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ABSTRACT 

THE EFFECTS OF SOCIAL AND PHYSICAL INTERACTIONS ON LIZARD 

MORPHOLOGY, BEHAVIOR, AND ECOLOGY  

FEBRUARY 2019 

CASEY A. GILMAN, B.S., UNIVERSITY OF NEW MEXICO 

M.S., UNIVERSITY OF NEW MEXICO 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Duncan J. Irschick 

 

Interactions with the physical and social aspects of an animal’s surroundings direct the 
trajectory of local adaptation and can lead to tremendous diversity within and across taxa. 
In my dissertation, I explored how interactions between lizards and their environment 
lead to morphological, behavioral, and ecological diversity. First, I examined how a 
common, but unexplored habitat characteristic, perch flexibility, affects jumping 
performance of an arboreal lizard. I found that in the lab, green anole lizards (Anolis 
carolinensis) did not take advantage of the natural recoil of the flexible perches, and 
suffered decreased jump distance and takeoff speed as a consequence. Next, I extended 
my inquiry into how this habitat characteristic affects multiple aspects of behavior and 
morphology of the lizards in nature, given the potential performance costs associated 
with flexible perches. Most strikingly, I found that while green anoles used a range of 
perches in their habitat for most activities, they selectively jumped from relatively non-
flexible perches. Then, I sought to more broadly understand the effects of habitat on the 
whole organism. I examined associations between habitat structure and complexity on 
male and female sexual and non-sexual traits, as these would reflect habitat effects on 
locomotion, foraging ecology, and social interactions. I found that while there was no 
association between habitat structure and variation in most traits I examined, male body 
condition decreased with decreasing vertical vegetative complexity. Finally, I focused on 
the role of social interactions in increasing morphological diversity. I examined the 
association between genital morphology and male mating type in an alternative mating 
strategy population of the terrestrial lizard Uta stansburiana. I found that male mating 
types differed in genital length and complexity, suggesting that strong sexual selection 
may drive morphological differentiation within populations. Together, my work shows 
the importance of animal-environment interactions as drivers of diversity and contributes 
to the broader fields of sexual selection, behavior and evolutionary ecology. 
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CHAPTER I 
 

TOTAL RECOIL: PERCH COMPLIANCE ALTERS JUMPING 
PERFORMANCE AND KINEMATICS IN GREEN ANOLE LIZARDS (ANOLIS 

CAROLINENSIS) 
 

 
A. Introduction 

	
The ability of an animal to move effectively through its habitat is often essential for 

survival (Turchin, 1998), and adaptations of animals to locomotor challenges have 

provided insights into the evolution of many taxa (Biewener, 2003). Because of its 

general importance, many studies have examined locomotion from a variety of 

perspectives, including physiological (Ricciardella et al., 2010; Zhong et al., 2011), 

anatomical (Schoenfuss et al., 2010; van Casteren and Codd, 2010) and kinematic (Hugel 

et al., 2011; Larson and Demes, 2011), among others. Although these studies are 

representative of aspects of locomotion of many animals, few studies have directly 

addressed the locomotor challenges of animals that inhabit structurally complex arboreal 

habitats, with some exceptions (e.g. Bonser, 1999; Spezzano and Jayne, 2004; 

Vanhooydonck et al., 2006). For arboreal animals, the interaction between individuals 

and their habitat can be complex because of the variability in perch characteristics, such 

as diameter, length, angle and compliance (Irschick and Losos, 1999; Mattingly and 

Jayne, 2004). Perch compliance may be of particular concern for arboreal animals that 

use jumping as a means of moving through their habitat because of the high forces 

generated during takeoff (Crompton et al., 1993). The mass of the animal and the forces 

generated during takeoff cause compliant perches to bend, resulting in both potential and 

kinetic energy being lost to the perch (Alexander, 1991; Bonser, 1999; Demes et al., 

1995). If an animal is able to take advantage of the kinetic energy stored in the perch, the 
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animal could use the perch as a springboard to propel itself, offsetting the initial energy 

loss. However, the use of perches as a springboard during jumping has thus far only been 

seen in humans (Channon et al., 2011). If a compliant perch is not used as a springboard, 

loss of energy to the perch could have marked effects on an animal’s locomotion and 

behavior by decreasing the distance or speed at which the animal is able to jump. 

Therefore, perch compliance could ultimately affect an arboreal animal’s ability to reach 

its intended target (the perch), which might have fitness consequences.  

 Thus far, research on the effects of perch compliance on jumping has been 

restricted to a few studies of primates and birds (Bonser et al., 1999; Channon et al., 

2011; Crompton et al., 1993). These authors found that in laboratory jumping trials, 

common starlings (Sturnus vulgaris) do not compensate for the loss of energy due to a 

compliant perch, whereas in contrast, white-cheeked gibbons [Hylobates (Nomascus) 

leucogenys] minimize the effects of compliance by using low-power jumps to limit perch 

deflection. In the wild, bush babies (Galago moholi) chose larger-diameter (therefore less 

compliant and more energy efficient) perches for maximal jumps. Although these studies 

have been extremely valuable, the behavior and locomotor kinematics of birds and 

primates may inadequately represent the large number and wide range of small animals 

that use compliant perches, such as frogs, lizards, small mammals and invertebrates. 

There may be other strategies that smaller animals employ, which would be useful to 

explore. Additionally, the effects of perch compliance on jumping across individuals of 

different size and age classes within a species have hardly been considered (but see 

Crompton et al., 2003). Finally, because of dramatic differences in morphology among 
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taxonomic groups, it is possible that the effects of compliance could differ because of 

interactions of some body parts (e.g. the tail, such as in lizards) with the compliant perch. 

 One clear prediction and finding based on theory and empirical data is that if a 

small animal jumps from a compliant perch before the perch recoils, some kinetic energy 

of the jump will be lost to the bending of the perch, as seen with larger animals. 

Therefore, we predict that arboreal lizards will jump before the perch recoils, as observed 

in larger animals (Demes et al., 1995), and that increased perch compliance will 

negatively impact key aspects of jumping, particularly jump distance and takeoff speed, 

likely because of the loss of kinetic energy to the perch. We also predict that because 

jump distance in lizards is determined largely by takeoff speed and takeoff angle, lizards 

will increase takeoff angles from compliant perches to offset the negative effect on 

takeoff speed (Toro et al., 2004). Lastly, we anticipate that within a species, as mass 

increases, the negative effects of compliance on jump distance and takeoff speed for the 

same perch will increase. Larger animals cause greater displacement of compliant 

perches and generate greater absolute forces during takeoff than smaller animals, and 

therefore will lose more potential and kinetic energy of the jump (Alexander, 2003; Toro 

et al., 2003).  

 Arboreal lizards present an exceptional system in which to test the effects of 

perch compliance on behavior and jumping performance. For example, there are 400+ 

species of Anolis lizards, the majority of which use a variety of arboreal habitats and 

regularly use jumping to move around (Irschick and Losos, 1999). Anole ecology and 

locomotion has been widely studied (Calsbeek and Irschick, 2007; Irschick and Losos, 

1999; Losos and Sinervo, 1989; Spezzano and Jayne, 2004; Vanhooydonck et al., 2006), 
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although one anole species has been particularly well studied in terms of jumping, 

namely the green anole, A.carolinensis Voigt 1832 (Bels et al., 1992; Gillis et al., 2009; 

Kuo et al., 2011; Losos and Irschick, 1996; Toro et al., 2003; Vanhooydonck et al., 

2005). However, the effect of perch compliance on this species, or any small (<65 g) 

species, is unknown. This species inhabits complex three-dimensional habitats, jumping 

between adjacent branches, from branches or tree trunks to the ground, and to branches, 

leaves and trunks above the original perch (Irschick and Losos, 1998) (D.J.I., 

unpublished). The green anole occupies a wide variety of perch types, from leaves and 

narrow branches to trunks, and therefore encounters a range of compliances that may 

affect performance (Irschick et al., 2005a; Irschick et al., 2005b) (C.A.G., unpublished). 

In this study we investigated how perch compliance affects several key jumping 

variables, including jump distance, takeoff duration, takeoff angle, landing angle and 

takeoff speed, across a range of body sizes in the arboreal green anole, A. carolinensis. 

 

B. Materials and Methods 

1. Perch characteristics in the wild 

Studies of animal performance capacity are only valuable if they are performed in an 

ecologically relevant context (Irschick and Garland, 2001). To date, there are no 

published data on the compliance of the perches that anole lizards use in natural settings. 

To determine whether the compliances of the flexible perches used in our study fall 

within the natural range found in the wild, we conducted a small survey of perch 

compliance in A. carolinensis at Riverbreeze County Park, Oak Hill, FL, USA. We 

walked through the park until we encountered an adult male or female A. 
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carolinensis, and then noted the substrate type (leaf, vine, branch or trunk), and measured 

the perch diameter and compliance (N=54). To determine compliance, we measured the 

height of the perch, hung a fishing sinker of known mass from the perch at the exact 

spot where the individual was found, and measured the height of the perch again. We 

then calculated the compliance using the relationship between displacement and force: 

, 

where C is compliance, F is force [mass in kg * 9.81, (gravitational acceleration)], and d 

is the displacement of an object due to the force (Halliday et al, 2005). 

 

2. Laboratory trials 

We used five females (2.02±0.57 g, mean ± s.d.) and six males (4.30±1.79) of A. 

carolinensis for our jumping trials, which we acquired through the pet trade. All 

individuals were in good health with intact original tails. We marked each individual on 

its ventral surface with a permanent marker and housed them individually in plastic 

aquaria (42.9x15.2x21.6 cm) supplied with wood mulch and a wood basking perch. The 

cages were sprayed with water daily, and the lizards were fed calcium-dusted crickets 

twice a week and provided with a 12 h:12 h light:dark cycle using an aluminum clamp 

work light and a 65 W incandescent bulb.  

 We conducted jumping trials in a large glass aquarium (182x62x64 cm) that 

prevented lizards from escaping during the trials. Before trials commenced, we marked 

each lizard with Wite-Out® (BIC Corporation, Shelton, CT, USA) at six locations (three 

dorsal and three lateral: pelvis, mid-body and shoulder) to use as landmarks during 

analysis. To elicit maximal jump performance, we heated lizards to close to their 

preferred body temperature, 31°C (Lailvaux and Irschick, 2007), for approximately 1 h 
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by placing them in individual cloth bags in a small Styrofoam cooler (30x30x30 cm) 

heated by an aluminum work lamp with a 65 W incandescent bulb. Each lizard was 

placed at the end of a horizontal balsa wood plank at one of three levels of compliance 

(rigid, flexible and most flexible) and was encouraged to jump by rapid hand gestures 

towards the lizard. Perch compliance was calculated by first measuring the flexural 

modulus of the balsa wood (N=5) in a three-point bend configuration (span length=75 

mm) using an Instron 5500R (Instron, Norwood, MA, USA), and then using the formula: 

, 

where E is the measured flexural modulus of the wood, and l, w and t are the length, 

width and thickness of the wood, respectively. All planks measured 2 mm thick by 25 

mm wide, with a 25x25 mm strip of fiberglass screen glued to one end for traction. 

Compliance was altered by changing the length of the wood. The rigid perch was fully 

supported by a steel file (3x16x150 mm) underneath the board that prevented flexion but 

did not interfere with the size characteristics of the board. The other two perches were 30 

cm (flexible, C=0.27 mN–1) and 40 cm (most flexible, C=0.64 mN–1) long. All perches 

were placed 11 cm above the landing surface, which extended from below the perch to 

~60 cm past the perch to allow lizards to jump at a natural range of distances. We 

presented the lizards with a perch (wooden dowel, 1.24x10 cm diameter x length) at 

approximately the same height as the jump perch, though slightly farther than their 

known maximal jump distance [~40–45 cm away (Bels et al., 1992)], to provide an 

incentive for jumping. This perch system, which was also used in Kuo et al. (Kuo et al., 

2011), was designed to elicit maximal jumps, as it mimics the natural tendency of this 

species to jump from perch to perch in the wild. Lizards jumped from one perch type one 
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to two times a week (one to two jumps per trial), and perch types were determined 

randomly before each set of trials. We filmed each jump at 500 frames s–1 with a Photron 

1280 PCI high-speed video camera (Photron, San Diego, CA, USA). The glass aquarium 

contained a large mirror positioned on one side of the aquarium at a 45 deg angle to the 

perch and landing area, which allowed simultaneous recording of the lateral and ventral 

views of each jump.  

 We used the average of the two longest and straightest jumps per individual per 

perch type for kinematic analysis, and used ImageJ (Rasband, 1997–2009) to calculate 

the following variables: (1) jump distance, the distance traveled of a clearly visible mark 

on the lizard from rest to landing; (2) takeoff angle, the angle between a line from the 

pelvis to the shoulder girdle and the horizon just after the feet left the perch; (3) landing 

angle, the angle between the same line and the horizon when any of the lizard’s feet first 

contacted the landing surface; and (4) takeoff duration, the time between the start of the 

jump to just after the lizard’s feet left the perch. With these data, we also calculated 

takeoff speed as the average speed traveled during the last five frames of takeoff (Kuo et 

al., 2011).  

 All experimental procedures were conducted under the permission of University 

of Massachusetts Amherst Institutional Animal Care and Use Committee (protocol 

number 2011-0051). 

 

3. Statistical analyses 

We began our analyses by testing for the combined effects of compliance and mass on 

the dependent variables jump distance, takeoff duration, takeoff speed, takeoff angle and 
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landing angle, using one-way repeated-measures analyses of covariance (ANCOVAs). 

Individual masses of some of the animals changed slightly over the course of the study 

(mean=-0.004 g), so we used mass at the time of the jump as a covariate, compliance 

level (rigid, flexible and most flexible) as a fixed factor and individual as a random 

factor. To better understand the effects of the interaction between compliance and mass 

on jump variables, we followed these analyses with one-way repeated-measures 

ANOVAs using either the full data set of the average of the best two jumps per individual 

per perch type (N=33), or with the data set separated by lizard mass (lizards <3 g, N=21; 

lizards >3 g, N=12). There were both males and females in the group of smaller 

individuals, so we tested for the effects of sex on the dependent variables using one-way 

repeated measures ANOVAs. There were no differences between the sexes for any 

dependent variable in the small group, so the sexes were pooled (distance: F1,18=2.01, 

P=0.17; takeoff duration: F1,18=0.90, P=0.36; takeoff speed: F1,18=1.03, P=0.33; takeoff 

angle F1,18=0.77, P=0.39; landing angle: F1,18=0.75, P=0.40). We separated the 

individuals into these two categories based on our observation that the size data naturally 

fell into these two distinct groupings (small lizards: mean=2.05 g, range=1.43–2.92 g, 

N=7; large lizards: mean=5.43 g, range=3.81–6.05 g, N=4). To account for multiple 

ANOVAs, a sequential Bonferroni test was used for each set of tests (Rice, 1989). To test 

for differences in jump distance and takeoff speed between the size groups we used 

Mann–Whitney–Wilcoxon tests for the rigid and most compliant perches. 

