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ABSTRACT

MANAGING INFORMATION SECURITY
INVESTMENTS UNDER UNCERTAINTY: OPTIMAL
POLICIES FOR TECHNOLOGY INVESTMENT AND

INFORMATION SHARING

FEBRUARY 2019

YUERAN ZHUO

B.Sc., NANKAI UNIVERSITY

M.Eng., NANKAI UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Senay Solak

Information systems are an integral part of today’s business environment. Busi-

nesses, government organizations, and the society rely on these systems for various

transactions, most of which have huge financial implications. Hence, attacks that

breach information systems result in interruption of operations, loss of data and cus-

tomer confidence, constituting a significant threat to firms.

Such attacks have been increasing in frequency and sophistication over time, and

defending the assets of a firm in response to these attacks has become a key operational

issue. According to Ponemon (2016a), information security attacks cost a typical large

firm $7.7 million per year on average, while Ponemon (2016b) reports that the average

annual total cost of attacks on information systems has increased by 30% between

year 2013 and 2016. In several cases, the cost of an information security attack can
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reach very high levels, as evidenced through some recent major breaches released to

the public, such as the Target breach in December 2013 with an estimated cost of $1

billion and the Home Depot breach in September 2014 with an estimated cost of $142

million (Vomhof, 2013). Based on an estimate by Lewis (2018), the global cost of

crime that exploits information systems has exceeded half a trillion dollars per year.

The losses due to attacks on information systems can be mitigated through in-

vestments in information security technologies and services. Guttman and Roback

(1995) and Hoo (2000) define information systems security as an integral element in

the management of a firm, and highlight its importance as a key area for the success-

ful operation of a business. Hence, most firms utilize separate information security

budgets, dedicated for investment towards preserving the assets of the firm against

attacks. While the type of business plays a role in determining the ratio of the infor-

mation security budget with respect to a firm’s overall information technology budget,

it is well known that this ratio has been steadily increasing over the recent years, along

with the actual dollar value allocated to information security (Peters, 2009, Richard-

son, 2010). Kessel and Allan (2013) note that 46% of the responding organizations in

a survey reported increases in their information security budgets every year. Overall,

the global information security investments are expected to increase from $73.6 billion

in 2016 to $105.6 billion by 2021 with an estimated compound annual growth rate of

more than 7% (Smith and Pike, 2017).

As information security budgets increase along with available investment options,

firms are more concerned about the effectiveness of their investments in information

systems security, and whether their investment portfolio is aimed towards maximizing

returns (Richardson, 2010). This is a challenging process due to several factors, which

involve the difficulty of measuring returns from information security investments, as

well as that of defining the uncertainty around these returns. Moreover, the corre-

sponding decision process is a dynamic one, where technological developments and
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increasing sophistication in cyber attacks result in an ever-changing investment envi-

ronment. Therefore, management of the investment problem in information system

security using quantitative approaches has been seldom addressed in the literature

and in industrial practice. To fill in this gap, in this thesis we study three practical

problems related to information system security investment management.

In the first problem, we address two key decisions by a firm related to information

security technology investments: (1) How much should the firm invest in information

security technology? and (2) How should this investment be allocated over differ-

ent categories of security technologies? As part of our findings, we derive a simple

functional relationship between the potential total losses of a firm and the optimal

amount that the firm should invest in information systems security. Related to this,

we find that firms in finance, energy, and technology sectors should invest twice more

in trying to detect information security breaches, than in trying to prevent them.

In other industries, information security investments should be split evenly between

preventive and detective measures. Moreover, the overall information security bud-

gets for certain types of firms in the former set of industries should be on average 4%

higher than other industries, even when the potential total losses under a security

breach are the same.

In the second problem, we seek answers to three practical decision problems re-

garding information sharing in information system security: (1) What is the optimal

level of information sharing for a firm as a function of the firm’s technology invest-

ments? (2) What is the value of information sharing in information security? and

(3) How do these findings vary over different operating environments? We build up

a stochastic framework to capture the inter-relationship between information sharing

and technology investments, where the two act as strategic counterparts of informa-

tion system security. We find that, for firms with pre-fixed technology investment

levels, the optimal information sharing level decreases as the marginal cost of infor-
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mation sharing becomes higher, and there exists a threshold value such that firms

are better off by not sharing information if the marginal cost of information shar-

ing exceeds this threshold value. For the optimal information sharing level, we find

that firms with larger security budgets should share 15% more information, when

compared to optimal sharing levels of small to medium sized firms.

In the third problem, we study pricing strategies under asymmetric information

sharing for information system security, where firms can either share information

with other firms and obtain a monetary compensation for sharing more information

or paying a price for sharing less or even no information. Specifically, we investigate

two practical research questions: (1) What fair price should a firm pay participating

information sharing in asymmetric sharing environment? (2) How would the price of

information vary under different pricing strategies and other influencing factors? To

this end, we develop analytical expressions of a firm’s payoffs under an asymmetric

information sharing environment. We also analyze the pricing of information as a

function of a firm’s technology investment level, its information sharing level, and the

marginal cost of information sharing. Numerical analyses are conducted to identify

the overall benefits to the information sharing firms due to the implementation of

certain pricing strategies.

In conclusion, as one of the few studies on information system security invest-

ment problem, we derive managerial insights for both technology investment and

information sharing decisions. The findings of this study is expected to improve the

efficiency of information system security practice and help the firms better defend

against attacks on their information systems.
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CHAPTER 1

INTRODUCTION

Information systems are an integral part of today’s business environment. Busi-

nesses, government organizations, and the society rely on these systems for various

transactions, most of which have huge financial implications. Hence, attacks that

breach information systems result in interruption of operations, loss of data and cus-

tomer confidence, constituting a significant threat to firms.1.

Such attacks have been increasing in frequency and sophistication over time, and

defending the assets of a firm in response to these attacks has become a key operational

issue. According to Ponemon (2016a), information security attacks cost a typical large

firm $7.7 million per year on average, while Ponemon (2016b) reports that the average

annual total cost of attacks on information systems has increased by 30% between

year 2013 and 2016. In several cases, the cost of an information security attack can

reach very high levels, as evidenced through some recent major breaches released to

the public, such as the Target breach in December 2013 with an estimated cost of $1

billion and the Home Depot breach in September 2014 with an estimated cost of $142

million (Vomhof, 2013). Based on an estimate by Lewis (2018), the global cost of

crime that exploits information systems has exceeded half a trillion dollars per year.

The losses due to attacks on information systems can be mitigated through in-

vestments in information security technologies and services. Guttman and Roback

1While for conciseness purposes we refer to a ‘firm’ throughout the thesis, our discussions and
analyses are applicable to any business, government organization or other institutional establishment
that uses information systems.
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(1995) and Hoo (2000) define information systems security as an integral element in

the management of a firm, and highlight its importance as a key area for the success-

ful operation of a business. Hence, most firms utilize separate information security

budgets, dedicated for investment towards preserving the assets of the firm against

attacks. While the type of business plays a role in determining the ratio of the infor-

mation security budget with respect to a firm’s overall information technology budget,

it is well known that this ratio has been steadily increasing over the recent years, along

with the actual dollar value allocated to information security (Peters, 2009, Richard-

son, 2010). Kessel and Allan (2013) note that 46% of the responding organizations in

a survey reported increases in their information security budgets every year. Overall,

the global information security investments are expected to increase from $73.6 billion

in 2016 to $105.6 billion by 2021 with an estimated compound annual growth rate of

more than 7% (Smith and Pike, 2017).

As information security budgets increase along with available investment options,

firms are more concerned about the effectiveness of their investments in information

systems security, and whether their investment portfolio is aimed towards maximizing

returns (Richardson, 2010). This is a challenging process due to several factors, which

involve the difficulty of measuring returns from information security investments, as

well as that of defining the uncertainty around these returns. Moreover, the corre-

sponding decision process is a dynamic one, where technological developments and

increasing sophistication in cyber attacks result in an ever-changing investment envi-

ronment. Therefore, management of the investment problem in information system

security using quantitative approaches has been seldom addressed in the literature

and in industrial practice.

To fill in this gap, in this thesis we study three practical problems related to

information system security investment management. The first one is managing tech-

nology investment in information system security, and the second and third ones
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extend the problem to include information sharing among the firms in these opera-

tions. In the remainder of this chapter we introduce the methodology adopted for the

quantitative analysis, the background of these two classes of problems and how the

research questions are defined upon them.

1.1 Stochastic Mathematical Programming

The information security environment has an ever-changing nature, which in-

evitably brings in uncertainty to the information security operations. While many

methods can be applied to make decisions under uncertainty to solve theoretical and

practical problems, in this thesis we choose to use stochastic mathematical program-

ming to study the problem of information security investment management. In the

following paragraphs, we introduce the stochastic mathematical programming method

in a brief manner and provide some references.

Stochastic mathematical programming (SP) is a type of mathematical program-

ming method. The first introduction of SP is by Dantzig (1955), where the author

introduces a resource model that includes a random event as part of the optimization

problem structure. In this model, the solution of the optimization problem is adapted

to different outcomes of the random event, which presents a probabilistic nature of

the problem. Since then, stochastic mathematical programming has become a widely

applied method to solve many of the real-word optimization problems that involve

uncertainty.

Stochastic mathematical programming - as a mathematical optimization modeling

framework - consists of an objective function and a set of constraints. The constraints

can be presented as either equalities or inequalities. Additionally, some parameters

of the stochastic mathematical programming model are random variables. The prob-

ability distribution of these random variables are assumed to be known, which is the

most important assumption of the stochastic mathematical programming method. In
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solving the model, an optimal policy is identified that could maximize or minimize the

expected value of the objective function over all possible realizations of the random

parameters.

A very widely applied SP model is the two-stage SP model, where the decision

process is made of two stages. In the first stage, a decision maker takes action without

knowing any information about the realization of the random event. At the beginning

of the second stage, after observing the realized values of the random parameters, the

decision maker is assumed to take second stage follow-up actions in order to fine-tune

the decision made earlier in the first stage.

The two-stage SP model can also be further generalized into a multi-stage SP

model. Similar to the two-stage SP model, in a multi-stage SP model, there is an ini-

tial decision made at the beginning of the first stage. Afterwards, as more information

is revealed about the random parameter in every stage, there is always a follow-up de-

cision made at the beginning of the next stage based on newly observed information.

In this thesis, we mainly focus on the two-stage SP model as its modeling framework

fits the information security management structure.

The general formulation of a two-stage SP model is given as

min
x∈X
{g(x) = f(x) + Eξ[Q(x, ξ)]} (1.1)

where Q(x, ξ) is the optimal value of the second-stage problem involving the random

factor ξ such that

Q(x, ξ) ≡ min
y
{q(ξ)|T (ξ)x+W (ξ)y = h(ξ)}. (1.2)

If the objective function and constraints are linear, then a deterministic equivalent of

the above formulation can be written as:
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min
x∈Rn

cTx+ Eξ[ min
y∈Rm

q(ξ)Ty] (1.3)

subject to Ax = b (1.4)

T (ξ)x+W (ξ)y = h(ξ) (1.5)

x ≥ 0, y ≥ 0 (1.6)

Stochastic mathematical programming has been applied to many fields of study

that involves decision making under uncertainty, and the literature contains a wide

variety of references on the theoretical and practical issues of SP. We refer the readers

to these studies for a more detailed discussion on SP, for example Wets (1983), Kall

et al. (1994), Wallace and Ziemba (2005), Birge and Louveaux (2011), and Shapiro

and Dentcheva (2014).

1.2 Technology Investment in Information System Security

There exist different ways that a firm can utilize its information security bud-

get, such as developing its in-house information security systems, acquiring security

measures from a vendor, or outsourcing the information security functions to a third

party (Cezar et al., 2013). In practice, in-house security technology development

tends to be very sophisticated and not amenable to most firms with few exceptions,

while similarly the outsourcing strategy is not favored in many industries (Peters,

2009). Hence, in the first part of this thesis we focus on the most common utilization

of an information security budget by firms: obtaining information security products

through purchases from third-party providers. As part of this process, we mainly

consider strategic product acquisitions, where the firm contracts with select vendors

to acquire different categories of information security measures. This is a typical

process for many firms, as it ensures standardization, utilizes of economies of scale,

and provides streamlined support services.
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As information security budgets increase along with available investment options,

firms are more concerned about the effectiveness of their investments in information

systems security, and whether their investment portfolio is aimed towards maximizing

returns (Richardson, 2010). This is a challenging process due to several factors, which

involve the difficulty of measuring returns from information security investments, as

well as the difficulty of defining the uncertainty around these returns. Moreover, the

corresponding decision process is a dynamic one, where technological developments

and increasing sophistication in cyber attacks result in an ever-changing investment

environment.

However, neither the existing industrial practice nor the academic literature has

been able to produce definitive guidelines on such issues, due to two major challenges

that are unique to information security investments. First, it is not known how to

measure returns from investing in information systems security, and how to char-

acterize the uncertainty around these returns. Second, the corresponding decision

process involves a higher level of dynamics, where technological developments and

increasing sophistication in threats to information systems result in an ever-changing

investment environment. In this thesis, we first address these challenges, and then

develop a framework to provide answers to two relevant operational questions by a

firm: how much should the firm invest in information systems security?, and how

should this investment be allocated over different countermeasure categories?

We address this dynamic decision problem in Chapter 3 by developing a high level

framework aimed at providing guidance to firms when allocating their information

security budgets into different types of investment options. The framework utilizes

potential loss information specific to different industries, as well as general infor-

mation on the characteristics of different types of attacks and information security

investments. Analysis is then performed using this framework to suggest policies that

would maximize expected returns from information security investments, where risk
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aspects are also studied through a conditional value at risk approach. As part of our

analyses, we also study different industries separately, and use data to derive generic

policies that would maximize expected returns from information security investments.

1.3 Information Sharing in Information System Security

While firms strive to improve information system security by investing in different

technologies, the increasing sophistication of information system attacks has also

resulted in the need for joint information sharing endeavors among firms. A major

difficulty for firms in defending against advanced information security attacks is the

time gap between the attack and the corresponding response, which can be especially

long when the firm has no previous knowledge of the kind of attack they are facing

(Verizon, 2015). Information sharing, i.e. the practice of passing on experiences and

knowledge of security information among firms, can be an effective approach for firms

to alleviate the impact of this problem. Synthesizing the knowledge and experience

of a larger community allows all parties to defend their assets more effectively against

cyber attacks. It is evident through some past major breaches that such information

sharing could have helped avoid major losses if it had been implemented successfully.

Two such examples involve the Target data breach of December 2013 which cost the

company direct losses of around $1 billion, and the Home Depot breach in September

2014, which resulted in losses of more than $140 million due to exposure of payment

card data. It was later found that these two breaches were actually caused by the

same malware attack, indicating the potential that the latter Home Depot breach

could have been avoided if relevant information had been shared and proper protective

actions had been taken accordingly.

In current practice, information sharing among firms for cybersecurity is mostly

realized by forming alliances within a given industry. Some of these alliances are

formed as Information Sharing and Analysis Centers (ISACs), which are specific to
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each industry, such as the Financial Services-ISAC, Information Technology-ISAC,

Healthcare and Public Health-ISAC and the Electric Sector-ISAC. Within each ISAC,

member firms are encouraged to share information on any cyber attack, regardless

of whether an attack was successful or not. The shared information usually includes

methods/countermeasures a firm uses to defend against the attacks, vulnerabilities

in these countermeasures, and methods that a firm applies to minimize the economic

impact after a breach occurs (Gordon et al., 2003). All such information is collected

and summarized by a centralized council within the ISAC and sent to the members

in the form of alerts, guidance and recommendation reports. These reports would

then help ISAC members provide better defense mechanisms against cyber threats,

and reduce overall information security related costs.

Despite the benefits of information sharing in improving information system se-

curity, participation in ISACs and other similar alliances is still quite limited among

firms. Some key reasons for this include: (1) the potential risk of losing competitive

advantage due to the information shared with other firms; and (2) lack of economic

incentive due to the difficulties in assessing the monetary value of information shar-

ing, especially since the cost of sharing information in information system security

practice is not negligible. These costs primarily include the fixed cost of joining in-

formation sharing alliances, personnel costs spent on security information gathering,

and other relevant costs on information processing to ensure confidentiality in the

information shared.

The first issue noted above is being addressed by standardizing information shar-

ing procedures through legislative efforts, such as the U.S. Cybersecurity Information

Sharing Acts of 2014 and 2015, which aim at creating a trustworthy environment

for firms and other organizations participating in information sharing. The second

issue, however, requires the development of procedures and measures in assessing

the effectiveness of information sharing, especially when considered together with the
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technology investment decisions on information system security. More specifically,

since information sharing and technology investments are two major aspects of infor-

mation system security practice, there exists an interplay between these two types of

investments. Naturally, information sharing would boost the effectiveness of security

countermeasures. However, as both information sharing and security countermea-

sures are costly to the firms, there must be a balance as to how much information to

share and how much to invest in technology so that the overall expenditure is mini-

mized. To this end, in this study we seek to answer the following research questions:

What is the optimal level of information sharing for a firm as a function of the firm’s

technology investments? What is the value of information sharing in information

security? How do these findings vary over different operating environments? We

address these questions in Chapter 4.

1.4 Asymmetric Information Sharing in Information System

Security

When two or more firms are in an information sharing alliance, the amount of

information that the firms provide might vary due to multiple factors, such as size,

technology investment capacity, and the information security environment for the

firm. As a result, in many cases even the well-intended firms are unable to share the

same level of information as they receive from other firms. In some other cases, a firm

might be inhibited from sharing information due to regulations on privacy protection,

but such a firm might still be in need of shared information to support information

security operations. We refer to such a situation as asymmetric information sharing.

This asymmetry in information sharing levels might reduce the impact of any incen-

tives for sharing information, and can lead to reduced levels of information sharing.

Given this setting, information sharing alliances are confronted with the challenges
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of maintaining a fair information sharing environment, which would ensure similar or

proportional returns for firms in the alliance.

A possible solution to the problem, as discussed by Hendriks (2006), is to impose

charges on the shared information and treat it as a commodity. In this way, firms can

acquire knowledge of attacks and other practical security knowledge from other firms

at a fair price. The firms that share information would then receive compensation

for the shared information, which might serve as a motivation for the continuation of

participation in information sharing.

In the current practice, firms are typically charged a membership fee by Informa-

tion Sharing and Analysis Centers for participating in information sharing activities.

Although the membership fees for ISACs are calculated based on the sizes of the

firms, the application of a membership fee does not totally address the problems that

may arise due to asymmetric information sharing. First, although the firms are dis-

tinguished by their sizes, the level of membership fee being charged does not reflect

the level of information provided or received by individual firms. Second, while the

collected membership fees help maintain the operation of the ISAC, it does not pro-

vide monetary compensation to firms that share more information, therefore does not

create a big incentive for continuous information sharing. Lastly, the membership fees

for ISACs do not consider the willingness to pay attitudes of firms that may prefer

not to share as much information, but to purchase such information from other firms.

In this study we aim to address these issues by seeking answers to the following

research questions: What fair price should a firm pay participating information shar-

ing in asymmetric sharing environment? and, How would the price of information

vary under different pricing strategies and other influencing factors? To this end,

in Chapter 5 we develop analytical expressions of a firm’s payoffs under an asym-

metric information sharing environment. We also analyze the pricing of information

as a function of a firm’s technology investment level, its information sharing level,
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and the marginal cost of information sharing. Numerical analyses will be conducted

to identify the pricing of information in an information sharing firms with multiple

firms, as well as the overall benefits to the information sharing community due to the

implementation of certain pricing strategies.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we introduce the related research literature on information security

investment problems, which are categorized as two main aspects of information sys-

tem security management problem we include in this thesis, namely the information

security technology investment and security information sharing.

2.1 Related Research on Information Security Technology

Investment

Current literature on managing investments for information systems security can

be categorized into three classes: empirical studies, economic approaches, and port-

folio approaches. Empirical studies on information security investments are usually

based on extensive surveys or field studies of businesses. Some examples include in-

dustry technical reports such as Baker (2009), Richardson (2010), Ponemon (2011),

and Verizon (2014b), where each report contains important statistics about the latest

information security practices, and concludes with brief managerial suggestions for

businesses according to those findings.

The other academic empirical studies tend to focus on particular perspectives.

Kwon and Johnson (2011) analyze the influence of regulatory factors on information

security investment decisions in the healthcare sector, while Baldwin et al. (2013) eval-

uate the impacts of some widely adopted economic methods on information security

policy. Similarly, Rowe and Gallaher (2006) study information security investment

strategies in the private sector based on a series of field studies. The literature of
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empirical studies typically involves descriptive methods, and serve to provide infor-

mation that can be used to assess the value of information assets and effectiveness

of countermeasures. Specifically, we refer to several of these studies to characterize

the information assets, attacks and countermeasure categories in our model in or-

der to better reflect the information security practice in reality and obtain general

data-based managerial insights that can be recommended to different types of firms.

The economic approaches have been naturally applied to the information security

investment problem due to its financial nature. The literatures on this topic usually

adopts classical cost-benefit metrics such as net present value (NPV), return on invest-

ment (ROI) and internal rate of return (IRR), which are selectively adopted by firms

as decision aids for information security investment planning in practice (Gordon and

Loeb, 2005). Gordon and Loeb (2002) first proposes a general ROI information in-

vestment model based on simple assumptions and concluded that information security

investments of a firm should not exceed 37% of the total information security related

potential losses. This result has been further discussed and compared by several stud-

ies under different restrictive conditions, such as Hausken (2006), Willemson (2006),

Bojanc and Jerman-Blažič (2008), Huang et al. (2008). Some other studies use game-

theoretical approaches to maximize the information security payoffs by analyzing the

intentions and interactions between the firm and potential hackers (Cavusoglu et al.,

2004, 2008, Gao et al., 2013, 2015).

However, these economic studies tend to leave out some of the key characteristics of

information security investments, such as budget limitations and specific attributes of

different types of countermeasures. Besides, the economic models usually assumes the

countermeasures to be acting independently, hence cannot capture the possible joint

effects of combining countermeasures with different specifics. In terms of modeling

of the information security attacks, many of the game-theoretical approaches focus

on customized malicious attacks, but ignores a vast majority of other breaches that
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are triggered by non-malicious, non-targeting attacks. In our analysis, we utilize an

ROI structure similar to the study of Gordon and Loeb (2002) when defining the

general problem framework, but use a portfolio approach to achieve a more detailed

and realistic investment setting involving budget constraints, different specifications

of investment options, synergy effects of countermeasure combinations and a complete

spectrum of attacks under an uncertain information security environment.

With much more complex and comprehensive problem set-ups, the literature us-

ing portfolio approaches to model information security investments have been rare.

Studies using this approach typically model the information security investments as

allocating funds into several investment options with different investment levels. Hoo

(2000) first describes a framework consisting of multiple ‘safeguards’ impacting ‘bad

events’. The study uses an influence diagram and analyzes several alternative invest-

ment policies under budget limitations. A similar study is Rees et al. (2011), where

the authors develop a decision tool to capture investment-return trade-offs and search

for a near-optimal countermeasure portfolio using a genetic algorithm. Sawik (2013)

builds a mixed integer model to study the selection of information security counter-

measures with pre-fixed investment levels over a set of predefined risk cases. Another

distinctive work is Garvey and Patel (2014), where the authors propose a series of

frameworks to evaluate an information security system’s performance and its eco-

nomic benefits via analytical hierarchy process. A set of information security options

is then selected according to these measures through a portfolio-based approach.

While these studies all aim to provide optimal investment strategies to informa-

tion security practitioners, they usually build the models without considering specific

features of the investment options, i.e., countermeasures. For studies using optimiza-

tion methods, the synergistic effects of multiple countermeasure combinations have

been seldom addressed in these models. Furthermore, it is difficult to incorporate

uncertainties in these models to present the evolving nature of information security
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attacks as it would expand the complexity of the models. Our work adds to the exist-

ing studies by considering a holistic mapping over different categories of information

assets, attacks, and countermeasures, while also capturing the uncertainty and risk

in the changing information security environment. Unlike any of the existing studies,

we aim to provide firm-specific recommendations for information security investments

that can be directly applied to their operational decision making settings. A sum-

mary of the main contributions of this chapter is illustrated in Table 2.1, where we list

different studies in the literature and specify the properties addressed in each study.

2.2 Related Research on Information Sharing in Information

System Security

The information sharing problem is first discussed in the economics literature.

