s′) ∈ AS

0 otherwise,
and [ln(X)]ss′ =


ln(Xss′) if (s, s′) ∈ AS

0 otherwise,

and if X is a matrix of size |S| × |Ñ |, ln(X) and exp(X) are defined as

[exp(X)]sa =


exp(Xsa) if a ∈ A(n(s))

0 otherwise,
and [ln(X)]sa =


ln(Xsa) if a ∈ A(n(s))

0 otherwise,

and ifX is a vector of size |S|, then ln(Z) is also of size |S|with entries [ln(Z)]s = ln(Zs),

∀s ∈ S. According to Propositions 1 and 3, the matrix ln(U) defined in (3.18) can be

computed as

ln(U) = [F × diag (ln(Z))]× T.

This equation allows to compute U as well as perform the value iteration quickly.
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Now let’s turn our attention to the computation of the gradients. Indeed, the matrices

J and D are needed in order to obtain ∂Z
∂βq

. Note that, K = M ◦ U , so J can be written as

J = K ◦ Vq = Vq ◦ (M ◦ U) ,

where Vq is a matrix of size |S| × |Ñ | with entries ∂v(a|s)
∂βq

. Moreover, according to (3.15),

matrix D can be computed based on matrix K (of size |S| × |Ñ |) and matrices F (of size

|S|× |S|) and vector Z(|S|). So, using Propositions 2 and 3, the matrix D can be obtained

through K, F , Z and T as follows

D = [(K × T T) ◦ F ]× diag(1/Z),

where 1/Z is a vector of size |S| with entries 1/Zs, ∀s ∈ S. So, finally, all the compu-

tations can be formulated via some simple matrix operations, which are summarized in

Algorithms 1 and 2. Algorithm 1 contains steps to compute the value function, and Algo-

rithm 2 concerns the computation of the Jacobian of the value function. The algorithms

can be implemented by performing sequences of simple matrix operations. The matrices,

even are large in terms of size, but sparse. It is important to note that the computational

complexity of sparse operations is proportional to the number of non-zero elements and

the row and column sizes, but should be independent of the number of all the elements in

the matrix.

Finally, the outer algorithm of the nested fixed point algorithm is briefly discussed.

This algorithm is based on a nonlinear optimization algorithm, such as a trust region or

line search algorithm (Nocedal and Wright, 2006). Rust (1988) suggest using the BHHH
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Algorithm 1 Solving Bellman equation
# 1. Initializing the value functions and the discount factor
Z = Z0; ρ ≤ 1;
# 2. Computing the Value iteration
do

Zprev = Z
Y = [F × diag (ln(Z))]× T ;
U = exp(Y );
Z = (M ◦ U)e+ b;

while ||Zprev − Z|| < γ;
V = µ ln(Z);

Algorithm 2 Computing gradients
Y = [F × diag (ln(Z))]× T ;
K = M ◦ exp(Y );
J = Vq ◦ (M ◦ U) ;
D = [(K × T T) ◦ F ]× diag(1/Z);
foreach q do

∂Z
∂βq

= (I −D)−1Je;
∂V
∂βq

= µ
(
∂Z
∂βq

)
◦ (1/Z) ;

end

approximation (Berndt et al., 1974) to obtain an efficient nonlinear optimization. Indeed,

once the value functions as well as their first derivatives can be computed, the BHHH

approximation can be easily obtained. However, note that the performance of the BHHH

approach may be poor when close to the optimum solution in case of misspecification

(Bastin et al., 2005; Mai et al., 2014). Structured quasi-Newton techniques then can be

used to address this issue (Mai et al., 2014).
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3.4 Numerical Results

3.4.1 Network and Data

A subnetwork of Stockholm, Sweden is considered which includes the Arlanda airport

area, northeast inner city, and the connecting corridor. The network has 2772 nodes, 5447

links (including 619 stochastic links). The data consists of 500 observations and the study

time period is from 6h30 to 9h A.M. There are 30 breaking points. The trace generation

process is time-based with data from November 1, 2012 through January 18, 2013, cover-

ing the time intervals of Mondays through Fridays, resulting in 56 days (support points).

They are matched to the road network using a 4-step map-matching method designed for

sparse Floating Car Data (FCD), which is data collected from traced vehicles that “float"

with the traffic (Rahmani and Koutsopoulos, 2013). The time period is discretized by

10-sec. The numbers of states in the STD network range from 33,476 to 445,315, and the

numbers of links are between 65,364 and 844,285.

A non-parametric method is used to compute the link travel times per time interval us-

ing the map-matched GPS data. For each road segment between a pair of GPS coordinates,

the observed travel time (i.e., the difference between the time stamps) is decomposed to

the traversed links proportionally to their free-flow speeds and overlapping lengths. The

weighted average, where the weight reflects the overlap with both the considered link and

other links, over observations from different vehicles within the same time interval is the

estimated link travel time. The travel time estimation is performed for each time interval

separately for each day in the data set, producing an empirical, joint travel time distribu-

tion. Please refer to (Rahmani et al., 2015) for detailed evaluation of the method. With

the available data, there are link-day-interval combinations for which the travel time can-
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not be estimated due to lack of observations. These missing values are filled in through a

sequence of inter/extrapolation steps. Furthermore, unreasonably high or low link travel

times are removed to produce reliable estimates.

A link is treated as deterministic when there is not enough variation of travel time over

time and day, or not enough observations to derive reliable travel time estimates. In this

case, a single mean travel time is estimated across all days and time intervals.

3.4.2 Model Specifications

Four different attributes are used to specify the instantaneous utility function. First,

travel time TT(a|k, t, q) from node k ∈ N to node a ∈ N , conditional on information

(t,q). Second, the standard deviation of travel time sTT(a|k) on link (k, a) ∈ A. Third,

mTT(a|k) is the averaged travel time of link (k, a). And fourth, link constant LC(a|k)

that is equal to 1 for every (k, a) ∈ A. Some additional variables are also defined to

model the behavior of travelers with respect to the length and variation of the travel time,

namely, dummy-long-trip DL(n) that is equal to 1 if the travel time of trip n is greater then

15 minutes, and 0 otherwise, and dummy-high-variance-travel-time variables DHV(a|k)

that is equal to 1 if sTT(a|k)
mTT(a|k)

> 0.2, and equal to 0 otherwise. The RL model is estimated

using the following utility function associated with arc (a, k) ∈ A, observation n, and

information (t,q).

vn(a|k, t, q) = DL(n)

(
β1
TTTT(a|k, t, q)DHV(a|k) + β2

TTmTT(a|k)(1− DHV(a|k))

)

+ (1− DL(n)) βmTTmTT(a|k, t, q) + βLCLC(a|k) + βPSPS(a|k),

(3.19)
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where PS(a|k) is an attribute designed to correct the utilities for overlapping policies in

a STD network. The attribute is is similar to the Link Size (LS) attribute proposed in

(Fosgerau et al., 2013b) for deterministic networks. This attribute is computed through the

policy choice probabilities calculated based on the above instantaneous utility function, in

which the term βPSPS(a|k) is excluded, and with parameters [β̃1
TT , β̃

2
TT , β̃mTT , β̃LC ] =

[−1.8,−3.7,−3.6,−1.0]. Note that the use of the attribute LC refers to the number of

crossings on paths. The intuition behind the utility function in (3.19) is as follows. It is

reasonable to assume that the travelers only take into consideration additional information

(t,q) for long trips, and for arcs whose the travel times have high variances.

3.4.3 Estimation results

In this section, estimation results for the RL model are presented using the above STD

network. It is important to note that, in these experiments, the RL model without discount

factor become difficult to estimate. More precisely, if ρ = 1, the value iteration method

is often not able to return fixed-point solutions. Therefore, we therefore estimate the RL

model with ρ ≤ 0.98. Table 3.3 reports the estimation results with ρ = 0.98, 0.95, 0.90

and 0.85. Clearly, all the parameter estimates are significant, and all have their expected

signs. The β estimates given by different discount factors are similar. Specifically, β1
TT is

more negative than β2
TT , which indicates that travelers are more sensitive to travel time

conditional on real-time information than mean travel time for long trips. Besides, βPS <

0 shows that travelers do not like crossings in general. Moreover, there are remarkable

improvements in final log-likelihood when decreasing the discount factor. In other words,

we obtain better models in in-sample fit with lower discount factors.
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Table 3.3: Estimation results

Discount factors
Parameters 0.98 0.95 0.90 0.85

β1
TT -3.20 -3.19 -3.14 -3.11

Rob. Std. Err. 0.28 0.27 0.28 0.28
Rob. t-test(0) -11.43 -11.91 -11.26 -11.11

β2
TT -1.16 -1.14 -1.11 -1.10

Rob. Std. Err. 0.22 0.22 0.21 0.21
Rob. t-test(0) -5.27 -5.15 -5.33 -5.24

βmTT -4.21 -4.18 -3.98 -3.98
Rob. Std. Err. 0.33 0.32 0.36 0.35
Rob. t-test(0) -12.93 -11.00 -11.37 -11.37

βLC -1.03 -1.02 -0.98 -0.98
Rob. Std. Err. 0.04 0.04 0.05 0.05
Rob. t-test(0) -25.75 -23.01 -20.95 -19.60

βPS -0.12 -0.12 -0.12 -0.12
Rob. Std. Err. 0.02 0.02 0.02 0.02
Rob. t-test(0) -6.00 -5.58 -5.63 -6.00

Log-likelihood -3385.01 -3354.68 -3329.42 -3315.14

In the context of a sequential route choice model, discount factor represents travelers’

degree of spatial cognition of networks as a parameter. The value of a discount factor is

assumed to be between zero and one. A large value of discount factor means that drivers

evaluate the future expected utility with great weight. When discount factor equals one,

travelers evaluate the expected downstream utility and the instantaneous utility of the next

link with equal weights, suggesting that travelers are perfectly looking ahead. On the other

hand, when discount factor equals zero, travelers choose the next link based only on its

instantaneous utility, suggesting that travelers are completely myopic.
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In order to illustrate the effect of the discount factor on the final log-likelihood values,

the model is estimated with ρ ∈ {0.98, 0.96, ..., 0.5}, with a remark that with ρ ≤ 0.5

several numerical issues are encountered when solving the Bellman equation . Figure 3.2

plots the final log-likelihood values given by discount factors in the interval [0.5, 0.98].

Interestingly, the figure shows that the model becomes better in in-sample fit with lower

discount factors. The final log-likelihood values are stable with ρ ∈ [0.5, 0.85], but de-

crease dramatically with ρ = 0.85 to 0.98.
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Figure 3.2: Final log-likelihood values with discount factors from 0.50 to 0.98

As discussed before, lower discount factor means that travelers are more myopic and

place less weight on the the future downstream expected utilities. As a result, route choices

could follow approximately random walk with extremely smaller discount factor, leading

to circles during a trip. Next, whether the value of discount factor is reasonable or not is

checked by looking at the number of cycles in the generated paths according to the RL

model, as a measure of random walk.
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The prediction performance of the RL model with two extreme discount factors, i.e.,

ρ = 0.98 and ρ = 0.5 is studied. The model is estimated with the two discount factors,

and the estimates are then used to simulate 200 paths per each observed origin-destination

(OD) pair. In total, there are 100,000 paths are generated. Table 3.4 reports the number of

simulated paths without and with cycles. Approximately 98% of the generated paths are

cycle-free, for both ρ = 0.98 and ρ = 0.50. This also means that there are only about 2%

of the generated paths containing cycles. For ρ = 0.50 there are a fews paths of 4, 5 and

6 cycles are generated, and for ρ = 0.98 there is no path of more than 2 cycles generated.

The results indicate that, with a low discount factor of 0.5, the RL model still gives good

simulation results.

Table 3.4: Number of simulated paths with cycles

No paths with cycles

Discount factor
No simulated

paths 0 1 2 3 4 5 6

0.98 100,000 97,896 2082 21 1 0 0 0
0.50 100,000 98,020 1936 29 8 2 1 3

3.4.4 Computational time results

The code is implemented in MATLAB 2015 and all computations are carried out on

an Intel(R) 3.20 GHz machine with a x64-based processor. It is running with the Window

8 64-bit Operating System.

It requires approximately half an hour to compute a log-likelihood value, if the code

is not parallelized. The optimization algorithm (i.e. the outer one) needs around 30 to

40 iterations to converge. So, it takes about 15 to 20 hours to estimate the model with
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a non-parallelized code. It is worth mentioning that if we parallelize the code and use a

machine of 8 CPUs to estimate the model, the estimation can be done in only 2 to 3 hours.