 

C. Results 

1. Perch characteristics in the wild 
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Perch diameter and compliance of the perches measured at Riverbreeze County Park 

ranged from 0.2 to 1.0 cm and 0.01 to 1.67 mN–1 for branches, 0.3 to 1.0 cm and 0.01 to 

0.53 mN–1 for vines, 1.4 to 13.0 cm and 0.01 to 0.17 mN–1 for palm fronds, 0.4 to 

5.1 cm and 0.03 to 1.43 mN–1 for leaves, and 3.5 to 5 cm and 0.12 to 0.83 mN–1 for 

terminal branch leaf clumps, respectively. 

 

2. Laboratory trials 

Lizards jumped from the rigid perch with the same general kinematics as seen in other 

studies (Bels et al., 1992; Gillis et al., 2009): the jump started with placement of the hind 

feet towards the front of the body; lizards then used their hind limbs to propel themselves 

forward with a mean positive body angle of 12.1±1.7 deg and a mean speed and duration 

of 130.4±2.6 cm s–1 and 0.1±0 s. After the takeoff phase, the aerial phase followed with 

the forelimbs limbs tucked close to the body, and lizards landed with the body angled 

so that the hind feet contacted the landing substrate first (26.7±4.2 deg), at a mean 

distance of 34.4±0.9 cm.  

 When jumping from compliant perches, lizards began their jumps by placing their 

hind feet forward in a manner similar to that from the rigid perch. However, during the 

takeoff phase, extension of the hind limbs resulted in a downward deflection of the perch. 

The lizards continued to push against the perch through takeoff, and the perch began to 

recoil after the lizards lost contact with it. No lizards remained on the perch during recoil.  

 From the rigid perches, large lizards had significantly greater jump distances than 

small lizards, and takeoff speeds similar to those of small lizards (Mann–Whitney test, 

distance: W=120.5, P=0.006; speed: W=132.0, P=0.05; Fig. 1). However, with increased 
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compliance, large lizards jumped significantly shorter distances and had lower takeoff 

speeds than smaller lizards (distance: W=193.0, P=0.03; speed: W=193.0, P=0.03; Fig. 

1). The ANCOVAs revealed significant interaction effects between animal mass and 

perch compliance for two of the jump variables, jump distance and takeoff speed (Table 

1). Increased compliance resulted in significantly shorter jump distance in large lizards 

(23% decrease from rigid to most flexible perch types), but did not result in significant 

changes in jump distance in small lizards (large: F2,8=10.22, P=0.01; small: F2,17=0.37, 

P=0.70; Fig. 1A,B). Similarly, increased compliance had a negative effect on takeoff 

speed, but only for the large lizards (large: F2,8=9.71, P=0.01; small: F2,17=2.69, P=0.10; 

Fig. 1C,D). There was no significant interaction effect between animal mass and perch 

compliance for takeoff angle or duration (takeoff angle: F2,26=0.82, P=0.45; duration: 

F2,26=1.27, P=0.30; Table 1), and increased compliance did not significantly affect either 

variable (takeoff angle: F2,29=2.07, P=0.14; duration: F2,29=0.20, P=0.82; Fig. 2A,B).  

 Increased compliance resulted in significantly decreased landing angles for both 

small and large lizards (F2,29=6.55, P=0.004; Fig. 2C). The negative landing angles 

appeared to be caused by the perch striking the lizard tail upon recoil. We observed that 

when lizards jumped from rigid perches, they often dragged their tail along the perch 

during takeoff, as also noted in a previous study (Gillis et al., 2009). When jumping from 

compliant perches, the part of the tail that was still in contact with (or sometimes above) 

the perch was struck when the perch recoiled, thus lifting the tail and ultimately changing 

the body position of the lizard during flight and landing (Fig. 3A). This interaction 

resulted in the lizards, particularly the large ones, landing horizontally or with a negative 

angle to the horizon (Fig. 3B). We also observed an effect of mass in general on landing 
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angle, with larger lizards having lower landing angles from every perch type (mass: 

F2,26=43.79, P<0.001; Table 1, Fig. 3B).  

 Because we observed an interaction between the recoiling perch and the lizard 

tail, we also analyzed the perch speed just before the perch contacted the tail to determine 

whether perch speed contributed to the negative landing angles of the larger lizards. The 

perch speed from the rigid perch was 0 cm s–1, so we removed it from the analysis. Perch 

speed was not significantly different between compliant perch types for either group of 

lizards (paired t-test; small lizards: t=1.18, P=0.26; large lizards: t=0.93, P=0.39), but the 

tails of larger lizards were hit with significantly greater perch speeds than the small 

lizards for both perch types (flexible: W=122, P=0.009; most flexible: W=116.0, 

P=0.002; Fig. 3C).  

 We considered the possibility that the width of the perch we chose for our study 

may have contributed to the extreme perch–tail interactions, i.e. a compliant perch wider 

than the perch the lizards choose to jump from in the wild may result in abnormal 

interactions between the lizard and the perch. Although we did not formally test this 

possibility, we performed some preliminary trials to determine whether perch width was 

a confounding factor. We repeated jumping trials with three males (1.50, 4.75 and 5.90 g) 

using a compliant perch half the width of our original perch (13x3 mm, C=0.30 mN–1), 

using a similar setup as our other trials. We oriented the perch parallel to the landing pad, 

as before, and also angled the perch 45 deg to the landing pad. We were unable to set the 

perch perpendicular to the landing pad, but wanted to account for lizard orientation as 

another factor leading to non-typical jumps in our lizards. Regardless of perch 

orientation, perch–tail interactions resulted in forward pitching of all lizards from this 
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narrow perch. The smallest lizard, however, was able to right itself mid-flight and land 

horizontally from both perch orientations. This mid-flight readjustment was typical of 

smaller lizards in our original set of trials. 

 

D. Discussion 

Despite the frequent use of compliant perches by A. carolinensis in the wild, perch 

compliance negatively affected several aspects of jumping performance in this species 

during our laboratory trials. Because lizards lost contact with the compliant perches 

before the perches recoiled (i.e. they did not use the recoil like a springboard to propel 

themselves), they lost energy to the perch, resulting in decreased jump distances and 

takeoff speeds in large lizards. In addition, perch recoil following takeoff resulted in the 

perches striking the lizards on the tail, which pitched the lizards forward and resulted in 

significantly altered landing angles for all lizards. The perches used in the wild by A. 

carolinensis at our site span a large range of diameters and compliances. However, the 

perches we used in our study were similar in compliance (0.27 and 0.64 mN–1) to those of 

many of the branches, vines and leaves. Therefore, although it is necessary to use caution 

when attempting to extrapolate laboratory-based performance results to performance in 

the wild, our results show that perch compliance could affect both performance and 

behavior in A. carolinensis in the wild, particularly in larger individuals. 

 Environmental perturbations, such as changes in substrate compliance or terrain 

height, and air or water flow speed and direction, are well known to influence locomotion 

in various animal taxa (Alexander, 2003; Biewener, 2003; Hildebrand et al., 1985; Hill et 

al., 2008). Because these perturbations can be energetically challenging and cause 
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locomotor instability, their effects have been studied across a range of taxa, including 

cockroaches (Sponberg and Full, 2008), lizards (Korff and McHenry, 2011), turkeys 

(Gabaldón et al., 2004), fish (Webb and Cotel, 2010), gibbons (Channon et al., 2011) and 

humans (Moritz and Farley, 2003). In environments where these perturbations are 

common, animals often evolve behavioral means of compensating for the impacts on 

locomotion. For example, cockroaches run more quickly to offset the effects of rough 

terrain (Sponberg and Full, 2008) and, as mentioned above, gibbons use low-power 

jumps to compensate for the effects of perch compliance (Channon et al., 2011). Indeed, 

one of the themes from this body of work is the remarkable ability of animals to 

overcome quite formidable natural obstacles through morphological and behavioral 

specializations. 

 In this regard, it is notable that A. carolinensis did not compensate for changes in 

perch compliance by altering their kinematics or behavior, and individuals were affected 

quite dramatically. The largest lizards suffered a substantial loss of speed, distance and 

potentially accuracy (which was not measured but implied from the unstable jumps) 

when induced to jump from compliant perches. This lack of compensation has also been 

observed in common starlings, which Bonser et al. (1999) posited might lead to 

decreased initial leap distance and an inability to escape from predators. This suggests 

that these two animals do not necessarily strive for locomotor efficiency when choosing 

perches. Given these results, the use of compliant perches by green anoles in the wild, 

with its resultant diminished locomotor performance, might ultimately impact fitness in 

the wild by decreasing an animal’s ability to catch prey or avoid predators, although this 

needs to be tested empirically. A recent review (Irschick et al., 2008) showed that poor 
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locomotor performance can negatively impact fitness in a variety of lizard and snake 

species. Our results clearly show costs associated with compliant perch use in green 

anoles; however, it remains to be seen whether these costs do indeed affect fitness, and 

how this species is impacted by perch compliance in the wild. 

 The independent radiation of the genus Anolis into distinct ecomorphs has led to 

extensive study of the relationship between the morphology, ecology and behavior of 

these species (Losos, 1990; Losos, 2009; Williams, 1972; Williams, 1983). Although the 

preferred perch diameter, height and even length of the perches used by these species are 

well documented, the compliance of the perches used in the wild is unknown. The 

compliance of a structure depends on the material’s modulus and the structure’s 

geometry, and, as a general rule, as branches get thinner they become more compliant 

(Bonser et al., 1999). Although the degree of compliance will vary by substrate type (e.g. 

wood versus leaf), many of the small-diameter branches Anolis lizards jump from are 

somewhat compliant. The use of narrow, and likely compliant, perches is common in 

several of the Anolis ecomorphs. In particular, the truck-crown, twig and grass-bush 

ecomorphs, including A. carolinensis, often use perches that are 0.5 cm or less in 

diameter (Irschick et al., 2005a; Losos, 1990; Losos, 2009). Given the negative effects of 

perch compliance seen in the present study, it is likely that this habitat variable could 

be an important and underappreciated aspect of anole ecology and behavior, and 

potentially help explain some of the less well-understood morphological and habitat-use 

correlations. As an example, Anolis ecomorphs that use broader perches tend to have 
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longer legs and jump more frequently than ecomorphs that use smaller-diameter perches 

(Losos, 2009). However, some anoles use extremely narrow perches, but have long limbs 

and jump regularly. This latter group is often composed of small lizards, suggesting that 

size is a factor in determining compliant perch use. 

 The results from our preliminary tests of the effects of compliance using narrow 

perches suggest that perch–tail interactions may occur regardless of perch width or 

orientation. However, the structures of perches in nature are complex, and how they 

recoil depends on several factors, such as material properties and to what extent recoil 

is damped, for example by air drag if leaves are present on the branch. Additionally, 

green anoles jump at a variety of angles to and from a range of perch types in their three-

dimensional habitat and perch–tail interactions may only occur under specific 

circumstances (Irschick and Losos, 1998) (D.J.I., unpublished). Therefore, more data are 

needed to test the importance of perch–tail interactions in the wild. In addition, more 

research is necessary to determine whether these lizards are able to sense the compliance 

of perches used in the wild, and, if so, whether their locomotor strategy changes to 

potentially compensate for this compliance. In our study we found that large lizards were 

generally more reluctant to jump from the most compliant perch, indicating that although 

they were forced to jump from these perches, they did have some sense of the compliance 

of the perch before jumping and perhaps were aware of potential costs of jumping from 

compliant perches. They often hopped down to the substrate below them as opposed 

to jumping forward with a positive takeoff angle. After sufficient coercion, however, 

large animals jumped from compliant perches using the same takeoff angle and duration 

as they did from more rigid perch types, and as small lizards did from all perch types. 
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Because all individuals we used for the trials were obtained through the pet trade, it is 

unclear whether this reluctance is due to an innate or learned response to this particular 

perch characteristic. Additionally, although our results support the prediction that large 

lizards would be affected to a greater degree than small lizards, more data are needed to 

understand whether this effect is stepwise or gradual. 

 Recent work has shown the value of examining locomotion in nature, and how 

animals interact with habitat structure (Fulton et al., 2001; Irschick and Losos, 1999; 

Johansen et al., 2007; Mattingly and Jayne, 2004; Youlatos and Samaras, 2011). Green 

anoles in the wild segregate perches across age or sex classes based on perch diameter: 

smaller animals use narrow perches, and larger animals use larger perches (Irschick et al., 

2005a). Although laboratory trials have shown that perch diameter influences maximum 

running speed (Irschick and Losos, 1999) but not jump distance from noncompliant 

perches (Losos and Irschick, 1996), both jump distance and jump speed are reduced by 

compliant perches for larger animals. Therefore, perch segregation may reflect the 

constraints imposed by small-diameter compliant perches, alone or in conjunction with 

other factors such as intraspecific competition. However, it is possible that larger 

individuals of A. carolinensis in the wild may occasionally choose compliant perches 

when the costs of jumping from these perches do not outweigh the gains, e.g. from better 

resources or for territorial defense. Understanding how this particular habitat 

characteristic affects the way animals move, and their ability to navigate their habitat, 

would provide greater insight into an important yet understudied aspect of locomotion. 
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Figure 1.1: The effects of three levels of perch compliance on the jump variables jump 
distance (A & B) and takeoff velocity (C & D). Increased compliance significantly 
affected both variables in larger lizards (> 3g, B, D) but not smaller lizards (< 3g, A, C). 
Each point represents the mean and s.e.m. of two jumps for an individual from one perch 
type (< 3g, N = 7; > 3g, N = 4). Lines connect each individual’s value across the three 
perch types. F and P values shown are from one-way repeated measures ANOVA for 
each group. Asterisks indicate significance with the sequential Bonferroni test. 
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Table 1.1: One-way repeated-measures ANCOVA F2,26-values (with associated significance 
levels) for jump variables across three treatments: rigid perch, flexible perch, and most 
flexible perch. N = 11 for each treatment. Asterisks indicate significance with the sequential 
Bonferroni test. 
Variable Compliance Mass Compliance x Mass 

Jump distance 3.35 (0.051) 2.59 (0.120) 8.08 (0.002)* 

Takeoff duration 0.26 (0.770) 9.86 (0.004)* 1.27 (0.297) 

Takeoff velocity 7.95 (0.002)* 0.14 (0.708) 9.76 (<0.001)* 

Takeoff angle 2.14 (0.138) 2.34 (0.138) 0.82 (0.450) 

Landing angle 16.79 (<0.001)* 43.79 (<0.001)* 2.25 (0.126) 
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Figure 1.2: The effects of three levels of perch compliance on A) takeoff angle, B) 
takeoff duration, and C) landing angle. Of the three jump variables, only landing angle 
was significantly affected by increased perch compliance. F and P values shown are from 
one-way repeated measures ANOVA (N = 11). Asterisks indicate significance using the 
sequential Bonferroni test. 
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Figure 1.3: Perch interference effects on takeoff, flight and landing angle. A) Movie 
stills of the same lizard (6g) jumping from a compliant (i-iv) and most flexible (v-viii) 
perch types. White lines show body and tail base angles throughout the jump. This 
lizard had a positive takeoff and landing angles from the rigid and compliant perch 
types (i, v), but the rebound of the most compliant perch hit the middle of the tail and 
caused the body to pitch forward (vi, vii), resulting in a negative landing angle (viii). 
B) Relationship between mass, compliance and landing angle. Note that landing 
angles decrease as compliance increases, largely due to the pitching caused by perch 
and tail interactions (rigid perch: straight line, flexible perch: dashed line, most 
flexible perch: dotted line, longest jumps of N=11 lizards per perch type). C) 
Relationship between mass, compliance, and perch velocity as the perch contacts the 
tail. Note the greater velocities for the larger lizards.     
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CHAPTER II 

FOILS OF FLEXION: THE EFFECTS OF PERCH COMPLIANCE ON LIZARD 
LOCOMOTION AND PERCH CHOICE IN THE WILD 

 
 

A. Introduction 

Habitat variation may pose a challenge for animal locomotion, and can lead to the 

evolution of morphological, behavioral and ecological adaptations. The variation in 

structural characteristics within the habitat, such as substrate type, size and incline, 

influences locomotion across a wide range of animal taxa (Hildebrand et al. 1985; 

Alexander 2003; Biewener 2003; Hill, Wyse & Anderson 2008; Peattie 2009; Flaherty, 

Ben-David & Smith 2010; Ellerby & Gerry 2011). Arboreal habitats present challenges 

for locomotion because of their complex three-dimensional nature, and the perches and 

supports used by arboreal animals during locomotion often vary in diameter, length, 

angle, compliance (flexibility), and the size of the gaps between structures (King 1998; 

Mattingly & Jayne 2004). Larger and more stable perches such as trunks and wide 

branches are often surrounded by smaller branches and foliage, which can bend and 

become unsteady underneath an animal’s weight. Arboreal animals must either balance 

and move along both the stable and more compliant structures, or may have to travel 

greater distances to move around their habitat. 