Clarke (1983) and Gal-Or (1985) study information sharing behaviors by oligopoly

firms and derive similar conclusions that the mutual sharing of information does not

happen spontaneously among firms despite the maximization of joint welfare. How-

ever, some studies focus on certain natural incentives for sharing information, and

show that sharing information would be easily implementable under certain condi-

tions. For example, Li (1985) finds that if all the firms have access to equally accurate

information, then a firm would be willing to share some firm-specific information.

Also, Shapiro (1986) suggests that the sharing of cost information can be made pos-

sible by firms joining an association with an information-sharing agreement. These

studies from the economics literature, although not directly related to information

security, provide important insights that can be applied to information sharing in

cybersecurity, and we use these insights to help develop the modeling framework in

this chapter.

As part of the of operations research literature, the topic of information sharing is

widely studied within supply chain management. Initially motivated by the bullwhip
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Table 2.1: Summary of existing literature on information security investment and
contributions of this study
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Baker (2009) ! ! !

Richardson (2010) ! ! !

Ponemon (2011) ! ! ! !

Verizon (2014b) ! ! ! !

Kwon and Johnson (2011) ! ! ! ! !

Rowe and Gallaher (2006) ! ! ! !

Gordon and Loeb (2005) ! ! ! ! !

Gordon and Loeb (2002) ! ! ! ! !

Willemson (2006) ! ! !

Hausken (2006) ! ! !

Bojanc and Jerman-Blažič (2008) ! ! !

Huang et al. (2008) ! ! !

Cavusoglu et al. (2004) ! ! !

Cavusoglu et al. (2008) ! ! !

Gao et al. (2013) ! ! !

Gao et al. (2015) ! ! !

Hoo (2000) ! ! ! ! !

Rees et al. (2011) ! ! ! ! ! !

Sawik (2013) ! ! ! ! ! !

Garvey and Patel (2014) ! ! ! ! !

This study ! ! ! ! ! ! ! !
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effect in supply chains, Lee et al. (1997) propose the sharing of information between

supply chain partners in order to improve efficiency and reduce costs. Assuming a

coordinated structure across the supply chain, the value of information sharing within

the supply chain is investigated by some follow-on studies such as Gavirneni et al.

(1999), Lee et al. (2000), and Yu et al. (2001). Considering the competitive environ-

ment among the supply chain members, some studies further explore the incentives

for information sharing. It is generally recognized that firms tend not to share infor-

mation voluntarily, but rather seek for cooperation or trade for shared information

from other firms (Chen, 2003, Li, 2002, Shang et al., 2015). The findings on the

supply chain information sharing problem also shed light on the problem of security

information sharing. In this study, we focus on the motivation, value and incentives

of information sharing in the context of information security, while also noting that

there exist clear differences between these two types of information sharing.

Information sharing in information security has been rarely discussed in detail in

the literature. The study by Gordon and Loeb (2002) is among the earliest studies

about information sharing in cybersecurity. The paper compares the sharing of infor-

mation for information security purposes and for general commercial purposes, and

points out the necessity of a central coordinator in the practice of security information

sharing. While it is unanimously agreed in the literature that a central coordinator

is needed for cybersecurity information sharing among the firms, Hausken (2007) and

Gao et al. (2014) discuss the role of the central coordinator further by considering

a situation where the central coordinator has control over information security in-

vestments and information sharing at the same time. They conclude that higher

levels of intervention by the central coordinator does not always lead to better joint

welfare. Therefore, in our study, we design the role of the central coordinator to

be flexible with moderate level of power such that it intervenes only for information

sharing purposes. Gordon et al. (2003) study the impact of information sharing on
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information security investments using a game-theoretic model, and determine the

conditions under which information sharing promotes or hinders information security

investments. The authors in that study assume that there is a relationship between

information sharing level and the effectiveness of information security investments.

This key assumption lays the foundation for the modeling of information security

investment and information sharing, and is adopted in several other studies including

this study. Inspired by the rising trend of promoting information security information

sharing, Gal-Or and Ghose (2005) and Gao and Zhong (2016) conduct studies on the

incentives for sharing security information in a competitive environment. Using sim-

ilar game-theoretical approaches, these papers analyze the information sharing and

investment behaviors of a specific industry, namely the information technology indus-

try, where product demand and revenue are directly affected by information security

performance. Conclusions are drawn about the benefits of security information shar-

ing to the firms, and it is noted that joint value is maximized with the firms sharing

information in a coordinated manner. These findings, although valuable from pub-

lic policy perspective, have their applications limited to the information technology

industry. In our work, we develop a generic model that can be used by a wide spec-

trum of industries whose core business does not necessarily relate to the marketing

of information technology products.

2.3 Related Research on Asymmetric Information Sharing

and Information Pricing

While the topic of asymmetric information sharing in information system security

has been rarely discussed in the literature, several studies involving applications in

other fields exist. Sharpe (1990) studies the impact of asymmetric information in the

bank loaning practice, where the banks are more willing to lend to return customers

than new customers, as they have less information about the latter. The study

18



concludes that the inefficiency caused by information asymmetry can be eliminated

by signing special contracts with all customers that contain protection terms against

future problems. Brunnermeier (2001) does a thorough review on research articles

regarding asset pricing under asymmetric information for assets such as real estate or

stocks, and emphasize the information aspects of asset price dynamics. The author

describes several models including market microstructure models, dynamic models,

and herding models, and demonstrate how asymmetric information affects asset prices

as well as how to find optimal trading strategies. Different from the above literature,

the asymmetric information in our study is not used for generating extra revenue

for the firm, but to help reduce overall information security costs. In our work we

also treat the asymmetric information itself as a commodity, and the pricing strategy

is applied to this special commodity while considering the asymmetry aspects in

information .

The pricing of information has also been discussed in the economic literature un-

der a buyer-seller context. Varian (1996) studies the selling of information containing

products such as electronic journals. The author concludes that a firm can gener-

ate additional revenue by providing different information contents at different prices.

While the concept of variation in information containing products is somewhat simi-

lar to the variation in information sharing levels in information system security, the

information that is being priced by Varian (1996) is not assumed to create any mea-

surable revenue for the buyer as in this study. Arora and Fosfuri (2005), on the other

hand, study the pricing of information where the information would help the buyer

make better investment decisions. A simple optimal pricing strategy is found as the

charging of a fixed price to buyers with high expected returns while for buyers with

low expected returns the price is defined as a portion of their future revenue. Unlike

these studies, the participants in our context do not have fixed roles as buyers or sell-

ers, but can switch their roles by changing their information sharing level. Therefore,
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the optimal pricing strategy in our study is expected to be affected by many factors

in addition to the return on investment levels.
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CHAPTER 3

OPTIMAL POLICIES FOR TECHNOLOGY
INVESTMENT IN INFORMATION SYSTEM SECURITY

In this chapter, we address two key decisions by a firm related to information secu-

rity technology investments: how much should the firm invest in information security

technology?, and how should this investment be allocated over different categories of

security technologies? To this end, we derive a simple functional relationship between

the potential total losses of a firm and the optimal amount that the firm should in-

vest in information systems security. We further model the technology investments

in information system security using a two-stage stochastic programming model, and

conduct policy analysis using real data.

The remainder of this chapter is organized as the follows: In Section 3.1 we intro-

duce a general framework for technology investments in information system security

practice, and in Section 3.2, we present a stochastic programming model for the prob-

lem. Detailed policy analyses using real data are presented in Section 3.3. Finally, in

Section 3.4 we summarize our results and present the conclusions.

3.1 General Framework for Investing in Information Systems

Security

Effective protection of the confidentiality, integrity and availability of a firm’s

information systems, which is the main objective of information systems security,

requires systematic investment and resource allocation decisions by the firm. In this
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section, we present a generic framework defining such information security investment

decisions, and how an optimization model can be built upon them.

3.1.1 Components of the Framework

We start the construction of our framework by identifying the key components

that define the investment environment for information systems security. These in-

clude information assets that a firm holds, attacks that target these assets, and coun-

termeasures that a firm can deploy to protect its assets against such attacks. We

utilize a higher level categorization structure in defining the different components in

our framework in order to allow for identification of general insights applicable to a

broad range of situations. Otherwise, a lower level abstraction of the inputs would

imply more of a custom and specific analysis for the organization studied, rather than

generic findings for different industries.

Assets. A firm’s assets in our context refer to the collection of systems and

information the firm possesses as part of business operations, with three defining

characteristics for each asset: confidentiality, integrity, availability. Noting the dis-

tinction of confidentiality among the three aspects, Herson et al. (2003) suggest that

a firm’s information assets can be grouped broadly as being either confidential or

non-confidential. Confidential assets correspond to data containing information that

should not be disclosed to any third parties. This can include customer personal data,

intellectual property, and other restricted files. On the other hand, non-confidential

assets refer to any other assets that have monetary value and relate to information

system availability and integrity, such as functional hardware. We adopt this catego-

rization as part of our policy analyses in Section 3.3.

Attacks. Attacks correspond to all types of threats to a firm’s information sys-

tems. A commonly adopted classification of attacks on information systems is a three-

shell structure proposed by Richardson (2010), with the inner shell representing basic
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attacks, the middle shell representing malware attacks and outer shell representing

more sophisticated or advanced attacks. Basic attacks are typically simple and op-

portunistic attacks that are pervasively spread to the public to exploit vulnerabilities

in information systems. Malware attacks, on the other hand, are an extended version

of the basic attacks, which have some level of customization based on the industry

targeted. Advanced attacks are usually the most sophisticated attacks and are gen-

erally customized for an individual organization. Richardson (2010) notes that most

malware attacks would also fall into the category of advanced attacks, because mal-

ware attacks are likely to be customized as well, making the boundary between the

two kinds of attacks somewhat vague. Hence, in our analysis we include malware

attacks as part of the advanced attacks, and use two main categorizations for attacks

on information systems, namely the basic and advanced attacks.

Countermeasures. Information security countermeasures are the set of mea-

sures protecting a firms information assets against attacks. They include both secu-

rity technologies and ‘soft’ security measures such as establishing policies and training

employees. Based on the protection mechanism used, Stoneburner et al. (2002) clas-

sify the types of countermeasures into two major categories: preventive and detective

countermeasures. Preventive countermeasures include methods such as biometrics,

encryption, and access control lists, and are aimed at preparing the firm against at-

tacks before any breach can take place. On the other hand, detective countermeasures

are aimed at identifying and removing an attack during or after the occurrence of a

breach. Such measures include tools such as anti-virus software, content monitoring

tools, and intrusion detection systems. Note that the soft measures mentioned above

can be classified into either countermeasure category, depending on the nature of the

measure. In this study, we enumerate some most common countermeasures based on

findings from the literature and data obtained from our collaborating organizations.
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Figure 3.1: Cross-relationships between the information assets of a firm, attacks
targeting these assets, and countermeasures that can be deployed against the attacks.
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A list of these countermeasures and their classifications into the two categories are

provided in Table 3.1 as part of the discussion in Section 3.3.1.

The three major components of information systems security is connected by mul-

tidimensional cross-relationships as illustrated in Figure 3.1. As shown, the two major

categories of assets can be targeted by both basic and advanced attacks, while both

preventive and detective countermeasures can be deployed against the two categories

of attacks. Hence, a firm’s information security investment strategy, i.e. how much

to invest in each type of countermeasure, should depend on the distribution of the

potential losses over the basic and advanced attacks, denoted by las where a and s re-

spectively refer to the attack and asset type, as well as the effectiveness of each type of

countermeasure on these attack categories, denoted by eoa with o and a representing

the countermeasure and attack type.

Clearly, the distributions of attack types and information assets would vary for

different types of firms. We specifically consider ten representative industries covering

a quite wide spectrum of organizations prone to attacks on their information systems,

namely finance, retail, hospitality, healthcare, transportation, manufacturing, profes-

sional services, public sector, information technology and energy industries. These ten
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Figure 3.2: Representation of the dynamic decision process for information security
investments of a firm.
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major industries are identified and described by a series of reports published by Veri-

zon Communications (Verizon, 2012, 2014a). Under our general modeling framework

and methodology, the conclusions and insights obtained by studying these ten indus-

tries can shed light on a great variety of firms based on the information environment

and protection objectives they operate under.

3.1.2 The Investment Decision Process

Investment in information systems security is an iterative multi-step procedure

involving the three components introduced above. In Figure 3.2 we provide a visual

representation of the typical steps involved in this dynamic process, which we further

describe below.

The process starts with the firm assessing the value of its assets, which corre-

sponds to the maximum possible loss that the firm can incur due to a breach of its

information systems. The next step is the estimation of the expected costs for perfect

protection (ECOPP). This step involves an assessment of the costs of providing the

highest level of protection for the firm’s information systems without considering any
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budget limitations. These two measures serve as inputs in addressing the first key

operational decision presented in the third step: how much should the firm invest

in information systems security?. Knowing this optimal investment level, the firm

considers all relevant factors, and decides on the allocation of the budget over the

set of countermeasures identified for potential investment. This step provides an-

swers to the second key operational question: how should the information security

budget be allocated over different countermeasure categories?. After the identifica-

tion and implementation of an investment portfolio, the firm continuously observes

the cybersecurity dynamics and learns about the effectiveness of the implemented

countermeasures. The investment portfolio is then updated as necessary at specific

intervals. Our analysis in this study captures these dynamics by modeling learning

effects and portfolio adjustment options under a stochastic optimization framework,

and aims to provide insights for the two key operational decisions highlighted above.

3.2 Stochastic Modeling of Information Security Investments

We assume that a firm maintains a set S = {s1, s2} of information assets, where

s1 corresponds to confidential assets, while s2 refers to non-confidential assets as de-

scribed in Section 3.1.1. The assets of the firm are subject to a set A = {a1, a2}

of attacks with a1 and a2 referring to basic and advanced attacks, respectively. The

expected loss las due to an attack a ∈ A on asset s ∈ S represents the value to be

protected and is typically expressed in dollars. This value can be estimated by consid-

ering all possible expenditures that would result due to the consequences caused by

an attack. Such expenses might consist of staff time, additional labor, compensation

and other services provided to customers, as well as any reduction in the market share

of the firm due to reputation related impacts.

In response to the potential attacks on its information systems, the firm deploys

a set O = {o1, o2} of countermeasures, consisting of detective and preventive security
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Figure 3.3: Illustration of the change in the effectiveness eoa of a countermeasure
category as a function of investment xo in that category, and the impact of αo.
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measures denoted respectively as o1 and o2. Each countermeasure type o ∈ O has an

estimated level of effectiveness eoa(xo) on attack type a ∈ A, which is a function of the

amount xo invested in countermeasure type o. The effectiveness function eoa(xo) is

defined separately for each attack and countermeasure pair, and refers to the percent

reduction of losses on any information asset due to attack type a achieved by utilizing

countermeasure type o. For example, eo1a1(xo1) = 0.8 would imply that an 80% reduc-

tion in potential losses can be achieved against basic attacks by investing xo1 dollars

in detective countermeasures. It is worthwhile noting that the countermeasures are

designed towards protection against different types of attacks, as opposed to being

designed for specific information assets. Hence, the effectiveness of a countermeasure

is defined separately for each type of attack, and is independent of the asset type the

countermeasure might be protecting.

3.2.1 Functional Representation of Countermeasure Effectiveness and In-

formation Asset Loss

An important issue relates to the definition of the effectiveness function eoa(xo)

for each information security countermeasure and attack type. First, we note that

while a theoretical upper bound for eoa(xo) would be 1, such an effectiveness level

is practically not achievable. Hence, we let βoa < 1 denote the maximum attainable
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effectiveness by countermeasure type o ∈ O against attack type a ∈ A. Given this,

the effectiveness function eoa(xo) must satisfy the following conditions, as also noted

by Gordon and Loeb (2002): eoa(0) = 0; eoa(xo)→ βoa as xo →∞; ∂eoa(xo)
∂xo

> 0; and

∂2eoa(xo)
∂x2
o

< 0 for all o ∈ O and a ∈ A. These properties imply that the function eoa(xo)

has to be concave and monotonically increasing on xo ∈ [0,∞), while asymptotically

achieving the highest effectiveness level βoa. Based on these conclusions, we define

the following function to model the effectiveness rate of a countermeasure category

against a given type of attack on information systems:

eoa(xo) = βoa − e−(αoxo−lnβoa) = βoa − βoae−αoxo ∀o∈O,a∈A (3.1)

where αo is the marginal rate that the effectiveness curve reaches the maximum level

βoa as a function of the investment xo. In other words, for the same maximum achiev-

able effectiveness level βoa, high values of αo would imply that the higher effectiveness

levels can be achieved through less investment than a case with lower αo values. This

is demonstrated visually through an example in Figure 3.3.

While the effectiveness function for a countermeasure category o on attack type

a corresponds to a relative measure defining the percent decrease in potential losses

due to the utilization of such countermeasures, the return from an investment in a

countermeasure needs to be defined in absolute terms in dollars. Given the expected

maximum possible loss las due to attack type a on information asset s, we define

the realized losses after countermeasure implementation as falas(1 − eoa(xo)), where

fa represents the frequency of attack type a based on the estimated number of such

attacks during the planning period. The loss reduction here is a result of reduced

number of successful attacks, and this leads to a multiplicative form for the total over-

all losses, expressed as
∑

s

∑
a falas(

∏
o(1− eoa(xo))). We can visualize this structure

by conceiving the information security countermeasures as layers of fences, through

which the attack infiltrates but gets weakened in terms of expected impact layer after
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layer. Assuming that the countermeasures will be functioning separately, the attack

confronted by the next layer is always what is left after the screening by the previous

layer. Thus, the contribution of the next layer to the overall effectiveness can be

defined through multiplication of its effectiveness by what is left. We provide a visual

illustration of this representation in Figure 3.4.

Figure 3.4: Layer based structural illustration of the effectiveness provided by multiple
types of countermeasures
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Building upon this protection process, we further consider joint effectiveness of

information security countermeasures as a separate layer in the system, as joint ef-

fectiveness of two countermeasures against an attack is not necessarily the product

of their individual effectiveness rates. One can view the joint effectiveness of two

countermeasures as a virtual layer added to the individual countermeasure effective-

ness layers. To capture this structure, we define the interdependency coefficient ρoo′

for two countermeasure categories o, o′ ∈ O, and use it to represent the loss under

joint effectiveness between the two countermeasures as falas
√

1− eoo′a(xo, xo′), where

eoo′a(xo, xo′) ∈ [0, 1] and is defined as:

eoo′a(xo, xo′) = ρoo′eoa(xo) + ρoo′eo′a(xo′)− ρ2
oo′eoa(xo)eo′a(xo′) ∀o,o′∈O,a∈A (3.2)
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We note through Lemma 3.1 and Proposition 3.1 below that this representation is

generic, and can be used to represent any type of joint effectiveness relationship

between two countermeasure types.

Lemma 3.1 Given investment levels xo and xo′ on two information security coun-

termeasures o and o′, the joint effectiveness function (3.2) is nondecreasing in ρoo′,

eoa(xo) and eo′a(xo′) for all ρoo′ ∈ [0,min{ 1
βoa
, 1
βo′a
}].

Proof All proofs are included in Appendix A. �

Proposition 3.1 Given a pair of information security countermeasures with individ-

ual effectiveness functions eoa(xo) and eo′a(xo′), there always exists ρoo′ ∈ [0,min{ 1
βoa
, 1
βo′a
}]

such that the joint effectiveness function eoo′a(xo, xo′) can be defined for all values of

xo and xo′.

In practice, the parameter ρoo′ can be estimated based on expert opinions, usually

developed through observations of historical performances of the countermeasures.

When two countermeasure types o and o′ have no correlation, ρoo′ is assumed to be

0. In the case where there exist joint effects, ρoo′ takes a positive value. Note that

the relationship between any two countermeasures is assumed to be either neutral or

synergistic, i.e. one never impeding another. Thus, ρoo′ takes a value in the interval

[0,min{ 1
βoa
, 1
βo′a
}]. In our analyses in Section 3.3, we utilize a specific value estimated

for ρoo′ based on available data, but also consider sensitivity analysis around this

value to develop additional insights.

The structure above also allows the joint effectiveness function to be expressed

through a nice implicit multiplicative form as follows:

1− eoo′a(xo, xo′) = (1− ρoo′eoa(xo))(1− ρoo′eo′a(xo′)) ∀o,o′∈O,a∈A (3.3)

which in turn enables a compact expression of the overall loss function for the infor-

mation assets of the firm. Note that defining ρoo = 1, the term
√

1− eoo′a(xo, xo′)
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reduces to 1 − eoa(xo) when o = o′. Hence, in order to express the total losses af-

ter information security investments by taking into account the joint effectiveness

functions, we modify the total loss expression
∑

s

∑
a falas(

∏
o(1− eoa(xo))) as:

L(x) =
∑
s∈S

∑
a∈A

falas

( ∏
o,o′∈O

√
1− eoo′a(xo, xo′)

)
(3.4)

where x represents the vector defining the investments in different countermeasure

categories.

3.2.2 Modeling the Dynamics of Information Security Countermeasure

Effectiveness

Information systems have an ever-changing nature, inevitably bringing in uncer-

tainty to the process of investing in information security. The most significant uncer-

tainty involves the effectiveness of countermeasures both due to the dynamic nature

of attacks and also due to the probabilistic evolution of success in defending a firm’s

information assets against these attacks.

Given that attack patterns might evolve over time, we introduce a time dimen-

sion into the attack frequency as fa(t) which allows for non-homogeneity in attack

frequencies over time. In response, countermeasures are also designed to be updated

frequently in order to adapt to the evolution of the attacks, resulting in a life cy-

cle based variation in a countermeasure’s maximum attainable effectiveness βoa over

time. Hence, we also update the definition of this parameter so that it might vary

as a function of time t, specifically as βoa(t). However, the exact nature of this

countermeasure effectiveness life cycle curve is not known to a firm, which can only

be estimated probabilistically for use as part of the information security investment

planning process, as we later describe in Section 3.2.3.

The widely applied notion of product life cycle curve is first introduced by Rogers

(2010) to describe the diffusion of product innovation, where a life cycle curve is par-
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Figure 3.5: Five phases of the information security product life cycle curve defined
similarly to Rogers (2010).
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titioned into five phases as shown in Figure 3.5. Technologies for information systems

security also have effectiveness levels that vary depending on where the product is in

its life cycle. Noting that security products are mostly well tested after development

and become obsolete relatively fast after the late maturity phase, we follow Lipner

(2004) and consider a three phase life cycle for the effectiveness of information se-

curity countermeasures. These phases correspond to early adopters, early maturity,

and late maturity phases as illustrated in Figure 3.6a. In the early adopter phase,

the countermeasure is first introduced to the market, while at the early maturity

phase the product gets gradually accepted and improved through market experience.

Lastly, at the late maturity phase, the countermeasure is challenged and eventually

replaced by competing products, resulting in its obsolescence.

The specific shape of the effectiveness life cycle curve is different for preventive and

detective technologies. Oberheide et al. (2008) suggest that detective countermeasures

tend to have a sharp drop in their effectiveness towards the end of the product’s life

cycle. This is because such products are dependent on continuous updates by vendors,

e.g. anti-virus and anti-spyware applications relying on signature information about

the latest virus database, so that the infiltrated attacks can be detected in a timely

manner. Thus, the effectiveness of these countermeasures drop at a higher rate once

such updates stop. Preventive countermeasures, on the other hand, are more robust
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Figure 3.6: Life cycle curves for information security products based on effectiveness
against attacks.
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(b) Effectiveness life-cycle curves for the
two major categories of information secu-
rity countermeasures.
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in the late maturity phase as their effectiveness relies primarily on the product design

itself, as opposed to being dependent on continuous updates, such as in the cases

of encryption algorithms and access control techniques. A firm typically contracts

with the same information security countermeasure provider for a general category

of products due to cost and standardization purposes. Therefore, it is expected

that a specific category of countermeasures provided by a supplier would follow a

specific life cycle curve. Considering these characteristics, as well as product life

cycle information available at McAfee (2013) and Symantec (2014), it is possible to

plot general representative maximum effectiveness life cycle curves for preventive and

detective countermeasures separately. These curves depicting βoa(t) for the two cases

are shown in Figure 3.6b. We provide more details on these effectiveness curves in

Section 3.3.1.

3.2.3 Modeling the Uncertainty in Information Security Countermeasure

Effectiveness

While the maximum attainable effectiveness of a countermeasure will generally

follow a life cycle curve, exact information on the shape of this curve or where a

33



Figure 3.7: Uncertainty and learning in information security investments.
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specific product is placed on that curve at the time of acquisition and implementa-

tion is not known due to the uncertainties associated with technological performance.

