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ABSTRACT 

BRINGING LEARNING BACK IN: EXAMINING THREE PSYCHOMETRIC MODELS 

FOR EVALUATING LEARNING PROGRESSION THEORIES 

 

FEBRUARY 2019 

 

 

DUY NGOC PHAM, B.S., HANOI NATIONAL UNIVERSITY OF EDUCATION 

M.S., PARIS-SUD UNIVERSITY 

M.A., BOSTON COLLEGE 

 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Dr. Craig S. Wells 

 

 

 Learning progressions provide potentially valuable information to teachers about how 

to develop a scope and sequence for a group of learning objectives. However, for the learning 

progressions to be valuable, the progressions must be supported. Although there are several 

approaches and models that can be used to evaluate the validity of a learning progression, 

there is a dearth of research examining the advantages and limitations of each approach. The 

purpose of this study was to examine a multi-dimensional IRT model and two cognitive 

diagnostic models (DINA and HO-DINA) for evaluating two learning progressions via a 

simulation study. In addition, the models were applied to empirical data to determine if the 

models provided consistent results. The results from the investigation indicated that five 

methods of using the model and statistical methods derived from them to testify learning 

level order could complement each other. None of the methods worked dominantly better 

than the others but they all deemed useful in certain contexts. With respect to assessing the 

possible links among levels across progressions, the degree to which the model recovered the 
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true information in the simulation studies varied depending on the model and the magnitude 

of the difference between the learning levels. The more distant the levels were, the more 

accurate the model became at recovering the true classification. For the empirical analysis, 

three models provided convergent evidence to support almost all the aspects of the theory 

underlying two progressions considered in this study. Statistical results also suggested a few 

revisions to make the theory more in line with the empirical evidence. Four limitations were 

discussed, and six future directions were elaborated to address the drawbacks of this study. 

Finally, three practical implications were presented as take-away messages from this 

dissertation.  
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CHAPTER I 

INTRODUCTION 

1.1. Educational Context of Study 

Learning, as a process of students acquiring and advancing knowledge and skills, has 

been at the heart of educational activities throughout modern human history (Faure et al., 1972). 

This view suggests that educators should prioritize resources to support student learning. If this 

vision is worth pursuing, educational assessments should play a critical role in sustaining and 

strengthening the learning process of students. The reason is that assessments, when they are 

properly aligned with curriculum and instruction, can facilitate student learning (Martone & 

Sireci, 2009).  To make assessments more directly useful for instruction and learning, 

instruments based on cognitive models and theories of learning are a possible solution (Kane & 

Bejar, 2014; Heritage, 2008). In short, the demand to assess learning that can support student 

academic growth and teachers to improve their instruction is an important part of education.   

To meet this demand, assessments based on learning progressions have recently been 

proposed as a promising solution to bridge assessment information to student learning during 

instructional cycles. Major testing organizations have conducted studies and/or implemented 

developmental projects on learning progressions to build formative assessments that can capture 

student learning and measure student growth (Arieli-Attali, Wylie, & Bauer, 2012; Camara, 

O’Connor, Mattern, & Hanson, 2015). In general, learning progressions can be defined as 

empirically grounded and testable hypotheses of how the knowledge and skills of students 

develop and reach more sophisticated levels overtime with suitable instruction (Corcoran, 

Mosher, & Rogat, 2009). If multiple progressions are involved, we can define a theory of related 

learning progressions as descriptions and hypotheses that describe (i) how student’s knowledge 



 

2 

and skills develop, strengthen and advance from novice to mastery within the content of each 

progression, and (ii) the relationship of the learning process across the progressions.  

If an educator obtains a supported theory of learning progressions, it can be useful in 

several perspectives. First, capitalizing on the concept of learning progressions, she/he could 

construct assessment systems that might produce meaningful information regarding student 

learning. For example, such a system would allow us to build measures that provide more 

reliable and valid inferences regarding student growth (Briggs, Diaz-Bilello, Peck, Alzen, 

Chattergoon, & Johnson, 2015; Thissen, 2015). Indeed, Briggs and Peck (2015) suggested the 

use of learning progressions to construct a vertical scale that includes two sub-scales. The first 

scale reflects the overall student achievement on a whole domain of content of a given grade, and 

the other scale measures student growth in regard to a learning progression within the domain. 

Second, learning progressions and assessments based on the concept of learning 

progressions can be useful for instructional purposes (Daro, Mosher, & Corcoran, 2011). If such 

assessments are available, teachers can use them to obtain timely and reliable information of the 

learning status of each student in each point in time. This information is useful for them to 

provide feedback to students in regard to their learning and possible misunderstandings of the 

knowledge and skills defined by learning progression theories. The assessment results can also 

inform teachers to design or customize their instruction to meet the need of individual students. 

Even if the assessment might not be available, teachers can also use the theory as a reference 

point to set the right conditions for learning to foster a student’s deeper understanding of the 

content areas encapsulated by the progressions.   

Third, learning progressions can be described as embedded within the scope of popular 

K-12 curriculua. For instance, Confrey, Maloney and Corley (2014) identified and elaborated 18 
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learning progressions within the Common Core State Standards for mathematics for the first nine 

grades (K-8). They then built an online platform to scaffold the curricula based on the learning 

progressions to support student learning and instruction (Confrey, Gianopulus, McGowan, Shah, 

& Belcher, 2017). In summary, learning progressions and assessments that capitalize on the 

concept of learning progressions can lead to meaningful applications in the real world of 

education to assist students to learn better and instructors to facilitate students to learn more 

effectively. 

Regardless of the promising scenario described above that learning progressions could 

bring about, the realization of the idea to build learning progression-based assessments faces 

significant challenges (Briggs & Peck, 2015; Confrey, Jones, & Gianopulos, 2015). For instance, 

the construction of assessments using learning progressions might consume significant resources. 

More importantly, it requires that one would have been able to empirically validate the 

underlying theory of learning progressions before we can rely on the theory to build assessments 

that measure student learning and growth. In other words, the usefulness of assessments built on 

learning progressions depends, in large part, on the validity of the underlying theory of the 

progressions and the psychometric foundation to scale the assessment data. If the theory is not 

supported empirically, theory-informed inferences about student learning made from assessment 

results may not be valid, which means that it may not be useful for instructional purposes.  

From a validity perspective, validating a learning progression framework requires 

collecting different sources of evidence to support or refute the claims postulated by the theory. 

For example, if the items were developed to identify the relative position of student learning in a 

progression, the response data should reveal empirical evidence that supports the correct 

identification of student learning levels. Similarly, if the theory predicted that a student in a 
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learning stage in a progression can master a certain level of skills and knowledge of a different 

but related progression, the observed data should support this claim. To obtain the evidence to 

examine the claims, some statistical models can be useful to help draw some conclusions from 

learning progression data. 

1.2. Purpose of Study 

There are at least three families of psychometric models that have been used to analyze 

learning progression data (Pham, Bauer, Wylie, & Wells, 2017). The first one is based on a 

classical test theory (CTT) framework. The second one is based on modern test theory, or item 

response theory (IRT) models. During the last decade or so, cognitive diagnosis models (CDMs) 

have been adopted to analyze learning progression data (e.g., Chen, Zhang, Guo, Xin, 2017; 

Kizil, 2015; Pham et al., 2017). Traditionally, IRT and CDMs rely on different assumptions of 

the underlying latent variables. In an IRT framework, one assumes that the latent variables are 

continuous. Whereas, in CDMs, students are classified into a finite number of discrete latent 

profiles defined by the set of attributes measured by the assessment. However, de la Torre and 

Douglas (2004) proposed a higher-order cognitive diagnosis model (CDM) framework that 

assumes there are continuous latent variables, as in the case of IRT, that derive the joint 

distribution of the cognitive attributes. If the variable is unidimensional, the higher-order model 

can locate the attributes under the CDM framework in an increasing order. This feature of the 

model seems to be relevant to evaluate learning progressions.  

Interestingly, some recent studies have fit both IRT and CDMs to the same data set of 

learning progressions (e.g., Chen et al., 2017; Kizil, 2015). In some cases, it was observed that 

both IRT and CDMs provide adequate model-data fit (Haertel, 1990). Under certain modeling 

settings, Haertel (1990) stated that some CDMs can be considered as special cases of IRT 
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models. However, to date, there are no simulation studies that have evaluated the usefulness of 

these models in the context of learning progressions, especially for newer CDMs such as the 

higher-order models. Given the scarcity of literature on this topic, simulation studies that 

investigates the effectiveness of the models to evaluate learning progressions are useful to guide 

practices and suggest future directions. In this context, this study is an effort to shed light on the 

effectiveness of one IRT model and two CDMs in analyzing learning progression data under 

various practical conditions. The first model is the two-parameter logistic multidimensional IRT 

with simple structure (MIRT-SS). The two CDMs are (i) deterministic input, noisy “and” gate 

(DINA), (ii) and its higher-order version (HO-DINA or HO) (de la Torre & Douglas, 2004; 

Haertel, 1990). Two simulation studies will be conducted to investigate the effectiveness of the 

models when the true model and information about the learning levels is known. Then, an 

empirical study fitting the three models to response data collected from an assessment system to 

validate the theory we investigated in our previous works will be implemented.  

The effectiveness of those models in evaluating such theories entails several aspects that 

will be examined in detail. In the first place, this study will shed light on how the IRT and CDMs 

are effective in recovering the ordering of learning levels in simulated conditions. In the second 

place, the effectiveness of the models will be investigated in regard to the second claim about the 

relationship between levels across learning progressions. Findings of the simulations are 

expected to inform the interpretation of results obtained from fitting the models to the empirical 

data. The empirical results will also be connected to prior validity evidence to draw conclusions 

about how effective the models are in analyzing the data.  

The significance of this study can be visualized in two perspectives. The primary 

potential contribution of this study is that it can illuminate the comparative strengths and 
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weaknesses of each model in analyzing the learning progression data in several realistic 

conditions and empirical data. In the second place, the analysis that fits the models to the 

empirical data would provide constructive information to the proposers of the theory to revise 

and improve their underlying theory.  

The dissertation will be organized as follows. The next chapter, chapter 2, provides a 

comprehensive review of the literature that related to the purpose of this study. Then, a complete 

description of the method and three sub-studies carried out to shed more light on the 

effectiveness of the selected models in evaluating learning progressions will be presented in 

chapter 3. Two simulation studies, one set of empirical analysis along with five statistical 

approaches to examine learning level order will be described in this part of the dissertation.  

Next, chapter 4 reports the results for each study. For logical sequence, the findings will be 

organized into sections that show evidence to address each theoretical claim that learning 

progressions hypothesized. Finally, chapter 5 concludes the dissertation by discussing the results 

across studies and limitations of the conducted investigations. The final chapter will end the 

research report by outlining some future directions and summarizing a few take-away messages 

that were informed from the studies. 

  



 

7 

CHAPTER II 

 

LITERATURE REVIEW 

In this chapter, the existing literature that relates to the topic of using statistical models to 

examine learning progression theories will be reviewed. The chapter starts with reviewing a 

concept of “learning hierarchy” proposed by Gagne (1962) which can be thought of as a 

predecessor of learning progressions (Lobato & Walters, 2017). This concept carries some 

features that are similar to the newer concept of learning progressions. It is also noted that 

learning hierarchies had been hotly debated in the 1970s and 1980s among scholars in 

educational psychology, curriculum and instruction. Then, several key definitions for the concept 

of learning progressions will be summarized. After that, a concrete example of a theory of three 

learning progressions that was the baseline theory to develop an assessment system to collect the 

empirical data that were analyzed in this study will be presented. In the next step, the issue of 

validating learning progression theories will be discussed and several psychometric models that 

have been used to evaluate these theories will be introduced. Finally, the chapter will be 

concluded by a summary of the literature reviewed in this study.  

2.1. Overview of Learning Progression Theories 

To set the stage for the rest of the dissertation, this section focuses on three tasks. First, 

the concept of learning hierarchy and a few definitions for learning progressions will be 

reviewed. The former concept of learning hierarchy connects well with more recent works on 

learning progressions to prior investigations of learning theories from 1960s and 1970s. Second, 

the theory of learning progressions underlying the empirical data analyzed in this dissertation 
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will be described in detail.  Last, two aspects of validating learning progression theories will be 

discussed 

2.1.1. The “Forgotten” Concept of Learning Hierarchy 

In the published works that reviewed the concept of learning progressions (e.g., Daro, 

Mosher, & Corcoran, 2011; Heritage, 2008), it is usually reported that the concept took root from 

a study by Simon (1995) in mathematics education. However, when the term “learning 

hierarchy” was searched for in research databases as recommended by Dr. Ronald Hambleton, 

numerous published works from the 1960’s to early 1980’s that defined and investigated learning 

hierarchies were found. The review of the two concepts revealed that learning hierarchies and 

learning progressions shared a common definitional feature in that they both capitalize on the 

assumption that students acquire and master knowledge and skills in a hierarchical order from 

simplicity to sophistication. Thus, it is worthwhile to revisit the former theory and methods used 

by researchers to validate the hierarchies. 

Historically, Gagne (1962) laid the foundation for the term learning hierarchy to be 

coined and investigated in subsequent studies. Originated by learning psychologists and 

instructional designers, this concept refers to the ordered transitional relationships of knowledge 

elements within learning tasks. Those hierarchical relationships inferred that students need to 

possess the simpler elements to be able to master the more complicated ones in the hierarchy 

with relevant instruction (Gagne, 1962; Resnick, 1973; White, 1973). This definition is similar to 

that used more recently by leading authors to characterize learning progressions. After discussing 

the hierarchy of knowledge, Gagne (1962) introduced for the first time a hierarchy with nine 

elements that students went through to perform well on the task of finding the sum of a series of 

numbers. The hierarchy started off with the five simplest elements and proceeded to the next 



 

9 

three elements before reaching the highest one in which students can figure out the general 

formula for the sum of a numeric series. The author, then, developed test items associated with 

each element and used them to collect response data from seven students in ninth grade to 

initially validate the hierarchy. He observed that the ordering of the elements from simple to 

sophisticated knowledge seemed to be supported by the response data. Among the seven 

participants, anyone who performed well on the higher-level elements, also succeeded on 

answering items targeting lower-level elements.  

 Following the model described in Gagne (1962), many researchers had attempted to 

propose and validate learning hierarchies in mathematics and science (White, 1973; 1974). 

According to White (1973), many learning hierarchies proposed and investigated in the decade 

following Gagne (1962) were not fully supported by empirical data. Indeed, studies to validate 

these hierarchies often reported non-negligible numbers or percentages of students whose 

response patterns were inconsistent with the prerequisite relationships of their elements. It was 

reported in those studies that it was possible for many students to be proficient at superordinate 

skills, but not the subordinate ones. Then, White (1973) pointed out three main reasons for which 

one could fail to validate the prerequisite relationships among the knowledge elements. These 

reasons were (i) the possible measurement error of the assessment instruments, (ii) the probable 

delay between learning and testing that might cause random forgetting, and (iii) the fallibility of 

the hierarchical structure. White (1973) also reported that hierarchies that were defined by 

intellectual skills were more likely to be supported empirically than those that relied on 

verbalized knowledge. Carrying this observation into a subsequent article, White (1974) 

proposed and illustrated a nine-step procedure to validate a learning hierarchy to maximize its 

plausibility. This procedure was then adopted successfully by other researchers (e.g., Winkles, 
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1986). Another line of research following the introduction of learning hierarchies was to 

investigate how to take advantage of these theories to individualize testing using computers (e.g., 

Ferguson, 1969) or reduce testing time at the same time with keeping an adequate level of 

measurement error (e.g., Spineti & Hambleton, 1977).  For instance, Spineti and Hambleton 

(1977), through a simulation study, found that it was possible to use learning hierarchies and 

adaptive testing strategies to reduce testing time by more than 50% without scarifying the level 

of measurement precision of conventional assessments.  

Given that more modern psychometric models were in their early stages in the 1970s, the 

studies reviewed above that aimed to validate hierarchical learning structures based on either 

observed scores under a classical test theory framework or Guttman scaling (Guttman, 1944) to 

shed light on the plausibility of the hierarchical relationship among learning elements (Resnick, 

1973). Before moving to the next topic to discuss learning progressions, it is noted that the term 

“learning hierarchy” tended to fade away from the scholastic discourse of K-12 education after 

1990. When articles in peer-reviewed journals indexed in Educational Resources Information 

Center (ERIC) from 1990 to early 2018 were searched using the term in the title and “education” 

in any part of the publications, only 31 results were found. Moreover, most of these works were 

on e-learning and professional education. In short, in this section, the initiation, development and 

diminution of the concept of learning hierarchies were summarized.  

2.1.2. The Concept of Learning Progressions 

2.1.2.1. Learning Progression.  

While learning is a concept that has been around for a long time (Houwer, Barnes-

Holmes, & Moors, 2013), learning progression is a much more recent idea (Lobato & Walters, 

2017). Before going into the details of a few definitions for the concept, it is noted that we 
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usually use the term “learning trajectory” in place of “learning progression” in the field of 

mathematics education (Confrey et al., 2017). One of the first definitions of this concept dates 

back to about two decades ago. In a study by Simon (1995) on constructivist education in 

mathematics, the author coined the term “hypothetical learning trajectory” to refer to “teachers’ 

prediction as to the path by which learning might proceed” (p. 135). This work is considered to 

be the first one that introduced the concept of learning trajectory/progression in mathematics 

education (Daro et al., 2011). A year later, from a measurement perspective, Masters and Foster 

(1996) defined learning progressions as vertical learning developments that describe knowledge 

and skills in a sequential order of cognition that a typical learner would go through. In the heart 

of this definition is the concept of learning that happens in a sequence from simple knowledge 

and skills to the next level of more complicated understanding and ability. A few years later, 

Wilson and Bertenthal (2005) proposed another definition of the concept in the case of science 

learning in K-12 education.  The authors defined the term as the description of “ways of 

thinking” about a concept that increase in the order of successive sophistication, and learners 

progress along the order while they learn the concept. This definition emphasizes the move of the 

learner from novice to expert understanding of an idea or concept.  More recently, many authors 

have tried to make the definition clearer and more detailed. For example, Heritage (2008) 

characterized a learning progression as the description of knowledge and skills that a typical 

student must learn in an order that helps her/him achieve more sophisticated understanding and 

skill sets.  

Lastly, Corcoran, Mosher, and Rogat (2009) offered a definition for the concept from the 

perspective of empiricism. They defined learning progression in science education as an 

“empirically grounded and testable hypothesis” that explains how the understanding and skills of 



 

12 

students related to a certain content knowledge develop and reach a higher cognitive level 

through learning activities with suitable instruction.  This definition carried some important 

aspects. First, it emphasized the empirical nature of the learning descriptors for each learning 

level. In this sense, the descriptors should be made based on empirical evidence of student 

learning and can be tested by observed data and appropriate techniques. Second, the definition 

mentioned the role of instruction in the learning development of the progression. Without 

appropriate instruction, student learning might not progress as the theory would predict. For 

example, if instruction was not aimed at helping students correct their misconception of fractions 

and decimals, students may keep making mistakes in adding fractions or converting fractions 

into decimals. More seriously, they may carry that misconception with them for a long time 

(Erlwanger, 1973). 

After about two decades of development, there are a good number of studies of various 

learning progressions. A quick search by the term “learning progression” in ERIC database in the 

Fall of 2017 yielded 54 documents with the term in the titles. When the search is extended into 

“All Text” the number went up to 144 documents. When both terms “learning progression” and 

“learning trajectory” were used, the numbers rose up to 237 and 326, respectively. In terms of 

subject areas, learning progression theories have been developed for K-12 mathematics (e.g., 

Arieli-Attali, Wylie & Bauer, 2012; Briggs, Diaz-Bilello, Peck, Alzen, Chattergoon, & Johnson, 

2015; Confrey et al., 2017; Shin, Wilson, & Choi, 2017), K-12 science (e.g., Chen, 2012; Furtak, 

Morrison, & Kroog, 2014; Wilson, 2009), and for verbal comprehension (e.g., Bailey & 

Heritage, 2008; Greaney & Tunmer, 2010). All those references contain detailed examples of 

learning progressions. 
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In terms of the number of levels within learning progressions, a closer look at the 

examples of learning progressions revealed that they often have a few to more than 10 learning 

levels. For example, Shin et al., (2017) showed an example of a learning progression in middle-

school curriculum of statistics and modeling that can have two levels: being proficient and being 

non-proficient. On the other extreme, Briggs et al. (2015) presented an example of a learning 

progression for place value with up to 15 levels spanning from early pre-K to the end of grade 5. 

Given the incremental nature of learning progressions that can be described by levels, a 

formative assessment system that collects evidence of learning multiple times and provides the 

information for teachers and students during a course of instruction seems to be an appropriate 

instrument to assess learning progression of students.  

2.1.2.2. Learning Progression Theory.  

A few learning progressions can form an educational construct and the relationship 

among the progression can be theorized. Under this context, a theory of learning progressions 

consists of (i) descriptions of each progression, and (ii) postulated relationship among them. For 

example, educational constructs such as mathematics proficiency in K-12 education can be 

viewed as multiple related learning progressions (Confrey et al., 2014), thus can be considered as 

theories of learning progressions. In this case, the link among learning levels across progressions 

within a construct can also be theorized. For instance, for a construct of two linked learning 

progressions of three levels each (e.g., below proficient, proficient, and advanced), it might be 

very likely that a student that is below proficient for the first progression also tends to be in the 

lowest learning level of the second learning progression. The possible occurrence of learning 

levels across progressions within a construct is referred to as level links or permutations or 

combinations of levels (Arieli-Attali et al., 2012; Shin et al., 2017; Pham, Monroe, & Wells, 
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2016). Those terms will be used interchangeably in this dissertation. In the next section, A 

specific example of a learning progression theory of middle-school mathematics will be 

described next. 

2.1.2.3. Learning Hierarchies and Progressions. 

After visiting the concept of learning hierarchies and some definitions of learning 

progression, one could see that the definitions share a few common features. They all are likely 

to approach the concept from multiple perspectives. From a behavioral view, they described 

learning as observable phenomenon of incremental sophistication that students build the next 

levels of understanding on top of the previous ones. Through the definitions, we can also see that 

the authors emphasized the empirical aspect of how to come up with and validate those theories. 

This can be best seen through the last definition of Corcoran et al. (2009) since it emphasizes the 

importance of the empirical grounds, testable nature, and the role of instruction of the learning 

development.  Equally important is the constructivist root of the concept of learning hierarchies 

by Gagne (1962), and learning progressions/trajectories from the work of Simon (1995). We 

encountered this constructivist facet again in the definition of the latter in Corcoran et al. (2009), 

and of the former in Gagne (1962) in which they both mentioned the role of instruction in how 

students would proceed along the knowledge and skill ladder encapsulated by the learning 

progressions. Suitable instruction in these definitions might be referred to what Simon (1995) 

described as how teachers framed their lesson plan based on their understanding of how a typical 

student learned the content area at hand and implemented that plan on a constructivist manner. 

Relevant instruction was also mentioned as a significant component of learning hierarchy 

theories (e.g., Gagne, 1962; Resnick, 1973; White, 1973; 1974; Winkles, 1986). In the next 



 

15 

section, a concrete example of a learning progression theory will be shown. For examples of 

learning hierarchies, readers are referred to the references mentioned previously in this chapter.   

2.1.3. An Example of a Learning Progression Theory 

In this section, a theory of learning progressions for middle-school algebra proposed in 

Attali-Arieli et al. (2012) will be introduced. Originally, the theory contained three related 

learning progressions of middle-school mathematics: Equality and Variable (EV), Functions and 

Linear Functions (LF), and Proportional Reasoning (PR). The EV progression is integrated from 

two separate but related concepts that reflect students’ conceptual and procedural understanding 

of equality and the nature of algebraic variables. LF addresses students’ cognitive development 

of the functional relationship that starts from numeric and spatial understanding and progresses 

toward symbolic understanding of variables and functions. PR describes cognitive progressions 

that students often go through to understand the multiplicative relationship between two or more 

quantities. Each of the three learning progressions has five levels that describe a pattern of 

understanding students may pass through on their way to more sophisticated use and sense of the 

mathematical concepts involved. The transition from one level to the next can represent a 

conceptual change in understanding or a deeper understanding of an existing concept. Our 

previous analyses of the data supported the theory for the last two progressions (LF and PR) and 

failed to back up the first one (EV) (Pham et al., 2016). For brevity sake, the following 

paragraphs describe the theory for the LF and PR progressions. Arielli-Attali et al. (2012) 

contains in-depth descriptions of the theory for all the three progressions. 

LF was proposed under the idea that students build their knowledge of functions from 

simple to more sophisticated representational understanding (Arieli-Attali et al., 2012). It starts 

with simple numeric and spatial representations of functional relationship and changes to more 
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complicated graphical and symbolic representations at higher levels. For example, lower-grade 

middle-school students can often recognize and complement patterns of numbers such as 2, 5, 8, 

11, …, and work with uncomplicated pie or bar-charts. At higher levels of the progression, more 

typical of later middle school, students can navigate through content knowledge that integrates 

numeric and visual representation such as specifying the function value associated with a 

variable value given the function’s graph (i.e., graphical representation). Another aspect of this 

progression is that students gradually understand the dependent relationship and change relation 

between two variables (i.e., input and output). The three representational understandings (i.e., 

numeric, spatial, and symbolic), and the conceptual understanding of change interact to define 

five learning levels for this progression. In the first level, students possess the three 

representational understandings which are still disconnected in this stage, and they don’t 

recognize the mutual change in this level yet. Students in the second level start to develop the 

concept of mutual change and integrate numeric understanding and how a pair of numbers can be 

represented in a two-dimensional coordinate plane. In the third level, the concept of linearity and 

constant change start to emerge and the first two representations are strengthened and connected 

with the most advanced representation of functions (i.e., symbolic). For the next level, students’ 

understanding of the three representations of functions and their connection is crystallized. 

Indeed, level-4 students master the concept of constant change and they can compare the changes 

of different linear functions. In the most advanced level (i.e., level-5), students have the insight 

that how functions change might depend on the value of its variable. And, in symbolic form, 

students in level-5 can see that the slope of functions can vary across the range of the variable. 

The PR progression was proposed by capitalizing on two major lines of research (Arieli-

Attali et al., 2012). The first one was the three-stage development of the concept of proportional 
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reasoning that took root from the work of Piaget and Inhelder (1975). These stages are (i) 

qualitative-intuitive, (ii) quantitative additive, and (iii) multiplicative structure (Arieli-Attali et 

al., 2012). The second line was from studies that reported and supported the additive 

misconception of students in which they use the differences between nominations and 

denominations instead of using multiplicative factors to compare ratios. Combining the existing 

theories, Arieli-Attali et al. (2012) proposed five learning levels of PR. The lowest level is 

associated with the qualitative-intuitive stage in which young students can make qualitative 

statements that compare two portions of an object. In the second level, quantitative 

understanding starts to emerge in students in the sense they begin to recognize the dependency of 

a ratio value with its components. However, the dependency understanding in this stage is still 

immature and students usually focus on only one part of the ratio. At level-3, a student can 

recognize the multiplicative nature of ratios and starts to recognize that a ratio is an independent 

object whose value depends on two quantities. Given this multiplicative understanding, students 

can map or transform one ratio to the other. However, they may still have a partial understanding 

that results in use additive strategy (that does not preserve the ratio) instead of the multiplicative 

one (that does preserve the ratio). In level-4, students can apply the multiplicative strategy 

correctly to transform the numerator and denominator to preserve the ratio and to solve rational 

problems. This means that students in level-4 grasp the functional relationship between a ratio 

and the two quantities that define it. In level-4, given two quantities, the students can build a 

ratio and keep this ratio the same by multiplying both its denominator and numerator with the 

same scalar. When a student can handle ratios that involve more than two quantities correctly, 

she/he is in level-5, the highest level of this progression.  
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From the definitions of LF and PR, one could see that learning levels across progressions 

are not independent of each other (Areli-Attali et al, 2012). For example, students with more 

advanced symbolic understanding of functions are more likely to be able to transform a fraction 

to preserve its value, thus be in level-4 of PR. Based on the descriptions of learning levels, the 

authors of the theory proposed a network model for the relation of the levels between the 

progressions. For the same reason of brevity mentioned above, only the theorized links between 

learning levels of LF and PR will be presented in the following. Given that each progression has 

five levels, there are 25 possible combinations of levels across the two progressions. However, 

according to the authors, it is extremely unlikely to have students in certain combinations due to 

the nature of pre-requisite knowledge required by the levels (Areli-Attali et al., 2012). For 

example, a student in level-3 of LF who can understand and work with linear functions should 

grasp the basics of a multiplicative relationship, thus be at least level-3 of PR. Among the 25 

combinations, Arieli-Attali et al. (2012) predicted 10 possible links for LF and PR levels. Table 

2.1.2 by the end of this chapter displays the postulated combinations. 