          Structural compliance may be important for arboreal animals that use jumping. 

Jumping is a highly power-intensive form of movement (Crompton, Sellers & Gunther 

1993; Lailvaux & Irschick 2007; Kuo, Gillis & Irschick 2011). When an animal jumps 

from a compliant perch, the forces generated during the jump bend the perch away from 

the animal. Unless the animal is able to use the recoil of the perch to propel itself 
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forward, the perch absorbs part of the energy of the jump and less energy is available for 

the jump itself (Alexander 1991; Gilman et al. 2012). Jumping from compliant perches is 

not only challenging, but it can also be dangerous, particularly for larger animals. When 

these supports are high off the ground, animals are at risk of falling when supports give 

way, or if they are unable to reach their intended support due to loss of jump energy to 

the perch (Bonser 1999). Because of the potential risks associated with using compliant 

perches, variable perch compliance within a habitat may have striking effects on arboreal 

animal locomotion and behavior by affecting perch and path choice, and locomotor 

performance.  

 Thus far, research on the effects of perch compliance on arboreal behavior in the 

wild has been restricted to a few studies of primates. These studies show that primates 

such as the western woolly lemur (Avahi occidentalis, ~ 1 kg) and the white-faced saki 

(Pithecia pithecia, ~ 1.6 kg) use larger, sturdier branches for longer jumps (Warren & 

Crompton 1997; Walker 2005); the Sumatran orangutan (Pongo abelii, 45-90 kg) has 

been shown to use multiple supports and alter jumping posture to minimize the effects of 

perch flexibility (Thorpe, Holder & Crompton 2009). Although this work provides 

insights to the locomotor behavior of these animals, the researchers did not directly 

measure compliance of the perches that were used, or that were generally available in the 

environment.   

 Arboreal lizards present an excellent system with which to employ an integrative 

view of locomotion and how it is influenced by habitat variables such as compliance. The 

genus Anolis includes almost 400 species of arboreal lizards, ranging in size from ~1-200 

g. These lizards vary greatly in morphology, ecology, and locomotor ability, and they 
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frequently use jumping to move around their habitat (Irschick & Losos 1999). One 

particularly well-studied species, the green anole (Anolis carolinensis Voigt 1832) often 

occupies compliant perches such as narrow branches, twigs, grass, and leaves and is 

generally found on perches less than 2 meters high (Irschick et al. 2005a; Irschick et al. 

2005b; Gilman et al. 2012) (Fig. 1). This proximity to the ground allows for direct 

quantification of habitat characteristics, and determination of how locomotion is 

influenced by compliance and other habitat variables.  

 Recently, we performed lab trials on the effects of perch compliance on jumping 

kinematics and performance in A. carolinensis, and we found that increased compliance 

resulted in significantly shorter jump distances and lower take-off velocities (Gilman et 

al. 2012). Because these lizards occupy habitats in which they must jump to and from 

compliant perches, our results suggest that perch compliance may be an important 

structural variable that influences how this species negotiates its habitat. A substantial 

body of work has examined how perch diameter and substrate type influence locomotion 

in Anolis lizards (Losos & Sinervo 1989; Macrini & Irschick 1998; Losos & Irschick 

1996; Irschick & Losos 1999; Spezzano & Jayne 2004; Vanhooydonck, Herrel & 

Irschick 2006), and perch diameter in particular has been cited as a driver of the anoline 

adaptive radiation (Losos 2009).  However, the lack of field data on compliance, and its 

influence on locomotion, leave open the question as to how this variable might also play 

a key role in the ecology of these or other animals.  This question has general 

implications because compliance is a ubiquitous habitat feature that could affect species 

across many groups (e.g., lizards, snakes, frogs, mammals, birds and primates). 
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 In this study we addressed three questions: 1) Do green anoles chose perches at 

random, or do they select perches with specific qualities for general use and jumping? 

Alternatively, is there a disconnect between which perches green anoles generally move 

on and which they decide to jump from?  If true, this would suggest deliberate choice of 

perches for certain movements.  2) What are the effects of perch compliance on the 

locomotor behavior of green anoles? Does perch compliance negatively affect jump 

distance in nature as in the lab? 3) What is the relationship between perch diameter and 

compliance for natural structures that green anoles use (i.e., can perch diameter be used 

as a proxy for compliance in this system, as is common in studies of primates (Warren & 

Crompton 1997; Walker 2005; Thorpe et al. 2009))? 

 

B. Materials and Methods 

1. Available habitat and general-use perch measurements 

We conducted our field study in May and June 2011 at the River Breeze Park in Volusia 

County, FL, USA at a site dominated by small and medium cabbage palms (Sabal 

palmetto), generally less than 3 m high. We explored the relationship between perch use 

by green anoles and perch compliance. We quantified the available structural habitat of 

this site by measuring perches at 0.5, 1 and 1.5 m heights every 5 m along two 50 m 

transects located 7 m apart and running the length of the longest stretch of palm-

dominated habitat where individuals were found. We did not include measurements at 2 

m, because few individuals jumped from 2 m or above (5%), and the structural habitat is 

relatively homogeneous above 1.5 m heights. We placed 1 m rods horizontally and 

perpendicularly to the transect at 0.5, 1 and 1.5 m. For any vegetative structure within 5 
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cm of any point on this pole, we measured perch diameter (width) (± 1 mm), perch angle 

of inclination (± 0.1°, Digi-Pas DWL-80E digital angle electronic angle gauge, Digi-Pas 

USA, Avon, CT), length to proximal node (any branching point proximal to the perch 

point) (± 1 mm), distance to nearest perch (± 1 mm), diameter of nearest perch (± 1 mm), 

angle of nearest perch (± 0.1°), and compliance of the point closest to the pole, resulting 

in a total of 112 perches (following Irschick et al. 2005a; Irschick et al. 2005b). Because 

we had observed anoles perching on all parts of each type of vegetation throughout the 

habitat, we treated these measured points as potential perch sites for the anoles. We 

measured compliance in one of two ways. For generally horizontal and compliant perches 

(or perches that could be made close to horizontal by bending large supporting branches), 

we measured the height of the perch, hung one of five fishing sinkers of known mass 

(3.75, 5.37, 10.68, 14.32, or 28.61 ± 0.01 g) from the perch at the exact spot where the 

individual was found, and measured the height of the perch again (displacement), as in 

Gilman et al. (2012). For less compliant, vertical perches, such as palm branches and tree 

trunks, we used a push-pull tension gauge (GPP-8, Jonard Industries Corp., Tuckahoe, 

NY) to displace the perch, and recorded the mass required for displacement (± 5 g) and 

displacement. We then calculated the compliance using the relationship between 

displacement and force: 

, 

where C is compliance, F is force (mass in kg * 9.81, gravitational acceleration) and d is 

the displacement of an object due to the force (Halliday, Resnick & Walker 2005). 

Higher values of C indicate greater compliance. To determine if green anoles chose 

dC
dF
d

=



	26	

compliant perches randomly for general use (basking, running), we walked through the 

park and noted the perch site of any lizard we sighted, as long as the lizard did not jump 

from the perch. We then measured perch height, perch diameter, and compliance of these 

perches (N=80).    

 

2. Jump perch measurements 

To determine if green anoles chose jump perches at random, or with regard to 

compliance, we did the following. We walked through the park daily between 0800 and 

1200, 1600 and 1930, and scanned all potential perches (i.e., leaves, leaflets, petioles, 

trunks, branches) for the presence of adult lizards. Once spotted, we used a Sony DCR-

SR100 digital camcorder (Sony, Tokyo, Japan) to videotape undisturbed behavior of 

individuals for a period between 5 and 35 minutes. We recorded one to three jumps per 

individual for 17 females (2.01± 0.3 g, mean s.d.) and 37 males (3.35 ± 0.6 g) for a total 

of 80 jumps. We then captured each individual and recorded its mass (± 0.1 g) using a 

Pesola Micro-Line 20010 spring scale (Pesola AG, Baar, Switzerland). We measured 

snout-vent and tail length, and we estimated humerus, radius, forelimb metatarsal, longest 

forelimb toe, femur, tibia, hind limb metatarsal, and hind limb longest toe lengths (± 1 

mm) using a clear plastic ruler. Females in this study were determined by having greater 

than 42 mm snout-vent length, reduced dewlaps, and narrow tail bases. Males were 

greater than 46 mm snout-vent length and had enlarged dewlaps and tail bases. We used 

video playback to locate the sites the individual jumped from (P1) and to (P2) and 

measured perch height (± 1 mm), diameter, angle of inclination, distance to nearest perch, 

nearest perch diameter, angle, angle between P1 and P2 (± 0.1°), and straight line distance 
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between P1 and P2 (± 1 mm). We also used frame-by-frame video playback of each jump 

to determine if lizards jumped before, during, or after perches recoiled. 

 

3. Data Analysis 

To determine the relationship between perch diameter and compliance in natural 

structures, we combined data for similar structures (live and dead palm leaflets; live and 

dead palm leaves; or live and dead branches, palm petioles, and trunks) from all perches 

measured (jump perches (P1), landing perches (P2), available habitat, non-jump perches, 

N=320) and performed linear regression analysis on each structure type. We did not 

include vines in the analyses because vines at the site were supported by other structures 

and we did not expect to see a relationship between diameter and compliance.  

 We compared available habitat, general use perch, and jump perch variables using 

bootstrap Kolmogorov-Smirnov tests (1000 runs) and used a conservative significance 

cut-off (P<0.005) (see also Mattingly & Jayne 2004 and McElroy et al. 2007). We also 

compared available habitat, general use perch, and jump perch variables for just palm 

plants, as plant species may differ in compliance, and therefore any correlation between 

perch variables and perch choice may be an artifact of the use of a particular species of 

plant for specific behaviors (e.g., jumping) (N=63 jump perches, N=67 general use 

perches, N=98 available habitat perches). There were no significant differences between 

males and females for jump perch compliance (P=0.39), diameter (P=0.91), height 

(P=0.34), distance to nearest perch (P=0.16), or jump distance (P=0.06) (bootstrap 

Kolmogorov-Smirnov) so males and females were pooled for all analyses. Because 

habitat use is tightly linked to morphology in this species, we tested for morphological 
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differences between the sexes by conducting a correlation-based principal component 

analysis of the ln-transformed morphological estimates, and then used a t-test to compare 

male and female principal component scores.   

  In addition to our three primary questions (above) we also wanted to determine if 

there was a relationship between jump angle (angle between P1 and P2) and jump 

distance. We performed linear and nonlinear regressions of log-transformed jump 

distance against jump angle, and then also arbitrarily divided jump angle into categories 

(-90 to -61°, -60 to -31°, -30 to 0°, 0 to 30°, 31-60°, 61-90°) to evaluate jump distance 

ranges.  

 The results of our previous lab study showed that compliance has a negative 

effect on jump distance (Gilman et al. 2012). Therefore, we wanted to test whether this 

also occurred in the wild. However, because habitat variability can be complex and 

multiple habitat characteristics may influence jump distance, we used correlation-based 

principal component analysis to reduce dimensionality in the following perch variables: 

perch height, perch diameter, perch angle, distance to nearest perch, angle to P2, and 

compliance. We log-transformed perch diameter, distance to nearest perch, and 

compliance to normalize these variables before conducting the PCA. For components 

with eigenvalues greater than 1.0, we conducted a Monte Carlo test of the significance of 

the eigenvalues using 1000 permutations of the data matrix to compare the original 

eigenvalues to the distribution of eigenvalues under a null hypothesis of no real 

correlation structure, and we retained components with significant eigenvalues 

(P<0.005). We then used linear regression of jump distance against the PCA scores of the 

retained components to examine the effects of habitat variability on jump distance. We 
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continued our use of a conservative significance value (P<0.005) as our cut-off for the 

regression analysis, but because the resulting regression was not significant we did not 

conduct additional analyses. 

 

C. Results 

We observed that green anoles in our study lost contact with compliant perches prior to 

recoil, and did not use the perch to propel themselves forward. Green anoles jumped from 

their perches to other substrates at a range of angles from their perches (see below), and 

occasionally dropped to the ground to capture prey. Lizards did not appear to be 

disturbed by our presence, as noted in other studies (Mattingly & Jayne 2004).  

 There were significant differences in perch use distributions compared to 

available habitat distributions for both perch compliance and diameter, though the trend 

was different between the two variables (Fig. 2). Lizards jumped from perches that were 

significantly less compliant than those they generally occupied, as well as those available 

in the habitat, for all plants combined and palms alone (P<0.005 for all). However, the 

distribution of the diameter of the perches they jumped from was similar to the 

distribution of perches they generally occupied (P=0.81 all plants, P=0.71 palms), but 

significantly different from those available in the habitat (P<0.005 all plants and palms 

alone). The distribution of compliance of perches they generally occupied was similar to 

available habitat distributions (P=0.21 all plants, P=0.43 palms), while the distribution of 

diameters was significantly different between the two (P<0.005 for all).        

 We were unable to find a significant best fit model for the relationship between 

jump angle and log-transformed jump distance, likely because lizards do not jump 
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maximally at all times as they navigate their habitat. At all angles, lizards jumped short 

and mid-range distances. However, there was a trend toward shorter jump distances at 

more extreme jump angles (Fig. 3). Lizards jumped from 5 to 21 cm at the most extreme 

angles (61-90°), from 6 to 30 cm at 31-60°, and from 5 to 41 cm at the shallowest angles 

(0-30°), and therefore jumped the greatest range of jump distances at angles closer to 

horizontal. 

