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ABSTRACT 

 

PROTEIN DEGRADATION REGULATES PHOSPHOLIPID 
BIOSYNTHETIC GENE EXPRESSION IN SACCHAROMYCES CEREVISIAE 

 
FEBRUARY 2019 

BRYAN SALAS-SANTIAGO, B.S., UNIVERSITY OF PUERTO RICO 

MAYAGUEZ P.R.,  

PH.D, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor John Lopes 

 

Transcriptional regulation of most phospholipid biosynthetic genes in 

Saccharomyces cerevisiae is coordinated by inositol and choline.  Inositol affects 

phosphatidic acid (PA) intracellular levels.  Opi1p interacts physically with PA and is 

the main repressor of the phospholipid biosynthetic genes. It is localized in the 

endoplasmic reticulum (ER) bound to the ER membrane protein Scs2p.  When PA 

levels drop, Opi1p is translocated into the nucleus repressing most phospholipid 

biosynthetic genes. The OPI1 locus was identified in a screen looking for 

overproduction and excretion of inositol (Opi-).  Opi- mutants are generally 

associated with a defect in repression of the phospholipid biosynthetic genes.  Using 

a conditional shut-off library we conducted a screen that identified 121 genes with 

an Opi- phenotype.  These genes identified pathways previously unknown to 

regulate the phospholipid genes like the Ubiquitin/Proteasome system.  It also 

identified the essential subunits of NuA4 HAT.  Genes involved in the 

Ubiquitin/Proteasome system and NuA4 HAT were tested for a repression defect in 
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the most highly regulated phospholipid biosynthetic genes, INO1.  Neither mutant 

identified from these pathways showed a repression defect under repressing 

conditions.  Phospholipid biosynthetic genes are also growth phase regulated that is 

under activating conditions (no inositol) INO1 is active, but when cells reach the 

stationary phase INO1 is repressed.  Both NuA4 HAT and Ubiquitin/Proteasome 

genes showed a repression defect at the stationary phase of the cellular growth 

suggesting that these biological processes are responsible for the regulation of INO1 

at the stationary phase of the cellular growth. 
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CHAPTER  

I. OVERVIEW 

 
Saccharomyces cerevisiae has proven to be an excellent model for the study of 

eukaryotic gene expression.  Seminal studies on genes such as PHO5, GAL1-10, HIS3 

and CYC1 have yielded a wealth of information about regulatory mechanisms that 

involve orchestrated interactions between specific regulatory proteins the general 

transcription machinery, chromatin remodeling and histone modifications1. The 

regulation of the INO1 phospholipid biosynthetic gene has been studied for over 

three decades by labs all over the world and therefore contributed significantly to 

our understanding of gene expression.  Most of these studies have focused on how 

the Ino2p:Ino4p:Opi1p regulatory network control INO1 expression in response to 

inositol.  Given the number of studies on INO1 expression, it is surprising that new 

mechanisms that regulate its expression continue to be discovered (eg, 

transcriptional memory and Cbf1-mediated regulation).  This underscores the 

results reported here which show that protein degradation and the NuA4 histone 

acetyltransferase (HAT) also contribute to regulating to INO1 expression.  These 

discoveries were made possible by the ability to easily screen specific mutant 

collections that cover >90% of the yeast genome. 

As a backdrop to the results reported here, it is necessary to briefly 

summarize our understanding of the regulation of INO1 expression, the usefulness 
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of genetic and genomic screens for the understanding of INO1 regulation, the 

process of protein degradation, the role of the NuA4 HAT complex. 

 

Membrane synthesis and INO1 regulation 
 

In yeast, inositol is a critical phospholipid precursor and its synthesis is 

highly regulated. We know that INO1 encodes for inositol-3-phosphate synthase, 

which uses glucose-6-P and converts it into inositol2.  Early on, researchers 

successfully purified this enzyme and characterized its activity.  They also identified 

mutants like ino2 and ino4 which prevent expression of inositol-3-phosphate 

synthase, in contrast to opi1 mutations that render the enzyme constitutive.  Using 

genetic approaches, the INO1 gene was isolated and cloned into a plasmid3. This was 

very important for the field since the cloning of INO1 allowed researchers to identify 

the regulatory system. This lead to the identification of the INO2 and INO4 genes as 

positive regulators of INO14,5.   

INO1 is a structural gene that encodes inositol-3-phosphate synthase which 

converts glucose-6-phosphate into inositol-3-phosphate in the de novo synthesis of 

phosphatidylinositol (PI)2,3.  Transcriptional regulation of INO1 is responsive to 

inositol and choline.  INO1 is highly expressed when inositol and choline are absent, 

partially repressed when inositol alone is present, and fully repressed when both 

inositol and choline are present6.  The activation mechanism for INO1 expression 

requires a cis-acting regulatory element called UASINO5,7,8 and the Ino2p and Ino4p 

activator proteins.   
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The UASINO element consists of a 10bp sequence (5’-CATGTGAAAT-3’) that 

serves as a binding site for the Ino2p/Ino4p heterodimer activator complex4,9,10.  

Ino2p and Ino4p belong to the basic Helix-Loop-Helix (bHLH) family of regulatory 

proteins which form dimers in order to bind DNA.  While the INO1 promoter has 

nine UASINO elements, only two have been shown to be functional8. 

Activation requires a sequence of events initiated by the binding of the 

Ino2/Ino4p complex to target promoters.  This mechanism includes the Snf1p 

histone kinase and the SAGA histone acetyltransferase complex (HAT)11–15.  When 

bound to the INO1 promoter the transcriptional activation domain of Ino2p  recruits 

Snf1p and phosphorylates Serine 10 of histone H315.  This phosphorylated H3 then 

recruits the SAGA complex which acetylates Lysine 14 of histone H3 resulting in a 

relaxing of the chromatin.  The phosphorylated H3 is also responsible for recruiting 

the TATA-binding protein (TBP)15. 

The mechanism for repression has also been worked out and involves a 

repressor protein called Opi1p.  The OPI1 locus was originally identified based on 

the phenotype of overproduction of inositol (Opi-)16.  Opi1p is a leucine zipper 

protein with two poly-glutamine rich domains.  In general, leucine zipper proteins 

are known to dimerize and bind DNA17, however there is no evidence in support of 

Opi1p interacting directly with DNA.  In the absence of inositol, Opi1p binds to 

phosphatidic acid (PA), stabilizing an interaction with the endoplasmic reticulum 

(ER) integral membrane protein, Scs2p 18–21.  The signal that actually dictates 

inositol repression is PA levels, rather than inositol itself.  PA is an early precursor 

in the synthesis of phospholipids that accumulates in the absence of inositol.  
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However, when inositol is present, PA is consumed leading to Opi1p release from 

the ER, translocation into the nucleus and inhibiting transcription of INO1 by 

directly interacting with Ino2p bound to INO1 promoter20.  Predictably, scs2 mutant 

strains are inositol auxotrophs because Opi1p constitutively translocates to the 

nucleus repressing INO1 expression19. The mechanism for Opi1p repression in 

response to inositol involves the Sin3p-Rpd3p Histone Deacetylase Complex 

(HDAC)22–33.  Op1p bound to Ino2p recruits the HDAC which compresses chromatin 

structure by  deacetylating the Lys5 and Lys 12 residues in histone H422. 

The HDAC complex also regulates INO1 expression via a second independent 

mechanism involving Ume6p.  Ume6p is a global repressor known to repress 

meiosis genes and was shown to repress INO1 by binding to a URS1 (upstream 

repressing sequence) element (5’-AGCCGCCA-3’)22,26–28,30,31  in the INO1 promoter 

and recruiting the Sin3p-Rpd3p HDAC complex. 

Opi1p activity is also regulated by phosphorylation via protein kinase C 

(PKC), protein kinase A (PKA) and casein kinase II34–36.  PKC phosphorylates Opi1p, 

at Ser26 and mutating this residue results in decreased expression of INO1-lacZ 

under derepressing conditions35.  PKA phosphorylates Ser31 and Ser 251 and 

mutating these residues yielded increased expression of INO1-lacZ under both 

repressing and derepressing conditions36.  Lastly, casein kinase II phosphorylates 

Ser10 and mutating this residue resulted in increased expression of INO1 under 

derepressing conditions34.  These experiments suggest that phosphorylation of 

Opi1p plays a role in both repressing and derepressing conditions, regulating Opi1p 

activity positively and/or negatively.   
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Figure 1: Summary of the regulatory proteins that control INO1 transcription 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Summary of the regulatory proteins that control INO1 transcription. 
Generally, positive regulators are highlighted in green and negative regulators in red.  The 
summary shows ~100 bp of the INO1 promoter which is required for all of its regulation. The 
interactors that take place at the UAS

INO
 elements are shown for only one of the two elements to 

simplify the figure.  Arrows indicate positive roles and lines ending in bars indicate negative 
roles. Cheng et al. BBA, 2007, Vol 1771; 310-321   
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Transcriptional memory regulation of INO1 
 

In many organisms including yeast, prior experiences alter the regulation 

and transcriptional rate of many genes.  This phenomenon is sustained through 

various cell division cycles and is called epigenetic transcriptional memory37.  The 

INO1 gene is a model system for this type of regulation.  The process works by 

allowing pre-binding of RNA polymerase to the INO1 promoter, bypassing the 

recruiting step of the RNAPII to the promoter during reactivation. 

The nuclear pore complex (NPC) is an essential player in the transit of RNA 

and protein between the nucleus and the cytoplasm38–42.  Early studies suggested 

that the NPC physically interacts with silenced genes, but other data has shown that 

the NPC also interacts with many active genes creating a memory of prior 

transcription events43.  Transcriptional memory of INO1 requires physical 

interaction of the INO1 promoter with the NPC which will remain associated for 

several generations after switching to repressing conditions.  This NPC association 

requires an altered chromatin structure and binding of a poised RNAPII to the 

recently repressed promoter37,44,45.  This is possible because INO1 moves to the 

nuclear periphery and physically interacts with the NPC upon activation18,43,46.  The 

interaction of INO1 promoter with the NPC requires small cis-acting DNA 

elements46.  Two elements called GRS I and GRS II in the INO1 promoter are 

necessary for targeting it to the NPC46.  These elements work as DNA zip codes 

which are essential for INO1 targeting to the NPC and activation of gene expression.  

They are also required for subsequent repositioning to the nuclear periphery (that 

is, memory)46–48.  GRS I binds to a transcription factor Put3p, which will dictate GRS 
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I-mediated positioning47, this DNA zip code encode subnuclear positioning through 

transcription factor binding sites.  In addition, transcriptional memory leads to 

interchromosomal clustering48, clustering during memory requires clustering of 

active INO1 and the MRS zip code, but not GRS I.  This suggests that the INO1 gene 

has the ability to cluster with different gene partners under activating and memory 

conditions which leads to the conclusion that interchromosomal clusters can be 

remodeled.  In yeast, several stress-induced genes and the GAL genes show a very 

similar memory behavior, however, the mechanism by which their transcriptional 

memory works is similar but not identical to that of INO149,50. 
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Figure 2: Model for zip code-dependent INO1 targeting to the NPC and interchromosomal clustering.

(A) The long-term repressed gene is positioned in the nucleoplasm and both the active and recently repressed 
memory state of the gene are positioned at the nuclear periphery through interaction with the NPC. The GRS 
elements control targeting to the NPC under activating conditions. The Put3 transcription factor binds the GRS 
I zip code and is required for GRS I-mediated peripheral targeting and interchromosomal clustering [7]. The 
MRS element controls targeting to the NPC under memory conditions and requires Nup100 [10].
(B) The INO1 gene clusters with other GRS I-containing loci under activating conditions (top) and this is a 

prerequisite for clustering with itself (and potentially other loci) in an MRS-dependent cluster for several 
generations after repression, during transcriptional memory. Brickner et al Microbial Cell, Vol. 2, No. 12, pp. 
481 - 490; doi: 10.15698/mic2015.12.242

Figure 2: Model of zip code-dependent INO1 targeting to the NPC and interchromosomal clustering 
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Cooperative derepression of INO1 via centromere-binding factor 1 (Cbf1p) 
 

In previous sections we have discussed in detail INO1 regulation by the 

Ino2p:Ino4p:Opi1p circuit.  Even though, INO1 regulation has been studied for over 

three decades, novel players in INO1 regulation have recently being discovered as is 

the case with Cbf1p.  Cbf1p is a well-known regulator of MET gene expression and a 

centromere DNA element I (CDEI) binding protein that belongs to the bHLH protein 

family (just like Ino2p and Ino4p)51,52. 