In comparison to the general definitions of learning progressions reviewed earlier, it 

could be seen that the definition of LF and PR by Attali-Arieli et al. (2012) seems to be in line 

with the most recent one by Corcoran et al. (2009). Certainly, the theory of LF and PR was 

research-based and contains evaluable hypotheses of how students’ knowledge and skills of 

functions, linear functions and proportional reasoning take root, accumulate and crystallize over 

time as they learn these concepts. In terms of connecting the theory with instructional practice, 

the authors of the theory have also been investigating how to assist teachers to use information 

informed from assessment results using items developed to measure the progression to support 

student learning (Wylie, Arreli-Attali, & Bauer, 2014). In short, the theory of LF and PR 
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described previously is well-defined and ready to be evaluated. Almost all of its claims were 

supported by our prior studies (Pham et al., 2016; Pham et al., 2017). In this study, more 

analyses will be conducted to collect more validity evidence to investigate the theory from one 

more angle. If findings of this study confirm previous conclusions, the theory of LF and PR and 

items developed to validate the theory are recommended to be used to build formative 

assessments to support student learning and instructional practices in the area of learning and 

teaching those concepts. It is also noted that the empirical basis for the theory of LF and PR is 

generalized from cross-sectional data by observing how students learn these concepts at one 

point in time. One possible next phase of this study is to collect longitudinal data using the 

existing assessment tasks to keep track of learning trajectories of each student over time. This 

point will be further elaborated in the future directions following this work.  

2.1.4. Validating Learning Progression Theories 

As described in the previous sections, a typical learning progression theory that involves 

several related progressions often possesses two major claims. The first claim pertains to the 

ordering of learning levels within each progression. This claim anticipates that learning levels 

are ordered increasingly in cognitive complexity. It signifies that students in lower levels show 

mastery of simpler knowledge, understanding and skills of the content area defined by the 

progression whereas students in higher learning levels can have deeper understanding and more 

advanced skills than their peers in lower levels. It is also possible that the latter are more likely to 

suffer from some misconceptions of the concept entailed in the progression. Conversely, the 

former is much less likely to suffer from such misconceptions (Attali-Arieli et al., 2012). It is 

noted that the first claim is a natural deduction from how learning progressions have been 

defined. This claim has also been the main focus of most published studies that dealt with 
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evaluating learning progressions (e.g., Kizil, 2015; Neumann, Viering, Boone, & Fischer, 2013; 

Steedle & Shavelson, 2009). The second claim of theories of multiple related progressions is the 

theoretical prediction of the co-occurrence of levels, or level links across progressions. This 

claim was described and discussed at length in Wilson (2012). Based on empirical evidence of 

student learning, this claim usually conjectures plausible combinations of levels. It can also be 

stated as one level of a progression is a prerequisite to another level of a related one. For 

example, of the 125 possible combinations of levels across three progressions proposed by 

Attali-Arieli et al. (2012), only 17 were postulated to likely occur. In this theory, students in the 

lowest levels (level-1 or 2) of the first two progressions (i.e., EV and LF) were not expected to 

master the knowledge and skills described in level-5 of PR.  

Given the two claims of a typical learning progression theory, validation of such a theory 

requires gathering evidence to argue for or against each of the theorized assertions. If these 

claims are supported, we can rely on student performance on assessments based on the theories 

to infer practical interpretations of student learning. The validity argument for interpretive 

purpose of test scores encompasses multiple perspectives (Kane, 1992). In the case of building 

formative assessments based on learning progression theories, these aspects include, but are not 

limited to (i) the validity of the learning theory that defines the construct that the assessment is 

developed to measure, (ii) the trustworthiness of the evidence that supports our inference in the 

learning status of students in the progression, and (iii) the quality and usefulness of inferences 

regarding next learning activities that instructors can make from the assessment results to 

provide feedback, and set up appropriate instructional sequences. These facets can be interpreted 

in the language of the most recent Standards for Educational and Psychological Testing 

(American Educational Research Association, American Psychological Association, & National 



 

21 

Council for Measurement in Education, 2014). The first aspect is to collect validity evidence to 

examine the internal structure of the items measuring different learning levels. The second one is 

to evaluate the soundness of the interpretation of student knowledge and skills inferred from 

assessment results. And the last one is to investigate the applicability of the theory of action 

informed by the learning progression theory to improve student learning. The following 

paragraphs discuss the first aspect of the validation in details since it is the focus of this 

dissertation. The other two aspects will be discussed as follow-up directions for future studies in 

Chapter 5 of this dissertation.  

To assess the first claim of level order, various sources of evidence can be informative. 

For example, content experts can provide feedback on the knowledge and skills that the items are 

written to measure each learning level (Wylie et al., 2014). Psychometric models can be also 

used for this validation purpose. Indeed, item parameters such as the classical or IRT-based 

difficulty parameter can offer some evidence regarding the complexity of the items measuring 

different levels (Neumann et al., 2013). This first set of evidence relates to validity evidence 

based on internal structure of the assessment developed to measure learning progressions. As for 

the second claim of co-occurrence of levels, input from content experts and curriculum studies 

can be a reasonable source of validity evidence to examine the possible cross level-links. This 

type of validity evidence associates with the content of the test, and to a lesser extent, the 

response processes of students when they are working on items from different progressions in the 

same assessment (American Educational Research Association, American Psychological 

Association, & National Council for Measurement in Education, 2014). Again, if some 

psychometric models are in use, probability-based frameworks such as those described in Pham 

et al. (2016) and Shin et al. (2017) might be adopted to support or negate the possibility of each 
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combination. The following section each of the models will be review and summarized to set the 

stage for the next chapter on methods and statistical analyses.  

2.2. Psychometric Models to Evaluate Learning Progression Theories 

 In this section, the MIRT and CDM frameworks will be reviewed briefly. The general 

formulation for each model will be introduced first. Then, specific versions of the models to be 

applied in the context of this study and their applications to evaluate learning progression 

theories will be detailed.  

2.2.1. Item Response Theory 

2.2.1.1. IRT Models. 

Under an IRT framework, the probability of an examinee to answer correctly a binary 

item is often a function of the examinee’s proficiency and some item parameters. This function is 

often referred to as an item response function. A popular model of this framework is the 

unidimensional two-parameter model. As the name of this model suggested, each item has two 

parameters: the discrimination (a-parameter), and the difficulty (b-parameter), and examinees’ 

proficiency is characterized by one unidimensional variable (theta). The mathematical form of 

the model is as in the following: 

𝑃(𝑋 = 1|𝜃𝑖) =
1

1+exp(−𝑎𝑗(𝜃𝑖−𝑏𝑗))
,                                               (1) 

where 𝜃𝑖 is the proficiency parameter for examinee i, 𝑎𝑗 and 𝑏𝑗 are the discrimination and 

difficulty parameters of item j, respectively. When the discrimination parameter is fixed at a 

certain value for all items, the two-parameter model then becomes the one-parameter model. 

When the a-parameter is set at 1 for all items, one obtains the Rasch model. Another item 
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feature, namely the pseudo-guessing parameter, reflects the non-zero probability that a student 

with extremely minimal proficiency could still answer the item correctly, can be added to 

equation (1) to make up the three-parameter model. To accommodate tests with polytomous 

items, equation (1) and its generalized version for the three-parameter model can be extended 

naturally to be the link functions for each response category. Since the focus of this dissertation 

is on formative assessments of dichotomous or dichotomized items, the two-parameter model for 

these items and its multidimensional model are discussed in detail. More information on other 

models can be found in Hambleton, Swaminathan, and Rogers (1989), Lord and Novick (1980), 

and Reckase (2009).  

When proficiency is theorized to be multidimensional, equation (1) can be extended in 

several ways to parameterize the probability of endorsing an item measuring a multidimensional 

construct. By such expansions, one obtains multidimensional IRT (MIRT) (Reckase, 2009). 

Under MIRT framework, there are multiple ways to set up item response functions. These 

functions can reflect the compensatory nature of the latent variables in which students’ higher 

proficiency in one dimension can compensate for their low one in the other dimension. On the 

other end, MIRT models can be non-compensatory in the sense that students need to have high 

proficiency in all the dimensions to possess higher probability to answer items correctly. Items in 

MIRT models can be written to measure and then loaded on only one or multiple dimensions.  In 

this study, the MIRT-SS model in which there are two dimensions representing two progressions 

and each item is written to measure only one dimension (i.e., simple structure) is considered. In 

this model, each dimension represents one unidimensional construct defined by each learning 

progression. The mathematical form for the conditional probability of examinee i of proficiency 

𝜃𝑙𝑖 for learning progression l, (l=1 or 2) to answer correctly item j measuring this progression is: 
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𝑃(𝑋𝑗 = 1|𝜃𝑙𝑖) =
1

1 + exp (−𝑎𝑗(𝜃𝑙𝑖 − 𝑏𝑗))
                                             (2) 

The notations for item parameters in this model are the same as in the case of the unidimensional 

two-parameter model described in equation (1) previously. It is also noted that the probability of 

examinee i to endorse item j depends only on her/his proficiency parameter of the progression 

that this item was written to measure. Thus, the MIRT-SS is a non-compensatory model. In the 

language of structural equation modeling (SEM), the model can be described by the path 

diagram in Figure 2.2.1 by the end of this chapter. In this figure, n1 items from item 1.1 through 

1.n1 measure the first learning progression. Similarly, n2 items from item 2.1 to 2.n2  assess the 

second progression.  

In the MIRT-SS model, items are assumed to differentiate students into one of two 

adjacent levels within each progression. For example, if the progressions were described to have 

three levels, namely level-1, level-2, and level-3 ordered from low to high, there will be two item 

groups, level 1-2, and level 2-3 to be written to help identify student learning levels. Those who 

did not perform well on the set of level 1-2 will likely be in level-1. On the other hand, those 

who show good work on those items tend to be in level-2 or 3 depending on their performance 

on the level 2-3 items. In this MIRT-SS, the dimensions representing two progressions are 

theorized to be correlated and each item is associated with only one dimension.  

2.2.1.2. Applications of IRT models in assessing learning progressions. 

Up to this moment, there were at least a dozen studies that have adopted various IRT 

models or their multidimensional versions to analyze learning progression data (e.g., Black, 

Wilson, & Yao, 2011; Chen, 2012; Chen et al., 2017; Kizil, 2015; Neumann et al., 2013; Paik, 

Song, Kim, & Ha, 2017; Pham et al., 2016; Shin et al., 2017).  To assess the first claim of the 

theories, the difficulty parameter estimates for dichotomous items and category thresholds for 
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polytomous items were used to evaluate the ordering of learning levels. The claim of level 

ordering is plausible if items measuring lower levels tend to have lower difficulty estimates 

(Neumann et al., 2013). Pham et al. (2016) observed this pattern for two out of three 

progressions that the study investigated using a set of MIRT models. If polytomously scored 

items are used, and each score point is associated with a learning level, the threshold parameters 

of lower to higher categories are expected to increase from low to high. A study by Chen (2012) 

that investigated the usefulness of several types of polytomous items in locating student levels 

indicated that the thresholds of items from one type were ordered as one would expect. That 

study did reveal that the thresholds of a good number of their constructed response items were 

ordered and seemed to be useful in classify students into learning levels as one would expect. 

However, these findings did not hold true for most of their ordered multiple-choice and multiple 

true false items. Later on, Kizil (2015) reached similar conclusions for the usefulness of the 

ordered multiple-choice items of learning progression assessments in their study. 

 When the Rasch model was adopted to evaluate the ordering of learning levels using item 

locations, Wright maps were implemented to provide a visualization of item difficulty estimates 

and student proficiency on the same scale (e.g., Black et al., 2013). In measurement terminology, 

Wright maps can be considered as empirical representations of construct maps which elaborate 

the construct that assessments are developed to measure (Black et al., 2013). In the context of 

intertwined learning progressions, a construct map can be drawn for each progression, thus a 

Wright map can be created to visualize item and examinee locations within each progression. 

According to Black et al. (2013), Wright maps have some advantages in the context of formative 

assessments using learning progressions. First, they are a useful tool to present the assessment 

information in a way that is easy for teachers and students to interpret. In fact, relying on the 
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locations of items and students in the maps, teachers can come up with adequate feedback 

regarding the current status of student learning and what s/he can work on in the next step to 

improve her/his knowledge and skills. Similarly, students can use the maps to provide feedback 

to their peers. Second, for a learning progression theory that involves multiple progressions, one 

construct map can be described to represent each progression. In this case, Wright maps for all 

the construct maps can be plotted side by side in a graph as illustrated in Black et al. (2012). 

Such graphical representation is believed to help teachers and students make better sense of 

student learning in reference to the theoretical constructs underlying the learning progression 

theory. Third, if data are collected at multiple time points, Wright maps drawn from the data 

enables us to describe student learning growth over time. For example, a Wright map created at 

the beginning of a semester indicates that a student is at learning level-2 of a progression. S/he 

shows a growth of two learning levels on the same progression by the end of the semester if 

her/his location in the Wright map drawn at the later time signifies that s/he has moved up to 

level-4. If longitudinal data of multiple construct maps are available, a graph of multiple panels 

in which each panel is a single Wright map can be created at each time point. Then, the series of 

graphs over all time points carries information on student learning growth in the criterion-

referenced sense since the growth reflects student learning advancement regarding the domain of 

content described by the construct maps. In what follows, some studies will be discussed that 

used IRT to investigate the second claim of level links of learning progression theories.  

To address the second claim, IRT models and its multidimensional versions were also 

likely to be useful in assessing the co-occurrence of levels of learning progressions theories. In 

effect, Pham et al. (2016) fit a two-tier MIRT model (Cai, 2010) to estimate the correlation of the 

latent variables underlying two progressions. In this study, each item was written to measure 
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only one progression and some of them shared common stimuli, thus were in testlets. Given the 

testlet structure, a two-tier MIRT model that specifies latent constructs defined by testlets of 

items as specific dimensions, and latent variables representing the progressions as primary 

dimensions was in use. The model allowed the authors to estimate the correlation between the 

primary dimensions underlying the two progressions. Then, they used the correlation along with 

student proficiency estimates as well as cut scores to examine the plausibility of 10 level 

combinations of LF and PR. They computed model-implied probabilities and observed 

proportions for each combination and these statistics enabled them to support eight of the 

combinations. Another example of using MIRT to evaluate the second claim is the study by Shin 

et al (2017). In this work, the authors introduced a new parameterization by adding discontinuity 

parameters into the popular two-dimensional Rasch model to create change-point structured 

construct model (SCM-C). The purpose of the new parameter was to depict the hypothesized 

links between learning levels of complicated learning progression constructs. The study 

illustrated that the model was recoverable and obtained improved model-data fit for their 

empirical data. It was concluded that the change-point model was useful in supporting or 

disapproving the hypothesized level links using data of complicated learning progressions. It is 

noted that most of the dozen studies using IRT to evaluate learning progressions reviewed in this 

study focused on examining the first claim of level ordering. Evaluating the second claim of 

level links across progressions seemed to be more challenging and require more investigations. 

This challenge to validate level links was recognized and discussed at length in Wilson (2012). 

One disadvantage of IRT models in assessing learning progressions might be that they require 

cut scores to classify students into the levels, and thus to validate level links. In this sense, CDMs 
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might overcome this drawback by using a probabilistic framework to place examinees into latent 

classes defined by learning levels.    

2.2.2. Cognitive Diagnosis Models 

As defined earlier, learning progressions are theories that describe students’ knowledge 

and skills of a certain content area in an increasing order from simpler to more sophisticated. The 

increasing sophistication of learning progressions are usually phrased in descriptive learning 

levels. This definition is supported by some prior studies on learning that suggested it might be 

reasonable to characterize student learning as discrete classes (Pellegrino, Chudowsky, & Glaser, 

2001). Under this view, it is recommended to fit CDMs to the learning progression data to 

inspect how well the items classify students into the postulated levels. Those models enable us to 

estimate the probability that a student is in a latent class given his/her performance on a set of 

items. CDM framework is a rich family of many specific models. Those models share the 

common goal of CDMs that classifies students into discrete latent classes. However, they vary by 

the number of parameters and the ways restrictions are set up among the parameters using Q-

matrices (Tatsuoka, 1985). In this framework, a Q-matrix for an assessment form specifies the 

interaction between items and psychological attributes measured by the assessment. In this 

review, focus is on discussing the DINA model and its higher-order version due to their 

popularity and applicability to the context of evaluating learning progression theories.  

 To set up the mathematical form of a general CDM, Q-matrices that depict the interaction 

between items and attributes is needed. For an assessment of I items measuring A attributes, Q-

matrices are of size 𝐼 × 𝐴  (Tatsuoka, 1985). The entry of row i, and column a of those matrices 

is zero if item i was not purported to measure attribute a, and becomes one, otherwise.  Relying 

on the Q-matrix, various CDMs can be introduced to classify examinees into 𝐶 = 2𝐴 possible 
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latent classes. Each class will be denoted by a series of A elements of 0 and 1. The number 0 in 

the ath position indicates that students in that class do not master the ath attribute. Whereas, a 

value of 1 in that position signifies that those students show mastery of attribute a. For example, 

a student classified in a latent class encoded by [1010] masters the first and third attributes and 

did not master the second and the fourth ones. 

Among CDMs, DINA might be the most widely used one for its simplicity and 

interpretability (de la Torre & Douglas, 2004). For DINA, it is required that students must master 

all the attributes elicited by an item to experience higher probability of answering that item 

correctly. Mathematically, the probability of student j in latent class c to endorse item i is: 

𝑃𝑖𝑐(𝑥𝑖𝑗 = 1|𝑐) = (1 − 𝑠𝑖)
𝜂𝑖𝑗 ∗ 𝑔

𝑖

1−𝜂𝑖𝑗 ,                                                (3) 

where 𝑃𝑖𝑐(𝑥𝑖𝑗 = 1|𝑐) is the conditional probability of students in latent class c to endorse the 

item;  𝑠𝑖, 𝑔𝑖 are slipping and guessing parameters of the item, respectively. And, 𝜂𝑖𝑗   is 1 if 

student j masters all the attributes required by item i, and 0, otherwise. In the language of Q-

matrix, 𝜂𝑖𝑗 = 1  if the student shows mastery of all attributes that have 1 in the cells of the row 

associated to item i. On the one hand, the slipping parameter reflects the probability that a 

student with mastery of all the attributes required for item i, can still answer it incorrectly. On the 

other hand, the guessing parameter represents the chance for those who do not master all the 

attributes but can still endorse it. 

To estimate the latent class of a respondent j of response vector 𝒙𝒋 = (𝑥𝑖𝑗) for I items, 

one relies on the Bayes’ theorem to compute the probability 𝛼𝑗𝑐 of the person j to be in class c by 

the following formulation: 

𝛼𝑗𝑐 = 𝑃(𝑐|𝒙𝒋) =
𝑃(𝒙𝒋 | 𝑐) ∗ 𝑃(𝑐)

𝑃(𝒙𝒋)
,                                                (4)  
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where: 

𝑃(𝒙𝒋|𝑐) = ∏ 𝑃
𝑖𝑐

𝑥𝑖𝑗 ∗ (1 − 𝑃𝑖𝑐)1−𝑥𝑖𝑗𝐼
𝑖=1 ,                                          (5) 

𝑃(𝒙𝒋) = 𝑃(𝑿𝒋 = 𝒙𝒋) = ∑ 𝜔𝑐 ∗ 𝑃(𝒙𝒋|𝑐)

𝐶

𝑐=1

,                                             (6) 

and, 𝑃(𝑐) = 𝜔𝑐 is the proportion of the students in latent class c (Rupp, Templin, & Henson, 

2010).  Using equation (4), one could estimate the probabilities for each examinee being in each 

latent class. Based on the estimates, one could directly classify respondents into the latent classes 

associated with the three learning levels. CDMs have some advantages over MIRT in terms of 

the reliability for the classification and they require fewer items to reach an adequate level of 

reliability (Templin & Bradshaw, 2013). 

 In many applications, CDMs were fit to response data of items measuring some attributes 

within a broadly-defined construct that can be considered as continuous such as mathematic 

skills or reading proficiency (e.g., Mislevy, 1996; Tatsuoka, 1995). In these cases, it is 

reasonable to assume there is a continuous latent variable that underlies the attributes. De la 

Torre and Douglas (2004) proposed higher-order CDM framework to accommodate the 

assumption of a continuous latent variable that dictates the joint distribution of latent attributes. 

In this study, the continuous latent variable for each progression will be unidimensional to be in 

line with the MIRT-SS chosen to analyze the data.  In general, a multidimensional continuous 

variable can be specified. In this higher-order model, a continuous latent variable θ is introduced 

to manipulate the joint distribution of latent attributes through a logistic regression model: 

𝑃(𝑎|𝜃𝑗) =
1

1+exp(−(𝜆0𝑎+𝜆1𝑎∗𝜃𝑗))
,                                                (7) 

where  𝑃(𝑎|𝜃𝑗) is the conditional probability for student j of continuous proficiency 𝜃𝑗  to master 

attribute a, 𝜆0𝑎 and 𝜆1𝑎  are the intercept and slope for attribute a, respectively. Equation (7) 
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looks very similar to a unidimensional two-parameter IRT model in equation (1) in the sense that 

one can imply relative locations for different attributes from it. In fact, equation (7) can be 

rewritten as a two-parameter model in which the difficulty parameter associated with the 

attribute a becomes 
−𝜆0𝑎

𝜆1𝑎
.  These location parameters can reflect a hierarchical order for the 

attributes. One attribute will be considered more cognitively demanding than another if its 

location is larger than the other. This feature of the higher-order model seems very relevant to 

evaluate the ordering of learning levels of learning progression theories. Attributes defined by 

higher levels should have larger location parameters than those measuring lower levels.  

 Using equation (7), one can parameterize the probability of examinee j of a given 

proficiency of 𝜃𝑗  to be in a latent class c defined by the attributes. Let 𝒄 = (𝑎𝑘)𝑘=1
𝐴  be the 

cognitive profile. Then, one has: 

𝑃(𝒄|𝜃𝑗) = ∏ 𝑃(𝑎𝑘|𝜃𝑗)

𝐴

𝑘=1

.                                                       (8) 

Introducing a continuous latent variable to manipulate the relationship among attributes defined 

by different levels of learning progressions has several advantages. First, it is a reasonable 

modeling framework for the attributes since they are theorized to be arranged in an increasing 

order of cognitive complexity. Second, the model can also offer a statistical framework to carry 

out an idea of creating two score scales for assessments of learning progressions (Briggs & Peck, 

2015). The continuous proficiency estimate can serve as the overall score of students for the 

broadly-defined construct that encompasses all the progressions. On a more granular level of 

information, the cognitive profile of each student can be used as the growth scale in reference to 

how the learning progressions define student learning.  
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2.2.3. Applications of CDMs in evaluating learning progressions 

As mentioned earlier, some recent studies used several CDMs to analyze learning 

progression data (e.g., Chen et al., 2017; Kizil, 2015; Pham et al., 2017). To address the claim 

about the ordering of learning levels, Chen et al. (2017) adopted Rule Space Model (RSM) 

(Tatsuoka, 1983), a member of the CDM family to evaluate and revise a learning progression of 

thermo-chemistry in high school science in China. These authors also fit IRT models to their data 

and used evidence from both IRT and RSM to test and revise their theory. Their study revealed 

that RSM can provide more detailed information about the possible learning paths within the 

progression than what the IRT models can offer. An interesting finding of the study was that they 

can use both IRT and RSM results to propose a revised version of the theory. In the revised 

theory, they can specify the cut scores to place students into learning levels on the continuous 

IRT scale and map cognitive profiles defined by the attributes into each level. Moreover, RSM 

enabled the authors to identify possible learning paths from one profile in a lower level to 

another profile in a higher one. In short, the study of Chen et al. (2017) opened a scenario in 

which one can use learning progression data to build two scales: one continuous and one discrete 

as suggested by Briggs and Peck (2015).  

Another application of CDMs for assessing the ordering of levels in learning progression 

can be found in Kizil (2015). In this dissertation study, the author fit both IRT and CDMs to 

learning progression data collected from ordered multiple-choice items (OMC) that were 

developed to possess response options to reflect learning levels. For example, to measure a 

learning progression of three levels, the OMC will have three response options recoding 

knowledge and skills of level-1 through -3, respectively (Briggs, Alonzo, Schwab, & Wilson, 

2006). Under the IRT framework, the partial credit model (IRT-PCM) was used (Masters, 1982). 
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From the CDM family, the author chose attribute hierarchy (Gierl, Leighton, & Hunka, 2006) 

and generalized diagnostic models (GDM) (von Davier, 2005). Among the three selected 

models, the last one tended to provide the most adequate information of model fit. This was not 

the case for the first two models which the author suggested that they might not be useful to 

evaluate the theory. On the positive side, the use of the two models under the CDM framework 

allowed the author to classify students into learning levels. Nonetheless, Kizil (2015) concluded 

that none of the models seemed to be dominantly useful in analyzing the learning progression 

data. The CDMs were likely to outperform the IRT one in terms of level classification and 

model-data fit. However, they provided a good amount of statistical evidence that was not 

consistent with what the theory would inform. For instance, Kizil (2015) reported that the GDM 

seemed to fit the best with the empirical data the author used in the study. However, the model 

classified more than half of the students into a cognitive profile that was inconsistent with the 

theoretical hierarchy of the levels of their learning progression theory. The author then discussed 

that this inconsistency might be due to the features and quality of ordered multiple-choice items 

used in their study.  

To address the second claim of level-links among multiple progressions, some CDMs can 

be helpful. Indeed, Pham et al. (2017) fit DINA model to data of the first three learning levels of 

LF and PR described earlier in this Chapter. The model was fit to data of each progression to 

classify students into level-1, level-2 or level-3. Then, the classification of students was collected 

for both progressions. The percentages of students in each of the nine combinations of levels of 

LF and PR were tabulated and used to evaluate the plausibility of what the theorists had 

predicted about the co-occurrence of the levels. Using the model, all the five theorized 

combinations for the first three learning levels of each progression were supported. One to 33 
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percent of the students were observed in the combinations. The results from the DINA model 

also showed that all the nine pairs of levels across the two progressions were possible.  

In summary, existing studies of fitting some IRT and CDMs to learning progression data 

conveyed mixed message about the usefulness of those models in evaluating the theories 

underlying the progressions. None of the reviewed studies showed evidence that supported every 

aspect of their respected theories. On the positive side, studies such as those of Chen (2012), 

Chen et al. (2017), and Pham et al. (2016) seemed to support the use of CDMs and IRT models 

in this context. Especially, the last two works provided evidence from fitting the models that 

support a good portion of the theories. On the less optimistic side, Kizil (2015) reported many 

challenges related to inadequate model-data fit for an IRT model, and unexpected results for 

CDMs when the author fit those models into his response data. A common theme among those 

studies was that they all suggested more research is needed to shed light on the usefulness of the 

models in supporting the development and evaluation of learning progression assessments. One 

way to investigate the comparative effectives of the models would be to conduct simulation 

studies in which true parameters are known and one could evaluate the models based on how 

well they recover the true values. To guide the simulation, I will review the mathematical 

relationship between IRT and CDMs in the next section. 