As a product is put to use and its performance over time is observed, the firm will

gain knowledge about this information, specifically as to where the product might

be on its life cycle curve. This new information can be used to readjust budget allo-

cations over different countermeasure types. Hence, when selecting countermeasures

for investment, the firm needs to account for such uncertainty and the corresponding

learning process that will take place.

The above effects can be captured through a two-stage process, where the firm

makes an initial investment over a set of countermeasure categories, and then can

readjust these investments based on endogenous information about the performance

of the measures invested in. This process is depicted in Figure 3.7a, where an estimate

for the parameter βoa(t) for each countermeasure category o and attack type a is

assumed to be revealed in the second stage for future periods, and the revised decisions

are based on these revelations. We further describe this process through the case

shown in Figure 3.7b. As depicted in the figure, the decision maker assumes that the

countermeasure effectiveness curve follows the segments of an ‘expected’ effectiveness
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function in the first stage. The five possible realizations at the second stage can be

either a large forward shift, a small forward shift, a no shift case, a small backward

shift, or a large backward shift. The backward and forward shifts correspond to life

cycle curves that respectively indicate less and more maturity at the start of the

implementations, implying that the firm’s initial assumptions on the structure of the

life cycle curve were not accurate.

In this two-stage stochastic setup, each combination of life cycle curve realizations

for the countermeasure-attack pairs correspond to a scenario, as two countermeasure

types are not necessarily equally sensitive to different attacks. In other words, the

effectiveness curves and their realizations are considered not for each countermeasure,

but for each countermeasure-attack pair separately.

3.2.4 Two-stage Stochastic Programming Model with Endogenous Un-

certainty

The decision framework described above can be modeled through a stochastic

programming approach involving endogenous uncertainty, where the latter is due to

the dependence between the investment decisions made and the realization of learning

effects on the performance of different information security countermeasures. We

assume that a certain level of investment is necessary for information gathering on

the performance of the acquired countermeasures.

First, in order to describe the dynamics involving changes of the parameters βoa(t)

over time, we discretize the planning horizon and represent such dynamics by using

discrete time intervals. We let t = 1, 2, . . . , T refer to each of these intervals, and

append the definition of the maximum effectiveness level and the attack frequency

through the addition of a time subscript as βoat and fat, respectively. Based on a

typical budget planning process that takes place every year with an initial assessment

of the investments at the end of the first quarter, it can be assumed that the second
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stage decisions would take place after this initial assessment. For a generalized for-

mulation, we assume that the second stage decisions occur at the end of time period

T ′, which implies that periods 1, 2, . . . , T ′ correspond to first stage periods, while the

second stage periods are T ′ + 1, T ′ + 2, . . . , T . We refer to the set of time periods in

each stage as T 1 and T 2, respectively.

It was described in Section 3.2.3 that the uncertainty structure in the model

involves a set of scenarios, each of which corresponds to a possible combination of life

cycle curve realizations βoat for t ∈ T 2 for different countermeasure-attack category

pairs. We denote a given scenario by ω ∈ Ω, where Ω is the set of all scenarios, and

append the notation for the uncertain parameter βoat with a scenario index to read as

βoatω. Similarly, all second stage variables in the problem need to be defined through

a scenario index, as they correspond to decisions that will be implemented after the

realization of the scenario outcome. These decision variables are further described

later in this section.

As noted above, our framework aims to capture the learning effects on the ef-

fectiveness of the countermeasures that are implemented after the initial investment

period, which are dependent on the amount of investment made into a countermea-

sure category. In other words, enough sampling needs to occur to reach a conclusion

as to where a certain category of countermeasures is on the corresponding life cycle,

and this can only be achieved by making sufficient investment in that category. We

refer to this sufficient level of investment for a countermeasure category o as θo. If

the initial investment in a countermeasure category is less than the threshold θo, then

no information will be gained and the later period investments will be made based

on the life cycle structure initially assumed, although in reality the effectiveness of

the countermeasure category may be different than these assumed levels. Given that

the realization of new information is dependent on the investment decisions made,

this implies a setting with endogenous uncertainty (Solak et al., 2010). To model
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this structure in our formulation, we define the binary variable σo for each o ∈ O,

where it takes on a value of 1 if x1
o ≥ θo, and 0 otherwise, where x1

o corresponds

to the initial period investment in countermeasure category o. Note that we define

the investment decisions separately for the first and second stages as x1
o and x2ω

o re-

spectively, where the latter variable is defined for each scenario as these decisions are

made after scenario realizations.

Moreover, the process of investing in information systems security takes place

under certain constraints. A key limitation deals with the budget constraint such

that the total investment over the planning period can not be larger than a total

available budget B. Moreover, the actual investment plan can always be influenced

by external factors, such as minimum protection requirements imposed by laws or

regulations. To that end, we define the parameters xo and eoa to represent lower

bounds on the investments and effectiveness rates for each countermeasure o ∈ O

against attack a ∈ A.

Given these definitions, a stochastic programming formulation for the information

security investment problem can be expressed as follows, where x1
o is also defined over

all scenarios as x1ω
o for a more compact representation of the formulation. Each x1ω

o is

then set equal to each other through nonanticipativity constraints used in stochastic

programming. We also define the set K = {1, 2} to contain the stage indices in the

following formulation:
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min
x,e,b∈R+,σ∈{0,1}

∑
ω∈Ω

pω

[∑
k∈K

∑
s∈S

∑
a∈A

∑
t∈T

fatlast

( ∏
o,o′∈O

√
1− ekωoo′at(xkωo , xkωo′ )

)
+
∑
k∈K

∑
o∈O

xkωo

]
(3.5)

s.t. ekωoo′at(x
kω
o , x

kω
o′ ) = ρoo′e

kω
oat(x

kω
o ) + ρoo′e

kω
o′at(x

kω
o′ )− ρ2

oo′e
kω
oat(x

kω
o )ekωo′at(x

kω
o′ )

∀o,o′∈O,a∈A,t∈T ,k∈K,ω∈Ω (3.6)

e1ω
oat(x

1ω
o ) = βoat − βoate−α

1
ox

1ω
o ∀o∈O,a∈A,t∈T 1,ω∈Ω (3.7)

eωoat(x
2ω
o ) = bωoat − bωoate−α

2
ox

2ω
o ∀o∈O,a∈A,t∈T 2,ω∈Ω (3.8)

bωoat = βoat(1− σo) + βoatωσo ∀o∈O,a∈A,t∈T 2,ω∈Ω (3.9)

ekωoat(x
kω
o ) > ekoa ; xkωo > xko ∀o∈O,a∈A,t∈T ,k∈K,ω∈Ω (3.10)

x1ω
o ≤ θo + Mσo ; x1ω

o ≥ θo + M(σo − 1) ∀o∈O,ω∈Ω (3.11)∑
k∈K

∑
o∈O

xkωo ≤ B ∀ω∈Ω (3.12)

x1ω
o = x1ω′

o ∀ω,ω′∈Ω,o∈O (3.13)

In this model, the objective function (3.5) involves the minimization of the sum of

the investment costs and expected losses of the firm over the planning horizon. This

represents the expected total expenditure or total cost under information security

investment. The risk attitude of the decision maker is assumed to be risk neutral

in this representation, whereas we describe the inclusion of risk in the framework

in Section 3.2.6. Constraints (3.6) through (3.8) define the effectiveness of counter-

measures in both joint and individual forms. Note that the maximum achievable

effectiveness level βoat in (3.8) is replaced by its second stage counterpart bωoat, which

is a variable defined by equation (3.9). This relationship stipulates bωoat to be re-

alized as the scenario-dependent value βoatω only if σo = 1, i.e. if investment in a

countermeasure category is greater than the corresponding threshold. Otherwise, no

information is revealed so that βoat will still be used in the second stage. Constraints

(3.10) reflect the minimum protection requirements imposed by external factors in

terms of countermeasure effectiveness and investment levels in both the first and sec-
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ond stages. Constraints (3.11), where M denotes a tight bound as in typical big-M

formulations, define the binary variable σo. Constraints (3.12) state the investment

budget limitation over the entire planning horizon, while constraints (3.13) are the

nonanticipativity constraints that ensure that first stage decisions are the same for

all scenarios.

In the form presented above, our model is a mixed integer nonlinear program with

a non-convex feasible set and objective function, as can be inferred from the presence

of square root functions and products of variables. However, we derive a tractable

convex reformulation of the problem as described in the next subsection.

3.2.5 Linearization of the Nonlinear Stochastic Programming Formula-

tion

In the above formulation, objective function (3.5) and the constraints (3.6)-(3.8)

involve nonlinearities, which we linearize through a set of systematic procedures.

We first express the objective function (3.5) through an equivalent representation as

follows:

min
x,e,b∈R+,σ∈{0,1}

∑
ω∈Ω

pω

[∑
k∈K

∑
s∈S

∑
a∈A

∑
t∈T

fatlaste
1
2

∑
o,o′∈O ln(1−ekω

oo′at(x
kω
o ,xkω

o′ )) +
∑
k∈K

∑
o∈O

xkωo

]
(3.14)

which follows from

∏
o,o′∈O

√
1− ekωoo′at(xkωo , xkωo′ ) = eln

∏
o,o′∈O

√
1−ekω

oo′at(x
kω
o ,xkω

o′ ) = e
1
2

∑
o,o′∈O ln(1−ekω

oo′at(x
kω
o ,xkω

o′ ))

Given the relationship defined by (3.3), we can replace the term ln
(
1− ekωoo′at(xkωo , xkωo′ )

)
with a variable Ekω

oo′at(x
kω
o , x

kω
o′ ), and replace constraint (3.6) with the following con-

straint:
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Ekω
oo′at(x

kω
o , x

kω
o′ ) = Ikωoo′at(x

kω
o ) + Ikωo′oat(x

kω
o′ ) ∀o,o′∈O,a∈A,t∈T ,k∈K,ω∈Ω (3.15)

where the new variables Ikωoo′at(x
kω
o ) are defined such that Ikωoo′at(x

kω
o ) = ln(1−ρoo′ekωoat(xkωo )).

We note through the following proposition that Ikωoo′at is convex in the investment vari-

able xkωo , and thus it is possible to utilize a piecewise approximation for Ikωoo′at(x
kω
o )

through a set of linear constraints:

Proposition 3.2 The function Ikωoo′at(x
kω
o ) = ln(1− ρoo′ekωoat(xkωo )) is convex in xkωo .

Based on this result, and the fact that the optimization problem has a minimiza-

tion objective, Ikωoo′at(x
kω
o ) can be approximated in a piecewise linear fashion by a series

of M constraints. Specifically for k = 1, we have:

I1ω
oo′at,m(x1ω

o ) ≥ u1ω
oo′at,mx

1ω
o + v1ω

oo′at,m ∀o,o′∈O,a∈A,t∈T 1,ω∈Ω,m=1,...,M (3.16)

where the parameters ukωoo′at,m and vkωoo′at,m respectively represent the slopes and inter-

cepts for the piecewise linear constraints. Note that this piecewise representation of

Ikωoo′at(x
kω
o ) implies the removal of constraints (3.7)-(3.9) from the formulation. How-

ever, a challenge is brought by constraints (3.8) and (3.9), as bωoat is dependent on the

binary variable σo. Therefore, the piecewise approximation of constraint (3.8) needs

to be achieved by the design of two sets of switching constraints using σo itself for

k = 2:

I2ω
oo′at,m(x2ω

o ) ≥ u2ω
oo′at,mx

2ω
o + v2ω

oo′at,m −Mσo ∀o,o′∈O,a∈A,t∈T 2,ω∈Ω,m=1,...,M

(3.17)

I2ω
oo′at,m(x2ω

o ) ≥ u2ω
oo′at,mx

2ω
o + v2ω

oo′at,m −M(1− σo) ∀o,o′∈O,a∈A,t∈T 2,ω∈Ω,m=1,...,M

(3.18)
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As a final step, we transform the remaining nonlinear term of e
1
2

∑
o,o′∈O E

kω
oo′at(x

kω
o ,xkω

o′ )

in the objective function through another piecewise linear approximation. To this end,

we set Dkω
at = 1

2

∑
o,o′∈O E

kω
oo′at(x

kω
o , x

kω
o′ ), which implies the adding of the following

constraints to the formulation:

Dkω
at =

1

2

∑
o,o′∈O

Ekω
oo′at(x

kω
o , x

kω
o′ ) ∀a∈A,t∈T ,k∈K,ω∈Ω (3.19)

Y kω
at ≥ hkωat,mD

kω
at + gkωat,m ∀a∈A,t∈T ,k∈K,ω∈Ω,m=1,...,M (3.20)

where Y kω
at (xkωo ) approximates the term e

1
2

∑
o,o′∈O E

kω
oo′at(x

kω
o ,xkω

o′ ).

Overall, the linearized formulation for the information security investment opti-

mization problem can be expressed as:

min
x,E,I,D,Y∈R+,σ∈{0,1}

∑
ω∈Ω

pω

[∑
k∈K

∑
s∈S

∑
a∈A

∑
t∈T

fatlastY
kω
at +

∑
k∈K

∑
o∈O

xkωo

]
(3.21)

s.t. (3.10)− (3.13), (3.15)− (3.20)

3.2.6 Inclusion of Risk in the Decision Framework

Risk, defined by the variation of returns over different realizations of uncertainty,

is indispensable in any type of investment problem, supplementary to the expected

return values. While investments in information systems security do not generate

additional direct revenue to the firm as in a standard investment problem, risk con-

cerns are very important for such investments due to the possibility of huge losses for

a firm. We capture the risk attitude of a decision maker in our framework through

minimization of the conditional value at risk (CVaR) measure, which represents the

expected loss that will be incurred if the realized losses lie in the top 1− ξ percentile

of the total loss distribution. Rockafellar and Uryasev (2000) discuss the minimiza-

tion of conditional value at risk in portfolio optimization and describe a formulation

structure, which has also been adopted in some other studies (e.g. Noyan (2012)).
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Extending this methodology, we express a linearized formulation for the information

security investment optimization problem with conditional value at risk as follows:

min
v,η,x,E,I,D,Y∈R+,σ∈{0,1}

(1 + λ)

[∑
s∈S

∑
a∈A

∑
t∈T 1

fatlastY
1
at +

∑
o∈O

x1
o

]

+
∑
ω∈Ω

pω

[∑
s∈S

∑
a∈A

∑
t∈T 2

fatl
ω
astY

2ω
at +

∑
o∈O

x2ω
o

]

+ λ(η +
1

1− ξ
∑
ω∈Ω

pωvω) (3.22)

s.t. vω ≥
∑
s∈S

∑
a∈A

∑
t∈T 2

fatl
ω
astY

2ω
at +

∑
o∈O

x2ω
o − η ∀ω ∈ Ω (3.23)

(3.10)− (3.13), (3.15)− (3.20)

The optimization model under risk minimizes a weighted sum of the expected

total costs and conditional value at risk under the uncertainty of countermeasure

effectiveness. In the formulation above, λ denotes the weight parameter, while η is

the variable defining the threshold to be used for calculation of the conditional value

at risk. In other words, η corresponds to the ξ−quantile of the distribution of costs.

The scenario-specific variable vω in constraint (3.23) defines the difference between

realized total losses for the firm and the threshold loss level η when the former exceeds

the latter. Hence, higher vω values imply the occurrence of higher losses, which a firm

- based on risk attitude - may prefer to avoid in the expense of increased expected

losses. To this end, weight parameter λ in the objective function (3.22) is a risk

attitude indicator for the firm. A larger λ value implies a more risk-averse attitude,

while a smaller λ would imply a more risk seeking approach. As part of our policy

analyses, we consider different risk attitudes and discuss how optimal investment

insights vary under such cases.
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3.3 Policy Analysis based on Practical Data

In this section we implement our information security investment models according

to generic data obtained from partner organizations. Additional information gathered

from the literature is also used to identify general policy results for potential adoption

by firms in different industries.

3.3.1 Description of Data

We perform an online survey to information security practitioners in member firms

of the Advanced Cyber Security Center of the New England area in the United States.

The survey is aimed towards identifying key input parameters of our information

security investment model, including maximum attainable effectiveness levels of the

security controls, attack frequencies, potential total loss of breaches and expected cost

of perfect protection on the assets.

The survey contains 19 questions which clearly articulate the purpose of the sur-

vey. To ensure the respondents provide truthful feedback without concerning leakage

of private information, the survey is send out completely anonymously. Response

are collected from 8 information security management/executive practitioners and 6

information security technician/engineers. 3.1.

The types of assets, attacks, and countermeasures under each category were listed

as shown in Table 3.1. A complete presentation of the input structure used in the

analyses is shown in Table 4.1, with a brief description of the sources from which the

data is derived. No specific bounds representing the effect of regulations were used

in the implementations, as currently there are no such enforced general requirements

on firms.

The interdependency of specific countermeasure options can be evaluated based on

expert opinions and experience in practice, by comparing performances of protection

under controlled conditions. In our model, since the countermeasures are presented
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Table 3.1: Typical categorization of attacks, assets and countermeasures for informa-
tion security investments

Attacks Countermeasures
Basic attacks: Detective countermeasures:

Keyloggers and spyware Anti-virus software
Backdoor or command control Anti-spyware software
Unauthorized access via weak access control lists Content monitoring
Unauthorized access via stolen credentials Forensic tools
Physical theft of assets Intrusion detection system software
Brutal force attack Log management software

Advanced attacks:
Abuse of system access/privileges Preventive countermeasures:
Violation of acceptable use and other policies Biometrics
Phishing Data loss prevention
Packet sniffer Encryption
Pretexting Firewall

Assets Intrusion prevention system
Non-confidential assets: Public key infrastructure

Point of sale server Server-based access control list
Network devices Static account logins/passwords
Database server Specialized wireless security
End-user system Smart cards and other one-time tokens
Mobile devices Virtualization-specific tools

Confidential assets: Vulnerability/patch management
Customer personal information Virtual private network
Payment card information Staff training programs
Off-line data
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Table 3.2: Description of data used to represent parameters of the decision framework

Notation Value Used Description Data Source
maxt{β11} 0.5091a Maximum effectiveness of detective counter-

measures on basic attacks
Survey data

maxt{β12} 0.5788 Maximum effectiveness of detective counter-
measures on advanced attacks

Survey data

maxt{β21} 0.7646 Maximum effectiveness of preventive counter-
measures on basic attacks

Survey data

maxt{β22} 0.5277 Maximum effectiveness of preventive counter-
measures on advanced attacks

Survey data

l11 + l12
b $205 Expected loss in both asset categories caused

by a basic attack
Ponemon (2016b)

l21 + l22 $236 Expected loss in both asset categories caused
by an advanced attack

Ponemon (2016b)

α1 2.0098× 10−10 Cost effectiveness parameter for achieving
maximum protection for preventive counter-
measures

Survey data

α2 3.1230× 10−10 Cost effectiveness parameter for achieving
maximum protection for detective counter-
measures

Survey data

θ1 5.526 ×
10−2PTLc

Investment threshold for observing life cycle
curve trend for preventive countermeasures

Survey data

θ2 6.404 ×
10−2PTL

Investment threshold for observing life cycle
curve trend for detective countermeasures

Survey data

aβoa values vary over time, and only the mean value is shown in the table.

bl11 + l12 and l21 + l22 add up to a constant respectively, but the ratio f1t/f2t varies across different
industries. For the ten major industries such ratios are presented in Table 3.6.

cAll monetary values are defined as a multiple of potential total loss, which is denoted by PTL in this
table.
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Table 3.3: Stochastic scenarios of life-cycle and effectiveness realizations.

Scenario Name High effectiveness and long life-cycle for both controls.
HL High effectiveness and long life-cycle for both controls.
LL Low effectiveness and long life-cycle for both controls.
HS High effectiveness and short life-cycle for both controls.
LS Low effectiveness and short life-cycle for both controls.

MM Medium effectiveness and medium life-cycle for both controls.

in an aggregated fashion, it is required that the interdependency also be assessed

at the category level. To that end, we note that there exist some countermeasures

of the preventive category having a related counterpart in the detective category,

and vice versa. These countermeasures, such as firewall and anti-virus software or

intrusion prevention systems and intrusion detection systems, are aimed at provid-

ing similar protections by complementing each other through adaptation of different

strategies. Therefore, the interdependency of countermeasures on the category-level

can be measured by the portion of adoption of types of countermeasures with the

above features. Our survey of the partner organization suggests a portion of total

protection is credited to synergy effects of such countermeasures, which corresponds

to a value of ρ12 = ρ21 = 0.32. We specifically consider this value in our analyses in the

following sections, but also perform sensitivity analysis around this interdependence

measure by considering the impact of different values of ρ12.

In addition, the countermeasure effectiveness life cycle curves are created as de-

scribed in Section 3.2.2 based on the illustration in Figure 3.6b. The span of the

life cycle curves are estimated according to product release dates and end-of-service

dates derived from the technical support information of different countermeasure

types (McAfee, 2013, Symantec, 2014). While the stochastic scenarios consider two

aspects of effectiveness and life-cycle length (indicating maturity level), for computa-

tional tractability, we propose the following five scenarios described in Table 3.3.

In the above description, high effectiveness is defined as one standard deviation

above the mean, low effectiveness is one standard deviation below the mean, and
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Table 3.4: Probability distributions of security controls’ effectiveness.

Type of β Mean Standard deviation
β11: Detective control to advanced attack 0.579 0.252
β12: Detective control to basic attack 0.509 0.309
β21: Preventive control to advanced attack 0.527 0.223
β22: Preventive control to basic attack 0.765 0.194

Table 3.5: Probability distribution of five scenarios in maturity and effectiveness of
security controls after the initial investment period.

Scenario HL LL HS LS MM

Probability 0.0531 0.2407 0.0531 0.2407 0.4124

medium effectiveness being around the mean. The categories of life-cycle length are

defined following similar manner, with long life-cycle being one standard deviation

above the mean, short life-cycle being one standard deviation below the mean, and

medium effectiveness being around the mean. The effectiveness of two countermea-

sures are assumed to be following normal distributions which fit into the survey

sample, with the parameters provided in the following Table 3.4:

The probability of each of the five scenarios can then be calculated as joint prob-

ability of the effectiveness and life-cycle realizations defined accordingly. These prob-

ability values are displayed in Table 3.5 after normalization.

Table 3.6: Frequency of basic attacks over all attacks based on Verizon (2016).

Industry category Industry name f2t
f1t+f2t

Category I
Hospitality 0.9751
Retail 0.7843

Category II

Entertainment 0.7500
Manufacturing 0.7178
Healthcare 0.6850
Education 0.6683
Information technology 0.6176
Public sector 0.5909

Category III
Professional service 0.5446
Financial service 0.4559

Average value across industries 0.6478
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In Table 3.6 we list the ratio of advanced attacks over all attacks targeting in-

formation systems for the different industries considered. For analysis purposes, the

industries are grouped into three major categories according to the similarity of the

corresponding advanced attack ratios. For each industry category, one frequency ra-

tio value is adopted to represent all the industries in that category. We utilize this

setup, and obtain several practical insights for firms in each category as described in

the following subsections.

3.3.2 Analysis I: Optimal Investment in Information Systems Security

Determining the total information security budget is an important decision, as

defined through our first key operational question of how much the firm should invest

in information security. As has been emphasized by Hoo (2000), Gordon and Loeb

(2002) and Huang et al. (2008), the total required investment needs to be sufficiently

discussed and demonstrated before being put into the information security endeavor.

The results in this section are aimed at helping information security practitioners

justify their budget requirements as well as enhancing the efficiency of budget utiliza-

tion for information systems security. We specifically seek answers to the following

questions: Given the type of attacks that a firm faces, as well as the potential losses

due to these attacks, what should be the optimal level of information security invest-

ment by the firm? Furthermore, does this investment level change based on the risk

attitude of the firm?

Clearly, the answers to these questions are expected to vary based on the asset and

attack mix in the information security environment that a firm operates under. These

conditions differ according to the industry and the size of the firm. However, we first

show that the mix of assets does not play a role in the optimal level of investment in

information security, and that only the total value of the assets is important. This is

described through Proposition 3.3 as follows:
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Figure 3.8: Budget size for information security investments

(a) Change in expected costs as a func-
tion of information security budget for
different industry categories.
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(b) Optimal budget size as a function of
the estimated cost of perfect protection.
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Proposition 3.3 Optimal level of investment in information systems security is in-

dependent of the mix of information assets that the firm holds.