 Principal component analysis of the jump perch variables resulted in eigenvalues 

greater than one for both PC1 and PC2 (Table 1), but only PC1 had a significant 

eigenvalue (P<0.005). PC1 had high and positive loadings for perch angle (0.70), 

distance to nearest perch (0.58), and negative loading for perch height (-0.74) and 

compliance (-0.84). The relationship between jump distance and PC1 scores was not 

significant, but it showed a trend toward longer jump distances with increasing PC1 

scores (i.e., low compliance, low height, increased distance to the nearest perch, and 

increased jump perch angle) (slope=0.04, P=0.02).  

 Similar to the lack of habitat specialization between sexes in this population (see 

above), there was little morphological differentiation between males and females. Only 

the first principal component, which is an indicator of overall size, had an eigenvalue 

greater than 1.0 (5.41, compared to 0.81, 0.50, 0.43, 0.29, 0.25, 0.20, 0.11 for PC2-PC8) 

and explained 68% of the variance. There were significant differences in the principal 

component scores between males and females for PC1 (P<0.005), but no significant 

differences for any other component (P2-P8, P>0.35) indicating that males and females 

differed significantly only in size. 
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 There was a significant negative relationship between perch diameter and perch 

compliance for some, but not all perch types at the River Breeze Park field site (Fig 4). 

Increased perch diameter resulted in decreased perch compliance for trunks, branches and 

palm petioles (slope = -2.43, P<0.005, R2 = 0.64), and palm leaflets (slope = -1.26, 

P<0.005, R2 = 0.23), but not palm leaves (slope = -1.18, P=0.306, R2 = 0.05). 

 

D. Discussion 

We found that perch compliance had significant effects on perch choice and locomotor 

performance in green anoles. Although green anoles used perches with a range of 

compliance, they jumped from relatively less compliant perches, and jumped the farthest 

distances from the least compliant perches. We also found that, as in our lab study, green 

anoles jumped from compliant perches prior to recoil, and did not use the energy stored 

in the perch for their jump (Gilman et al. 2012). Lastly, we found a significant negative 

relationship between perch diameter and compliance in most natural structures in the 

habitat; however, variability in compliance for a given diameter generally precludes the 

use of diameter as a proxy for compliance in this system. 

 Habitat characteristics have direct effects on animal locomotion and performance, 

and the ability of organisms to perform maximally in their natural habitat often has 

fitness benefits (Arnold 1983; Garland & Losos 1994). For example, optimal 

performance such as maximal sprint speed in ectotherms is dramatically affected by 

microhabitat temperature (Huey 1991). In addition to temperature, the structural 

characteristics of the habitat can also directly affect animal performance (Irschick & 

Losos 1999; Toro, Herrel & Irschick 2004). For jumping animals such as Anolis lizards, 
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there are three primary ways of optimizing jumping performance that help their ability to 

escape predators: increasing jump distance, jump speed, and jump accuracy (Irschick et 

al. 2008; Toro et al. 2004). The first index of performance, jump distance, was negatively 

affected by increased compliance in both our lab and field studies (Fig. 5) (Gilman et al. 

2012). It is reasonable to argue that it would be beneficial for Anolis lizards, as well as 

many other animals, to choose habitats where at least one of these performance traits 

would be maximized, although determining which one is most relevant is challenging 

(Toro et al. 2004). However, our lab study revealed that increased compliance resulted in 

decreases in all three aspects of jump performance (Gilman et al. 2012), indicating that 

any usage of compliant perches decreases performance in all three.  Although many 

perches used by green anoles in our study population are highly compliant (≥ 0.64 mN-1), 

green anoles appear to jump off perches on which jumping performance is maximized. 

Green anoles jumped from rigid to moderately compliant perches (up to the compliance 

that reduced maximal jump distance in the lab by 5%) 74% of the time in the wild, and 

jumped from more compliant perches (greater than or equal in compliance to those that 

reduced maximal jump distance in the lab by 22%) only 15% of the time, even though 

these more compliant perches make up 38% of the available habitat. The tendency to 

choose relatively sturdier perches to jump from has also been observed in some primates, 

and appears to be a necessary compensation in many arboreal habitats (Warren & 

Crompton 1997; Walker 2005). For example, Pithecia pithecia (~1.6 kg) is a primate that 

uses leaping to navigate its habitat frequently (~40% of the time), and does so from 

perches that range from < 2 to >15 cm, but only leaps from perches of < 2 cm 4% of the 

time, a behavior that may maximize leap distance (Walker 2005).  
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 Although green anoles and primates appear to use similar ways of minimizing the 

negative effects of perch compliance on jumping, animals of different sizes experience a 

given habitat in different ways. For example, gaps that are large and prohibitive for 

crossing to a small animal may be inconsequential to a much larger species (Fleagle & 

Mittermeier 1980; Walker 2005). In that respect, variability within the diameter-

compliance relationship is important when attempting to determine the effects of 

compliance on small animal locomotion, as small animals are sensitive to minor changes 

in compliance (Demes et al. 1995). In our lab study, we found that a 137% increase in 

compliance (from 0.27 to 0.64 mN-1 or -0.57 and -0.19 respectively, on a log scale) 

resulted in a 22% decrease in jump distance in our larger animals (Gilman et al. 2012) 

(note that as seen in Figure 4, these compliance values are clearly within the values for a 

range of branch and palm leaflet diameters). Therefore, while using diameter as a proxy 

for compliance may be appropriate for larger animals like primates, it could easily mask 

the effects of compliance on behavior in smaller animals, given the high variability in the 

diameter-compliance relationship we observed at our study site. Additionally, 

comparisons of the compliance and diameter distributions (Fig. 2) show that these two 

habitat variables tell very different stories regarding perch use. While green anoles jump 

from and perch on supports within similar diameter ranges, they are more selective when 

jumping with regard to compliance and choose less compliant perches when jumping 

than for general use.  

 Species that occupy different habitats with varying structural layouts or physical 

attributes may exhibit behavioral and locomotor adaptations to the local habitat (Dagosto 

1994; Krajewski et al. 2011). For example, Dagosto and Yamashita (1998) found that 



	34	

three species of lemurs leap less, climb more, and move quadrupedally more often at a 

site with larger, taller trees compared to a site with smaller trees, and Krajewski et al. 

(2011) found that the amount of wave exposure at different sites affected the activity 

budget and location of activity in four species of reef fishes. Although we found a trend 

toward longer jumps from perches at low heights and low compliances at our site, this 

may not be typical of green anoles in all habitats they occupy. Our study site was 

dominated by relatively low cabbage palm plants, and few larger trees (Fig. 1). Perches 

low to the ground tended to be mostly trunks and palm petioles, which are generally less 

compliant than palm leaves and leaflets, and the majority of perches higher off the 

ground were relatively compliant palm leaflets. Principal component analysis and the 

relationship between PC1 and jump distance showed a trend toward longer jump 

distances from low-lying, low compliance, close-to-vertical perches, which were 

generally palm petioles and trunks. Because the more rigid structures at our study site are 

lower to the ground, it is difficult to disentangle the effects of perch height and 

compliance on jump distance. It is possible that green anoles are more inclined to jump 

farther at lower heights in general, to avoid the risk of falling from greater heights and 

expending energy regaining their original position, or encountering conspecifics or 

predators. Replication of this study at field sites with different types of dominant 

vegetation (e.g., mostly trees, where low compliance perches are available at a range of 

heights) would help to determine whether or not green anoles (and potentially small 

animals in general) are more cautious about jumping from high perches, regardless of 

compliance. In addition, further studies are needed to determine which aspects of 



	35	

jumping (e.g., speed, distance, accuracy) are most critical for fitness in small animals, 

and whether this changes across habitats. 

 In conclusion, we found that compliance is a structural characteristic that has 

dramatic effects on the behavior and performance of green anole lizards. Lizards in our 

study avoided jumping from highly compliant perches, even though they were often 

found on them, basking, foraging or during other forms of locomotion. Although the 

effects of perch height and perch diameter have been well-studied in this species, this is 

the first study to shed light on the effects of compliance. In addition to directly affecting 

jumping performance, perch compliance may also cause physical instability during the 

jump, particularly in small animals, and further biomechanical studies are needed to 

reveal additional effects of compliance in jumping animals. Many small animals use 

jumping as a means to navigate their habitat, and we hope that our results will inspire 

other researchers to examine this variable more broadly. 
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Figure 2.1: Anolis carolinensis individuals and the study site. A) Green anole male on a 
relatively inflexible tree trunk, B) Green anole female on a more flexible leaf, and C) Our 
study site in Volusia County, FL. This site was dominated by low-lying cabbage palm 
plants, with few larger palms and other trees.  
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Figure 2.2: Frequency distributions of perch compliance and diameter in Riverbreeze 
County, FL. A&D) Perches available in the habitat (N=112), B&E) Perches generally 
occupied by Anolis carolionensis (N=80), C&F) Perches used for jumping by A. 
carolinensis (N=80). Compliance is shown here as the log transformed values to aid in 
visualization of the data. Significant differences (P<0.005) between frequency 
distributions within a variable are shown as with asterisks. 
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Figure 2.3: Relationship between angle-to-landing perch and distance-to-landing perch. 
A) Angle and distance to new perch for downward jumps B) Angle and distance to new 
perch for upward jumps. Although the relationships were not significant, green anoles 
jumped the largest range of distances at the least extreme angles. 
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Figure 2.4: Relationship between perch diameter and compliance in the wild. There was a 
significant relationship between the diameter of a perch and its compliance for palm 
leaflets (slope=-1.26, P<0.001, N=180) and petioles, branches and trunks (slope=-2.43, 
P<0.001, N=116), but not palm leaves (slope=-0.28, P=0.3, N=24).     
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Figure 2.5: Relationship between perch compliance (on a log scale) and lizard jump 
distance. Open circles are data from our previous lab study (Gilman et al. 2012) and 
closed circles are field data from this study. In both the lab and field, the longest jumps 
tended to occur from the least compliant perches.  
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Table 2.1: Results from principal component analysis of jump perch characteristics. 
Substantial loadings are in bold. 
  PC1 PC2 PC3 PC4 PC5 PC6 
Variance 2.33 1.05 0.93 0.70 0.62 0.38 
Proportion of Variance 0.39 0.17 0.15 0.12 0.10 0.06 
Cumulative Proportion 0.39 0.56 0.72 0.83 0.94 1.00 

Perch Characteristics Eigenvectors 
Jump perch height -0.49 0.16 -0.06 0.41 -0.61 -0.44 
Jump perch diameter 0.23 0.68 -0.53 0.33 0.3 -0.05 
Jump perch angle 0.46 0.14 -0.27 -0.35 -0.72 0.25 
Jump perch compliance -0.55 0.08 -0.17 0.1 -0.04 0.81 
Angle to landing perch 0.23 -0.68 -0.48 0.49 -0.03 0.06 
Distance to nearest perch 0.38 0.15 0.61 0.59 -0.14 0.29 
  PC1 Loadings         
Jump perch height -0.74      
Jump perch diameter 0.35      
Jump perch angle 0.70      
Jump perch compliance -0.84      
Angle to landing perch 0.35      
Distance to nearest perch 0.58      
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CHAPTER III 

SEXUALLY DIMORPHIC RESPONSES TO HABITAT COMPLEXITY IN 
 THE GREEN ANOLE LIZARD, ANOLIS CAROLINENSIS 

 

A. Introduction 

Animals necessarily interact with the structural characteristics of their habitat. These 

interactions have multifaceted consequences for the animal. Variation in the structural 

characteristics of the habitat can lead to site-specific adaptation in body proportions, 

locomotion, foraging ecology, social signaling, and mating strategy (Petren and Case 

1998, Pounds 1988, Boughman 2001, Badyaev 2008, Losos 2009). Additionally, these 

adaptations can be plastic or fixed, and can occur in one or both sexes (Shine 1991, 

Butler et al. 2000, Hollander et al. 2006). These complex effects are often studied as 

single traits or aspects, but many of the effects occur in concert.      

 Limb length and locomotor ecology has been shown to differ within species of 

lizards occupying habitats of varying structural characteristics, such as perch width and 

vegetative complexity (Kohlsdorf et al. 2001, Irschick et al. 2005a, Dill et al. 2013, 

Winchell et al. 2018). Lizards that live in variable habitats must run and jump from a 

variety of surfaces, and limb length and locomotor adaptations have direct fitness 

consequences as animal performance can affect prey capture and predator avoidance 

(Miles 2004). Additionally, males and females can be dimorphic with one or more of 

these characteristics within habitats as a result of sexual selection and reproductive and 

ecological requirements (Butler and Losos 2002, Irschick et al. 2005a). Because males 

and females can be dimorphic in body and gape width, differences in body condition 
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within species have also been observed, possibly due to differences in prey size 

associated with habitats (Stehle et al. 2017).  

 Habitat distribution across space, how continuous or clumped the vegetation is, 

has been shown to affect male-male competition in lizards across populations (Emlen and 

Oring 1977, McCoy et al. 2003, Zamudio and Sinervo 2003, Bloch and Irschick 2006, 

McMillan and Irschick 2010). In promiscuous species, where males defend territories and 

attempt to control access to multiple females, continuous habitats have more evenly 

distributed resources, which results in relatively low competition between males 

(Zamudio and Sinervo 2003). In contrast, habitats where resources or structures are 

clumped can result in high male competition, as females become closely aggregated and 

despotic males aggressively defend these prime territories, while other males are left to 

compete or lose out on mates (Zamudio and Sinervo 2003). This habitat structure 

variability sometimes affects the intensity of male-male interactions while concurrently 

causing adaptations in limb morphology and ecology (Irschick et al. 2005a). 

 Sexual traits are affected by habitat as a result of changes in the intensity of social 

interactions. Precopulatory traits, such as ornaments, weapons and body size, and 

postcopulatory traits, such as testis size, sperm traits and genitalia can both respond to 

changes in the magnitude of male-male competition. However, the degree of the effect on 

pre and postcopulatory traits depends on a number of factors, including relative 

importance of the traits and their costs (Lüpold et al. 2014). For example, in taxa where 

males physically compete for access to females, precopulatory traits, like body size, have 

shown to garner greater investment than postcopulatory traits like testis size. This is true 

across taxa, as well as within lizards (Lüpold 2014, Kahrl et al. 2016). Sperm traits also 



	44	

respond to male-male competition intensity (Morrow and Gage 2001, Gomendio et al. 

2007, Crean and Marshall 2008, Immler et al. 2010, Calhim et al. 2011, Bakker et al. 

2014), and they are sensitive to changes in body condition, as sperm is energetically 

expensive to produce (Rowe and Houle 1996, Alavi et al. 2009, Merrells et al. 2009, 

Immler et al. 2010, Kahrl and Cox 2015). Genitalia respond to the intensity of 

competition between males as they evolve to displace sperm from other males within the 

female reproductive tract, reach closer to the oviducts to ensure insemination, or to 

provide stimulus to females (Hosken and Stockley 2004, Brennan et al. 2010, Eberhard 

2010). Additionally, testis, sperm, and genitalia have all shown seasonal changes 

associated with increases in testosterone, which increases with increasing male 

competition (Yang and Wilczynski 2002, Holmes and Wade 2005, Beck and Wade 2008, 

Immler et al. 2010). Together these studies show the potential direct and indirect effects 

of habitat variability on many aspects of animal social structure, behavior, and 

morphology. While some of these effects been studied across taxa, there are no studies to 

date that have examined multiple associations between habitat and sexual and non-sexual 

traits in an effort to understand environmental effects on the organism as a whole. 