Previous studies of yeast bHLH proteins were restricted to understanding 

the regulation of single genes or pathways53,54.  With that in mind our lab studied 

cross regulation of biological process by different bHLH proteins.  One such study 

sought to know if INO1 was regulated by other bHLH proteins.  When testing INO1 

transcription on cbf1 mutant, its transcription was found to be reduced to 21% 

under derepressing conditions when compared to WT.  Cbf1p was subsequently 

shown to bind to sites upstream and distal to the INO1 gene (up to 1.6 kb upstream).  

Indeed two Cbf1p binding sites were included in the promoter of the upstream SNA3 

gene55.  It was also discovered that Cbf1p is required for maximal binding of 

Ino2p/Ino4p to the INO1 promoter in a cooperative matter55 and that likewise 

Ino2p and Ino4p are required for the recruitment of Cbf1p upstream of INO1. 

 Cbf1p is known to regulate transcription by recruiting chromatin remodelers 

of the imitation switch (ISWI) class family (including Isw2p), a family known to be 

involved in INO1 repression56–58.  In the published study, Cbf1p was established to 

be an important player in Isw2p binding to the INO1 promoter55. 
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Figure 3: Model of regulation of INO1 transcription by Ino2p-Ino4p, Cbf1p, and I 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Model of regulation of INO1 transcription by Ino2p-Ino4p, Cbf1p, and ISW2.
Black arrows indicate the positions of genes, and green bars indicate the positions of UASINO elements and 

other potential E boxes. Numbered arrows indicate the sequence of events. Ameet Shetty, and John M. Lopes 
Eukaryotic Cell 2010; doi:10.1128/EC.00144-10
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The power of inositol auxotrophy for the study of biological processes 
 
 A powerful aspect of Saccharomyces cerevisiae is the myriad phenotypes that 

can be screened/selected for in order to understand a particular biological process.  

One report described 80 easily assessable phenotypes that are grouped into 

different categories.  These categories include, conditional phenotypes such as 

temperature, ethanol, and growth sensitivity.  Cell cycle defect phenotypes include 

G1 arrest, failure to arrest in G1, and G2/M arrest.  Mating and sporulation defects can 

help identify genes important for mating, sporulation and meiosis among other 

processes.   Other categories include defects in cell morphology, cell wall synthesis, 

responses to environmental stresses, nucleic acid metabolism, and sensitivity to 

drugs.  Auxotrophies represents the biggest group, and include auxotrophy for 

certain amino acids, phosphate, ability to grow on different carbon sources like 

galactose, maltose, and sucrose, nitrogen utilization, and the most important for the 

purpose of this thesis inositol auxotrophy59. 

 Auxotrophies typically are failures in gene expression that are required for 

the synthesis of a specific nutrient or biochemical intermediate.  Many auxotrophies 

occur when mutants have a defect in a specific transcriptional regulatory 

mechanism, although other auxotrophies can be associated with general 

transcription defects59.   

 Surprisingly, inositol auxotrophy has proven to be indicative of defects in the 

general transcriptional apparatus, as it appears that the INO1 gene has an extreme 

sensitivity to general transcription machinery perturbations60.  For example, 

altering proteins in RNA polymerase II (RNAPII), TBP, Spt7p, SWI/SNF complex, all 
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yield an Ino- phenotype61–64.  RNA polymerase II (RNAPII) is the enzyme responsible 

for transcription of all genes that code for class II genes.  It is a multi-subunit 

enzyme and its structure is conserved throughout eukaryotes65.  In the past many 

researchers aiming to identify mutations that could affect RNAPII activity, classified 

them into two different categories: assembly and/or stability of the enzyme.  

Inositol auxotrophy has been useful for studying RNAPII, because inositol 

auxotrophs are often associated with mutations that affect RNAPII, regardless of the 

type of defect66.  The power of this phenotype is that INO1 expression is not 

derepressed in mutant RNAPII cells in contrast with many other genes that are 

transcribed sufficiently to avoid yielding an auxotrophy.  Inositol auxotrophy in 

RNAPII mutants, can happen due of the reduced assembly of RNAPII.  This has been 

observed when a mutation is present in RPO21 (RNAPII largest subunit)66,65. 

 

 

Whole genome Opi- mutant screens to further understand transcription regulation 
  

Many studies have been done demonstrating that screening the yeast 

genome is useful in generating valuable information about well-studied processes67–

70.  Our lab has focused on genome-wide screens to identify mutants with an Opi- 

phenotype to further understand repression of phospholipid biosynthesis71,72.  Our 

screen using the Viable Yeast Deletion Set (VYDS), which includes ~4,800 mutants, 

identified 91 Opi- mutants.  Several of the mutants identified here were previously 

known, but a number of genes were identified that were previously unknown to 

play a role in INO1 regulation.  Over-represented biological functions include 

components of the Rpd3p HDAC complex and six of the non-essential subunits of 
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NuA4 HAT complex71.  The screen also identified the REG1 gene which is involved in 

regulating gene expression in response to changes in glucose.  Initially this was 

thought to suggest a coordination between glucose usage and phospholipid 

synthesis, but now it is known that the Opi- phenotype is due to an altered 

protonation status of PA, as a function of cellular pH (altered in a reg1 mutant).  The 

altered protonation status affects Opi1p translocation into the nucleus73.   

Many genes involved in the unfolded protein response (UPR) system were 

also identified, which was expected based on previous studies showing that there is 

a coordination between UPR and phospholipid synthesis37,74–76.  The VYDS screen 

identified an ubiquitin E2 enzyme-encoding gene, UBC13.  This was the first time a 

gene involved in the ubiquitination pathway was associated with an Opi- phenotype 

and this will become an important piece of the puzzle later in this thesis. The subject 

of this thesis is an Opi- screen using an essential gene library and it yielded further 

information about the regulation of phospholipid genes.  On one hand it further 

complemented many processes identified in the VYDS screen like the essential 

components of NuA4 HAT, and known Opi- phenotype genes like CDS1, but also 

identified novel functions like components of the Nuclear pore complex (NIC96, 

NUP1, NUP145, NUP49, NUP82, and NUP85), gene looping (PTA1 and SSU72), protein 

modifications like SUMOylation (AOS1 and UBC9), and it further confirmed that the 

protein degradation genes play a role in the regulation of the phospholipid 

biosynthetic pathway.  Identifying different subunits from the proteasome and also 

identifying missing components of the ubiquitination pathway, including the only E1 

enzyme in yeast (UBA1) and the only essential E3 enzyme (RSP5), combined with 
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the previously identified E2 enzyme, UBC13, yields all relevant components of the 

E1-E2-E3 enzyme cascade from the ubiquitination pathway, strongly suggesting that 

this pathway might be responsible for the regulation of INO172. 

 

Role of protein degradation in INO1 regulation 
 

Biological processes which includes cell cycle, DNA repair, transcription, 

tumor repression, and neurogenesis have been reported to be regulated by protein 

degradation77–80.  One pathway for protein degradation requires the proteasome 

which is a protein complex present in all eukaryotes, archea, and some bacteria.  Its 

specific function is to destroy damaged or unnecessary proteins81.  Its structure 

consists of two main subassemblies; the 19S regulatory particle (RP), which 

includes the lid and base, and the 20S core particle (CP).  The RP recognizes 

peptides to be degraded, while the CP contains the proteolytic active sites to 

degrade targeted proteins78.  A regulatory process that is necessary to recognize and 

target proteins to the proteasome for destruction is modification involving a 

covalent attachment of ubiquitin.  This process dynamically sculpts the proteasome 

with hundreds of yeast proteins being rapidly and selectively degraded82.  

Ubiquitination is governed by an E1-E2-E3 cascade of enzymes.  An ubiquitin-

activating enzyme (E1) utilizes ATP to transfer the ubiquitin peptide (Ub) to an Ub-

conjugating enzyme (E2), which will transfer the Ub to an Ub-ligase (E3) holding the 

target substrate to be ubiquitinated83,84.  After several rounds of conjugation, 

polyubiquitination is achieved.  In higher eukaryotes the most common site residue 

to be modified by Ub is Lysine85, however, serine, threonine, and cysteine 



 

 15 

ubiquitination have been observed in both yeast and mammals86–89.  The 

conjugation machinery in yeast consists of a single E1 enzyme, eleven E2 enzymes, 

and a large family of E3 enzymes (60-100).  E3 enzymes mediate the selection and 

specificity of ubiquitination throughout direct interactions with the substrate78.   
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Figure 4: Ubiquitin-Proteasome System 
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NuA4 HAT and chromatin regulation 
 
 In eukaryotes, gene expression has a higher degree of difficulty in that DNA is 

tangled in a complex of proteins collectively called chromatin.  Chromatin is very 

dynamic and active in processes that requires regulation of genes90.  Histones are a 

family of basic proteins that are connected with DNA in the nucleus and help to 

wind DNA into what we call the chromatin.  Histones tails can have a number of 

modifications that include methylation, phosphorylation, ubiquitination, and 

acetylation.  Acetylation of histones is known to play a double role in the cell.  

Acetylation of Lysine residues is known to neutralize the positive charge of histone 

tails which leads to weaker interaction with DNA, this causes the chromatin to relax 

and decondense making genes available for transcription by unwinding it from the 

chromatin.  Alternatively, acetylation can provide an epigenetic marker for gene 

expression by blocking the heterochromatin-stabilizing association complexes91–94.  

This type of modification is driven by Histone Acetyl Transferases (HAT), which 

exist in large complexes such as NuA4 (Nucleosome acetyltransferase of H4), one of 

the most conserved HAT complexes in eukaryotes95,96.  The NuA4 complex is 

important because of its role in different essential processes like DNA repair and 

transcription regulation97–101.  

The NuA4 HAT consists of a 12-subunit complex with Esa1p as the catalytic 

subunit that acetylates proteins.  It is a primary regulator of gene expression and 

cell cycle progression.  Acetylation of Lysine is dictated by HAT complexes such as 

NuA4, which are associated with transcriptional activation102.  HATs are directed to 

promoters throughout interaction with histone tails or chromatin binding 
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proteins103.  In addition to histones, transcription factors are also modified by 

acetylation.  In addition, it is known that acetylation is important for targeting some 

proteins for degradation104.  Nine of the thirteen subunits that compile the NuA4 

HAT have been identified with an Opi- phenotype, this includes the Lysine catalytic 

subunit Esa1p71,72.  With such overrepresentation of NuA4 HAT in previous studies, 

it is suspected that NuA4 HAT plays a novel type of regulation of the phospholipid 

biosynthetic genes. 
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Figure 5: Heterochromatin vs Euchromatin 
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Figure 6: Nua4 HAT complex structure 
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CHAPTER  

II. SACCHAROMYCES CEREVISIAE ESSENTIAL GENES WITH AN OPI- 

PHENOTYPE 
 

Introduction 
 

Phospholipid biosynthetic genes in yeast are regulated by inositol and 

choline76,105–108.  These genes are fully repressed in the presence of inositol and 

choline and derepressed when these are limiting.  This regulation requires several 

transcription factors that when mutated display one of two phenotypes: inositol 

auxotrophy (Ino-) or overproduction and secretion of inositol (Opi-)106,107.  Some of 

these mutants were identified over the last three decades through traditional 

genetic screens.  However, we previously reported a genomic screen of the viable 

yeast deletion set (VYDS) for Opi- mutants that identified 91 mutants71.  Here, we 

report a screen of the essential yeast gene set using a conditional-expression 

library69. 

Well studied regulators of the phospholipid biosynthetic genes include 

Ino2p:Ino4p activators, the Opi1 repressor, and the Ume6p-Sin3p-Rpd3p histone 

deacetylase complex (HDAC), the SAGA histone acetyltransferase complex, the 

ISW2, INO80, SWI/SNF chromatin remodeling complexes, and Mot1p4,10,27,28,31,109.  

Ino2p and Ino4p belong to the family of basic-helix-loop-helix regulatory proteins 

(bHLH).  These proteins form a heterodimer that binds to a UASINO sequence to 

activate transcription of most of the phospholipid biosynthetic genes (eg. INO1, 

CHO2, and OPI3 in Figure 7)76,108. The Ume6p-Sin3p-Rpd3p HDAC, the ISW2, and 
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INO80 chromatin remodeling complexes , and Mot1p are global regulators that play 

a negative role in phospholipid biosynthetic gene expression22,25,27–30,110–112.  Opi1p 

was the first, and to date the only repressor found that specifically regulates the 

phospholipid biosynthetic pathway. 