For solving the Bellman equation, the value iteration needs around 100 to 150 iterations

to approximate fixed point solutions. The computational time needed to compute the value

functions, as well as their gradients depends on the size of the STD network, and varies

between 2 to 100 seconds. It is interesting to mention that if estimating the RL model

(Fosgerau et al., 2013b) with the static and deterministic network, the estimation only

requires about 20 seconds. The difference in computation time is, clearly, due to the fact

that the size of the static network is smaller than the STD one, and solving the Bellman

equation on the static RL can be done quickly by solving systems of linear equations,

which is not the case with the stochastic RL model.

3.5 Summary

This chapter investigates the routing policy choice problems in a stochastic time-

dependent (STD) network. Firstly, a recursive logit model for STD networks is presented

in which the probabilistic choice of the next link is modeled at each link, following the

framework of dynamic discrete choice models. Next, an algorithm for solving the value

functions that relies on matrix operations is proposed. Estimation and prediction results

are then presented using data from a subnetwork situated in the Stockholm region, Swe-

den. Results show that the model can be estimated efficiently, and gives reasonable results

for prediction.
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CHAPTER 4

A MARKOV DECISION PROCESS APPROACH TO VACANT
TAXI ROUTING WITH E-HAILING

Taxis play an important role in providing on-demand mobility. Compared to other

forms of public transportation, the advantages of taxis include speediness, privacy, com-

fort, door-to-door service and longer operation hours with wide spatial coverage. Tra-

ditionally, vacant taxis cruise on roads searching for customers. In recent years, thanks

to the proliferation of GPS-enabled smartphones, e-hailing applications (e.g., Uber, Lyft,

and Didi Chuxing) are widely adopted by ride-sourcing drivers and in some cases, tradi-

tional taxi drivers (Didi Chuxing in China) to receive requests from nearby customers. The

driver of a hired taxi usually aligns his/her routing objective with the passenger’s, given

the paramount importance of customer service (taking a detour to get higher fare is unpro-

fessional and rare), and such a problem has been well studied. The interesting question is

how to route vacant taxis. Taxis cruising on roads not only result in wasted gas and time

for taxi drivers but also generate additional traffic in a city. Therefore, how to improve the

utilization of taxis is of importance to both taxi drivers and the society.

In an earlier study by the co-authors (Hu, Gao, Chiu and Lin, 2012), a dynamic pro-

gramming model of routing vacant taxis was proposed to depict the decisions at inter-

sections according to the passenger arrival rate. However, the expected search time is

only minimized for the next customer, which might be inefficient in the long run. For
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example, driving to the airport might not minimize the search time for the next cus-

tomer, but it brings in a higher chance of a long trip for the next customer and thus the

profit might be higher overall. For this reason, experienced taxi drivers would not sim-

ply make their customer-search decisions depending on the current searching time/profit,

but would also consider the subsequent possible states that could be encountered. The

majority of vacant taxi routing studies in the literature, in fact, only considers an optimiza-

tion problem until meeting the next customer (Zhang et al., 2015; Qu et al., 2014; Dong

et al., 2014; Hwang et al., 2015; Huang et al., 2015), and in some cases, the revenue from

the next customer (Yuan, Zheng, Zhang and Xie, 2013).

This study formulates the vacant taxi routing problem as a Markov Decision Process

(MDP) so that long-term objectives can be taken into account instead of the immediate one

of meeting the next customer. Some studies apply reinforcement learning (RL) (Sutton

and Barto, 1998c) and adopt MDP formulations (Han et al., 2016; Verma et al., 2017),

yet their treatments are usually not fully developed, in that important modeling issues

such as e-hailing are ignored and space is highly aggregated. A typical RL algorithm

also is purely data driven without taking advantage of the understanding of the underlying

physical process, that is, no state transition probabilities are derived.

The remainder of this chapter is organized as follows. Section 4.1 provides a review

of the literature. Section 5.1 formulates an MDP problem for the vacant taxi routing prob-

lem, defining states, actions and transition probabilities, followed by the presentation of

an efficient solution algorithm in Section 4.3. Section 4.4 presents the computational ex-

periments using GPS data from Shanghai, China to evaluate the merits of the proposed
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methodology. Finally, Section 4.5 concludes the study and discusses potential directions

for future work.

4.1 Literature Review

4.1.1 Single Vacant Taxi Routing Problem

The single vacant taxi routing problem is also known as the taxi recommender problem

in the literature. The emergence of GPS tracking has facilitated the study of taxi routing

problems, and massive taxi GPS datasets have attracted the attention of researchers from

various fields with expected cross-fertilization of methods from transportation engineer-

ing, operations research, and computer science. The general problem statement is that

given the location of a vacant taxi in an urban area, find the optimal decisions regarding

its spatial movements.

Some studies recommend one or multiple pick-up locations without solving a network-

based optimization problem. The attractiveness of a location with respect to the current

location of the taxi is calculated using a number of factors, such as the distance between

the current location and the pick-up location, expected revenue of trips from the pick-up

location, waiting time for the next passenger at the pick-up location, and the probability

of getting matched with a passenger on the way from the current location to the pick-

up location. Some or all of the factors are manipulated to generate a single metric of

attractiveness, and locations are ranked accordingly (Powell et al., 2011; Hwang et al.,

2015; Zhang et al., 2016). The approach abstracts away the taxi cruising process on roads,

and thus does not have a physically meaningful objective in the problem formulation, such
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as maximizing profit or minimizing search time, although the evaluation of the methods is

usually based on such measures.

Table 4.1 presents a list of studies (including the current one) where some form of

network-based optimization is carried out. Note that the network can be either the physical

road network, cell/zone-based or a number of locations connected by abstract links (see

the “Network Representation" field).

There are three broad categories of taxi routing decisions (see the “Decisions" field):

• A route is defined as a sequence of connected links (physical road segments or ab-

stract connections between locations) without metrics attached to the end node (la-

beled “Route" in the table). Different from a regular commuter routing problem, a

vacant taxi does not have a definitive destination, and thus constraints are added to

ensure that the optimal route does not become unrealistic, such as within a certain

distance or time (Yuan, Zheng, Zhang and Xie, 2013; Dong et al., 2014), with a

fixed number of segments (Qu et al., 2014; Huang et al., 2015), and with at least one

expected passenger (Zhang et al., 2015).

• A route with metrics attached to the end node, the so-called “parking" place where

taxies queue for passengers (hotels, transportation hubs) as in Yuan, Zheng, Zhang

and Xie (2013). Metrics attached at the end node (such as revenue miles from the

next passenger) are included in the optimization together with those from the route.

• A routing policy which maps any state (node) to an action (link) (Hu, Gao, Chiu

and Lin, 2012; Han et al., 2016; Verma et al., 2017). An MDP formulation gener-

ates policies and in this paper, they are called routing policies. Note that the MDP
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framework allows natural extension to include other important features of the trans-

portation network that might affect the optimal routing, such as time-of-day, traffic

condition, special events, by expanding the state space. All the MDP problems in the

literature, as well as this study, are with infinite horizon, and thus either a terminal

state is defined, such as finding a passenger (Hu, Gao, Chiu and Lin, 2012), or a dis-

count factor of less than 1 is applied to returns from the future so that a convergent

policy can be found (Han et al., 2016).

The “Planning Horizon" field in the table summarizes how far into the future a study

considers the routing problem. Define a cycle as the vacant taxi trip from a drop-off

location to the pick-up location for the next passenger, succeeded by the hired trip to the

passengers’ destination. Some studies consider only the first half cycle (“Half cycle"), that

is, until a passenger is picked up, while a few consider the revenue from the next passenger

(“One cycle"). Some studies do not have a clear probabilistic description of the cruising

process (“N/A"). This study adopts a multi-cycle approach to account for the long-term

profit, similar to studies based on RL (Han et al., 2016; Verma et al., 2017).

The matching of a vacant taxi and a passenger (see the "Matching Probability" field)

is usually set simply as the observed fraction of matched taxis over all taxis present at a

link/cell/zone, with the exception of Hu, Gao, Chiu and Lin (2012). Clustering sometimes

is carried out to resolve the issue of data sparsity. Competition from other vacant taxis is

modeled in Zhang et al. (2015) by accounting for relative locations of multiple taxis on

the same link in calculating the matching probability, while Yuan, Zheng, Zhang and Xie

(2013) use the queue length at the “parking" place as in indirect measure of competition, in

that it is not factored in matching probability but used in optimization as an either objective
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or constraint. This study uses a space Poisson distribution for vacant taxis and factors it

directly in calculating matching probabilities.

The objective of the optimization problems also vary in the literature. Closely related to

the planning horizon, when a half-cycle is considered, the objective function is usually the

search travel time or distance, while when a full cycle is considered, revenue from the next

passenger can be included. Studies without a clear model of the matching process (Qu

et al., 2014; Dong et al., 2014) have objectives that are not well defined, despite that

sometimes the name suggests otherwise. A planning horizon of multiple cycles allows for

long-term objective to be included, and resolves the issue of the inconsistency between

the optimization objective and evaluation criteria. Often times, a half-cycle or one cycle

is adopted so that optimization can be done quickly, yet in evaluation, taxis are simulated

for multiple cycles. The MDP formulation ensures that the correct objective is optimized.
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Table 4.1: An overview of single vacant taxi routing studies with network optimization

Network
Representation Decisions Planning

Horizon
Matching
Probability Objective

Hu, Gao, Chiu and Lin (2012) Physical Routing policy Half cycle
Queuing theory;
no competition Minimal searching time

Zhang et al. (2015) Physical Route Half cycle
Empirical frequency;
with competition

Shortest path
with at least one
expected passenger

Yuan, Zheng, Zhang and Xie (2013) Physical “Parking" place
and the route to it

One cycle
Empirical frequency;
competition
by queue length

Combinations of
1) revenue miles per
unit searching time,
2) searching time,
3) pick-up probability,
4) queue length
at "parking" place

Qu et al. (2014) Physical Route N/A Empirical frequency
Maximal “profit" with
a fixed number of segments

Dong et al. (2014) Physical Route N/A N/A
Maximal score
(related to revenue)
with distance constraint

Huang et al. (2015) Locations and
their connections

A sequence of
fixed number
of pick-up points

Half cycle Empirical frequency Minimal searching distance

Verma et al. (2017) Cell-based Routing policy Multi-cycle Empirical frequency Maximal revenue

This Study Physical Routing policy Multi-cycle
Queuing theory;
with competition Maximal profit
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4.1.2 Other Related Work

In this section, related studies that are not directly addressing vacant taxi routing prob-

lem is reviewed. They either might provide insights into the formulation and solution of

the taxi routing problem (e.g., the vehicle routing problem), or can provide support to a

future extension of the current approach (taxi demand and destination prediction).

• Vehicle Routing Problems Models and algorithms developed for non-myopic ve-

hicle routing problem (VRP) under uncertainty with look-ahead policies and rolling

horizons (e.g., Mitrović-Minić et al., 2004; Thomas and White, 2004; Ferrucci et al.,

2013) might provide insights for taxi routing problems in terms of accounting for fu-

ture unknown demand and efficient solution algorithms. Thomas and White (2004)

formulated a Markov Decision Process (MDP) in which known customers may ask

for service with a known probability. Mitrović-Minić et al. (2004) included double-

horizon heuristic that minimizes route distance for customers served in the near-

term. Ferrucci et al. (2013) presented a tabu search approach for the delivery of

newspapers and applied temporal and spatial clustering of future requests, assumed

to be known as a time-space Poisson distribution, which guides vehicles into request-

likely areas. It is however recognized that the taxi problem is different. In a typical

VRP, the service of a customer does not bring the vehicle to another location, while

a taxi does and the destination is not known until the request is taken. This sig-

nificantly increases the geographic spread of taxi movements. In addition, a taxi

(without carpooling service) can serve only one quest at one time and a new request

does not come up until the old request is finished (unless a dispatcher is sending

request during the previous ride).
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• Taxi Demand and Destination Prediction Accounting for future states in taxi

searching behavior requires sound models of geographic and temporal distribu-

tions of taxi demand and destination prediction. Several approaches have been pro-

posed to predict taxi demand distribution which could be combined with the opti-

mal taxi routing modelïijŇ including the time-series forecasting techniques such as

the time-varying Poisson model and the autoregressive integrated moving average

(ARIMA) (Li et al., 2012; Moreira-Matias et al., 2013), the multi-level cluster-

ing technique where demand over neighboring cells are aggregated, and the neu-

ral network based algorithms(e.g., Ke et al., 2017; Xu, Rahmatizadeh, Bölöni and

Turgut, 2017). For instance, Zhao et al. (2016) implemented and compared three

models, i.e., the Markov algorithm, Lempel-Ziv-Welch algorithm, and neural net-

work. The results showed that neural network performed better with the lower theo-

retical maximum predictability while the Markov predictor had better performance

with the higher theoretical maximum predictability. Some socio-demographical and

built-environment variables have also been in use for predicting taxi passenger de-

mand (Qian and Ukkusuri, 2015).