Based on this result, we investigate how the optimal investment level would vary

as a function of the total value of assets for different types of firms. In our analysis,

the optimal investment level is represented as a percentage of the total value of the

information assets that the firm holds. In Figure 3.8a we use a generic represen-

tation under a risk neutral assumption and demonstrate our findings for the major

industries we consider in this study. The horizontal axis in the plot is investment

in information systems security, and the vertical axis shows the value of expected

total costs after investments. Given that the specific optimal investment levels are

dependent on the value of the information assets of the firm, in the figure we only dis-

play the relative trend of the relationship with actual absolute values omitted. This

provides an illustration of the general pattern observed for the relationship between

information security investment and total costs, which holds for all asset configura-

tions. In the figure, each industry category is represented by a separate curve, where

there always exists a leveling point when increasing the investment will no longer

yield a decrease in expected total costs. In other words, any investment beyond that
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level is not cost-effective. We refer to the budget size at this leveling point as the

optimal level of investment in information systems security. According to the figure,

the leveling points for Category I, II, and III industries appear at almost the same

position, indicating a universal optimal budget level for all industries with different

advanced/basic attack ratios. The expected total cost, on the other hand, presents

an increasing trend as the percentages of advanced attack get higher, which is due

to the higher expected loss value of an advanced attack. Hence, while firms in dif-

ferent industries generally has the same optimal budget level on investments, firms in

Hospitality and Retail are expected to cost more on information system security than

firms from other industries.

As we noted above, Figure 3.8a is a generic representation, as the specific dollar

value for the optimal investment level is a function of asset values and countermea-

sure costs. To that end, we express the optimal investment level for a given firm as

a function of the estimated cost of perfect asset protection for that firm, which was

discussed as part of the decision process depicted in Figure 3.2. The term ‘perfect

protection’ in this context implies that a very high percentage of the maximum possi-

ble total loss is avoided. In our analyses, such percentage value is taken to be 99.9%

and is controlled by adjusting the parameter αo, which is the indicator of the cost

effectiveness in achieving the maximum effectiveness level βo for countermeasure o.

In Figure 3.8b we present curves showing the optimal level of investment in informa-

tion systems security as a function of ECOPP for different industry categories. This

figure serves as a reference for firms in determining their optimal information security

investment levels, where they would first define their ECOPP in terms of a multiple

of potential total losses that they can incur, and then find out where they lie in the

curve shown for the corresponding industry category. While ECOPP values are likely

to vary for each firm, as they depend on the size and value of a firm’s information
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assets, a relative ordering of industry categories can be made in terms of how costly

perfect protection would be at a general level.

According to Ponemon (2016a), the finance, energy and healthcare sectors suffer

the highest costs due to attacks on information systems while several other industries

like education, hospitality and entertainment sectors incur relatively lower costs. If

the purchase price of countermeasures is assumed to be the same for users from all

industries, the firms in finance and healthcare fields, where potential total losses

are higher, are likely to lie to the left of the horizontal axis in Figure 3.8b, where

perfect protection costs are measured as a percentage of the potential total loss. The

opposite is likely to hold for most firms in the hospitality and healthcare industries,

where potential total losses are relatively lower and thus ECOPP is higher when

defined as a multiple of potential total loss.

As shown in Figure 3.8b, the optimal investment level is not a monotone function

of ECOPP. It first increases, and then drops down after reaching a maximum. Hence,

a general observation is that if ECOPP is less than twice the potential total losses,

the higher the ECOPP for a firm, the higher the optimal investment in information

security. Also indicated in the plot, industries from Category I and II have slightly

higher optimal investment levels as the ECOPP becomes greater than three times

of potential total loss. Based on these observations, the overall information security

budgets for firms in Categories I and II should be on average 4% higher than the other

industries. In addition to identifying the current position on the corresponding curve

in Figure 3.8b and determining the optimal investment levels, a firm can also closely

follow the dynamics due to internal and external factors, and update their optimal

budget size as ECOPP varies due to such dynamics while planning over a long run.

We further note that the characterizations of optimal investment levels above is

consistent with the conclusion of Gordon and Loeb (2002) that a firm should never

invest more than 37% of the potential total loss on information security. Given our
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Figure 3.9: Initial period investment in information security as a function of the risk
measure for different industry categories.
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consideration of the several other attributes in the investment process, our analysis

provides more specific guidelines and tighter upper bounds under similar settings to

those considered by Gordon and Loeb (2002). We give a proof of this below as part

of Proposition 3.4, based on a deterministic case similar to that of Gordon and Loeb

(2002).

Proposition 3.4 If information security countermeasures and attacks are aggregated

into a single category under a deterministic setting, then the optimal investment in

information systems security by a firm should not exceed β
e

of the potential total losses

that the firm can incur.

We also consider the impact of risk attitude on the optimal information security

investment level by studying the pattern illustrated in Figure 3.8a under different

weights of the CVaR component in the objective function of the optimization model.

Based on the results of this analysis, it is observed that the overall optimal total

investment levels do not vary under different emphasis levels on risk, and we conclude

that the optimal size of the information security budget is insensitive to risk under

the presented framework, and that only optimal budget allocations vary with risk.

Related to this, we note that the initial period investments do vary under differ-

ent risk parameter settings. Given its dependence on the operational environment
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for a firm, we display our findings separately for each industry category in Figure

3.9. As shown in the figure, while holding all other conditions equal, the initial pe-

riod investments decrease as the risk weight parameter increases. This indicates that

when risk is highly emphasized, it is better to reduce the initial period investment

thus leave more leeway for the second stage where information on the effectiveness of

countermeasures becomes available. In other words, firms should utilize a gradually

increasing rate of usage for the information security budget within a given planning

period. The higher the emphasis on risk reduction, the higher this rate of increase

should be. It is also noticed that the rate of decrease in the initial investment levels

as a function of emphasis on risk reduction is faster for the Category III industries in

comparison to the other two categories. This suggests that firms in these industries,

such as public sectors, financial service and professional service should be even more

conservative in the first learning stage, leaving more budget flexibility for the poten-

tial variation in the second stage. This might be due to the fact that the security

controls are generally less effective on advanced attacks, making it especially diffi-

cult to withstand risk in these situations. In other words, the value of second stage

investment is higher in cases where a firm faces a higher rate of advanced attacks.

These observations also lead to the conclusion that the higher the emphasis on risk

reduction, the higher the value of information on information security countermeasure

effectiveness for a firm. Hence, information sharing between different organizations

would result in information security risk reduction for all parties involved.

3.3.3 Analysis II: Optimal Allocation of the Information Security Budget

over Countermeasure Categories

In this section we investigate optimal budget allocation policies for information

security investments in different industries, which are distinguished based on the type

of information environment that they operate in. Given these different environments,
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Figure 3.10: Budget allocation over information security countermeasure categories
for different industries.

(a) Percentage of investment on detec-
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(b) Budget allocation under different
risk weights.
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the general question that we try to answer in this section is: what should be the op-

timal allocation of budget over detective and preventive countermeasures for different

industries? Furthermore, how does this vary according to the risk attitude of a firm?

We show in Figure 3.10a the optimal allocation structure identified for different

industries identified by the ratio of basic attacks among all attacks they encounter.

The vertical axis shows the percentage of investment on detective countermeasures in

the initial investment period, and the horizontal axis corresponds to different industry

categories aligned in the order of the ratio of basic attacks over advanced attacks

faced. The reason for the consideration of the initial period investment here is that the

decision maker can always resolve the model based on a rolling horizon, and apply the

results from the first stage decisions. It can be observed that when all other conditions

are as described for the two kinds of countermeasures, the correlation between the

operational environment and the investment structure is obvious: when basic attacks

are more prevalent, the firm should invest more on detective countermeasures. For

industries where advanced attacks dominate basic attacks, the firm should allocate

more resources on preventive countermeasures. Based on this finding and considering

industry characteristics, we can specifically state that Category II firms, including

54



Entertainment, Manufacturing, Healthcare, Education and Information technology in

industries, should invest about twice more in detective technologies than preventive

ones, corresponding to an approximate split of 65% versus 35%. Meanwhile, for

Category I and Category III firms the percentage of investment on detective measures

is approximately the same as the rate of basic attacks among all the attacks.

Related to this analysis, we also study how a firm’s risk attitude changes the op-

timal allocation of the information security budget over the preventive and detective

countermeasures. In Figure 3.10b we show the budget allocation over the two counter-

measures as a function of the weight of the conditional value at risk component in the

objective function. The results imply that the ratio of investments on the two types

of countermeasures shows some declining trend for all the three categories. However,

such trend is not so significant at very high levels of risk emphasis. Hence, it can be

concluded based on the results that the budget split between two countermeasures is

not so sensitive towards the risk attitude of the firm.

3.3.4 Analysis III: Efficiency of Optimal Policies for Investing in Infor-

mation Security

We have noted above that the potential total loss is a key determinant for the

optimal information security budget of a firm. A relevant question involves how much

of such potential loss can be avoided under the optimal policy. More specifically, what

is the difference between expected costs under optimization and potential total loss?

We answer this question by studying the ratio of saved-cost with respect to potential

total loss. This ratio is referred to as efficiency value of optimal policies, as higher

values of this ratio would imply relatively more ‘bang for the buck’ to be achieved

through an optimal investment policy.

In Figure 3.11a we display the ratio of saved-cost, which is the difference between

potential total loss and expected loss under optimal policy, with respect to optimal

55



Figure 3.11: Efficiency value of optimal policies for information security investments
as a function of ECOPP.

(a) Efficiency value of optimal policies
for different industry categories under a
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(b) Efficiency value of optimal policies
for Category II industries under different
risk attitudes.
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costs. The efficiency value measures are displayed as a function of ECOPP for different

industry categories under a risk neutral setting, where the ECOPP values are defined

as multiples of potential total loss. As shown in the figure, ratio of ECOPP and

optimal cost does not follow a linear trend, and rather appears to decrease in a

convex manner. For some general insights, we note that when ECOPP approaches

zero, the saved-cost is almost the same as potential total loss, while when ECOPP

is seven times the potential total losses the saved-cost drops to zero. This implies

that optimal policies provide more efficiency especially when ECOPP is small with

respect to potential total losses. In addition, we observe that the efficiency values of

optimal policies presents a slightly decreasing order for Category III, Category II and

Category I industries, respectively.

ECOPP in most cases is relatively small for large firms in comparison to potential

total losses, as for these firms the losses caused by attacks on their information systems

are likely to be very large. A recent example is the Target breach which resulted in

costs of more than $1 billion for the company (Vomhof, 2013). On the other hand, a

smaller firm is likely to have lower potential total loss values resulting in high ECOPP

values in terms of potential total loss. Hence, large-sized firms are likely to lie on the
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left side of Figure 3.11a, while smaller firms would be more on the right side. Thus, it

can be concluded that the optimal policies are relatively of more value for larger firms

than smaller firms. However, for small-sized firms, if the potential losses decrease or

ECOPP increases due to complexity and frequency of attacks, the increase in the

efficiency value of optimal policies will be almost exponential.

As a second analysis on this issue, we also consider how risk attitude impacts

the efficiency value of optimal policies in information security investments by a firm.

In Figure 3.11b we take Category II industries as an example and display the same

information shown in Figure 3.11a under risk averse and risk seeking objectives. While

the shape of the curve appears to be relatively independent of risk attitude of the

firm, we do observe that as the firm’s risk attitude is shifting towards being more risk

seeking, the value of optimal policies becomes even higher.

3.3.5 Analysis IV: Sensitivity Around the Interdependence Measure and

Attack Frequency

Sensitivity Around the Interdependence Measure. In this section we study

the impact of the dependency parameter between the two categories of countermea-

sures in our framework. The standard ρ12 value in our numerical implementations is

taken as 0.45 based on estimates obtained through survey results. In the following

analysis we vary this value from 0 to 0.45, and observe the changes in the initial

period investment levels provided by the corresponding optimal solutions. The goal

of this analysis, which is performed for different industry categories in order to obtain

industry-specific features, is to assess the impact of ρoo′ on the optimal investment

policy.

As shown in Figure 3.12a, the initial period total investment levels vary as a func-

tion of the ρ value differently for each industry category. For industries in Category

III, the curve follows a slight increasing trend as the dependency parameter increases
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Figure 3.12: Analysis with varying dependency parameter ρ.

(a) Initial period investments under dif-
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(b) Expected total costs under different
values of dependency parameter ρ.
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from zero to the estimated value of 0.45. As for the other industries, however, this

behavior is reversed. While this is the case, we also note that the differences in the

investment levels are not very large. The gap between the highest and lowest invest-

ment levels in Figure 3.12a is less than 6% of the budget. We also consider the total

costs under different dependency measure values, and find that the total costs under

each case vary less than 1%, which is indicated through Figure 3.12b. In the figure,

as expected, the total costs monotonically drop with an increasing ρ12 value. Hence,

it can be concluded that consideration of dependency between different categories of

countermeasures has a visible, but somewhat small effect in an investment optimiza-

tion framework. This also implies that our results should hold even if our estimation

of the dependency measure is not perfectly accurate, as the conclusions do not appear

to be sensitive to small deviations in the value of the dependency measure used in

the analysis.

Sensitivity Around the Attack Frequency. In the previous analyses it has

been assumed that the frequency of attacks on information systems per time unit is

a fixed value over the entire planning horizon. In this section we further consider

the cases of varying attack frequencies over time and observe the impact on initial
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Figure 3.13: Analysis with different attack frequency trends on information systems.

(a) Initial period investments under dif-
ferent attack frequency trends.
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(b) Expected total costs under different
attack frequency trends.
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period investment levels. Specifically, we examine the first stage investments where

the annual increasing rate of attacks ranges from -15% to 15%. The comparative

analysis was performed by assuming that the total number of attacks remain the

same in each case, but the realizations of attacks are such that they either decrease

or increase in a linear fashion over a given budget period.

The dilemma that a decision maker may have under changing attack frequencies

is how much to invest in the early stages. Under the increasing trend of attack

frequencies, the intuition suggests that investing more in the early stage is also likely

to provide coverage for more intense attacks in the future. While under the decreasing

trend of attack frequencies, investing more in the initial periods might seem somewhat

counter effective as early stage installations of some countermeasures may not be as

valuable in the later stage when the attack frequency drops.

However, the analysis shows quite opposite strategies to the intuitions above. In

Figure 3.13a we show that as the frequency trend is shifting from increasing to de-

creasing, the investment levels in the initial periods become higher for all industries.

The seemingly counter-intuitive results are actually related to the stochastic struc-

ture in the problem framework. Under the increasing trend of attack frequency, the

uncertainty in potential loss is also larger in the later stages. Thus, investing less in
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the initial periods leaves more leeway for the second stage to cope with higher loss

realizations. As for the decreasing attack frequency trend, investing more in the ini-

tial periods means more resources can be utilized when the attacks are more intense

and the assets are at higher risk. Although some of the countermeasures invested in

the initial periods may have less value when attacks fade out, it is more essential to

have the initial periods covered well with the current setting. In addition, we also

observe in Figure 3.13b that the expected total costs under the three different attack

frequency trends display an increasing pattern as attack frequencies decrease, though

the rate of increase in Category II and III industries are subtle. This structure is

likely due to the value of learning, such that the decreasing attack rates would im-

ply less potential value due to learning effects in later stages of the budget period.

Hence, proper allocation of early and later stage information security investments

is especially of value in increasing attack rate scenarios, where better balancing the

tradeoffs between learning through early investments and more effectiveness through

later stage investments produces more returns.

3.4 Conclusions

The severity of attacks targeting business information systems and the challenges

in dealing with them are a major concern not only in the U.S., but also all over the

globe. As a result, how much to invest on information systems security and how to

allocate available resources over different countermeasure categories are critical issues

that need to be addressed by information security practitioners. One of the greatest

challenges in optimizing information security investments is defining a reasonable and

generally applicable metric to measure the cost effectiveness of information security

protection. Moreover, the inherent dynamic and stochastic nature of information

security environment contributes to the complexity of managing such investments. In

this study, we address these challenges and develop a comprehensive framework that

60



involves the major components in information security investment management. A

stochastic optimization model is then built upon this framework that adopts high-

level categorizations and captures a generic view of the decision making process with

learning effects.

Despite the fact that available data on information security investments is scarce

and usually not as irreproachable as desired, in this study we extract and utilize the

best data available in the literature, as well as data that we obtained from our industry

collaborators. Particularly, we take into consideration of the differences in operational

environments of various industries when conducting our analyses. Risk attitude is also

explicitly included in the form of sensitivity analysis around a risk measure as part of

our efforts to derive broad references for managers. In that regard, we first identify

an optimal investment level that is most effective in achieving a desired protection

level for a firm. Next, we study the allocation of investments over information se-

curity countermeasures, where the results suggest that for industries such as finance

and energy it is better to rely more heavily on detective countermeasures. For other

industries, a more even allocation of budget over preventive and detective counter-

measures is recommended. Furthermore, our analysis shows that smaller firms will

benefit more from optimizing information security investments, which also holds true

for firms facing very high costs for covering all their assets against attacks on their

information systems. We also show that our modeling of interdependency between

countermeasures is quite robust and that the findings would not be significantly im-

pacted in case of estimation errors in the values of interdependency measures used.

Finally, we also conclude that firms should be more conservative in investments while

the attack frequency is increasing, as opposed to committing to large information

security investments early in the budgeting period.

Beyond our analyses and findings, which are based on current available data and

high-level aggregation of the information security components, we note that our work
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provides a general framework that can be extended as more precise information be-

comes available, such as more detailed effectiveness information on individual coun-

termeasures, potential loss information on certain assets due to specific attacks, and

operational environment/asset configuration of other industries. Customized appli-

cation of the framework to individual firms using specific firm data is also possible.
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CHAPTER 4

OPTIMAL POLICIES FOR INFORMATION SHARING IN
INFORMATION SYSTEM SECURITY

In this chapter we discuss the sharing of information in information system security

practice. As introduced earlier in Section 1.3, this study is aimed at providing answers

to the following practical research questions: What is the optimal level of information

sharing for a firm as a function of the firm’s technology investments? What is the

value of information sharing in information security? How do these findings vary over

different operating environments?. To this end, we re-model the information system

security problem by integrating information sharing with technology investment, and

conduct analytical and numerical studies for policy analysis.

The remainder of this chapter is organized as follows: In Section 4.1 we introduce

the general structure of the information sharing problem under the context of infor-

mation system security. In Section 4.3, we present a stochastic programming model

for information system security investment management with information sharing.

Detailed policy analysis using analytical and numerical approaches are presented in

Sections 4.2 and 4.4. Finally, in Section 4.5 we summarize our results and present

the conclusions.

4.1 A Framework for Information Sharing in Information

System Security

Information sharing within the context of information system security has seldom

been modeled through an optimization based approach. This is mainly due to the
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challenges involving (i) the quantification of information sharing levels; (ii) the char-

acterization of the regulatory drive for sharing information; (iii) the modeling of the

cost and return structures; and (iv) the modeling of the role of technology investments

in this context. In this section, we introduce the framework for information sharing

by explaining how these key aspects of the modeling characteristics are captured in

our model.

4.1.1 Quantification of Information Sharing Level

There is a variety of information that can be shared by firms to exchange knowl-

edge on information security practice (Gordon et al., 2003, Gal-Or and Ghose, 2005,

Weiss, 2015). In general, the information being shared includes: (1) breach informa-

tion on cyber-attacks, and whether these attacks are successful or not, (2) vulnera-

bilities in information security countermeasures, (3) methods used to defend against

cyber-attacks to protect a company’s assets, and (4) methods to minimize the eco-

nomic impact of a security breach once it has been detected. As all these types of

information are gathered in different formats and transferred via different channels,

it is difficult to quantify the amount of information being shared in absolute terms.

In order to resolve this issue, several studies in the literature have adopted a quan-

tification method for information sharing by scaling the sharing level to a fractional

value between 0 and 1.

From a practical perspective, we assume that information security experts of a

firm would standardize all the information that is being collected by their firm, and

a decision will be made to decide what portion of such information that is going

to be shared with other firms. Moreover, as various types of information can serve

distinct purposes with different levels of importance, this assumption also implies

that different kinds of information can be assigned different weights according to

their relative significance. In the remainder of this study, we assume the collection
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and weighing of information is already done by the firm, and information sharing

level is denoted by i ∈ [0, 1], where i = 0 means the firm does not participate in any

information sharing, and i = 1 means the firm is willing to share complete information

with other firms.

4.1.2 Information Sharing under a Centralized Coordinator

Despite the potential benefits of information sharing in the cybersecurity practice,

spontaneous and voluntary sharing of information does not typically happen among

firms. As analyzed in the game-theoretical studies of Gordon et al. (2003), Gal-

Or and Ghose (2005), and Hausken (2007), when the firms act independently, the

situation eventually leads to a Bertrand-Nash equilibrium where no information is

shared among the firms. There are also several realistic concerns of the firms that

prevent their participation in information sharing, such as protecting the privacy

of the business, losing competitiveness in the industry, and the potential for being

taken advantage of by free-riders. However, studies point out that when a centralized

coordinator exists and manages the information sharing of the firms, both the social

welfare and firms’ returns are likely to be maximized. To this end, we assume in this

study that the firms are managed under the control of a central coordinator.

In practice, information sharing alliances act as a central coordinator, where their

roles include gathering of information on vulnerability and threats, providing two-way

information sharing among firms, managing rapid response communications between

firms in the event of an attack, and conducting education and training programs.

In addition, the responsibilities of the central coordinator also includes monitoring

and balancing the information sharing levels of each firm to ensure fairness. In other

words, each firm participating in an ISAC is required to share information no less than

a common minimum level, which can be decided based on negotiation and mutual

agreement.
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Building upon the discussion above, we propose a structural setup for security

information sharing that is aimed to reflect the practical environment in the current

practice. In this setup, a firm that joins a member-based information sharing al-

liance agrees on a desired information sharing level i∗ with other member firms. The

firm then gives out the corresponding portion of collected information to the central

coordinator, and then obtains the same level of shared information i∗ collected and

synthesized from other firms. This setup ensures that the firm would always receive

the same level of shared information as its own information sharing level.

4.1.3 Modeling the Cost of Information Sharing

Another challenge in modeling information sharing in cybersecurity is the defi-

nition and calculation of related costs. While many industries have well-developed

metrics for technology investment costs and returns, such metrics do not exist for

information sharing. As a result, it is difficult for information system security prac-

titioners to come up with a monetary value for specific information sharing levels,

which further impedes the firms’ participation in information sharing activities. To

overcome this challenge, in this study we describe a cost modeling process that we

use in developing a cost function as part of our framework.

As mentioned in the legislative documents and literature (Gordon et al., 2003,

Gal-Or and Ghose, 2005, Weiss, 2015), the cost of security information sharing has

two main aspects. The first aspect deals with the routine costs of data collection

and administrative interactions with the information sharing alliance. The second

aspect is related to the risk of information leakage to hackers, which may increase the

likelihood of customized cyber attacks towards the firm. We refer to these two types

of costs as direct and indirect costs of information sharing, respectively. In addition,

many firms are also concerned that sharing security related information may weaken

their competitiveness in business. However, we note that the sharing of information is
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conducted anonymously under the management of a centralized coordinator, ensuring

a layer of protection on any confidential information. Such protection mechanism

is also required by the Cybersecurity Information Sharing Act, which serves as a

legislative support for the firms. Overall, the concern for losing competitiveness may

hinder a firm’s incentives for sharing information, but it typically does not constitute

a practical problem when a centralized coordinator is involved.

Concepts related to the direct cost of information sharing has been discussed in

several studies, specifically as it applies to business information disclosure (Edmans

et al., 2013, Elliott, 1994). It is explicitly stated in these studies that the cost of shar-

ing information is positively correlated with the level of information being disclosed.

For the cost of information sharing in information system security, empirical studies

have suggested a linear cost function with a fixed rate per unit of shared information

(Berg et al., 2013). It can also be interpreted intuitively that the total workload

of information sharing is proportional to the quantity of information being shared,

resulting in a linear relationship between the direct costs and the information sharing

level. To this end, we define κ
d
i as the total direct cost of sharing information at a

level i, where κ
d

is the unit cost. The parameter κ
d

can be assessed by considering

the required workload for information collection and the hourly rates of personnel

involved.

The indirect costs of information sharing, on the other hand, need to be assessed

based on expert opinions. These costs can be measured by the expected value of

losses due to an advanced attack resulting from any potentially leaked information.

While the cost of a customized attack due to information leakage can be estimated

as a fixed value based on the content of the shared information, the likelihood of in-

formation leakage is positively related to the level of information shared. Specifically,

by assuming that each unit of shared information has the same chance of exposure

to potential attackers, it can be concluded that the likelihood of information leakage
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is a linear function of the information sharing level, which in turn implies a simi-

lar relationship between the total indirect costs and the level of information shared.