The OPI1 locus was first identified in a screen for mutants that overproduce 

and excrete inositol (Opi- phenotype) into the medium of growth in the absence of 

inositol and choline16. The original opi1 mutant and a small set of similar mutants 

identified over the next two decades showed that the Opi- phenotype correlated 

with a defect in repression of the INO1 gene6,22,23, which is required for inositol 

synthesis de novo (Figure 7)113.  However, most of the ninety-one Opi- mutants 

identified in a more recent screen of the VYDS did not affect inositol-mediated 

repression of an INO1-lacZ reporter71.   

Our current understanding of the mechanism for inositol-mediated 

repression of phospholipid biosynthetic gene expression is that it requires 

translocation of Opi1p from the endoplasmic reticulum (ER) to the nucleus.  

Repression in response to inositol and choline is mediated by phosphatidic acid 

(PA).  In the absence of inositol, PA levels are elevated and Opi1p binds to PA20 and 

is tethered in the ER by Scs2p, an integral membrane protein19–21,114,115.  When 

inositol is added, phosphatidylinositol (PI) synthesis increases, causing a decrease 

in PA levels and Opi1p is released from the ER.  Opi1p rapidly translocates into the 

nucleus where it represses transcription by directly interacting with the Ino2p 

transcriptional activator and recruiting several HDACs to repress transcription25,116–

118.  The addition of choline by itself has little effect on PA levels, however in 
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combination with inositol, choline further reduces PA levels resulting in additional 

repression.  Not surprisingly, blocks in the de novo  phosphatidylcholine (PC) 

biosynthesis that elevate PA levels also yield an Opi- phenotype119–122.  Thus cds1, 

cho2, and opi3 mutants all have an Opi- phenotype (Figure 7).  The Opi- phenotype of 

these mutants is conditional and it can be suppressed by adding choline (C) to the 

medium.  Choline restores PC synthesis through the Kennedy pathway thereby 

alleviating the accumulation of PA caused by the block in the de novo PC pathway 

(Figure 7). 

Consistent with the role of PA as the signal, we reported that reduced 

expression of the PIS1 gene (Figure 7) yields an Opi- phenotype123. Because PI is an 

essential gene, we created a strain harboring a GAL1-PIS1 gene that allowed us to 

reduce PIS1 gene expression by growth in glucose or low galactose 

concentrations123.  These results are consistent with another study showing that 

GFP-Opi1p translocation into the nucleus is slow and impaired in a pis1 partial 

function mutant20. 

Many studies have shown that screening the VYDS67,68 and an essential yeast 

mutant gene set69 can yield valuable insight into well-studied processes such as 

regulation in response to phosphate concentration70.  We previously reported the 

results of a VYDS screen for the Opi- phenotype to further understand repression of 

phospholipid biosynthesis71.  That screen identified all seven of the Opi- mutants 

that had been identified by several labs over the previous thirty years, but also 

identified 84 new Opi- mutants.  Highly represented in this mutant set were 

components of the Rpd3p HDAC complex and five of the six nonessential 
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components of NuA4 HAT complex (EAF1, EAF3, EAF5, EAF7, and YAF9)71. The 

screen also identified the reg1  mutants71, which was known to regulate gene 

expression in response to changes in glucose.  Early hypotheses suggested a 

coordination of glucose utilization and phospholipid synthesis, however the 

mechanism for this coordination was unknown.  More recently, it was found that the 

Opi- phenotype of a reg1 mutant is actually due to the altered protonation status of 

PA, as function of cellular pH, which affects Opi1 translocation to the nucleus73. 

 It is well established that phospholipid biosynthesis is coordinated with the 

Unfolded Protein Response (UPR) and that Opi1p plays a role in this coordination74–

76.  The UPR is initiated in the ER in response to accumulation of unfolded 

proteins124 and is also induced by depleting inositol74,75.  Upon UPR induction, Ire1p 

is activated initiating splicing of HAC1 mRNA125.  The spiced HAC1 transcript 

produces the Hac1p basic leucine zipper transcription factor that binds to the UPR 

element (UPRE) of genes such as KAR2 but also regulates UASINO containing 

promoters by counteracting the function of Opi1p126.  Thus, it was predictable that 

the VYDS Opi- screen identified genes that are known to affect the UPR.  Screening 

the VYDS for the Opi- phenotype provided a wealth of information about other 

functions that affect regulation of phospholipid synthesis. 
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Fig 

ure 7: Abridged yeast phospholipid biosynthetic de novo and Kennedy pathways  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: ﻿Abridged yeast phospholipid biosynthetic de novo and Kennedy pathways. 
Genes encoding biosynthetic enzymes are italicized and boxed. Those genes noted in green and orange 
are non-essential and essential (respectively) and yield an Opi- phenotype when mutated. PA, 
phosphatidic acid; CDP-DAG, CDP-diacylglycerol; PI, phosphatidylinositol; PC, phosphatidylcholine; and 

C, choline
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Materials and Methods 

Strains and Growth Conditions 
 

This study used the BY4742 (MAT, his31, leu20, lys20, ura31) wild-

type and doxycycline (Dox) titratable strains69.  The BRS1005 diploid tester strain is 

a homozygous for the ino1-13 and ade1 alleles71.  Yeast cultures were grown at 30C 

in complete synthetic medium127 containing 2% glucose (w/v) but lacking inositol 

and choline (I-C-).  For the Opi- screen, agarose was reduced at 1.2% and Dox was 

added at 0, 5, and 10 g/ml. 

 

The Opi- genetic screen 
 

The essential gene library contains 838 essential genes driven by a Tet-

regulated promoter that are shut off by the addition of Dox69.  The screen was done 

using a laborious but sensitive screening assay128 that consisted in streaking the 

Tet-driven strain at the top of the plates containing different Dox concentrations (0,  

5, and 10 g/ml).  These were allowed to grow for 1-2 days.  The tester strain was 

streaked perpendicular to the Tet-driven strain.  This process was done in duplicate. 
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Results and Discussion  

Screen of an essential yeast gene library driven by titratable promoter identifies 122 
Opi- mutants 
 

To date there had been no screen of the essential genes for defects in 

phospholipid synthesis and it is clear that the essential gene set and VYDS are not 

identical with respect to the biological processes they affect68.  Motivated by this 

and the success of the VYDS Opi- screen71, our lab conducted an Opi- screen using 

the essential gene library driven by titratable promoter69.  The collection we used 

contains 838 essential yeast genes driven by a Tet-regulated promoter that is shut 

off by the addition of Doxycycline (Dox).  We used a range of Dox concentrations 

because strains can have different growth sensitivity69.  Our screen of the VYDS for 

the Opi- phenotype used a pining strategy71, but this strategy was unsuccessful for 

the essential gene screen.  We used a more laborious but also more sensitive 

screening assay (Figure 8)128.  The technique works by streaking a Tet-driven strain 

at the top of the plates containing different concentrations of Dox (0, 5, and 10 

g/ml), lacking inositol and allowed to grow for 1-2 days.  A tester strain was then 

streaked perpendicular to the Tet-driven strain.  The tester strain is a diploid 

homozygous for ino1 and ade1 mutants129.  This strain does not grow on media 

lacking inositol because of the ino1 mutation.  If the Tet-driven strain has an Opi- 

phenotype, it will excrete inositol into the medium, feeding the tester strain and 

allowing it to grow.  As inositol levels increase in the media, the tester grows more 

robustly as a red streak (ade1 phenotype).  The tester strain was streaked 3 times 

on each plate and each Tet-driven strain was analyzed in duplicate.  The growth of 
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the tester was scored as 0 (no growth), 1, 2, or 3 for progressively varying growth 

phenotypes.  Three researchers independently scored each plate. The screen 

identified 122 mutants that all three researchers agreed had positive tests on the 

two independent assays (Figure 8B and Supporting Information, Table S1).  As a 

control we used a wild type strain (BY4742) and an opi1 mutant, which had an Opi- 

phenotype under all Dox concentrations.  Sometimes the tester strain will show a 

papillar pattern rather than a uniform growth pattern (Figure 8B).  These are not 

revertants or a result of rare mating since the tester is homozygous diploid.  We 

have observed this pattern previously and shown that it correlates with a defect in 

transcription regulation22,71 

Most mutant strains did not show an Opi- phenotype in the absence of Dox 

but did have the phenotype when increasing Dox (Figure 8B).  In few cases the Opi- 

phenotype was observed at lower Dox concentrations but not higher (top Figure 

8B).  The reason of this was because higher concentrations of Dox were lethal for 

the strain and did not grow.  In a few cases, the mutant strain yielded an Opi- 

phenotype in the absence of Dox and did not grow in the presence of Dox (bottom 

Figure 8B).  These results may be possible from a reduced expression from the Tet 

promoter (no Dox) when compared with the native promoter and lethality when 

expression is more reduced by adding Dox.  As expected, the screen identified thr 

cds1 mutant which is the only essential gene previously known to have an Opi- 

phenotype (pis1 allele was not present in the collection)119,120.  In addition, the 

screen also identified five mutants that are duplicated in the collection (use1, cks1, 

rpn11, sec4, and vrg4).  These results suggest that the screen was successful in 
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identifying legitimate Opi- mutants.  We should also note that four mutants with an 

Opi- phenotype (YNG2, HSC82, KIC1, and SMB1) are not classified as essential genes 

in the Saccharomyces Genome Data-base (http://www.yeastgenome.org/).  

Regardless of this fact, down-regulation did yield an Opi- phenotype so these 

mutants are retained in our database. 

http://www.yeastgenome.org/)
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Figure 8: Essential genes with an Opi- phenotype 

 

 

﻿Figure 8: Essential Opi- mutants.

(A) Representative Opi- phenotype for the gpi16 (0,3,3), sec4 (0,1,2), and ypp1 (0,0,1) mutants 
grown under three Dox concentrations. (B) Mutants were clustered with respect to phenotype 
severity using Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) 
and displayed using Java Treeview (Saldanha 2004).
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The essential gene and VYDS screens identify mutants in different sets of biological 
processes  
 

We predicted that the screen might reveal novel process when compared to 

the VYDS screen.  To test this, the mutants were clustered based on biological 

processes using the SGD Yeast Go Slim Mapper software 

(http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl).  The results clearly 

showed that the two screens yielded different information with respect to biological 

processes (Figure 9).  The essential mutant collection showed significantly more 

mutants affecting RNA metabolic processes, cell cycle, and cell division whereas the 

VYDS screen identified more mutants in transport, cellular localization, 

transcription, and response to stimulus.  

Consistent with the results from the VYDS screen and the coordination of 

phospholipid biosynthesis with the UPR, this screen identified multiple mutants that 

affect protein modification (Figure 10 and Table S1).  These include several genes 

that glycosylate proteins in the ER (ALG2, ALG13, OST2, PIM40, RFT1, and SEC53).  

The screen also identified several genes required for synthesis of 

glycosylphosphatidylinositol anchors (GPI12, GPI16, and PGA1) and sphingolipid 

synthesis (LCB1, LCB2, and TSC11).  This is the first report linking these two 

processes to phospholipid synthesis. 

INO1 gene expression is affected by a mechanism that involves both gene 

looping and association of INO1 promoter with the nuclear pore complex130,131.  In 

our screen, genes involved in both gene looping and nuclear pore complex were 

identified with the Opi- phenotype (Figure 10).  Both pta1 and ssu72 mutants were 

http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl)
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identified in the essential gene screen.  These proteins are known to be required for 

gene looping of the INO1 gene132.  It is not immediately obvious why they should 

also have an Opi- phenotype but this does provide the first phenotype for gene 

looping.  A significant number of nuclear pore complex (NPC) mutants were 

identified in the two screens133.  The VYDS screen identified NUP84, and the 

essential gene screen identified NIC96, NUP1, NUP49, NUP82, NUP85, and NUP145.  

On activation, the INO1 promoter is recruited to the nuclear pore complex via cis 

sequences called DNA Zip codes (GRS1 and II) within the INO1 promoter and the 

adjoining SNA3 ORF44,46  Upon transfer to repressing conditions, the INO1 promoter 

remains associated with the nuclear periphery for up to three to four generations45.  