• Taxi Driver Search Behavior Another category of related work aims to model accu-

rately the actually observed customer-search behavior of vacant taxi drivers. These

studies provide comprehensive and quantitative insight into factors affecting taxi

drivers’ incomes and assist in developing effective optimization algorithms for taxi

operations. Yang and Wong (1998) developed a model to determine the taxi move-

ments on a given road network. Their study was further improved to capture con-

gestion effects (Wong et al., 2001; Yang et al., 2005b), multiple user classes (Wong
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et al., 2008), stochastic searching processes (Wong et al., 2005; Yang et al., 2010),

day-to-day learning processes (Kim et al., 2005) and search frictions between va-

cant taxis and taxi customers (Yang and Yang, 2011; Yang et al., 2014). Wong,

Szeto, Wong and Yang (2014) formulated and validated multinomial logit (MNL)

models to predict vacant taxi drivers’ zone choices for customer searching in both

peak and off-peak hours. Szeto et al. (2013) further extended the consideration to

every hour in a day. Wong, Szeto and Wong (2014) formulated a cell-based network

and modeled the local customer-search movement of vacant taxi drivers based on

the probability of successfully meeting the next taxi customers. Wong et al. (2015a)

proposed a sequential logit-based vacant taxi behavior model predicting searching

paths as a sequence of choices of adjacent zones while heading to their designated

zones as compared with the model of Wong, Szeto and Wong (2014). Wong et al.

(2015b) further combined the two proposed models to a two-stage modeling ap-

proach, cell-based model for local (within zone) search decisions and ESL for zonal

decisions to predict vacant taxi movements in searching for customers. Qin et al.

(2017) categorize taxi drivers into three levels according to their revenue and de-

velop a generalized multilevel ordered logit (GMOL) model to find the significant

factors that influence revenue.

• Others A large number of studies have been conducted to better understand and

improve the taxi market, focusing an array of topics, such as taxi equilibrium as-

signment analysis (e.g., Yang et al., 2005a; Yang et al., 2010; Yang and Yang,

2011; Long et al., 2017), taxi fleet dispatching systems (e.g., Seow et al., 2010; Hou

et al., 2013; Lowalekar et al., 2016), ride-sharing/carpooling problems (e.g., Hosni
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et al., 2014; Lee and Savelsbergh, 2015; Qian et al., 2017; Masoud and Jayakrishnan,

2017b), pricing in taxi/ride-sourcing market(e.g., Qian and Ukkusuri, 2017b; Zha

et al., 2017), validating user equilibrium with taxi trajectory data (Xie et al., 2017)

and route planning through taxi trajectory mining (Yang, Kwan, Pan, Wan and

Zhou, 2017).

4.2 Formulation of the Non-myopic Optimal Taxi Routing Problem

The defining characteristics and assumptions of the optimal taxi routing problem are:

• The vehicle routing problem is applicable for a single taxi;

• When a taxi is hired, the routing problem is reduced to a fastest path problem from

the passenger’s origin to destination and is not studied explicitly in this paper;

• Passenger arrivals and vacant taxi distribution are assumed independent;

• Passenger arrivals at different nodes are assumed independent;

• A passenger is matched with the nearest vacant taxi.

Accordingly, an MDP formulation for the taxi routing problem is presented.âĂİ

4.2.1 States and Actions

A taxi driver’s routing decisions over a time horizon on a given day is modeled as an

MDP. A taxi travels in a traffic network G = (N,A). N is the set of nodes and A the

set of links. There is at most one directional link, a, from the source node i to sink node
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1Department of Civil and Environmental Engineering

（1）A vacant taxi is not matched with any passenger when traversing link 𝑎

（2）A vacant taxi is not matched with any passenger when traversing link 𝑎

Formulation of the multi-cycle taxi routing problem
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(a) A vacant taxi starting from node i taking action a is not matched with any passenger
while traversing link a. The next state is node j.

1Department of Civil and Environmental Engineering

（1）A vacant taxi is not matched with any passenger when traversing link 𝑎

（2）A vacant taxi is not matched with any passenger when traversing link 𝑎

Formulation of the multi-cycle taxi routing problem
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(b) A vacant taxi starting from node i taking action a is matched with a passenger at
node h with a destination i′ while traversing link a. The next state is node i′.

Figure 4.1: Illustration of the passenger matching process on a link
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j. A(i) is the set of downstream links of i. The taxi is actively searching for, or carrying

passengers during a planning horizon.

When a taxi is hired, the routing problem is reduced to a fastest path problem from the

passenger’s origin to destination, and is not studied explicitly in this paper. The state of

a vacant taxi is defined as the current node i ∈ N . The action set for state i is the set of

outgoing links A(i). For a given state i and action a ∈ A(i), two types of transition to a

new state i′ could happen (see Fig. 4.1). a) The taxi is not matched with any passenger

when traversing link a = (i, j), and the next state is j, the sink node of a. b) The taxi

is matched with a passenger at h (not necessarily the same as j due to e-hailing) when

traversing link a, and the next state is the destination node of the passenger i′. To calculate

state transition probabilities, the passenger matching probability on a link (Section 4.2.2)

and passenger destination probabilities (Section 4.2.3) are needed.

4.2.2 Passenger Arrival and Matching Probability on a Link

Passengers arrive at link a following a one-dimensional space-time Poisson process

with rate λa per hour per mile. For modeling convenience, these are simplified as homo-

geneous time Poisson processes at each node with a constant average passenger demand

rate, and the arrival rate at node j (per hour), λj =
∑

a∈B(j) λala, where la is the length

of link a and B(j) the set of incoming links. The combined process over all nodes is

also a Poisson process with arrival rate λ =
∑

j∈N λj . In practice, demand rate λj is of-

ten approximated by observed met demand rate. Statistical analysis can be carried out to

build a predictive model for the demand rate as a function of built environment variables

(e.g., residential density, and employment by business type such as hotel and nightclub),
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time of day, and weather condition (e.g., Phithakkitnukoon et al., 2010; Moreira-Matias

et al., 2012) .

When e-hailing is used, it is assumed that the nearest vacant taxi to a passenger gets

matched to the passenger. Vacant taxis around node n at any given point of time follow

a two-dimensional spatial Poisson distribution with density γn. For a given node n, the

probability of a vacant taxi r miles away (based on right-angle travel) being the nearest

vacant taxi is the probability of no vacant taxi in a square (denoted by S) rotated at 45

degree centered at node n with area equal to 2r2 (Larson and Odoni, 1981), namely,

Pn(r) {X(S) = 0} = exp(−2γnr
2). (4.1)

where X(S) denotes the number of empty taxis contained in the square S.

The set of potential pick-up nodes is limited to those that are within a certain distance

to the vacant taxi. Let N(j) denotes the sets of nodes within a certain matching distance

R to node j. That is, R is the farthest distance between a passenger and a taxi where a

request can go through. The combined process over all nodes in N(j) is also a Poisson

process with arrival rate λN(j) =
∑

j∈N λj . The matching distance can be different for

different areas, and it probably changes as a function of time as well. For example, during

slow hours, drivers are willing to pick up a passenger who is far away. During busy hours,

drivers are less likely to accept trips with long pick-up time. In this study, the rates are

assumed to be static within a study period (say, 2 hours), and future research will address

time-varying rates.

Consider a vacant taxi with e-hailing traversing link a. It gets matched with a passenger

at node h when the following conditions are all satisfied.
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• A passenger arrives at node h during the traversal time τa,

• The arrival at node h is earlier than arrivals on all other nodes in N(j),

• The taxi in question is the nearest vacant taxi to node h.

The probability of having at least one arrival from any node in N(j) during τa is

1 − exp(−λN(j)τa). The probability that an arrival from node h is earlier than all other

nodes is λh
λN(j)

(Larson and Odoni, 1981). The product of the two probabilities is the

probability that the earliest arrival during τa happens at node h. The matching probability,

pa,h, is the product of the probability that the earliest arrival during τa happens at node h

and the probability that the taxi in question is the nearest vacant taxi to node h, namely,

pa,h =


λh
λN(j)

(
1− exp(−λN(j)τa)

)
exp(−2γhL2

a→h), if h ∈ N(j)

0, otherwise
, (4.2)

where La→h is the right-angle distance from link a to node h, which can be approximated

as the distance from the middle point of link a.

For those taxis that pick up passengers along the roads without e-hailing, it usually

requires that the taxi and passenger to be no more than 1 block away from each other,

thus the pick-up node set without e-hailing, N(j), is a subset of the pick-up nodes with

e-hailing.

4.2.3 Passenger Destination Probabilities

The probability of a passenger picked up at node h having node k as the destination,

ph→k, can be approximated by the observed fraction of passengers picked up at node h

86



going to k. When no passenger pick-up is observed at node h, the probability is undefined.

To resolve this issue, the study area is divided into zones such that any zone has strictly

positive number of pick-ups. Let node h be in zoneH and node k in zoneK. Assume each

node in zone K has equal probability of being the destination node, and the destination

probability is

ph→k =



pH→K
mK

, ∀H 6= K
pH→K
mK − 1

, ∀H = K,∀h 6= k

0, if h = k

, (4.3)

where pH→K is the probability of a passenger picked up in zone H having zone K as

the destination zone, and mK is the number of nodes in zone K. The equal probability

assumption can be easily relaxed.

The proposed modeling methodology could be applied to any study area using dif-

ferent sizes of zones. The sizes of the zones should be designed carefully based on the

required level of modeling accuracy and the information available to the modeler. An un-

necessarily large zone would mask traffic pattern differences that might be important for

taxis finding customers. If the sizes were too small, the relevant data collected would be

statistically unreliable, and the number of samples in each zone would be insufficient to

provide representative means on the model parameters. In practice, it is advised to use

the traffic analysis zones (TAZs) in a regional planning model as the basis for calculating

passenger destination probabilities.

4.2.4 State Transition Probabilities

For a given state i and action a ∈ A(i) with a sink node j, the transition probability,

pii′|a is defined as follows:
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pii′|a =


1−

∑
h∈N(j)

pa,h +
∑

h∈N(j)

pa,h ph→j, if i′ = j

∑
h∈N(j)

pa,h ph→i′ , if i′ 6= j
(4.4)

In the first case, the next state of the taxi is the sink node j. The probability of arriving

at node j is the sum of the probability of arriving at j without getting matched and the

probability of picking up a passenger from node h with destination j. In the second case,

the next state is not the sink node j. In this case, a passenger from node hwith destination i′

(i′ 6= j) is matched, and the taxi arrives at node i′ after picking up the passenger from node

h and carrying the passenger from h to i′, both following shortest paths. The probabilities

are summed over all possible h. The taxi continues the routing process after dropping off

the passenger.

4.2.5 Immediate Profit

It follows that the immediate profit of going from state i to i′ given action a can be

written as follows:

gii′|a =



−ατa(1−
∑

h∈N(j)

pa,h) +
∑

h∈N(j)

[F (dh→j)− α(τa + Tj→h + Th→j)] pa,hph→j

1−
∑

h∈N(j)

pa,h +
∑

h∈N(j)

pa,h
, if i′ = j

∑
h∈N(j)

[F (dh→i′)− α(τa + Tj→h + Th→i′)] pa,hph→i′∑
h∈N(j)

pa,h ph→i′
, if i′ 6= j

(4.5)
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where α is the taxi operating cost per unit time, and Tj→h (Th→i′) is the fastest path travel

time from node j to h (h to i′). F (dh→i′) is the taxi fare of an occupied trip from pick-up

node h to destination node i′, where dh→i′ is the occupied travel distance from node h to i′.

F (dh→i′) can be calculated by Eq. (4.6), a piecewise linear fare structure used in the study

area of Shanghai in this study and can be adapted to other forms that depends on distance

and/or travel time.