Therefore, we denote the indirect costs of information sharing as κ
l
i, where κ

l
is the

unit indirect cost, which also equals to the expected losses due to information leakage

under complete information sharing, i.e. when i = 1.

Eventually, the overall cost of information sharing at level i is the summation

of direct costs κ
d
i and indirect costs κ

l
i. Since both cost components are linear

functions of information sharing level i, in the remainder of the discussion we no

longer distinguish between direct costs and indirect costs, but use a general cost

parameter κ = κ
d

+ κ
l

to build our modeling framework.

4.1.4 Modeling Returns from Information Sharing

While it is typically accepted that information system security can be improved at

lower cost levels by sharing information (Weiss, 2015), the returns from information

sharing are still unclear to most practitioners, as a quantitative measure is not clearly

applicable. As part of addressing this issue, we consider approaches discussed in the

literature and some actual observations from the information sharing practice, and

propose a metric to model returns from information sharing.

Previous studies on information sharing in information system security consider

information sharing as a direct addition to a firm’s investment on information security

technologies. A simplistic method of modeling information sharing is to add a certain

level of “virtual investment” on top of the actual technology investment level. While

several studies on information sharing in information system security have adopted

this modeling structure (Gordon et al., 2003, Gal-Or and Ghose, 2005, Hausken,

2006, 2007), this simple linear relationship does not fully capture the two key effects

between a virtual investment level and the information sharing level, namely the

learning and saturation effects, which are based on observations from the practice of
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Figure 4.1: Learning and saturation effects in information sharing
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information sharing in information system security. The learning effect corresponds

to the phenomenon that the firm does not benefit as much when information sharing

level is very low, but gains increase when the firms increase their mutual information

sharing level to a certain extent. The saturation effect, on the other hand, refers to

the fact that when information sharing level reaches to a certain value, there exist

diminishing marginal returns. A graphical illustration of these learning and saturation

effects is shown in Figure 4.1.

To model the learning and saturation effects in information sharing, we introduce

a return function φ(i) to define the returns from sharing information at level i. φ(i)

corresponds to the percent additive effect on a firm’s technology investments due to

sharing of information, and is defined to have the following properties: (1) ∂φ(i)
∂i
≥ 0 for

i ∈ [0, 1], (2) 0 ≤ φ(i) ≤ 1, and (3) there exists a value iz ∈ [0, 1] such that ∂2φ(i)
∂i2
≥ 0

for 0 ≤ i ≤ iz and ∂2φ(i)
∂i2

≤ 0 for iz ≤ i ≤ 1. Property (1) defines φ(i) as a non-

decreasing function, while property (2) depicts the range of the function. Property

(3) implies the learning effects by defining φ(i) as a convex increasing function until

some level iz, and then as a concave increasing function for i > iz.
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Figure 4.2: Examples of φ(i) for different parameter z values
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z=0.25, h=10

z=0.50, h=10

z=0.75, h=10

Given these definitions, we adopt the logistic function representation for φ(i), such

that φ(i) = 1
1+e−h(i−z) . In this representation, parameter h controls the steepness of

the curve, and can be set to a value such that φ(0) is close enough to 0 and φ(1)

is close enough to 1. Parameter z is referred to as the sigmoid midpoint, and is an

indicator of the relative lengths of the learning and saturation periods on the curve.

More specifically, a smaller z value would indicate fast learning and slow saturation,

while large z values would imply the opposite. A few examples of φ(i) for different

parameter z values are shown in Figure 4.2.

As suggested by Gordon et al. (2003), the returns from information sharing for

a firm are proportional to the technology investment levels of the other firms in

an information sharing alliance. To model this effect, a scaling factor γ ∈ [0, 1] is

introduced to represent the aggregate investment level by the other firms, where the

lower bound 0 implies no technology investments by other firms, and the upper bound

1 corresponds to the case of other firms investing at least as much as the decision-

making firm. In our study, we adopt this scaling factor to describe the “virtual

investment” through information sharing. If x is the original technology investment

level and φ(i) is the percent additive effect on technology investments for sharing
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information at level i, then this implies an additional “virtual investment” of xγφ(i)

by the firm. However, this virtual investment is reduced if the aggregated effect of

technology investments by other firms is less than that of the decision-making firm.

The factor γ defines this discount, and thus total virtual investment effect is expressed

as xγφ(i).

4.1.5 Modeling the Relationship between Technology Investments and

Information Sharing

Information sharing and technology investment have been considered as strategic

counterparts of information system security (Gal-Or and Ghose, 2005), as these two

major components intervene with each other in practice: the sharing of information

among firms has a positive impact on the technology investments, and technology

investments funds the eventual sources of the shared information. In order to capture

a holistic picture of the information system security practice, it is important that

a modeling framework includes both aspects of information sharing and technology

investment. We achieve this by integrating the information sharing component into

the technology investment model introduced in Chapter 3.

As introduced in Section 4.1.4, information sharing would generate an additive

“virtual investment” effect of on the actual technology investment on information

system security. Due to this effect, the original technology investment representation

in the problem formulation of (3.5)-(3.13) in Chapter 3 needs to be adjusted accord-

ingly. To this end, we define a new decision variable ε to represent the cumulative

investment effects, i.e. the actual investment plus the “virtual” investment effect

generated by information sharing. Based on previous discussions, we have for a given

countermeasure o ∈ O that εo = xo+ xoγo
1+e−h(i−z) . Since the technology investment level

is differentiated between countermeasure categories, we note that the information

sharing efficacy factor γ is defined separately for each countermeasure.
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The effectiveness of technology countermeasures is one of the most important

terms within the framework of the technology investment problem as described in

Chapter 3. As a function of the technology investment level x, this term is subject to

reformulation with the adjusted technology investment level ε. By replacing variable

x with ε, the effectiveness of countermeasure protection under the information sharing

context is expressed as e(ε) = β−βe−αε . The joint effectiveness of two countermeasure

categories can then be rewritten as

eoo′(εo, εo′) = ρoo′eo(εo) + ρoo′eo′(εo′)− ρ2
oo′eo(εo)eo′(εo′),

with parameter ρoo′ being the interdependency coefficient for two countermeasure

categories as introduced in Section 3.2.1.

In addition, the endogenous uncertainty set-up is also dependent upon the ad-

justed technology investment level. In Section 3.2.4, it is defined that if original

technology investment for a certain countermeasure category falls below a threshold

θ, then the exact position of the life-cycle curve will not be realized in the second phase

of planning. However, with the contribution of information sharing, such threshold is

reached easier due to the additive virtual investments, reflecting the fact that the firm

learns about the countermeasure maturity though shared knowledge and experience

by other firms. The revised formulation of the corresponding constraints is given

as the following, with M being an arbitrarily large number and σo being a binary

variable indicating whether the adjusted investment level exceeds or does not exceed

the threshold:

εo ≤ θo + Mσo ; εo ≥ θo + M(σo − 1).
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4.1.6 Modeling the Total Cost of Information System Security Invest-

ments under Information Sharing

As discussed in Section 3.2.1, the total cost of information system security invest-

ments consists of two parts: the loss due to attacks and investment expenditures. The

inclusion of information sharing into the problem framework would affect both parts of

the overall cost function. Without information sharing, the actual loss due to attacks

is defined as the potential total loss discounted by the overall countermeasure effective-

ness. Namely, we have this cost term as
∑

t∈T
∑

s∈S
∑

a∈A fatlas
∏

o,o′∈O

√
1− eoo′a(xo, xo′),

where term
∑

t∈T
∑

s∈S
∑

a∈A fatlas represents the summation of potential total losses

over all assets s ∈ S caused by all types of attacks a ∈ A, over the planning period

t ∈ T . The overall countermeasure effectiveness is expressed as the product of the

joint terms, namely as
∏

o,o′∈O

√
1− eoo′a(xo, xo′).

Based on the reformulation of joint effectiveness, the formulation of actual loss

would utilize the adjusted investment levels εo as opposed to the original technology

investment levels xo, such that it becomes
∑

s∈S
∑

a∈A fatlas
∏

o,o′∈O

√
1− eoo′a(εo, εo′).

With the inclusion of information sharing, eoo′a(εo, εo′) implies a stronger countermea-

sure effectiveness, hence further reducing the actual losses in comparison with the

original model without information sharing. On the other hand, the investment ex-

penditure must also include the cost of information sharing κi, indicating an increase

in the overall cost of information system security. The complete formulation for the

total cost of information system security investments under information sharing can

then be expressed as:

∑
s∈S

∑
a∈A

fatlas

( ∏
o,o′∈O

√
1− eoo′a(εo, εo′)

)
+
∑
o∈O

xo + κi (4.1)
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4.2 Optimal Information Sharing under Fixed Technology

Investment

Before we develop a comprehensive numerical optimization model, in this section

we perform some structural analyses for security information sharing. For tractability

of our analysis in this section, we apply some reasonable simplifications to the original

modeling framework. The modifications assume a deterministic situation where a firm

wants to participate in information sharing with its technology investment level being

fixed beforehand, and where countermeasure categories are aggregated into a single

category.

In information system security practice, it is not unusual that information sharing

is planned and administered after technology investment is made. In many cases, the

management of a firm might consider information sharing as a secondary priority,

and can make the decision on how much information to share separately from the

technology investment decisions. Therefore, the findings in this section can provide

insightful guidance to practitioners who may decide on information sharing after

already having decided on technology investments.

As noted above, we consider a model where technology investment level x is fixed

and information sharing level i is treated as the sole decision variable. Under this

setting, the objective function is expressed as follows:

min
i∈[0,1];x∈[0,B]

∑
a∈A

∑
s∈S

fatlas −
∑
a∈A

∑
s∈S

∑
t∈T

fatlas(β − βe
−α(x+ γx

1+e−h(i−z) )
) + x+ κi (4.2)

We start by a convexity analysis of the cost function (4.2) through the following:

Lemma 4.1 The cost function (4.2) is convex in i for i ∈ [0, z−
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

]

and concave in i for i ∈ [z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

, 1].

Proof Proof. All proofs are included in Appendix B. �
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This result allows us to determine the following conclusion on as to when it is

beneficial for a firm to share information with other firms. An intuitive thought is

that firms can avoid sharing information if the marginal cost of sharing information

is very high. To this end, we have the following result:

Theorem 4.1 Let i∗ be the solution to the first order condition of function (4.2). If

i∗ ≥ z−
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

, then for a fixed technology investment level x, there exists

a threshold κ̄ =

∑
a∈A

∑
s∈S

∑
t∈T fatlasβe

−αx

(
1−e

−α(x+
γx

1+e−h(i∗−z) )
)

i∗
, such that if κ ≥ κ̄, the

firm is better off by not sharing any information at all.

Theorem 4.1 specifies that sometimes the firm is better off by not participating

in information sharing if their information system security situation meets certain

conditions. Due to the complexity of cost function (4.2), the closed form solution for

this marginal cost threshold κ̄ cannot be derived analytically, but has to be obtained

numerically according to the parameter setup for the cost function. However, we

are able to derive an upper bound for κ̄ which can be applied as a quick screening

condition. This upper bound is given through Corollary 4.1 as follows:

Corollary 4.1 If marginal information sharing cost κ is such that

κ ≥
∑
a∈A

∑
s∈S fatlasαγxh

(√
α2γ2x2

4
+1+αγx

2

)
e

−α

x+
γx

1+

√
α2γ2x2

4 +1+
αγx

2


(

1+

√
α2γ2x2

4
+1+αγx

2

)2 , then the firm should

not share any information.

As introduced in Section 4.1.3, information sharing costs include both direct op-

erational costs and indirect costs due to potential information leakage. We note that

while the direct cost of routine information sharing activities tend to be manageable,

the indirect costs of potential information leakage could be quite high for a firm, re-

sulting in the marginal cost κ of information sharing exceeding the allowable threshold
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κ̄. Given that situation, a firm should either decrease the expected cost of informa-

tion leakage by reinforcing its privacy protection methods or by not participating in

information sharing to avoid any potential losses.

As the last set of analysis in this section, we study how optimal information sharing

level reacts to changes in the marginal cost of information sharing. The finding is

given through the following proposition:

Proposition 4.1 For κ < κ̄, the optimal information sharing level i∗ decreases as

marginal information sharing cost κ increases.

This result in Proposition 4.1 implies that the firms are encouraged to share

more information if the marginal cost of information sharing is lower, given that

such marginal cost is already below the limiting threshold κ̄. While confirming the

intuition of many practitioners about information sharing, it can be interpreted that

when information sharing becomes expensive, the returns that a firm would receive

from sharing a high level of information cannot offset the extra costs. This finding

would serve as a motivation for firms to collaborate and reinforce better protection

mechanisms on information, so that the marginal cost of information sharing can stay

within a reasonable range.

While analytical results in this section provide some high-level managerial insights

for information security practice, we note that there exist more complex situations

in information system security, specifically when the technology investment level and

information sharing level are both treated as decision variables. In those situations,

the simplifications made in the analytical analyses in this section will no longer ap-

ply. Therefore, we introduce a stochastic optimization model and conduct numerical

analyses accordingly. The results from analytical and numerical analyses together

are aimed to provide a comprehensive view as how to manage integrated information

sharing with technology investment in information security.
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4.3 Two-stage Stochastic Model of Information System Se-

curity Investment under Information Sharing

In this section, we formally present the stochastic model formulation for informa-

tion system security investments under information sharing. The two-stage stochastic

modeling structure is adopted from the general modeling framework in Chapter 3, by

including the new information sharing related constraints discussed in this chapter.

The complete formulation of the two-stage stochastic model of information system

security investment with information sharing is given as follows:

Minimize
∑
ω∈Ω

pω

[∑
k∈K

∑
s∈S

∑
a∈A

∑
t∈T

fatlast

( ∏
o,o′∈O

√
1− ekωoo′at(εkωo , εkωo′ )

)

+
∑
k∈K

∑
o∈O

xkωo +
∑
k∈K

κikω

]
(4.3)

Subject to εkωo = xkωo (1 +
γ

1 + e−h(ikω−z) ) ∀k∈K,o∈O,ω∈Ω (4.4)

ekωoo′at(ε
kω
o , ε

kω
o′ ) = ρoo′e

kω
oat(ε

kω
o ) + ρoo′e

kω
o′at(ε

kω
o′ )− ρ2

oo′e
kω
oat(ε

kω
o )ekωo′at(ε

kω
o′ )

∀o,o′∈O,a∈A,t∈T ,k∈K,ω∈Ω (4.5)

e1ω
oat(ε

1ω
o ) = βoat − βoate−α

1
oε

1ω
o ∀o∈O,a∈A,t∈T 1,ω∈Ω (4.6)

e2ω
oat(ε

2ω
o ) = bωoat − bωoate−α

2
oε

2ω
o ∀o∈O,a∈A,t∈T 2,ω∈Ω (4.7)

ε1ωo ≤ θo + Mσo , ε1ωo ≥ θo + M(σo − 1) ∀o∈O,ω∈Ω (4.8)∑
k∈K

∑
o∈O

xkωo +
∑
k∈K

κ
(
ikω
)
≤ B ∀ω∈Ω (4.9)

i1ω = i1ω
′

∀ω,ω′∈Ω,o∈O (4.10)

0 ≤ ikω ≤ 1 ∀k∈K,ω∈Ω (4.11)

(3.9), (3.13),

The objective of the proposed two-stage stochastic model above is to minimize

the expected overall cost of information system security, which includes the expected

losses due to attacks, as well as expenditure on technology investment and information
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sharing. The loss term
∑

k∈K
∑

s∈S
∑

a∈A
∑

t∈T fatlast

(∏
o,o′∈O

√
1− ekωoo′at(εkωo , εkωo′ )

)
is based on the discussion in Section 4.1.6, with the summation of losses over the

decision stages k ∈ K and time periods t ∈ T . The expenditure terms of technology

and information sharing investment are also calculated over the decision stages by

summing them over decision stages k ∈ K. The notation pω indicates the probability

of scenario ω ∈ Ω, where the definition of the scenarios is based on the life-cycle

status of the countermeasures in the second stage. In the two-stage stochastic setting,

the second stage total cost is dependent on the scenario realization, and hence the

objective is defined as an expectation over the scenario probabilities..

As introduced in Section 4.1.5, constraint (4.4) defines the “virtual investment”

generated by information sharing for each technology countermeasure o ∈ O. Con-

straint (4.5) is the joint effectiveness of countermeasures with adjusted technology in-

vestment levels, which is defined over all possible countermeasure pairs o, o′ ∈ O. Note

that the joint effectiveness of countermeasures is expressed as a function of individual

countermeasure effectiveness, which is given by constraints (4.6) - (4.7). Variable bωoat

in constraint (4.7) has the same meaning as introduced in Chapter 3, which is the

realized value of maximum attainable effectiveness of countermeasure o ∈ O against

attack a ∈ A at each time period in the second stage. Constraint (4.8) defines the

threshold θo in technology investment level of the countermeasure. Constraint (4.9)

is the budget constraint, which limits the total expenditure of technology investment

and information sharing within budget B for every scenario ω ∈ Ω. Constraint (4.10)

is the non-anticipativity constraints for the two-stage stochastic model. Similar to

the definition of constraint (3.13), which is introduced in Chapter 3, constraint (4.10)

fixes the information sharing level to be the same value in every scenario in the first

stage, and allows the optimal information sharing level to vary in the second stage

as technology investment levels change according to different life-cycle development

realizations.
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4.3.1 Solution Methodology

The information system security investment model under information sharing as

introduced above is a non-convex nonlinear optimization problem as the cost func-

tion contains complex products of multiple decision variables with some non-linear

constraints. In this section, we improve the computational tractability by reformulat-

ing the model through a series of steps that involve piecewise linearization including

bilinear terms.

First, we note that the non-linear terms in (4.3), (4.5), (4.6), and (4.7) can

be approximated using piece-wise linearization similar to the discussion by Section

3.2.5. To start, we define new variables Ekω
oo′at(ε

kω
o , ε

kω
o′ ) and Ikωoo′at(ε

kω
o ) such that

Ekω
oo′at(ε

kω
o , ε

kω
o′ ) = ln

(
1− ekωoo′at(εkωo , εkωo′ )

)
and Ikωoo′at(ε

kω
o ) = ln(1 − ρoo′ekωoat(εkωo )). Con-

straint (4.5) can then be expressed in a simple linear form as:

Ekω
oo′at(ε

kω
o , ε

kω
o′ ) = Ikωoo′at(ε

kω
o ) + Ikωo′oat(ε

kω
o′ ) ∀o,o′∈O,a∈A,t∈T ,k∈K,ω∈Ω (4.12)

The new variable Ikωoo′at(ε
kω
o ) can be approximated in a piecewise linear fashion by a

series of M constraints. Specifically, constraint (4.6) can be viewed as a special case

of Ikωoo′at(ε
kω
o ) where k = 1 as:

I1ω
oo′at,m(ε1ωo ) ≥ u1ω

oo′at,mε
1ω
o + v1ω

oo′at,m ∀o,o′∈O,a∈A,t∈T 1,ω∈Ω,m=1,...,M (4.13)

Following the same approach, constraint (4.7) can be replaced by the design of two

sets of switching constraints using the binary variable σo and piecewise approximation

of Ikωoo′at(ε
kω
o ) for k = 2:

I2ω
oo′at,m(ε2ωo ) ≥ u2ω

oo′at,mε
2ω
o + v2ω

oo′at,m −Mσo ∀o,o′∈O,a∈A,t∈T 2,ω∈Ω,m=1,...,M (4.14)

I2ω
oo′at,m(ε2ωo ) ≥ u2ω

oo′at,mε
2ω
o + v2ω

oo′at,m −M(1− σo) ∀o,o′∈O,a∈A,t∈T 2,ω∈Ω,m=1,...,M (4.15)
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The product term in the objective function is reformulated using Ekω
oo′at(ε

kω
o , ε

kω
o′ ) as:

∏
o,o′∈O

√
1− ekωoo′at(εkωo , εkωo′ ) = eln

∏
o,o′∈O

√
1−ekω

oo′at(ε
kω
o ,εkω

o′ )

= e
1
2

∑
o,o′∈O ln(1−ekω

oo′at(ε
kω
o ,εkω

o′ )) = e
1
2

∑
o,o′∈O E

kω
oo′at(x

kω
o ,xkω

o′ ) (4.16)

with the term e
1
2

∑
o,o′∈O E

kω
oo′at(ε

kω
o ,xkω

o′ ) approximated by a set of linear constraints as

follows:

Y kω
at ≥ hkωat,m

∑
o,o′∈O

Ekω
oo′at(ε

kω
o , ε

kω
o′ ) + gkωat,m ∀a∈A,t∈T ,k∈K,ω∈Ω,m=1,...,M (4.17)

As the next step, we transform the non-linear term in constraint (4.4) as product

of xkωo and 1 + 1

1+e−h(ikω−z) to a bilinear term Xkω
o P kω, with new variables Xkω

o = xkωo

and P kω defined as P kω = 1 + 1

1+e−h(ikω−z) . The following set of constraints is then

added to the model to approximate P kω = 1 + 1

1+e−h(ikω−z) as linear terms:

P kω
l = τ kωl ikω + υkωl ∀k∈K,o∈O,ω∈Ω,l=1,...,L (4.18)

For the linear approximation of the bilinear term Xkω
o P kω, we utilize a two di-

mensional grid where the axes correspond to the values of Xkω
o and P kω. Let the

upper and lower bounds of Xkω
o and P kω be Xkω

o , Xkω
o , P kω, and P kω, respectively.

We discretize Xkω
o and P kω into S and T intervals respectively to form the grid. Fur-

thermore, we introduce auxiliary variables πkωo,m,n,m = 1, . . . , S, n = 1, . . . , T and two

specially ordered set of type 2 (SOS2) variables µkωo,m and νkωo,n. Letting the variable

XP kω
o correspond to an approximation of the value of xkωo P

kω, we can approximate

the bilinear term Xkω
o P kω through the following set of constraints:
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∑
m,n

πkωo,m,n = 1 ∀k∈K,o∈O,ω∈Ω (4.19)

P kω =
∑
m,n

(P kω +
(
P kω − P kω

) m− 1

S
)πkωo,m,n ∀k∈K,o∈O,ω∈Ω (4.20)

Xkω
o =

∑
m,n

(Xkω
o +

(
Xkω
o −Xkω

o

) n− 1

T
)πkωo,m,n ∀k∈K,o∈O,ω∈Ω (4.21)

XP kω
o =

∑
m,n

(P kω +
(
P kω − P kω

) m− 1

S
)(Xkω

o +
(
Xkω
o −Xkω

o

) n− 1

T
)πkωo,m,n

∀k∈K,o∈O,ω∈Ω (4.22)

µkωo,m =
∑
n

πkωo,m,n ∀m,k∈K,o∈O,ω∈Ω (4.23)

νkωo,n =
∑
m

πkωo,m,n ∀n,k∈K,o∈O,ω∈Ω (4.24)

µkωo,m, ν
kω
o,n ∈ SOS2 ∀m,n,k∈K,o∈O,ω∈Ω (4.25)

πkωo,m,n ≥ 0 ∀m,n,k∈K,o∈O,ω∈Ω (4.26)

We refer to the set of constraints (4.19) - (4.26) as XPkωo . After transforming the

objective function (4.3), constraints (4.4), (4.5), (4.6), and (4.7) as described above,

we can express the overall convex reformulation of the information system security

investment under information sharing model as follows:

min
x,i,E,I,Y∈R+,σ∈{0,1}

∑
ω∈Ω

pω

[∑
k∈K

∑
s∈S

∑
a∈A

∑
t∈T

fatlastY
kω
at +

∑
k∈K

∑
o∈O

xkωo + +
∑
k∈K

κii
kω

]
(4.27)

s.t. (3.9)− (3.13), (4.9)− (4.11), (4.12)− (4.18)

P kω, Xkω
o , XP kω

o , µkωo,m, ν
kω
o,n, π

kω
o,m,n ∈ XPkωo ∀m,n,k∈K,o∈O,ω∈Ω (4.28)

The above formulation is a linear stochastic integer programming model, and can be

solved directly to obtain the optimal information sharing and technology investment

levels for both stages, where the first stage solutions are of interest to a decision

maker.
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4.4 Numerical Analysis and Policy Results

In this section, we perform numerical analyses to identify some policy results

for information sharing in information security. More specifically, we numerically

study the two-stage stochastic model described in Section 4.3, where the technology

investment levels xo and information sharing level i are simultaneously considered as

decision variables. Managerial insights are provided by analyzing the problem with

real data. In the remainder of this section, we first introduce the data that we utilize

for our findings, and then present a set of policy analyses. We specifically focus on

optimal information sharing levels and value of information sharing under different

operating environments.