This association is a mechanism for transcriptional memory of recently repressed 

INO1 transcription45,46.  This memory requires an eleven bp sequence, the memory 

recruitment sequence (MRS), within the INO1 promoter46.  Thus, identification of 

NPC mutants in the Opi- screens is consistent with its role in recruiting and 

regulating the INO1 promoter. 

A group of interesting mutants was identified in the essential gene screen 

that was not present in the VYDS screen.  There was an overrepresentation of 

mutants in the ubiquitin/proteasome degradation pathway (Figure 10 and Table 

S1).  This includes UBA1 and RSP5 that encode E1 and E3 ubiquitinating enzymes134.  

Interestingly, an rsp5 mutant has been shown to affect expression of an INO1-lacZ 

reporter under derepressing conditions135.  The screen also identified several genes 

required for proteasome function136,137 including: the PRE4 gene that is required for 

assembly of the 20S proteolytic core particle; the RPN11 gene that encodes a 
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deubiquitylase present in the lid of the 19S regulatory particle138; and the RPT2 and 

RPT4 genes that are required for unfolding and translocating the protein substrates 

as well as opening of the proteasome gate (RPT2)136,137.  Another protein 

modification pathway that was identified by the screen was a ubiquitin -like 

modification, SUMO.  The screen identified both E1 (AOS1) and E2 (UBC9) encoding 

genes134,139.  This finding is consistent with published work showing that a mutation 

in a deubiquitylation enzyme (ULP2) affects INO1 expression under derepressing 

conditions by altering the sumoylation status of Scs2p, which normally retains 

Opi1p in the ER under derepressing conditions140. 
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Figure 9: Radar chart comparing percentage of Opi- mutants in different biological processes for the VYDS (blue) 
and essential (red) mutant collections 

  

Figure 9: Radar Chart 

Radar chart comparing percentage of Opi
-
 mutants in different biological processes for the VYDS (blue) and 

essential (red) mutant collections. Each point on the graph represents the percentage of mutants within 

each of the Opi
-
 mutant sets in each functional category. 
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Both Opi- screens identified subunits of NuA4 HAT complex 
 

We previously reported that the VYDS screen identified five of the six 

nonessential subunits of the NuA4 HAT complex71.  The essential collection screen 

also identified three of the six essential subunits (ARP4, ESA1, and SWC4) (Note: 

YNG2 is included in the screen but it is not essential) (Figure 10).  One of the 

essential subunits (ACT1) was not present in the collection.  Our screen identified 

ESA1, which is the catalytic subunit of the complex and contains a chromodomain 

that interacts with methylated histones as well as YNG2, which contains a PHD 

domain that also interacts with methylated histones141.  Thus, both screens 

collectively identified nine of the 12 NuA4 subunits. 

It is possible that the proteasome and NuA4 complexes may regulate INO1 

gene expression via a direct role since it has been shown that a 19S proteasome 

subcomplex works with NuA4 to regulate expression of ribosomal protein genes142.  

However, the finding that mutations in the 20S complex and the ubiquitin 

modification pathway yield an Opi- phenotype suggest that protein degradation is 

more likely explanation for the phenotype.  With respect to the NuA4 complex it is 

interesting that it functions in activation of gene expression while mutants in other 

transcription factors that also yield the Opi- phenotype (e.g. opi1, ume6, sin3, and 

rpd3) function in repression71,90,141.  In the case of the non-essential Opi- mutants, 

the mutants yielded elevated expression of the INO1 target gene under both 

repressing and derepressing growth conditions, that is, they had a defect in 

repression71.  A trivial explanation for this would be that NuA4 affects repression of 

INO1 indirectly by controlling the activation of the OPI1 repressor gene.  However, 
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we found that these mutants did not affect activation of the OPI1 gene71.  Moreover 

there is evidence that NuA4 binds the INO1 promoter143.  It is also important to note 

that some of the subunits of the NuA4 complex are shared with the SWR-C complex 

that is responsible for loading the modified H2A.Z into nucleosomes and H2A.Z is 

involved in the regulation of INO1144.   However, none of the SWR-C-specific 

components were identified in our screens suggesting that the Opi- phenotype is 

specific to the NuA4 complex.  A more likely explanation is that NuA4 may be 

acetylating a non-histone regulatory protein that controls INO1 expression.  

Consistent with this, an in vitro protein acetylation microarray identified many non-

histone targets of NuA4145. Along this line it is important that another HAT, Gcn5p, 

acetylates the Ume6p regulatory protein, which targets it for degradation via the 

anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase104,146.  This 

occurs as cells are initiating the meiotic program.  Consistent with this model the 

essential gene screen did identify CDC27, which is a component of the APC/C (Figure 

10 and Table S1).  While INO1 is not a meiotic gene, it is regulated by Ume6p and its 

associated Sin3/Rpd3 complex22,23,27–29,147,148.  Thus, NuA4 could be regulating INO1 

either through Opi1p or Ume6p via a mechanism that includes protein degradation.  

Future experiments will address this possibility. 
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Figure 10: Opi- mutants cluster by functional categories 

Figure 10: Opi- mutants cluster by functional categories. 
 Shown are those cases where a significant set of mutants affected a biological function. 
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Table S 2: List of essential genes with an Opi- phenotype 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CDC33 TIF45 Cytoplasmic mRNA cap binding protein and translation initiation factor eIF4E 

CDC37 SMO1 

Essential Hsp90p co-chaperone; necessary for passage through the START phase of the cell 

cycle; stabilizes protein kinase nascent chains and participates along with Hsp90p in their 

folding 

CDC42  

Small rho-like GTPase, essential for establishment and maintenance of cell polarity; mutants 

have defects in the organization of actin and septins 

CDC53  

Cullin, structural protein of SCF complexes (which also contain Skp1p, Cdc34p, Hrt1p and an F-

box protein) involved in ubiquitination; SCF promotes the G1-S transition by targeting G1 

cyclins and the Cln-CDK inhibitor Sic1p for degradation 

CDC8 

MDP1, MUT2, 

NPI1, UBY1, 

SMM1 

Thymidylate and uridylate kinase, functions in de novo biosynthesis of pyrimidine 

deoxyribonucleotides; converts dTMP to dTDP and dUMP to dUTP; essential for mitotic and 

meiotic DNA replication 

CDS1 CDG1 

Phosphatidate cytidylyltransferase (CDP-diglyceride synthetase); an enzyme that catalyzes that 

conversion of CTP + phosphate into diphosphate + CDP-diacylglyerol, a critical step in the 

synthesis of all major yeast phospholipids 

CKS1  

Cyclin-dependent protein kinase regulatory subunit and adaptor; modulates proteolysis of M-

phase targets through interactions with the proteasome; role in transcriptional regulation, 

recruiting proteasomal subunits to target gene promoters 

DBP6  

Essential protein involved in ribosome biogenesis; putative ATP-dependent RNA helicase of the 

DEAD-box protein family 

DIM1 CDH1 

Essential 18S rRNA dimethylase (dimethyladenosine transferase), responsible for conserved 

m6(2)Am6(2)A dimethylation in 3'-terminal loop of 18S rRNA, part of 90S and 40S pre-particles 

in nucleolus, involved in pre-ribosomal RNA processing 

DOP1  

Golgi-localized, leucine-zipper domain containing protein; involved in endosome to Golgi 

transport, organization of the ER, establishing cell polarity, and morphogenesis 

ERD2  

HDEL receptor, an integral membrane protein that binds to the HDEL motif in proteins destined 

for retention in the endoplasmic reticulum; has a role in maintenance of normal levels of ER-

resident proteins 

ERG7  
Lanosterol synthase, an essential enzyme that catalyzes the cyclization of squalene 2,3-epoxide, 

Table	S1		List	of	essential	genes	with	an	Opi-	phenotype.	

Gene Aliases Function 

AOS1 RHC31 

Subunit of a heterodimeric nuclear SUMO activating enzyme (E1) with Uba2p; activates Smt3p 

(SUMO) before its conjugation to proteins (sumoylation) 

ACS2  

Acetyl-coA synthetase isoform which, along with Acs1p, is the nuclear source of acetyl-coA for 

histone acetylation; mutants affect global transcription 

AFG2 DRG1 

ATPase of the CDC48/PAS1/SEC18 (AAA) family, forms a hexameric complex; is essential for 

pre-60S maturation and release of several preribosome maturation factors 

ALG13  

Catalytic component of UDP-GlcNAc transferase, required for the second step of dolichyl-linked 

oligosaccharide synthesis; anchored to the ER membrane via interaction with Alg14p 

ALG2  Mannosyltransferase that catalyzes two consecutive steps in the N-linked glycosylation pathway 

ARC40  

Subunit of the ARP2/3 complex, which is required for the motility and integrity of cortical actin 

patches  

ARP4 ACT3 

Nuclear actin-related protein involved in chromatin remodeling, component of chromatin-

remodeling enzyme complexes including NuA4 complex 

CDC11 PSL9 Component of the septin ring of the mother-bud neck that is required for cytokinesis 

CDC19 PYK1 

Pyruvate kinase, functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to 

pyruvate 

CDC25 CTN1 

Membrane bound guanine nucleotide exchange factor (GEF or GDP-release factor); indirectly 

regulates adenylate cyclase through activation of Ras1p and Ras2p by stimulating the 

exchange of GDP for GTP; required for progression through G1 

CDC27 APC3, SNB1 

Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C), which is a ubiquitin-protein 

ligase required for degradation of anaphase inhibitors 

CDC31 DSK1 

Calcium-binding component of the spindle pole body (SPB) half-bridge, required for SPB 

duplication in mitosis and meiosis II; binds multiubiquitinated proteins and is involved in 

proteasomal protein degradation 

Table S 1 List of essential genes with an Opi- phenotype 
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a step in ergosterol biosynthesis 

ESA1 TAS1 

Catalytic subunit of the histone acetyltransferase complex (NuA4) that acetylates four 

conserved internal lysines of histone H4 N-terminal tail 

GCD14 TRM61 

Subunit of tRNA (1-methyladenosine) methyltransferase, with Gcd10p, required for the 

modification of the adenine at position 58 in tRNAs, especially tRNAi-Met 

GCD2 GCD12 

Delta subunit of the translation initiation factor eIF2B, the guanine-nucleotide exchange factor 

for eIF2; activity subsequently regulated by phosphorylated eIF2 

GPI12 GCR4 

Protein involved in the synthesis of N-acetylglucosaminyl phosphatidylinositol (GlcNAc-PI), the 

first intermediate in the synthesis of glycosylphosphatidylinositol (GPI) anchors 

GPI16  

Transmembrane protein subunit of the glycosylphosphatidylinositol transamidase complex that 

adds GPIs to newly synthesized proteins 

HIP1  High-affinity histidine permease, also involved in the transport of manganese ions 

HRR25 KTI14 

Protein kinase involved in regulating diverse events including vesicular trafficking, DNA repair, 

and chromosome segregation; binds the CTD of RNA pol II 

HSC82 HSP90 

Cytoplasmic chaperone of the Hsp90 family, redundant in function and nearly identical with 

Hsp82p, and together they are essential 

KIC1 NRK1 

Protein kinase of the PAK/Ste20 kinase family, required for cell integrity possibly through 

regulating 1,6-beta-glucan levels in the wall; physically interacts with Cdc31p (centrin), which is 

a component of the spindle pole body 

LAS17 BEE1 

Actin assembly factor, activates the Arp2/3 protein complex that nucleates branched actin 

filaments; localizes with the Arp2/3 complex to actin patches 

LCB1 END8, TSC2 

Component of serine palmitoyltransferase, responsible along with Lcb2p for the first committed 

step in sphingolipid synthesis, which is the condensation of serine with palmitoyl-CoA to form 3-

ketosphinganine 

LCB2 SCS1, TSC1 

Component of serine palmitoyltransferase, responsible along with Lcb1p for the first committed 

step in sphingolipid synthesis, which is the condensation of serine with palmitoyl-CoA to form 3-

ketosphinganine 

LST8  
Protein required for the transport of amino acid permease Gap1p from the Golgi to the cell 

surface; component of the TOR signaling pathway; associates with both Tor1p and Tor2p 

MAK21 NOC1 

Constituent of 66S pre-ribosomal particles, required for large (60S) ribosomal subunit 

biogenesis; involved in nuclear export of pre-ribosomes 

MAS1 MIF1 

Smaller subunit of the mitochondrial processing protease (MPP), essential processing enzyme 

that cleaves the N-terminal targeting sequences from mitochondrially imported proteins 