2.3. The Relationship between IRT and CDMs 

 The utility of continuous IRT models for educational assessment data has been well-

established and recognized by researchers and practitioners (Haertel, 1990; Hambleton & Jones, 

1993). Meanwhile, CDMs assuming discrete latent variables might be more suitable for finer-

grained analyses of learning strengths and weaknesses of students in a certain domain of content 

(Rupp & Templin, 2008). The two modeling frameworks are similar in some respects and yet 
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different in others. On the one hand, both are probabilistic and confirmatory (Rupp & Templin, 

2008). On the other hand, they rely on slightly different assumptions of the underlying latent 

variables. IRT models assume the continuity of the proficiency scale. Theoretically, proficiency 

estimates can be any real value from negative to positive infinity. CDMs, on the other hand, 

condition the probability of answering correctly an item on a finite set of latent profiles of 

examinees. Regardless of the differences in the assumption for the latent variables, the two 

models seem to be related. Indeed, Haertel (1990) stated that IRT and CDMs can be statistically 

equivalent in some cases. Indeed, parameter estimates for a two-parameter normal ogive IRT 

model would be derived from the ones of a two-latent class model if marginal maximum 

likelihood estimation with two quadrature points is used (Haertel, 1990). This relationship could 

also be seen for latent class models of more than two classes and multidimensional continuous 

IRT models. In item estimation, it was noted that using only a few quadrature points, which 

could closely approximate the integral form of the normal ogive model (Bock & Aikin, 1981), 

might be good enough to estimate the model parameters (Haertel, 1990). In addition, logistic and 

normal ogive models can be made almost identical by a simple scaling adjustment (Lord & 

Novick, 1968). Those sources of evidence support that IRT and CDMs might be in a close 

relationship under certain settings. Haertel (1990) confirmed this view by showing empirical 

evidence that both the normal ogive and the latent class models fit equally well to a set of 

empirical data.  Equally important, in a comprehensive review of CDMs, Rupp and Templin 

(2008) stated that CDMs, being probabilistic models using categorical latent variables “can be 

used to approximate” their continuous IRT counterparts (p. 231). 

On an empirical basis, Lee, de la Torre and Park (2012) revealed the relationship among 

parameter estimations of some popular models under CTT, IRT and CDM frameworks by fitting 
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them to data of a state test of Mathematics. The authors chose three-parameter logistic model 

(3PL) as the IRT model, and DINA for the CDM.  In the study, they estimated two CTT 

parameters including the percent correct (p+), and the corrected point-biserial (d), three 

parameters of the 3PL, and the guessing (g), true positive parameter (1-s), and DINA-based 

discrimination index (δ=1-s-g) of the DINA model. Then, they computed the correlation 

between these indices for the test items. Through the computation, the authors found that the 

percent correct of CTT, and difficulty index of 3PL were highly correlated with the guessing and 

true positive estimates of DINA. The absolute values of those correlation coefficients varied 

from .87 to .94. However, the correlation between the 3PL discrimination parameter estimates, 

the corrected point-biserial, and DINA-based discrimination index was as low as .35 and .25, 

respectively. In the conclusion of the paper, Lee et al. (2012) acknowledged that their findings 

were based on empirical data of a particular assessment and should be interpreted with care. 

They went on to suggest that simulation studies are needed to shed light on the relationship 

among the models in different assessment conditions.  

In short, IRT models and CDMs might appear different on the surface when one narrowly 

focuses on the assumption of their underlying latent variables. When one examines 

parameterization and parameter estimation closely, and empirical investigations are taken, 

greater similarity becomes apparent. The close relationship between IRT and CDMs when 

simple estimation methods are in use might not be practical in standard routines one currently 

adopts to estimate model parameters. Thus, studies how the IRT and CDMs models are similar 

or different in certain applications are needed to guide researchers and practitioners in using 

those models.  
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2.4. Summary of the Psychometric Models 

 Given the novelty of the learning progression concept, the literature review revealed 

about a dozen empirical studies that adopted IRT and/or CDMs to evaluate learning progression 

theories. Table 2.4.1 displays the core features of those studies which include (i) general 

information of the learning progressions, (ii) statistical models, (iii) key findings. The review of 

the studies conveyed mixed messages about the theories under consideration and the models in 

use. None of the studies, with the exceptions of Black et al. (2017), and Pham et al. (2017), could 

support all the claims of the theories. In one study, Chen (2012) found positive evidence for one 

item type but not the other two.  Kizil (2015) suggested that one model might be more useful 

than the other. Neumann et al. (2012) reported that the general ordering of learning levels in their 

study was supported. However, their results did not allow them to make conclusive statements 

about the exact number of learning levels for their progressions. By far, Chen et al. (2017) and 

Pham et al. (2017) seemed to be most positive about the effectiveness of both the IRT and CDMs 

that they used. These mixed findings seemed to be in line with the current perspectives of some 

leading scholars in the field about the challenges one has encountered in assessing learning 

progression theories (Confrey et al., 2015; Haertel et al., 2012, Wilson, 2012). 

As noted earlier, researchers in mathematics education used the term learning trajectories 

in place of learning progression. Traditionally, those researchers have been using the CTT model 

to evaluate their learning trajectories (e.g., Confrey et al., 2017; Wylie et al., 2014). More 

recently, some of the leading scholars in this field started to fit IRT models to their data to 

evaluate their theories and build measurement scales (Confrey et al., 2017). It is seen that their 

interest in using CDMs in their works is also on the raise. According to Confrey et al. (2017), 
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they are planning to fit some CDMs to their empirical data of learning trajectories as a next step 

for their study.  

To conclude the section on psychometric models to analyze learning progression data, in 

the following, some drawbacks and advantages of MIRT-SS, DINA and HO-DINA over the 

Rasch model that is the model that allow us to create Wright maps will be discussed next. The 

purpose of the discussion is not to support the use of either one of the models or the other. It is 

believed that the decision to select models should be hinged on several factors which include, but 

are not limited to, (i) the purpose of the assessment, (ii) the purpose of the analysis, (iii) the 

nature of the data, and (iv) the availability of resources. In the context of learning progression 

assessments, using more than one model to analyze data to evaluate learning progression theories 

or build measurement scales for the assessments seemed to be reasonable (e.g., Chen et al., 2017; 

Pham et al., 2017). 

For the Rasch model, the advantages of it and its multidimensional version over MIRT-

SS, DINA and HO-DINA under the learning progression context could be seen through several 

perspectives. First, the Rasch model is more popular in educational assessment than the former 

ones. It was first introduced in 1960 by Georg Rasch (Rasch, 1960). Then, it was advocated to be 

adopted in educational measurement and quantitative psychology (e.g., Wilson, 2005; Wright & 

Douglas, 1975). Given the simplicity and popularity of the Rasch model, this model may be 

more familiar to a wider array of educational stakeholders. Thus, the use of Rasch model to 

evaluate and build scales for learning progression assessments might be more convenient and 

friendlier to researchers and users. Second, as explained previously, the Rasch model enables us 

to create Wright maps to put item location and student proficiency into the same scale visually. 

Black et al. (2012) explained that teachers and students can rely on the maps for learning 
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progression constructs to make statistical inference of student learning for students at a given 

level of proficiency. For instance, it can be inferred from a Wright map that half of all the 

students of proficiency at the location of a dichotomous item will answer it correctly and the 

other half will choose the wrong answer. In addition, if a student whose proficiency is higher 

than an item location, s/he is more likely to answer that item correctly, thus they will be located 

in learning levels that are not lower than the one that the item was developed to measure. Third, 

from a practical point of view, the Rasch model, and its development to accommodate 

polytomous data can be estimated by many widely-used software programs.  

For the advantages of the Rasch model to be realized, it is essential that the assumptions 

underlying the model are met and the model fits well with the data. Using the Rasch model for 

one construct map that represents one progression, one assumes that student learning status of 

this construct is continuous and unidimensional. This assumption implies that students in a 

higher learning levels are obviously proficient in the lower levels. However, previous 

investigations of learning hierarchies revealed that instructional delay or random forgetting can 

cause the phenomenon in which students can master superordinate elements but fail to perform 

well on the lower ones in the hierarchies (White, 1973). In recent years, some leading scholars 

also expressed their concerns about the linearity of learning progressions (e.g., Confrey et al., 

2017; Kingston, Broaddus, & Lao, 2015; Lobato & Walters, 2017). If the assumption that a 

student who masters a higher level is automatically proficient in all the levels lower than that one 

is not always viable for all students, the use of the Rasch model would superimpose a linear 

structure of learning into a nonlinear construct. In terms of model-data fit, the Rasch model is 

less likely to fit empirical data as well as its 2PL or 3PL counterparts since it restricts each item 

to possess only one parameter (e.g., Hambleton & Jones, 1993; Sinharay & Haberman, 2014). 
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For MIRT-SS, DINO, and HO-DINA, the three models selected in this study have a few 

advantages over the Rasch model in the context of analyzing data to validate learning 

progression theories and build assessments based on these theories. In the first place, the baseline 

model of MIRT-SS is a 2PL unidimensional model which allows item discrimination parameters 

to take any positive value. This modeling setting is expected to result in better model-data fit 

than the Rasch model since it freely estimates the discrimination parameter. In one of our 

previous investigation of the empirical data used in this dissertation, a two-tier 2PL MIRT model 

(Cai, 2010) was fit to the data. It was found that most of the discrimination parameter estimates 

of LF and PR items ranged from .10 to 5. The mean and standard deviation for these 

discrimination estimates were 1.60 and .64 for LF, respectively. These statistics for PR were 

higher at 1.86 and .94 (Pham et al., 2016). As a result, if the discrimination parameter of the 

items in this study is constrained to 1, it might introduce error to the estimates of item difficulties 

which are essential in evaluating learning progression theories. Thus, 2PL nature of MIRT-SS 

warrants better model-data fit than what the multidimensional Rasch model could bring about. It 

should also be noted that an item-person map that is similar to the Wright map can be 

constructed for any unidimensional IRT model. Given that the baseline structure of MIRT-SS is 

an 2PL unidimensional model for each progression, it is possible to build a construct map that 

displays examinees’ proficiency and items’ difficulty on the same scale as the case of Wright 

map for the Rasch model.  

In the second place, DINA does not assume the unidimensionality of the assessment data. 

By loosening this strong assumption out of the modeling framework, DINA can fit better with 

empirical data in which the unidimensional assumption is severely violated as what we can 

observed in the dimensional investigation of learning progression data by Fu, Chung and Wise 
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(2013) and Kizil (2015). Equally important, fitting DINA to learning progression data using 

appropriate Q-matrix enables us to place students into cognitive profiles defined by attributes 

associated with learning levels as described previously in this chapter. Each profile is coded as a 

set of 0 and 1 in which 0 indicates non-mastery and 1 implies mastery. The coding of the profiles 

supports us to make fine-grained inference of student learning status. For example, for a learning 

progression of three levels, two item groups to distinguish students into level-1 or higher, and 

level-3 or lower, respectively, can be used to define two attributes. Students classified in profile 

[01] are those who master higher levels (i.e., level-2 and 3), but might have forgotten some 

knowledge and skills required to perform well on level-1. In comparison to the Rasch model or 

MIRT-SS, the output of fitting DINA to learning progression data provides more diagnostic 

information regarding student performance on each of the specific learning levels. In other 

words, classification of students into learning profiles by DINA is more informative and granular 

than the single proficiency score by the continuous IRT models. DINA can also accommodate 

the nonlinearity of learning phenomenon in which students can forget prior knowledge or skills, 

thus master higher learning levels but perform less well on the lower ones. In the third place, 

HO-DINA inherits the advantage of DINA that both CDMs can classify students into learning 

profiles without imposing that students must not forget what they have learned previously. 

Additionally, through making an extra assumption of a continuous latent variable underlying the 

attributes measured by assessments, HO-DINA supplies us with a tool set of using attribute 

locations to examine the hierarchy of learning levels. More importantly, HO-DINA can offer 

each student with two measures: (i) the continuous proficiency as in the case of IRT models, and 

(ii) discrete cognitive profiles associated with the learning levels. Those two measures seem to 

be useful to build two scales that reflect (i) student proficiency in a broad domain of content, and 
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(ii) student learning growth in reference to a solid theory of learning progressions defined within 

the domain, respectively as suggested by Briggs and Peck (2015). 

Finally, DINA and HO-DINA can be more efficient in building formative assessments 

based on learning progression theories. In effect, those CDMs usually require a smaller number 

of items to reach an adequate level of measurement reliability than what a typical IRT model 

would need to obtain the same amount of reliability (Templin & Bradshaw, 2013). Given the 

reality that formative assessments are often shorter in time and contain much fewer items, DINA 

and HO-DINA as well as other potential CDMs seem to be good choices to calibrate data of 

formative assessments based on learning theories.  

In summary, each model reviewed and discussed in this chapter has advantages and 

drawbacks in the context of analyzing data to validate learning progression data or build 

assessment scales to measure student learning. To select which model should be used in each 

empirical analysis is not an easy decision to make. However, one can see that more recent studies 

to evaluate learning progressions tended to fit more than one model to the same data (e.g., Chen 

et al., 2017; Kizil, 2015; Pham et al., 2017). Given the increasing interest in using IRT and 

CDMs to investigate learning progressions/trajectories, this study is expected to shed some light 

on the effectiveness of those models in analyzing learning progression data. In the next chapter, 

detailed description of the methods that will be used to address the problem of how MIRT-SS, 

DINA, and HO-DINA are effective at evaluating learning progression theories will be provided.  
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2.5. Tables and Figures for Chapter 2 

Table 2.1.2. Ten Possible Combinations of LF and PR Learning Levels 

 

Level 
Combinations 

Level Description 

LF PR Functions & Linear Functions Proportional Reasoning 

1 1 (1,1) 
Separate numeric & spatial 

understandings 
Additive-intuitive understanding 

1 2 (1,2) 
Separate numeric & spatial 

understandings 

Start of quantitative 

understanding and working with 

single ratio 

2 2 (2,2) 
Understanding of mutual 

dependent change 

Start of quantitative 

understanding and working with 

single ratio 

2 3 (2,3) 
Understanding of mutual 

dependent change 

Begin to recognize multiplicative 

relationship 

3 3 (3,3) 
Understand and be able to 

work with linear functions 

Begin to recognize multiplicative 

relationship 

3 4 (3,4) 
Understand and be able to 

work with linear functions 

Understand correctly and work 

effectively with multiplicative 

relationship 

4 4 (4,4) 
Be able to compare constant 

change and linear functions 

Understand correctly and work 

effectively with multiplicative 

relationship 

4 5 (4,5) 
Be able to compare constant 

change and linear functions 

Be able to work with ratios of 

more than two quantities 

5 4 (5,4) Understand changing changes 

Understand correctly and work 

effectively with multiplicative 

relationship 

5 5 (5,5) Understand changing changes 
Be able to work with ratios of 

more than two quantities 
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Table 2.4.1. Summary of Existing Studies to Evaluate Learning Progressions 

 

Study 
Learning 

Progressions 
Data/ Models Key Findings 

Black et al. 

(2012) 

Science, Middle-

school 

MCQ, Open-

Ended, Rasch 

The items measuring the levels 

tended to be in correct order; 

Chen (2012) 
Science, Middle-

school 

Several item 

formats, 

IRT-PCM 

Thresholds of constructed 

response items were ordered; the 

model was useful. 

Chen et al., 

(2017) 

Chemistry, High 

school 

IRT-Rasch, CDM-

RSM 

The models were helpful in 

validating the theory and 

suggesting revisions. 

Kizil (2015) 
Science, High 

school 

Ordered Multiple-

choice Items 

IRT-PCM, CDMs 

Neither of the models was found 

to have adequate model-data fit. 

Neumann et al., 

(2012) 

Science, Middle-

school 
MCQ, Rasch 

The general ordering was 

supported, the number of levels 

was in doubt  

Paik et al., 

(2017) 
Science, K-12 

Open-Ended, 

Rasch-PCM 

The progressions were supported, 

two dimensional Rasch model fit 

well with the data. 

Pham et al. 

(2016) 

EV, LF and PR; 5 

levels; 

Middle-school 

Mathematics 

Dichotomous, 

Polytomous 

Items, 

MIRT 

The model was helpful to support 

two out of the three progressions. 

Pham et al. 

(2017) 
LF, PR; 3 levels 

Dichotomous, 

Polytomous Items 

IRT, CDM-DINA 

IRT and DINA seemed to be 

helpful in evaluating the theory. 

They provided both convergent 

and divergent evidence. 

Shin et al., 

(2017) 

Statistics & 

Measurement; 

Middle-school 

Dichotomous 

Items, 

SCM-C 

The model was proved to be 

helpful. The theoretical claims 

were supported.  

Steedle & 

Shavelson (2009) 

Physics; Middle-

high schools 

Ordered Multiple-

choice Items, 

CDM 

The study found it challenging to 

validate the theory. 
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Figure 2.2.1. Path diagram of the MIRT-SS 

 

  

𝜃2 
 

𝜃1 
 

Item 1.1 … Item 1.n1 Item 2.n2 Item 2.1 … 

ρ 
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CHAPTER III 

METHOD 

In the previous chapters, the topic of learning progressions was introduced, and work was 

reviewed that aimed to evaluate learning progression theories in the hope of building learning 

assessments based on the concept of learning progressions. In Chapter 1, the research purpose of 

examining the effectiveness of three psychometric models in analyzing learning progression data 

was stated. This chapter will discuss the method that was adopted to address the research 

problem for this dissertation. To investigate the effectiveness of the MIRT-SS, DINA, and HO-

DINA models in analyzing learning progression data, two simulation studies (Studies 1 and 2) 

and one empirical analysis (Study 3) will be described. The purpose of the simulation studies is 

to evaluate the effectiveness of the three models in examining the ordering of learning levels and 

the theory-informed links between the levels. The data generation was designed to mimic the key 

features of a real assessment system constructed to collect data to evaluate a theory of learning 

progressions. Those features include, but are not limited to, the number of items, item 

parameters, and the number of examinees. To investigate the sensitivity of the models in 

detecting fallible theories, two scenarios, one in which the learning progression theory is true and 

the other in which the theory is false, are considered. They will be called true and false scenarios, 

respectively. In the empirical analysis, the models will be fit to real data with the purpose of 

determining if the models provide the same results when the data do not follow nor satisfy the 

assumptions of a specific model. In the following sections, each study will be described in detail. 
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3.1. Study 1: MIRT-SS as the Generating Model 

In Study 1, it is assumed that learning progressions data fit perfectly with a two-

parameter MIRT-SS model of two continuous latent factors that represented two progressions. 

Items in each progression are loaded only on the factor that corresponds to the progression. As 

introduced earlier, data were generated for two scenarios. In the true one, an assumption is made 

that the learning progression theory holds in the sense that items measuring lower learning levels 

were notably easier than their counterparts of higher levels. In the second scenario, the   

assumption of the ordering of items measuring different levels was violated. It means that 

difficulty parameters of items measuring different learning levels were sampled from the same 

distribution. Once the data were generated in each scenario, all the three models were fit to the 

data, and parameter estimates were analyzed to shed light on how the use of the models enabled 

us to detect the ordering of levels and plausibility of level links.  

3.1.1. Data Generation  

In this study, MIRT-SS model was used to generate dichotomous data for two learning 

progressions (LP1 and LP2), each with three levels. learning progressions of three levels are 

chosen since these progressions are quite popular among the ones with more than two levels (Shin 

et al., 2017). Moreover, the progressions that were investigated in Study 3 also have three learning 

levels.  In each scenario, the data were generated under three fully crossed factors: number of items 

that discriminate between adjacent levels (10 and 15), sample size (500 and 1,000), and proficiency 

correlation between LP1 and LP2 (.6 and .9). The conditions for the number of items were selected 

to represent typical test lengths of 40 to 60 items per test form. Although the test lengths seem to 

be long for formative assessments, it is noted that the purpose of this study is to investigate the 

effectiveness of three models in analyzing data to evaluate theories of learning progressions, not 
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the actual applications of the assessments in a formative assessment. In this sense, 10 to 15 items 

per item group are typical numbers of an item bank developed to evaluate a learning progression 

theory (e.g., Pham et al., 2016). In addition, a power analysis conducted using G*Power (Faul, 

Erdfelder, Buchner, & Lang, 2009) revealed that approximately 14 items per group are needed to 

maintain a power of .80 to detect the item difficulty difference between two item groups of effect 

size of 1. Thus, two numbers of items per item groups of 10 and 15 were chosen to include the 

value of 14. The sample sizes of 500 and 1,000 represent small to large sample sizes reported in 

typical learning progression studies (e.g., Confrey et al., 2017; Pham et al., 2016; Shin et al., 2017). 

In the true scenario where the learning progression theory holds, the difficulty parameter 

values of items in item group 1 that supports us to locate students into levels-1 or -2 for both LP1 

and LP2 were sampled from a normal distribution with a mean of -.50 and standard deviation of 

1.00. For items measuring higher levels (i.e., level-2 and -3), their difficulty parameter values 

were sampled from a normal distribution with a mean of .50 and unit standard deviation. In the 

false scenario, item difficulty parameter values of all the items were sampled from a standard 

normal distribution (i.e., the mean of the item difficulty parameters did not differ between 

levels).  

In both scenarios, the discrimination parameter values were sampled from a log-normal 

distribution with the mean and standard deviation of the variable’s natural logarithm were μ=0, 

and σ = 0.25, respectively. In this distribution, more than 99% of the a-parameters varied from .5 

to 2. As for the student proficiency, the parameter values in both scenarios were sampled from 

bivariate distributions with a correlation of .6 or .9. In one extreme, the coefficient of .9 is to 

reflect the very high correlation of .89 between LF and PR found in our previous study (Pham et 

al., 2016). In the other extreme, a coefficient of .6 was chosen to represent a moderate correlation 
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between educational constructs measured by popular tests (Frey & Detterman, 2004). A 

correlation of .6 also seems to be realistic in the context of learning progressions. Indeed, in an 

empirical study of science learning progressions, Black et al. (2012) reported a correlation of .68 

between two constructs of melting and evaporation within their theory. Under this design, there 

were 16 conditions defined by two scenarios (i.e., true or false), two sample sizes (i.e., N=500, or 

1, 000), two numbers of items (i.e., I=10 or 15 per group), and two bivariate distributions of 

student proficiency (i.e., ρ=.6 or .9). For each condition, 100 replications were performed. R was 

used to simulate data (R Core Team, 2017). 

3.1.2. Parameter Estimation  

The MIRT-SS, DINA, and HO-DINA models were fit to the simulated data. To calibrate 

data by MIRT-SS, flexMIRT (Cai, 2015) was used to estimate item parameters and student 

proficiency scores for each progression. These estimates provided baseline information to examine 

the ordering of learning levels and the plausibility of level combinations for both progressions. 

For DINA and HO-DINA, the GDINA R-package was used (Ma & de la Torre, 2017) to 

fit the models to the data. In these calibrations, there were two attributes defined by two groups 

of items. The first one was the knowledge and skills defined by level-1 and -2 of the progression. 

The second attribute reflected the construct encapsulated by level-2 and -3. In the language of Q-

matrix, items in item group 1 measuring level-1 and -2 required only attribute-1 to be mastered 

by students so that the students can have a higher probability of endorsing the items. Whereas, 

items in item group 2 targeting level-2 and 3 required students to master attribute-2 to increase 

the probability of answering correctly those items. The Q-matrix for one learning progression in 

this study was of the form of Table 3.1.1 by the end of this chapter. In this table, item 1.1 to item 

1.n1-2  were from item group level 1, whereas, item 2.1 to item 2.n2-3  belonged to item group 2. In 
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this simulation study, n1-2  was equal to n2-3, and they were the number of items per item group. 

They can be 10 or 15 as described earlier. The first group contains items that were written to 

classify examinees into level-1 or -2. Meanwhile, items in the second group measured content 

designated by level-2 and -3. These items aimed to distinguish students into level-2 or -3. In the 

language of CDM, students who do not master attribute-1 are in learning level-1, master both 

attributes are in level-3. And, those who master the first attribute but not the second are in the 

middle level.  

In this setting, one has four latent classes or cognitive profiles defined by the mastery 

levels for the two attributes. As introduced previously, number 1 is used to indicate that a student 

masters an attribute, and number 0 is in use otherwise. Using these 0/1 indicators for two 

attributes, the four profiles can be coded as (i) [00], (ii) [01], (iii) [10], and (iv) [11]. In these 

notations, the first and second indexes correspond to the first and second attributes, respectively. 

For example, cognitive profile [10] implies that students in this class master the first attribute and 

don’t show mastery of the second one. Among the four possible profiles, three of them excluding 

that of [01] reflect the three learning levels of the progression. Indeed, class [00] represents 

level-1 since students in this class don’t show mastery for all the attributes, thus s/he should be in 

the lowest learning levels. Meanwhile, class [10] signifies level-2 because students in this profile 

master only the lower attribute that dictates level-1 and -2. The last one [11] corresponds tolevel-

3due to the fact that students in this profile master all the two attributes, thus they should be 

proficient on all the knowledge and skills defined by all the levels. Students classified in profile 

of [01] master only the higher attribute but not the lower one. If the levels are ordered according 

to the theory, thus the attributes are in hierarchical order from low to high, it is unlikely that we 

will observe a significant number of students in this profile. However, if instruction of 
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knowledge and skills of lower levels happened too far from the testing time, and that of the 

higher levels is more recent, students can show mastery of the higher levels but not the lower 

ones. Under the assumption that the theory of learning progressions holds, this profile of [01] 

does not represent any learning levels and would be considered inconsistent with the theory. 

To estimate DINA, a prior distribution for the four cognitive profiles defined by the two 

attributes needed to be specified. By default, GDINA employs a uniform joint distribution as the 

initial distribution for the profiles and this default prior was used to estimate the slipping and 

guessing item parameters as well as cognitive profiles of students. In the HO-DINA, a two-

parameter (2-PL) model was used to parameterize the joint distribution of the two attributes. The 

2-PL model was specified, since it was the parameterization used in MIRT-SS to simulate data 

for this study. By default, a standard normal distribution for the continuous latent variable of 

HO-DINA was used for the estimation. Outputs of fitting HO-DINA to the data included (i) 

intercepts and slopes of the two attributes, (ii) slipping and guessing parameters of each item, 

(iii) cognitive profiles for each student. These outputs were used to evaluate the effectiveness of 

HO-DINA in analyzing learning progression data. 

3.1.3. Data Analysis  

The item and examinee parameter estimates obtained from fitting each model to simulated 

data were used to investigate the ordering of learning levels and proportions of students in each 

combination of levels across two progressions. The following sections explain the details of 

analyzing the data using MIRT-SS, HO-DINA and DINA.  

To assess if learning levels within each progression were correctly ordered, two methods 

to analyze results of MIRT-SS calibrations, two methods by fitting HO-DINA to the simulated 

data, and one method for DINA were used. Starting with the MIRT model, two independent t-
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tests (one-tailed) were conducted to compare item difficulty estimates by MIRT-SS for items 

measuring Levels 2-3 and Levels 1-2 for two progressions. A conventional alpha level of .05 was 

chosen for this one t-test which was carried out for each progression. The one-tailed test was 

preferred over the two-tailed since the aim was rejecting the null hypothesis of incorrect order of 

learning levels in this study. Using conventional notations, our null hypothesis is 𝐻0: 𝜇𝛽1
≥  𝜇𝛽2

,  

and the alternative hypothesis becomes 𝐻1: 𝜇𝛽1
<  𝜇𝛽2

, where 𝛽1 and  𝛽2 represent item 

difficulty parameters of item groups 1 and 2, respectively. As reported in the literature review of 

this dissertation, this method of comparing item difficulty was widely used in existing studies to 

evaluate learning progressions using CTT or IRT (e.g., Chen et al., 2017; Neumann et al., 2013; 

Pham et al., 2016; Wylie et al., 2014). To collect more information about the usefulness of this 

model, a test of ordered-cuts or order-test for short in which the median difficulty estimates of 

items from two groups of items measuring Levels 1-2 and Levels 2-3 were compared was also 

considered. For the t-tests, the increasing order of the learning levels of the replication was 

supported if both tests for the progressions yielded significant results at a conventional alpha 

level of .05. For the order-test, the claim was supported if the medians of difficulty estimates of 

the items measuring lower levels were smaller than those of the higher ones. The order-test was 

investigated since one doesn’t usually have many items for some learning levels in empirical 

studies (e.g., Chen et al., 2017; Pham et al., 2017). Under this constrain, the t-test is likely to 

have low power to detect the significant difference, thus the order-test tends to be more helpful 

in this case.  