Additionally, although the effects of habitat variability on limb morphology is well-

documented, there are few studies examining habitat associations with postcopulatory 

traits. And while sexual selection literature continues to expand in focus, less is known 

about squamate postcopulatory evolution (though see Johnson et al. 2014). To that end, 

we chose to study habitat effects on multiple traits in a small arboreal lizard, Anolis 

carolinensis. 
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 Anolis carolinensis is a small lizard that occurs in southern North America as far 

west as Texas, and as far north as Tennessee and southeastern Virginia. This arboreal 

species has a highly visual communication system, and is generally found in its habitat on 

perches less than two meters high, making the interactions between the dimorphic males 

and females easy to observe (Irschick et al. 2005a, 2005b, Edwards and Lailvaux 2012, 

Kamath et al. 2013). These lizards are generalist insectivores, eating insects encountered 

on the ground and on vegetation (Jenssen et al. 1995, Nunez et al. 1997). A great deal is 

known about the mating system and ecology of A. carolinensis; however, few studies 

have investigated postcopulatory sexual selection in this species (but see Passek et al. 

2002). A. carolinensis, like most reptiles, is promiscuous, with males and females mating 

multiply (Passek et al. 2002, Uller and Olsson 2008, Kamath and Losos 2017).  

 A. carolinensis has been used extensively as a model in studies of behavior, 

physiology, morphology, ecology, and evolution (e.g., Lovern et al. 2004, Losos 2009, 

Johnson et al. 2011, Kerver and Wade 2011). And while recent work is beginning to 

examine the tradeoffs between pre and postcopulatory sexual selection in other Anolis 

lizards (Kahrl and Cox 2015, 2017) and the effects of habitat on body condition, 

morphology and social structure on A. carolinensis (Battles et al. 2013, Dill et al. 2013, 

Stehle et al. 2017), continued efforts to unify these ideas are needed. In this study we 

sought to take a whole-organism approach to examine the role of habitat structure and 

complexity on the ecology, morphology, and behavior of A. carolinensis. We measured 

sexual and non-sexual traits in male and female A. carolinensis at three sites within a 

park that varied in vegetation density and composition. We measured five characteristics 

of the habitat, as well as male and female body condition, tibia length, genital size and 
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shape, and sperm and testis size in males. We predicted that increasing habitat patchiness, 

or clumping of resources, would increase male-male competition. This increase would be 

reflected in smaller testis size and longer and possibly more elaborate hemipenes in 

males, as male testis size has been shown to decrease as male-male competition increases 

in lizards (Kahrl et al. 2016), and genital length and complexity may confer reproductive 

advantages (King et al. 2009, Eberhard 2010, Johnson et al. 2014). We also predicted that 

females may show correlated changes in genital shape across sites (male-female 

coevolution: Hosken and Stockley 2004). However, this is the first study to examine the 

genitalia of a natural male and female lizard population, so these data are largely 

exploratory. We predicted that male and female limb length and body condition will vary 

across sites, as seen in other studies, and males and females will show sex-specific 

ecological requirements. Lastly, we predicted that body condition would be affected by 

differences in habitat structure, as seen in other studies, and may affect sperm traits. 

 

B. Methods 

1. Habitat structure 

We conducted our study in Spruce Creek Park, Port Orange, FL in May and early June 

2014 during the Anolis carolinensis breeding season with permission from the county 

park Director. Spruce Creek Park is a ~1 km long (north-south) by ~0.3 km wide (east-

west) nature park and campground bordered on the east side by a highway, swamp on the 

west, and bays on north and south sides. To determine the areas most populated within 

the park, as well as perch heights used by A. carolinensis, we began by taking a survey of 

the height of perches used by A. carolinensis males and females. We walked through the 
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park between 0800 and 1900, when lizards were active, and scanned all potential perches 

(leaves, leaflets, petioles, branches, trunks, vines) for adult lizards. Once spotted, we used 

a laser pointer to mark the perch until within reach (if necessary) and measured perch 

height (±1 mm), substrate type (i.e., leaf, branch, trunk), and GPS coordinates (N=54 

active perches). We walked through all accessible areas of the park to eliminate the 

potential bias for searching for lizards in human-preferred areas. 

 We found that the areas of the park most populated by lizards were a northern 

corridor along a dirt road (Fig. 1A), a continuously vegetated eastern corridor along a dirt 

road (Fig. 1B), and a relatively sparsely vegetated interior southern corridor (Fig. 1C). 

These corridors varied in the amount and density of species of vegetation, but they were 

all generally dominated by longleaf pine (Pinus palustris), saw palmetto (Serenoa 

repens), slash pine (Pinus elliottii), turkey oak (Quercus laevis), cabbage palm (Sabal 

palmetto), and other small scrubs and vines. We chose to focus on these three corridors 

for vegetation transects and to capture lizards. The southern and eastern corridor were at 

the southern end of the park, ~ 50 m apart, and the northern corridor was at the north end, 

~850 m from the eastern site and 1 k from the southern site. The southern and eastern site 

were within a continuous patch of forest separated by a walking path, and the northern 

site was separated from the other two sites by a shallow bay inlet with a continuous forest 

corridor connecting the sites along the eastern border of the park. 

 In each of the three corridors (north, south, east), we quantified the available 

structural habitat by measuring perches every 5 m along 50 m transects at the edge of the 

road (north and east corridors) and within the southern corridor, as these were the most 

populated areas within the corridors. At every 5 m along the 50 m transect, we ran a 5m 
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sub-transect perpendicular to the original transect. At every 1 m along the sub-transects, 

we extended a 2 m vertical rod and recorded the number of contacts with vegetation (and 

type of vegetation) along the stick up to 2 m. We did not measure above 2 m as 81% of 

perches used by lizards during our survey were 2 m or lower (methods modified from 

Wiens and Rotenberry 1981 and Gilman and Irschick 2013). We only included perch data 

for perches likely to be used by A. carolinensis, based on observations at this site and 

previous studies (i.e., no branch perches smaller than 0.5 cm diameter, no small or highly 

flexible leaves; Gilman et al. 2012, Gilman and Irschick 2013). 

 To evaluate the structural characteristics at each site, we calculated five measures 

of vegetative physiognomy. We measured relative horizontal openness (devoid of 

vegetative structures above 0.5 m), horizontal heterogeneity, and the total number of 

available perches, as these measures relate to habitat patchiness and could influence 

male-male interactions (August 1983, Bloch and Irschick 2006). We also measured 

vertical heterogeneity and vertical openness, as these have been shown to affect 

arthropod biomass and richness (González-Megías et al. 2007). For horizontal openness, 

or patchiness, we summed the total contacted points at each one-meter sampling point 

(N=50) along the transect and counted the total sampling points that lacked vegetation 

above 0.5 M. We calculated vertical openness by summing all the vegetation contacted 

between each 10 cm height interval across the entire site transect (N=100) and counting 

the number each 10 M height lacked vegetation across the site. We calculated total 

perches as the total number of contacts with vegetation at each site. We measured 

horizontal heterogeneity by calculating the variation in total perches at each 5 meter sub-

transect using the equation:  
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HI = ∑%&'(%)*
∑' , 

where Max=maximum number of contacts recorded among the 10 sub-transects, 

Min=minimum number of contacts recorded among the 10 sub-transects, N=the total 

number of sub-transects, and x̄=the mean number of contacts within the set of sub-

transects (Rotenberry and Wiens 1980, Weins and Rotenberry 1981). This index provides 

insight into how variable the sub-transects are across the site. For vertical heterogeneity, 

we summed all the contact points between each 20 cm height interval across the entire 

site transect (N=100 points per 20 cm, 10 sample points per site). We used the 

heterogeneity equation above with HI indexing the variation in vegetation structure 

across each 20 cm height. We used 20 cm as our small-scale vertical heterogeneity index 

because of its biological relevance for A. carolinensis. In the lab and field, A. carolinensis 

jump from ~10 to 40 cm between a range of flexible perch types (Gilman et al. 2012, 

Gilman and Irschick 2013). Therefore, 20 cm is an attainable distance for these lizards to 

move from perch to perch for food, mates, and when avoiding predators. 

 

2. Lizard traits 

We collected 15 female and 17 male A. carolinensis and measured snout-vent length 

(SVL ± 1 mm), body mass (± 0.1 g), perch characteristics and location (as above). 

Females were euthanized post-capture for dissection, and males were euthanized 

following sperm collection. We collected sperm from males by gently applying pressure 

posterior to the cloaca and pipetting up ejaculate that collected at the cloaca. We stored 

sperm from each male in 50µl 10% formalin for measurement later. In the lab, the 

fixative was removed and the cells were air-dried on slides. We stained the sperm with 
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Sperm Blue™ (Microptic SL, Barcelona, Spain) and then imaged them with an Olympus 

Magnafire camera (Olympus America, Melville, NY) at Å~100 magnification using 

differential interference contrast microscopy. We measured the length of the head, 

midpiece, and tail for 6-13 sperm per male using ImageJ (NIH, Bethesda, MD), then 

calculated the length means for each male. Although all males were reproductive and 

sperm was present when we applied pressure to the cloaca, we were only able to 

successfully prepare slides for 13 males (south=3, east=4, north=6). For testis volume, we 

measured testis linear dimensions to the nearest 0.01 mm and calculated the volume using 

the formula for spheroid volume:  

+,- = .
/ π ∗ 23*4567 ∗ 8)9567 ∗ 63)4657 . 

We measured both testes for each male twice and used the mean of four measurements 

per male. We calculated the repeatability of the measurements as the intraclass 

correlation coefficient (ICC), using the ICC package (Wolak, Fairbairn, & Paulsen 2012) 

in R version 3.1.0 (R Core Team 2014). 

 

Genital preparation and measurements - We dissected the females and noted the 

presence of eggs/enlarged follicles. This ensured all females in the study were 

reproductive. We removed the cloaca and clipped the oviduct 2-4 mm from the 

cloacal/oviduct junction. We imaged the ventral, dorsal, and lateral views of each cloaca 

with a Leica DFC450 C digital microscope camera mounted to a Leica M165 FC 

microscope. We then used ImageJ (Rasband, 1997–2012) to measure linear dimensions 

of the length and width of the ventral view, and the height of the lateral view of the 

cloaca. For males, we dissected and prepared one hemipenis per male (whichever side 
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everted more fully during preservation) following Zaher & Prudente (2003) and Gilman 

et al. (in press). We then imaged the lateral, apical (distal), and sulcal (side along where 

the sulcus spermaticus, or sperm channel, runs) hemipenis to obtain linear dimensions of 

the trunk, lobe (or apex), the fleshy ‘horn’ at the distal tip of the hemipenis, and the area 

of the apex. We did not include one male from the southern site in our analyses because 

we were not able to obtain a fully inflated hemipenis.  

 We also measured one non-genital trait, the right tibia, of all specimens. After 

digitally imaging each tibia, we used ImageJ to measure from the joint with the femur 

(knee) to the articulation with the metatarsus (ankle). We measured each specimen twice 

(using the same digital image for each pair of measurements), and used the mean value 

for each individual in our analyses. We calculated the repeatability of the measurements 

as the intraclass correlation coefficient (ICC). 

 

3. Statistical analyses 

We conducted our statistical and shape analyses using R version 3.1.0. We tested for 

differences in genital dimensions and tibia length (all log10 transformed) in males and 

females, as well as testis volume in males, across sites using analysis of covariance 

(ANCOVA) with the trait as the dependent variable, site as the independent variable, and 

log10 SVL as a covariate (after confirming homogeneity of slopes). We then estimated 

body condition for each individual two ways: 1) Residuals from ordinary least squares 

linear regressions of log-transformed body mass on log10 transformed body length (OLS) 

and 2) as a scaled mass index (SMI), using the smart package in R (Warton, Wright, 

Falster, & Westoby 2006, Warton, Duursma, Falster, & Taskinen 2012) (Peig and Green 
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2009, 2010, Kahrl and Cox 2015, Falk et al. 2017). We tested for differences in the two 

body condition indices across sites in the two sexes using ANOVAs. We followed 

significant findings with Tukey’s honest significant difference post hoc tests to determine 

which sites were significantly different from each other. We calculated an index of sexual 

size dimorphism at each site as SVL males/SVL females as a simple comparison.  

 Because we were not able to obtain equal sample sizes of sperm from each site, 

and because body condition has been shown to affect sperm traits in Anolis lizards (Kahrl 

and Cox 2015, 2017), we examined the relationship between the body condition indices 

and sperm sizes on all males as a group using linear regression models.  

 

Male and female scaling relationships and variance - We examined the relationship 

between sexual and non-sexual traits (genital size, testis volume, and tibia length) and 

body size (snout-vent length, SVL) in males and females using OLS regression of the 

log10 transformed data. Although there is disagreement in evolutionary biology literature 

on the best regression method for allometry, OLS regression has been recommended as a 

descriptor of functional scaling relationships when measurement error is low (Kilmer and 

Rodríguez 2017, Eberhard 2018). We tested the resulting slopes against isometry 

(bOLS=1), to determine if the scaling relationships were isometric or allometric (greater 

than 1 showing positive allometry, less than 1 showing negative allometry) using the 

smatr package in R. We then examined the variation of these traits using the coefficient 

of variation (CV, ratio of the standard deviation to the mean) and coefficient of variation 

with body size held constant (CV´) (Eberhard 1998, Bertin and Fairbairn 2007, Klaczko 

and Stuart 2015).  
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 We used elliptical Fourier analysis (EFA) to compare the general shape of male 

and female genitalia across sites. We imported the cloacal and hemipenal images used for 

the linear data into R and tested for differences using the R software package Momocs 

(Bonhomme, Picq, Gaucherel, & Claude 2014). Once we imported the outlines into R, we 

processed the outlines so they retained shape but were invariant to size, rotation, and 

starting point. This ensured we compared genital shape, but not size. We chose to use 9 

harmonics for males and 7 for females, which gathered ≥99 % of the total harmonic 

power. To determine if genital shape was similar or dissimilar across sites in each sex, we 

first conducted a principal component analysis using the harmonic coefficients from the 

EFA. We then conducted a multivariate analysis of variance using the EFA harmonic 

coefficients.  

 

C. Results 

1. Habitat structure 

The five physiognomic measures we calculated for the three sites are shown in Table 1. 

In general, the southern site was the patchiest site. It had the greatest number of 

horizontal open areas and fewest perches. The eastern site was the most continuous. It 

had the greatest number of perches, and was low in horizontal openness and horizontal 

heterogeneity. The northern site was the most complex, having the highest heterogeneity, 

both horizontally and vertically. 