F (dh→i′) =


f0, if dh→i′ ≤ d0

f0 + β(dh→i′ − d0), if d0 ≤ dh→i′ ≤ d1

f0 + β(d1 − d0) + γ(dh→i′ − d0), if dh→i′ ≥ d1

, (4.6)

Similar to the state transition equation, the expected payoff is calculated for two different

cases. In the case where the next state is j, the payoff is either the negative of the oper-

ating cost of traversing link a, which is −ατa, with the probability of not matched with a

passenger,
∑

h∈N(j) pa,h, or the taxi fare of going from h to j minus the operating cost of

traversing a, going from j to h and from h to j, which is F (dh→j)−α(τa +Tj→h +Th→j),

with the probability of getting matched with a passenger whose destination is j. Note

that the probabilities are normalized. In the second case where the taxi is matched with a

passenger whose destination is i′ 6= j, the same calculation of fare minus operating cost is

carried out, with normalized probabilities.

4.2.6 The Bellman Equation

Let V ∗(i) denote the optimal expected payoff starting from state i. The taxi driver

chooses the action at each state i to maximize the expected payoff that is the sum of the
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expected immediate payoff and the expected downstream payoff, which is the expectation

of the payoff over all possible next state i′. The optimal expected payoff is obtained by

solving the Bellman equation (Bellman, 1957) as follows:

V ∗(i) = max
a∈A(i)

∑
i′∈N

[
gii′|a + ρV ∗(i′)

]
pii′|a,∀i ∈ N. (4.7)

where ρ is discount factor, and 0 ≤ ρ ≤ 1. Since this is an infinite horizon problem, ρ is

set to be a number slightly smaller than 1 to ensure the existence of finite optimal expected

payoff.

The optimal routing policy is then written as follows:

µ∗(i) = arg max
a∈A(i)

∑
i′∈N

[
gii′|a + ρV ∗(i′)

]
pii′|a,∀i ∈ N. (4.8)

4.3 Solving the Bellman equation

The Bellman equation can be solved by value iteration (Bellman, 1957). V ∗(i) is

termed the value function, and at each iteration, the value function at each state is updated

by Eq. (4.7) where the value function estimates from the previous iteration are substituted

into the right-hand side of the equation to obtain new estimates at the left-hand side. The

time complexity is O(|A| · |N |2) per iteration, with |A| actions and |N | states.

Vectorizing batch operations avoid expensive for-loops and significantly improves com-

putational performance (van der Walt et al., 2011). The Bellman equation is thus re-

formulated as a series of matrix operations.
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The transition probability matrix, P (|NA|×|N |), and immediate payoff matrix,G(|NA|×

|N |), are defined as follows:

Pia,i′ =

 pii′|a, if a ∈ A(i)

0, otherwise
, ∀i, i′ ∈ N, a ∈ A (4.9)

and

Gia,i′ =

 gii′|a, if a ∈ A(i)

0, otherwise
, ∀i, i′ ∈ N, a ∈ A (4.10)

Define an expected payoff vector V (|N | × 1) with entry Vi as the expected payoff

starting from state i, i ∈ N . According to Eq. (4.7), define

Yia,1 =


∑

i′ gii′|apii′|a + ρ
∑

i′ V (i′)pii′|a, if a ∈ A(i)

0, otherwise
, ∀i, i′ ∈ N, a ∈ A (4.11)

To re-write Eq. (4.11) as matrix operations, define vector b(|N | × 1) where bi,1 = 1,

∀i ∈ N . Note that ((G ◦ P ) · b)ia,1 =
∑

i′ gii′|apii′|a , and (P · V )ia,1 =
∑

i′ V (i′)pii′|a,

where ◦ is the element-by-element multiplication operator and · the matrix multiplication

operator. Eq. (4.11) then can be written as

Y = (G ◦ P ) · b+ ρP · V. (4.12)

The max operator in Eq. (4.7) needs to operate on a matrix where a row represents a

state and the columns represent expected payoffs from all feasible actions from that state
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(all outgoing links from the node). Thus Y is reshaped into a matrix U(|N | × |A|), such

that

Ui,a = Yia,1 (4.13)

Note that Ui,a = 0, if a /∈ A(i), that is, a is not an outgoing link of node i. The expected

payoff of an outgoing link could be negative (taxi driver losing money), and if a max op-

erator is directly applied to Ui, which takes the maximum over all columns, an infeasible

action with an expected payoff of 0 could be chosen as the optimal. Therefore an expo-

nential transformation is applied to Ui,a, if a ∈ A(i). Define the operator exp(U) such

that

exp(U)i,a =

 exp(Ui,a), if a ∈ A(i),

0, otherwise.
, ∀i ∈ N, a ∈ A, (4.14)

and let W = exp(U). Eq. (4.7) can then be written as

Vi = ln(max
a

(Wi,a),∀i ∈ N, a ∈ A (4.15)

Algorithm 3 shows the procedure for solving the Bellman equation via matrix opera-

tions. At each iteration, the expected payoff vector V is updated (Lines 6-9). The iteration

is stopped when ||Vprev/V − 1||∞ < ε for a given threshold ε > 0, where || · ||∞ is the

maximum norm.
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Algorithm 3 Solving Bellman’s equation
Input:transition probability matrix P , immediate payoff matrix G, all-ones vector b and
convergence criteria ε

begin
1. Initializing the value functions and the discount factor
V = 0; 0 ≤ ρ ≤ 1;
2.Value iteration
do

Vprev = V ;
Y = (G ◦ P ) · b+ ρP · V ;
Define matrix U(|N | × |A|), where Ui,a = Yia, i ∈ N, a ∈ A;
W = exp(U);
V = ln(maxaW ), µ = arg maxa U ;

while ||Vprev/V − 1||∞ < ε;
return V , µ

end

4.4 Computational Tests

The objectives of the computational tests are three-fold:

• To demonstrate the efficiency of the solution algorithm in solving the proposed MDP

problem in a real-life, large-scale network,

• To understand the differences between the proposed MDP and baseline heuristics in

terms of unit profit and occupancy rate, and

• To understand the solution patterns of the proposed MDP problem, in relation to

baseline heuristics.
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4.4.1 The Network, GPS Data and Experiment Setup

4.4.1.1 The Study Area and Network

Shanghai is the most populated metropolitan area in China, with a land area of more

than 6300 km2, with a population of over 24 million. Shanghai urban area spreads broadly,

including the city center landmark area (the Bund and People’s square) and several other

central areas. Shanghai roadway network is comprised of 13,531 nodes and 30,167 di-

rected links, excluding connectors. The travel time on each link of the network is com-

puted based on the speed limit by road type. Shortest paths and travel times between all

nodes are pre-calculated and stored in a look-up table.

The study area is divided into 4,518 zones with smaller zones in populated urban areas

and larger zones in suburban areas. The zones are small enough so that it is realistic to

assume that all nodes within a destination zone have an equal probability of being the

destination node, an assumption required in Eq. (4.3). Note that the states, actions and

state transitions are network-based instead of zone-based. The purpose of the zones is to

ensure a large enough sample size in calculating passenger destination probabilities.

4.4.1.2 GPS Data

GPS trajectories with 10-second gaps and indicators of hired vs. vacant status are

available from one of the major taxi companies (market share of approximately 25%) in

Shanghai. The market share is deemed sufficiently large to deduce the movements of taxis

in general and provide adequate evaluation platform for the proposed methodology.

Data cleaning is carried out to remove obvious mistakes, for example, hired trips with

exceptionally short travel distances over a long period, and very short travel times. The
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mistakes could be due to the GPS device malfunctions, poor connectivity to satellites in

the urban areas surrounded by highrise buildings, or human errors by taxi drivers who

operated the devices. Occupied trips are eliminated if its distance is shorter than 500 m,

and/or if its travel time is shorter than 1 min.

In Shanghai, taxi drivers work for one day and rest for one day. They usually shift

between 5-6 am . Average daily working time is 14.8 hours (Lv et al., 2017). An inquiry

(Qin et al., 2017) found that taxi drivers in Shanghai have a flexible meal schedule with

varying length during the daytime (scattering across 11:00-14:00 and 16:00-19:30), it is

thus very complicated to distinguish between the status waiting for passengers and the

status taking a meal. We eventually select the period 5:30-11:30 am as our study time to

ensure that it’s continuous and long enough for making non-myopic routing decisions. It

should be noted that the proposed methodology can be directly applied to longer study

periods.

After data cleaning, trajectories from 12,017 taxis in 5:30-11:30 am on a representative

weekday in April, 2015 are used for the case study. No special events or holidays which

may introduce great trip variability were reported during the study period.

Taxi fares are charged based on distance traveled. The parameters for calculating taxi

fare F (dh→i′) in Eq. (4.6) are set as f0 = 14, d0 = 3, d1 = 15, β = 2.5 and γ = 3.6. 1 The

unit operating cost, α, is assumed to be 0.5 CNY/min.

Fig. 4.2a shows the distribution of unit profit (CNY/hour) during the 6-hour study

period with a mean of 63.86 CNY/hour and a standard deviation of 23.89 CNY/hour.

1source: https://www.travelchinaguide.com/cityguides/shanghai/transportation/taxi.html
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Figure 4.2: Distribution of observed unit profit and occupancy rate 5:30-11:30 am
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Profits are below 47.36 CNY for the lowest 25% of drivers, while above 80.03 CNY for

highest 25%, indicating a significant profit difference across drivers. Fig. 4.2b shows the

distribution of occupancy rate (the quotient between occupied time and the total working

time) with a mean of 0.48 and a standard deviation of 0.16. Occupancy rates are below

0.39 for the lowest 25% of drivers, while above 0.61 for the highest 25%, showing a similar

dispersion among drivers.

originate or end in regions containing airports or railway stations. There are very few

trips on the islands and they are thus omitted in the remainder of the paper.

4.4.1.3 Experiment Setup

The whole study period is divided into three 2-hour time intervals: 5:30-7:30 am, 7:30-

9:30 am and 9:30-11:30 am.

For each interval, the passenger arrival rate λ(j) and vacant taxi density rate γ(j) at

any node j are assumed time-invariant and calculated from the historical data. Passenger

arrival rate at each node is set as the average count of pick-ups per hour during each time

interval. The calculation of vacant taxi density rate is more involved as it is a time-wise

average of spatial rate. A buffer is created for each node, which is a circle centered at

the node with a radius of 500 m, approximately the 75th percentile of all link length. At

any given time instance (say, 8:00am), the vacant taxi density for a node is the number of

vacant taxis within the buffer at that time instance (a snapshot) divided by the area of the

buffer. Multiple snapshots are taken every 15 minutes over each 2-hour time interval and

the average over all snapshots is used as the vacant taxi density for the 2-hour period.

The matching node set N(j) is comprised of nodes within 1 km radius of node j, that

is, the vacant taxi is eligible to be matched with passengers within 1 km crow-fly distance.

98



The matching radius is set such that both picking up along the roads and e-hailing at high

demand density areas are accommodated. It is conceivably higher in a low demand area

or period where drivers need to drive a relatively long distance to pick up passengers with

e-hailing. Given that the data come from a traditional taxi company and the percentage of

e-hailing is conceivably small, the radius is set to be relatively short.

Passenger destination probability is calculated directly based on Eq. (4.3) from the data

for each 2-hour time interval.

4.4.2 Computational Performance

The value iteration algorithm is coded in Python 3.5 with NumPy. All computations

are carried out on a workstation with an eight-core 3.0GHz Xeon E5-1660 processor and

64GB RAM. The discount factor is set as 0.95. For each 2-hour time interval, the running

time per iteration is about 16.15 min (969 sec) when for-loops are used, and is reduced

to about 1.98 min (118 sec) with matrix operations (Section 4.3), an 8x speed-up. It is

expected that the speed-up will be higher with more cores to process the matrix operations

in parallel, and real-time efficiency can thus be achieved.

Fig. 4.4a shows the maximum relative difference of value function over successive

iterations as a function of the number of iterations. The relative value function difference

reaches below 0.01 at about the 25th iteration. Fig. 4.4b shows the relative change in

routing policy as a function of the number of iterations. The policy change is calculated

as the fraction of states whose optimal action changes from the last iteration. The relative

policy difference reaches below 0.01 at about 22nd iteration. The convergence patterns are

similar across time intervals.
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Figure 4.4: Convergence of the Value Iteration Algorithm
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4.4.3 Evaluation

In this section, the optimal routing policy is compared with a number of baseline

heuristics using two metrics: unit profit and occupancy rate. The metrics are generated

by executing the optimal policy and heuristics in the network for the study period of 5:30

through 11:30 am, and the developed taxi/passenger matching model and passenger desti-

nation model are postulated as the true model based on which taxi and passenger matching

is simulated. Comparisons between the optimal policy and heuristics provide insights into

the value of the proposed method and are precursor to real world evaluation.