For CDMs, a framework was adopted introduced in Pham et al. (2017) to analyze the 

results of fitting HO-DINA and DINA to the data. For DINA and HO-DINA, student cognitive 

profiles for data sets whose calibrations converged normally are tabulated for each condition. As 
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a result of fitting those models to the data, one can locate each student in one of four profiles [00], 

[10], [11], and [01]. The first three latent classes associate with learning level-1, -2, and -3, 

respectively. Whereas, the last profile doesn’t correspond to any levels.  For each replication, the 

effectiveness of the DINA and HO-DINA models in recovering the true information used to 

simulate data was evaluated by two methods. The first one was the minimum test that compares 

the proportion of students in the inconsistent profile [01] with that of the remaining profiles 

consistent with the learning theory. This comparison can be done for both DINA and HO-DINA. 

If the proportion in the inconsistent profile was smaller than those of the three consistent levels, 

the minimum test yielded positive result, and it can be concluded the first claim of the theory about 

the ordering of the items can be supported. The second method under the CDM framework was 

the location test in which the locations of attribute-1 and 2 by HO-DINA were compared. If the 

location of attribute-1 was smaller than that of attribute-2, one can affirm that the ordering of the 

levels is supported. For more detail, the locations of attribute-1 and 2 for each replication was 

collected. Then, they were used to shed light on the plausible ordering of levels in each case. To 

account for sampling error, the percentages of replications whose test results were positive using 

each of the five methods were aggregated and reported as true positive and false positive rates for 

the true and false scenarios, respectively. These terms are used instead of power and type I error 

rates, since among the approaches, only the first is truly a hypothesis test. The remaining methods 

are simply binary classification tests, because the sampling distribution of the null hypothesis for 

these tests is not known. Given the nature of the theories in the true and the false scenarios, it is 

expected that the first claim is supported in the former and remains untenable in the latter. 

To address the second claim of the simulated learning progression theory, only cases in 

the true scenario, where the ordering of levels was supported statistically or the cuts were in 
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increasing order, were considered. The term partially-supported cases was used to indicate such 

eventualities. For these replications, due to the quite small number of items in each item group 

(i.e., 10 and 15), the median of difficulty estimates of items in item group 1 were used as the cut 

score to place students in level-1 or higher levels. Similarly, the median of item difficulty of 

items in item group 2 became the cut score for level-3 or lower levels. Then, the two cut scores 

were used to classify students into one of the three levels. If a student proficiency score was 

lower than the first cut, she/he was classified in level-1. If the score was higher than or equaled 

the second cut, her/his learning level was level-3. Lastly, when the score wasn’t less than the first 

cut and was smaller than the second one, she/he was in level-2. Once the learning level for each 

student in each progression was identified, observed proportions of students in each combination 

of levels across progressions were computed. The observed proportions of students in each 

combination of levels informed us about how likely each combination would be for progressions 

using each model. The observed proportions for each partially-supported case were stored. To 

aggregate these statistics, averages of the proportions for each combination over all the partially-

supported cases were computed for each simulation condition.   

As discussed in Chapter 2, using MIRT-SS one can classify simulated students into 

learning level-1, level-2, or level-3 for each progression. In addition to these levels, HO-DINA 

and DINA sometimes will place students in the inconsistent profile [01]. In this study, MIRT-SS 

was used to generate response data. As a result, the known parameters for this model were 

adopted to located students into true classification. This classification using true item and student 

parameters was then treated as the baseline information to evaluate the classification accuracy by 

the models. To be able to use MIRT-SS parameter estimates to classify students into learning 

levels, it is required at the least that the cut scores to distinguish levels are in a correct order. 
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Given that requirement, only the true scenario was considered and replications where the cuts for 

each progression were increasingly ordered were taken into consideration. 

To investigate the usefulness of the models in recovering the true classification into 

combinations of levels, classification accuracy rates for the models were averaged across 

correctly-ordered replications in each condition of the true scenario. In addition, cross-model 

classification consistency of classifying students into level combinations between pairs of 

models was also aggregated across these cases. The cross-model consistency rate for two models 

was computed as the proportion of students classified into the same combination of levels by the 

models. The higher the level of classification accuracy, the better the model was at recovering 

the true classification. In a similar vein, the higher the cross-model classification consistency, the 

more similar the level classifications by the models were. 

Table 3.1.3 at the end of this chapter synthesizes the simulation conditions and is the key 

to data analysis for this study. In summation, 16 conditions defined by two scenarios (i.e., the 

learning progression theory holds, and doesn’t hold), two sample sizes (N), two numbers of items 

(I) and two correlation coefficients (ρ) between the two dimensions (θ1, and θ2) were considered. 

After assessing the convergence of calibrations by MIRT-SS, HO-DINA and DINA, results from 

data of normal convergence were analyzed to shed light on how well the models recover the true 

information used to generate the data. In more detail, item difficulty under MIRT-SS framework, 

the percentages of students classified in the inconsistent profile of [01] for CDMs, and the 

attributes’ locations in the HO-DINA framework were used as inputs to evaluate the first claim 

about the ordering of learning levels. Regarding the second claim as to level combinations, the 

cross-model consistency of level classifications by DINA and HO-DINA in comparison to that 

by MIRT-SS was assessed to elucidate how well the CDMs recover the combinations of levels of 
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students using MIRT-SS. In summary, Study 1 assumes that MIRT-SS fits perfectly with 

learning progression data and the analysis based on this model correctly classifies students into 

learning levels. In this study, the sensitivity of the model under investigation in detecting the 

fallible ordering of levels can be examined using the true and false scenarios. In the next study, 

the generating model was switched to HO-DINA to investigate the performance of DINA and 

MIRT-SS on data by the higher-order model.  

3.2. Study 2: HO-DINA as the Generating Model 

Given that we never truly know which psychometric model fits perfectly with an 

empirical data set of learning progressions, the consideration of a generating model other than 

the MIRT-SS as in Study 1 is reasonable. Therefore, the HO-DINA model was used to simulate 

the data in Study 2. This model was chosen as the generating model for two reasons. First, it is 

noted that the underlying continuous latent variable in this model is likely to represent a 

construct that is broader than the specific content measured by items of CDM-based assessments 

(de la Torre & Douglas, 2004). For example, the items measuring multiple learning progressions 

are usually part of an item bank that assesses a broader content area defined by an educational 

curriculum. Second, it is observed that testing data of popular assessments measuring 

mathematics or reading proficiency can be considered unidimensional (e.g., Dorans & Lawrence, 

1987; Robin, Bejar, Liang, & Rijmen, 2016; Zwick, 1987). Thus, the knowledge and skills 

defined by LP1 and LP2 can be assumed to be a part of a larger construct that is essentially 

unidimentional. 

Similar to the previous investigation, two scenarios (i.e., true and false) were considered 

in Study 2. In the true scenario, locations of attribute-1 for both progressions were smaller than 

those of attribute-2. This setting reflects the ordering of learning levels in a true learning 
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progression theory. To investigate the sensitivity of the models in detecting the order of levels, 

the magnitude of the distance between locations of the attributes was purposefully varied. In the 

extreme difference conditions, the distance was two logits, whereas in the moderate difference 

conditions, a difference of .50 logits was used. The former value was a principled choice, since a 

prior study by Pham et al. (2017) found that the distance between attributes observed in six 

empirical data sets ranged from -.05 to .73 and the median of these distances was .28. The 

distance of 2 logits was then selected to distinguish from the largest empirical distance of .73. 

For the false scenario, the locations of two attributes were set to be the same, which signifies that 

the learning levels were not ordered in increasing cognitive demand for knowledge and skills. 

3.2.1. Data Generation  

A Q-matrix (shown in Table 3.1.1) was used to generate and calibrate data throughout 

simulation conditions in this study. Identical to Study 1, two conditions of sample sizes of N = 

500, and 1,000 and two total numbers of items (I = 40 and 60) were manipulated in each scenario. 

Being consistent with previous notations, let θ1 and θ2  represent the two continuous latent variables 

underlying the two learning progressions under investigation. Given a student of continuous scores 

(θ1, θ2) for LP1 and LP2, using equation (9) below, we can compute the probability for her/him to 

master an attribute (ak)k=1,2 of one of the progressions. To be more explicit, the following formula 

details the probabilistic relationship: 

𝑃(𝑎𝑘|𝜃𝑙) =
1

1 + exp (−(𝜆0𝑎𝑘
+ 𝜆1𝑎𝑘

∗ 𝜃𝑙))
,                                            (9) 

where ak =1, 2 represent the two attributes, and l=1,2 denote the two dimensions underlying the 

progressions.  To use HO-DINA to generate data for two progressions, several features of the 

models needed to be specified. They included (i) the bivariate distribution for (θ1, θ2), (ii) the 



 

58 

intercepts (𝜆0𝑎𝑘
)k=1,2,  and the slopes (𝜆1𝑎𝑘

)k=1,2  for the attributes, (iii) and the slipping (si)i=1…I   

and guessing parameters (gi)i=1…I  for the items. Similar to Study 1, two bivariate standard 

normal distributions of correlation coefficients of .6, and .9 were chosen for the continuous latent 

variables (θ1, θ2). To reflect the trustworthiness of the true and false learning progression theories 

in two scenarios, the intercepts and slopes of attributes as well as the slipping and guessing 

parameters of items were manipulated in each scenario. The following paragraphs will provide 

the details for the parameters in each case. 

In the true scenario, attribute-1 elicits lower cognitive demand than attribute-2. When the 

distance between attributes were extremely large, the intercept and slope of the former were all 

fixed at 1.7, and those of the latter were at -1.7 and 1.7, respectively. Those values were chosen 

so that the attributes can be put in the normal scale with D=1.7 as the scale that was in use in the 

original work by de la Torre and Douglas (2004). Under this setting, the location for attribute-1 

and 2 are -1 and 1, respectively. To reduce the distance to .5 logits, the slope was fixed at 1.7 for 

both attributes and change their intercepts to .425 for the first one and -.425 for the second one. 

As a result, the location of attribute-1 was then -.25, and that of attribute-2 became .25. At the 

next step, the guessing and slipping parameters for the items needed to be specified so that those 

parameters mirrored the increasing cognitive demand of items targeting level-1 and 2, and level-

2 and 3. Indeed, when the percentages of students mastering and non-mastering all the attributes 

required by an item were equal (i.e., 50%), the expected proportion correct in CTT sense of the 

item was reflected in the delta index δ=(1-s+g)/2 (Lee et al., 2012). When the locations of 

attribute-1 and 2 were at -1 and 1, and with D=1.7, the percentages of students sampled from a 

standard normal distribution who master the first attribute is 76%, and the percentage for the 

second one is 24%, respectively. These percentages for the moderate difference cases are 57% 
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and 43% for attributes 1 and 2, respectively. Appendix 1 shows the computation for these 

figures. With these mastery percentages, the expected proportion correct for an item in item 

group 1 that requires attribute-1 is δ1e = .76*(1-s) + .24*g, and an item in item group 2 that 

requires attribute-2 is δ2e = .24*(1-s) + .76*g for cases of large location distance. These formulas 

for the moderate difference data are δ1m = .57*(1-s) + .43*g, and δ2m = .43*(1-s) + .57*g.  When 

s and g vary between 0 to .4, δ1e ranges from .46 to .86, and δ2e receives values in between .14 

and .54. The intervals for δ1m and δ2m are [.34, .74] and [.26, .66], respectively. The computations 

suggest that items measuring lower levels are clearly easier than their counterparts that measure 

higher levels when the attributes are very distant from each other. The easiness of the items 

becomes less salient when the attributes are moderately distant. Nonetheless, both guessing and 

slipping parameters are expected to vary from 0 to .4 under CDM framework (de la Torre & 

Douglas, 2004). Given the reasons shown above, the decision was made to randomly select 1- s 

and g for items of both groups from 4-Beta(0.6, 1, 2, 1), 4-Beta(0, 0.4, 1, 2) distributions. These 

distributions are similar to the priors de la Torre and Douglas (2004) used to estimate item 

parameters of HO-DINA in their simulation study. The only difference here was the range for g, 

1-s. In this study, s and g varied from 0 to 0.4, thus 1-s ranged from 0.6 to 1. In de la Torre and 

Douglas (2004), the authors used 4-Beta(0.4, 1, 2, 1) and 4-Beta(0.6, 1, 2, 1) as the prior for 1-s, 

and g, respectively. For practical purposes, both s and g were limited within the range of 0 to .4, 

since a guessing or slipping parameter higher than .4 seems to indicate poor fit (de la Torre & 

Douglas, 2004). This range of [0, .4] is also typical for the parameters observed in empirical data 

(e.g., de la Torre & Douglas, 2004; Lee et al., 2012) 

In the false scenario, both locations of the attributes were set at 0 by fixing their 

intercepts at 0 and their slopes at 1.7. In this case, the proportion of students who master each 
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attribute was 50%. Thus, the expected proportion correct for an item in either item group 1 or 2 

is δ=(1-s+g)/2, where s and g are slipping and guessing parameters of the item (Lee et al., 2012). 

Similar to the true scenario, if both s and g varied between 0 and .4, the delta index of items was 

within the range of .3 and .7. This analysis suggested to use the same distributions to sample 1-s 

and g for items in both item group 1 and 2 in this false scenario. In other words, 1-s and g for all 

the items were sampled from 4-Beta(0.6, 1, 2, 1), 4-Beta(0, 0.4, 1, 2), respectively. 

Once those parameters are selected, student continuous scores (θ1, θ2) were drawn from 

the two bivariate standard normal distributions described earlier. In the next step, data were 

generated for each progression. Let θj be the continuous score of student j for one progression. 

As adopted in de la Torre and Douglas (2004), a respondent’s mastery profile for each attribute 

was drawn from Bernoulli distributions. For two attributes, the student’s attribute profile 

indicators aj1 and aj2 were drawn from Bernoulli({1+exp(-1.7 (θj –(-1))}-1), and 

Bernoulli({1+exp(-1.7(θj - 1))}-1), respectively. Then, cj = (aj1, aj2) became the cognitive profile 

of student j. These student latent classes and item parameters (si, gi) allowed the generation of 

response data of all the students for all items using the conditional probability computed by 

equation (2). Again, R was the software package used to simulate data (R Core Team, 2017).  

3.2.2. Parameter Estimation and Data Analysis  

Estimation and data analyses in this study were nearly identical to the procedure described 

in Study 1. Indeed, all three models were fit to the data simulated in Study 2 and followed the 

methods described in that study to investigate the ordering of learning levels and plausibility of 

combinations of levels. In Study 2, only two adjustments were made. The first revision was to use 

the known parameters of HO-DINA to generate response data to identify the true classification of 

students into combinations of levels. This classification became the baseline criteria to assess the 
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performance of the models in recovering the true information contained in the data. The second 

change in Study 2 was the way the classification accuracy and cross-model classification 

consistency for two pairs of models is aggregated. In this study, the classification of students into 

learning levels by HO-DINA in the true scenario was assumed to be theoretically correct. Students 

were classified into four cognitive profiles [00], [10], [01], and [11] by fitting HO-DINA to the 

data. Since the [01] doesn’t correspond to any of the three learning levels, simulated students 

classified into this profile were excluded from the analyses of classification accuracy and cross-

model classification consistency. In the true scenario, the expected proportion of students in this 

profile was less than 2% when the attributes were of extreme distance, and about 10% when they 

were moderately distant. The computation for these percentages can be found in Appendix 1. 

Using the true level classification, the classification accuracy and cross-model classification 

consistency for combinations of levels between MIRT-SS, and DINA with HO-DINA were 

calculated for the true scenario. For brevity, the remaining details of parameter estimation and data 

analyses for this study will not be repeated. In the last study, all the models will be fit to three sets 

of empirical data collected to evaluate the learning progression theory described in section 2.1.2 

of Chapter 2. 

3.3. Study 3: An Empirical Application 

In this empirical analysis, all the three models mentioned previously will be used to 

calibrate response data collected to evaluate the theory for LF and PR. Model-data fit was 

examined. Then, results were interpreted in reference to the predictions informed by the theory 

and findings of Study 1 and 2. In the next sections, key aspects of this study are described in detail.  
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3.3.1. Data 

The empirical data contain item responses for 216 items by a sample of about 4,000 

students from grades 6 through 8. Those items were developed to measure two learning 

progressions: LF and PR. There was a mixture of polytomous and dichotomous items in the item 

set. Among the items, 37.5% (81) were polytomously scored. Each progression was theorized to 

have five learning levels (Arieli-Attali et al., 2012). Due to testing time limitations, most students 

only answered about 20 items from both progressions, and each item had responses from 

approximately 400 students. Under this design, each student did not take items from all the four 

groups of items measuring the five learning levels. Typically, some items from two adjacent 

groups (e.g., level 1-2, level 2-3) were chosen to build test forms. Given that for each student there 

existed at least one item group from which the student did not answer any items, the DINA or HO-

DINA models of four attributes defined by the four item groups could not be fit. However, if the 

data set was partitioned into three subsets containing response data for items from two adjacent 

item groups, the responses became suitable to fit both DINA and HO-DINA. For example, in Pham 

et al. (2017), the authors selected data for items from item group 1 and 2 that measured level-1 and 

2, and level-2 and 3, respectively. In doing so, the data in Pham et al. (2017) had 589 students with 

responses to 72 LF and 48 PR items. Each student answered about 20 items, among which at least 

two items were from item group 1 and 2 of each progression. In this data set, each item had 

responses from 137 to 303 students. With those features, all the three models (i.e., MIRT-SS, 

DINA, and HO-DINA) could be fit to the data.  

To extend previous work presented in Pham et al., (2017), three data sets from the 

original response matrix for all the 216 items of LF and PR were extracted. The first set is the 

data to which we fit DINA model in Pham et al., (2017). This data set is for items in the first two 
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item groups (i.e., items measuring level-1 and 2, and level-2 and 3), and all students answering at 

least two items in each of the four item groups of two progressions were included. The second 

data set is for all items in the next two item groups (i.e., items measuring level-2 and 3, and 

level-3 and 4) of LF and PR, and all students who answered at least two items in each group are 

selected. Similarly, the last set is for the last two item groups (i.e., items measuring level-3 and 4, 

and level-4 and 5). Among the 10 postulated combinations of levels for LF and PR, the first five 

can be evaluated using the first data set. These combinations included (1, 1), (1, 2), (2, 2), (2, 3), 

and (3, 3). In those notations, the first and second indexes represent the learning levels of LF and 

PR, respectively. The next two combinations of (3, 4) and (4, 4) can be examined by the second 

data set. Finally, the last two (5, 4) and (5, 5) can be investigated using the last set of data.   

In Pham et al. (2016), a graded response model was used to calibrate polytomous items. 

In this follow-up study, the response data was simplified by dichotomizing all the 81 polytomous 

items. The reasons for this treatment are twofold. First, it is slightly easier to work with only 

dichotomous data. Second, dichotomous items are still in wide use for learning progression-

based assessments (e.g., Confrey et al., 2017; Shin et al., 2017). The first reason is especially 

relevant for DINA, and HO-DINA. As of this writing, the package used to fit those models 

(GDINA) only supports model-data fit investigation for dichotomous data (Ma & de la Torre, 

2017). Equally important, the dichotomization of polytomous items in the empirical data also 

made it easier to use the findings from simulation studies 1 and 2 to interpret the empirical 

analysis results.  

3.3.2. Parameter Estimation and Model-data Fit 

Our prior experience working with these empirical data suggests that there might be some 

items with unreasonable parameter estimates in the first round of calibrations by MIRT-SS, DINA 
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or HO-DINA. For instance, some items might have very large or negative discrimination parameter 

estimates when we fit MIRT-SS to the data. To mitigate the impact of those items, items with 

discrimination estimates falling out of the range [.25, 3.5] in MIRT-SS final calibrations were 

excluded, as was done in Pham et al. (2016). Similarly, item discrimination indices obtained from 

fitting DINA and HO-DINA to the data should not be negative (Lee et al., 2012). After normal 

convergence in the final calibrations was achieved, model-data fit could be evaluated; how fit was 

assessed will be discussed in the following paragraphs. 

For MIRT-SS, since this model is equivalent to a structural equation model (SEM) of two 

correlated factors (Takane & de Leeuw, 1987), some SEM-based fit indexes provided by 

flexMIRT (Cai, 2015) were examined. Those indexes included root mean square of error of 

approximation (RMSEA), and Tucker-Lewis index (TLI). At the item level, standardized LD X2 

for each item pair (e.g., Chen & Thissen, 1997) was collected from flexMIRT calibrations to 

investigate model-data fit. For DINA, three absolute fit statistics at item level including the 

proportion correct, transformed correlation, and log-odd ratios were tabulated for each converged 

calibration (Chen, de la Torre, & Zhang, 2013). Then, using Dunn-Bonferoni correction to 

evaluate model fit for the items under the CDM framework, the maximum z-score tests for each 

of the three statistics were conducted. To compare the relative model fit of the DINA and HO-

DINA models, three statistics which included deviance, AIC, and BIC (Chen et al., 2013) were 

used.  

3.3.3. Data Analysis  

 Analysis of the statistical results obtained from fitting the three models to the data in this 

empirical study was very similar to what has been described for Study 1. In comparison to the 

simulation-based investigations, only one amendment to this exploration was adopted. As a 
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matter of fact, one doesn’t know which of the models can explain the empirical data perfectly. 

Thus, it was not possible to compute the classification accuracy of sorting students into 

combinations of levels since the true classification in the empirical data was unknown. Instead, 

the cross-model classification consistency of each pair of models was computed. The results 

obtained from fitting the models to the data sets were interpreted in reference to the 10 postulated 

combinations of levels described in Table 2.1.2 in Chapter 2, the findings from Studies 1 and 2, 

and published works on this topic found in the literature. 

3.4. Summary of Research Method 

In this chapter, three studies to investigate the effectiveness of MIRT-SS, HO-DINA, and 

DINA in analyzing assessment data to evaluate learning progression theories were described. In 

the simulation studies (i.e., Study 1 & 2), the effectiveness of the models was examined similarly 

across studies by looking at how well they recovered the true information of the simulated 

learning progressions contained in the generated data. For the empirical analysis, model-data fit 

and evidence regarding the ordering of LF and PR items and the plausibility of level links were 

the main sources of information to assess the effectiveness of the model. Some practical 

implications of this study can be seen via several lenses. From a modeling perspective, this study 

was expected to help us understand how the MIRT-SS, HO-DINA, and DINA would behave in 

the best-case scenarios in which one knows the trustworthiness of the underlying learning 

theories. It was the first time a study of learning progressions using both IRT and CDM models 

involved a simulation component to inform the interpretation of empirical findings. Through 

Studies 1 and 2, an understanding of the models was strengthened. As we moved to analyze the 

empirical data, what was learned from the simulation would allow us to make informed 

conclusions about the theory of LF and PR using statistical evidence obtained from fitting the 
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models to the data and knowledge of how they would behave in certain circumstances. From an 

application perspective, this study could be the first initiative to cast light on the effectiveness of 

using HO-DINA and DINA in building formative assessments using learning theories. If these 

CDMs are useful at evaluating learning progression theories and calibrating item banks, the next 

step would be using them to propose and investigate different design features used to build 

assessments for learning. From a scholastic point of view, Rasch model and thus Wright maps 

have been the main toolkit for researchers to empirically evaluate learning progressions. The tool 

seemed to serve the purpose quite well. However, a study of other models in this context is 

needed to empower more thorough investigations of learning progressions and suggest different 

modeling tools to build assessment instruments. The consideration of MIRT-SS, HO-DINA, and 

DINA in this study, which are different from the Rasch tradition, helps contribute to the 

literature of learning progressions and practical solutions available for building learning 

assessments. 
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3.5. Tables and Figures for Chapter 3 

Table 3.1.1. Q-matrix for One Learning Progression  

 

 Attribute-1 

(defined by item group 1) 

Attribute-2 

(defined by item group 2) 

Item1.1 1 0 

… 1 0 

Item 1.n-

1-2 

1 0 

Item 2.1 0 1 

… 0 1 

Item 2.n2-3 0 1 

 

Table 3.1.3. Summary of Study 1 

 

Condition Scenario  
Generating Parameters Fitting 

Models 
Data Analysis 

N I θ ρ(θ1, θ2) 

1  

True 

500 

40 

BVN(0,1) 
 

.6  

MIRT-SS, 

DINA, HO-

DINA 

 

Comparison of IRT item 

difficulty; Attributes’ 

hierarchy by locations 

under HO-DINA and 

percentages of students 

in the inconsistent 

profile; 

 

Classification accuracy 

and Cross-model 

classification 

consistency and by 

DINA vs. MIRT-SS, 

and HO-DINA vs. 

MIRT-SS 

2 40 .9 

3 60 .6, 

4  60 .9 

5  

1,000 

40 .6 

6 40 .9 

7 60 .6  

8   60 .9 

9 

False 

 

500 

40 .6  

10 40 .9 

11  60 .6  

12  60 .9 

13  

1,000 

40 .6  

14 40 .9 

15 60 .6  

16  60  .9   
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CHAPTER IV 

RESULTS 

 In this chapter, the results of the simulation and empirical analyses will be presented, and 

the findings will be summarized to inform several conclusions presented in Chapter 5.  All three 

studies aim to investigate the effectiveness of MIRT-SS, HO-DINA and DINA in evaluating two 

claims of learning progressions considered in this dissertation. The first claim is about the correct 

ordering of learning levels within each progression. The second claim deals with the co-

occurrence of learning levels across progressions. Given the commonality among the studies, 

results will be reported for each claim of each study in the following sections and recapped at the 

end of the chapter. First, the contents are organized by study (i.e., studies 1, 2 & 3).  Second, 

within each study, results of the five methods examining the order of learning levels will be 

shown. Then, after the order is established, evidence evaluating the second claim of level links 

will follow. Tables and figures are numbered by the studies and displayed towards the end of the 

chapter. Finally, the chapter will conclude with a summary of the findings across studies. 

4.1  Study 1: MIRT-SS as the Generating Model 

In this study, 16 conditions under the true and false scenarios were considered using 

MIRT-SS to simulate response data for two learning progressions. To account for sampling 

error, 100 replications for each condition were conducted. Regarding the true scenario, the first 

eight conditions reflected valid progressions in which their learning levels were ordered from 

low to high with respect to difficulty. Regarding the false condition, item difficulties of items 

measuring different learning levels were sampled from the same standard normal distribution 

indicating that the levels were not correctly ordered. To evaluate how the models addressed the 

second claim related to level links, the classification of simulated students into combinations of 
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levels using the generated item and proficiency parameters under the MIRT-SS framework was 

treated as the true classification. Then, the classification resulted from fitting MIRT-SS, HO-

DINA, and DINA to the simulated data was compared with the true one to cast a light on how 

well each model recovered the true categorization using the generated parameters. The results to 

address each aspect of the theory underlying the simulated progressions from each of the models 

considered in this study will be then be presented. Tables shown toward the end of this chapter 

contain the details of the results. For some cases, plots were created using the statistics from the 

tables to help better visualize the results.  