MDN1 REA1 

Huge dynein-related AAA-type ATPase (midasin), forms extended pre-60S particle with the Rix1 

complex (Rix1p-Ipi1p-Ipi3p); acts in removal of ribosomal biogenesis factors at successive 

steps of pre-60S assembly and export from nucleus  

MED7  

Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits 

to form the RNA polymerase II holoenzyme; essential for transcriptional regulation 

MGE1 YGE1 

Mitochondrial matrix cochaperone, acts as a nucleotide release factor for Ssc1p in protein 

translocation and folding; also acts as cochaperone for Ssq1p in folding of Fe-S cluster proteins 

MOB1  

Component of the mitotic exit network; associates with and is required for the activation and 

Cdc15p-dependent phosphorylation of the Dbf2p kinase; required for cytokinesis and cell 

separation; component of the CCR4 transcriptional complex 

MYO1  

Type II myosin heavy chain, required for wild-type cytokinesis and cell separation; localizes to 

the actomyosin ring; binds to myosin light chains Mlc1p and Mlc2p through its IQ1 and IQ2 

motifs respectively 

MYO2 CDC66 

One of two type V myosin motors (along with MYO4) involved in actin-based transport of 

cargos; required for the polarized delivery of secretory vesicles, the vacuole, late Golgi 

elements, peroxisomes, and the mitotic spindle 

NAT2  Protein with an apparent role in acetylation of N-terminal methionine residues 

NDD1  

Transcriptional activator essential for nuclear division; localized to the nucleus; essential 

component of the mechanism that activates the expression of a set of late-S-phase-specific 

genes 

NET1 

ESC5, CFI1, 

SRM8 

Core subunit of the RENT complex, which is a complex involved in nucleolar silencing and 

telophase exit; stimulates transcription by RNA polymerase I  

NIC96  

Component of the nuclear pore complex, required for nuclear pore formation; forms a 

subcomplex with Nsp1p, Nup57p, and Nup49p 
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NOP7 YPH1 

Component of several different pre-ribosomal particles; forms a complex with Ytm1p and Erb1p 

that is required for maturation of the large ribosomal subunit; required for exit from G0 and the 

initiation of cell proliferation 

NUP1  

Nuclear pore complex (NPC) subunit, involved in protein import/export and in export of RNAs, 

possible karyopherin release factor that accelerates release of karyopherin-cargo complexes 

after transport across NPC; potential Cdc28p substrate 

NUP49 NSP49 

Subunit of the Nsp1p-Nup57p-Nup49p-Nic96p subcomplex of the nuclear pore complex (NPC), 

required for nuclear export of ribosomes 

NUP82 HRB187 

Nucleoporin, subunit of the nuclear pore complex (NPC); forms a subcomplex with Gle2p, 

Nup159p, Nsp1p, and Nup116p and is required for proper localization of Nup116p in the NPC 

NUP85 RAT9 

Subunit of the Nup84p subcomplex of the nuclear pore complex (NPC), required for assembly of 

the subcomplex and also for formation of the nucleocytoplasmic Gsp1p concentration gradient 

that plays a role in nuclear trafficking 

NUP145 RAT10 

Essential nucleoporin, catalyzes its own cleavage in vivo to generate a C-terminal fragment that 

assembles into the Nup84p subcomplex of the nuclear pore complex, and an N-terminal 

fragment of unknown function that is homologous to Nup100p 

OST2  

Epsilon subunit of the oligosaccharyltransferase complex of the ER lumen, which catalyzes 

asparagine-linked glycosylation of newly synthesized proteins 

PAN1 

MDP3, MIP3, 

DIM2 

Part of actin cytoskeleton-regulatory complex Pan1p-Sla1p-End3p, associates with actin patches 

on the cell cortex; promotes protein-protein interactions essential for endocytosis 

PFY1 PRF1 

Profilin, binds actin, phosphatidylinositol 4,5-bisphosphate, and polyproline regions; involved in 

cytoskeleton organization; required for normal timing of actin polymerization in response to 

thermal stress 

PGA1  

Essential component of GPI-mannosyltransferase II, responsible for second mannose addition to 

GPI precursors as a partner of Gpi18p; required for maturation of Gas1p and Pho8p 

PGI1 CDC30 

Glycolytic enzyme phosphoglucose isomerase, catalyzes the interconversion of glucose-6-

phosphate and fructose-6-phosphate; required for cell cycle progression and completion of the 

gluconeogenic events of sporulation 

PIK1 
PIK41, Phosphatidylinositol 4-kinase; catalyzes first step in the biosynthesis of phosphatidylinositol-

PIK120 4,5-biphosphate 

PLP2  

Essential protein that interacts with the CCT (chaperonin containing TCP-1) complex to 

stimulate actin folding 

PMI40  

Mannose-6-phosphate isomerase, catalyzes the interconversion of fructose-6-P and mannose-6-

P; required for early steps in protein mannosylation 

POL2 DUN2 

Catalytic subunit of DNA polymerase (II) epsilon, a chromosomal DNA replication polymerase 

that exhibits processivity and proofreading exonuclease activity; also involved in DNA synthesis 

during DNA repair 

POL30  

Proliferating cell nuclear antigen (PCNA), functions as the sliding clamp for DNA polymerase 

delta; may function as a docking site for other proteins required for mitotic and meiotic 

chromosomal DNA replication and for DNA repair 

POL5  

DNA Polymerase phi; has sequence similarity to the human MybBP1A and weak sequence 

similarity to B-type DNA polymerases, not required for chromosomal DNA replication; required 

for the synthesis of rRNA 

POP6  

Subunit of both RNase MRP and nuclear RNase P; RNase MRP cleaves pre-rRNA, while nuclear 

RNase P cleaves tRNA precursors to generate mature 5' ends and facilitates turnover of nuclear 

RNAs 

PRE4  Beta 7 subunit of the 20S proteasome 

PRP21 SPP91 Subunit of the SF3a splicing factor complex, required for spliceosome assembly 

PRP22  

DEAH-box RNA-dependent ATPase/ATP-dependent RNA helicase, associates with lariat 

intermediates before the second catalytic step of splicing; mediates ATP-dependent mRNA 

release from the spliceosome and unwinds RNA duplexes 

PSF2 CDC102 

Subunit of the GINS complex (Sld5p, Psf1p, Psf2p, Psf3p), which is localized to DNA replication 

origins and implicated in assembly of the DNA replication machinery 

PTA1 FUN39 

Subunit of holo-CPF, a multiprotein complex and functional homolog of mammalian CPSF, 

required for the cleavage and polyadenylation of mRNA and snoRNA 3' ends; involved in pre-

tRNA processing; binds to the phosphorylated CTD of RNAPII 

RFT1  

Essential integral membrane protein that is required for translocation of Man5GlcNac2-PP-Dol 

from the cytoplasmic side to the lumenal side of the ER membrane 
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RNA1  GTPase activating protein (GAP) for Gsp1p, involved in nuclear transport 

RPA190 RRN1 RNA polymerase I largest subunit A190 

RPL28 CYH2 Ribosomal protein of the large (60S) ribosomal subunit; may have peptidyl transferase activity 

RPN11 MPR1 

alloprotease subunit of the 19S regulatory particle of the 26S proteasome lid; couples the 

deubiquitination and degradation of proteasome substrates 

RPT2 YHS4, YTA5 

One of six ATPases of the 19S regulatory particle of the 26S proteasome involved in the 

degradation of ubiquitinated substrates; required for normal peptide hydrolysis by the core 20S 

particle 

RPT4 

CRL13, PCS1, 

SUG2 

One of six ATPases of the 19S regulatory particle of the 26S proteasome involved in degradation 

of ubiquitinated substrates 

RRN3  

Protein required for transcription of rDNA by RNA polymerase I; transcription factor independent 

of DNA template; involved in recruitment of RNA polymerase I to rDNA 

RRN5  

Protein involved in transcription of rDNA by RNA polymerase I; transcription factor, member of 

UAF (upstream activation factor) family along with Rrn9p and Rrn10p 

RRP45  

Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in 

both the nucleus and the cytoplasm 

RRS1  

Essential protein that binds ribosomal protein L11 and is required for nuclear export of the 60S 

pre-ribosomal subunit during ribosome biogenesis 

RSP5  

E3 ubiquitin ligase of the NEDD4 family; involved in regulating many cellular processes including 

MVB sorting, heat shock response, transcription, endocytosis, and ribosome stability 

RTS2  Basic zinc-finger protein 

RVB2 

TIP49B, TIH2, 

TIP48 

Essential protein involved in transcription regulation; component of chromatin remodeling 

complexes; required for assembly and function of the INO80 complex 

SDA1  

Highly conserved nuclear protein required for actin cytoskeleton organization and passage 

through Start, plays a critical role in G1 events, binds Nap1p, also involved in 60S ribosome 

biogenesis 

SEC10  
Essential 100kDa subunit of the exocyst complex (Sec3p, Sec5p, Sec6p, Sec8p, Sec10p, 

Sec15p, Exo70p, and Exo84p), which has the essential function of mediating polarized targeting 

of secretory vesicles to active sites of exocytosis 

SEC11  

18kDa catalytic subunit of the Signal Peptidase Complex (SPC; Spc1p, Spc2p, Spc3p, and 

Sec11p) which cleaves the signal sequence of proteins targeted to the endoplasmic reticulum 

SEC14 PIT1 

Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, 

and ceramide metabolism, products of which regulate intracellular transport and UPR 

SEC4 SRO6 

Rab family GTPase essential for vesicle-mediated exocytic secretion and autophagy; associates 

with the exocyst component Sec15p and may regulate polarized delivery of transport vesicles to 

the exocyst at the plasma membrane 

SEC53 ALG4 

Phosphomannomutase, involved in synthesis of GDP-mannose and dolichol-phosphate-

mannose; required for folding and glycosylation of secretory proteins in the ER lumen 

SIS1  

Type II HSP40 co-chaperone that interacts with the HSP70 protein Ssa1p; not functionally 

redundant with Ydj1p due to due to substrate specificity 

SLD5 CDC105 

Subunit of the GINS complex (Sld5p, Psf1p, Psf2p, Psf3p), which is localized to DNA replication 

origins and implicated in assembly of the DNA replication machinery 

SMB1  

Core Sm protein Sm B; part of heteroheptameric complex (with Smd1p, Smd2p, Smd3p, 

Sme1p, Smx3p, and Smx2p) that is part of the spliceosomal U1, U2, U4, and U5 snRNPs  

SOG2  

Key component of the RAM signaling network, required for proper cell morphogenesis and cell 

separation after mitosis 

SPP382 CCF8, NTR1 

Essential protein that forms a dimer with Ntr2p; also forms a trimer, with Ntr2p and Prp43p, 

that is involved in spliceosome disassembly 

SRP21  

Subunit of the signal recognition particle (SRP), which functions in protein targeting to the 

endoplasmic reticulum membrane 

SRP72  

Core component of the signal recognition particle (SRP) ribonucleoprotein (RNP) complex that 

functions in targeting nascent secretory proteins to the endoplasmic reticulum (ER) membrane 

SSU72  

Transcription/RNA-processing factor that associates with TFIIB and cleavage/polyadenylation 

factor Pta1p; exhibits phosphatase activity on serine-5 of the RNA polymerase II C-terminal 

domain; affects start site selection in vivo 

SUI2  
Alpha subunit of the translation initiation factor eIF2, involved in the identification of the start 

codon; phosphorylation of Ser51 is required for regulation of translation by inhibiting the 
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exchange of GDP for GTP 

SWC4 EAF2, GOD1 

Component of the Swr1p complex that incorporates Htz1p into chromatin; component of the 

NuA4 histone acetyltransferase complex 

TAF5 TAF90 

Subunit (90 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription 

initiation and in chromatin modification 

TIF35  

eIF3g subunit of the core complex of translation initiation factor 3 (eIF3), which is essential for 

translation; stimulates resumption of ribosomal scanning during translation reinitiation 

TOA1  TFIIA large subunit; involved in transcriptional activation, acts as antirepressor or as coactivator 