4.4.1 Description of Data

As part of the data gathering process, surveys were performed at a partner orga-

nization, where the proposed framework was observed from a practical perspective.

These surveys included questions aimed at identifying the distinct categorizations

of information system assets, attacks, and countermeasures. In addition to the sur-

vey data, we also utilized data obtained from the literature for our analyses. The

parameter values obtained through these means are listed in Table 4.1.

Other parameters related to information sharing are the marginal cost of infor-

mation sharing, κ
d
, indirect unit cost κ

l
, parameters h and z in return function φ(i),

and γ, the aggregate investment level on information system security by other firms.

The direct cost information obtained through our surveys include billable work hours

of associated personnel, cost of holding business meetings with partner firm represen-

tatives and the membership fees of joining information sharing associations. For the

indirect costs due to information leakage, we adopt the published data by Ponemon

(2016b) and estimate the expected cost of an advanced cyber attack due to infor-

mation leakage. A summary of these parameter values is listed in Table 4.2. For
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Table 4.1: Description of data used to represent parameters of the decision framework

Notation Value Used Description Data Source
maxt{β11} 0.5091a Maximum effectiveness of detective counter-

measures on basic attacks
Survey data

maxt{β12} 0.5788 Maximum effectiveness of detective counter-
measures on advanced attacks

Survey data

maxt{β21} 0.7646 Maximum effectiveness of preventive counter-
measures on basic attacks

Survey data

maxt{β22} 0.5277 Maximum effectiveness of preventive counter-
measures on advanced attacks

Survey data

l11 + l12 $205 Expected loss in both asset categories caused
by a basic attack

Ponemon (2016b)

l21 + l22 $236 Expected loss in both asset categories caused
by an advanced attack

Ponemon (2016b)

α1 2.0098× 10−10 Cost effectiveness parameter for achieving
maximum protection for preventive counter-
measures

Survey data

α2 3.1230× 10−10 Cost effectiveness parameter for achieving
maximum protection for detective counter-
measures

Survey data

θ1 5.526× 10−2PTLb Investment threshold for observing life cycle
curve trend for preventive countermeasures

Survey data

θ2 6.404× 10−2PTL Investment threshold for observing life cycle
curve trend for detective countermeasures

Survey data

aβoa values vary over time, and only the maximum value is shown in the table.

bAll monetary values are defined as a multiple of potential total loss, which is denoted by PTL in this
table.

Table 4.2: Summary of the parameter values related to information sharing costs,
where each value implies a multiple of potential total loss

Notation Value Description and details Data source
κ

d
0.095 Direct marginal cost of information sharing
0.053 Expenses on billable work hours of related personnel Survey data
0.015 Expenses on holding business meetings
0.027 Membership fees of information sharing organization

κ
l

0.175 Indirect marginal cost of information sharing
0.75 Estimated cost of cyber attack due to information

leakage
Ponemon
(2016b)

0.24 Probability of cyber attack due to information leak-
age
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parameters of return function φ(i), we take the sigmoid mid-point value z to be 0.5

by assuming the learning effects and saturation effects in information sharing as be-

ing equally strong. The steepness parameter h is set to be h = 13.81, such that the

point of inflection z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

is always between 0 and 1 under different

technology investment levels within the budget. As the aggregated investment level

of other firms varies according to different information security technology investment

environment levels, we set the initial value of γ to be 1, and then conduct a sensitivity

analysis around this value to study its impact on information sharing levels.

The first problem we study through numerical analysis is the optimal information

sharing level in information system security. While in Section 4.2 we describe some

structural properties about optimal information sharing level from a static sense, in

this section we are able to obtain the optimal information sharing level numerically

based on the stochastic model, and observe how it varies as other parameters in

information system security changes.

4.4.2 Optimal Level of Information Sharing under Different Budget Sizes

We first study how the budget level affects information sharing in information

system security. To further discuss the findings, here we introduce the concept of

most effective budget (MEB) under the information sharing context. As one of the

results in Section 3.3.2, the overall expected total costs decrease in a convex manner

as investment level increases, but converges to an asymptotical level after budget

reaches MEB. Such a leveling point also exists when information sharing is consid-

ered, where this leveling point in expected total costs corresponds to a budget that

covers both technology investment and information sharing costs. This MEB value

typically depends on the potential total losses without protection, marginal ratio αo of

investment effectiveness of technology countermeasures, and information sharing cost
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Figure 4.3: Optimal information sharing level under different budget sizes
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κ. Ideally, a firm would set the budget size equivalent to MEB so that the maximum

extend of protection is achieved without potential waste of funds.

However, MEB may not always be achievable in practice, especially by small to

medium sized firms which may have limited information system security budgets.

In that case, technology investment and information sharing would compete for the

available budget, and how much information to share becomes a key strategic problem.

We perform numerical analyses over the budget size from 0 to the level of MEB to

observe how the optimal information sharing level varies according to different budget

sizes. The results are shown in Figure 4.3.

As can be observed in Figure 4.3, the optimal information sharing level i∗ increases

with the budget size in a non-linear manner. When the budget size is less than one

third of MEB, the optimal information sharing level i∗ stays below 0.6, and increases

rapidly as the budget grows from 30% to 40% of MEB. When the budget size is

higher than one half of MEB, the information sharing level remains at a relatively

high level. This indicates that firms with budgets above half of MEB should share

about 15% more information.

85



The fact that optimal information sharing level i∗ is never zero indicates that

under the given assumptions the firms would always benefit from information sharing

when the marginal cost of information sharing κ is below the threshold κ̄, even at

lower budget levels. Generally, firms with larger security budgets, which typically

corresponds to larger companies, should share more information to take advantage of

the virtual investment effect. For smaller to medium size companies, for which the

optimal information sharing level is lower, increasing the information system security

budget to levels near MEB would benefit the firm both in terms of technology returns

and also due to larger levels of information sharing to be performed. On the other

hand, if a firm cannot afford to increase its budget over one half of MEB, then they

may consider not participating in information sharing due to affordability issues.

4.4.3 Optimal Level of Information Sharing under Different Expected

Cost of Perfect Protection

In this section, we study the relationship between the optimal information shar-

ing level i∗ and overall ECOPP values, as introduced in Section 3.3.2, by running

sensitivity analysis over a set of different ECOPPo values and solving for optimal

information sharing levels i∗. As part of this analysis, the budget size for information

system security is assumed to be equal to MEB in order to eliminate the influence

of the budget constraint. The results are illustrated in Figure 4.4, where the overall

ECOPP values are measured as a multiple of the potential total losses of a firm.

As can be observed in Figure 4.4, the information sharing level first increases as

ECOPP increases, but slightly decreases from a maximum point when ECOPP is

measured as 1.5 times of potential total losses. Since ECOPP is a measure reflecting

the affordability of technology countermeasures for a firm, the drop in information

sharing level can potentially be explained by the ineffectiveness of general information

security investments due to higher costs. However, for firms that have a limited
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Figure 4.4: Optimal information sharing level under different ECOPP values
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budget but are more prone to information system security attacks, the ECOPP value

is likely to fall into the range between 1-1.5 times of potential total losses. Such

businesses should place more emphasis in information sharing, with potential optimal

information sharing levels being about 5% higher than those firms with ECOPP values

less than their potential total losses.

4.4.4 Value of Information Sharing

To further study the economic incentives of information sharing in information

system security investments, in this section we present two sets of analysis on the

value of information sharing. The value of information sharing is calculated as the

percentage difference between the expected total cost of information security invest-

ments with information sharing and the costs without information sharing. We first

show the value of information sharing under different budget sizes measured as mul-

tiples of MEB, and then compare the value of information sharing for firms with

different ECOPP values. It is also worthwhile noting that the information sharing

alliances often consist of companies with different technology investment levels, re-

sulting a variety of information sharing environments for different firms. To address

this operational factor, in the latter part of the analysis we compare the value of in-

formation sharing for firms under different information sharing environments, which
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Figure 4.5: Value of information sharing under different budget sizes
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is defined by the aggregated technology investment level of the firms that mutually

share information.

4.4.4.1 Value of Information Sharing under Different Budget Sizes

The change in the value of information sharing as a function of budget size is

shown in Figure 4.5. As shown in the figure, the value of information sharing is

always increasing as the budget size gets closer to MEB. Similar to the findings

discussed for the optimal information sharing level, the best value for information

sharing is attained at higher levels of information security investments. Therefore,

firms of large sizes or with relatively higher security budgets should be more motivated

in participating in information sharing.

In addition, the value of information sharing concavely increases as a function

of budget size, which is different from the S-shaped curve observed for the optimal

information sharing level in Figure 4.3. This result serves as another motivation for

firms to further push for higher levels of information security budgets, as return rates

increase as a function of the budget size. This is in contrast with the case in Figure

4.3, where there is not a significant need to increase the information sharing level as

long as the budget size is smaller than MEB.
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4.4.4.2 Value of Information Sharing under Different ECOPP and Invest-

ment Environments

As a final analysis, we study the impact of ECOPP on the value of information

sharing for different firms. Since ECOPP reflects the affordability of information

security technology, an increase in ECOPP would indicate a more challenging in-

formation security environment. Figure 4.6 shows the value of information sharing

under different ECOPP values. Comparing with the increasing information sharing

level i∗ as a function of ECOPP in Section 4.4.3, Figure 4.6 shows that the value of

information sharing decreases as the information security technology becomes more

expensive, which can be seen as a reflection of the declining cost-effectiveness of overall

information system security investments in tougher investment environments.

Moreover, as discussed earlier in Section 4.1.4, technology investments by other

firms in an information sharing alliance can play an important role on the value

of information sharing, as represented through the value of the parameter γ. To

further study this impact, we compare the value of information sharing as a function

of ECOPP for different levels of aggregated technology investment factor γ. This

comparison is presented in Figure 4.6 by showing the trend in value of information

sharing as a function of ECOPP for different settings of γ values.

As shown in Figure 4.6, while the value of information sharing as a function of

ECOPP follows a decreasing trend, it is obvious that aggregated technology invest-

ment factor γ of the other firms is positively correlated with the value of information

sharing, under same ECOPP levels. This result is in line with the intuition that

when the partner firms allocate more resources to information security technology

investments, the experience and knowledge they gather would be more informative.

Consequently, information shared by such firms is of more value to the other firms

who learn through their shared information. On the other hand, if all the other
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Figure 4.6: Value of information sharing under different ECOPP and investment
environments
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partner firms have lower information security technology investments, the value of

information sharing for the decision-making firm will be negatively impacted.

As a managerial insight for forming alliances for information sharing, the findings

of this analysis suggest that firms would benefit from building alliances with other

firms that have similar information security technology investment levels. In this

way, all the firms would achieve a relatively high value out of information sharing

in a fair manner without any concerns for free-riding effects. Meanwhile, small to

medium size firms might be motivated to cooperate with larger-sized firms to take

advantage of their information security technology investments scales.

4.5 Conclusion

With the need for joint efforts on information system security by all types of

firms under an increasingly challenging cyber environment, information sharing has

been encouraged by both the U.S. legislation and business practice. Therefore, how

much information to share and the value of information sharing have become key

practical questions for information security practitioners. To answer these questions,
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in this study, we design a framework which includes technology investments and in-

formation sharing as two intertwining components of information system security.

The framework also includes quantification metrics to measure information sharing

levels and corresponding returns. The dynamics of information system security in-

vestments are captured through a two-stage stochastic programming structure. We

take into consideration different operational situations and perform policy analyses

involving structural and numerical results. More specifically, we first study a sim-

plified analytical model where technology investment level is fixed in advance of the

firm participating in information sharing. We find that there exists a threshold in

marginal cost of information sharing such that a firm is better off by not sharing any

information if the marginal cost exceeds this threshold.

Next, we study the optimization problem of minimizing total information security

costs where information sharing and technology investment decisions are made simul-

taneously. For the optimal level of information sharing, we show that the optimal

information sharing level increases slowly with the budget size for firms with very low

or very high budgets, but at a faster rate for budget sizes around one half of the most

effective budget. As a result, large firms with sufficient information security budgets

should typically share 15% more information when compared with small to medium

sized firms with budgets less than half of MEB. We also find that the optimal informa-

tion sharing level is concavely increasing with the expected cost of perfect protection

of a firm, indicating that firms prone to cyber attacks are encouraged to partici-

pate more in information sharing. Furthermore, we examine the value of information

sharing under different operational conditions including budget sizes, expected costs

of perfect protection, and aggregate levels of technology investments by other firms.

The results show that the value of information sharing is increasing with the budget

size, and decreasing with expected cost of perfect protection. Moreover, the value of
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information sharing is highest when all firms in an information alliance have similar

levels of technology investment.

As one of the few studies on information sharing of information system security,

our work adds to the literature by providing a framework of information system se-

curity investment problems that captures both aspects of technology investment and

information sharing. While in this study we assume a fair information sharing envi-

ronment under the management of a centralized coordinator, the framework can also

be extended to accommodate more complex situations where asymmetric information

sharing is unavoidable, which we do in Chapter 5.
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CHAPTER 5

ASYMMETRIC INFORMATION SHARING IN
INFORMATION SYSTEM SECURITY

In this chapter we address the problems proposed by the end of Chapter 4 by

seeking answers to the following research questions: (1) What fair price should a

firm pay participating information sharing in asymmetric sharing environment? (2)

How would the price of information vary under different pricing strategies and other

influencing factors? To this end, we develop analytical expressions of a firm’s payoffs

under an asymmetric information sharing environment and analyze the pricing of

information under two distinct pricing strategies through analytical and numerical

analysis.

The remainder of this chapter is organized as follows: in Section 5.1 we introduce

two pricing strategies of asymmetric information sharing and discuss them under

three distinct settings. Policy insights based on practical data is presented in 5.1.4

through an numerical example. Finally, in Section 4.5 we summarize our results and

present the conclusions.

5.1 Pricing Strategies for Asymmetric Information Sharing

under Deterministic Setting

Our analysis of asymmetric information sharing in the information security context

considers three distinct settings. In the first case, we assume a two-firm alliance,

where only one of the firm provides security information. In the second case, both

firms share information in different levels. Finally, in the third case, we consider the
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sharing of information among multiple firms. For each of these cases, we study the

functional relationship between the level of information shared by each firm at any

price that the firm needs to pay for being part of the information sharing alliance.

5.1.1 Case I: One-way Information Sharing Between Two Firms

Consider a setup with two firms involved in an information sharing alliance. We

assume without loss of generality that Firm A provides information to Firm B , while

Firm B does not provide any information but is willing to pay a price p for the

information it receives from Firm A.

For notational simplicity, we use the generic functions (5.1)-(5.2) to represent

the information security related losses of a Firm A and Firm B under technology

investment level x
A

and x
B

without information sharing;

g(x
A
, 0) =

∑
a∈A

∑
s∈S

∑
t∈T

fatlas(1− βA + β
A
e−αAxA ) (5.1)

g(x
B
, 0) =

∑
a∈A

∑
s∈S

∑
t∈T

fatlas(1− βB + β
B
e−αBxB ) (5.2)

For the paying Firm B , we use function (5.3) to represent its information security

related losses under technology investment level x
B

when receiving shared information

at level i
A

from sharing Firm A.

g(x
B
, i
A

) =
∑
a∈A

∑
s∈S

∑
t∈T

fatlas(1− βB + β
B
e−αB (x

B
+γ

A
φ
A

(i
A

)x
B

)) (5.3)

5.1.1.1 Pricing with Fixed Technology Investment Level

An important issue regarding the payoffs for the information acquiring firm is

how technology investment is handled in accordance with the acquired information.

In practice, when information sharing is new to the firm and technology investment

level is not easily adjusted, Firm B would maintain the same technology level x
B

with
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or without acquiring shared information from Firm A. In this subsection, we discuss

the pricing strategy under this situation with fixed technology investment levels.

Following the modeling structure introduced in Chapters 3 and 4, the overall

information security cost of Firm A before and after sharing information can be

expressed as the following:

Before : g(x
A
, 0) + x

A
(5.4)

After : g(x
A
, 0) + x

A
+ κ

A
i
A
− p (5.5)

Difference : − κ
A
i
A

+ p (5.6)

The overall information security cost of Firm B before and after sharing information

can be expressed as:

Before : g(x
B
, 0) + x

B
(5.7)

After : g(x
B
, i
A

) + x
B

+ p (5.8)

Difference : g(x
B
, 0)− g(x

B
, i
A

)− p (5.9)

The benefit of information sharing is entirely reflected from the reduced information

security related costs in Firm B , which follows:

g(x
B
, 0)−g(x

B
, i
A

) =
∑
a∈A

∑
s∈S

∑
t∈T

fatlas

(
β
B
e−αBxB −β

B
e−αB(xB+γ

A
φ(i

A
)x
B)
)

(5.10)

Give this, we propose a simple asymmetric information pricing strategy for this

case, which equally splits the benefits of information sharing between the two firms.

We refer to this pricing strategy as equal benefits strategy. Based on this assumption,
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the fair price peb such that the overall cost differences for Firm A (equation 5.6) and

Firm B (equation 5.9) equal to each other:

κ
A
i
A

+ peb =g(x
B
, 0)− g(x

B
, i
A

)− peb

peb =
1

2
(g(x

B
, 0)− g(x

B
, i
A

)− κ
A
i
A

) (5.11)

The fair price under the equal benefits pricing strategy would make sure that

both the information sharing firm and the information acquiring firm benefit from

the practice of information sharing, which serves as a motivation for the collaboration

between the two parties. On the other hand, certain conditions have to be met

before the two firms participate in one-way information sharing relationship, which

is illustrated through the following Theorem:

Theorem 5.1 The two firms will not benefit from information sharing practice if the

marginal cost of information sharing for Firm A exceeds the following threshold κ̄
A

:

κ̄
A
≡

∑
a∈A

∑
s∈S
∑

t∈T fatlasβBe
−α

B
x
B

(
1− e

−α
B

(x
B

+
γ
A
x
B

1+e
−h(i∗

A
−z) )
)

i∗
A

(5.12)

where i∗
A

is the solution to the first order condition of function (5.11) such that

i∗
A
≥ z −

ln

(√
α2
B
γ2
B
x2
B

4
+ 1 +

α
B
γ
A
x
B

2

)
h

.Theorem 5.1 implies that Firm A’s marginal cost of information sharing should match

Firm B’s ability to generate benefits through technology investment. Specifically,

if Firm A has a high risk of information leaking or complex information sharing

protocols, it might not be cost-effective for Firm B to collaborate with Firm A in

information sharing.
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When the marginal information sharing cost κ
A

is lower than the above threshold

κ̄
A

, the sharing Firm A can potentially increase its information sharing level in return

for higher prices paid by Firm B . Firm B can also change its technology investment

level to generate more benefits using the acquired information. Details on these

relationships are given by the following proposition 5.1:

Proposition 5.1 When the marginal cost of information sharing for Firm A is lower

than the threshold given by (5.12), the fair price for one-way information sharing with

equal benefit strategy is:

(1) increasing with Firm B’s technology investment level x
B

on [0, x∗
B

) and then de-

creasing on [x∗
B
,+∞), where x∗

B
=

ln
(∑

a∈A
∑
s∈S

∑
t∈T fatlasβBαB(1+γ

A
φ
A

(i
A

))
)

α
B(1+γ

A
φ
A

(i
A

))
;

(2) highest regarding to i
A

when i
A

equals to i∗
A(0)

, where i∗
A(0)

is the solution to the

first order condition of function (5.11) such that i∗
A(0)
≥ z −

ln

(√
α2
B
γ2
B
x2
B

4
+1+

α
B
γ
A
x
B

2

)
h

.

5.1.1.2 Pricing under Re-optimized Technology Investments

As discussed in Section 4.4.2, information acquiring firms are better off by invest-

ing according to the MEB on security technologies, which usually means different

investment levels before and after acquiring shared information. While some firms

new to the information sharing practice may not have such flexibility, most firms can

achieve this by developing advanced investment mechanisms to incorporate shared

information. In such cases, the re-optimized technology investment level will affect

the fair price value with the equal benefit strategy.

Consider a similar setup as in Section 5.1.1 but with Firm B investing x∗
B

before

acquiring Firm A’s information and x∗∗
B

afterwards. The overall information security

cost of Firm B before and after sharing information can be expressed as:
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Before : g(x∗
B
, 0) + x∗

B
(5.13)

After : g(x∗∗
B
, i
A

) + x∗∗
B

+ p (5.14)

Difference : g(x∗
B
, 0)− g(x∗∗

B
, i
A

) + x∗
B
− x∗∗

B
− p (5.15)

The overall cost of Firm A before and after sharing information remains the same

as in (5.4)-(5.6) The fair price under equal benefit strategy that sets the pay-off for

Firm A and Firm B as the same can then be expressed as:

peb
∗

=
1

2

(
g(x∗

B
, 0)− g(x∗∗

B
, i
A

) + x∗
B
− x∗∗

B
+ κ

A
i
A

)
(5.16)

By solving for the x
B

values that minimizes Firm B’s overall cost, we can obtain the

fair price under equal benefit strategy when Firm B invest at the level of MEB and

re-optimizes its technology investment level after obtaining shared information. The

following theorem gives the closed-form expression for pricing strategies under this

case:

Theorem 5.2 When the paying Firm B invest according to MEB and re-optimizes

its technology investments after acquiring information, the fair price peb
∗

for the in-

formation shared by Firm A is:

peb
∗

=
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβBαB
)

2α
B

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβBαB
(
1 + γ

A
φ(i

A
)
))

2α
B

(
1 + γ

A
φ(i

A
)
) +

1

2κ
A
i
A

(5.17)

Comparing the pricing structure with and without re-optimization of technology in-

vestments, we can draw conclusions similar to those in Section 4.4.2. Under asym-

metric information sharing, firms can get higher overall payoffs by always investing

according to MEB. This finding is summarized by the following corollary:
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Corollary 5.1 For a two firm information sharing alliance with one-way information

sharing, the pay-offs for both firms would increase if the buying Firm B re-optimizes

its technology investment level. The increase in the pay-off for each Firm amounts

to: (
1

2

∑
a∈A

∑
s∈S

∑
t∈T

fatlasβBαB
(
1 + γ

A
φ(i

A
)
))− (1+γ

A
φ(i

A
)) ln(

∑
a∈A

∑
s∈S

∑
t∈T fatlasβBαB )

ln(
∑
a∈A

∑
s∈S

∑
t∈T fatlasβBαB

(
1+γ

A
φ(i

A
)

)
)

− 1

2α
B

(
1 + γ

A
φ(i

A
)
) +

ln
(∑

a∈A
∑

s∈S
∑

t∈T fatlasβBαB
)

2α
B

−
ln
(∑

a∈A
∑

s∈S
∑

t∈T fatlasβBαB
(
1 + γ

A
φ(i

A
)
))

2α
B

(
1 + γ

A
φ(i

A
)
) (5.18)

5.1.2 Case II: Mutual Information Sharing between Two Firms

As a second case, we consider two firms that both share information but not

necessarily at the same sharing level. Without loss of generality, we assume Firm B

pays a positive price p
B

to Firm A. Firm B is referred to as “paying firm” and Firm A

is referred to as “non-paying firm”. The price paid by Firm A is therefore a negative

value p
A

= −p
B

. Similar to Section 5.1.1.1, we first assume that the firms would not

re-optimize their technology investment levels. The overall information security costs

of Firm A before and after sharing information can be expressed as:

Before : g(x
A
, 0) + x

A
(5.19)

After : g(x
A
, i
B

) + x
A

+ κ
A
i
A
− p, (5.20)

Difference : g(x
A
, 0)− g(x

A
, i
B

)− κAiA + p (5.21)

Similarly, the overall information security costs of Firm B before and after sharing

information can be expressed as:

Before : g(x
B
, 0) + x

B
(5.22)

After : g(x
B
, i
A

) + x
B

+ κ
B
i
B

+ p, (5.23)

Difference : g(x
B
, 0)− g(x

B
, i
A

)− κBiB − p (5.24)
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5.1.2.1 Pricing with Fixed Technology Investment Level

Under the equal benefit pricing strategy, the fair price that Firm B should pay to

Firm A can be calculated by setting the overall payoff of information sharing as the

same for the two firms:

g(x
A
, 0)− g(x

A
, i
B

)− κAiA + peb = g(x
B
, 0)− g(x

B
, i
A

)− κBiB − peb (5.25)

The fair prices peb = p
B

= −p
A

can be calculated as:

peb =
1

2

((
g(x

B
, 0)− g(x

B
, i
A

)− κ
B
i
B

)
−
(
g(x

A
, 0)− g(x

A
, i
B

)− κ
A
i
A

))
(5.26)

While both firms are sharing information with each other and splitting their benefits

in an even manner according to the equal benefit strategy, the payoffs for a firm might

be very different from the financial contribution credited to its shared information.