 

2. Lizard traits and ecology 
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Although the three sites differed in their structural characteristics, these differences did 

not affect most traits we measured (Table 2). However, body condition varied 

significantly across sites in males. These results were robust to both body condition 

indices (OLS: F2,14=6.438, P=0.010; SMI: F2,14=5.795, P=0.015). With both indices, 

males at the northern site had significantly higher body condition than those at the 

southern site (north-south: OLS: P=0.008; SMI: P=0.013; north-east: OLS: P=0.121; 

SMI: P=0.101; east-south: OLS: P=0.435; SMI: P=0.624;). In contrast, females did not 

vary significantly across sites in body condition (OLS: F2,12=1.264, P=0.318; SMI: 

F2,12=2.255, P=0.147). Unlike males, both body condition indices showed the highest 

values of body condition in females at the eastern site, as opposed to the northern site 

(SMI: north: 1.810±0.046 mean, SE; east: 1.915±0.063; south 1.759±0.049; OLS: north: -

0.003±0.011; east: 0.016±0.015; south -0.013±0.012). The sexual size dimorphism index 

was greatest at the eastern site (1.24), intermediate at the northern site (1.19), and lowest 

at the southern site (1.17). 

 To further examine the relationship between body condition and structural 

characteristics, we performed stepwise multiple linear regression. We set each of the two 

body condition indices separately as dependent variable, and set our five measures of 

vegetative physiognomy as independent variables, using the MASS package in R 

(Venables and Ripley 2002). The resulting model from our stepwise multiple regression 

model revealed a significant positive relationship between vertical heterogeneity and 

body condition in males, robust to both body condition indices (OLS: F1,15=13.66, 

P=0.002; SMI: F1,15=11.90, P=0.004). Body condition and vertical heterogeneity were 

highest at the northern site and lowest at the southern site.  
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 Although there was a significant effect of body condition across sites, there was 

no relationship between body condition and sperm traits on all males as a group (head 

length: OLS: F1,11=2.355, P=0.153; SMI: F1,11=0.412, P=0.534; midpiece length: OLS: 

F1,11=2.01, P=0.184; SMI: F1,11=0.955, P=0.350; tail length: OLS: F1,11=0.268, P=0.615; 

SMI: F1,11=0.018, P=0.895). 

 

Genital shape - There were no significant differences in genital shape across sites for 

males or females. The three principal components were significant and explained 77.9% 

of the variation in lateral hemipenis shape. PC1 explained 39.3%, PC2 26.0%, and PC3 

7.8% of the variation. There was no significant difference across sites in lateral shape 

(MANOVA: F2,13=4.233, P=0.209). Following sulcal view PCA analysis of hemipenis 

shape, PC1 significantly explained 50% of the variation in shape. There was no 

significant different in sulcal shape across sites (MANOVA: F2,13=0.695, P=0.406). 

Female cloacal shape analyses revealed PC1 significantly explained 61.7% of the 

variation in shape, while PC2 explained 17.9% of the variation. There was no significant 

different in cloacal shape across sites (MANOVA: F2,12=1.055, P=0.494). 

 

Male and female scaling relationships and variance - The relationship between sexual 

and non-sexual traits and body size, trait variability, and repeatability of measurements 

are shown in Table 3. Male and female genital length and width scaled isometrically, as 

did female tibia to body size, while male tibia to body size showed a weakly isometric 

relationship. Trait variability was higher in sexual traits than non-sexual traits, for both 

males and females.  



	56	

D. Discussion 

Variability in the physical dimensions and complexity of an animal’s habitat can have a 

broad range of effects on its feeding ecology, morphology, and social interactions. In this 

study we sought to investigate the effects of variability in habitat structure on sexual and 

non-sexual traits in male and female green anole lizards, Anolis carolinensis. We found 

that body condition in males increased significantly with vertical heterogeneity. Body 

condition was highest at our northern study site, which was generally the most 

structurally complex site of the three we studied. Body condition in males was 

intermediate at the eastern site, which had the most homogeneous vegetation, and lowest 

at the site with the patchiest habitat: the southern site. Interestingly, female body 

condition was statistically consistent across sites. Although habitat variation has also 

been shown to affect morphology and physiology, there were no significant differences 

across sites in any other trait we measured (genital shape and size, tibia length, and testis 

volume in males), and there was no relationship between body condition and sperm size. 

Lastly, we found that genital traits scaled isometrically in both males and females, as did 

female tibia length, while male tibia length showed a weak trend toward negative 

allometry. We also found that trait variability was higher in sexual traits than non-sexual 

traits, for both males and females. Although our sample sizes were small, our results 

support previous studies showing sexually dimorphic responses to habitat in Anolis 

lizards.  

We predicted that body condition would vary across sites, as habitat structure 

determines arthropod biomass and diversity (Greenstone 1984, Davidowitz & 

Rosenzweig 1998, Halaj et al. 2000, Romero-Alcaraz & Avila 2000, Tanabe et al. 2001). 
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However, as males, but not females, were affected, it is possible that intraspecific 

competition and male signaling costs were responsible for low body condition at the 

southern site, as it was the patchiest site, and we expected this would increase male-male 

competition (Brandt 2003, Irschick et al. 2005a, Lailvaux et al. 2012). Yet, we did not 

find any secondary evidence of male-male competition variability across sites, as none of 

the postcopulatory traits we studied in males differed (testis size, genital shape or size), 

and the sexual size dimorphism index values did not correspond with body condition. 

These results are not entirely surprising. Differential male-male competition for mates 

and territory requiring selection on precopulatory traits, such as body size and aggressive 

behavior, can result in corresponding tradeoffs in allocation to postcopulatory traits, but 

the intensity of competition has been shown to determine the degree of tradeoff 

(Fitzpatrick et al. 2012, Lüpold 2014, Blengini 2016, Kahrl et al. 2016, Naretto et al. 

2016). It is possible that habitat structure at the southern site, relative to the northern site, 

is associated with lower body condition because of differences in predation pressure 

associated with each habitat. Open habitats increase visibility to predators and provide 

fewer refuge sites from predation (Kie and Bowyer 1999, Denno et al. 2005, Shepard 

2007). Therefore, the southern males may have lower body condition than the northern 

males because of increased predator avoidance (Martin and Lopez, 1999, 2000, Moore et 

al. 2000, Pérez-Tris et al. 2004, Amo et al., 2007, Rodrigues-Prieto et al. 2010, Sinervo et 

al. 2010, Gallego-Carmona et al 2016). As male A. carolinensis signal more and move 

more than females, they likely would be more conspicuous to predators than females 

(Nunez et al. 1997, Bloch and Irschick 2006, Dill et al. 2013). In this way, male body 

condition may be more influenced by habitat than females across our sites.  
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Additionally, open habitats may affect body condition via dehydration, as open 

habitats provide less shade and decrease relative humidity (Chen et al. 1999, Losos 

2009). Kattan and Lillywhite (1989) found that A. carolinensis lizards exposed to a 

dehydrating environment for 8 days suffered decreased mass relative to the hydrated 

lizards, even though the dehydrated lizards compensated by increasing lipid deposition in 

their skin to decrease water loss. Males that move more than females may also be at 

greater risk of dehydration than females at sites where water is limited or temperatures 

are higher (Dupoué et al. 2017).  

Habitat heterogeneity and complexity, especially on small scales, has been shown 

to be important for arthropod abundance and diversity (Greenstone 1984, Davidowitz & 

Rosenzweig 1998, Halaj et al. 2000, Romero-Alcaraz & Avila 2000, Tanabe et al. 2001). 

Therefore, we might expect the differences in body condition in males to be linked to 

arthropod abundance, though we did not gather these data. However, combined results 

from studies of body condition in A. carolinensis across sites within a park in Texas 

found females had lower body condition at the site with the greatest arthropod biomass 

(Battles et al. 2013, Dill et al. 2013, Stehle et al. 2017). The authors suggest that this may 

be due to the greater proportion of larger arthropods at this site, which would have been 

more difficult for the females to eat, and that arthropod nutritional value may vary across 

sites (Battles et al. 2013, Stehle et al. 2017). Additionally, Battles et al. (2013) proposed 

that the high arthropod biomass may have increased competition at this site. It is possible 

that a combination of factors is involved in determining the cause of lower body 

condition at our southern site in males.  
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Although our sites varied in structural characteristics and male body condition 

varied across sites, we did not find differences across sites in relative tibia length. Males 

and females also had similar isometric tibia scaling relationships with body size, though 

male slopes were lower and verged on allometric. A. carolinensis morphology has shown 

plastic responses to perch width in the lab (Kolbe and Losos 2005), and sex-specific limb 

and perch associations in the field (Irschick et al. 2005b, Dill et al. 2013). However, 

populations do not always respond morphologically to perch dimensions as predicted, 

and lack of ecological and morphological differentiation between the sexes also exists 

across populations in this species (Irschick et al. 2005a, Gilman and Irschick 2013). As 

male and female tibia to body size relationships were similar, this suggests that, in 

general, there was little morphological differentiation between the sexes. However, we 

only measured one limb dimension. Other studies have found that while one limb, or part 

of the limb, did not differ between the sexes, other limbs did (Irschick et al 2005a, 

2005b). Therefore, it is possible that the sexes do differ morphologically, but the tibia is 

not the limb element that is being selected on across habitats.   

 We found no effect of habitat on postcopulatory traits across sites, however our 

study did provide some valuable sexual trait data. First, sexual trait dimensions had 

higher variability than non-sexual traits. Similar results have been found in other studies 

(Pomiankowski and Møller 1995, Eberhard 2009, Klaczko and Stuart 2015), and 

Pomiankowski and Møller (1995) suggest the high variability in sexual traits is due to 

strong sexual selection for this variability, as opposed to directional selection for an ideal 

trait. Interestingly, hemipenis length had relatively low variability, compared to the other 

sexual traits. This was also true in a previous study of two subspecies of A. grahami 
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(Klaczko and Stuart 2015). However, because there is so little data on the variability of 

hemipenis dimensions within and across populations, and because hemipenis shape and 

length function is largely unexplored (though see King et al. 2009, Johnson et al. 2014), it 

is difficult to speculate on the meaning of the different levels of variability. Second, 

hemipenis and cloacal dimensions scaled isometrically in our study. The data for the 

allometry of squamate genitalia is sparse, but a handful of studies are beginning to show a 

pattern. Hemipenis length in two other studies of lizards also scaled isometrically 

(Klaczko and Stuart 2015, Gilman et al. in press), though another subspecies of the same 

lizard studied in Klaczko and Stuart (2015) showed negative allometry with body size. 

Although scaling patterns vary across taxa, these results contrast starkly with the vast 

majority of studies, which have been done on arthropods, showing negative allometry in 

genitalia (Hosken & Stockley 2004, Eberhard 2009, Voje, 2016). Our study is unique in 

the small subset of squamate data because we examined the relationships between 

genitalia and body size for both sexes. As both sexes scaled isometrically, either both 

sexes are under the same selective pressures, or these traits are evolving in unison (Voje 

and Hansen 2013, Voje et al. 2014).  

  Here we provide the first examination of genital and non-genital traits in the 

lizard A. carolinensis across habitats of varying complexity and density. We found that 

although this species has been shown to respond in multiple ways to habitat variability, 

across our sites, habitat characteristics had limited ecological effects on the lizard. Our 

results did show, however, that the habitat effects were sexually dimorphic in nature. 

While these data add to a growing body of work examining whole body effects of habitat 

on animals, further work examining the whole-animal effects of habitat are needed. 
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Figure 3.1: Three transect areas in Spruce Creek Park. A) A heterogeneous northern 
corridor along a dirt road, B) A continuously vegetated eastern corridor along a dirt road, 
and C) A relatively sparsely vegetated interior southern corridor with low palms and a 
few tall trees. 
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Table 3.1: Structural characteristics of the habitat along 50 meter 
transects at each site. 
  South East North 
Vertical openness 2 4 2 
Vertical heterogeneity 1.58 1.88 2.25 
Total perches 101 165 111 
Horizontal openness 25 10 16 
Horizontal heterogeneity 1.98 1.76 2.25 
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Table 3.2: ANCOVA results for trait differences 
across sites, F-statistics, and P-values for each trait. 
  F P 
Males   

Hemipenis length 0.367 0.702 
Hemipenis body width 0.472 0.637 
Hemipenis lobe width 0.538 0.600 

Hemipenis horn length 1.031 0.392 
Hemipenis horn height 1.799 0.215 

Testis volume 0.109 0.898 
Tibia length 0.019 0.981 

   
Females   

Cloaca length 0.214 0.811 
Cloaca width 2.065 0.183 
Cloaca height 0.222 0.805 

Tibia length 1.105 0.372 
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Table 3.3: Summary statistics for ordinary least square regression of traits on body size (b, r2, t-value), 
significance from test of deviation from a slope of one (P), coefficient of variation (CV), coefficient of 
variation with body size held constant (CV'), and trait measurement repeatability (ICC). 

  b r2 t-value P CV CV' ICC 
Males        

Hemipenis length 0.679 0.126 1.423 0.512 4.480 4.188 0.999 
Hemipenis body width 0.673 0.064 0.976 0.643 14.560 14.086 0.987 
Hemipenis lobe width 1.402 0.096 1.219 0.732 15.269 14.518 0.901 

Hemipenis horn length -0.786 0.038 -0.739 0.115 33.271 32.633 0.995 
Hemipenis horn height -1.378 0.096 -1.221 0.054 38.192 36.308 0.984 

Tibia length 0.639 0.487 3.771 0.050 1.690 1.210 0.940 
Testis volume 0.693 0.021 0.561 0.807 7.762 7.680 0.947 

        
Females        

Cloaca length 0.935 0.042 0.751 0.959 15.050 14.731 0.997 
Cloaca width 0.733 0.053 0.855 0.760 11.452 11.144 0.996 
Cloaca height 1.118 0.106 1.240 0.898 23.021 21.769 0.980 

Tibia length 0.944 0.581 4.248 0.804 2.512 1.626 0.930 
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CHAPTER IV 

GENITAL MORPHOLOGY ASSOCIATED WITH MATING STRATEGY IN 
 THE POLYMORPHIC LIZARD, UTA STANSBURIANA 

 

A. Introduction 

Animal mating strategies range from monogamous to highly promiscuous, and are often 

determined by environmental factors and social pressures (Emlen & Oring, 1977; Rowe, 

Arnqvist, Sih, & Krupa, 1994; Kokko & Rankin, 2006). In species that have alternative 

male mating strategies, males within a population will often specialize in two or more 

different mating strategies (Gross, 1996; Moczek & Emlen, 2000; Taborsky, 2008). 

These alternative strategies are found across taxa and evolve when competition for 

fertilization is strong (Dominey, 1984; Fleming, 1996; Miller, 2013). Examples of 

common behavioral strategies in these systems are dominant territoriality to mate with 

multiple females; mate-guarding one or a few females; and sneaking copulations from 

other males’ females (Sinervo & Lively, 1986; Gross, 1996; Shuster, 1989; Emlen, 1997; 

Widemo, 1998). These strategies are often associated with distinct morphological, 

behavioral, and physiological phenotypes (Taborsky, 2008). 