4.1.1. Claim 1: Ordering of Learning Levels within Each Progression 

 As laid out in Section 3.1.3 of the Method chapter, five methods were adopted to analyze 

learning progressions data to evaluate the first claim of level ordering. The methods included (i) 

One-tailed t-tests of item difficulty, (ii) Order-tests of cut scores for MIRT-SS, (iii) Attribute 

location tests, (iv) Inconsistent profile minimum tests for HO-DINA, and (v) Inconsistent profile 

minimum tests for DINA. Among the methods, only the t-tests of item difficulty were a 

hypothesis testing procedure. The remaining four approaches were based on binary classification 

tests. Given the nature of the tests, the term “true positive” will be used to indicate cases in 

which the correct order of learning levels was present (i.e., true), and the tests confirmed that 

information (i.e., positive). Similarly, the term “false positive” will be used to signify that the 

correct order was absent (i.e., false), but the tests indicated that the increasing order existed (i.e., 

positive). When sampling error is taken into consideration, the rate of false positive replications 

becomes type I error rate, the true positive rate is the same as statistical power in hypothesis 

testing. Methods that result in high true positive and reasonable false positive rates will be 
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considered superior to their counterparts with low true positive and less reasonable false positive 

rates. 

True and false positive rates for the five methods validating the ordering of learning 

levels are reported in Table 4.1.1. Several themes are observed from the table. First, none of the 

methods seemed to perform dominantly better than the others in inspecting level ordering. On 

the one hand, false positive rates for the MIRT-based t-tests method appeared to be very small. 

For all the eight false conditions, there were less than two cases out of 100 replications in which 

the one-tailed t-tests falsely rejected the null hypothesis of incorrect level ordering for both 

progressions. On the other hand, this test is likely to be overly-strict due to its low power as 

observed in the true conditions. The true positive rates for this test ranged from 41% to 80%. The 

power rates increased with larger sample sizes and longer tests. Power did not seem to be 

influenced by the correlation between progressions. In short, the MIRT t-tests appeared to be a 

very powerful tool to detect fallible cases. Whereas, its ability to validate true level ordering was 

questionable due to its low to moderate true negative rates. The lack of power of this test can be 

explained by the quite small number of items simulated in this study. If more items per item 

groups were generated, the power of the MIRT t-tests could have been higher.  

 Second, the results obtained from the other four methods were contrary to those using 

MIRT t-tests. In effect, their false positive rates varied from 15% for the HO-DINA location test 

of condition 16 to 41% for the HO-DINA minimum test for condition 13. Those very high error 

rates signified that the four tests lack the power to detect incorrect level ordering of the 

progressions. On the optimistic side, those tests appeared to obtain promising true positive rates. 

Especially, the MIRT order-test had all the rates greater or equal to 95%. When one has up to 

1,000 students and 60 items for four item groups, it was very likely that the MIRT order-test 
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would correctly reconfirm the ordering of learning levels for all the replications. For other 

methods, true positive rates tended to be lower and varied from 98% for DINA minimum test in 

condition 8 down to 73% for the HO-DINA minimum test in condition 1 (i.e., 500 students and 

40 items). Across conditions and methods, it is expected to see that the true positive rates were 

likely to increase with more students and items. In terms of failing to reject the null, the 

connection between false positive rates and sample sizes was not clear for the MIRT t-tests and 

order-test. However, it was quite notable that the false positive rates of the tests based on HO-

DINA and DINA calibrations tended to decrease with sample sizes. The lowest rate of 0.15 

occurred for the HO-DINA location test in condition 16 in which one had the maximum of 

students and items considered in this study. The highest false positive rate was around .40 which 

was observed for the CDM-based methods in conditions of either fewer students or items. Due to 

similarity of results across conditions of the same sample sizes and correlation between two 

progressions, two plots were created to visualize the results explained above for conditions 1 and 

8. They can be found in Figures 4.1.1 and 4.1.2 at the end of this chapter. In the next section, the 

results using the methods to assess the second claim of level links will be reported.  

4.1.2. Claim 2: Co-occurrence of Learning Levels across Progressions  

 As discussed in Chapter 3, using MIRT-SS, HO-DINA, and DINA, one can classify 

simulated students into learning level-1, level-2 or level-3 for each progression. In this study, 

MIRT-SS was used to generate the response data. As a result, the known parameters for this 

model were adopted to determine the simulated respondents’ “true classification”. This 

classification, which was based on the true item and person parameters, was used as the baseline 

information to evaluate the classification for each the model. To be able to use MIRT-SS 

parameter estimates to classify students into learning levels, it is required that the cut scores to 
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distinguish levels are at least in the correct order. Given that requirement, only the true scenario 

was considered and replications where the cuts for each progression were increasingly ordered 

were taken into account. The numbers of such cases for each condition can be found in the 

column “MIRT: Order-test” of Table 4.1.1. In what follows, the term “correctly-ordered 

replications” will be used to codify these cases.  

To investigate the usefulness of the models in recovering the true classification into 

combinations of levels, classification accuracy rates for the models were averaged across 

correctly-ordered replications in each condition of the true scenario. In addition, the cross-model 

consistency of classifying students into level combinations between pairs of models was also 

aggregated across these cases. The higher the rate of classification accuracy, the better the model 

was at recovering the true classification. In a similar vein, the higher the cross-model 

classification consistency, the more similar the level classification by models were. 

 Table 4.1.2 reports the true proportions of students in each of the nine combinations of 

levels. The proportions were averaged across all 100 replications for each of the eight conditions 

in the true scenario, since the cuts for all of them were in increasing order. The false conditions 

for the first claim of level ordering were not considered, since the claim was unlikely to be 

supported in this scenario. As shown in Table 4.1.2, more students were placed into the same 

levels across progressions than into combinations of different levels. For example, the averaged 

percentages of students in combinations [11], [22] and [33] varied from 15% to 23%. 

Meanwhile, those values for other level links were from 0 to 11%. It is also seen quite clearly 

that the percentages in the combinations of the same levels were higher when the correlation 

between progressions was stronger (conditions 2, 4, 6, and 8). This result is reasonable, since in 
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this case student scores across progressions tend to be more similar than in the case in which the 

correlation is weaker.  

 Results from fitting MIRT-SS for the correctly-ordered replications in this study are 

displayed in Table 4.1.3. Comparing these results with the true proportions shown in the 

previous table, one can see that MIRT-SS suitably recovered the true proportions of students in 

the nine level combinations. In all conditions, the differences between the estimated proportions 

by MIRT-SS and the true ones were quite minimal. For example, about 40% of the 72 

proportions for nine combinations across eight conditions in Tables 4.1.2 and 4.1.3 were 

identical in values. Most differences in the remaining cells were within .01 to .02. This finding is 

an indication that MIRT-SS seemed to recover the true classification well.  

 As for HO-DINA and DINA, Table 4.1.4 contains the proportion of students classified in 

each combination of levels. Similar to the case of MIRT-SS, the proportions were averaged 

across correctly-ordered cases for the conditions in the true scenario. A few patterns emerged 

from the results. First, the classification into level combinations by the CDMs was nearly 

identical within each condition. The differences of the proportions of students classified in each 

combination by HO-DINA and DINA were within .00 to .03 for all the cells. Second, the 

classification by these models appeared to be quite different from that of MIRT-SS. Indeed, 

across true conditions, more than half of the students were classified into two combinations of 

level-1 and level-3 for both progressions (i.e., combinations [11] and [33]). The proportions for 

these two combinations by the CDMs seemed to be much higher than those by MIRT-SS. On 

average, about a third of the students were classified by either HO-DINA or DINA into each of 

the combinations. Meanwhile, the proportions by MIRT-SS were around .20. Second, another 

notable difference was that the proportions of students who were in level-2 of both progressions 
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varied from .15 to .25 for MIRT-SS across true conditions. However, DINA consistently 

classified none of the students into this combination across all the conditions. Similarly, the 

proportions of students in level-2 for each progression by HO-DINA stayed as minimal as .01 

throughout all the true conditions. Third, differences in classification results, using each of the 

three models, can also be seen in other combinations of levels. The CDMs tended to locate more 

students into combinations [13] and [31]. In contrast, MIRT-SS seemed to yield more students in 

the level links of [12], [21], [23] or [32]. Last, as can be seen in Table 4.1.5, HO-DINA and 

DINA located some simulated students into the inconsistent profile [01] of one progression. In 

the table, letter “I” was used in the first or second place to indicate that the CDMs classified 

some students in profile [01] for the first or second progression. For example, combination 

denoted by “1I” contains students classified in level-1 of the first progression and inconsistent 

profile of the second progression. Across the true scenario and on average over correctly-ordered 

replications, no more than 1% of the students were placed in each of the seven combinations of 

at least one inconsistent profile. Notably, DINA classified no students into any of the 

inconsistent combinations. Equally remarkable was that none of the models located any students 

in the inconsistent profile for both progressions. These results support the effectiveness of the 

CDMs in analyzing data of valid learning progressions. To aid in interpretation, Figure 4.1.3 

visualized the results of how each model enabled us to classify students into combinations of 

levels for conditions 1 and 8 of this study. Plots for other conditions of the moderate and high 

correlation were similar to the first and second panels of the figure, respectively. In summation, 

the performance of MIRT-SS, HO-DINA, and DINA in identifying student learning profiles in 

this study was shown to be quite different. These discrepancies among the models will be further 

discussed in the final chapter. 
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 The last set of analyses done in this study collected the classification accuracy and cross-

model classification consistency of the models when they were used to classify students into 

combinations of levels in the true scenario. To examine the impact of using significant or 

correctly ordered cases on the rates, two sets of statistics were computed for each condition. The 

first one was the accuracy and cross-model classification consistency rates across all correctly 

ordered replications. The second one is for all replications with significant t-tests results 

comparing item difficulty for both progressions. Table 4.1.6 aggregated the accuracy rates for 

each condition and method (i.e., ordered or significant cases). The results reveal several themes. 

On the one hand, the accuracy rates in the best-case scenario when both MIRT-SS was used to 

generate and analyze the data ranged from 60% to 69%. The rates did not seem to be dependent 

on the nature of the replications (i.e., correctly ordered or significant). On the other hand, the 

accuracy rates for HO-DINA and DINA were lowest at 33% and highest at 45% which were 

smaller than those by MIRT-SS. Moreover, the rates by the CDMs appeared to be higher when 

all the correctly-ordered cases but not only the significant ones were taken into the computation. 

Given that the significant cases were a subset of the correctly ordered ones, it can be implied that 

on average, the accuracy rates for the insignificant correctly ordered replications seemed to be 

slightly higher than those for the significant ones. 

 Table 4.1.7 contained the cross-model classification consistency rates between HO-

DINA, DINA and MIRT-SS when different sets of replications were considered. Overall, the 

rates were very similar across conditions and varied from .35 to .49. The consistency between 

HO-DINA and MIRT-SS seemed to be slightly larger than between DINA and the baseline 

model. This result can be attributed to the unidimensional structure underlying each progression 

of HO-DINA and MIRT-SS. Similar to the classification accuracy, the cross-model classification 
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consistency rates appeared to be higher when all the correctly ordered replications (not only the 

significant cases) were included in the computation of the rates. The differences between the 

rates of the two methods were about .03 to .10. In short, the classification accuracy and cross-

model classification consistency for the models in this study were far from perfect. For the best 

case, when MIRT-SS was both used to generate and analyze the data, the highest accuracy rate 

stayed at 69%. The lowest rate was of 33% for the classification of DINA and the true 

classification. These far-from-perfect rates indicate that identifying student learning profiles is 

challenging when one only relies on statistical models and methods, since there are many ways 

the classification could go wrong. This point will be further discussed in the last chapter of this 

dissertation. In the next sections, the results for Study 2 will be shown, following the same 

content structure for the first study. Since two sets of cases were simulated within the true 

scenario, findings for each set will be presented sequentially within the sections for each of the 

claims that follow. 

4.2. Study 2: HO-DINA as the Generating Model 

In Study 2, the generating model was switched from MIRT-SS to HO-DINA. To examine 

how well the models considered in this dissertation detect the ordering of the levels, two sets of 

data within the true scenario were simulated. For the extreme difference cases, the two attributes 

defined by two item groups were generated to be extremely different, locating the first attribute 

at -1 and the second one at 1 in the logit scale. Thus, the distance between the two attributes was 

2 logits in these cases. In the moderate difference replications, the location of attribute associated 

with levels 1-2 was fixed at -.25 and that of the higher levels was set at .25. As a result, the 

location distance between two attributes within one progression was only .5 rather than 2 in the 

second set of data. It is expected that the true positive rates for the conditions of distant attributes 
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will be greater, and the false positive rates for these cases will be smaller than those of the closer 

attributes. In addition, the classification accuracy and cross-model classification consistency 

measures are also expected to be higher in the former than in the latter. The results for these 

investigations are reported next. Following the structure of Section 4.1, the information will be 

organized by two claims of the underlying theory in each scenario.  Complete results will be 

shown in tables, and some selected plots will be created to highlight the results. 

4.2.1. Claim 1: Ordering of Learning Levels within Each Progression 

4.2.1.1. Ordering of Levels for the Case of Extreme Difference  

When the five approaches to detect the ordering of learning levels were carried out as 

used in Study 1, it was found that all of them yielded expected results for all 100 replications for 

cases of extreme difference (i.e., attribute location distance equals two logits) in the true 

scenario. In other words, two MIRT-based methods (one-tailed t-tests of item difficulty, and tests 

of ordered cuts) and three CDM-based approaches (HO-location test, HO and DINA-minimum 

tests) revealed positive results that support the correct order of learning levels for every 

replicated data set in these conditions.  Table 4.2.1 displays the true and false positive rates for 

the extreme difference cases. It is seen that the true positive rate was 1 for all conditions in the 

true scenario, which mean that all five methods confirmed the true information used to generate 

the data.  

For the false scenario, the result pattern was similar to the finding of Study 1. In effect, 

false positive rates for the MIRT-based t-tests of item difficulty were very small. Half of the 

rates were zero and all of them were below .03. In other words, the t-test worked almost 

completely to detect the incorrect order of learning levels across replications in the false 

scenario. These low false positive rates of the MIRT-based t-test signifies the usefulness of the 
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method in investigating the order of learning levels. If the test reveals an insignificant result 

comparing item difficulty of two adjacent item groups, it is likely that knowledge and skills 

measured by items from these groups are not in the right order of increasing complexity. 

Regarding the false positive rates indicated by the remaining methods, it was observed, as 

in the case of Study 1, that these approaches were not very effective at reconfirming the true 

information in the simulated data within the false scenario. Indeed, the test of ordered cuts, 

location test for HO-DINA, and minimum tests for HO-DINA and DINA rejected incorrect order 

for 19% to 35% of the cases in each condition. The error rates for the first two tests were similar. 

Whereas, false positive rates of the minimum test using profile proportions by HO-DINA and 

DINA were nearly identical and consistently higher than those of the first two tests. Again, these 

results appeared to be in line with the findings in Study 1 for the methods.  

4.2.1.2. Ordering of Levels for the Case of Moderate Difference  

When the magnitude of the difference between attribute locations was reduced from 2 

to .5 logits, the impact of the reduction can be partially seen in Table 4.2.2. On the one hand, the 

CDM-based tests made no incorrect detections in the true scenario as in the case of extreme 

difference between attributes. In fact, the methods successfully reconfirmed the correct order of 

the learning levels for 100% of the replicated data sets in the true scenario. This result is 

explainable, given that HO-DINA was used to generate data in this study and the classification of 

students into cognitive profiles by HO-DINA and DINA should be close to identical. On the 

other hand, the two MIRT-based tests showed a notable drop in true positive rates when the 

difference between attributes was moderate. Indeed, while the rate for the test of ordered cuts 

was reasonable, the results for the t-tests of item difficulty differences reached the highest true 

positive rate at 78% for one condition and became lowest at 49% for the other. These moderate 
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to low true positive rates were the most remarkable difference, casting a light on the sensitivity 

of MIRT-SS in detecting the ordering of levels when the distinction between them varied from 

moderate to extremely large. The MIRT-based methods tended to be more sensitive to the 

magnitude of the difference between item groups than the CDMs. One can also deduce that the 

CDMs can recover the ordering of learning levels very well, if these models fit perfectly with the 

data.   

4.2.2. Claim 2: Co-occurrence of Learning Levels across Progressions 

In this study, HO-DINA was used to generate data. Then, MIRT-SS, HO-DINA and 

DINA were fitted to determine how well the models recover the true classification of students 

into learning levels by the higher order CDM. As stated earlier, two sets of data were simulated 

for each of the true conditions. The results for the classification accuracy and cross-model 

classification consistency for each set of data will be reported in the following paragraphs. 

4.2.2.1. Co-occurrence of Levels for the Case of Extreme Attribute Difference 

For the extreme difference case, Table 4.2.3 contains the classification accuracy for three 

models with respect to the true classification and cross-model classification consistency for 

MIRT-SS and DINA in comparison to HO-DINA as the generating model. It is observed from 

the table that the two CDMs seemed to perfectly reproduce the true classification. The lowest 

accuracy rate for these models was as high as 97% for the conditions with fewer items (i.e., 40). 

When a condition had 60 items, the accuracy rate went up to 99% for both HO-DINA and DINA. 

Since HO-DINA was used to generate data, it is expected that the accuracy rates for MIRT-SS 

with the true classification would be smaller than the CDMs’. The rates for the MIRT model 

seemed to reflect the expectation. They varied from 81% to 83% for conditions of 60 items. And, 

the rates were slightly smaller at 75% or 76% when one had fewer items (i.e., 40). Given that the 
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CDMs almost perfectly reproduced the true classification, the cross-model classification 

consistency between MIRT-SS and HO-DINA was almost the same as the classification 

accuracy of the former. The last column of table 4.2.3 shows that the classification by fitting the 

CDMs to the simulated data was completely identical. This result can be explained by the fact 

that IRT-parameters for the attributes of HO-DINA were estimated after the cognitive profiles of 

each student were identified by the DINA (J. de la Torre, personal communication, April 30, 

2017).  

Since the classification accuracy and cross-model classification consistency in the 

extreme difference case were high, the average proportion of students classified in each 

combination of levels by the models in the true scenario should look similar. Indeed, Table 4.2.4 

displays the proportions averaged across all 100 replications of the students being categorized 

into nine reasonable combinations. Three sets of findings seemed to emerge in this case. First, 

the values in each cell of the table signified that classification results by the CDMs into level 

combinations appeared to be nearly identical with the true one for almost all the true conditions. 

Among all, a difference of .01 between the proportions by HO-DINA and DINA and the true one 

only occurred in three conditions and combinations. They include (i) combination [12] of 

condition of 1,000 students, 60 items and moderate correlation, (ii) combination [31] of 

condition of 1,000 students, 40 items and moderate correlation, and (iii) combination [32] of 

condition of 1,000 students, 60 items and strong correlation. For all the other conditions and 

combinations, the averaged proportions for each combination by the CDMs were the same as the 

ones computed using the true parameters. Second, the difference of MIRT-based proportions and 

the true one by HO-DINA was more salient. Nonetheless, the magnitude of the differences was 

consistently within the range of .01 to .03 across all the conditions. Third, about one third of the 



 

81 

simulated students were identified into level-2 of both progressions (i.e., level combination [22]). 

This pattern was consistently observed in all the models across all true conditions. This finding is 

reasonable given that the distance between two attributes in this case was very wide (i.e., 2 

logits). The extreme distinction between attributes within each progression simulated in the HO-

DINA was very likely to result in distant cut scores to distinguish levels 1-2 and levels 2-3. 

When the cuts were far away, more students would have been placed into the middle level (i.e., 

level-2) leading to the large proportions of students in combination [22]. For illustrative purpose, 

Figure 4.2.1 visualizes the proportions of students classified in nine reasonable combinations of 

levels for conditions 1 and 8 of this study.  

As mentioned earlier, the CDMs can locate students in inconsistent profile of [01]. 

Students in this latent class master knowledge and skills of higher but not the lower levels. 

Students can be placed in the inconsistent profile for one or both progressions. Consequently, 

there were seven level combinations that contain at least one inconsistent profile.  Just as in 

Study 1, the letter “I” was used to indicate the inconsistent combination. Table 4.2.5 reports the 

proportion of students classified into the inconsistent combinations.  One notable theme can be 

seen from the table. That is the consistency of results across conditions and models. On average 

and for all the true conditions, there were 1% of students classified in combinations “2I” and 

“I2”. The proportion for the five remaining combinations was all 0. It is noted that due to 

rounding error, the total proportion for the True, HO-DINA and DINA classification in Table 

4.2.5 did not add up with the respected total proportion in Table 4.2.4 to 1. In the next case 

where the distance between attributes was simulated at .5, it is expected that the classification 

results obtained from fitting the models will show more students in the inconsistent 

combinations.  
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4.2.2.2. Co-occurrence of Levels for the Case of Moderate Attribute Difference 

As expected, the classification accuracy of MIRT-SS for data generated with shorter 

distance between learning levels was lower than results of the previous case reported earlier. 

Table 4.2.6 reports the average classification accuracy and cross-model classification consistency 

for the models when replications with significant results for the t-tests of item difficulty were 

taken into the computation. Similarly, table 4.2.7 contains the results when all replications whose 

MIRT-based cut scores distinguishing adjacent levels were correctly ordered. As a reminder, the 

proportions for these significant and correctly-ordered replications can be found in Table 4.2.2. 

The accuracy and cross-model classification consistency rates in this case imply two key 

themes.  First, as reported earlier, the CDMs seemed to recover the true classification generated 

by HO-DINA extremely well. When all the correctly ordered replications were included in the 

analysis, the models correctly reproduced 97% and 99% of the true student learning profiles for 

assessments of 40 and 60 items, respectively. These results were the same as the accuracy 

percentages of the models when the distance between attributes was extreme. Once again, 

classification of HO-DINA and DINA were identical across all conditions. Second, classification 

accuracy of MIRT-SS and the cross-model consistency of this model and HO-DINA became 

much lower in this case in comparison to the case of extreme discrepancy. Indeed, the average 

across correctly-ordered replications of the accuracy and consistency rates of MIRT-SS, in this 

moderate difference case, center around .49 to .52. The rates for assessments with more items 

were slightly higher than those with fewer items. However, the difference was very minimal.  

The lower rates for the moderate distance attribute conditions using MIRT-SS suggest that the 

cross-model classification consistency between this model and HO-DINA is dependent upon the 

magnitude of the discrepancy between learning levels. If the knowledge and skills exhibited by 
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the levels are more distinguishable, it is more likely that the IRT and CDM models will yield 

more highly consistent classification and vice versa. 

To report the results of how the models categorized students into combinations of levels 

in this case, tables 4.2.8 and 4.2.9 tabulate average proportions of students identified in the nine 

possible combinations of levels, and seven combinations of at least one inconsistent profile, 

respectively.  Comparing these tables to that for the extreme difference case, three lines of 

findings emerge. First, the results with MIRT-SS appeared to be much more distinct than those 

using CDMs. This statement can be supported by the high proportions of students classified in 

combination [11] by the MIRT-SS and the very low proportions for level links [22] by this 

model. Consistently seen across conditions, MIRT-SS identified about one third of the students 

into combination [11]. The proportions of levels linked by the CDMs were around one fifth or 

less. Second, due to the moderate distance simulated for the attributes, far fewer students were 

found in combination [22] in this case. This result holds true across all models and conditions. 

Indeed, MIRT-SS only placed 1% to 2% of the students in this level link. Whereas, the 

percentages using CDMs were higher but stayed around 6% to 7%. These figures from HO-

DINA and DINA were very close to the true percentages generated by the model. It is noted that 

combination [22] contained about one third of the students in the extreme attribute difference 

case. To aid graphical interpretation, Figure 4.2.2 visualizes the proportions of students in nine 

reasonable combinations when the difference of the attributes was moderate. Again, the figure 

can help us see clearly that the classifications of the MIRT model were more distinguishable 

from those of the CDMs, in this moderate condition, than in the extreme difference case. Last, 

there were many more students classified into inconsistent profiles in this case than in the 

previous one. On average, approximately 20% of the students were placed by the CDMs into at 
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least one inconsistent learning profile. This value is much higher than the average of 

approximately 2% of students classified in at least one inconsistent profile in the previous case 

(see Table 4.2.5).  The three sets of afore-mentioned findings signify that the cross-model 

classification consistency between the MIRT-SS and the CDMs depends on the magnitude of the 

distinction among the learning levels. The more distinguishable they are, the more consistent the 

classification results by the models becomes. Similarly, the magnitude of the difference was also 

reflected in the percentage of students classified by the CDMs into inconsistent profiles. The 

more different the levels, the less likely it will be for a student to receive an inconsistent 

classification.  

4.3. Study 3: An Empirical Application 

In this empirical study, all the three models considered in this dissertation were fit to 

three data sets of two learning progressions: LF and PR. Originally, the progressions were 

theorized to have five levels (Arieli-Attali et al., 2012). Previously, Pham et al., (2016) used a 

MIRT model to evaluate the theory and was able to support almost all aspects of the theory for 

LF and PR. As explained earlier in Chapter 3, to be able to fit the CDMs to reevaluate the theory, 

the whole response matrix for LF and PR was partitioned into three data sets. The first data set 

was for the first three levels of these progressions. The next one contained items measuring 

levels-2, 3 and 4. Finally, the last one was subset from the master data set for LF and PR to 

comprise students’ responses for items of levels-3 to 5. This investigation, then, can be viewed as 

an application using the models to reevaluate the progressions. In the following sections, the 

results of this study will be reported. In the last chapter, these findings will be discussed and 

interpreted in light of the theory underlying the progressions and the results of Studies 1 and 2.  
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4.3.1. Calibration Results and Model-data Fit 

4.3.1.1. Item Exclusion 

MIRT-SS model was fit to each of the three data sets. Items with extreme discrimination 

estimates (e.g., negative or in the two-digit numbers) or very large standard errors for any of the 

parameters were excluded in the next round of calibration. After several rounds of item removal 

using the criteria described in the method section, 6, 9 and 12 items were excluded from the first, 

second and third data sets. Estimates of item parameters from final successfully-converged 

calibrations were collected for further analyses. Overall, discrimination estimates of items in all 

the three data sets varied from .11 to 4.7. The mean and standard deviation of those estimates 

were 1.61 and .77, respectively. A few items with positive discrimination estimates smaller than 

.25 were retained due to the exploratory nature of this study. Thus, as many items as possible 

were kept to maintain a wider choice of items for follow-up data collections and/or studies using 

the items investigated in this study. Once the final sets of items were determined for each data set 

and item and student parameters collected from the final calibration using, flexMIRT, for the 

MIRT-SS model, and GDINA, for the CDMs, were used to evaluate the theory.  

4.3.1.2. Model-data Fit 

 When statistical models are used to analyze empirical data, it is a standard practice that 

one should check model-data fit before interpreting results (Swaminathan, Hambleton & Rogers, 

2007). In this study, that procedure was followed by collecting as much information about 

model-data fit for the data sets as possible. Given the large amount of missing data by design, it 

was challenging to compute and aggregate all available fit statistics and indexes to paint a 

thorough picture of how the selected models fit with the empirical data. However, at least one 
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global fit measure and one fit statistic at item level for each data set were tabulated. In what 

follows, model fit information will be presented.      

Under the MIRT framework, the MIRT-SS model was fit to three sets of data (i.e., 

LFPR1223, LFPR2334, and LFPR3445). Due to the significant amount of missing data and large 

number of items in each data set, flexMIRT (Cai, 2015) was not able to output full-information 

global fit statistics. For all the calibrations, upon convergence, the program showed a note “The 

contingency table is too large to compute the general multinomial goodness of fit statistics” 

under the result section of “Full-information fit statistics of the fitted model”.  On the positive 

side, flexMIRT was able to compute the limited-information fit statistic M2 (Maydeu-Olivares & 

Joe, 2005) and indexes based on that statistic. Values for the fit measures can be found in Table 

4.3.1 at the end of this chapter. The tests of global fit using the M2 statistic for all three data sets 

revealed significant results at alpha level of .05., with all p-values close to 0. Given the large 

sample sizes in each data set, it is expected that the results these tests of global fit would be 

significant. In this case, it is usually helpful to use other goodness-of-fit indexes to assess model-

data fit. Columns 6 and 7 of Table 4.3.1 contain these indexes. RMSEAs of all the data sets were 

.03. The TLI varied from .85 for LFPR1223, to .90 for LFPR3445 and .92 for LFPR2334. These 

values are indications of “Close fit” between MIRT-SS and the data. 