TRM5  

tRNA(m(1)G37)methyltransferase, methylates a tRNA base adjacent to the anticodon that has a 

role in prevention of frameshifting 

TRS31  

One of 10 subunits of the transport protein particle (TRAPP) complex of the cis-Golgi which 

mediates vesicle docking and fusion; involved in endoplasmic reticulum (ER) to Golgi membrane 

traffic 

TSC11 AVO3 

Subunit of TORC2 (Tor2p-Lst8p-Avo1-Avo2-Tsc11p-Bit61p), a membrane-associated complex 

that regulates actin cytoskeletal dynamics during polarized growth and cell wall integrity; 

involved in sphingolipid metabolism 

TTI1  

Putative protein of unknown function; subunit of the ASTRA complex which is part of the 

chromatin remodeling machinery 

TUB1  

Alpha-tubulin; associates with beta-tubulin (Tub2p) to form tubulin dimer, which polymerizes to 

form microtubules 

UBA1  Ubiquitin activating enzyme (E1), involved in ubiquitin-mediated protein degradation 

UBC9  

SUMO-conjugating enzyme involved in the Smt3p conjugation pathway; nuclear protein 

required for S- and M-phase cyclin degradation and mitotic control; involved in proteolysis 

mediated by the anaphase-promoting complex cyclosome (APCC)  

USE1 SLT1 

Essential SNARE protein localized to the ER, involved in retrograde traffic from the Golgi to the 

ER; forms a complex with the SNAREs Sec22p, Sec20p and Ufe1p 

UTP14  

Subunit of U3-containing Small Subunit (SSU) processome complex involved in production of 

18S rRNA and assembly of small ribosomal subunit 

UTP7 KRE31 

Nucleolar protein, component of the small subunit (SSU) processome containing the U3 snoRNA 

that is involved in processing of pre-18S rRNA 

VAS1  Mitochondrial and cytoplasmic valyl-tRNA synthetase 

VRG4 

VAN2, GOG5, 

LDB3, VIG4 Golgi GDP-mannose transporter; regulates Golgi function and glycosylation in Golgi 

YEF3 TEF3 

Gamma subunit of translational elongation factor eEF1B, stimulates the binding of aminoacyl-

tRNA (AA-tRNA) to ribosomes by releasing eEF1A (Tef1p/Tef2p) from the ribosomal complex; 

contains two ABC cassettes; binds and hydrolyzes ATP 

YNG2 NBN1, EAF4 Subunit of the NuA4 histone acetyltransferase complex that acetylates histone H4 and H2A 

YPP1  

Cargo-transport protein involved in endocytosis; interacts with phosphatidylinositol-4-kinase 

Stt4 

   

YBR190w  Dubious open reading frame  

YGR190c  Dubious open reading frame  

!
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CHAPTER  

III. GROWTH PHASE REGULATION OF PHOSPHOLIPID BIOSYNTHETIC 

GENES IN YEAST 
 

Introduction 
 

Saccharomyces cerevisiae has been a fantastic model for the understanding of 

biological processes such as phospholipid synthesis.  Phospholipid synthesis is a key 

step in the formation of membranes and requires precise metabolic coordination by 

the cell to maintain cellular stability.  In budding yeast, the phospholipid 

biosynthetic genes are repressed in response to inositol and choline105,106 (I+C+).  

These genes are maximally derepressed when inositol and choline are both limited 

(I-C-).  However, many phospholipid biosynthetic genes have been reported to also 

be growth phase regulated.  This regulation is characterized by an increase in gene 

expression that correlates with exponential growth of a culture and a severe 

decrease in expression as cells enter stationary phase149,150.  Little is known about 

the mechanism for growth phase regulation.  The current study shows that 

repression in stationary phase requires the proteasome protein degradation 

process. 

INO1 is a phospholipid biosynthetic gene that has served as a model for 

understanding coordinated regulation of this system.  INO1 gene regulation requires 

several transcription factors including Ino2p, Ino4p, and Opi1p, the Ume6p-Sin3p-

Rpd3p histone deacetylase (HDAC) complex, ISW2, and INO80 chromatin-

remodeling complexes4,10,27,28,31,109.  Ino2p and Ino4p form a heterodimer that binds 
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to a UASINO promoter sequence to activate transcription of most of the phospholipid 

biosynthetic genes76,108.  Opi1p is a repressor that specifically regulates the 

phospholipid biosynthetic pathway16.  Under repressing conditions (I+C+) Opi1p 

can be found in the endoplasmic reticulum (ER) physically interacting with ER 

membrane protein Scs2p and phosphatidic acid (PA)19,114.   Under derepressing 

conditions (I-C-), PA levels drop and when this happens Opi1p gets released from 

the ER and translocates to the nucleus where it represses transcription by directly 

interacting with the Ino2p transcriptional activator116–118.  This is the current 

understanding of INO1 gene regulation during the exponential growth phase.   

As noted above, the current study revealed that INO1 repression in 

stationary phase requires protein degradation.  Many biological processes including 

the cell cycle, tumor suppression, DNA repair, and transcription of genes are known 

to be regulated by protein degradation77,78.  In eukaryotes, archaea, and some 

bacteria, a main process for protein degradation involves a protein complex called 

the proteasome and a protein ubiquitination pathway.  The proteasome’s function is 

specifically to destroy proteins that are damaged or unnecessary at the moment81.  

The proteasome is organized into two main subassemblies: the 19S regulatory 

particle (RP), which includes the lid and base, and the 20S core particle (CP).  The 

RP function is to recognize peptides to be degraded, while the CP contains the 

proteolytic active sites to degrade targeted proteins78.  One function of 

ubiquitination is to target proteins for degradation by the proteasome82.  It involves 

an E1-E2-E3 cascade of enzymes.  Ubiquitin-activating enzymes (E1), utilize ATP to 

transfer ubiquitin (Ub) peptides to an Ub-conjugating enzyme (E2), which will 
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transfer Ub to a Ub-ligase (E3) that holds the target protein to be ubiquitinated83.  

Polyubiquitination is achieved through several rounds of conjugation.  In 

eukaryotes, the most common residue to be modified by Ub is Lysine85.  In yeast, the 

conjugation machinery consists of a single E1 enzyme, eleven E2 enzymes, and a 

large family of E3 enzymes (60-100).  E3 enzymes mediate the selectivity and 

specificity of ubiquitination throughout direct interactions with the substrate78.  

Many E3 enzymes were categorized into two major classes: RING domain E3s and 

HECT domain E3s.  Most belong to the RING domain E3s with only five HECT 

domain E3s are encoded in the yeast genome78. 

Our lab previously reported an essential gene screen looking for mutants 

with an Opi- phenotype to further understand phospholipid regulation in yeast72.  

One of the most overrepresented groups identified in the screen were genes in the 

Ubiquitin/Proteasome system72, suggesting for the first time that this system is 

important for the transcriptional regulation of the phospholipid biosynthetic genes.  

Our screen successfully identified the single yeast E1 enzyme (UBA1), an E2 enzyme 

(UBC13), and an E3 enzyme (RSP5).  In addition, subunits from the proteasome were 

identified including RPN11 from the lid, RPT2 and RPT4 from the base, and PRE4 

from the core particle72.   

The Opi- phenotype has historically been correlated with a repression defect 

in INO1.  However, when testing different proteasome subunits identified from our 

essential gene screen, they did not show a repression defect similar to what happens 

in an opi1 mutant.  However, as we noted previously, in addition to the inositol-

mediated repression, the phospholipid biosynthetic genes are also growth phase 
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regulated150.  Our results here suggest that the protein degradation pathway plays 

an important role in the growth phase regulation of INO1.  In this chapter, we 

attempt to decipher a possible mechanism responsible for INO1 growth phase 

regulation via protein degradation by the proteasome. 

 

Materials and Methods 
 
Plasmid construction 
 

Plasmid pCR-Blunt II- TOPO from Invitrogen Zero Blunt TOPO PCR 

Cloning Kit was used to insert a fragment containing from 500 bp upstream to 500 

bp downstream of INO2 ORF to generate pBS101 (Table 2).  Likewise, plasmid pCR-

Blunt II- TOPO was used to insert a fragment containing from 500 bp upstream to 

500 bp downstream of INO4 ORF to generate pBS104 (Table 2).   

  
Site-directed mutagenesis 
 

Site directed mutagenesis was performed on INO2 ORF using Agilent 

Technologies QuikChange XL Site-Directed Mutagenesis Kit on codons K110R 

(a329g) and K158R (a473g) (Table 1).  Site directed mutagenesis was performed on 

INO4 ORF codons K19R (a56g), K115R (a344g), and K138R (a413g) (Table 1).  

Primers were designed based on recommendations in the Agilent Technologies 

QuikChange XL Site-Directed Mutagenesis Kit.  Mutagenized plasmids were 

transformed into XL10-Gold Ultracompetent Cells (Agilent), collected using a Zyppy 

Plasmid Miniprep Kit (Genesee) and sequenced to confirm the presence of the 

mutations (Eurofins).   
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Yeast strains, media, and growth conditions 
 

The S. cerevisiae strains used in this study were BY4741 (MATa, his3Δ1, 

leu2Δ0, met15Δ0, ura3Δ0); isogenic strains containing ino2, ino4, pdr5, opi1 

(VYDS), and doxycycline (Dox) titratable strains rpn11 Dox and rpt2 Dox 67–69. 

Strains with Tandem Affinity Purification (TAP) tagged INO2 and INO4 were 

purchased from Open Biosystems 151 (Table 3).  Gene-specific cassettes containing a 

C-terminally positioned TAP tag were synthesized by PCR using pFA6a-TAP-His3MX 

(CBP-TEV-ZZ-His3MX6) as template and transformed into relevant strains to 

generate pdr5 INO2-TAP and pdr5 INO4-TAP, rpn11 Dox INO2-TAP and rpn11 Dox 

INO4-TAP, and rpt2 Dox INO2-TAP and rpt2 Dox INO4-TAP strains.  BY4741 opi1  

was transformed with pMK139 containing HA-OPI1152 to determine Opi1p stability 

throughout growth phase.  Yeast strain BRS2011 contains a GAL1-INO2 gene 

inserted at the GAL4 site153.  The INO2 gene was TAP-tagged using the strategy 

described above. 

Alleles generated by mutagenesis were digested with EcoRI releasing the 

entire gene.  These DNA fragments were transformed into ino2, ino4 strains using 

a Yeast Maker Transformation Kit (Clontech) which resulted in insertion of the 

mutant alleles at endogenous loci.  Subsequently, the mutant alleles were tagged 

using the same gene-specific cassette described above. 

Yeast cultures were grown at 30˚C in complete synthetic medium containing 

2% glucose (w/v) but lacking inositol and choline (I-C)127.  When indicated 75 M of 

inositol and 1 mM of choline where added (I+C+).  Media used for titratable strains 
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included 10 g/ml of Doxycycline 69.  BRS2011 (GAL1-INO2) was grown in 2% 

Raffinose (w/v) and 0.25% Galactose in media with and without inositol and 

choline.   

 
Growth phase assays 
 

Cells were pre-cultured in YEPD until saturation.  Cells were pelleted and 

washed with dH20 and transferred to complete I-C- synthetic medium at a 1:10 

dilution.  Samples were taken at different OD600 measurements (0.4, 0.6, 0.8, 1.0, 

1.2) until cultures reached the stationary phase of cell growth.  When assaying 

titratable strains, Doxycycline (10 g/ml) was added when cells reached 0.4 units at 

OD600.  When assaying pdr5 mutants, 10 M of protease inhibitor MG132 was 

added after cultures reached 0.8 units at OD600.  