 Populations with alternative mating strategies typically have strong sexual 

selection and therefore offer excellent opportunities to test hypotheses regarding the 

effects of male-male competition on reproductive traits, such as testes, sperm, and genital 

size and shape. For example, studies of alternative mating strategies have been used to 

address the hypothesis that dominant males will spend more somatic resources on mate 

guarding and territory defense than on investment to their gonads, relative to other male 

mating types (Gage, Stockley, & Parker, 1995). Testis size has been shown to be larger in 
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sneaker males, relative to dominant males, in primates (Setchell & Dixson, 2001), fish 

(Gage et al., 1995; Oliveira, Ros, & Gonçalves, 2005), birds (Jukema & Piersma, 2006), 

lizards (Olsson, Schwartz, Uller, & Healey, 2009), and dung beetles (Reynolds & Byrne, 

2013). The strong selective pressure of sperm competition—the competition between 

sperm from two or more males to fertilize the same egg or set of eggs—in alternative 

mating strategy systems has also resulted in differences in sperm traits across male 

morphs (Gage et al., 1995; Alonzo & Warner, 2000; Uglem, Galloway, Rosenqvist, 

&Folstad, 2001; Smith & Ryan, 2010). Sneaker males have significantly longer sperm 

than territorial males in Onthopagus binodis dung beetles (Simmons, Tomkins, & Hunt, 

1999) and partnered males in Loligo bleekeri squid (Iwata et al., 2011). In a study of 

Lepomis macrochirus bluegill sunfish, parental males had longer-lived sperm than 

sneaker and satellite males, though sperm density was highest in sneakers, suggesting a 

tradeoff between morph-specific sperm competition risk and resource allocation options 

(Neff, Fu, & Gross, 2003). Genitalia have been shown to be morph-specific in 

polymorphic snails, with euphallic individuals being able to self-fertilize and cross-

fertilize as both males and females, and hemiphallic and aphallic individuals only being 

able to self-fertilize and cross-fertilize as females (Schrag & Read, 1996; Doums, Viard, 

& Jarne, 1998). Genital polymorphism also occurs across morphs in arthropods (Mound, 

Crespi, & Tucker, 1998; Mutanen & Kaitala, 2006). However, to our knowledge, the 

published examples of vertebrates with morph-specific differences in genitalia have been 

limited to fish (Oliveira, Canario, & Grober, 2001a; Marentette, Fitzpatrick, Berger, & 

Balshine, 2009, with caveats; Hernandez-Jimenez & Rios-Cardenas, 2017).   
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  Compared to other physical traits, genitalia can evolve rapidly and show 

remarkable diversity within and across taxa (Hosken & Stockley, 2004; Böhme & 

Ziegler, 2009; Eberhard, 2010; Rowe & Arnqvist, 2012; Klaczko, Ingram, & Losos 

2015). Sexual selection is often cited as the likely cause driving this relatively rapid 

evolution (Arnqvist, 1998; Eberhard, 2010; Hosken & Stockley, 2004; Simmons, 2014). 

Genital shape and length may evolve under sexual selection pressure in several ways: to 

aid sperm transfer or remove competing males’ sperm (sperm competition), to stimulate 

the female and gain a fertilization advantage or to alert the female of some male ‘cues’ 

(cryptic female choice), or in an evolutionary arms race between the sexes (antagonistic 

coevolution) (Cordoba-Aguilar, 1999; Arnqvist & Rowe, 2002; Rivera, Andres, Cordoba-

Aguilar, & Utzeri, 2004; Eberhard, 2009a; Simmons & Garcia-Gonzalez, 2011; 

Eberhard, 2010). Most studies examining the effects of sexual selection on genital 

evolution have been on insects (Simmons, 2014). While there is a growing body of 

literature on vertebrates, the relationship between sexual selection and genital evolution 

has only just begun to be examined empirically in lizards and snakes (King et al., 2009, 

Johnson et al., 2014, Friesen, Uhrig, Mason, & Brennan, 2016; Klackzo, Gilman, & 

Irschick, 2017).  

  Lizards and snakes have paired intromittent organs that are held inverted in the 

base of the tail until everted for copulation. These organs, termed hemipenes, can be 

single or bi-lobed, and sometimes have fleshy extensions at various points on the distal 

(apical) end (see Böhme & Ziegler, 2009). Each hemipenis has an open groove (sulcus 

spermaticus, or sperm channel) running through the ventral side whose function is to 

transfer sperm when the hemipenis is everted during copulation. Hemipenes can be 
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simple or have a range of external ornamentations (e.g., pits, ridges, papillae, horns) 

(Savage, 1997; Böhme & Ziegler, 2009). Hemipene morphology evolves relatively 

rapidly compared to other external traits, and is commonly used as a taxonomic character 

in lizards because it can be used to distinguish otherwise cryptic species (Köhler & 

Sunyer, 2008; Böhme & Ziegler, 2009; Köhler & Vesely, 2010; Klaczko et al., 2015). 

Given sexual selection’s role in driving the evolution of genitalia in closely related 

species across taxa, we were interested whether genital morphology could be 

differentiated within a vertebrate species with high levels of sexual selection. We 

therefore studied side-blotched lizard, Uta stansburiana, males within an alternative 

mating strategy population known to experience high levels of male-male competition 

(Sinervo & Lively, 1996; Zamudio & Sinervo, 2000). 

 Uta stansburiana is a small terrestrial lizard that exhibits an alternative mating 

strategy polymorphism, with three genetically-determined male mating strategies 

(Sinervo and Lively, 1996; Sinervo, 2001; Corl, Davis, Kuchta, & Sinervo, 2010). Males 

with orange throats control large territories with many females; blue-throated males 

closely mate-guard females and cooperatively defend smaller territories; and yellow-

throated males sneak on to other males’ territories to copulate with females (Sinervo & 

Lively, 1996; Zamudio & Sinervo, 2000; Sinervo, 2001; Sinervo & Clobert, 2003; 

Sinervo et al., 2006). Male-male competition in this system can be intense; large and 

aggressive orange-throated males can usurp territories and mates from less-aggressive 

blue-throated males, but are at risk of mating competition from yellow-throated sneaker 

males (Sinervo & Lively, 1996). Females mate with multiple males, across more than one 

morph, and up to 81% of all clutches are fertilized by multiple males (Zamudio & 
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Sinervo, 2000). Mate-guarding blue-throated males have been shown to sire significantly 

more singly-sired clutches than the other two males, while yellow-throated sneaker males 

are significantly more likely to sire offspring in multi-sired clutches (Zamudio & Sinervo, 

2000). Yellow sneaker males also more frequently sire progeny on later clutches well 

after they have died (posthumous fertilizations) suggesting morph-specific sperm 

competition strategies (Zamudo & Sinervo, 2000). 

The males of polymorphic U. stansburiana populations have distinct 

precopulatory behavioral strategies and morphologies, but thus far there have been no 

studies detailing this lizard’s reproductive anatomy. Our goals were to 1) provide a 

morphological description of the hemipenis of the three U. stansburiana morphs, and 2) 

test for differences in hemipenis morphology across the morphs. We hypothesized that 

sneaker male genitalia will have the most distinct morphology relative to the other two 

morphs. A previous study suggests U. stansburiana sneaker morphs have the highest 

level of sperm competition in this system (i.e., father the most multi-sired clutches, 

Zamudio and Sinervo, 2000), and sneaker morph postcopulatory traits have been shown 

to differ from territorial morphs in other systems (e.g., Simmons, Tomkins, & Hunt, 

1999; Neff, Fu, & Gross, 2003; Iwata et al., 2011 (above)). However, because the 

majority of studies of sexual selection and genital evolution have been on invertebrates, 

and comparisons across morphs within terrestrial vertebrate populations have not been 

studied, it is unclear precisely how the genitalia will differ. We compared genital size and 

shape using multiple linear measurements and geometric morphometric techniques. We 

also examined the relationship between body size and genital and non-genital traits 
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(hemipenis and tibia), for all males, as these data for squamates are currently rare in the 

literature.  

B. Methods 

1. Taxon sampling 

We captured male lizards from our long-term study population of U. stansburiana (Baird 

and Girard, 1852) at Los Baños Grandes, Merced County, California, USA. We collected 

the animals during the peak of breeding season, and within three weeks of each other, to 

minimize seasonal effects on morphology. Our methods of collecting the animals were 

approved by the University of California, Santa Cruz Institutional Animal Care and Use 

Committee (#Sineb1404).  We measured the body mass and snout-vent length (SVL), and 

visually scored the morph phenotype of each lizard based on throat color. We assigned 

morphs according to the intensity and location of the orange, blue, and yellow coloration 

on the throat of the lizard. We have previously documented that the male and female 

strategies and associated throat colors are genetically determined and are hypothesized to 

arise from the OBY locus, which is likely a single gene with three alleles, or two tightly 

linked genes (Sinervo, Svensson, & Comendant, 2000b; Sinervo, Bleay, & 

Adamopoulou, 2001; Sinervo et al. 2006).  We focused our study on individuals with the 

greatest throat color differences, to maximize our chances of detecting other phenotypic 

differences among the morphs. Therefore, we conducted our study on individuals with all 

orange on their throats (n=8; putative oo genotypes), all blue on their throats (n=8; 

putative bb genotypes), and all yellow on their throats (n=7; putative yy genotypes).  

Individuals with multiple colors on their throat (e.g. blue and orange) were not used.  
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2. Hemipenis preparation 

We prepared one hemipenis per male (generally the left, unless the right was easier to 

access) for morphometric analysis by dissecting out, everting, and then inflating each 

hemipenis with warm, pigmented Vaseline, following Zaher & Prudente (2003). To 

achieve this, we thawed each lizard specimen until still cold but pliable, to maintain 

tissue integrity. We then made an incision to the midline of the tail, from the cloaca to 

well past the hemipenis bulge, and removed the skin to expose the hemipenis and 

associated muscles. We removed the transversus penis (a muscle) from the surface of the 

hemipenis, and cut the tendon of the retractor penis magnus muscle, just below the 

hemipenis. To evert the hemipenis, we grasped the severed retractor muscle tendon with 

small forceps, just below the distal end of the hemipenis, and gently pushed the 

hemipenis until it began to bulge outward from the cloaca. Then, while holding the 

tendon with one hand, we gently pressed the hemipenis where it was visible protruding 

from the cloaca, and slowly everted the hemipenis. We repeated this motion until the tip 

of the hemipenis was visible. Then we dissected the hemipenis from the animal by 

cutting along the cloaca, along the outer basal ridge of the hemipenis, so just a small 

portion of scale tissue was left at the base of the hemipenis. We removed all associated 

muscle tissue that remained protruding from inside the hemipenis to ensure that we 

would be able to fill the hemipenis without obstruction. We then filled the everted 

hemipenis with pink-pigmented Vaseline (warmed until just fluid consistency with a hot 

plate) using a glass syringe and a small, dulled-tip needle. The pink-pigmented Vaseline 

allowed us to gauge inflation while in process and visualize the hemipenis ornamentation 

in contrast once we completed inflation; the flesh of the hemipenes was light colored, and 
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the Vaseline was visible through the flesh (see Fig. 1). Once the hemipenis was filled 

completely (as determined by the Vaseline pigment showing clearly through all areas of 

the hemipenis tissue, and by examining the tissue to determine whether there was still 

additional tissue that could be expanded), we tied off the end of the hemipenis just above 

the scale line to keep it filled. Once cool, the Vaseline ensured hemipenes retained their 

inflated shape. 

 

3. Genital and non-genital trait measurements 

We imaged the lateral, apical (distal), and sulcal (side along where the sulcus 

spermaticus, or sperm channel, runs) views of each hemipenis with a Leica DFC450 C 

digital microscope camera mounted to a Leica M165 FC microscope. We then used 

ImageJ (Rasband, 1997–2012) to measure linear dimensions of the trunk, lobe (or apex), 

the fleshy ‘horn’ at the distal tip of the hemipenis, and to measure the area of the apex 

(see Fig.1 and Table 1). We measured one non-genital trait, the right tibia, of the same 

specimens. We used a digital caliper to measure from the joint with the femur (knee) to 

the articulation with the metatarsus (ankle). We measured each specimen twice (using the 

same digital image for each pair of hemipenal measurements), and used the mean value 

for each individual in our analyses. We calculated the repeatability of the measurements 

as the intraclass correlation coefficient (ICC), using the ICC package (Wolak, Fairbairn, 

& Paulsen, 2012) in R version 3.1.0 (R Core Team 2014). 

 

4. Hemipenis shape analysis 
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We conducted our shape and statistical analyses using R version 3.1.0. To compare the 

general shape of the hemipenis across morphs, we imported the lateral and sulcal images 

used for the linear data into R and tested for differences in shape across the three morphs 

using elliptical Fourier analysis (EFA) in the R software package Momocs (Bonhomme, 

Picq, Gaucherel, & Claude, 2014, also see http://vbonhomme.github.io/Momocs, and 

https://CRAN.R-project.org/package=Momocs for detailed instructions). Once we 

imported the outlines into R, we processed the outlines so they retained shape but were 

invariant to size, rotation, and starting point. This ensured we compared hemipenis shape, 

but not size. In elliptic Fourier analysis, x and y coordinates along an outline are 

decomposed into harmonic sums of a cosine curve and a sine curve defining an ellipse in 

a plane, and four coefficients per harmonic are obtained, two for x and two for y. We 

chose to use 15 harmonics, which gathered 99 % of the total harmonic power. See Figure 

S1 for the outlines of the hemipenes of the 23 individuals generated by Momocs from our 

digital images. 

 

5. Statistical analyses 

Following a test for homogeneity of variances across groups using Bartlett’s test, we 

tested for differences in hemipenis linear dimensions and apical area, lateral and sulcal 

aspect ratios, as well as tibia length, and body mass using one-way analyses of covariance 

(ANCOVAs). We set animal size (SVL) as a covariate and morph as the fixed factor. We 

followed significant results from the ANCOVAs with post-hoc Tukey HSD tests.  

To analyze shape variation across individuals, we conducted a principal component 

analysis using the harmonic coefficients from the EFA. Following the principal 
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component analysis we conducted a multivariate analysis of variance using the EFA 

harmonic coefficients to test for shape differences across the morphs.  

 We examined the relationship between body size (snout-vent length, SVL) and 

genital (hemipenis) and non-genital (tibia) traits and across the three morphs using 

ordinary least squares regression of the log10 transformed data. We then tested the 

resulting slopes against isometry (bOLS=1), to determine if the scaling relationships were 

isometric or allometric (greater than 1 showing positive allometry, less than 1 showing 

negative allometry) using the smatr package in R (Warton, Wright, Falster, & Westoby, 

2006; Warton, Duursma, Falster, & Taskinen, 2012).  

 

C. Results 

The fully everted hemipenes of all three alternative mating strategy morph phenotypes 

were qualitatively similar (Fig. 1). Each unilobed hemipenis had a narrow, smooth trunk 

with no ornamentation. The single sulcal spermaticus terminated at the center of the 

apical lobe and was bordered by sulcal lips. The apical lobe was bulbous, capitate, and 

covered in calyces. The lobe protruded out from sulcal side in an L-shape with the trunk, 

had fleshy ridges along the lateral-sulcal proximal border, and had a well-developed, 

fleshy, apical horn.     

 The relationships between body size (SVL) and hemipenis and tibia length across 

the three morphs is shown in Figure 2. The slope of the hemipenis length to SVL was not 

different from 1.0 (slope=1.16, P=0. 635), but the slope of tibia length to SVL was just 

significantly less than 1.0 (slope=0.65, P=0.047), indicating that while genitalia increased 
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proportionally with animal size, tibia in smaller animals were slightly larger relative to 

size than in bigger animals. 