At item level, the standardized Chen-Thissen LD X2 (Chen & Thissen, 1997) statistic was 

collected to examine the degree of fit of MIRT-SS for each pair of items. This statistic reflects 

how well the model explains the observed correlation of pairs of items. To put it another way, it 

examines the bivariate relationship or local dependency for each item pair. The model closely 

captures the correlational relationship for two items if the standardized LD X2 for the pair is 

within the range of [-3, 3] (Chen & Thissen, 1997). The percentages of item pairs for which the 
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statistics can be computed that met the fitting criterion above were shown Table 4.3.2. The 

results signified that MIRT-SS appeared to explain the bivariate relationship of the data well. 

Across all data sets, standardized LD X2 statistics for more than 90% of the item pairs were not 

smaller than -3 or larger than 3. In summary, both global fit indexes and item-level fit statistics 

for MIRT-SS indicated close fit between the model and the data. Thus, the model appeared to 

explain the data well and parameter estimates can be used to evaluate the theory underlying the 

data. In the next sections, model-data fit for HO-DINA and DINA will be discussed.  

For the CDMs, both relative and absolute fit statistics for the models were collected. As 

explained in the method chapter, AIC and BIC were used to compare HO-DINA and DINA. 

Table 4.3.3 reports these statistics for each data set. It is notable that the statistics were in favor 

of DINA across the calibrations. This model had one parameter less than its higher-order version 

and yet its AICs and BICs were consistently smaller than that of HO-DINA.  All other factors 

remaining equal, it would be expected that the model with more parameters would exhibit better 

fit than one constrained to fewer parameters.  For this reason, because it is a simpler model with 

better fit statistics, DINA is preferred to its higher-order version from a relative fit perspective.  

At item level, two sets of item fit criteria were evaluated. The first set of criteria is the 

three statistical tests described in Chen, de la Torre and Zhang (2013): (i) the proportion correct 

test for each item, (ii) the transformed correlation test, and (iii) the log odds ratio test for pairs of 

items. Following the suggestion in that paper, the maximum z-score test using Bonferroni 

correction was used to eliminate the need to conduct many statistical tests for each item or item 

pair. This method also allows us to examine model-data fit at aggregated level across all items 

considered in this empirical study. The results of the maximum z-score tests for each data set are 

reported in Tables 4.3.4 and 4.3.5 for LF and PR items, respectively.  The test statistics shown in 
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the tables reveal three clear patterns. First, the results for HO-DINA and DINA across data sets 

were very similar. The maximum z-scores and p-values for the two models were nearly identical. 

The adjusted p-values by Bonferroni correction were somewhat different but led to the same 

conclusions of significance or non-significance for both models on all data sets. Second, the 

CDMs seemed to closely reproduce the observed proportion correct in the empirical data. Out of 

12 maximum z-score tests, 11 of them produced an adjusted p-values greater than .05. The only 

case in which the proportion correct test revealed a significant result for both models was for 

data set LF2334, which was the set containing the largest number of items. It has 87 items in 

comparison with 73, 68, 49, 46 and 38 items for PR2334, LF1223, PR3445, PR1223, and 

LF3445, respectively. The larger number of items in LF2334 might increase the power of the 

maximum z-score test enough to detect the difference of model-implied and observed proportion 

correct across all the items in this data set. Third, the bivariate tests (i.e., transformed correlation 

and log odds ratio) yielded large test statistics and significant results for all six data sets. Both the 

p-values and adjusted p-values ones were consistently equal to 0 across all cases. The 

significance of the tests indicated that the models were very unlikely to sufficiently reproduce the 

empirical bivariate relationships for pairs of items. Given the large amount of data missing by 

design in these cases, it is understandable that the observed bivariate statistics for item pairs 

might not be reliable enough to be captured appropriately by the CDMs. 

In the last effort to evaluate model fit for the CDMs, summary statistics of item parameter 

estimates for these models, following the recommendation by de la Torre and Douglas (2007) 

and de la Torre (2007), were gathered. The de la Torre and Douglas (2004) guidelines suggested 

that good-fitting items should have estimates for their guessing and slipping parameters smaller 

than .40. Otherwise, examinees, without mastering the attributes required by the items, can still 
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experience unreasonable probability of endorsing said items. For item discrimination, de la Torre 

(2007) introduced a discrimination index 𝛿𝑖 =  1 − 𝑠𝑖 −  𝑔𝑖 for item i, where si and gi are the 

slipping and guessing parameters for the item, respectively. This index reflects the magnitude of 

difference in the probability of answering item i correctly between an examinee who masters all 

the attributes required by the item and one who doesn’t. The higher the index, the more 

discriminating an item. For this index, a value lower than .20 is considered to be low 

discrimination (Lee et al., 2012). Table 4.3.6 presented the proportions of items in each data set 

whose guessing and slipping parameter estimates satisfied the criterion of smaller than .40. It can 

be seen from the table that more than 70% of the items in every data set obtained a guessing 

parameter estimates satisfying the recommended indicator of good item fit. The mean values of 

these estimates varied from .20 to .26, and their standard deviations remained as low as .19 to .26 

across all cases. The estimates for the slipping parameters were not as good as those for the 

guessing parameters. However, the majority of slipping estimates were within the range of [0, 

.40]. The percentages of these statistics that satisfied the .40 cutoff appeared to be higher for 

items measuring higher learning levels. In fact, 71% of LF3445 items had a slipping estimate 

below .40 for the CDMs. Whereas, only 56% of LF1223 items met this requirement. Along the 

same lines, it can be observed that items measuring higher learning levels had better item 

parameter estimates for the CDMs than their lower level counterparts. For both HO-DINA and 

DINA, the percentages of items in the data sets for higher levels that had better estimates tended 

to be higher than those for the data sets in lower levels. For example, 57% of LF1223 items 

obtained a slipping estimate smaller than .40, while the same percentage for LF3445 was slightly 

higher at 61%. There were a few exceptions for this result. For instance, the percentage of items 

with good slipping parameter for PR2334 was 10 points lower than that for PR1223. Table 4.3.7 
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showed the descriptive statistics for the discrimination indexes for each data set. First, the results 

for HO-DINA and DINA were almost identical. Although differences can be seen in some cells, 

they were all small and potentially negligible. Second, the summary statistics for the 

discrimination index indicated good fit at item level. Across the data sets, the means and 

standard deviations of the index varied from .34 to .49, and .16 to .20, respectively. Only one out 

of more than 200 LF and PR items had a negative discrimination index, which was very close to 

zero. The percentages of items whose discrimination indexes were larger than .20 ranged from 

76% to 92% across cases. These results for the discriminating power of items under the CDM 

framework signified that this method seems to model the data well and can be used to classify 

examinees into cognitive profiles, thus learning levels.  

Overall, relative fit statistics were in favor of DINA over HO-DINA. From the absolute 

and item fit perspective, both models seemed to fit moderately well with the data. Given the 

large amount of missing data and the exploratory nature of evaluating the underlying theory, the 

results from fitting the CDMs conclude these models can be used to examine the plausibility of 

learning progressions.  

4.3.2. Claim 1: Ordering of Learning Levels within Each Progression 

In this study, the ordering of learning levels was evaluated using difficulty estimates for 

items measuring different learning levels, under the MIRT framework, attribute locations, by 

HO-DINA, and proportions of students classified in the inconsistent profiles obtained from 

fitting HO-DINA, and DINA to the data. The ordering claim is supported if the difficulties of 

items measuring lower levels are lesser than those of items targeting higher levels. In the CDM 

framework, the theory will be defensible if locations of the attribute defined by knowledge and 

skills of lower levels are to the left of those defined by the higher levels. Similarly, if the 
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proportion of students classified into the inconsistent profile is notably smaller than those of the 

profiles associated with the learning levels, the ordering of levels is supported. The following 

paragraphs report the results from fitting MIRT-SS, HO-DINA, and DINA to the data. 

4.3.1.2. MIRT-SS 

Following the independent t-tests (one-tailed) method, item difficulty estimates of item 

groups measuring different learning levels were compared.  Table 4.3.8 shows the results of 

those tests. As presented in the table, at a conventional alpha level of .05, five out of the six tests 

were significant with medium to large Cohen-d effect size measures. Indeed, items measuring 

levels 1-2 of LF (M = -1.17, SD = 1.74, n = 12) were significantly easier than items written to 

assess levels 2-3 (M = .76, SD = 1.61, n = 56) of this progression, t(15.3)= -3.54, p < .002, 

Cohen-d =1.19. The same statement can be made for items of levels 2-3 (M = .10, SD = 1.18, n 

= 58) and levels 3-4 (M = .39, SD = .91, n = 29) of LF, t(64.9)= -5.84,  p < .001, Cohen-d=1.25. 

For PR, all three comparisons for this progression revealed significant differences. On average, 

PR items of levels 1-2 (M = -.03, SD = 1.3, n = 14) of this progression were easier than their 

peers from levels 2-3 (M = .79, SD = 1.20, n = 32), t(23)= -2.00,  p =.03, Cohen-d = .66. 

Similarly, the mean item difficulty of levels 2-3 items estimated using data set LFPR2334 (M = 

.29, SD = .75, n = 32) of PR was statistically smaller than that of levels 3-4 (M = .81, SD = 1.01, 

n = 41), t(7.8)= -2.50,  p = .01, Cohen-d = .57. Using the last data set (i.e., LFPR3445), it was 

observed that mean of difficulty estimates of items measuring PR levels 3-4 (M = .09, SD = 2.05, 

n = 40) were significantly smaller than that of levels 4-5 (M = .1.00, SD = 1.11, n = 9), t(23.1)= -

1.82,  p =.04, Cohen-d = .48. The only test with non-significant result was the one for LF items 

in levels 3-4 (M = .39, SD = .91, n = 32) and levels 4-5 (M = 1.01, SD = .82, n = 6), t(7.4) = -

1.69, p = .07. This observation can be explained, in part, by the fact that the item group of level 
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4-5, from this progression in this data set, contained only six items.  This was the smallest 

number of items among all the item groups. The second method under the MIRT framework was 

to test the ordering of cut scores used to classify students into adjacent learning levels or, in 

short, the order-test. To facilitate the visual interpretation of this test, Figure 4.3.1 displays the 

boxplots of item difficulty estimates for six pairs of item groups. Two themes emerged from the 

figure. First, it can be seen from those plots that items measuring higher learning levels appeared 

to be more difficult for examinees than the ones targeting lower levels. Second, the medians of 

the item difficulties in the groups were all in increasing order, as one would expect. In other 

words, the order-tests returned positive results for all data sets, meaning we can use those 

medians to be the cut scores placing students in learning levels as explained in this dissertation’s 

method section. It is noted that other methods to identify the cut scores, such as using test 

characteristic curves (TCC) and a suitable response probability (RP), are available (e.g., 

Hambleton & Pitoniak, 2006). In a previous study, Pham et al. (2016) used the median and the 

TCC methods with a RP of .50 and .66 to determine three sets of cut scores to evaluate the 

second claim of level links. It was found in that study that determining cuts by the three methods 

(i.e., using medians as cuts and using TCC with RP 50 and PR 66) yielded different results for 

each. Nonetheless, the proportions of students classified into combinations of levels using the 

different cuts were quite consistent and supported almost all predicted level links. This was the 

reason why only the median method was considered and used in this study.   

4.3.1.3. HO-DINA and DINA 

The results of fitting HO-DINA to the data to evaluate the ordering of learning levels 

seemed to be in line with the evidence obtained from fitting the MIRT. Table 4.3.9 reported the 

locations of attributes-1 and -2, and the distance between them for each pair of item groups. For 
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five out of the six comparisons, locations of attribute-1 were smaller than those of attribute-2. 

The only pair where the ordering of the location was not supported was LF levels 3-4 and 4-5 

items. In this case, location of attribute-1 defined by knowledge and skills of LF levels 3-4 was 

slightly larger by .05 logits than the location of attribute-2 defined by the two highest levels (i.e., 

levels 4-5) of LF. This result is in accordance with the non-significant difference of item 

difficulties of LF items measuring levels 3-4 and 4-5 reported earlier. In summation, the HO-

DINA locator tests revealed confirmative results supporting the ordering of learning levels for 

five out of six data sets with the only exception being LF3445.  

Under the CDM framework, the plausibility of level ordering can also be evaluated by 

adopting the minimum test for the proportion of students classified in the inconsistent profile of 

[01] by HO-DINA and DINA. Table 4.3.10 displays those proportions for the six data sets in 

which HO-DINA and DINA were used to calibrate the data. For LF1223 and PR1223, three 

consistent profiles [00], [10], and [11] correspond to learning levels 1, 2, and 3, respectively. For 

LF2334 and PR2334, these profiles represent learning levels-2, -3 and -4. Similarly, they 

associate with levels-3, -4 and -5 in the last two pairs of CDM data sets (i.e., LF3445 & 

PR3445). In all data sets, students in profile [01] master higher levels but not the lower ones. 

Thus, this profile is inconsistent with the theory of learning progressions, if we do not assume 

that there is an instructional gap between knowledge and skills of lower and higher levels. If the 

gap exists in the sense that the instruction of higher levels is more recent, students can forget 

what they had learned of the lower levels, thus could be in profile [01]. Table 4.3.10 clearly 

showed that for five out of the six data sets, the proportions of students in the inconsistent profile 

[01] by both CDMs were notably smaller than those from other profiles. The only case where 

more students were observed in this profile than in one of the three other profiles was the data set 
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for LF item levels 3-4 and 4-5. For this data set, HO-DINA classified six percent of the students 

as mastering levels 4-5 but not levels 3-4. Whereas, only five percent of all the students were 

considered to show mastery of levels 3-4 but not levels 4-5 by this model. For the same case, the 

proportions found using DINA for profiles [01] and [10] were both equal to .01. This evidence 

aligns with the results described previously regarding item difficulty estimates and attribute 

locations for this data set. Again, it is noted that there were only six LF level 4-5 items in 

comparison to nine items measuring the highest levels of PR, and 12 items measuring lowest 

levels of LF. The small number of items in this LF levels 4-5 group might be a confounding 

factor reducing the minimum tests’ power to detect the true ordering of levels in this case.  

Connecting Tables 4.3.9 and 4.3.10, there was a strong relationship between the location 

distances indicated by HO-DINA and the magnitude of the difference in the proportions of 

students classified into the inconsistent profile (i.e., [01]) and the other profiles. The more distant 

the attributes, the more disparate the proportions. In fact, LF2334 had the longest location 

distance of .73 logits. And, the difference between proportions for the inconsistent profile and 

the next smallest profile (i.e., [10] in this case) were .25 and .26 using HO-DINA, and DINA, 

respectively. These differences were also the largest among all the discrepancies of the six data 

sets. This result can be explained by the nature of the study in that only two attributes were 

considered at a time. Under this setting, the locations of the attributes will depend largely on the 

proportion of students in the sample who master each attribute. For attribute-1, the proportion is 

the sum of proportions of students in profiles [10] and [11]. Similarly, the mastery proportion for 

attribute-2 can be computed by summing up the statistics of [01] and [11]. If there are fewer 

students in the inconsistent profile, it is likely that the mastery proportion of attribute-1 will be 

larger than that of the remaining attribute, which would lead to results indicating the location of 
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the former will be smaller than that of latter.  In what follows, results will be reported to evaluate 

the level links predicted in the original theory for LF and PR. 

4.3.3. Claim 2: Co-occurrence of Learning Levels across Progressions 

In the theory described in Arieli-Attali et al. (2012), the authors proposed 10 

combinations of levels among all the 25 possible level links for LF and PR. Using the notation 

previously introduced in Table 2.1.2, the postulated level links are (1,1), (1, 2), (2, 2), (2, 3), (3, 

3), (3, 4), (4, 4), (4,5), (5, 4) and (5, 5). The plausibility of links (1,1), (1,2), (4,5), (5,4) and (5,5) 

can be evaluated by using the first and the last data sets. Whereas, the six links in between (1,2) 

and (4,5) can be examined in two data sets. The following paragraph will describe the 

investigation in more details. 

 Tables 4.3.11, 4.3.12, and 4.3.13 report the proportions of students classified into each 

combination of levels. The word “Yes” in the sixth column was used to indicate a link that was 

predicted. If the proportions of students classified in this link estimated by MIRT-SS, HO-DINA, 

or DINA were non-zero, the plausibility for that level link is supported and a check symbol is 

used in column eight as an indication of that observation. The last column of the tables was used 

to recommend further considerations for the combinations of levels that were observed in the 

empirical data through the lens of MIRT-SS and/or the CDMs but not predicted by the theorists. 

Again, a check mark on a row of a link is used to suggest that follow-up investigations are 

recommended for the link. 

 The tables elucidated that all 10 combinations of levels postulated by Arieli-Attali et al. 

(2012) were observed using either MIRT-SS or the CDMs. Six out of 10 combinations contained 

more than one percent of the students using all three models. Using the CDM frameworks, 

students were observed in all 10 combinations, however no students were classified by MIRT-SS 
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in combination (1,2). It is noted that other than the 10 predicted links, MIRT-SS and the CDMs 

placed non-negligible portions of students in seven other combinations. The most notable links 

were (2,1) and (3,2). For the combination of level-2 of LF and level-1 of PR, using MIRT-SS, 

nearly a third of the students were classified in this manner. This result suggested that students in 

level-2 of LF were more likely to be in level-1 of PR than in any higher levels of this 

progression. Since the link (2,2) was postulated and supported, the fact that there were more 

students in combination (2,1) than (2,2) indicated that a large number of students in level-2 of LF 

were not automatically proficient in knowledge and skills defined by level-2 of PR. If this was 

the case, the result will have meaningful instructional implications for teachers and students. In 

short, using MIRT-SS can provide statistical evidence to validate nine out of the 10 level links. 

This model also suggested the plausibility of three more combinations. HO-DINA and DINA 

were quite consistent in validating level links. Both models revealed evidence that allowed us to 

support all the 10 theorized combinations. However, they also suggested that all the 25 

combinations were possible. This finding was an illustration of how differently MIRT-SS and 

CDMs classified students into combination of levels. In the next chapter, the results of this study 

will be discussed in more detail by connecting them with findings from this dissertation’s two 

simulation studies as well as published works on the topic of learning progression validation. 

 As described in Section 3.3.3 of the method chapter, only classification consistency for 

three pairs of models was collected in the empirical study. The results for this analysis are 

displayed in Table 4.3.14 toward the end of this chapter. Three themes can be observed from the 

table. First, the two CDMs seemed to be consistent in classifying students into learning levels. 

Their consistency rates reached as high as 96% for the data set LFPR1223 and became slightly 

smaller at 91% for LFPR3445. This finding is expected given the mathematical similarity of HO-
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DINA and DINA as shown in Section 2.2.2 of Chapter 2. To calibrate the data using HO-DINA, 

GDINA estimated the CDM parameters for DINA first. Then, the program used the parameters 

to estimate attribute locations for the higher-order version of DINA. Second, the consistency 

between MIRT-SS and HO-DINA or DINA were much lower than the rate within the CDMs. 

The consistency varied from as low as 39% for MIRT-SS and HO-DINA for LFPR1223 to as 

high as 65% of MIRT-SS and DINA for LFPR3445. It is noted in the empirical exploration that 

the consistency rates between MIRT-SS and DINA tended to be slightly higher than those of 

MIRT-SS and HO-DINA. This finding was different from what was found in Study 1. 

Nevertheless, the differences were only within 1% to 2% across the three data sets. Last, the 

consistency rates between MIRT-SS and HO-DINA or DINA in this study were in between the 

rates found in the simulation investigations. In comparison to the results shown in Tables 4.1.5, 

4.2.3, 4.2.5, and 4.2.6, the consistency rates for empirical data seemed to be larger than the rates 

for the cases of moderate location difference and smaller than these of the extreme location 

difference. This observation was seen for at least two out of three data sets (i.e., LFPR2334 and 

LFPR3445). The rates for these data sets were approximately 60% compared to approximately 

45% in Study 1, 80% for the extreme difference cases and 52% for the moderate difference cases 

in Study 2. This result needs to be elaborated and warrants further investigations given the fact 

that most of the distances of attribute locations in Study 3 were smaller than .5 logits. In the last 

chapter, this finding will be revisited in more detail.  

4.4. Chapter Summary 

 

In this chapter, results were reported for all three studies conducted within this 

dissertation as described in the previous chapters. The results across the studies and conditions 
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considered in each can be summarized using few key observations. First, the five methods used 

to evaluate the ordering of learning levels seemed to complement each other in the simulation 

studies. None of the tests to examine learning level order obtained expected true and false 

positive rates across all simulated conditions. The t-test of item difficulty appeared to be anti-

conservative since it resulted in very low false positive rates in most of the cases. Whereas, the 

order-test, location and minimum tests showed a lack of statistical power to reject null 

hypothesis in the false scenario. The sensitivity of the methods in detecting the magnitude of 

level differences was also partially seen in the notable decrease of true positive rates of the t-test 

between the extreme to moderate difference cases (see Tables 4.2.1 and 4.2.2). In short, the t-test 

and the remaining methods seemed to perform differently in evaluating the first claim of level 

ordering.  

Second, results of using the models to classify students into level combinations across 

simulation studies confirmed the mathematical similarity of HO-DINA and DINA and revealed 

that the consistency between MIRT-SS and the CDMs depended on the magnitude of the 

differences in difficulty between learning levels. The more distant the levels, the more consistent 

the model becomes in classifying examinees into level combinations (see Tables 4.2.3 and 4.2.6). 

Across all true conditions, the cross-model classification consistency between MIRT-SS and the 

CDMs was far from perfect. This finding illustrates the challenge of using these models to locate 

students into learning levels and by extension level combinations.  

Last, when the models and methods were adopted to analyze empirical data, it was 

observed that they provided convergent evidence to support almost all aspects of the theory 

underlying the data. Model-data fit for the MIRT-SS model signified that it fit closely with the 

empirical study data. Fit information for HO-DINA and DINA was somewhat less promising but 



 

99 

deemed acceptable given that it was retrofit to the data. Overall, tests of level ordering based on 

MIRT-SS and the CDMs supported the theoretical prediction. Using the estimates from fitting 

the models to the data, students were observed in all 10 theorized combinations (see Tables 

4.3.11, 4.3.12, and 4.3.13). In the last chapter, the findings from this empirical study will be 

discussed at length with respect to the theory underlying LF and PR, the results from Studies 1 

and 2, and published works evaluating learning progressions.   
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4.5. Tables and Figures for Chapter 4 

Table 4.1.1. True and False Positive Rates for Tests of Ordered Levels  

 

Scenario  N I 

ρ
 (

θ
1
, 
θ

2
) 

C
o
n
d
it

io
n
 

Methods 

MIRT:  

t-tests 

MIRT:  

Order-test 

HO-DINA: 

Location 

test 

HO-DINA: 

Minimum 

test  

DINA: 

Minimum 

test  

T
ru

e 

(µ
β

1
 <

 µ
β

2
) 

 

5
0
0
 40 

.6  1 .41 .95 .75 .73 .85 

.9 2 .51 .99 .81 .80 .87 

60 
.6 3 .77 .97 .86 .89 .88 

.9 4 .67 .96 .83 .86 .90 

1
0
0
0

 

40 
.6 5 .54 .98 .88 .88 .92 

.9 6 .48 .97 .91 .95 .95 

60 
.6 7 .71 1.00 .89 .91 .93 

.9 8 .80 1.00 .93 .94 .98 

F
al

se
 

(µ
β

1
 =

 µ
β

2
) 5
0
0
 40 

.6 9 .00 .23 .27 .29 .34 

.9 10 .00 .29 .30 .32 .40 

60 
.6 11 .00 .27 .26 .29 .29 

.9 12 .00 .23 .27 .33 .32 

1
0
0
0
 

40 
.6 13 .00 .30 .29 .41 .39 

.9 14 .00 .30 .32 .39 .39 

60 
.6 15 .00 .26 .19 .34 .20 

.9 16 .01 .30 .15 .29 .26 
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Table 4.1.2. True Proportions of Students in Level Combinations 

 

Condition 
Combinations of Levels 

11 12 13 21 22 23 31 32 33 Total 

1 .18 .11 .04 .09 .15 .1 .04 .11 .18 1 

2 .22 .09 .01 .08 .22 .08 .01 .09 .22 1 

3 .18 .11 .03 .1 .16 .11 .03 .1 .17 1 

4 .23 .07 .01 .09 .2 .08 .01 .08 .23 1 

5 .17 .11 .03 .1 .16 .1 .04 .12 .17 1 

6 .23 .09 .01 .08 .19 .09 .01 .09 .22 1 

7 .18 .1 .04 .1 .16 .11 .03 .1 .18 1 

8 .23 .07 0 .09 .23 .09 .01 .07 .22 1 

 

 

Table 4.1.3. Proportions of Students by Level Combination for MIRT 

 

 

Condition 
Combinations of Levels  

11 12 13 21 22 23 31 32 33 Total 

1 .18 .12 .03 .09 .18 .10 .03 .10 .18 1 

2 .22 .08 .00 .07 .25 .07 .00 .08 .21 1 

3 .18 .11 .02 .10 .19 .11 .02 .10 .17 1 

4 .23 .06 .00 .08 .24 .07 .00 .08 .23 1 

5 .18 .11 .02 .10 .19 .09 .02 .12 .17 1 

6 .23 .08 .00 .07 .24 .07 .00 .08 .22 1 

7 .19 .10 .03 .10 .18 .11 .02 .09 .18 1 

8 .23 .06 .00 .08 .26 .07 .00 .07 .22 1 
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Table 4.1.4. Proportions of Students in Each Level Combinations by CDMs 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1.5. Proportions of Students in Inconsistent Combinations 

 

Condition Model 
Level Combinations 

Total 
11 12 13 21 22 23 31 32 33 

1 
HO* .28 .04 .13 .03 .01 .03 .12 .04 .27 .95 

DINA .31 .02 .15 .02 .00 .02 .14 .02 .30 .98 

2 
HO .33 .04 .08 .03 .01 .03 .08 .04 .31 .95 

DINA .36 .02 .10 .02 .00 .02 .10 .02 .34 .98 

3 
HO .29 .03 .12 .03 .01 .03 .12 .03 .28 .94 

DINA .32 .02 .14 .02 .00 .02 .14 .02 .30 .98 

4 
HO .33 .03 .07 .04 .01 .03 .08 .03 .34 .96 

DINA .36 .02 .08 .02 .00 .02 .10 .02 .36 .98 

5 
HO .28 .04 .12 .04 .01 .04 .12 .04 .27 .96 

DINA .30 .02 .15 .02 .00 .02 .14 .02 .30 .97 

6 
HO .32 .04 .08 .03 .01 .03 .08 .04 .32 .95 

DINA .35 .02 .10 .02 .00 .02 .10 .02 .35 .98 

7 
HO .28 .03 .12 .03 .01 .03 .12 .03 .28 .93 

DINA .31 .02 .14 .02 .00 .02 .14 .02 .31 .98 

8 
HO .33 .03 .07 .04 .01 .03 .07 .03 .34 .95 

DINA .36 .02 .09 .02 .00 .02 .09 .02 .36 .98 

*) HO-DINA model (HO is used in some following tables due to limited space) 

Condition Model 
Inconsistent Combinations 

 Total 
1I I1 2I I2 3I I3 II 

1 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 

2 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 

3 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 

4 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 

5 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 

6 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 

7 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 

8 
HO .01 .01 .00 .00 .01 .01 .00 .04 

DINA .00 .00 .00 .00 .00 .00 .00 .00 
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Table 4.1.6. Classification Accuracy for True Conditions 

 

Condition 

Accuracy Rate 

MIRT 

Ordered 

Cases 

MIRT 

Significant 

Cases 

HO-DINA 

Ordered 

Cases 

HO-DINA 

Significant 

Cases 

DINA 

Ordered 

Cases 

DINA 

Significant 

Cases 

1 .60 .61 .40 .36 .39 .34 

2 .65 .65 .42 .37 .42 .36 

3 .64 .64 .41 .40 .40 .38 

4 .68 .67 .46 .44 .45 .44 

5 .61 .61 .39 .37 .38 .36 

6 .65 .65 .44 .39 .44 .38 

7 .65 .65 .43 .41 .42 .39 

8 .69 .69 .46 .44 .45 .43 

 

Table 4.1.7. Cross-model Classification Consistency for True Conditions 

 

Condition 

Consistency Rate 

HO-DINA vs. MIRT: 

Ordered Cases 

HO-DINA vs. MIRT: 

Significant Cases 

DINA vs. MIRT: 

Ordered Cases 

DINA vs. MIRT: 

Significant Cases 

1 .45 .39 .43 .37 

2 .46 .40 .45 .39 

3 .45 .42 .42 .40 

4 .49 .47 .48 .46 

5 .43 .40 .41 .38 

6 .47 .41 .46 .40 

7 .47 .44 .45 .41 

8 .49 .47 .48 .46 
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Table 4.2.1. True and False Positive Rates for Extreme Difference Cases 

 

Condition 
MIRT:  

t-test  

MIRT:  

order- test 

HO-DINA:  

Location 

Test 

HO-DINA: 

minimum 

test  

DINA: 

minimum 

test  

1 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 

6 1.00 1.00 1.00 1.00 1.00 

7 1.00 1.00 1.00 1.00 1.00 

8 1.00 1.00 1.00 1.00 1.00 

9 .01 .29 .22 .29 .31 

10 .02 .27 .25 .35 .34 

11 .01 .23 .23 .28 .28 

12 .00 .24 .22 .29 .29 

13 .00 .2 .26 .3 .32 

14 .00 .21 .24 .32 .33 

15 .00 .26 .19 .31 .31 

16 .02 .28 .25 .35 .34 
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Table 4.2.2. True and False Positive Rates for Moderate Difference Cases 

 

Condition 
MIRT:  

t-test  

MIRT: 

order-test  

HO-DINA:  

Location 

Test 

HO-DINA: 

minimum 

test  

DINA: 

minimum 

test  

1 .55 .91 1.00 1.00 1.00 

2 .54 .93 1.00 1.00 1.00 

3 .67 .96 1.00 1.00 1.00 

4 .63 .96 1.00 1.00 1.00 

5 .51 .89 1.00 1.00 1.00 

6 .49 .91 1.00 1.00 1.00 

7 .70 .97 1.00 1.00 1.00 

8 .78 .95 1.00 1.00 1.00 

9 .01 .23 .22 .31 .31 

10 .02 .34 .26 .35 .35 

11 .01 .26 .28 .35 .34 

12 .03 .28 .25 .35 .36 

13 .01 .22 .16 .29 .26 

14 .01 .25 .24 .29 .29 

15 .01 .22 .24 .35 .36 

16 .01 .2 .23 .36 .36 

 

 

Table 4.2.3. Classification Accuracy and Consistency for Extreme Difference Cases 

 

 

 

 

 

Condition 

Classification Accuracy Rate Cross-model Consistency Rate 

HO vs. 