These comparisons aim to confirm the advantage of the proposed method over some

commonly used heuristics, under the condition that perfect models of matching and pas-

senger destination choice are available, which gives an indication of its potential perfor-

mance in the real world, when such perfect models usually do not exist.

The comparison of the optimal routing policy with the observed taxi driver routing

choices cannot be made until the optimal routing policy is implemented in the real world.

Another way is to build a high-fidelity traffic simulation testbed where taxi driver behav-

ioral models are calibrated using observed trajectory data, and then evaluate the optimal

routing policy against the calibrated, simulated drivers in the simulation testbed. The com-

parison with real world drivers or simulated drivers calibrated against real world data is

important in assessing the method’s value. However, implementing the proposed method

in the field or developing and calibrating a high-fidelity traffic simulation model is beyond

the scope of the study, and left for future research.
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4.4.3.1 Heuristics

Three heuristics are defined as follows in increasing order of sophistication.

• Random walk A vacant taxi chooses an outgoing link randomly and once matched

with a passenger, takes the fastest path to deliver the passenger. This is the simplest

strategy.

• Global hotspot A vacant taxi heads toward the zone with the highest demand den-

sity (number of pick-ups per km2), following the fastest path to the central node

of the zone (the node closet to the centroid of the zone), and do random walks in

this zone until matched with a passenger. Once matched, it takes the fastest path to

deliver the passenger. Note that the taxi could get matched on the way to the highest

demand density zone.

• Local hotspot The global hotspot strategy can be inefficient when the taxi is far

from the highest demand density zone. A more sensible strategy is to move to higher

demand zones sequentially (see, e.g., taxi driver behavioral studies by Wong et al.,

2015a; Wong et al., 2015b). This strategy can be viewed as a spatially aggregated,

partially myopic approximation of the proposed optimal routing policy. Note that

a majority of previous taxi routing studies (see, e.g., Yuan, Zheng, Zhang and Xie,

2013; Dong et al., 2014; Qu et al., 2014; Huang et al., 2015) recommend cruising

routes with a maximum cruising distance or time, a constraint that is needed to avoid

unrealistically long routes, necessitated by the myopic nature of their methods. The

local hotspot heuristic is in the general family of partially myopic strategies.
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The study area is divided into equal-sized square cells to represent roughly the range

of a local area. The length of each cell is set at the 75th percentile of straight line

distance from drop-off location to the next pick-up location (not the actual search

distance), which equals 5 km approximately. A zone (which is smaller than a cell) is

considered a member of a cell if its central node falls in the cell. The queuing-based

model developed in Section 5.1 is applied to match a vacant taxi with passengers

while the taxi moves following the Local hotspot strategy, and the Local hotspot

strategy is implemented as follows:

Step 0: Calculate the demand density in each zone during each of the 2-hour period.

Step 1: For a vacant taxi start from node i, calculate the shortest path Pz (in terms

of a sequence of nodes) from i to the centroid of the zone with the highest demand

density in the current cell.

Step 2: Check if the taxi is matched with a passenger at each node while moving

along path Pz

Step 2-1: If the taxi is not matched with any passenger, the next state is the

subsequent node on path Pz, and time t is updated.

Step 2-2: If the taxi is matched with a passenger during the movement, the

next state is the destination of the passenger and time t is updated; go to Step 1.

Step 3: Let the taxi move randomly within the current zone for 15 min, and check if

it is matched with a passenger at each node.

Step 3-1: If the taxi not matched with any passenger, the next state is the sink

node of the link it takes, and time t is updated.
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Step 3-2: If the taxi is matched with a passenger during the movement, the

next state is the destination of the passenger and time t is updated; go to Step 1.

Step 4: Pick a neighboring cell C that contains the highest demand density zone Z

among all zones in all neighboring cells. Calculate the shortest path Pc (in terms of

a sequence of nodes) from current node to the centroid of zone Z with the highest

demand density in the chosen cell C.

Step 5: Check if the taxi is matched with a passenger at each node while moving

along path Pc.

Step 5-1: If the taxi is not matched with any passenger, the next state is the

subsequent node on path Pc, and time t is updated.

Step 5-2: If the taxi is matched with a passenger, the next state is the destina-

tion of the passenger and time t is updated; go to Step 1.

Step 6: Steps 1-5 are repeated until t reaches the end of the whole study period.

4.4.3.2 Trajectory Simulation

A simulation of a single taxi’s trajectory starting from various locations for the 6-hour

study period is conducted according to each of the routing strategies. The parameters of

the taxi/passenger matching model and the passenger destination probability model are the

same as those used in generating the optimal routing policy (Section 4.4.1). The simulation

of the optimal routing policy is needed because 1) the optimal value function obtained

from solving the Bellman equation has a discount factor of 0.95 for convergence reason,

yet the profit in real life should not be discounted given the relatively short time intervals,

that is, one dollar earned now and one hour later should be treated as equal valued; 2) the

occupancy rate is not available from solving the Bellman equation.
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A strategy µ(i,H) specifies a probability vector associated with outgoing links, i.e.,

µ(i,H) → (p1, . . . , pa, . . . , p|A(i)|), a ∈ A(i), for each node i and routing history H . For

the optimal routing policy, random walk and global hotspot heuristics, H is empty as the

action does not depend on the routing history. For the local hotspot heuristic, the routing

historyH represents whether the cruising time in the current zone has reached 15 minutes.

The optimal routing policy and the global hotspot heuristic are deterministic strategies, in

that exactly one of the outgoing links at any node is assigned probability 1. The random

walk and local hot spot heuristics are random strategies, in that outgoing links of certain

nodes are assigned probabilities other than 0 or 1. A clock is advanced along the simulated

trajectory to determine whether the simulation has reached the end of the study period.

The execution of a strategy from any given node i could result in multiple realizations

of trajectories due to the random processes of passenger arrival, competition with other

vacant taxis, and passenger destination choice. Following are the steps to simulate a single

taxi trajectory for a specific strategy:

1. For a taxi at node i, an action a = (i, j) is chosen according to the specific strategy.

2. The location of a matched passenger, h, is sampled according to matching probabil-

ity, as in Eq. (4.2).

3. If no matching happens (with probability 1−
∑

h∈N(j) pa,h), the taxi moves to node

j and the clock is advanced by ta. The sampling of the location of a matched pas-

senger, i.e. Step 2, is then repeated.

4. If matching happens, the taxi moves to the passenger location, node h, and the clock

is advanced by τa + Tj→h.
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5. The passenger destination i′ is sampled according to Eq. (4.3). The taxi moves to i′,

and the clock is advanced by Th→i′ .

6. Steps 1 through 5 are repeated until the clock reaches the end of the study period.
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Figure 4.5: Vacant taxi density at 5:30am (count per km2)

For any given strategy, 1200 trajectories are simulated from each initial state (node)

where there is a positive number of observed vacant taxies at that node at 5:30 am. For each

trajectory, the unit profit (CNY/hour), occupancy rate (percentage of time with a passenger

onboard) and other relevant measures (such as time spent in each pre-defined cells) are

calculated. The average unit profit and occupancy rate for each node is an estimate of

the expected unit profit and occupancy rate. The sample size has been increased until the

sample average at each node stabilizes.
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4.4.3.3 Results

Table 4.2: Average unit profit and occupancy rate in the morning time intervals

Strategy Unit profit (CNY/hour) Occupancy rate
5:30-
7:30

7:30-
9:30

9:30-
11:30

All
intervals

5:30-
7:30

7:30-
9:30

9:30-
11:30

All
intervals

Random walk 61 78 72 71 0.40 0.45 0.42 0.42
Global hotspot 68 77 77 74 0.44 0.46 0.47 0.45
Local hotspot 69 86 85 80 0.46 0.47 0.48 0.48
Optimal policy 72 93 92 87 0.47 0.54 0.54 0.52

First the average unit profit and occupancy rate over the network for each strategy is

presented. Taxis do not start randomly over the network. Fig. 4.5 shows a heat map of

the starting locations of vacant taxis at 5:30 am. The high density starting locations are

in the city center and its surrounding areas. The most flourishing ones are indicated on

Fig. 4.5: (1) Jiali Sleepless City in Zhabei District, the Central Ring Commercial Circle

and Zhenru Commercial Center to the North; (2) Around Shanghai rail way station; (3)

Around Hongqiao airport and Hongqiao railway station to the West; and (4) Meilongzhen

Plaza, the Commercial Center in Minhang District to the South, with some university

campuses. To account for the starting position distribution, the empirical distribution of

average unit profit (or occupancy rate) over the network is weighted by the starting position

distribution. Practically, each sample average for a given node is duplicated by the number

of observed vacant taxis from that node at 5:30 am, and the resulting data points are used

to plot the histogram in Fig. 5.6 and the average is taken over all data points to generate

Table 4.2.
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Table 4.2 shows that the optimal policy performs the best in each interval in terms of

both average unit profit and occupancy rate. Specifically, over the 6 hours, the average

unit profit for the optimal policy is 23.0% higher than the random walk, 17.0% higher than

the global hotspot and 8.4% higher than the local hotspot strategy. This suggests that it is

beneficial to take into account subsequent pick-ups and drop-offs beyond the immediate

next customer. The increases are higher during higher-demand time intervals, probably

due to more room for improvement.

It is noted that the global hotspot strategy generates smaller unit profit than the local

hotspot strategy, suggesting that travel time/distance to the next potential customer is a

very important factor. Given its inferior performance, the global hotspot strategy will be

omitted in the more detailed analyses to follow. The random walk strategy is kept for later

analysis as it provides bottom line performance.

While maximizing taxi utilization is not the optimization criterion in the proposed

optimization problem, it is still observed that the optimal policy is able to increase the

average occupancy rate by 23.8% over the random walk, 15.6% over the global hotspot

and 8.3% over the local hotspot strategy. It is intuitive that these two metrics are highly

positively correlated, as less time spent on searching for passengers suggests more time

spent on making money.

For a given strategy, the average unit profit is the highest during the morning peak

interval (7:30 - 9:30 am) due to higher demand, and it becomes only slightly lower for late

morning interval (9:30 - 11:30 am), suggesting that taxi trips might have a less pronounced

morning peak than regular commuter trips. The flat pattern is also present for the average

occupancy rate.
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Fig. 5.6 shows the distribution of unit profit and occupancy rate for the 6-hour study

period for each of the three remaining strategies: optimal policy (green), local hotspot

(orange) and random walk (blue). It can be seen that the distributions for the optimal policy

shift to the right, suggesting an across-the-board increase instead of isolated extremely

large increases from certain locations.

To further understand the spatial pattern differences among the different strategies,

analyses are done by starting locations. Fig. 4.7 (a) shows the the difference in average

unit profit by starting location between the optimal policy and random walk strategy. Not

surprisingly, a taxi following the optimal policy can make more profit than random walk

no matter where it starts from (yellow through red). Fig. 4.7 (b) shows the the difference

in average unit profit by location between the optimal policy and local hotspot strategy.

From most starting locations, the average unit profit of taxis taking the optimal policy is

higher. The relationship is reversed for some locations (blue), due to the fact that the local

hotspot strategy has a state space larger than the optimal policy, expanded by including

routing history in its state. The optimal policy is optimal among all policies defined based

on the same state space, that is, the nodes, but is not necessarily so compared to a more

flexible strategy.

The position of a taxi at any time starting from a given location following a given

strategy can be described by the coordinates (X, Y ) in a two-dimensional plane, where

X and Y are the projected longitude and latitude (in meters) respectively (Maling, 2013).

X and Y are continuous random variables given the underlying passenger matching and

destination choice process. To obtain probability distributions and summary statistics of

the two random variables, the study area is discretized into a grid where each square cell is
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Figure 4.7: Differences in unit profit of optimal vs. heuristic routing by starting zones

111



3 km long, and the fraction of time the taxi spent in each cell over the 6-hour study period

is the empirical probability of (X, Y ) in that cell, px,y.

The Hellinger distance (Le Cam and Yang, 2012) is used to measures the difference

between two probability distributions P and P ∗, that is,

H(P, P ∗) =
1√
2

√ ∑
(x,y)∈G(x,y)

(
√
px,y −

√
p∗x,y)

2. (4.16)

The Hellinger distance is between 0 and 1, and a larger value indicates a larger difference.