 There was a significant global difference in hemipenis length across morphs, with 

the yellow sneaker males having significantly shorter hemipenes than the other two 

morphs (orange usurper=7.62±0.26 mm mean ± SE, blue mate-guarder=7.63±0.24 mm, 

yellow sneaker=6.70±0.25 mm, Table 1; ICC coefficients are listed in Table 1). We 

found few other differences across morphs in dimensions descriptive of overall 

hemipenis size. However, the ANCOVAs revealed significant differences across morphs 

in apical horn dimensions. There was a significant difference in horn base width across 

morphs, with the orange usurper males having greater horn base widths than the sneaker 

males. Horn tip width was also significantly different across morphs, with the usurper 

males again having greater horn tip widths than the sneaker males. Yellow sneaker males 

also had significantly smaller body masses than the other two morphs, and significantly 

shorter tibia than the orange usurpers. There were no significant interaction effects 

between animal size (SVL) and morph for any of the variables we tested (Table 1). 

The principal component analysis of lateral shape revealed that PC1 explained 73% of 

the variation in shape, with hemipenes becoming less curved with increasing values of 

PC1 (Fig. 3). PC2 explained 12% of the variation, with hemipenes becoming squatter and 

more bulbous with increasing values of PC2. There was no significant difference in 

overall lateral shape across morphs (P=0.885). Following sulcal view PCA analysis of 

hemipenis shape, PC1 explained 53% of the variation in shape, with hemipenes becoming 

slimmer with increasing values of PC1 (Fig. 4). PC2 explained 18% of the variation, with 
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hemipenes becoming shorter and squatter with increasing values of PC2. There was no 

significant difference in overall sulcal shape across morphs (P=0.640). 

 

D. Discussion 

Alternative male mating strategies can have intense male-male competition, often 

resulting in striking differences in behavioral, morphological, and postcopulatory traits 

across morphs (Simmons et al., 1999; Oliviera, Taborsky, & Brockman, 2008; Miller, 

2013). We tested for evidence of morphological differences in a postcopulatory trait, the 

genitalia, and in body mass and tibia length in the lizard U. stansburiana. We found that 

generally, the two territorial morphs were broadly similar while the sneaker males were 

distinct from the territorial males. While we found no differences across morphs in the 

overall shape of the hemipenis, the isometrically-scaling hemipenis was shortest relative 

to body size in the sneaker males, and the usurper males had significantly greater relative 

apical horn widths than the sneaker males. The sneaker males also had significantly 

smaller relative body masses than the other two morphs and shorter relative tibia lengths 

than the usurper males. Our results support previous findings of morphological 

differentiation across morphotypes and provide new evidence of morph-specific genital 

morphology in a vertebrate population with alternative reproductive strategies. 

 We found significant differences across morphs in relative hemipenis length and 

relative apical horn widths. These differences might arise simply as a byproduct of 

disparities in testosterone levels across morphs, they may serve a postcopulatory 

function, or perhaps, a combination of both. In our study, usurper males had significantly 

longer hemipenes with wider apical horns than sneaker males. Although not the rule, the 
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influence of androgen level on the development of differential morphology across 

morphs in alternative reproductive systems is common (Oliveira et al., 2008). For 

example, in two species of blennies, an external fertilizing fish with flexible alternative 

reproductive tactics, the large, nest-defending dominant morph has higher androgen 

levels than the sneaker males; these nest-defenders also have larger genital papilla than 

the sneakers (Oliveira, Carneiro, Gonçalves, & Canario, 2001a, Oliveira et al., 2001a). 

However, when sneakers are supplemented with androgens, their genital papilla size 

increased, confirming the role of androgens in the development of genital morphology in 

dominant males (Oliveira et al., 2001a, 2001b). Additionally, in rats and hamsters, penis 

morphology and genital spine development is dependent on androgen levels (Sachs, 

Glater, & Ohanlon, 1984; Arteaga-Silva et al. 2008). For lizards, steroid hormones play a 

role in sexual differentiation of the copulatory organs during development and 

testosterone has been shown to increase hemipenis size in adult geckos (Beck & Wade, 

2008; Holmes & Wade, 2005). Usurper U. stansburiana males have the highest levels of 

testosterone of the three morphs (Sinervo, Miles, Frankino, Klukowski, & DeNardo, 

2000a). Therefore, it is possible that increased testosterone, or other factors influencing 

development, are responsible for longer hemipenes and wider apical horns in the usurper 

morph. Alternatively, it is possible that developmental requirements of other structures 

create tradeoffs resulting in relative hemipene size differences across morphs (Emlen 

2001).  

 Although differences in genital length across alternative mating morphs has been 

documented in snails and fish, evidence of subtle differences in genital ornamentation is 

less well-documented (Doums et al., 1998; Greven, 2005; Oliveira et al., 2008). In 
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species with intromittent copulation, complex male genital ornamentation is widespread 

in vertebrates (Kelly, 2016) including lizards and snakes (Dowling & Savage, 1960; 

Bohme & Zeigler, 2009). In U. stansburiana, the enlarged apical lobe of the hemipenis 

spines is covered in calyces. These and other forms of hemipenal ornamentation (e.g., 

fleshy horn on U. stansburiana and some Anolis lizards (Gilman, pers. obs.), pendunculi 

on Chameaeleonid hemipenes (Klaver & Böhme, 1986)) may have important roles in 

sexual selection. For example, in other taxa, male genital ornamentation, such as 

epidermal spines, has been shown to induce ovulation (in mammals such as Carnivora 

(Zarrow & Clark, 1968) and rodents (Altuna & Lessa, 1985; Bennett, Faulkes, & 

Molteno, 2000; Katandukila & Bennett, 2016)). Orr & Brennan (2016) showed that 

penile spines across all mammalian orders were associated with larger testes sizes, 

suggesting that sexual selection may drive the presence of spines, though some mammals 

in their data set showed induced ovulation without the presence of spines. In garter 

snakes, hemipenis spines have been shown to increase copulation duration (Friesen, 

Uhrig, Squire, Mason, & Brennan, 2014).  

 Male and female genitalia mechanically interact during copulation; this sets the 

stage for selection on genital morphology (Eberhard, 1990). Connor & Crews (1980) 

showed that the calyces on the apical lobe of the hemipenis of Anolis carolinensis were in 

direct contact with the epithelium of the cloaca of the female during copulation, and the 

apical tip of the hemipenis of A. carolinensis is situated between the two oviducts of the 

female. The epithelium of the cloaca between the oviducts is covered with secretory cells 

and glands in other lizards, though the physiological role during copulation of these 

structures has not been investigated (Sánchez-Martínez, Ramirez-Pinilla, & Miranda-
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Esquivel, 2007). If the wider apical horns in the U. stansburiana usurpers have an 

adaptive function, functions could include providing a more efficient path for the sperm 

into the oviducts, or perhaps stimulation of the female. Usurpers have high testosterone 

levels and benefit from greater endurance and control over female home-ranges than the 

other morphs, but at the cost of lower survival rates (Sinervo et al., 2000a). Therefore, it 

is possible that the apical horn could provide a fitness advantage for usurper morphs, or 

may be tied to other behavioral differences across morphs, such as copulation duration. 

Larger hemipenes have been correlated with more frequent copulation rates in Anolis 

lizards (Johnson et al. 2014) and longer and more complex longer hemipenes are 

associated with greater copulation duration in gartersnakes (King et al. 2009). Extensive 

observations on copulation location in Uta in nature (Sinervo, pers. obs.) indicate that 

both territorial morphs copulate on rocks in the open, but that sneaker males copulate 

under rock edges and in grassy environments. Morph-specific mating behavior could 

drive differences in relative hemipenis length and ornamentation (King et al. 2009, 

Johnson et al. 2014). Fitness studies using surgical manipulations of the horn, mating 

behavior studies, more detailed measurements at key areas of contact, and micro-CT 

images of U. stansburiana in copula could provide valuable information and direction for 

future study.  

 In our study, the hemipenis of U. stansburiana scaled isometrically, while the 

tibia showed a slightly significant negative allometric slope. The scaling relationship of 

genitalia with body size has been examined across and within taxa in order to determine 

the driving forces behind genital diversity and highlight the overall scaling patterns 

within groups. While insects and spiders have been shown to generally have negative 
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allometry, scaling patterns vary across other groups (Eberhardt, 2009b; Voje, 2016; 

Hosken & Stockley, 2004). Inconsistent scaling relationships across taxa in vertebrates 

may be due to a number of factors, such as ecology and how males use genitalia (i.e., 

where in the habitat the mating occurs could affect function, and whether the male thrusts 

repeatedly or insertion occurs once) (Eberhard, 2009b). Klaczko & Stuart (2015) showed 

that the slopes for both genitalia and limbs in one Anolis subspecies group were less than 

one, while in another subspecies both traits scaled isometrically with body size. Klaczko 

& Stuart (2015) suggest that genitalia are under selective pressure in the subspecies they 

studied, potentially leading to speciation. King et al. (2009) propose that if genitalia scale 

with negative allometry, small males may benefit from larger relative hemipenis lengths 

with increased copulation duration, as hemipenis length and copulation duration 

correlated in their study. Dill et al. (2013) suggest that allometric differences in limb 

lengths within Anolis species reflect local adaptation required for locomotion. Whereas 

ecomorphological data on lizards is abundant, data on genital scaling relationships in 

squamates in sparse. Clearly, more studies are needed to understand the selection 

pressures, particularly for genitalia, across species and social systems. 

 The yellow sneaker morphs, who morphologically and behaviorally mimic 

females (Sinervo et al., 2000b), were the smallest morph in our study. Not only did 

sneakers have significantly smaller relative body masses than the other two morphs, they 

also had shorter relative tibia lengths than the usurper males. Our findings support those 

of earlier studies showing distinct behavioral, morphological, and physiological 

differences across U. stansburiana morphs (Sinervo & Lively, 1996; Sinervo et al., 

2000a; Svensson, Sinervo, & Comendant, 2001; Mills et al., 2008; LaDage, Riggs, 
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Sinervo, & Pravosudov, 2009). Smaller body masses and shorter tibia lengths could be 

associated with the territory holding behavior differences across the morphs, particularly 

the differences between the sneakers and the two territorial morphs. Mills et al. (2008) 

found that usurpers and mate-guarders have faster sprint speeds and greater endurance 

than sneaker males. The authors suggest these performance traits in the two territorial 

morphs are needed to maintain territories and gain access to females. This complex of 

differences in body size, performance, mating behavior, physiology, life expectancy, and 

genitalia across morphs may be determined by alternative investment strategies (Alonzo 

& Warner, 2000; Neff et al., 2003)  

 In this paper we provide the first morphological description of the male 

copulatory organ of Uta stansburiana, across three alternative mating strategy morphs. 

We found differences in relative hemipenis size and ornamentation across morphs. To 

our knowledge, this is the first documentation of morph-specific genitalia in a terrestrial 

vertebrate. The fact that we were able to detect differences in hemipenes not only within 

a single species, but within a single population of that species, suggests that sexual 

selection can have strong role in rapidly altering hemipenis morphology. However, as our 

study tested small sample sizes within only one population, much more data is needed to 

address whether our findings represent true patterns in terrestrial polymorphic 

populations or are an anomaly resulting from our methods and population.   
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Figure 4.1: One hemipenis from each morph (bb:mate-guarding, oo:usurper, yy:sneaker) 
shown in three views. From the left: apical, with the horn (h); sulcal, with the sulcus 
spermaticus running up the midline (s), and lateral, with the trunk (t), and apex (a).  
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Table 4.1: Sexual and non-sexual trait comparisons across the three morphs. ICC 
coefficients (repeatability of measurements), ANCOVA results for differences in 
traits across morphs and interaction between morph and body size (SVL), and post-
hoc comparisons between morphs. Significant results are shown in bold with 
asterisks. 
 ICC 

Coefficient 
ANCOVA 
F(2,17), P 

Tukey HSD, P 
oo-bb        yy-bb          yy-oo 

Body Mass 
Morph x SVL 

-- 4.57, 0.026* 
0.03, 0.976 

1.00 0.042* 0.043* 

Tibia Length 
Morph x SVL 

0.974 
 

5.63, 0.013* 
1.55, 0.242 

0.420 0.122 0.010* 

Sulcal Base Width 
Morph x SVL 

0.996 
 

1.17, 0.335 
1.70, 0.213 

-- -- -- 

Sulcal Apical Width 
Morph x SVL 

0.997 
 

2.89, 0.083 
0.16, 0.857 

-- -- -- 

Hemipenis Length 
Morph x SVL 

0.999 
 

5.34, 0.016* 
0.42, 0.663 

1.00 0.027* 0.028* 

Lateral Apical Length 
Morph x SVL 

0.999 
 

0.74, 0.492 
2.61, 0.103 

-- -- -- 

Lateral Base Width 
Morph x SVL 

0.997 
 

2.36, 0.124 
2.43, 0.118 

-- -- -- 

Horn Length 
Morph x SVL 

0.998 
 

2.02, 0.163 
1.27, 0.305 

-- -- -- 

Horn Base Width 
Morph x SVL 

0.997 
 

4.27, 0.032* 
0.47, 0.635 

0.467 0.216 0.025* 

Horn Tip Width 
Morph x SVL 

0.996 
 

6.21, 0.009** 
0.67, 0.523      

0.075 0.494 0.008** 

Apical Area 
Morph x SVL 

0.999, 0.990  
 

0.24, 0.790 
0.31, 0.740 

-- -- -- 

Lateral Aspect Ratio 
Morph x SVL 

-- 2.34, 0.126 
0.21, 0.809 

-- -- -- 

Sulcal Aspect Ratio 
Morph x SVL 

-- 0.29, 0.750 
2.07, 0.157 

-- -- -- 
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Figure 4.2: Static allometry of the tibia and hemipenis of all males in the study. While the 
tibia (A) scaled significantly lower than one in the males in our study, the hemipenis (B) 
did not scale significantly different from one. The morphs are color and shape coded as 
orange circle: (oo) usurper, blue square: (bb) mate-guarding, and yellow triangle: (yy) 
sneaker.  
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Figure 4.3: Relationship between the first two principal components of the harmonics 
from the elliptical Fourier analysis of the hemipenis lateral outlines. PC1 explained 73% 
of the variation in shape, with hemipenes becoming less curved with increasing values of 
PC1. PC2 explained 12% of the variation, with hemipenes becoming squatter and more 
bulbous with increasing values of PC2. There was no significant different in lateral shape 
across morphs (P=0.89). 
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Figure 4.4: Relationship between the first two principal components of the harmonics 
from the elliptical Fourier analysis of the hemipenis sulcal outlines. PC1 explained 53% 
of the variation in shape, with hemipenes becoming slimmer with increasing values of 
PC1. PC2 explained 18% of the variation, with hemipenes becoming shorter and squatter 
with increasing values of PC2. There was no significant different in sulcal shape across 
morphs (P=0.64). 
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Figure 4.S1: Outlines of hemipenes of 23 individuals generated by Momocs from digital 
images. These outlines were used for elliptical Fourier analysis of A) lateral shape, and 
B) sulcal shape. Sample IDs are given within the outlines. 
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