True 

MIRT vs. 

True 

DINA vs. 

True 
MIRT vs. HO DINA vs. HO 

1 .97 .75 .97 .75 1.00 

2 .97 .76 .97 .76 1.00 

3 .99 .81 .99 .81 1.00 

4 .99 .83 .99 .83 1.00 

5 .97 .75 .97 .76 1.00 

6 .97 .75 .97 .75 1.00 

7 .99 .83 .99 .83 1.00 

8 .99 .83 .99 .83 1.00 
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Table 4.2.4. Proportions of Students in Level Links (Extreme Difference Cases) 

 

Condition Model 
Combinations of Levels 

Total 
11 12 13 21 22 23 31 32 33 

1 

TRUE .08 .12 .02 .12 .29 .11 .02 .11 .08 .95 

HO .08 .12 .03 .12 .29 .11 .02 .11 .08 .96 

MIRT .11 .13 .02 .14 .32 .10 .03 .10 .05 1.00 

DINA .08 .12 .03 .12 .29 .11 .02 .11 .08 .96 

2 

TRUE .10 .11 .01 .10 .31 .11 .01 .11 .10 .96 

HO .10 .11 .01 .11 .31 .11 .02 .11 .10 .98 

MIRT .12 .13 .02 .12 .33 .10 .01 .10 .07 1.00 

DINA .10 .11 .01 .11 .31 .11 .02 .11 .10 .98 

3 

TRUE .08 .11 .02 .11 .30 .11 .02 .11 .08 .94 

HO .08 .11 .02 .12 .30 .11 .02 .11 .08 .95 

MIRT .10 .13 .03 .13 .31 .11 .02 .11 .06 1.00 

DINA .08 .11 .02 .12 .30 .11 .02 .11 .08 .95 

4 

TRUE .10 .11 .01 .11 .31 .11 .01 .10 .10 .96 

HO .10 .11 .01 .11 .31 .11 .01 .10 .10 .96 

MIRT .12 .12 .01 .12 .33 .10 .02 .10 .08 1.00 

DINA .10 .11 .01 .11 .31 .11 .01 .10 .10 .96 

5 

TRUE .08 .11 .02 .11 .3 .11 .02 .12 .08 .95 

HO .08 .11 .02 .11 .3 .11 .03 .12 .08 .96 

MIRT .11 .14 .02 .13 .32 .10 .02 .10 .06 1.00 

DINA .08 .11 .02 .11 .3 .11 .03 .12 .08 .96 

6 

TRUE .10 .11 .01 .11 .31 .11 .01 .11 .10 .97 

HO .10 .11 .01 .11 .31 .11 .01 .11 .10 .97 

MIRT .13 .12 .01 .13 .32 .10 .02 .10 .07 1.00 

DINA .10 .11 .01 .11 .31 .11 .01 .11 .10 .97 

7 

TRUE .08 .11 .02 .11 .3 .11 .02 .12 .08 .95 

HO .08 .12 .02 .11 .3 .11 .02 .12 .08 .96 

MIRT .10 .13 .02 .13 .31 .11 .03 .11 .06 1.00 

DINA .08 .12 .02 .11 .3 .11 .02 .12 .08 .96 

8 

TRUE .10 .11 .01 .11 .31 .11 .01 .11 .10 .97 

HO .10 .11 .01 .11 .31 .11 .01 .10 .10 .96 

MIRT .12 .12 .01 .12 .33 .11 .01 .10 .08 1.00 

DINA .10 .11 .01 .11 .31 .11 .01 .10 .10 .96 
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Table 4.2.5. Proportions of Students in Inconsistent Links (Extreme Difference Cases) 

 

Condition Model 
Inconsistent Combinations 

Total 
1I* I1 2I I2 3I I3 II 

1 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

2 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

3 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

4 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

5 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

6 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

7 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

8 

TRUE .00 .00 .01 .01 .00 .00 .00 .02 

HO .00 .00 .01 .01 .00 .00 .00 .02 

DINA .00 .00 .01 .01 .00 .00 .00 .02 

*) I: inconsistent profile [01] 
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Table 4.2.6. Accuracy and Consistency for Moderate Difference Cases (Significant Cases) 

 

Condition 

Classification Accuracy Cross-model Consistency 

HO vs.  

True 

MIRT vs. 

True 

DINA vs. 

True 
MIRT vs. HO DINA vs. HO 

1 .97 .51 .97 .51 1.00 

2 .97 .51 .97 .51 1.00 

3 .99 .53 .99 .53 1.00 

4 .99 .52 .99 .52 1.00 

5 .97 .50 .97 .51 1.00 

6 .97 .52 .97 .52 1.00 

7 .99 .52 .99 .53 1.00 

8 .99 .53 .99 .53 1.00 

 

 

Table 4.2.7. Accuracy and Consistency for Moderate Difference Cases (Ordered Cases) 

 

 

  

Conditions 

Classification Accuracy Cross-model Consistency 

HO vs. 

True 

MIRT vs. 

True 

DINA vs. 

True 
MIRT vs. HO DINA vs. HO 

1 .97 .49 .97 .49 1.00 

2 .97 .50 .97 .50 1.00 

3 .99 .52 .99 .52 1.00 

4 .99 .51 .99 .51 1.00 

5 .97 .49 .97 .49 1.00 

6 .97 .50 .97 .50 1.00 

7 .99 .51 .99 .51 1.00 

8 .99 .52 .99 .52 1.00 
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Table 4.2.8. Proportions of Students in Level Links (Moderate Difference Cases)  

 

Condition Model 
Level Combinations 

Total 
11 12 13 21 22 23 31 32 33 

1 

TRUE .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

HO .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

MIRT .34 .06 .13 .07 .02 .05 .13 .05 .16 1.00 

DINA .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

2 

TRUE .18 .07 .04 .08 .07 .07 .04 .07 .18 .80 

HO .18 .07 .04 .08 .07 .07 .04 .07 .18 .80 

MIRT .36 .06 .10 .07 .02 .05 .10 .05 .18 1.00 

DINA .18 .07 .04 .08 .07 .07 .04 .07 .18 .80 

3 

TRUE .15 .08 .06 .08 .06 .08 .06 .08 .15 .80 

HO .15 .08 .06 .08 .06 .08 .06 .08 .15 .80 

MIRT .33 .06 .14 .06 .01 .04 .14 .04 .17 1.00 

DINA .15 .08 .06 .08 .06 .08 .06 .08 .15 .80 

4 

TRUE .19 .07 .04 .07 .07 .07 .04 .07 .18 .80 

HO .18 .07 .04 .07 .07 .07 .04 .07 .18 .79 

MIRT .37 .06 .11 .05 .01 .04 .11 .05 .19 1.00 

DINA .18 .07 .04 .07 .07 .07 .04 .07 .18 .79 

5 

TRUE .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

HO .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

MIRT .34 .06 .13 .07 .02 .05 .13 .05 .16 1.00 

DINA .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

6 

TRUE .18 .07 .04 .07 .07 .07 .04 .07 .18 .79 

HO .18 .08 .04 .08 .07 .07 .04 .07 .18 .81 

MIRT .36 .06 .11 .06 .02 .05 .11 .05 .19 1.00 

DINA .18 .08 .04 .08 .07 .07 .04 .07 .18 .81 

7 

TRUE .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

HO .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

MIRT .34 .06 .14 .06 .02 .04 .14 .04 .17 1.00 

DINA .16 .08 .06 .08 .06 .08 .06 .08 .15 .81 

8 

TRUE .18 .07 .04 .07 .07 .08 .04 .07 .18 .80 

HO .18 .07 .04 .08 .07 .08 .04 .07 .18 .81 

MIRT .36 .06 .11 .06 .02 .04 .10 .05 .20 1.00 

DINA .18 .07 .04 .08 .07 .08 .04 .07 .18 .81 
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Table 4.2.8. Proportions of Students in Inconsistent Links (Moderate Difference Cases) 

 

Condition Model 
Inconsistent Combinations 

Total 
1I* I1 2I I2 3I I3 II 

1 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

2 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

3 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

4 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

5 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

6 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

7 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

8 

TRUE .03 .03 .03 .03 .03 .03 .01 .19 

HO .03 .03 .03 .03 .03 .03 .01 .19 

DINA .03 .03 .03 .03 .03 .03 .01 .19 

*) I: inconsistent profile [01] 
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Table 4.3.1. Limited-Information Fit Statistics and Indexes for MIRT-SS 

 

Data Set M2 Df Prob F0̂ RMSEA TLI Conclusion 

LFPR1223 4461.82 3259 .0001 7.80 .03 .85 Close Fit 

LFPR2334 4579.79 2976 .0001 7.52 .03 .92 Close Fit 

LFPR3445 2536.32 1581 .0001 3.18 .03 .90 Close Fit 

 

Table 4.3.2. Summary Chen-Thissen LD X2 Fit Statistics for MIRT-SS 

 

Data set Percent within [-3,3] Conclusion 

LFPR1223 92.5 Good Fit 

LFPR2334 97.2 Good Fit 

LFPR3445 91.2 Good Fit 

 

Table 4.3.3. Relative Fit Statistics for Fitting CDMs to Empirical Data 

 

Data set 
HO-DINA DINA 

Selected 

Model 

AIC BIC N. par AIC BIC N. par  

LF1223 10452.04 1106.91 140 10445.72 1105.25 139 DINA 

LF2334 1303.19 13815.50 178 13028.09 13808.98 177 DINA 

LF3445 9564.42 9938.89 80 9556.51 9926.30 79 DINA 

PR1223 9115.18 9532.70 96 9105.50 9518.66 95 DINA 

PR2334 11323.17 11984.94 150 11308.46 11965.82 149 DINA 

PR3445 10527.34 10976.70 96 10516.04 1096.72 95 DINA 
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Table 4.3.4. Absolute Fit Statistics for Fitting HO-DINA to Empirical Data 

 

Data set 
Proportion Correct Transformed Correlation Log odds ratio 

Max z P Adj. p Max z p Adj. p Max z p Adj. p 

LF1223 2.51 .01 .83 41.32 .00 .00 3.31 .00 .00 

LF2334 4.79 .00 .00 16.16 .00 .00 11.93 .00 .00 

LF3445 2.61 .01 .34 1.67 .00 .00 1.20 .00 .00 

PR1223 1.94 .05 1 39.83 .00 .00 26.42 .00 .00 

PR2334 1.13 .26 1 37.33 .00 .00 24.34 .00 .00 

PR3445 3.10 .00 .09 33.41 .00 .00 39.35 .00 .00 

 

 

Table 4.3.5. Absolute Fit Statistics for Fitting DINA to Empirical Data 

 

Data set 
Proportion Correct Transformed Correlation Log odds ratio 

Max z P Adj. p Max z P Adj. p Max z p Adj. p 

LF1223 2.71 .00 .46 41.38 .00 .00 3.77 .00 .00 

LF2334 4.68 .00 .00 16.13 .00 .00 11.91 .00 .00 

LF3445 2.76 .00 .22 1.87 .00 .00 1.42 .00 .00 

PR1223 2.06 .04 1 39.88 .00 .00 26.44 .00 .00 

PR2334 1.63 .10 1 35.40 .00 .00 24.39 .00 .00 

PR3445 3.05 .00 .10 33.46 .00 .00 39.36 .00 .00 
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Table 4.3.6. Summary of Item Parameter Estimates by Fitting CDMs to Empirical Data 

 

Data set 

HO-DINA DINA 

Guessing (g) Slipping (s) Guessing (g) Slipping (s) 

Mean/SD % < .4 Mean/SD % < .4 Mean/SD % < .4 Mean/SD % < .4 

LF1223 .26/.26 72 .40/.30 56 .26/.26 72 .40/.30 56 

LF2334 .24/.23 78 .36/.24 54 .24/.23 78 .36/.24 54 

LF3445 .23/.15 84 .29/.21 71 .23/.15 84 .29/.21 71 

PR1223 .25/.21 76 .35/.24 57 .25/.21 76 .34/.24 61 

PR2334 .20/.17 85 .40/.23 51 .20/.19 86 .40/.23 51 

PR3445 .20/.19 80 .36/.23 61 .20/.19 80 .36/.23 59 

 

Table 4.3.7. Summary of Discrimination Indexes of CDMs for Empirical Data 

 

Data set 

HO-DINA DINA 

Discrimination (δ = 1- s – g) Discrimination (δ = 1- s – g) 

Mean/SD % > .2 range Mean/SD % > .2 range 

LF1223 .34/.17 76 [.02, .71] .34/.17 76 [.02, .71] 

LF2334 .40/.17 86 [.10, .92] .39/.17 86 [.10, .91] 

LF3445 .49/.20 89 [.10, .81] .48/.20 87 [.10, .81] 

PR1223 .40/.17 .87 [.04, .81] .40/.18 87 [.04, .80] 

PR2334 .41/.16 92 [.05, .72] .40/.16 92 [.04, .73] 

PR3445 .44/.20 89 [-.01, .77] .44/.20 89 [-.02, .78] 
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Table 4.3.8. Results of Two-sample T-tests Comparing Item Difficulties 

 

Pair 
Number 

of items 

Mean (SD) 
t df p  Cohen-d 

LF12 vs. LF23 12 vs. 56 -1.17 (1.74) vs. 0.76 (1.61) -3.54 15.3 .00* 1.19 

LF23 vs. LF34 58 vs. 29 0.10 (1.18) vs. 1.52 (1.00) -5.84 64.9 .00* 1.25 

LF34 vs. LF45 32 vs. 6 0.39 (.91) vs. 1.01 (.82) -1.69 7.4 .07 .70 

PR12 vs. PR23 14 vs. 32 -0.03 (1.3) vs. 0.79 (1.20) -2.00 23 .03* .66 

PR23 vs. PR34 32 vs. 41 0.29 (.75) vs. 0.81 (1.01) -2.50 7.8 .01* .57 

PR34 vs. PR45 40 vs. 9 0.09 (2.05) vs. 1.00 (1.11) -1.82 23.1 .04* .48 

    *) significant at alpha level of .05 

 

Table 4.3.9. Attribute Locations for Six Data Sets 

 

Data sets 
Locations Support the 

theory Attribute 1  Attribute 2  Distance 

LF1223 -.35 .11 .46  

LF2334 .04 .77 .73  

LF3445 .37 .32 -.05  

PR1223 .24 .29 .05  

PR2334 .13 .29 .16  

PR3445 .20 .59 .39  

 

Table 4.3.10. Proportions of Students in the Learning Profiles by CDMs 

 

Data sets 
HO-DINA DINA Support 

the theory [00] [10] [01] [11] [00] [10] [01] [11] 

LF1223 .36 .09 .01 .54 .37 .09 .01 .54  

LF2334 .51 .26 .01 .22 .51 .26 0 .22  

LF3445 .59 .05 .06 .31 .63 .01 .01 .35  

PR1223 .56 .05 .04 .35 .57 .05 .02 .37  

PR2334 .52 .09 .03 .36 .53 .08 .01 .39  

PR3445 .56 .15 .01 .28 .57 .13 .01 .29  
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Table 4.3.11. Proportions of Students in Level Combinations (LFPR1223) 

 

Levels Percentages of students  
Postulated Supported 

Further 

Consideration Links LF PR MIRT HO-DINA DINA 

(1,1) 1 1 8.74 31.29 31.82 Yes   

(1,2) 1 2 0.00 1.05 1.05 Yes   

(1,3) 1 3 0.00 2.62 3.15    

(2,1) 2 1 35.90 5.77 5.94    

(2,2) 2 2 28.90 .52 0.35 Yes   

(2,3) 2 3 2.10 2.27 1.92 Yes   

(3,1) 3 1 0.70 18.36 18.53    

(3,2) 3 2 11.54 3.32 3.32    

(3,3) 3 3 25.35 29.90 31.64 Yes   

 

 

Table 4.3.12. Proportions of Students in Level Combinations (LFPR2334) 

 

Level Percentages of students  
Postulated Supported 

Further 

consideration Links LF PR MIRT HO-DINA DINA 

(2,2) 2 2 44.16 39.24 39.9 Yes   

(2,3) 2 3 2.30 3.45 2.79 Yes   

(2,4) 2 4 0.33 6.90 8.37    

(3,2) 3 2 16.26 8.05 9.03    

(3,3) 3 3 16.42 4.11 3.45 Yes   

(3,4) 3 4 12.48 11.99 13.3 Yes   

(4,2) 4 2 0.00 4.11 3.94    

(4,3) 4 3 0.99 1.64 1.48    

(4,4) 4 4 6.08 16.09 16.58 Yes   
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Table 4.3.13. Proportions of Students in Level Combinations (LFPR3445) 

 

Level Percentages of students  
Postulated Supported 

Further 

consideration Links LF PR MIRT HO-DINA DINA 

(3,3) 3 3 57.97 44.67 47.68 Yes   

(3,4) 3 4 3.51 8.03 7.65 Yes   

(3,5) 3 5 1.13 5.40 6.9    

(4,3) 4 3 8.03 2.13 0.50    

(4,4) 4 4 6.65 0.50 0.13 Yes   

(4,5) 4 5 5.77 1.88 0.38 Yes   

(5,3) 5 3 0.25 6.40 8.53    

(5,4) 5 4 2.89 5.27 5.27 Yes   

(5,5) 5 5 13.80 19.07 21.08 Yes   

 

 

Table 4.3.14. Decision Consistency Between Pairs of Models 

 

Data Set MIRT vs. HO-DINA MIRT vs. DINA HO-DINA vs. DINA 

LFPR1223 .39 .40 .96 

LFPR2334 .57 .59 .94 

LFPR3445 .64 .65 .91 
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Figure 4.1.1. True Positive Rates by Five Methods for True Scenario 

 

 

Figure 4.1.2. False Positive Rates by Five Methods for False Scenario 
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Figure 4.1.3. Proportions of Students in Nine Level Links 

 

 
Figure 4.2.1. Proportions of Students in Level Links (Extreme Difference Cases) 
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Figure 4.2.2. Proportions of Students in Level Links (moderate difference cases) 
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Figure 4.3.1. Ordering of Difficulty Estimates of Items Measuring Different Levels 
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Figure 4.3.2. Observed Proportions of Students in Level Combinations 
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CHAPTER V 

 

DISCUSSION 

 While learning progressions show promise and are expected by many scholars to provide 

granular information about student learning to support instruction and learning growth, how to 

empirically validate them remains a challenging problem for the field of education (Heritage, 

2008; Wilson, 2012). A popular validation approach is to use statistical models to analyze 

response data collected from assessments developed to measure knowledge and skills specified 

by learning progressions. Inferences drawn from the analysis can allow us to examine theoretical 

claims about how the learning levels should be ordered and the plausibility of co-occurrence of 

the levels across progressions. Under this context, three psychometric models were investigated 

in this study to shed light on their effectiveness for evaluating learning progressions using 

simulated and empirical data. In Chapter 4, the results were reported for two simulation studies 

and one empirical investigation. What follows will be a discussion of the findings across the 

studies, with a specific connection to the research literature of evaluating learning progressions. 

Then, a summary of the findings about the effectiveness of the models will be provided. Finally, 

four limitations and a few future directions will be discussed with the intention that they will be 

helpful for future studies and operational works related to learning progressions. 

5.1. Simulation Studies 

 When statistical models are used to evaluate learning progressions empirically, we must 

deal with two moving parts: (i) the trustworthiness of the learning theories, and (ii) the sensitivity 

of the methods using results from fitting the selected model to learning progression data. In one 

case, the theory can be plausible, but the model might not be sensitive enough to support the 

underlying theory. In another situation, learning progressions are less likely to hold, nonetheless, 
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statistical results from fitting the model to empirical data can falsely inform the opposite due to 

their insensitivity of detecting implausible theories. This view was the reason why simulation 

Studies 1 and 2 were conducted with the purpose of understanding the moving part of 

model/method sensitivity in detecting the validity of learning progression theories. The results 

reported in Chapter 4 indicated that the simulation investigations cast some light on the 

effectiveness of the models and the methods using such models to examine simulated 

progressions. Following the organization in Chapter 4, the next two sections will discuss the 

results of the simulation studies by claims 1 and 2 followed by a comparison of the results across 

models and simulation conditions. 

5.1.1. Claim 1: Level Order  

 None of the five methods considered in this study outperformed the others in terms of 

obtaining expected true and false positive rates at the same time. Across Studies 1 and 2, the t-

test method under the MIRT framework consistently had deflated type I error rates (i.e., false 

positives). All the rates were below .05 and more than 80% of them did not exceed .01. This 

result suggests that the t-test was a strict test. In other words, it seemed to be helpful in detecting 

incorrectly ordered learning levels. However, it was observed across the simulation that this t-

test method was not sensitive enough to detect true level order when the difference between the 

levels was moderate or quite large. It was, though, perfectly sensitive as any other methods when 

the difference between learning levels was extreme. Results for the remaining methods (i.e., 

ordered-test using MIRT, location using HO-DINA, and minimum tests using HO-DINA and 

DINA) were observed to be in the opposite direction with the t-test. Indeed, the true positive 

rates for these methods across true conditions were much more reasonable those of the 

counterpart. The lowest true positive rate was .73 for the HO-DINA location test in Study 1. 
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Most of the remaining rates varies from .90 to 1. Notably, the CDM-based methods perfectly 

reconfirmed the true information used to generate the data in Study 2 even if the difference 

between the attributes was moderate. This set of results signifies that the last four methods 

tended to be powerful enough to confirm the correct level order of learning progressions. 

However, these methods were less likely to perform adequately when the theory was false. In 

effect, their false positive rates when item difficulty and attribute locations were sampled from 

the same distributions were consistently much higher than a conventional error rate of .05. 

Across conditions, false positive rates for these methods ranged from .15 to .41 with most of the 

values were beyond .20. Taken together, the methods and models appeared to complement each 

other in detecting level order across simulation conditions. The t-test was seen to have enough 

power to confirm the true theory or correctly detect false progressions for conditions of 60 items. 

Meanwhile, the remaining methods appeared to be useful to analyze data of smaller sample sizes 

or less items which is very likely to be the case for classroom and/or interim assessments. In this 

instance, if the ordering is probable due to prior knowledge of the theory, the ordered-median, 

location and the minimum tests can be adopted to confirm that information. Otherwise, the t-test 

should be conducted to defy it. 

5.1.2. Claim 2: Level Link 

 Validating the co-occurrence of levels across progressions was shown to be quite 

challenging even in simulation studies. As observed Study 1 when MIRT-SS was the generating 

model, the accuracy rates of classifying students into combinations of levels by the MIRT-SS 

and CDMs were far from perfect. The rate was highest at .69 in condition 8 of 1,000 students, 60 

items and strong correlation for MIRT-SS and lowest at .33 in condition 5 of 1,000 students, 40 

items and moderate correlation for DINA. The accuracy rates for Study 2 between MIRT-SS and 
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the true classification by HO-DINA were higher than the first study. Nonetheless, they all 

remained below .84 and became as small as about .50 when the distance between attributes was 

set at a moderate value. These accuracy rates can be further understood by examining how the 

models classified students into nine reasonable combinations and seven combinations with at 

least one inconsistent profile in them. With the only exception when the attributes were set at 

extreme distance, the percentages of students in the nine combinations were seen to be notably 

different for MIRT-SS and the CDMs. The difference in the percentages was more likely to 

occur for combinations [11], [22] and [33]. In Study 1, much more students were placed by in 

level-2 of both progressions by MIRT-SS than by the CDMs. In Study 2, the classification 

accuracy and cross-model consistency into level combinations by the models depended on the 

magnitude of the distance between the attributes. When the distance was extreme (i.e., 2 logits), 

the three models appeared to work quite accurately and consistently in classifying students into 

levels. Expectedly, when the distance became moderate (i.e., .50 logits), the classification by the 

MIRT-SS and CDMs diverged greatly. 

5.1.3. Results across Models and Conditions 

In terms of how different models perform across the simulation studies, two CDMs (i.e., 

HO-DINA & DINA) seemed to produce comparative results across the simulation studies and 

their results were different from MIRT-SS’ in most of the cases. Their true and false positive 

rates as well as proportions of students classified in each level combination were nearly identical 

within each condition and scenario simulated in Studies 1 and 2. Most if not all the differences 

by the models were within a few percentage points. In comparison to accuracy rates of around 

60% to 70% of MIRT-SS in Study 1, the CDMs showed nearly-perfect recovery rates in Study 2. 

Indeed, the lowest classification accuracy rate for HO-DINA and DINA in the former was as 
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high as .97. Whereas, the highest accuracy rate of MIRT-SS in Study 1 was as low as .69. This 

difference for the classification accuracy seemed to favor the CDMs in the sense that sampling 

error tended to cause less impact to the accuracy of the classification by the two models. 

Whereas, the use of cut scores in the MIRT framework to locate students into learning levels 

were more likely to be impacted by sampling error.  