Such differences in payoffs and contributions can impact the firms’ motivation for

sharing information. To this end, we propose a second pricing strategy for asymmetric

information sharing.

The second pricing strategy addresses the contribution of each firm through their

information sharing activity. We refer to this method as exchange return pricing

strategy. Under this strategy, a decision making firm’s overall payoff is equal to the

reduced costs by the other firm subtracted by the decision making firm’s information

sharing costs. The two firm’s overall payoffs are no longer equal to each other:

Firm A’s payoff = g(x
B
, 0)− g(x

B
, i
A

)− κ
A
i
A

(5.27)

Firm B’s payoff = g(x
A
, 0)− g(x

A
, i
B

)− κ
B
i
B

(5.28)

Based on this, the fair price under exchanged return strategy for the previously de-

scribed two firms A and B can be given as:
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p
B

= per = g(x
B
, 0)− g(x

B
, i
A

)− g(x
A
, 0) + g(x

A
, i
B

) (5.29)

Through the payoff functions (5.27)-(5.28), it is made clear that the return generated

by the firms should cover each other’s sharing costs, or it would lead to the firm’s

payoff being negative. Moreover, two firms are simultaneously motivated to share

according to the best information sharing levels, leading to the maximum net return

of the information sharing alliance. The strategy would also encourage transparency

between the two firms regarding communication on sharing costs, technology efficacy,

and potential total costs, which are the essential contents of shared information as

discussed in Chapter 4.

While the fair price payoffs for the two firms are substantially different with equal

benefit and the exchange return polices, it is possible that the two firms eventually

reach a final price that lies in between peb and per through negotiation, which can

address fairness and contribution in a balanced way.

5.1.2.2 Pricing under Re-optimized Technology Investment Levels

In this subsection, we consider the situation where both firms invest in security

technologies according to MEB with re-optimization after mutual sharing information.

Similar to Section 5.1.1.2, the optimal technology investment levels are denoted as

x∗ before information sharing and x∗∗ after information sharing. The overall costs of

the two firms before and after information sharing are expressed as follows:

Firm A :

Before : g(x∗
A
, 0) + x∗

A
(5.30)

After : g(x∗∗
A
, i
B

) + x∗∗
A

+ κ
A
i
A
− p, (5.31)

Difference : g(x∗
A
, 0)− g(x∗∗

A
, i
B

) + x∗
A
− x∗∗

A
− κ

A
i
A

+ p (5.32)

Firm B :
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Before : g(x∗
B
, 0) + x∗

B
(5.33)

After : g(x∗∗
B
, i
A

) + x∗∗
B

+ κ
B
i
B

+ p, (5.34)

Difference : g(x∗
B
, 0)− g(x∗∗

B
, i
A

) + x∗
B
− x∗∗

B
− κ

B
i
B
− p (5.35)

Based on these, the fair price with the equal benefit strategy is given as:

p
B

= peb
∗

=
1

2

((
g(x∗

B
, 0)− g(x∗∗

B
, i
A

) + x∗
B
− x∗∗

B
− κ

B
i
B

)
−
(
g(x∗

A
, 0)− g(x∗∗

A
, i
B

) + x∗
A
− x∗∗

A
− κ

A
i
A

))
(5.36)

On the other hand, the fair price under exchange return strategy is given as:

p
B

= peb
∗

=

((
g(x∗

A
, 0)−g(x∗∗

A
, i
B

)+x∗
A
−x∗∗

A

)
−
(
g(x∗

B
, 0)−g(x∗∗

B
, i
A

)+x∗
B
−x∗∗

B

))
(5.37)

In the following theorem, we give the closed-form fair prices for firms making tech-

nology investments according to MEB with re-optimization after information sharing

under both pricing strategies:

Theorem 5.3 When both firms invest according to their MEBs and re-optimize the

technology investment levels after acquiring information, the fair prices peb
∗

and per
∗

are given as follows.

peb
∗

=
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβBαB
)

2α
B

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβBαB
(
1 + γ

A
φ(i

A
)
))

2α
B

(
1 + γ

A
φ(i

A
)
) +

1

2κ
A
i
A

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβAαA
)

2α
A

+
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβAαA
(
1 + γ

B
φ(i

B
)
))

2α
A

(
1 + γ

B
φ(i

B
)
) − 1

2κ
B
i
B

(5.38)
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per
∗

=
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβBαB
)

α
B

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβBαB
(
1 + γ

A
φ(i

A
)
))

α
B

(
1 + γ

A
φ(i

A
)
)

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβAαA
)

α
A

+
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβAαA
(
1 + γ

B
φ(i

B
)
))

α
A

(
1 + γ

B
φ(i

B
)
) (5.39)

5.1.3 Case III: Information Sharing Among Multiple Firms

In the third case, we discuss the pricing strategies of information sharing in a

multiple-firm alliance. As introduced in Chapter 4, a centralized coordinator is as-

sumed to be responsible for collecting and distributing the shared information, and

in this case, re-distributing payments among the firms. To start, we give a simpler

example with three firms – Firm A , Firm B and Firm C . The prices paid by the

three firms are denoted as p
A

, p
B

and p
C

. A positive value would imply the firm

pays an amount to the coordinator and a negative values means the firm receives

money from the central coordinator. Considering that the firms use same technology

investment levels throughout the information sharing processes, the cost difference

before and after information sharing for the three firms can be expressed as follows:

Firm A : g(x
A
, 0)− g(x

A
, i
B
, i
C

)− κ
A
i
A

+ pA (5.40)

Firm B : g(x
B
, 0)− g(x

B
, i
A
, i
C

)− κ
B
i
B

+ pB (5.41)

Firm C : g(x
C
, 0)− g(x

C
, i
A
, i
B

)− κ
C
i
C

+ pC (5.42)

Function g(x
A
, i
B
, iC) represents the information security related losses for Firm A

with technology investment level x
A

, acquired shared information level i
B

from Firm

B and i
C

from Firm C . Similar notation is applied for Firm B and Firm C . After

acquiring shared information from Firm B and Firm C , Firm A’s losses due to

information attacks are reduced to:
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g(x
A
, i
B
, i
C

) =
∑
a∈A

∑
s∈S

∑
t∈T

fatlas

(
1− β

A
+ β

A
e−αA

(
1+γ

B
φ(i

B
)+γ

C
φ(i

C
)
)
x
A

)
(5.43)

Where Firm B and Firm C’s information sharing effects are both included as “virtual

investments” in the exponent e−αA
(

1+γ
B
φ(i

B
)+γ

C
φ(i

C
)
)
. We can calculate the fair prices

based on this return structure under the equal benefit strategy and the exchange

return strategy as follows.

5.1.3.1 Pricing with Fixed Technology Investment Level

In this three-firm information sharing alliance, the equal benefit strategy based

fair prices peb
A

, peb
B

and peb
C

will ensure the overall payoffs for the three firms are all

equal to each other:

g(x
A
, 0)− g(x

A
, i
B
, iC)− κ

A
i
A

+ pA

= g(x
B
, 0)− g(x

B
, i
A
, i
C

)− κ
B
i
B

+ pB

= g(x
C
, 0)− g(x

C
, i
A
, i
B

)− κ
C
i
C

+ pC

=
1

3

(
g(x

A
, 0) + g(x

B
, 0) + g(x

C
, 0)− g(x

A
, i
B
, iC)− g(x

B
, i
A
, i
C

)− g(x
C
, i
A
, i
B

)

− κ
A
i
A
− κ

B
i
B
− κ

C
i
C

)
(5.44)

Based on this, the fair prices peb
A

, peb
B

and peb
C

can be calculated as the following

expressions:
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peb
A

=
2

3

(
g(x

A
, 0)− g(x

A
, i
B
, iC)− κ

A
i
A

)
− 1

3

(
g(x

B
, 0)− g(x

B
, i
A
, i
C

)− κ
B
i
B

+ g(x
C
, 0)− g(x

C
, i
A
, i
B

)− κ
C
i
C

)
(5.45)

peb
B

=
2

3

(
g(x

B
, 0)− g(x

B
, i
A
, i
C

)− κ
B
i
B

)
− 1

3

(
g(x

A
, 0)− g(x

A
, i
B
, iC)− κ

A
i
A

+ g(x
C
, 0)− g(x

C
, i
A
, i
B

)− κ
C
i
C

)
(5.46)

peb
C

=
2

3

(
g(x

C
, 0)− g(x

C
, i
A
, i
B

)− κ
C
i
C

)
− 1

3

(
g(x

A
, 0)− g(x

A
, i
B
, iC)− κ

A
i
A

+ g(x
B
, 0)− g(x

B
, i
A
, i
C

)− κ
B
i
B

)
(5.47)

The return of information sharing contributed by a firm can be seen as the total cost

savings of all the other firms due to the decision making firm’s shared information.

Taking Firm A as an example and holding everything else unchanged, the overall

payoffs for Firm B and Firm C are added up as g(x
B
, i
C

)+g(x
C
, i
B

). After accounting

for Firm A’s shared information, the summation of the payoffs for Firm B and Firm

C becomes g(x
B
, i
A
, i
C

) + g(x
C
, i
A
, i
B

), and the returns due to information shared by

Firm A are the difference of the above two terms:

g(x
B
, i
C

) + g(x
C
, i
B

)− g(x
B
, i
A
, i
C

)− g(x
C
, i
A
, i
B

)

Hence, the exchange return based fair price for Firm A is given as the following:

per
A

= g(x
B
, i
C

) + g(x
C
, i
B

)− g(x
B
, i
A
, i
C

)− g(x
C
, i
A
, i
B

)

− g(x
A
, 0) + g(x

A
, i
B
, iC) + κ

A
i
A

(5.48)

Similarly, the exchange return based fair price for Firm B and Firm C can be ex-

pressed as:
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per
B

= g(x
A
, i
C

) + g(x
C
, i
A

)− g(x
A
, i
B
, i
C

)− g(x
C
, i
A
, i
B

)

− g(x
B
, 0) + g(x

B
, i
A
, iC) + κ

B
i
B

(5.49)

per
C

= g(x
A
, i
B

) + g(x
B
, i
A

)− g(x
A
, i
B
, i
C

)− g(x
B
, i
A
, i
C

)

− g(x
C
, 0) + g(x

C
, i
A
, iB) + κ

C
i
C

(5.50)

Based on the structures from (5.45)-(5.47) and (5.48)-(5.50), we can summarize the

fair price under equal benefit strategy and exchange return strategy in a generalized

multiple firms setting. For an information sharing alliance Γ with |Γ| as the number

of firms, the fair prices for any firm R ∈ Γ are as follows:

peb
R

=
|Γ| − 1

|Γ|

(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
R
e−αRxR − β

R
e−αR(xR+

∑
I∈Γ,I 6=R γIφ(i

I
)x
R)))

− 1

|Γ|
∑

K∈Γ,K 6=R

(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
K
e−αKxK − β

K
e−αK (xK+

∑
I∈Γ,I 6=K γ

I
φ(i

I
)x
K )))

(5.51)

per
R

=
∑

K∈Γ,K 6=R

(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
K
e−αK (xK+

∑
I∈Γ,I 6=K,R γIφ(i

I
)x
K )

− β
K
e−αK (xK+

∑
I∈Γ,I 6=K γ

I
φ(i

I
)x
K )))

−
(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
R
e−αRxR − β

R
e−αR(xR+

∑
I∈Γ,I 6=R γIφ(i

I
)x
R))) (5.52)

5.1.3.2 Pricing under Re-optimized Technology Investment Levels

Following the Section 5.1.1.2 and 5.1.2.2, in this subsection we study the fair prices

when firms invest according to MEB and re-optimize technology investments in the

multi-firm information sharing alliance.

We use x∗
R

and x∗∗
R

to denote the technology investment level according to MEB

before and after information sharing by Firm R ∈ Γ. The fair prices can then be

adapted from (5.56) as:
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peb
∗

R
=
|Γ| − 1

|Γ|

(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
R
e−αRx

∗
R − β

R
e−αR(x∗∗

R
+
∑
I∈Γ,I 6=R γIφ(i

I
)x∗∗
R

))+ x∗
R
− x∗∗

R

)
− 1

|Γ|
∑

K∈Γ,K 6=R

(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
K
e−αKx

∗
K − β

K
e−αK (x∗∗

K
+
∑
I∈Γ,I 6=K γ

I
φ(i

I
)x∗∗
K

))+ x∗
K
− x∗∗

K

)
(5.53)

per
∗

R
=

(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
R
e−αRxR − β

R
e−αR(xR+

∑
I∈Γ,I 6=R γIφ(i

I
)x
R))+ x∗

R
− x∗∗

R

)
−

∑
K∈Γ,K 6=R

(∑
a∈A

∑
s∈S

∑
t∈T

fatlas
(
β
K
e−αK (xK+

∑
I∈Γ,I 6=K,R γIφ(i

I
)x
K )

− β
K
e−αK (xK+

∑
I∈Γ,I 6=K γ

I
φ(i

I
)x
K ))+ x∗

K
− x∗∗

K

)
(5.54)

By solving for the optimal technology investment levels x∗
R

and x∗∗
R

, we can further

derive the closed-form fair price for a Firm R in a set of information sharing alliance

Γ by the following theorem:

Theorem 5.4 In an information sharing alliance composed of a set Γ of firms, firm

R’s prices to pay under equal benefit and exchange return strategies are as follows:

peb
∗

R
=
|Γ| − 1

|Γ|

(
1 + ln(

∑
a∈A

∑
s∈S
∑

t∈T fatlasβRαR)

α
R

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβRαR(1 +
∑

I∈Γ,I 6=R γIφ(i
I
))
)

α
R

(1 +
∑

I∈Γ,I 6=R γIφ(i
I
))

)
− 1

|Γ|
∑

K∈Γ,K 6=R

(
1 + ln(

∑
a∈A

∑
s∈S
∑

t∈T fatlasβKαK )

α
K

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβKαK (1 +
∑

I∈Γ,I 6=K γIφ(i
I
))
)

α
K

(1 +
∑

I∈Γ,I 6=K γIφ(i
I
))

)
(5.55)
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per
∗

R
=

(
1 + ln(

∑
a∈A

∑
s∈S
∑

t∈T fatlasβRαR)

α
R

−
1 + ln

(∑
a∈A

∑
s∈S
∑

t∈T fatlasβRαR(1 +
∑

I∈Γ,I 6=R γIφ(i
I
))
)

α
R

(1 +
∑

I∈Γ,I 6=R γIφ(i
I
))

)
−

∑
K∈Γ,K 6=R

(
1 + ln(

∑
a∈A

∑
s∈S
∑

t∈T fatlasβKαK (1 +
∑

I∈Γ,I 6=K,I 6=R γIφ(i
I
)))

α
K

(1 +
∑

I∈Γ,I 6=K,R γIφ(i
I
))

−
1 + ln(

∑
a∈A

∑
s∈S
∑

t∈T fatlasβKαK (1 +
∑

I∈Γ,I 6=K γIφ(i
I
)))

α
K

(1 +
∑

I∈Γ,I 6=K γIφ(i
I
))

)
(5.56)

The two fair prices under the equal benefit strategy and the exchange return

strategy with the firms re-optimizing technology investment levels after information

sharing is compared through an numerical example in the next subsection.

5.1.4 Numerical Analysis

As introduced earlier in Section 5.1.1 and Section 5.1.2, the equal benefit strategy

and exchange return strategy each feature a different way to address “fairness” of

pricing in information sharing. The equal benefit strategy addresses fairness in terms

of the absolute value in payoffs, while the exchange return strategy re-allocates the

payoffs according to the share of “contribution” made by a firm. In this section, we

study the implications of these two pricing strategies through a practical data-based

numerical example. As part of the analysis, we compare the fair prices and overall

payoffs under the two strategies in a multiple firm information sharing setting. Policy

insights are drawn from the analysis, which provides guidelines for firms intending to

practice information sharing through a similar multi-firm setting.

In this numerical example, we consider an information sharing alliance consisting

of 10 firms. To model the real information sharing alliance in an industry environ-

ment, we utilize the data obtained from the surveys we described in Chapter 3 when

creating the firms’ profiles. For analysis purposes, we assume that the 10 firms all

have similar abilities to pay for information security technologies as indicated by the

parameter α, and that the technologies all have similar efficacy as indicated by pa-
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Table 5.1: Parameter set ups for the firm profiles

PTL β
R

α
R

γ
R

κ
R

Uniform(20,872,808, 54,669,745) 0.59505 1.29E-06 0.053 0.27PTL

rameter β. The scaling factor γ is considered as being proportional to the optimal

technology investment levels without information sharing. All these above param-

eters are standardized as being equal to the mean values obtained from the survey

results. Moreover, to examine the differences in behaviors between larger sized firms

and smaller sized firms, we allow the potential total losses to vary uniformly within

40% of the mean average PTL value from the survey results. The marginal cost of

information sharing is set to be 0.27% of PTL as discussed earlier in Chapter 4. A

full list of the 10 firm profiles are listed in Table 5.1.

We first compare the fair prices with the equal benefits strategy and the exchange

return strategy in a decision making firm with varying information sharing levels.

Specifically, we observe such trends in a typical smaller firm S (with PTL greater

than 20% of all firms) and in a typical larger firm L (with PTL greater than 80%

of all firms). As shown in Figure 5.1a, firm S would always pay higher prices under

the exchange return strategy than the equal benefit strategy, with the prices getting

closest to each other at 70% information sharing level. For the larger firm L, as shown

in Figure 5.1b,the price based on the exchange return strategy is higher than the equal

benefit-based price when the firm’s information sharing level is below 65% or above

95%, and lower the than equal benefit-based price when the firm’s sharing level is

between the two threshold values. It is implied that smaller firms or firms with lower

information sharing levels tend to pay less under the equal benefit strategy than the

exchange return strategy. Larger firms with near-optimal information sharing levels

can potentially pay less under the exchange return strategy.

The payoffs for a smaller firm S and larger firm L are shown in Figure 5.2, under

the equal benefit and the exchange return strategies. For the smaller firm S, as
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Figure 5.1: Fair price under equal benefit and exchange return strategies.

(a) Fair price for a typical small firm S.

-10,000

10,000

30,000

50,000

70,000

90,000

110,000

130,000

-10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110%

P
ri

ce
 o

f 
in

fo
rm

at
io

n
 s

h
ar

in
g 

(i
n

 U
.S

. 
D

o
lla

rs
)

Level of information sharing

Exchange return
strategy

Equal benefit
strategy

0

(b) Fair price for a typical large firm L.
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shown in Figure 5.2a, the payoffs under the exchange strategy is always exceeded by

the payoff under the equal benefit strategy. For the larger firm L, exchange return

strategy can yield higher payoff when its information sharing level lies between the

65% – 95% range. From an overall payoff perspective, smaller firms or firms with

lower information sharing levels are favored under the equal benefit strategy, while

larger firms investing near optimal information sharing levels are better off under the

exchange return strategy.

It is worth noting that, as illustrated in Figure 5.2a and Figure 5.2b, the equal

benefit strategy would allow firms receive positive payoffs even when they do not share

any information. While such phenomenon will not occur under a two-firm mutual

information sharing setting, it shows that free-riding is possible under equal benefit

strategy in multiple firm information sharing settings. To this end, it is recommended

that the exchange return strategy is applied for multiple firm information sharing

alliances to ensure fairness.

Finally, we consider an overview of the price differences and payoff differences

under the two pricing strategies for all the firms in the alliance. Figure 5.3 shows the

differences in prices and payoffs under the equal benefit and exchange return strategies

for all 10 firms in the information sharing alliance. According to Figure 5.3, some firms
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Figure 5.2: Overall payoffs under equal benefit and exchange return strategies.

(a) Overall payoffs for a typical small firm S.
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(b) Overall payoffs for a typical large firm L.
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Figure 5.3: Differences in prices and overall payoffs under two pricing strategies for
all 10 firms.
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would resemble firm S, who constantly favor the equal benefit strategy, as the price is

always lower than that under the exchange return strategy. The other firms resemble

firm L, who would favor the exchange return strategy by sharing according to the

optimal levels. It is also observed that the differences in prices and payoffs under the

two strategies are reduced to minimum when firms mutually agree to share around

their own optimal information sharing levels. Therefore, if equal benefit strategy is to

be selected due to small firms’ advocacy, pushing firms to share according to optimal

information sharing levels would preserve fairness to the maximum extent.
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5.2 Conclusion

While information sharing can potentially help firms strengthen their information

security defense, the asymmetry in information sharing often makes it difficult for the

firms to collaborate. In this chapter, we study the pricing strategies of asymmetric

information sharing, which addresses the benefit allocation among the participating

firms and provides incentives for sharing information. We discuss the asymmetric

information sharing in three distinct settings that covers most asymmetric information

sharing scenarios in reality: two firms one-way information sharing, two firms mutual

information sharing and multiple firms mutual information sharing. Through the two

firm one-way information sharing case, we give the condition that makes asymmetric

information sharing cost-effective for the firms. Next, while discussing the two firm

mutual information sharing case, we proposed two different pricing strategies: the

equal benefit strategy and the exchange return strategy. Under each strategy, we

give the fair price of information sharing for the applied cases. We also solved the

close-form expression of fair prices for firms that adjust technology investment MEB

levels according to the sharing of information.

We demonstrate the differences in equal benefits strategy and exchange return

strategy through an numerical example based on real-world data for policy insights.

We find that free-riding can possibly happen in a multiple firm information sharing

alliance under the equal benefit strategy, with smaller sizes or with low information

sharing levels most likely to exploit this strategy. Hence, we recommend that the

exchange return strategy to be applied in such setting to ensure fairness. In case

that equal benefit strategy to be applied due to other reasons, we demonstrate that

fairness is best preserved if all members of the alliance share according to optimal

information sharing level that maximizes the return on information sharing.

As one of the few studies on asymmetric information sharing using operations

management approach, the findings of this chapter can provide policy insights for

112



the firms that are intended to participate in information sharing. For those existing

industry-based information sharing alliances, the analytical models from this chapter

can assist the centralized coordinators to come up with their specialized pricing strat-

egy. As future work, this problem could also be combined with a game-theoretical

model by considering firm’s intension, motivation and potential competition with each

other. The performance of these pricing strategies under dynamic environments is

also an interesting topic for future studies.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, we study the management of information system security

investment using operations management approaches. Three relevant problems are

studied throughout the thesis. In the first study, we address the key decisions involved

in information security technology investments. In the second study, we discuss infor-

mation sharing in information system security. In the third study, we investigate in

the pricing strategies under asymmetric information sharing for information system

security.

In Chapter 1 and Chapter 2, we provide general introduction and literature review

regarding the background for the problems studied in this thesis. In Chapter 3, we

study the first problem of information system security technology investment problem.

To this end, we derive a simple functional relationship between the potential total

losses of a firm and the optimal amount that the firm should invest in information

systems security. Related to this, we find that firms in finance, energy, and technology

sectors should invest twice more in trying to detect information security breaches,

than in trying to prevent them. In other industries, information security investments

should be split evenly between preventive and detective measures. Moreover, the

overall information security budgets for certain types of firms in the former set of

industries should be on average 4% higher than other industries, even when the

potential total losses under a security breach are the same. As some additional

conclusions, we find that the value of these optimal policies is higher for small to
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medium sized firms, while a gradual investment strategy over a budget period is

better than early utilization of the budget at the beginning of this period.

In Chapter 4, we study the second problem of information sharing in information

system security. We build up a stochastic framework to capture the inter-relationship

between information sharing and technology investments, where the two act as strate-

gic counterparts of information system security. We find that, for firms with pre-fixed

technology investment levels, the optimal information sharing level decreases as the

marginal cost of information sharing becomes higher, and there exists a threshold

value such that firms are better off by not sharing information if the marginal cost

of information sharing exceeds this threshold value. For the optimal information

sharing level, we find that firms with larger security budgets should share 15% more

information, when compared to optimal sharing levels of small to medium sized firms.

In Chapter 5, we discuss the third problem of asymmetric information sharing

in information system security. We evaluate two pricing strategies for asymmetrical

information sharing under three distinct settings. We give analytical expressions of

the fair price values under the different pricing strategies and come up with policy

insights through both analytical and numerical analysis. For two firm information

sharing setting, we find that firms could benefit from information sharing only when

marginal information sharing cost is below certain threshold. For multiple firms

information sharing setting, we recommend that the exchange return strategy to

be applied to ensure fairness, whereas the equal benefit strategy can be potentially

exploited by small size and low-level information sharing firms.