Table 4.3 presents the Hellinger distance between the distribution of visited locations of

the optimal policy and random walk, and between that of the optimal policy and local

hotspot for four different starting locations, of which two are major transportation hubs

and two are major commercical areas. As expected, the difference between the optimal

policy and random walk is larger than the difference between the optimal policy and local

hotspot.

Table 4.3: Difference between distributions of visited locations

Starting location Optimal vs Random walk Optimal vs Local hotspot

Pudong Airport 0.4117 0.3023
Around Hongqiao Airport
and Hongqiao Railway Station 0.3928 0.3653

Central Ring Commercial Circle
and Zhenru Commercial Center

0.5424 0.4969

Meilongzhen Plaza,
the South Commercial Center

0.5128 0.4879
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Fig. 4.8 shows the empirical distributions of visited locations from four starting loca-

tions. While the movement pattern differs across starting locations, a similar trend can be

observed, that is, the trajectories are more widely distributed for the two heuristic strate-

gies. For a taxi starting from a transportation hub (Pudong Airport, around Hongqiao Air-

port or Hongqiao Railway Station), the trajectory following the optimal policy is mostly

between the airports and railway station. The trajectory starting from either of two com-

mercial areas is distributed more widely, probably due to more diversity in the origins and

destinations of passengers in commercial areas compared to transportation hubs.

Table 4.4 shows summary statistics of visited locations for the three strategies starting

from four different locations.A largerX means more east and a larger Y means more north.

A positive covariance suggests the trajectory is more northeast/southwest than northwest-

/southeast, and a negative covariance suggests that the trajectory is more northwest/south-

east than northeast/southwest.

For a taxi starting from one of the transportation hubs and the Meilongzhen Plaza,

the expected location following the optimal policy is to the northwest of that following

the random walk or local hotspot strategy (smaller E[X] and larger E[Y ]), while for a

taxi starting from Central Ring Commercial Circle and Zhenru Commerical Center, the

expected location following the optimal policy is to the northeast of that following the

two heuristic strategies. Nor surprisingly, random walk has the largest variance among the

three strategies for each of the four locations.
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Figure 4.8: Empirical probability density function of the visited location from a starting
location (red star)
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Table 4.4: Summary statistics on spatial distributions of visited locations (X, Y are in
meter)

Starting location Strategy E[X] E[Y ] V ar[X] V ar[Y ] Cov(X,Y )

Pudong Airport
Optimal policy 1353473 3634788 2144078 3990332 -1309082
Random walk 1353955 3633768 4360890 5317421 -2126156
Local hotspot 1353821 3633815 4016870 4931743 -1126138

Around Hongqiao Airport
and Hongqiao Railway
Station

Optimal policy 1351548 3638640 1219876 1780287 1005313
Random walk 1352130 3638216 2454627 2245158 -1141663
Local hotspot 1351999 3638527 2377582 1750020 -1541638

Central Ring Commercial
Circle and Zhenru
Commercial Center

Optimal policy 1352473 3634619 4141008 3190332 -2309082
Random walk 1352004 3645415 5252598 4246513 -1396572
Local hotspot 1352015 3645085 4065228 4005653 -1854668

Meilongzhen Plaza,
the South Commercial
Center

Optimal policy 1351575 3632361 3745147 4343224 1402910
Random walk 1351861 3631450 5557328 4820842 1499701
Local hotspot 1351703 3631959 4010645 5268561 2473367

4.5 Summary

In this paper, the single vacant taxi routing problem is investigated, which aims at

maximizing long-term expected profit over the complete working period. Theoretical con-

tributions in modeling and problem formulation as well as practical contributions in com-

putational efficiency are provided, which builds the foundation for real-world implemen-

tations of taxi routing. A queueing theory-based model for matching taxis and passengers

is proposed to account for competition from other taxis and use of e-hailing apps. The

problem is formulated as a Markov decision process, taking into account the impact of

current decisions on future return over multiple pickups and drop-offs. To improve com-

putation efficiency, an enhanced value iteration algorithm for solving the MDP is proposed

via matrix operations.
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Numerical experiments in a mega city suggest that matrix operation helps to achieve

8x speed-up in computation. Simulation experiments are conducted to compare the per-

formance of the proposed strategy with a number of baseline heuristics. The MDP for-

mulation improves unit profit by 23.0% and 8.4% over the random walk and local hotspot

heuristic respectively; and improve occupancy rate by 23.8% and 8.3% respectively. Em-

pirical spatial distributions of taxi location from a few starting locations and following the

various strategies are obtained from the simulation, and the heuristics are shown to have in

general more spread-out spatial patterns than the optimal policy. Specifically the optimal

policy concentrates between major transportation hubs if starting from one of them. The

trajectory starting from either of two commercial areas is distributed more widely than that

from a transportation hub.

116



CHAPTER 5

OPTIMIZING VACANT TAXIS’ ROUTING DECISIONS: A
MODEL-FREE REINFORCEMENT LEARNING FRAMEWORK

In chapter 4, a model-based approach is presented for the vacant taxi routing problem,

where a model of the state transitions of the environment is obtained from queuing-theory

based passenger arrival and competing taxi distribution processes. Dynamic Programming

(DP) algorithm is then applied to solve the problem. While model-based DP approach

has provided a way to optimally solve decision and control problems involving complex

dynamic systems, its practical value was limited by the complexity to build a true model

to capture all of the subtlety of the complex real system dynamics. Strong assumptions

need to be made in the model.

Reinforcement Learning (RL) has the potential to continuously and adaptively learn

from interaction with the environment without building a transition model: an autonomous

agent takes an action in a state, receives a reward, moves to some next state, and repeats

this procedure (Sutton and Barto, 1998b). At each step, the agent can revise its control

policy with the objective of converging as quickly as possible to an optimal control policy.

Model-free RL has been successfully applied to a range of challenging problems (Kober

et al., 2013; Deisenroth and Rasmussen, 2011). In transportation area, Verma et al. (2017)

formulate the taxi routing problem as a Markov Decision Processes (MDP) to take into

account long term revenue and develop a reinforcement learning (RL) based system to
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learn pick up locations from real trajectory logs of drivers. Han et al. (2016) also present

an RL algorithm for an autonomous taxi to learn the existence probability of passengers

from its gathered experience. However, the above mentioned studies provide decisions on

highly aggregated or abstracted locations in grid-based networks instead of the physical

roadway network.

Similar to Chaper 4, the optimal taxi routing problem is formulated as a Markov Deci-

sion Process (MDP) so that long-term objectives can be taken into account instead of the

immediate one of meeting the next customer. The application of RL algorithm is examined

to solve the problem. This method is model-free, in that no transition models are needed

and the system dynamics are embedded in the observed trajectories. The algorithm is

implemented and tested in a real road network of Shanghai, China, and a systematic com-

parison of the model-based and model-free algorithms are also provided.

5.1 Problem Formulation

A taxi driver’s working plan and routing decisions over a time horizon on a given day

is modeled as an MDP. A taxi travels in a traffic network G = (N,A). N is the set of

nodes and A the set of links. There is at most one directional link, a, from the source node

i to sink node j. A(i) is the set of downstream links of i. The taxi is actively searching

for, or carrying passengers during a planning horizon [0, T ]. The taxi can also decide to

stop and start working over the course of the horizon, more typical among ride-sourcing

drivers who are usually part-time. The length of the horizon ranges from several hours to

maximum working hours (usually 10-12 hours).
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When a taxi is hired, the routing problem is reduced to a shortest path problem from

the passenger’s origin to destination, and is not studied explicitly in this paper. The state

of a taxi, s ∈ S, is described by node i ∈ N , time t ∈ [0, T ], where t is a continuous

variable, and working status w, a binary variable that is equal to 1 when the taxi is for hire,

and 0 otherwise (not on the market). A taxi is associated with a depot location d that the

taxi must go to if stopping working.

The action set for state swhenw = 1 is {Taking one of outgoing links}∪{Waiting at the current node}∪

{Stopping working}. For an action in the first two categories, the taxi is actively searching

for passengers, and two types of transition to a new state s′ could happen. 1) The taxi

is not matched with any passenger when traversing link a = (i, j), and s′ is associated

with node j. 2) The taxi is matched with a passenger when traversing link a or waiting at

node i, and s′ is associated with the destination node of the passenger, i′. For the action of

stopping working, the taxi will take a shortest path to the depot d with the working statue

w switched to 0. The action set for state s = (d, t) when w = 0 is to either start working

or continue the non-working status. By definition, any state associated with t ≥ T is a

terminal state.

Assume the time horizon is discretized into time intervals. The value function is con-

stant within a given time interval, that is, V (s1) = V (s2), if s1 and s2 are in the same time

interval. Let S(s) be the aggregate state corresponding to state s defined on continuous

time.

5.1.1 Model-free Reinforcement Learning without Transition Model

Research in RL aims at designing algorithms by which autonomous agents can learn to

behave in some appropriate fashion in some environment, from their interaction with this
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environment. The standard RL protocol considers a performance agent observing state s,

taking an action a, achieving next state and receiving the instantaneous reward r. This

process can be represented by a four-tuple, i.e., (s, a, s′, r).

The Q-function represents the expected total (discounted) reward that can be obtained

after taking action at in state st. The optimal Q-function Q∗(S(s), a) means the expected

total reward received by an agent starting in s and picks action a, then will behave opti-

mally afterwards. Therefore,Q∗(S(s), a) is an indication for how good it is for an agent

to pick action a while being in state s. The optimal value function and Q-function have a

straightforward relationship:

V ∗(S(s)) = maxa∈A(s)Q
∗(S(s), a),∀S(s) ∈ S (5.1)

and the optimal policy can be extracted by choosing the action a that gives maximum

Q∗(S(s), a) for state s.

µ∗(S(s)) = argmaxa∈A(s)Q
∗(S(s), a),∀S(s) ∈ S (5.2)

The classical approach towards model-free reinforcement learning is Q-learning in

which an optimal value function of state-action pairs is learned iteratively and online.

This means that the Q-function is updated after each transition of the system. Typically,

this approach requires thousands of iterations until successful policies are found.
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Figure 5.1: The idea of Q-learning: learn while interacting with environment

In contrast to classical on-line RL, batch reinforcement learning performs the update of

the Q-function based on sets of past transitions instead of singular state transitions. Batch

RL methods store and reuse information about system behavior by a set of transition tuples

(state, action, successor state, reward). The Q-value function is then updated on all states

(state-action pairs) simultaneously. This reuse of transition data makes batch learning

methods particularly efficient.

Figure 5.2: The three distinct phases of the batch reinforcement learning process: 1:
Collecting transitions with an arbitrary sampling strategy. 2: Application of batch

reinforcement learning algorithms in order to learn the best possible policy from the set
of transitions. 3: Application of the learned policy

The fitted Q-iteration (FQI) is a batch mode RL algorithm, which yields an approx-

imation of the Q-function on the basis of a set of transition tuples iteratively (Ernst

et al., 2005). As the name suggests, FQI allows to fit (using a set of four-tuples) any (para-

metric or non-parametric) approximation architecture to theQ-function. It has been shown

to converge for all approximators belonging to the averager class (Ernst et al., 2005). In
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this chapter, the simple average is used to approximate Q-value, which is a special case of

kernel-based methods.

When a large number of observations of the system transition are available, one can

update the Q function directly using the observations without deriving a transition model.

Observed taxi trajectories can be organized into a set of four-tuples (s, a, s′, r). At iteration

n, FQI uses the greedy operator max on the action space for improving the policy , where

Q̂n−1 are available from the previous iteration.

Qn(S(s), a) = r + γ max
a′∈A(s′)

Q̂n−1(S(s′), a′)), (5.3)

where γ is a discount factor (0 < γ < 1) that weights short-term rewards more than

long-term ones.

The trajectories can be processed in any order, however, for any trajectory, it might

make sense to update starting from the end, taking advantage of the acyclic nature of the

state transition in the time dimension.