It is also helpful to bring into light the dependency of the result on the factors 

manipulated in the simulations. Looking across studies and conditions, the results appeared to be 

somewhat dependent on the simulated variables which included sample sizes, number of items, 

the strength of the correlation between progressions, and the magnitude of the distance between 

learning levels. And, the dependency of the results on the variables also varied by methods and 

models as well. Indeed, holding other factors constant, true positive rates for all five methods 

tended to be higher for data with more items in Study 1 when they were used to evaluate the true 

level order. This finding can be seen from Figure 4.1.1 in that the lines seemed to go up from 

conditions 1 to 4, and 5 to 8. It is noted that 40 items were generated in conditions 1, 2, 5 & 6, 

and 60 items in the remaining conditions. Moving to the second study, this result seemed to hold 

true for MIRT-based t-test for the moderate difference cases. When the difference between 

learning levels was extreme, the true positive rates were perfect (i.e., 1) for all methods and 

conditions. Coming back to the moderate difference cases, the power rates for the t-test were 

higher for test forms of more items. Table 4.2.2 showed us that moving from 40 items to 60 

items helped increase the power rates by around 10% for conditions of 500 students. This 

increase in power rates for the sample size of 1,000 simulees was doubled at around 20% when 

more items were involved. The impact of having more items was quite salient for the MIRT 

order-test in the moderate difference cases. However, the influence of longer tests to the true 
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positive rates of the order-test was much less noticeable. The rates increased at around only a 

few percentage points when more items were involved. 

The impact of the simulated variables into the effectiveness of the models and methods in 

assessing the second claim of learning progressions can also be seen through the classification 

accuracy and cross-model consistency across conditions and studies. Overall, the accuracy and 

consistency rates increased slightly with the increase of sample sizes, correlation, and the 

number of items. For Study 1, while holding other factors constant, the stronger correlation led to 

a few percentage points increase in the accuracy and consistency rates. This result can be 

observed from Tables 4.1.6 and 4.1.7. However, the strength of the correlation did not seem to 

affect the accuracy and consistency rates in Study 2 (see Tables 4.2.3, 4.2.6 & 4.2.7). The 

accuracy rate for the CDMs appeared to depend only on the number of items for this study in 

which more items led to an increase of a few percentage points in the accuracy rates. The number 

of simulees did not seem to play a role in steering the rate up or down. Across Study 2, averaged 

accuracy and consistency rates for samples of 500 or 1,000 students while other variables were 

kept the same, were nearly identical. Across studies, five methods to detect level order worked 

complementarily. The accuracy rate of MIRT-SS and consistency rates between MIRT-SS and 

CDMs in locating students into combinations of learning levels were far from perfect which 

reconfirmed the challenge of evaluating the level links of learning progressions. Among the 

factors manipulated throughout the simulation studies, the impact of test length appeared to be 

the most consistent across conditions. More items led to higher true positive, accuracy and 

consistency rates. In brief, results of the simulation studies increased our understanding of the 

models and methods derived from them. It helped us draw a big picture of how the models and 
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methods using the models functioned when one has access to the true information. This picture 

will guide the interpretation of the empirical results that will be discussed next.    

5.2. Empirical Study 

 To investigate the effectiveness of the models and methods considered in this study in 

analyzing empirical data, that data were calibrated and the plausibility of the theory underlying 

the data was examined. Insights gained from Studies 1 and 2 about the methods and the 

theoretical claims became the baseline information to interpret the results of this empirical 

application. A summary of the key findings of the investigation and discussion of the results in 

refence to the theory follows.  

5.2.1. Claim 1: Level Order 

With respect to the first claim of LR and PR, results obtained from the five methods 

consistently supported the theoretical ordering of learning levels for five out of six data sets. The 

only data that the t-test, location and minimum tests revealed negative result were LF3445. 

However, the order test that compared the medians of item difficulty for this data set confirmed 

that the medians were in an increasing order. Again, it is noted that item group of Level 4-5 of 

LF3445 contained only six items. In reference to the understating of how the methods worked for 

simulated data shown earlier, these results provided statistical evidence to support the first claim 

of increasing complexity of learning levels. Indeed, given the very small false positive rates of 

the two-sample t-test in reconfirming the level order in the true scenario, it is very likely that the 

lower levels of the five supported data sets (i.e., LF1223, LF2334, PR1223, PR2334 & PR3445) 

were less sophisticated than the higher levels. For the remaining data of LF3445, only the 

median test showed positive result that the median difficulty of item group LF 3-4 was smaller 
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than the median of LF 4-5 (see Figure 4.3.1). Given the large false positive rate of this order-test 

and the strictness of the t-test observed throughout the simulation conditions, it is suggested that 

further investigation is needed to reconsider the ordering of levels 3, 4 and 5 of LF.  

5.2.2. Claim 2: Level Link 

For the second claim of co-occurrence of levels across learning progressions, using the 

models, students were observed in all the 10 level-links postulated in Arieli-Attali et al. (2012). 

Remarkably, all three models (i.e., MIRT-SS, HO-DINA, & DINA) classified at least a few 

students into nine out of 10 level-links. The only theorized combination that contained 0% of 

students was level-1 of LF and level-2 of PR. MIRT-SS did not locate any student into this link. 

The notable difference of the percentage of students classified into each combination of levels by 

MIRT-SS and CDMs shown in Tables 4.3.11 to 4.3.13 seemed to indicate that the distinctiveness 

of the learning levels measured by the items in this empirical study was less likely to be 

extremely large. Indeed, results of the extreme difference case of Study 2 signified that if the 

distance between attributes defined by item groups of lower and higher levels was extreme (e.g., 

2 logits), the percentages of students in each combination by the models should be more similar 

(see Table 4.2.4). This can also be seen by looking at the location distance of the empirical data 

in Table 4.3.9 which varied from -.05 to .73. The moderate difference between the attributes 

defined by the learning levels in this empirical exploration was also likely to be the reason 

behind the low cross-model classification consistency among MIRT-SS and CDMs shown in 

Table 4.3.14. The rates ranged from .39 to .64 and were more in line with the cross-model 

classification consistency found in Study 2 for the moderate difference cases reported in Tables 

4.2.6 and 4.2.7.  
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Given the evidence explained above, the models were shown to be useful in evaluating 

the second claim of co-occurrence of learning levels since they revealed students in all theorized 

combinations. On the other hand, the models also located students into seven additional links. 

While this finding warrants further investigation, it can be explained, in part, by looking at the 

nature of the theory and the additional links. For instance, combination of level-2 of LF and 

level-1 of PR was not postulated. However, the next combination (2,2) (i.e., level-2 for both LF 

and PR) was theorized and observed using each of the three models. This observation suggested 

that students mastered level-2 of LF might not have been at level-2 of PR automatically. It was 

possible that students in level-2 of the first progression can only just be competent at the 

knowledge and skills described in level-1 but not in the higher levels of PR. A similar argument 

can be made for other combinations having some students by at least one model that were not 

predicted by Arieli-Attali et al. (2012). In short, the models appeared to be effective in detecting 

the predicted order of learning levels and the possibility of co-occurrence of levels. However, 

how effective they are in locating students into learning levels, thus combinations of levels, 

remained unanswered within the scope of this statistical study. For this problem to be solved, 

some type of standard setting studies, classroom observations, teacher or cognitive interview 

must be conducted to provide external validity evidence to support the use of the model. These 

future directions will be elaborated next after discussing the limitations of this study. 

5.3. Conclusion 

This dissertation study was set up and implemented to examine the effectiveness of 

MIRT-SS, HO-DINA and DINA in evaluating two theoretical claims of learning progressions. 

Through two simulation studies and one empirical analysis, it can be concluded that the models 

and methods derived from them appeared to be effective at analyzing data to evaluate learning 
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progressions. For the first claim of increasing order of learning levels, the MIRT t-test and the 

remaining four methods considered in this study were likely to work in a complementary fashion 

in the simulation and consistently while they were used to analyze empirical data. When the 

sample sizes and number of items were large enough (e.g., 1,000 students and 15 items per item 

group), the MIRT t-test can have a power up to .80 to confirm the true theory underlying the 

learning progression data. The MIRT order test, location and minimum tests of CDMs can be 

useful when there were less students and some prior knowledge to support the plausibility of the 

theory was available. In other words, these methods can be adopted to reevaluate a learning 

progression theory using a smaller sample and less items if this theory had been supported 

previously using more data and more items. This aspect of the four methods deemed useful given 

that a sample size of 1,000 and a test of 60 items sounds impractical for classroom or formative 

assessments. For this application, the very high false positive rates of the four tests would not be 

so concerning since our underlying theory has already been supported. Equally important, once 

the methods can confirm the increasing order of levels, MIRT-SS, HO-DINA or DINA could be 

used to identify student learning level or profile to provide information to educators to support 

instruction and student learning. The effectiveness of the methods to evaluate claim 1 was also 

seen through the empirical application. As reported in Chapter 4, results across the three models 

were consistent in shedding light on the increasing order of learning levels of LF and PR. Four 

out of five methods derived from the models which include MIRT t-test, location and minimum 

tests of the CDMs revealed the same test results for all data sets of the progressions (see Tables 

4.3.8, 4.3.9, & 4.3.10). They all supported the increasing order of five data sets and rejected the 

claim for LF3445. Meanwhile, the MIRT order-test was the only test that provided evidence in 

favor of the theory for all the data.  
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In terms of the second claim of level link, Wilson (2012) described and discussed the 

challenge of examining this aspect of learning progression theory. Since then, at least a few 

studies (e.g., Pham et al., 2016; Shin et al. 2017) have tried to address this problem. The results 

of three studies reported earlier in this dissertation illustrated how difficult it was to evaluate the 

possible co-occurrence of levels across progressions when only statistical analyses were used. 

When MIRT-SS was the generating model, this model was able to recover only about 60% to 

70% of the true classification using the true item and proficiency parameters. The accuracy this 

in Study 1 was improved with more data and stronger correlation between progressions but 

remained far from perfect. This observation indicated the challenge of using MIRT-SS and cut 

scores to locate students into level links. In Study 2 when the simulating model was switched to 

HO-DINA, the CDMs were seen to recover the true classification almost perfectly (see Tables 

4.2.3 & 4.2.6). The accuracy rates for these models were 97% for conditions of moderate 

progression correlation and became 99% when the correlation was set at .90. These nearly 

perfect accuracy of the CDMs suggested that if they can fit adequately with learning progression 

data, the classification of students into level links by these models can be consistent enough 

across samples.  

When assessing claim 2 in the empirical study, all three models appeared to be useful in 

evaluating the co-occurrence of the levels of LF and PR. Results obtained from fitting the models 

to the data provided evidence to support all 10 combinations predicted by the theory. They also 

suggested an addition of seven more possible links that could be considered to revise and 

reevaluate the theory. It is also noted that the cross-model classification consistency between 

MIRT-SS and the CDMs varied from as low as 39% for LFPR1223 to as high as 64% for 

LFPR3445. Since both IRT and CDMs can fit adequately with a given data set (Haertel, 1990), 
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the difference in how these models classified students into learning levels suggested that further 

studies are needed to shed more light on the validity of the classification. These future directions 

will be discussed after the section on some limitations of this dissertation study which will come 

next.  

5.3.1. Limitations 

 As any other scientific research, three studies reported in this dissertation have 

limitations. First, for practical purpose, only three specific models were considered in this study. 

Traditionally, CTT and IRT models has been suggested and used to evaluate learning hierarchies 

and progressions (e.g., Heritage, 2008; Steedle & Shavelson, 2009; White, 1974). CDMs came 

along later and have been adopted to explore learning progression data (e.g., Chen et al., 2017; 

Kizil, 2015; Pham et al., 2017). It is also noted that the Rasch model and its multi-dimensional 

extensions have been the main tool that was used extensively by the published works that relied 

on the IRT framework to evaluate learning progressions. For the CDMs, various models were 

adopted in the context of learning progressions. Kizil (2015) used the attribute hierarchy model 

by Gierl et al. (2006) and generalized diagnostic models by von Davier (2005). These models are 

more complicated and general than the CDMs considered in this dissertation. Similarly, Chen et 

al. (2017) used Rule Space Model (Tatsuoka, 1983) which is an CDM that assumes a 

hierarchical relationship for the attributes defined by their learning progressions. In this study, 

2PL MIRT model with simple structure, the DINA and its higher-order version HO-DINA were 

examined instead of the Rasch model and the more generalized or hierarchy version of CDMs. 

Within the MIRT-SS, the cut scores to place students into learning levels were the median of 

item difficulty of each item group. These scores can be set differently by different methods such 

as using the domain characteristic curve and an appropriate response probability. Within the 
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CDMs, the default calibration settings by GDINA were adopted. These settings can be adjusted. 

Future investigations can consider a wider range of models and calibration options or even 

compare the Rasch framework with its counterparts of 2PL IRT.  

 Second, only learning progressions of three learning levels were simulated and 

considered in this study. Even if three level progressions are popular in the literature (Shin et al., 

2017), existing progressions can have as many as 15 levels (e.g., Briggs et al., 2015). How the 

models perform in evaluating progressions of more than three levels remains an open question. 

This limitation can be addressed in follow-up studies by considering progressions with more than 

three levels. 

 Third, this set of studies only focused on the statistical aspect of evaluating learning 

progressions. While using statistical models deemed useful to examine learning claims 

empirically, validity evidence collected from other informants such as classroom teachers, 

content experts, or students through cognitive interviews is needed to draw more holistic view of 

the theory under evaluation. The qualitative information if it becomes available, can be used to 

interpret or critique the statistical results. For example, expert and teacher opinions can provide 

insightful explanation for the plausibility of level links (2,1) and (3,2) for LF and PR which were 

not predicted but many students were observed by MIRT-SS to be in these combinations.    

 Fourth, the empirical investigation in Study 3 was purely sectional in the sense that 

student learning was only captured at one point in time. It would also be useful if data of student 

learning can be tracked longitudinally to see if students transition from one level to the next as 

the theory predicted. Since learning progressions are really about common pathways that a 

typical student would go through when s/he learns a content area, knowing more about how 

students’ progress from one level to the next through a course of study is needed to cast more 
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light on the validity of the theory underlying LF and PR. To address the limitations, a few future 

directions are suggested next.   

5.3.2. Future Directions 

Three studies reported in this dissertation contributed useful information about the 

effectiveness of the MIRT-SS, HO-DINA and DINA in evaluating learning progressions. 

Nonetheless, by no mean can they answer every research question and offer final solutions to the 

challenge of assessing level links put forth in Wilson (2012). Under this view, a few lines of 

follow-up research are suggested from what was learned through this study to expand our 

understanding and tool kits to evaluate learning progressions. To address the first limitation 

described earlier, two new simulation directions can be taken. In the first place, a new set of 

simulations should be conducted to compare the performance of MIRT-SS, HO-DINA and 

DINA when adjustments are made with respect to the method used to identify cut scores or 

calibration features set in GDINA to estimate the CDMs. Another direction would be expanding 

the scope of Studies 1 and 2 to consider more statistical models. Within an IRT framework, 

Rasch-based approaches such as the change-point model introduced in Shin et al. (2017) can be 

compared with the 2PL counterparts. Similarly, a simulation study that takes into consideration 

some more complicated models from the CDM family can be useful to help the field understand 

more about how these models perform in the best-case scenario where one knows the true 

information of the simulated progressions. Among the CDMs, models that assume a hierarchical 

order of learning attributes seem to be relevant to the work of evaluating learning progressions of 

more than three levels. Different models should also be fit to empirical data and model-data fit 

information should be used to select the most appropriate model or to examine the usefulness of 

the model. A prior example of this line of research can be found in Kizil (2015).  
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 Second, to consider progressions of more than three learning levels, they can be 

generated and investigated using the models considered in this study or some other models 

mentioned earlier. In this case, more cut scores will be needed and more settings for CDMs can 

be selected to analyze the data. The introduction of more than two cuts and a wider selection of 

CDMs can make the exploration more challenging. However, these follow-up investigations are 

expected to bring us closer to the real complexity of evaluating learning progressions of more 

than three levels.  

Third, while simulations enable us to understand the statistical models and methods, 

qualitative perspectives can offer valuable insight into how learning progressions play out in 

teacher professional development, classroom instruction and assessment. This view suggests a 

line of research that follows the principle of research practice partnership (RPP) (Fishman, 

Penuel, Allen, Cheng, & Sabelli, 2013) to bring researchers and practitioners together to 

collaborate in educational research to support student learning. Following this RPP method, 

learning scientists, curriculum experts and teachers can work together to grasp existing learning 

progressions or define new theories. Then, teachers will rely on the progressions to design 

lessons, activities and build classroom assessment. In the next step, teachers implement the 

curriculum and work with researchers to collect and analyze classroom data and student artifacts. 

These data will be used to evaluate the progressions and revise the theory. This process can be 

looped in cycles as a continuous improvement tool to refine the learning theory.  

Fourth, collecting longitudinal data to evaluate LF and PR would advance the study of 

these progressions into another level. Items can be subset from the current item pools for LF and 

PR. For some levels (e.g., Level 1-2 and Level 4-5 for LF and PR), more items can be drafted 

and revised to add in the existing pools. In the next step, test forms will be built and administered 
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to the same group of students at multiple time points. If resources become available, external 

variables of student learning such as their math scores or self-confidence ratings can be gathered 

to provide evidence to validate the test scores of the participants. Longitudinal IRT or CDMs can 

be adopted to analyze the longitudinal data. Other sources of information such as classroom 

videos, students’ worksheets and artifacts can also be collected and analyzed to shed more light 

on the learning trajectories through which each student advances their knowledge and sharpen 

their skills of functions, linear functions and proportional reasoning from novice to expert 

understanding and expertise.  

Fifth, given that computers are much more accessible to students nowadays than a few 

decades ago, the line of research on using learning hierarchies to improve computer-based testing 

initiated by Ferguson (1969) and advanced by Spineti and Hambleton (1977) should be revived. 

Recently, adaptive assessment systems have been developed to take advantage of learning maps 

and trajectories to support personalized learning (e.g., Confrey et al., 2017) and students of 

special needs (e.g., Dynamic Learning Maps® Consortium, 2018). However, more studies along 

this line should be conducted to build more knowledge around this topic and inform 

developmental projects and useful applications of learning progressions and assessments based 

on learning theories. 

Finally, to improve the utility of assessments based on learning progressions, it is critical 

that the communication of information obtained from the instrument to different stakeholders 

need to be effective and useful. In other words, studies of how to report assessment results 

regarding the current learning profile of learners and provide feedback to them and educators 

should be carried out. For instance, these studies can inform the kind of learning report layouts 

and presentations that might be the most accessible and useful for students, teachers and parents. 
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Taking the LF as an example, a few graphs of linear functions of different slopes plotted in the 

same coordinate plane can be used in a learning report as a suggestion for the next learning step 

for a student in learning level-3 of this progression. It is reminded that level-3 students in LF can 

understand and can work well with one linear function. In short, six follow-up directions were 

suggested in the hope that if they are carried out to a certain extent a more comprehensive view 

of the learning progression landscape will take shape. What comes next is some take-away 

messages that were drawn from this study to share with researchers and practitioners who are 

interested in evaluating learning progressions.   

5.3.3. Practical Implications 

 In this last section, three practical implications will be discussed as a way to conclude the 

dissertation. The first implication is about model selection. Then, the second set of suggestions 

deal with how to do data collection to evaluate learning progressions effectively. Last, collecting 

different sources of evidence to validate learning progressions will be elaborated as a take-away 

message for the audience. 

 As reported in the literature review, IRT and CDM are the two main modeling 

frameworks that have been used to evaluate learning progressions. Given the difference of the 

results for MIRT-SS, HO-DINA and DINA found in this study in many conditions as well as the 

empirical analyses, it can be generalized that IRT models and CDMs do not necessarily result in 

consistent classification of students into learning levels. Thus, the choice of model from one 

framework over the other is needed to provide more useful and valid information of student 

learning and feedback for instructional purpose. To avoid issues related to retrofitting, models 

should be selected prior to assessment development and data collection. As discussed in the 

literature review, IRT assumes the continuity of the construct measured by the assessment. 
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Whereas, the construct under CDM is assumed to be discrete. This distinctiveness of the 

frameworks implied that model selection should hinge on the nature of the construct defined by 

learning progressions and their learning levels. On the one hand, if the levels involve simple 

knowledge and skills such as adding two single-digit numbers, they can be dichotomized into 

mastery or non-mastery and CDMs can be preferred over IRT. On the other hand, if the levels 

appear to be spread out and cover a range of related yet different concepts and skills such as 

understanding and being able to work with non-linear functions, an IRT model seems to be a 

more appropriate choice.  Once the model is chosen, they can be used to inform item 

development, data collection and data analysis. 

The second line of implications relates to data collection to evaluate learning 

progressions under consideration. In the best-case scenario, statistical models should be selected 

before the construction of assessment and data collection. If it is the case, simulation studies 

should be conducted to guide the data collection design and analysis plan. The missingness by 

design of the empirical data used in Study 3 made it more challenging to examine IRT 

assumptions and model-data fit for all the models considered in this study. To mitigate the 

possible challenges caused by missingness or lack of power due to sample sizes, simulations can 

be carried out to compare a few data collection options to inform the most adequate design. 

Studies 1 and 2 are  two examples of how to use simulations to inform assessment development 

and data collection. If MIRT-SS is adopted to evaluate learning progressions and MIRT-based t-

test method is used to evaluate level order, it is suggested that at least 15 items per item group 

that tap into knowledge and skills of each adjacent levels are needed. If fewer items are used, the 

power to confirm the correct order of learning levels if it is true might be as low as .40. Even if 

the suggestion of 15 items per item group is fulfilled, the possible correlation between 
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progressions is likely to play a role in steering the power up or down. The power line of MIRT-

based t-test in Figure 4.1.1 implied that if the expected correlation is around .60 to .70, at least 

1,000 students will be desired to keep the power in the range of .70 to .80. From what was 

observed from Studies 1 and 2, sample sizes and number of items did not seem to impact the 

results of HO-DINA and DINA. With this observation, data requirements for these models 

should follow conventional guidelines and sample size recommendations for CDMs (e.g., Choi, 

Templin, Cohen, & Atwood, 2010; Kunina‐Habenicht, Rupp, & Wilhelm, 2012) or simulation 

studies can be conducted to inform data collection design. 

 Finally, according to George E. P. Box, “Essentially, all models are wrong, but some are 

useful.” (p.424, Box & Draper, 1987). If this view is well taken, then the responsibility of 

researchers using modeling as a tool to evaluate substantive learning theories begins by 

examining which models are less wrong and more useful. This may, however, be easier said than 

done, and the statistical explorations conducted in this dissertation illustrated how challenging it 

is to investigate the effectiveness and usefulness of only three models. Model-data fit analyses 

probably revealed some evidence to know which models were less wrong. Knowing which ones 

are more useful seems to be much more laborious and arduous. However, the finding that results 

from using MIRT-SS and CDMs to analyze learning progression data were quite different across 

numerous simulation conditions and in the empirical study implied that evidence from sources 

other than the internal structure of the response data is much needed to interpret the statistical 

results obtained from fitting the models and shed light on the usefulness of the models. As 

elaborated in the previous section on future directions, researchers and practitioners in the field 

of learning progressions should collect information from content experts, teachers, students and 

classroom activities to provide a more comprehensive view of the learning progressions under 
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evaluation. It is believed that looking into student learning from multiple angles and contexts 

will enable us to figure out an improved way to describe, evaluate and refine learning theories 

for the purpose of advancing human learning and thus human conditions. 
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APPENDIX: PERCENTAGES OF STUDENTS IN EACH PROFILE 

In this appendix, the expected percentages of students sampled from a standard normal 

distribution who mastered attribute 1 (i.e., of profile [10]), or mastered both attribute 1 and 

attribute 2 (i.e., in profile [11]), or were in the inconsistent cognitive profile [01] in the true 

scenario were computed. From equation (7) in Chapter 2, one has the probability of a student of 

continuous proficiency 𝜃 to master attribute 1 is: 

𝑃(𝑎 = 1|𝜃) =
1

1+exp(−1.7(1+𝜃))
. 

And, the probability for her/him to master attribute 2 is: 

𝑃(𝑎 = 2|𝜃) =
1

1+exp(−1.7(−1+𝜃))
. 

Conditional on the continuous proficiency, the probability for her/him to master both attributes, 

thus in learning level-3, is: 

𝑃(𝑎1 = 1 & 𝑎2 = 1 |𝜃) =
1

(1+exp(−1.7(−1+𝜃)))∗(1+exp(−1.7(1+𝜃)))
. 

Similarly, the probability for her/him to master only attribute 2 but not attribute 1 is: 

𝑃(𝑎1 = 0 & 𝑎2 = 1 |𝜃) = (1 −
1

1 + exp(−1.7(1 + 𝜃))
) ∗

1

(1 + exp(−1.7(1 + 𝜃)))
. 

In general, if the probability of mastering attribute 1, or both of them, or only one of them is 

given, let’s denote it be P (. | 𝜃). Then, for a population of examinees of a certain proficiency 

distribution with a density function of f(𝜃), the overall percentage of students in this population 

mastering attribute 1, or both of them, or only one of them is computed as the integral over the 

whole range of 𝜃 of the product of P (. | 𝜃) and f(𝜃). In functional form, it can be written as: 

𝑝+(. ) = ∫ 𝑃 (. | 𝜃)
+∞

−∞
∗ 𝑓(𝜃) ∗ 𝑑𝜃. 

 To approximate the percent correct for mastering attribute 1, or both of them, or only 

attribute 1, the following R-codes were used.  
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D=1.7 # to set up the normal-ogive scale for the attribute 

itcp1 <- .25 # -1 

itcp2 <- -.25 # -1 

integrand1 <- function(x){1/(1+exp(-D*(itcp1+x)))}                       # for mastering attribute 1 

integrand2 <- function(x){1/(1+exp(-D*(itcp2+x)))}                      # for mastering attribute 2 

integrand12 <- function(x){1/((1+exp(-D*(itcp1+x)))*(1+exp(-D*(itcp2+x))))} # for mastering 

both attribute 1 & 2 

integrand01 <- function(x){(1-1/(1+exp(-D*(itcp1+x))))*(1/(1+exp(-D*(itcp2+x))))} # for 

mastering attribute 2 but not  1 

 

 

product1 <- function(x){dnorm(x,0,1)*integrand1(x)}   # for mastering attribute 1 

product2 <- function(x){dnorm(x,0,1)*integrand2(x)}   # for mastering attribute 2 

product12 <- function(x){dnorm(x,0,1)*integrand12(x)} # for mastering both attribute 1 & 2 

product01 <- function(x){dnorm(x,0,1)*integrand01(x)} # for mastering attribute 2 but not 1 

 

integrate(product1,lower=-6,upper=6)   # for mastering attribute 1 

integrate(product2,lower=-6,upper=6)   # for mastering attribute 2 

integrate(product12,lower=-6,upper=6)  # for mastering both attribute 1 & 2 

integrate(product01,lower=-6,upper=6)  # for mastering attribute 2 but not 1  

 

Below is the results I obtained when I ran the code. 

 

# For extreme difference cases: itcp1 <- 1, itcp2 <- -1 

 
>integrate(product1,lower=-6,upper=6)   # for mastering attribute 1 
.7592567 with absolute error < 6.4e-05 
 
>integrate(product2,lower=-6,upper=6)   # for mastering attribute 2 
.2407433 with absolute error < 8.6e-05 
 
>integrate(product01,lower=-6,upper=6)  # for mastering attribute 2 but 
not 1 
.01790194 with absolute error < 4.7e-06 

 

# For moderate difference cases: itcp1 <- .25, itcp2 <- -.25 

 

 > integrate(product1, lower=-6,upper=6)   # for mastering attribute 1 

 .5701569 with absolute error < 6.1e-06 

 

 > integrate(product2, lower=-6,upper=6)   # for mastering attribute 2 

 .4298431 with absolute error < 4.5e-06 

 

 > integrate(product01, lower=-6,upper=6)  # for mastering only attr. 2  
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