 
RNA extraction and quantitative real-time PCR (QRT-PCR) analysis 
 

RNA was extracted by a hot-acid phenol method55, followed by DNase 

digestion using RQ1 DNase (Promega), and purified using an RNA Clean & 

Concentrator (ZYMO) kit.  RNA was used to synthesize cDNA using Superscript II 

reverse transcriptase (Invitrogen).  For quantification, cDNA was diluted 1:10, and 

quantitative PCR (QPCR) was performed as described previously123.  INO1, INO2, 

and TCM1 transcripts were quantified using the INO1-ORF, INO2-ORF, and TCM1-

ORF primer pairs (Table 1) 

 
Protein extraction, SDS-PAGE, Western blotting 
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Whole cell extracts from S. cerevisiae were prepared by sonicating cells in 

Extraction Buffer (40 mM HEPES pH7.4, 350 mM Sodium chloride, 0.1% NP40, 10% 

Glycerol, 100 M PMSF, 2 g/ml Pepstatin A).  Protein concentration was 

determined by the Bradford Method.  Proteins were denatured in Laemlli Buffer, 

DMSO and 95C and fractionated in 8% polyacrylamide gels, in Tris/Glycine/SDS 

Buffer (Bio-Rad), transferred in 1X Tris/Glycine, 20% methanol onto PVDF 

membranes at 4C overnight.  Membranes were washed with 1X PBS Tween 0.05% 

(Genesee) blocked with 1X PBST 5% dry milk.  Peroxidase Anti-Peroxidase Antibody 

(Sigma) was incubated for 3 hrs for detecting TAP-tags.  TBP served as an internal 

standard and was detected using a Monoclonal Primary Antibody (Mouse Anti-TBP 

(Sigma)) for 2 hrs.  HA was detected using a Monoclonal Primary Antibody 

produced in mouse (Sigma) for 2hrs, followed by a secondary antibody used, 

Donkey Anti-mouse HRP (Thermo), for 1 hr.  Proteins were detected using an 

ImageQuant LAS4000 mini Luminescent Image Analyzer (GE) with ProSignalTM Dura 

ECL reagents (Genesee) 
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Table 1: List of oligonucleotides 

Primer Sequence 
INO4-TAP Fwd GGAGTTAATTTGGGAGCTGGGTGATGGACAGAGTGGTCAGGGTCGACGGATCCCCGGGTT 

INO4-TAP Rev TTTTCTTTGTGGGATATGCACCACTCCCCTCTGCAAAGTGTCGATGAATTCGAGCTCGTT 

INO2-TAP Fwd AAGCGCAAATGAAGCACTACAGCACATACTGGATGATTCCGGTCGACGGATCCCCGGGTT 

INO2-TAP Rev CTATAGATCAGAGGTTACATGGCCAAGATTGAAACTTAGAGTCGCTGAATTCGAGCTCGT 

INO4-TAP Conf Fwd GAAGGAGTTAATTTGGGAGCTGGGTGATGGACAGAGTGGT 

INO2-TAP Conf Fwd GAAGGTACGGAAATGGAAACACGTTCAAATGGAGAAGATAC 

TAP Conf Rev CCTACCCATGGTTGTTTATGTTCGGATGTGATGTGAGAAC 

GAL4-TAP Rev AATTAAAACGAATATTCAAGAAATGCAATGATGTGCCTCTTCGATGAATTCGAGCTCGTT 
INO1-ORF F GTATTAAACCGGTCTCCATTGC 
INO1-ORF R CCGACGGGCTTCATATATTTG 
INO2-ORF F CCTGAAACACATCCACACAG 
INO2-ORF R CATTTGAACGTGTTTCCATTTC 
TCM1-ORF F CCAGAGCTGGTCAAAGAGGT 
TCM1-ORF R ACCGTAGTGGACGAAACCAC 
INO2 K110R (a329g)F CAAGCGCTTGGTCTCAGGTTGTCTCCTTCCAGT 

INO2 K110R (a329g)R ACTGGAAGGAGACAACCTGAGACCAAGCGCTTG 

INO2 K158R (a473g)F CATCTACATATAAGATCACCAAGAAAGCAGCATAGGTATACCGAA 

INO2 K158R (a473g)R TTCGGTATACCTATGCTGCTTTCTTGGTGATCTTATATGTAGATG 

INO4 K19R (a56g)F CCGGGATTGTCCGAGATTAGGGAGATAAAGGGTGA 

INO4 K19R (a56g)R TCACCCTTTATCTCCCTAATCTCGGACAATCCCGG 

INO4 K115R (a344g)F ATCATAGCTAAGCATGAGGCAAGAACCGGCAGCAG 

INO4 K115R (a344g)R CTGCTGCCGGTTCTTGCCTCATGCTTAGCTATGAT 

INO4 K138R (a413g)F GAAACATTCGGGATTTAGTACCGAGGGAGTTAATTTGGGAG 

INO4 K138R (a413g) R CTCCCAAATTAACTCCCTCGGTACTAAATCCCGAATGTTTC 

INO2 +1to20 seq ATGCAACAAGCAACTGGGAA 

INO2 +200to220 seq ACCCTCTCACGTAGAAACTA 

INO4 +1to20 seq ATGACGAACGATATTAAGGA 

INO4 -500to454 F GCACCTTCCAAGCTTTAGTGTCGATGAAGTTGGAT 

INO4 +901to928 R AAGAAAGTAAAAATATGAGCGGTACGAGAATCGA 

INO2 -500to454 F GAGTTACTTTGAATCCTTGATAATATGGATCGAG 

INO2 1366to1409 R CGTCCCTTAATTGGTATTATTTATAAATAAATGGCACGTACTTT 
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Table 2: Vector list 

Plasmid Description Source 

pCR-Blunt II 
TOPO 

Empty vector Agilent Technologies 

pBS101 -500bp INO2 to +500 pCR-Blunt II 
TOPO   

This study 

pBS102 INO2 K110R on pCR-Blunt II TOPO This study 
pBS103 INO2 K110R K158R on pCR-Blunt II 

TOPO 
This study 

pBS104 INO2 K158R on pCR-Blunt II TOPO This study 
pBS105 -500bp INO4 to +500 pCR-Blunt II 

TOPO 
This study 

pBS106 INO4 K19R on pCR-Blunt II TOPO This study 
pMK139 HA-Opi1p on pRS200  Kaadige and Lopes 2006 
pJH330 INO1-LacZ  Elkhaimi et al. 2000 
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Table 3: Yeast strains and genotype 

Yeast strains Description Source 

BY4741 Mat a his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 VYDS 

opi1 BY4741 opi1 VYDS 

ino2 BY4741 ino2 VYDS 

ino4 BY4741 ino4 VYDS 

Rpn11 Doxy BY4741 Dox trititable rpn11 Essential gene collection 

Rpt2 Doxy BY4741 Dox trititable rpt2 Essential gene collection 

pdr5 BY4741 pdr5  VYDS 

INO2-TAP BY4741 with INO2-HIS5-TAP Open Biosystems 

INO2-TAP rpn11 
Doxy 

INO2-TAP in Rpn11 Doxy strain This study 

INO2-TAP rpt2 
Doxy 

INO2-TAP in Rpt2 Doxy strain This study 

INO2-TAP pdr5 
(VYDS) 

INO2-TAP in pdr5 strain This study 

INO2-TAP K110R INO2 K110R allele inserted in ino2 then 
tagged with TAP-tag 

This study 

INO2-TAP K110R 
K158R 

INO2 K110R K158R allele inserted in 
ino2 then tagged with TAP-tag 

This study 

INO2-TAP K158R INO2 K158R allele inserted in ino2 then 
tagged with TAP-tag 

This study 

INO4-TAP BY4741 Open Biosystems Open Biosystems 
INO4-TAP rpn11 
Doxy 

INO4-TAP in Rpn11 Doxy strain This study 

INO4-TAP rpt2 
Doxy 

INO4-TAP in Rpt2 Doxy strain This study 

INO4-TAP pdr5 
(VYDS) 

INO4-TAP in pdr5 strain This study 

INO4-TAP K19R INO4 K19R allele inserted in ino4 then 
tagged with TAP-tag 

This study 

BRS2011 GAL1-INO2 Ashburner and Lopes 1995 
eaf7  BY4741 eaf7 VYDS 

eaf7 INO2-TAP eaf7 strain with INO2-TAP This study 
   

 
 
 
 
 
 



 

 53 

Results 
 

A novel INO1 transcriptional defect happens at the stationary phase of growth 
 

Historically when a mutant was identified with an Opi- phenotype, it was 

associated with a repression defect under repressing growth conditions (I+C+)6.  

For example, an opi1 mutant shows elevated levels of INO1 mRNA under repressing 

conditions, (Figure 11A).  Having identified several mutants from the proteasome 

with an Opi- phenotype, we hypothesized that these are playing a role in INO1 

repression in repressing media.  However, when we tested INO1 mRNA levels under 

activating and repressing conditions, strains containing mutations in two 

proteasome subunits tested (rpn11 and rpt2) failed to show the repression defect 

typically associated with the Opi- phenotype, showing full repression of INO1 under 

repressing conditions (Fig 11A).   

In addition to INO1 regulation in response to inositol and choline, there is an 

additional regulation of INO1 which depends on the growth phase149,150.  This 

growth regulation shows that INO1 is active at the exponential phase of growth but 

repressed when cells reach stationary phase.  Thus, we decided to test the effect of 

rpn11 and rpt2 mutant alleles on INO1 expression at the stationary phase (Fig 11B).  

Surprisingly, when RPN11 and/or RPT2 were conditionally shutdown by the 

addition of Doxycycline, INO1 expression was now elevated in stationary phase.  

This result suggests that RPN11 and RPT2 play a role in repressing INO1 at the 

stationary phase in I-C- conditions.  Because eukaryotes may require both 

ubiquitination and the proteasome to degrade a protein, we tested the only E1 

enzyme yeast has from the ubiquitination pathway to determine if this part of the 
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protein degradation pathway plays an important role in regulating INO1 at 

stationary phase. When looking at an UBA1 conditional shutdown strain, we 

identified a repression defect at stationary phase that was similar to what we 

observed with the proteasome shutdown mutants, further confirming that the Ub 

pathway is important for the growth phase regulation of INO1 (Figure 12). 

As a control for cell growth, we quantified INO1 transcription in WT cells 

under activating conditions (I-C-) (Figure 13).  Samples were taken at different 

OD600 levels (Figure 12B).  As previously reported, INO1 mRNA levels increase 

throughout exponential growth and drop dramatically until almost undetectable 

levels on entry into stationary phase (1.2 OD600).  
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Figure 11:  INO1 mRNA levels at exponential and stationary phase in response to 

inositol
INO1 mRNA levels in repressing (I+C+) and derepressing conditions (I-C-). 10 µg/ml of 
Doxycycline was added to induce conditional shutdown of essential genes RPN11 and 

RPT2.  (A) Samples were taken at exponential phase (OD600= > 0.6 < 0.9) or (B) at late 
stationary phase (OD600= 1.1-1.2).
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Figure 11: INO1 mRNA levels at exponential and stationary phase in response to  
Figure 12: INO1 expression on UBA1 Conditional Shutdown strain 

  

Figure 12:  INO1 expression in an UBA1 conditional shutdown strain
UBA1 is yeasts only Ubiquitination pathway E1 enzyme. INO1 mRNA levels in 
repressing (I+C+) and derepressing conditions (I-C-). 10 ug/ml of Doxycycline was 
added to induce conditional shutdown of essential genes RPN11 and RPT2. Samples 
were taken at late stationary phase (OD600= 1.1-1.2).
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Figure 13: INO1 mRNA transcription levels throughout Growth phase 
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Figure 13:  INO1 mRNA transcription levels throughout growth phase 

(A) Growth of yeast in I-C- media.  Maximum OD
600

 that yeast reach in this media is little over 1.2.  

(B)  Samples were taken at different stages of the cell growth and INO1 mRNA levels were 
quantitifed. 
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INO1 transcriptional activators are degraded during stationary phase 
 

Given our limited understanding of INO1 regulation at stationary phase and 

our results with the proteasome subunits (Figure 11), we reasoned that under the 

conditional shutdown of RPN11 and RPT2, some transcription factor might be 

stabilized causing INO1 transcription to remain high.  First, we decided to test Ino2p 

and Ino4p activator stability using TAP-tagged strains (tag is inserted at the native 

location) (Figure 14).  The data show that both Ino2p-TAP and Ino4p-TAP levels 

decrease dramatically when cells approach stationary phase.  In fact, Ino2p-TAP 

decreased throughout exponential phase and into stationary phase (Figure 14A).   

We wanted to create an Opi1p-TAP to determine if its stability is affected as a 

function of growth.  For reasons that are not clear, we and others have been unable 

to insert a TAP-tag at the endogenous location.  Instead, we transformed an opi 

strain with pMK139, which contains an HA-tagged OPI1 gene.  The results show that 

HA-Opi1p levels did not show any regulation throughout growth.  Opi1p levels 

remained stable through different growth phases suggesting that Opi1p does not 

play a role in the growth phase regulation of INO1 (Figure 15).   