The FQI algorithm for solving the vacant taxi routing problem is presented in Al-

gorithm 4. At each iteration step, a new training set was built based on the full set of

four-tuples and the estimated Q-values from previous step, then Q-values are updated ac-

cordingly. Line 8 − 10 computes the return for each (S(s), a) pair over all samples, and

obtain the new Q-value. Line 11 estimated Q-value for each (S(s), a) pair based on the

average Q-value over a sub-sample of the training set which corresponds to the same link.
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Algorithm 4 FQI for taxi routing
Input: D = {(Sl(s), al, rl, Sl(s′)), l = 1, ...,#D}, terminate time T
Output: Q-values for routing to terminal time

Initialization:
Set n← 0
Let Q̂n be a function equal to zero everywhere on (S,A) space
Iterations: Repeat until stopping conditions are met
- n← n+ 1
- Build the training set TD = {(Sl(s), al, ol), l = 1, ...,#D} based on Q̂n−1(·) and the
set of four-tuples D

ol =

{
rl + γmaxa′ Q̂

n−1(Sl(s′), a′), if t < T
rl, if t ≥ T

- Calculate Q̂n by taking the average of ol over each (s, a) pair

The iterations stops if the difference between Q̂n and Q̂n−1 drops below a predefined

threshold.

FQI is inherently an offline method - given historical transition-tuple data, the algo-

rithm derives the approximated Q-value and the inferred policy. When there are new sam-

ples collected with the currently best inferred policy, the FQI algorithm can be restarted

baaed on the new data.

5.1.2 Discussion on Solving Time-dependent MDP

For both model-based and model-free methods, a true time-dependent problem would

be solved if the time interval is small enough. However, solving an MDP in a time-

dependent network renders the problem computationally challenging, since the exact dy-

namic programming algorithm enumerates all states and does not scale with the significant
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increase in the size of the state space. In practice, it is also difficult to obtain enough re-

liable data if the time-interval is too small. In this thesis, approximations are applied by

having large time intervals in the numerical experiment (e.g., 1h). For the model-based

method, multiple static problems are solved essentially. The state transition model is static

during a given interval and most of the transitions happen within the same interval. While

the model-free method still keeps some system dynamics across time intervals.

The length of the time intervals should be chosen carefully based on the required level

of modeling accuracy and the data available to the modeler. For both methods, if very small

time intervals is used, the spatial-temporal coverage of the available data is very sparse.

Thus it is far from enough to obtain the mobility patterns for the entire road network. On

the other hand, if large time intervals is used, the system dynamics could be distorted.

5.1.3 Discussion on Data Efficiency

The model-based and model-free approaches have distinct strengths and weaknesses.

Model-based method can help to improve data efficiency when there are small number

of observations when the built model can perfectly represent the true dynamics. A model-

based algorithm can immediately incorporate and expand newly gained information from

the exploratory strategies into the state space and transitions, making more efficient use

of information. Therefore, model-based method can quickly achieve near-optimal policy

with accurately built models. However, the ground truth models are never known in reality

and it is complex to build a model to capture all of the subtlety of the real system dynamics.

In contrast, model-free RL algorithms provided researchers with a way to learn com-

plex behaviors, especially when a mathematical model of the system is unavailable. How-

ever, it often takes large amount of experiences to explore different parts of the environ-
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ment in order to learn an effective solution. This can severely limit their application to

real-world problems where this experience might need to be gathered directly in a real

physical system.

5.2 Case Study

5.2.1 Data and Network

The same data set and Shanghai roadway network with Chapter 4 is used in this case

study. That is, trajectories from 12,017 taxis during 5:30−11:30 am on a representative

weekday in April, 2015 are extracted for the case study after initial data cleaning.

Fig 5.3 shows that trip duration and searching duration are highly skewed. About 50%

of the trips are shorter than 10 min and 50% of the searchings are shorter than 15 min.

5.2.2 Data Pre-processing

Define a trajectory as a time-ordered sequence of location points, denoted as T =

{VehID; p1, p2, p3...pn}, where pl = {x, y, t, w, v}(1 ≤ l ≤ n), x, y are longitude and

latitude, t is the GPS time, w is the taxi status (empty or occupied), v is GPS speed reading.

In order to obtain transition-tuples, we first need to project the raw GPS points to the

physical road network that consists of road segments. We matched GPS points to the near-

est links with a distance less than 200 m in the network in ArcGIS 10.1. The corresponding

longitudes and latitudes on the nearest links were also given. This method only considers

the geometric information and that every new point in pl is matched without considering

the matched location of point pl−1. Therefore, we perform subsequent topological analysis

by removing the mapped link observations that are not connected to its mapped predeces-
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(a) Distribution of trip time

(b) Distribution of searching time

Figure 5.3: Histograms for trip time and searching time during 5:30-11:30 am
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sor and successor links based on the initial match. Finally, about 4.6% of link observations

were discarded from all mapped records.

Time-dependent link travel time is calculated from GPS speed readings for each link by

first removing the almost zero speed readings( below 1 km/h), and then taking the average

over each 1-hour time period. Link speeds are then calculated based on the obtained link

travel time and link length; if there’s no GPS observation on a link during a given time

interval, we fill the speed with the average speed from the previous time interval. Given

the mapped trajectories and link speeds, the following steps calculates the start/end time

of each transition:

• step 1: split the mapped trajectories into empty and occupied points;

• step 2: extract empty link traverses where all points are empty during a link traverse;

• step 3: calculate entry/exit time of each empty link traverse based on the position of

the first /last points and the link speeds, e.g., let pml /pml+n denote the first/last mapped

GPS points of the mth empty traverse on link a = (i, j), then the entry/exit time of

the mth empty traverse of link a is

tentry =
distance(i, pml )

va,k
/texit =

distance(pml+n, j)

va,k

where va,k is the average speed on link a during time interval k;

• step 4: map the pick up and drop off points to the nearest node; similar to step 3,

calculate the node-based pick/drop off time of each occupied trips.
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Taxi fares are charged based on distance traveled for both approaches. For model

free approach, trip distance is calculated as the observed actual travel distance/time. The

parameters for calculating taxi fare F (dh→i′) in Eq. (4.6) are set as f0 = 14, d0 = 3, d1 =

15, β = 2.5 and γ = 3.6. 1 The unit operating cost, α, is assumed to be 0.5 CNY/min.

5.2.3 Experiment setting

In model-based approach, the whole study period is divided into equal time intervals.

Value iteration algorithm is used to solve the Bellman equation. To improve computation

efficiency, the value-iteration algorithm is translated into sparse and fixed matrix opera-

tions.

In model-free FQI approach, all action value functions are aggregated by a relatively

large time interval (e.g., 15-min). After the data pre-processing, 6,453,263 records of

transitions are obtained.

As discussed in Section 5.1.2, multiple static problems are solved essentially with large

time-intervals. The discount factor is set as 0.95 for both methods.

5.2.4 Computational Performance

All optimization algorithms are coded in Python 3.5. All computations are carried out

on a workstation with an eight-core 3.0GHz Xeon E5-1660 processor and 64GB RAM.

Fig. 5.4 gives an example of computational performance for model-free approach with

a 15 min time interval. The running time per iteration is about 0.89 min (53.6 sec), and it

takes about 85 iterations (4,556 sec) for all action values to reach convergence.

1source: https://www.travelchinaguide.com/cityguides/shanghai/transportation/taxi.html
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Recall that in the model-based approach in Chapter 4, for each 2-hour time interval,

the running time per iteration is about 1.98 min (118 sec) with matrix operations and in

total it takes about 35 iterations (4,130 sec) to converge. The model-based algorithm can

be implemented simultaneously for three time-intervals, and thus the total running time

for the 6-hour study period is less than the model-free algorithm in total.
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Figure 5.4: Value Function Difference vs. Iterations

The above running time does not include the data-processing time. In model-free

approach, pre-processing trajectory data to get large enough transition-tuples to arrive at

an effective solution usually takes time for real-world applications. In contrast, model-

based approach does not need to deal with the transition data. Instead, system dynamics

are represented by the model. Once the dynamics are modeled, near-optimal behavior can

in principle be obtained by planning through these dynamics, and iterations are needed.
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The model-based and model-free approaches have distinct strengths and weaknesses

in terms of space complexity and computational complexity. In the model-based approach,

the transition and payoff matrices are given as inputs to the agent. While in model-free

algorithm, an agent interacts with the environments and gets reward, whose space com-

plexity is asymptotically less than the space required to store an MDP in model-based

method.

5.2.5 Effectiveness Evaluation

In this subsection, average unit profit and occupancy rate obtained from the policies

given by the proposed algorithms are compared during a given working period to demon-

strate the benefit of the proposed algorithms to drivers.

5.2.5.1 Trajectory Simulation

As discussed in Chapter 4, the comparison of the optimal policies with the observed

taxi driver routing choices cannot be made until they are implemented in the real world.

Another way is to build a high-fidelity traffic simulation testbed where taxi driver behav-

ioral models are calibrated using observed trajectory data, and then evaluate both policies

against the calibrated, simulated drivers in the simulation testbed.

The metrics are generated by executing the obtained optimal policies and random walk

in the network for the study period of 5:30 − 11:30 am, and the developed taxi/passenger

matching model and passenger destination model are postulated as the true model based

on which taxi and passenger matching is simulated, as shown in Algorithm 5.

For any given strategy, 30 trajectories are simulated from each initial state (node) where

there is a positive number of observed vacant taxis at that node at 5:30 am.
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Algorithm 5 Simulate the next state and compute the corresponding reward
Input: - road network G = (N,A)

- state s = (i, t) and action a
- matching probability matrix Mk; destination probability matrix Dk. k is used to

indicate a discrete time interval index that time t falls in.
Output: - the simulated next state s′ = (i′, t′) and the corresponding reward r′

1. Compute matching probability
- Compute matching probability within the matching area, which is the sum of matching
probability between link a and each of the node in the matching area, p =

∑
h∈N(j) M

k
a,h

2. Sample next state and compute reward
2.0 Generate a random variable, $, uniformly between [0, 1].
2.1 If $ ≤ p, the taxi is matched with a passenger

- sample a matching location h from the discrete matching probability distribution
within the matching area, and the elapsed time until picking up at node h is τak + Tj→h,k

- sample the passenger destination i′ from the distribution of the destination nodes
according to Dk

h,:, and the elapsed time until passenger drop off is τak + Tj→h,k + Th→i′,k
- compute reward r′ = gss′|a according to Eq.(4.14)

2.2 ElIf $ > p, i.e. no matching happens (with probability 1−
∑

h∈N(j) pah,k)
- the taxi moves to node j and travel time is updated by adding τak
- compute reward r′ = gss′|a according to Eq.(4.14)

3. Return s′ and r′

5.2.5.2 Batch RL Performance against Sampling Data Size

The performance of RL largely depends on the training sample. In general, the larger

the sample size, the more information contained in the training sample. When the sample

size is small and the spatialtemporal coverage is sparse, the agent might not be able to

learn a good policy. When the size of the training dataset goes to infinity, the algorithm

could learn asymptotic optimal policies. Next, the proposed RL framework is evaluated by

looking at how the performance of the learned policies changes with the training sample

size.
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4 training sessions are performed with sample size of 160K, 320K, 480K and 640K.

For each of these training sessions, 5 sub-sample are sampled from the raw transition

dataset randomly, and FQI are then applied on each of the sub-sample. Trajectories are

then simulated based on the obtained policies in the same test world where the developed

matching/destination models are assumed as the true model. Parameters for the true model

are obtained from the raw data set.

Figure 5.5: Average unit profit against the sample size for model-free approach

Fig. 5.5 plots the average unit profit for each of the given sample size. Results pre-

sented in the previous section are very promising. As expected, the performance of the

learned policy increases with sample size, since more information are contained in larger

training sample. The fact that the performance of batch RL with sample size 160K is

slightly better than random walk indicates that the method could still learn better perfor-

mance policies even from a relatively small sample size. FQI is sample efficient algorithms
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for vacant taxi routing optimization. The method is stable and do not collapse or diverge

when they are learning.