We believe that firms can benefit from our work either through direct implemen-

tation for specific guidance, or through indirect use of several policy results obtained.

An important characteristic of our studies is that we build our models by using real-

world data through survey to information system security practitioners. As one of the

few studies on information system security investment management through opera-
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tions management approaches, our work also set the first step for futures studies on

related topics that can be explored by researchers in the field of management science.

As potential future research for the information system security technology in-

vestment, we note that parameter calibration and model validation is critical for any

future implementation of the presented framework. Therefore, future work may in-

volve assessment of accuracy of quantification of relevant measures as well as expert

opinions used in the model. The observed performance of information system security

through applying managerial insights on technology investment would also constitute

an important extension to our study in terms of its practical significance.

For future research regarding information sharing in information system security,

it is of value to analyze firm’s behavior and motivations by considering competition

and strategic decisions. Current modeling framework in this thesis considers the firms

are all willing to cooperate and exactly follows the strategies proposed by the decision

makers. Hence, if such assumptions were to be relaxed and firms are allowed to act

according to their own interest, their individual decisions are likely to vary from what

are found in this work.

Lastly, for the problem of asymmetric information sharing in information system

security, potential extension of this work can focus on the uncertainty within the

decision-making process. Specifically, in addition to the uncertainty in maximum ef-

fectiveness of technology countermeasures, we can future extend the stochastic setting

to cover the dynamics in information sharing efficacy. It would also be interesting

to analyze the pricing strategies of asymmetric information sharing behave under

different risk measures.

116



APPENDIX

PROOFS OF ANALYTICAL RESULTS

Proof of Lemma 3.1

The proof is by showing that the partial derivatives of eoo′a(xo, xo′) with regard to

ρoo′ , eoa(xo) and eo′a(xo′) are nonnegative in the range ρoo′ ∈ [0,min{ 1
βoa
, 1
βo′a
}]. To

this end, we calculate the partial derivatives as follows:

∂eoo′a(xo, xo′)

∂ρoo′
= eoa(xo) + eo′a(xo′)− 2ρoo′eoa(xo)eo′a(xo′)

= eoa(xo)(1− ρoo′eo′a(xo′)) + eo′a(xo′)(1− ρoo′eoa(xo))

Without loss of generality we assume that βoa ≥ βo′a. Hence, per the lemma state-

ment, we have that ρoo′ ≤ min{ 1
βoa
, 1
βo′a
} = 1

βoa
. It follows that:

∂eoo′a(xo, xo′)

∂ρoo′
> eoa(xo)(1−

eo′a(xo′)

βoa
) + eo′a(xo′)(1−

eoa(xo)

βoa
)

> eoa(xo)(1−
βo′a
βoa

) > 0

where by definition eo′a(xo′) ≤ βo′a.

The second and third cases can be shown using a similar setup. We show the

derivation for the case of eoa(xo′) below:

∂eoo′a(xo, xo′)

∂eoa(xo′)
= ρoo′ − ρ2

oo′eo′a(xo′) = ρoo′(1− ρoo′eo′a(xo′))

> ρoo′(1−
eo′a(xo′)

βoa
) = ρoo′(1−

βo′a
βoa

) > 0
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Similarly, we can easily show that
∂eoo′a(xo,xo′ )
∂eoa(xo)

≥ 0. Hence, given the nonnegativity of

the partial derivatives in the calculations above, the lemma holds. �

Proof of Proposition 3.1

First, we show that a real-valued ρoo′ always exists for any eoa(xo), eo′a(xo′),

eoo′a(xo, xo′) ∈ [0, 1]. To this end, we express equation eoo′a(xo, xo′) = ρoo′eoa(xo) +

ρoo′eo′a(xo′)− ρ2
oo′eoa(xo)eo′a(xo′) as a quadratic equation of ρoo′ as follows:

−eoa(xo)eo′a(xo′)ρ2
oo′ + [eoa(xo) + eo′a(xo′)]ρoo′ − eoo′a(xo, xo′) = 0 (A.1)

Considering the roots of this equation, we get:

ρ+
oo′ =

[eoa(xo) + eo′a(xo′)] +
√

∆

2eoa(xo)eo′a(xo′)
ρ−oo′ =

[eoa(xo) + eo′a(xo′)]−
√

∆

2eoa(xo)eo′a(xo′)

(A.2)

where the discriminant ∆ is defined as:

∆ = [eoa(xo) + eo′a(xo′)]
2 − 4eoa(xo)eo′a(xo′)eoo′a(xo, xo′)

= [eoa(xo)]
2 + [eo′a(x

′
o)]

2 + 2eoa(xo)eo′a(xo′)− 4eoa(xo)eo′a(xo′)eoo′a(xo, xo′)

> e2
oa + e2

o′a + 2eoa(xo)eo′a(xo′)− 4eoa(xo)eo′a(xo′)

= [eoa(xo)− eo′a(xo′)]2 > 0 (A.3)

which follows from the fact that eoo′a(xo, xo′) ∈ [0, 1]. Hence, the roots ρ+
oo′ and ρ−oo′

exist. Moreover, because eoo′a(xo, xo′) ∈ [0, 1], it is obvious that both ρ+
oo′ and ρ−oo′ are

positive since eoa(xo) + eo′a(xo′) =
√

[eoa(xo) + eo′a(xo′)]2 >
√

∆ always holds.

We now show that ρoo′ ∈ [0,min{ 1
βoa
, 1
βo′a
}], when the effectiveness measures are in

the range [0, 1]. This mainly follows from Lemma 1. Given that the joint effectiveness

is increasing in the individual effectiveness functions eoa(xo) and eo′a(x
′
o), the lowest

118



and highest values for eoo′a(xo, xo′), which are respectively 0 and 1, would be realized

when the individual effectiveness functions are at their lowest and highest levels.

Hence, for eoa(xo) = eo′a(x
′
o) = eoo′a(xo, xo′) = 0, we note that ρoo′ = 0 satisfies

relationship

eoo′a(xo, xo′) = ρoo′eoa(xo) + ρoo′eo′a(xo′)− ρ2
oo′eoa(xo)eo′a(xo′)

For the highest values of eoa(xo) = βoa, eo′a(x
′
o) = βo′a, and eoo′a(xo, xo′) = 1, without

loss of generality we can consider ρ−oo′ only. For the given values, we have ρ−oo′ =

βoa+βo′a−
√

∆

2βoaβo′a
, where ∆ = (βoa + βo′a)

2 − 4βoaβo′a = (βoa − βo′a)2. It follows that:

ρ−oo′ =
βoa + βo′a −

√
(βoa − βo′a)2

2βoaβo′a
=
βoa + βo′a − |βoa − βo′a|

2βoaβo′a
=

2 min{βoa, βo′a}
2βoaβo′a

=
1

max{βoa, βo′a}
= min{ 1

βoa
,

1

βo′a
} (A.4)

Given that the joint effectiveness function eoo′a(xo, xo′) is increasing in ρoo′ as

shown in Lemma 1, there always exists ρoo′ ∈ [0,min{ 1
βoa
, 1
βo′a
}] such that eoo′a(xo, xo′)

can be defined for all values of xo and xo′ . �

Proof of Proposition 3.2

The proof is by showing that the second derivative of function Ikωoo′at(x
kω
o ) is non-

negative. Given the definition of ekωoat(x
kω
o ) in relationship

eoa(xo) = βoa − e−(αoxo−lnβoa) = βoa − βoae−αoxo

we have that:

Ikωoo′at(x
kω
o ) = ln(1− ρoo′βkωoat + ρoo′β

kω
oate

−αoxkωo )

It follows that:

∂2Ikωoo′at
∂xkωo

2 =
ρoo′β

kω
oatα

2
oe
−αoxkωo (1− ρoo′βkωoat)

(1− ρoo′(βkωoat − βkωoate−αox
kω
o ))2
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By Proposition 1, we have ρoo′ ∈ [0,min{ 1
βkωoat

, 1
βkω
o′at
}]. Hence, 1 − ρoo′β

kω
oat > 0.

Moreover, all other components in the numerator are nonnegative by definition. Given

that the denominator consists of a squared term, it is also nonnegative, implying that

∂2Ikω
oo′at

∂xkωo
2 > 0, and that the function Ikωoo′at(x

kω
o ) is convex in xkωo . �

Proof of Proposition 3.3

The proof follows from the definition of the objective function

∑
ω∈Ω

pω

[∑
k∈K

∑
s∈S

∑
a∈A

∑
t∈T

fatlastY
kω
at +

∑
k∈K

∑
o∈O

xkωo

]

which we can rewrite as:

∑
ω∈Ω

pω

[∑
k∈K

∑
a∈A

∑
t∈T

fat

(∑
s∈S

last

)
Y kω
at +

∑
k∈K

∑
o∈O

xkωo

]

Based on this representation, coefficients in the objective function depend only on

the sum of the losses in the set of assets, as opposed to individual asset losses. Given

that the parameters last are not part of the constraint structure, the optimal resource

allocation, and hence the optimal level of cybersecurity budget is independent of the

mix of assets that the firm holds. �

Proof of Proposition 3.4

Let Z(x) denote the objective function representing the total costs, while an ag-

gregated notation without any subscripts is used to denote the other parameters and

variables in the model. Based on this, the objective can be expressed as:

Z(x) = fl(1− β + βe−αx) + x

Taking the first order derivative of Z(x) with respect to x:

∂Z(x)

∂x
= flβe−αx(−α) + 1
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The second order derivative of the above function shows convexity as:

∂2Z(x)

∂x2
= f 2l2β2α2e−αx + 1 > 0

By setting the first order derivative equal to 0, the optimal investment level can be

identified as x∗ = 1
α

ln (αβfl). The ratio of the optimal investment level x∗ to the

potential total loss fl is then given as ln(αβfl)
αfl

. Denoting αβfl by z, the above ratio

can be rewritten as βf(z) where f(z) = ln z
z

. The function f(z) has a single maximum

at f ′(z) = 0, when z = e. Therefore, we have that

x∗

fl
=
β ln (αβfl)

αfl
6
β

e

�

Proof of Lemma 4.1

To begin, the second order derivative of objective (4.2) as a function of i can be

written as:

∑
a∈A

∑
s∈S

∑
t∈T

fatlasαβγh
2xe−h(i−z)e

−α(x+ γx

1+e−h(i−z) ) (−e−2h(i−z) + αγxe−h(i−z) + 1
)

after collecting the common term. Because the parameters fas, las, α, β, γ, h, x are all

positive, the term
∑

a∈A
∑

s∈S
∑

t∈T fatlasαβγh
2xe−h(i−z)e

−α(x+ γx

1+e−h(i−z) )
is positive

as well.

Denoting y = e−h(i−z), the second term −e−2h(i−z) + αγxe−h(i−z) + 1 from the

second order derivative above can be treated as a quadratic function of e−h(i−z) as

G(y) = −y2 +αγxy+1. Note that y = e−h(i−z) is a monotonically decreasing function

when i ∈ [0, 1], with lower bound y|i=1 = e−h(1−z) being a value that is very close to

0, and upper bound y|i=0 = ehz is an arbitrarily large value according to the value

setting of parameter h and z.
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By setting the quadratic function equal to zero and solve for the positive root of

G(y) = −y2 + αγxy + 1 = 0, it can be shown easily that function G(y) ≥ 0 when

y ∈ [e−h(1−z),
√

α2γ2x2

4
+ 1 + αγx

2
] and G(y) < 0 when y ∈ (

√
α2γ2x2

4
+ 1 + αγx

2
, ehz].

Equivalently, the above condition can be written regarding variable i as

−e−2h(i−z) + αγxe−h(i−z) + 1 < 0, i ∈ [0, z −
ln

(√
α2γ2x2

4
+ 1 + αγx

2

)
h

]

−e−2h(i−z) + αγxe−h(i−z) + 1 ≥ 0, i ∈ [z −
ln

(√
α2γ2x2

4
+ 1 + αγx

2

)
h

, 1]

Therefore, second order derivative of the objective function (4.2) is positive on

[z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

, 1] and negative on [0, z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

]. Therefore, the

conclusion of Lemma 4.1 follows. �

Proof of Theorem 4.1

We start the proof of Theorem 4.1 by showing monotonicity of the objective (4.2)

as a function of i. The first order derivative of objective (4.2) as a function of i is

denoted as

F ′(i) = −
∑

a∈A
∑

s∈S
∑

t∈T fatlasαβγhxe
−h(i−z)e

−α(x+ γx

1+e−h(i−z) )

(1 + e−h(i−z))
2 + κ

Following the conclusion of Lemma 4.1, the first order derivative of objective F ′(i) as

is decreasing on i ∈ [0, z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

], and increasing on

i ∈ [z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

, 1], with a minimum value reached at

i0 = z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

.

Next, we note that h is chosen to be a large enough number such that when i = 0,

ehz ≈ 0, and when i = 1, 1
1+e−h(1−z) ≈ 0. It can be shown by applying L’Hospital’s

rule that F ′(0) ≈ κ > 0 as well as F ′(1) ≈ κ > 0. Hence, the first order condition
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F ′(i) = 0 has two roots i∗(1) and i∗(2) if and only if the minimum value F ′(i0) < 0, and

their values satisfies the inequality i∗(1) < i0 < i∗(2). The signs of F ′(i) can be further

determined as: F ′(i) ≥ 0, i ∈ [0, i∗(1)] ∪ [i∗(2), 1] and F ′(i) < 0, i ∈ [i∗(1), i
∗
(2)]

Based on the monotonicity of the first order derivative F ′(i), and the conclusion

in Lemma 4.1 , the objective function (4.2) then has two local maxima at i = i∗(1) and

i = 1, and two local minima at i = i∗(2) and i = 0. Therefore, the minimum occurs

at i = 0 if the objective function F (i) has F (0) > F (i∗(2)). Hence the conclusion of

Theorem 1 follows. �

Proof of Corollary 4.1

From the proof of Theorem 4.1, the minimum value of the first order derivative

is F ′(i0) where i0 = z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

. Hence, the first order derivative as a

function of i is positive on i ∈ [0, 1] if F ′(i0) > 0, and the objective function would be

increasing on i ∈ [0, 1]. The condition of F ′(i0) > 0 can be written in explicit form as

−
∑
a∈A

∑
s∈S

∑
t∈T fatlasαβγhxe

−h(z−
ln

(√
α2γ2x2

4 +1+
αγx

2

)
h

−z)e

−α(x+
γx

1+e
−h(z−

ln

(√
α2γ2x2

4 +1+
αγx

2

)
h

−z)

)

1+e−h(z−
ln

(√
α2γ2x2

4 +1+
αγx

2

)
h

−z)


2 + κ > 0

and simplified to

κ ≥

∑
a∈A

∑
s∈S fatlasαγxh

(√
α2γ2x2

4
+ 1 + αγx

2

)
e
−α

x+ γx

1+

√
α2γ2x2

4 +1+
αγx

2


(

1 +
√

α2γ2x2

4
+ 1 + αγx

2

)2

as in Corollary 4.1. �
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Proof of Proposition 4.1

From the proof of Theorem 4.1, the first order derivative of objective function

F ′(i) = −
∑
a∈A

∑
s∈S

∑
t∈T fatlasαβγhxe

−h(i−z)e
−α(x+

γx

1+e−h(i−z) )

(1+e−h(i−z))
2 + κ is increasing on i ∈ [z −

ln

(√
α2γ2x2

4
+1+αγx

2

)
h

, 1]. Denote function T (i) = F ′(i) − κ, then function T (i) is also

increasing on i ∈ [z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

, 1].

Next, conditioned on κ ≤
∑
a∈A

∑
s∈S fatlasαγxh

(√
α2γ2x2

4
+1+αγx

2

)
e

−α

x+
γx

1+

√
α2γ2x2

4 +1+
αγx

2


(

1+

√
α2γ2x2

4
+1+αγx

2

)2 ,

there exist i∗ > z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

such that F ′(i∗) = 0 and T (i∗) = −κ. When

κ increase to a greater value κl but still satisfies the condition above, there also ex-

ist a value of i∗l > z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

such that T (i∗l ) = −κl. As function T (i)

is increasing on i ∈ [z −
ln

(√
α2γ2x2

4
+1+αγx

2

)
h

, 1], it can be concluded by the property

of inverse function that i∗l < i∗ since T (i∗l ) < T (i∗). Therefore, the conclusion of

Proposition 4.1 holds. �

Proof of Theorem 5.1

The proof of Theorem 5.1 can be seen as a variation of the proof of Theorem 4.1.

Specifically, by replacing notation β, x, and α with β
B

, x
B

, and αB; replacing γ, i,

and κ with γ
A

, i
A

, and κ
A

, the result of Theorem 5.1 follows. �

Proof of Proposition 5.1

To proof the item (1) in Proposition 5.1, we first show the convexity of the fair

price under equal benefit strategy as a function of technology investment level x
B

. In

expanded form, the fair price as a function of x
B

can be written as:
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peb(x
B

) =g(x
B
, 0)− g(x

B
, i
A

) =
1

2

∑
a∈A

∑
s∈S

∑
t∈T

fatlas

(
β
B
e−αBxB

− β
B
e−αB(xB+γ

A
φ(i

A
)x
B)
)
− 1

2
κ
A
i
A

(A.5)

The first order derivative of x
B

is given as:

∂peb(x
B

)

∂x
B

=
1

2

∑
a∈A

∑
s∈S

∑
t∈T

fatlasβBαB

((
1+γ

A
φ(i

A
)x

B

)
e−αB

(
1+γ

A
φ(i

A
)x
B

)
x
B−e−αBxB

)
(A.6)

The second order derivative of x
B

is given as:

∂2peb(x
B

)

∂x2
B

=
1

4

(∑
a∈A

∑
s∈S

∑
t∈T

fatlasβBαB

)2

e−αBxB
(

1−
(
1+γ

A
φ(i

A
)x

B

)
e−αBxB

)
(A.7)

It can be shown by testing the first order derivative and second order derivative

as in (A.6) and (A.7) that peb(x
B

) is monotonically increasing on
[
0,

ln(1+γ
A
φ(i

A
))

α
B
γ
A
φ(i

A
)

)
concavely, and monotonically decreasing on

(
ln(1+γ

A
φ(i

A
))

α
B
γ
A
φ(i

A
)
,∞
)

convexly. Therefore,

item (1) of Proposition 5.1 follows.

The proof of item (2) in Proposition 5.1 follows the same approach as in the proof

of 4.1. To proof item (2) in Proposition 5.1, we first consider the fair price as a

function of i
A

:

peb(i
A

) =g(x
B
, 0)− g(x

B
, i
A

) =
1

2

∑
a∈A

∑
s∈S

∑
t∈T

fatlas

(
β
B
e−αBxB

− β
B
e−αB(xB+γ

A
φ(i

A
)x
B)
)
− 1

2
κ
A
i
A

(A.8)

Following the proof of Theorem 4.1, it can be shown that function (A.8) has two local

minima at i
A

= i∗
A(0)

and i
A

= 0 and two local maxima at i
A

= i∗
A(1)

and i
A

= 1, where

i
A

= i∗
A(0)

and i
A

= i∗
A(1)

are the two solutions of
∂peb(i

A
)

∂i
A

= 0. Moreover, the condition
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i∗
A(0)
≥ z −

ln

(√
α2
B
γ2
B
x2
B

4
+1+

α
B
γ
A
x
B

2

)
h

has ensured that peb(i
A

) ≥ peb(0). Therefore, the

conclusion of item (2) in Proposition 5.1 follows. �

Proof of Theorem 5.2

The close-form expression of the MEB for Firm B before and after information

sharing can be solved following similar manner as discussed in the proof of Proposition

3.4. By solving for the first order condition of Firm B’s total cost before and after

information sharing:

Before :
∂g(x

B
, 0)

∂x
B

+ 1 = −
∑
a∈A

∑
s∈S

∑
t∈T

fatlasβBαBe
−α

B
x
B + 1 = 0

After :
∂g(x

B
, i
A

)

∂x
B

+ 1

= −
∑
a∈A

∑
s∈S

∑
t∈T

fatlasβB
(
1 + γ

A
φ(i

A
)
)
α
B
e−αB

(
1+γ

A
φ(i

A
)
)
x
B + 1 = 0

We can then obtain the close-form expression of x∗
B

and x∗∗
B

as:

x∗
B

=
ln(
∑

a∈A
∑

s∈S
∑

t∈T fatlasβBαB)

α
B

(A.9)

x∗∗
B

=
ln(
∑

a∈A
∑

s∈S
∑

t∈T fatlasβB
(
1 + γ

A
φ(i

A
)
)
α
B

)(
1 + γ

A
φ(i

A
)
)
α
B

(A.10)

Plugging in (A.9) and (A.10) into the fair price under equal benefit strategy as given

by (5.16), the results of Theorem 5.2 follows. �

Proof of Corollary 5.1

We first note in this proof that, under equal benefit strategy, the payoff for Firm A

and Firm B are equal. When Firm B always invest according to the pre-information

sharing MEB, the payoffs for each firm is:

g(x∗
B
, 0)− g(x∗

B
, i
A

)− p
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Whereas when Firm B adjust its technology investment according to new MEB after

information sharing, the payoffs for each firm is:

g(x∗
B
, 0)− g(x∗∗

B
, i
A

) + x∗
B
− x∗∗

B
− p

The increase in overall payoffs by re-optimization can be expressed as:

g(x∗
B
, i
A

)− g(x∗∗
B
, i
A

) + x∗
B
− x∗∗

B
(A.11)

Plugging in the x∗
B

and x∗∗
B

values as given in (A.9) and (A.10), we have:

g(x∗
B
, i
A

) =
∑
a∈A

∑
s∈S

∑
t∈T

fatlas(1− βB) +

(
1

α
B

)1+γ
A
φ
A

(i
A

)

(A.12)

g(x∗∗
B
, i
A

) =
∑
a∈A

∑
s∈S

∑
t∈T

fatlas(1− βB) +
1

α
B

(1 + γ
A
φ
A

(i
A

))
(A.13)

Combining (A.9)-(A.10), (A.12)-(A.12) with (A.11), the conclusion of Corollary 5.1

follows. �

Proof of Theorem 5.3

The proof of Theorem 5.3 is similar to that of Theorem 5.2. By setting the

first order derivative of Firm A’s total costs before and after sharing information as

functions of x
A

, respectively, we have:

Before :
∂g(x

A
, 0)

∂x
A

+ 1 = −
∑
a∈A

∑
s∈S

∑
t∈T

fatlasβAαAe
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A
x
A + 1 = 0

After :
∂g(x

A
, i
B

)

∂x
A

+ 1

= −
∑
a∈A

∑
s∈S

∑
t∈T

fatlasβA
(
1 + γ

B
φ(i

B
)
)
α
A
e−αA

(
1+γ

B
φ(i

B
)
)
x
A + 1 = 0
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We can then obtain the close-form expression of x∗
A

and x∗∗
A

as:

x∗
A

=
ln(
∑

a∈A
∑

s∈S
∑

t∈T fatlasβAαA)

α
A

(A.14)

x∗∗
A

=
ln(
∑

a∈A
∑

s∈S
∑

t∈T fatlasβA
(
1 + γ

B
φ(i

B
)
)
α
A

)(
1 + γ

B
φ(i

B
)
)
α
A

(A.15)

Plugging in (A.9)-(A.10), (A.16)-(A.17) into the fair price under equal benefit strategy

and exchange return strategies as given by (5.36)-(5.37), the results of Theorem 5.3

follows. �

Proof of Theorem 5.4

The proof of Theorem 5.4 follows the same approaches as in the proofs of Theorem

5.2 and 5.3. We first show the MEBs of technology investment for Firm R before and

after information sharing by solving the first order conditions:

Before : −
∑
a∈A

∑
s∈S

∑
t∈T

fatlasβRαRe
−α

R
x
R + 1 = 0

After : −
∑
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I
)
)
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Where the close-form expression of x∗
R

and x∗∗
R

can be given as:

x∗
R

=
ln(
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∑

s∈S
∑

t∈T fatlasβRαR)

α
R

(A.16)
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ln
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α
R

(A.17)

The MEBs for other firm Ks can be obtained in a similar fashion as:

x∗
K

=
ln(
∑

a∈A
∑

s∈S
∑

t∈T fatlasβKαK )

α
K

(A.18)
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=
ln
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a∈A
∑

s∈S
∑

t∈T fatlasβK
(
1 +

∑
I∈Γ,I 6=K γIφ(i
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Plugging in (A.16)-(A.19) into the fair prices under equal benefit and exchange return

strategies as given by (5.55) and (5.56), the results of Theorem 5.4 follows. �
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