5.2.5.3 Performance Comparison with Model-based Approach

Fig. 5.6 shows the distribution of unit profit and occupancy rate for the 6-hour study

period for both methods with 1-hour time interval. These results show that the two pro-

posed methods achieve better performance than random walk. It can be seen that the

distributions for the optimal policy from model-based method shift to the right, suggest-

ing an across-the-board increase instead of isolated extremely large increases from certain

locations. This shows that the purely data-driven model-free method are less efficient

than the model-based method when the developed model perfectly reflects the true ground

truth. As explained in 5.2.5.1, the developed taxi/passenger matching model and passenger

destination model are postulated as the true model in trajectory simulation, and therefore

the model-free best policy can perform at best as well as the model-based method. In

addition, model-free method learns "nothing" if there’s no data observation to update Q-

value. However, if the transition-tuple dataset is large enough, the model-free learning are

expected to perform comparably as well as the model-based approach.
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(a) Unit profit (CNY/hour)

(b) Occupancy rate

Figure 5.6: Distribution of unit profit and occupancy rate for three strategies 5:30-11:30
am

134



Figure 5.7: MB vs MF: average unit profit against length of time interval

Fig. 5.7 shows the relative difference of the average profit between two methods with

different length of time interval. As can be seen from the figure, model-based method

performs more better than the model-free method with larger time intervals. However, it

is also noted that with a time interval as smaller as 15 min, model-free method performs

better than model-based method. This is probably due to the loss of dynamics across

time intervals in model-based method. It is more effective when the dynamics model

perfectly matches the true one, but often at the cost of larger bias when the dynamics are

not modeled accurately. Model-free method is less efficient but could achieve the best

asymptotic performance especially for most complex problems where the true dynamics

cannot be modeled accurately.
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5.3 Summary

In this chapter, a model-free RL approach is examined to solve for the optimal vacant

taxi routing problem that accounts for multiple cycles of pick-up and drop-off into the

future. This method is model-free, in that no transition models are needed and the system

dynamics are embedded in the observed trajectories. The approach is implemented and

tested in a large-scale network of Shanghai, China, and a systematic comparison of the

model-based and model-free algorithms are also provided. Results show that batch RL is

a sample efficient algorithm for vacant taxi routing so as to avoid extra modeling assump-

tions. It could still learn better performance policies even from a relatively small training

sample size. Overall, the performance of the learned policy increases with sample size.

Both policies obtained from model-based and model-free algorithms perform better

than random walk despite not having any priori knowledge. Model-based method is more

effective when the model perfectly matches the true dynamics but often at the cost of

larger bias when the dynamics are not modeled accurately; while model-free method is

less efficient but could achieve good asymptotic performance especially where the true

dynamics cannot be modeled accurately.

Future work could consider to solve the problem in a true time-dependent case by

improving the sampling data efficiency. Currently, the state (action) values are updated

based on one-step exploration, they can be extended by bootstraping over a longer length

of time in which a significant and recognizable state change has occurred (Mahmood et al.,

2017; Yang et al., 2018). For real-time application, the GPS points needs to be projected

to the road network to create a path that consists of road segments, i.e., the map matching

process. The reader is referred to (Zheng, 2015) for a recent review of map matching
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methods. Future work can consier using a Hidden Markov Model (HMM) (Newson and

Krumm, 2009) to get the mapped path.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Research Summary

This thesis investigates the dynamic routing decisions of both travelers and on-demand

service providers (e.g., regular taxis, Uber, Lyft, etc).

For individual travelers, this thesis focuses on route choice behavior analysis at two

time scales: day-to-day and within-day. For day-to-day route choice behavior, method-

ological development and empirical evidences are presented to understand the roles of

learning, inertia and real-time travel information on route choices in a highly disrupted

network based on data from a laboratory competitive route choice game. A learning model

based on the power law of forgetting and reinforcement is applied. The learning of routing

policies instead of simple paths is modeled when real-time travel information is avail-

able, where a routing policy is defined as a contingency plan that maps realized traffic

conditions to path choices. Model parameter estimates are obtained from maximizing the

likelihood of making the observed choices on the current day based on choices from all

previous days. Prediction performance is then measured in terms of both one-step and full

trajectory predictions.

The routing policy model within each day in the above day-to-day learning frame

work is estimated with non-recursive model which requires prior choice set generation.
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In practice, sampling choice sets of routing policies is computationally costly and it does

not scale well with the size of the network. In this thesis, a recursive logit model for route

choice is formulated in a stochastic and time-dependent (STD) network where the choice

of path is formulated as a sequence of link choices, without sampling any choice set. A

decomposition algorithm is proposed for solving the value functions that relies on matrix

operations. Estimation and prediction results of the proposed model are presented using a

data set collected from a subnetwork of Stockholm, Sweden. Results show that the model

can be estimated efficiently, and gives reasonable results for prediction.

Taxis and ride-sourcing vehicles play an important role in providing on-demand mobil-

ity in an urban transportation system. In this thesis, the single vacant taxi routing problem

is investigated to maximize long-term expected profit over the complete working period.

The problem is formulated as a Markov Decision Process (MDP) problem at the high-

est level of spatial resolution. Two approaches are proposed to solve the problem. One

is the model-based approach where a model of the state transitions of the environment

is obtained from queuing-theory based passenger arrival and competing taxi distribution

processes. To improve computation efficiency, an enhanced value iteration algorithm for

solving the MDP is proposed via matrix operations. The other is the model-free learning

approach, which learns action values (and from that, the best policy) directly from ob-

served trajectory data. This method is model-free, in that no transition models are needed

and the system dynamics are embedded in the observed trajectories. Batch RL algorithm is

applied to make more efficient use of the collected data by separation of the data collection

and learning steps.
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Both approaches is implemented and tested in a large-scale network of Shanghai,

China with reasonable running time. For model-based approach, numerical experiments

in a mega city suggest that matrix operation helps to achieve 8x speed-up in computation.

Simulation experiments are conducted to compare the performance of the proposed strat-

egy with a number of baseline heuristics. The MDP formulation improves unit profit by

23.0% and 8.4% over the random walk and local hotspot heuristic respectively; and im-

prove occupancy rate by 23.8% and 8.3% respectively. Empirical spatial distributions of

taxi location from a few starting locations and following the various strategies are obtained

from the simulation, and the heuristics are shown to have in general more spread-out spa-

tial patterns than the optimal policy. For model-free approach, results show that batch RL

is a sample efficient algorithm for vacant taxi routing so as to avoid extra modeling as-

sumptions. It could still learn better performance policies even from a small sample size.

Overall, the performance of the learned policy increases with sample size.

A systematic comparison of the model-based and model-free algorithms are also pro-

vided. Results show that both policies perform better than random walk despite not having

any priori knowledge. Model-based method is more effective when the model perfectly

matches the true dynamics but struggle on building accurate models for complex tasks;

while model-free method are less efficient but could achieve good asymptotic performance

especially where the true dynamics cannot be modeled accurately.

6.2 Future Directions

We have witnessed a rapid development of on-demand ride-hailing services such as

Uber, Lyft and Didi Chuxing in recent years. With the emergence of wireless communica-
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tion tools, the Global Position System (GPS), and powerful mobile apps, these ride-hailing

services provide significant improvements over traditional taxi systems in terms of reduc-

ing taxi cruising time and passengers’ waiting time and opens up new opportunities for the

exploitation of unused capacity. Meanwhile, they also provide rich information on passen-

ger demand and taxi mobility patterns, which can benefit various research areas including

demand prediction, route planning, and traffic light control.

To make fully use of such information, future research should tap on the potential of

machine learning techniques. Those data-mining approaches are designed to handle the

uncertainty of sparse and noisy data as it is the case for spatial data. Meanwhile, it is

also acknowledged that sophisticated modelling knowledge has developed in the domain

of transport planning and therefore domain expert knowledge should build the fundament

when applying data-driven approaches in transportation research. These new challenges

call for a multidisciplinary collaboration between transport modelers and data scientists.

Specifically, the following directions can be addressed in the future.

• Multi-taxi routing In Chapter 4 and 5, optimal routing decisions is provided from

the viewpoint of a single taxi driver at a road network level, assuming that the move-

ments of the taxi do not affect traffic condition, other taxis’ movements or passenger

demand. Future research can consider optimizing routing decisions for a fleet of

vehicles. Taxis are competing with each other; at the same time, they can cooperate

with each other to provide ride-sharing services. The decision of assigning request-

ing orders to taxis is determined by a centralized algorithm in a coordinated way

from a global view.
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The matching between multiple drivers and orders can be formulated as a decision-

making problem in multi-agent systems and solved using a optimization algorithm

that finds the global optimum in a centralized and coordinated way. The design of a

centralized incentive mechanisms solution also plays an important role for achieving

the centralized optimization solution.

• Real-time optimization In Chapter 4 and 5, simplified assumptions are made and

the optimal taxi routing problem is treated as a static problem to make the method

attractable and computationally efficient even for a network as large as the Shanghai

network. Future work can consider to solve a true time-dependent problem needs.

However, solving an MDP in a time-dependent network is computationally chal-

lenging, since the exact dynamic programming algorithm enumerates all states and

does not scale with the significant increase in the size of the state space. In addi-

tion, it is also difficult to obtain enough reliable data in reality if the time-interval is

too small. Approximate Dynamic Programming (ADP) is a potential tool (see, e.g.,

Larsen et al., 2004; George and Powell, 2006), which approximates the value func-

tion and avoids the evaluation of all possible future states, the so-called complete

sweep.

• Sample efficient batch RL The standard procedure of batch RL is to use the com-

plete set of samples for each training iteration. As a result, training time and memory

requirement increase with the amount of collected transition tuples. A promising

question is therefore whether it is possible to cleverly sample from the set of tran-

sition triples, such that the learning process is successful, even if the number of

samples for learning is reduced or restricted. Future research can investigate how
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to select promising subsets of the sampled data for learning so as to reduce both

computation time and the memory requirements.

• Routing in dynamic ride-sharing Ride-sharing opens up an important opportunity

to increase occupancy rates, and could substantially increase the efficiency of urban

transportation systems, potentially reducing traffic congestion and fuel consump-

tion. In any practical ride-share implementation, new riders and drivers continuously

enter and leave the system. The ride-share can be established on short-notice, which

can range from a few minutes to a few hours before departure time. The growing use

of Internet-enabled mobile phones allows people to offer and request trips whenever

they want, wherever they are. Thus, the design of efficient dispatching and routing

of vehicles is the key to dynamic, on-demand ride-sharing.

• Idle vehicle rebalancing The empty taxi density is exogenous in the model-based

vacant taxi routing optimization approach, which should be relaxed to consider the

feedback loop between optimal taxi routing and the matching probability change

due to multiple taxis routed to the same location, much like the congestion effect in

traditional traffic assignment. Even though rich historical demand and supply data

are available, using the data to seek an optimal relocation is not an easy task. One

major issue is that changes in an allocation policy will impact future demand-supply.

Future research can consider dynamically re balancing the differences between de-

mand and supply, by reallocating available vehicles ahead of time, to achieve high

efficiency in serving future demand.
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• Spatial matching between riders and vacant taxis In the model-based vacant taxi

routing optimization approach in Chapter 4, a vacant taxi is matched with passengers

based on locality following a greedy method, i.e., finding the closest taxi to serve

a passenger’s request. A queuing strategy is applied to serve the passengers with

the principle of first-come-first-served. In real world, such kind of greedy match-

ing could lead to a spatiotemporal mismatch between taxis and passengers in the

long run. Future study may look into a more flexible modeling of spatiotemporal

matching between passengers and vacant taxis in a coordinated way.
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of travel time reliability based on stated preference survey: A case study of beijing,

Transportation Research Part A: Policy and Practice 95: 372–380.

172



Kraan, M., Mahmassani, H. and Huynh, N. (2000). Traveler responses to advanced traveler

information systems for shopping trips: Interactive survey approach, Transportation

Research Record: Journal of the Transportation Research Board (1725): 116–123.

Laha, A. K. and Putatunda, S. (2018). Real time location prediction with taxi-gps data

streams, Transportation Research Part C: Emerging Technologies 92: 298–322.

Lai, X. and Bierlaire, M. (2015a). Specification of the cross-nested logit model with

sampling of alternatives for route choice models, Transportation Research Part B

80: 220–234.

Lai, X. and Bierlaire, M. (2015b). Specification of the cross-nested logit model with

sampling of alternatives for route choice models, Transportation Research Part B:

Methodological 80: 220–234.

Lam, T. C. (2000). The effect of variability of travel time on route and time-of-day choice,

Technical report.

Lam, T. C. and Small, K. A. (2001). The value of time and reliability: measurement from

a value pricing experiment, Transportation Research Part E: Logistics and Trans-

portation Review 37(2-3): 231–251.

Lam, W. H., Shao, H. and Sumalee, A. (2008). Modeling impacts of adverse weather con-

ditions on a road network with uncertainties in demand and supply, Transportation

research part B: methodological 42(10): 890–910.

Larsen, A., Madsen, O. B. and Solomon, M. M. (2004). The a priori dynamic traveling

salesman problem with time windows, Transportation Science 38(4): 459–472.

173



Larsen, A., Madsen, O. and Solomon, M. (2002). Partially dynamic vehicle routingâĂŤ-
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