These results suggest that Ino2p and Ino4p levels are the main targets that 

could explain INO1 growth phase regulation which suggests that genes involved in 

protein degradation play a direct role in the regulation of INO1.  This is the first 

evidence we have showing that Ino2p and Ino4p are getting degraded at stationary 

phase.  With this understanding, we hypothesized that during the conditional 

shutdown of the proteasome subunits, Ino2p and Ino4p are stabilized during 

stationary phase.  To test this, we generated strains combining RPN11 and RPT2 
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conditional shutdown with Ino2p-TAP and Ino4p-TAP.  Consistent with our 

previous results (Figure 14), both Ino2p-TAP and Ino4p-TAP levels decreased 

during stationary phase, but when proteasome subunit genes where shutdown by 

adding Doxycycline, both Ino2p-TAP and Ino4p-TAP were stabilized during 

stationary phase (Figure 16).  This experiment suggests that the protein 

degradation pathway plays a direct role in the regulation of INO1 at stationary 

growth phase, showing for the first time that the protein degradation pathway is an 

important regulator of the phospholipid biosynthetic genes. 
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Figure 14 
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Figure 14:  INO1 activators’ stability throughout growth phase

(A) Western blot showing Ino4p-TAP and Ino2p-TAP levels at different stages in the cell 
growth. (B) Quantification of Ino4p-TAP and Ino2p-TAP protein levels (triplicate) 
throughout cell growth.
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Figure 15: HA-Opi1p stability throughout Growth Phase 
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Figure 15: HA-Opi1p stability throughout growth phase

Western blot showing HA-Opi1p (from pMK139) in an opi1∆ strain grown in 
I-C- media at different stages of growth. 
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Figure 16:  Ino2p and Ino4p stability on Proteasome subunits throughout Growth Phase 
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Figure 16: Ino2p and Ino4p stability in proteasome subunits throughout strains growth phase 
(A) INO1 activators stability throughout growth phase under proteasome subunits (RPT2 and RPN11)  
conditional shutdown by doxycycline (+).  (B) Quantification of INO1 activators throughout growth phase as 
function of proteasome subunit (RPT2 and RPN11) conditional shutdown. 
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Chemical inhibition of the proteasome stabilizes INO1 activators 
 

The proteasome is a primary pathway responsible for degrading proteins in 

eukaryotes.  Our previous results suggest that the proteasome might degrade Ino2p 

and Ino4p at stationary phase.  To confirm that the proteasome is involved in the 

degradation of Ino2p and Ino4p we tested their stability following treatment with 

the proteasome chemical inhibitor MG132.  MG132 is a potent, reversible, cell-

permeable proteasome inhibitor.  In yeast, it is capable of reducing degradation of 

Ub-conjugated proteins by the 26S complex without affecting its ATPase or 

isopeptidase activities.  To use MG132 in yeast, it is necessary to use a pdr5 mutant 

strain.  PDR5 encodes a multidrug transporter that is important for cellular 

detoxification154.  Thus, we generated Ino2p-TAP and Ino4p-TAP strains containing 

a pdr5 allele and tested Ino2p and Ino4p stability following MG132 treatment 

(Figure 17).  Ino2p and Ino4p levels decrease dramatically when adding DMSO, but 

with the addition of MG132, both Ino2p and Ino4p levels were stabilized at 

stationary phase.  This further confirms our model that Ino2p and Ino4p are 

degraded at the stationary phase. 
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Figure 17: INO1 activators stability throughout growth phase with Proteasome 
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Figure 17:  INO1 activator stability throughout growth phase in the presence of the proteasome 

chemical inhibitor MG132
(A) Western blot of Ino2p-TAP and Ino4p-TAP in a pdr5D deletion mutant. Cells were exposed to 
either DMSO, or the proteasome chemical inhibitor MG132. (B) Quantification of Ino2p-TAP and 

Ino4p-TAP throughout growth phase.
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Mutagenesis of predicted Ub sites yields stabilization of Ino2p and Ino4p 
 

Proteins that are targeted to the proteasome often must be modified by poly-

Ub.  Typically, ubiquitination occurs on Lysine residues92.  Using a bioinformatics 

tool (www.ubpred.com) that predicts Ub sites, we identified several potential Ub 

sites for both Ino2p and Ino4p.  Ino2p has two potential sites, K110 and K158.  In 

order to determine if these sites are required for Ino2p degradation we conducted 

site-directed mutagenesis on these sites.  DNA fragments containing mutant 

versions of INO2 were introduced into an ino2 strain thus placing the mutation at 

the native location and the ORF was subsequently tagged with TAP.  These yeast 

strains were used to determine Ino2p stability throughout the growth phase (Figure 

18).  The K110R single INO2 mutant showed no significant stabilization when 

compared to WT (Figure 18).  However, when both K110, K158 sites or the K158 

site alone were mutated, Ino2p-TAP was significantly stabilized in stationary phase.  

This suggests that the K158 site might by modified by Ub and is important for Ino2p 

stability in stationary phase.  

Ino4p also has two potential sites, K19 and K115.  Similar to the situation 

with Ino2p, mutating the Ino4p K19 significantly stabilized Ino4p-TAP in stationary 

phase (Figure 19).  This suggests that the Ino4p K19 site might be modified by Ub 

and is important for Ino4p stability in stationary phase. 

http://www.ubpred.com/
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Figure 18: Site-directed mutagenesis of K158 residue stabilizes Ino2p 

in stationary phase
(A) Western blots showing wild type Ino2p and K110R and K148R Ino2p 
mutants throughout the growth phase. (B) Quantification of Ino2p 

throughout growth phase.
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Figure 18: Site-Directed mutagenesis on Ino2p Lysines 
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Figure 19: Site-Directed mutagenesis on Ino4p Lysines 
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Figure 19: Site-directed mutagenesis of K19 residue stabilizes Ino4p in 

stationary phase(A) Western blots showing wild type Ino4p and a K19R Ino2p 
mutants throughout the growth phase. (B) Quantification of Ino4p throughout 
growth phase.
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Regulation of INO1 in stationary phase occurs at the activator protein level not at the 
transcription level 
 

The decrease in protein levels of INO1 transcriptional activators during 

stationary phase can be explained if these are being degraded by the proteasome, 

but there is a possibility that this decrease is caused by a decrease in the 

transcription levels of INO2 or INO4.  This possibility exists because INO2 is auto 

regulated147.  The INO2 promoter contains an UASINO, and is autoregulated in 

response to inositol, in a pattern that is similar to INO1 regulation107.  To determine 

if INO1 repression at the stationary phase is indeed due to altered activator protein 

levels we investigated the effect on INO1 transcription if we control transcript levels 

of the INO2 activator gene.   

For this purpose, we used a strain (BRS2011) that contains a single copy of a 

GAL1-INO2 gene inserted in the genome153.  By controlling INO2 levels with 

galactose, we can determine if the drop in Ino2p levels and INO1 transcription is 

based on either INO2 genetic repression or degradation of Ino2p.  We grew the 

GAL1-INO2 strain (BRS2011) on 0.25% galactose, since INO1 expression has been 

shown to be maximal at this concentration of galactose153.  Under these conditions, 

INO1 regulation remains high during exponential phase and dropped in stationary 

phase mimicking INO1 expression in a WT strain (Figure 20).  These data suggest 

that INO1 repression in stationary phase is in fact due to decreased levels of Ino2p. 
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20Phase regulation occur 

s in  

Figure 20:  INO1 growth phase regulation in a GAL1-INO2 strain

(A) Transcript levels of INO2 (A) and INO1 (B) in a GAL1-INO2 strain (BRS2011) in 0.25% 
galactose throughout the growth phase.  
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Discussion 
 
 In this chapter we sought to decipher how the phospholipid biosynthetic 

genes are regulated as cells enter stationary phase.  All of the research done in 

trying to understand how the phospholipid biosynthetic genes are regulated has 

predominantly focused on the response to inositol and choline.  While, growth 

phase regulation has been known for around thirty years, little to nothing was 

known about the mechanism for this regulation23,150.  This is very important to 

understand as our studies will open a new area focused on understanding how 

phospholipid biosynthetic genes are regulated, how they are coordinated with other 

process through protein degradation and stationary phase and it identified new 

genes involved in the transition to stationary phase.  

 In eukaryotes, proteins are often degraded by the UB-proteasome system78, 

making  this a very important process for the cell.  In our previous screens looking 

for the Opi- phenotype71,72, different genes involved in the ubiquitination pathway 

and proteasome complex were identified with an Opi- phenotype suggesting that 

this process is involved in the regulation of the phospholipid biosynthetic genes in 

yeast.  This constituted the first formal evidence that the protein degradation 

pathway plays an important role in the regulation of the phospholipid biosynthetic 

genes.   

 Prior to this study, the Opi- phenotype had been strongly correlated with a 

repression defect in INO1 transcription wherein cells become unresponsive to 

inositol and choline.  Our results here showed that downregulation of proteasome 

subunit genes did not show this same defect under repression growth conditions 
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(I+C+).  Knowing INO1 can be regulated in response to growth, we tested for INO1 

transcriptional regulation throughout the growth phase.  Our results showed that 

the protein degradation genes play a role in repressing INO1 at stationary phase 

under activating conditions (I-C-). 

 Further research in the role of the protein degradation genes in the 

regulation of INO1 showed how its activators, Ino2p and Ino4p, are present during 

the exponential phase but decrease dramatically at stationary phase to undetectable 

levels.  This correlates with INO1 expression throughout the growth phase, since 

INO1 and other phospholipid biosynthetic genes are active at exponential phase but 

repressed in stationary phase23,150.  The proteasome subunit genes (RPN11 and 

RPT2) tested for effects on INO1 transcription at stationary phase, were also tested 

to determine the effect on Ino2p and Ino4p throughout the growth phase.  A 

conditional shutdown of the proteasome subunit genes, yielded stabilization of the 

activators at stationary phase, correlating with what we see with INO1 mRNA levels 

under these same conditions.  This stabilization of INO1 activators was further 

confirmed when using the chemical inhibitor MG132.  This is the first compelling 

evidence that supports that Ino2p and Ino4p are being degraded at the stationary 

phase, which links the protein degradation pathway as an important growth phase 

regulator of INO1 transcription.   

 Using a bioinformatic tool (www.ubpred.com), we identified potential sites 

for ubiquitination in Ino2p and Ino4p.  When these sites were mutagenized, we 

were able to determine that Lysine 158 in Ino2p and Lysine 19 in Ino4p are 

important amino acid residues for the stability of these proteins.  These results are 

http://www.ubpred.com/
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consistent with, but do not prove that, Ino2p and Ino4p are being targeted for 

degradation by ubiquitination.  Notably, it is known that protein degradation is 

possible in a Ub-independent matter in eukaryotes155,156.  In this project, we tried 

identifying if ubiquitination does take place on either Ino2p or Ino4p by using an 

anti-Ub antibody following immunoprecipitation, using mass spectrometry.  We 

took samples at different OD600 in the presence of de-ubiquitinase inhibitor N-

Ethylmaleimide (NEM) in order to determine if Ino2p or Ino4p had a different band 

size that could lead us to suspect that they are being modified by Ub.  All 

experiments failed at trying to identify if ubiquitination is taking place.  it is worth 

noting that there have been recent reports that the proteasome is responsible for 

regulating phospholipid synthesis in a Ub-independent matter via the Kennedy 

pathway157. 

 Based on our data, we built a model that explains how INO1 repression 

behaves when the reach stationary phase (Figure 21).  Under activating conditions, 

it is known that INO1 is active because the transcription activators, Ino2p and Ino4p, 

heterodimerize to form a complex that binds the INO1 promoter.  When 

approaching stationary phase, we propose that an unknown signal triggers Ino2p 

and Ino4p to be targeted to the proteasome for destruction.  By the time the cells 

have fully entered stationary phase, both Ino2p and Ino4p levels have decreased 

dramatically leading to reduced INO1 expression.  

 Both protein degradation and phospholipid synthesis are essential processes 

that the cell needs for proliferation.  In addition to both processes being important 

for its proliferation, recently it was reported that in mammals genes involved in 
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protein degradation, specifically the ubiquitination pathway, play an essential role 

in controlling neurogenesis79,80.  There is a direct connection with autism, as it has 

been reported that a common phenotype between individuals with autism is that 

there may be too many synapses in the brain158.  The study shows how the Ub-ligase 

(E3) RNF8 in mammals (DMA1 and DMA2 in yeast) and Ub-conjugase (E2) UBC13 

play an important role in suppressing synapse formation in the mammalian brain in 

vivo.  This result is interesting, especially considering that UBC13 was identified to 

have an Opi- phenotype in yeast71.  Taking in consideration all we have learned 

about the role of protein degradation in regulating the phospholipid biosynthetic 

genes, its role in controlling neurogenesis, and both processes having UBC13 as a 

common player, this may lead to using the behavior of INO1 transcription for early 

detection in autism.  This is not the first instance of yeast research being used to 

understand the human condition.  A significant body of study has shown a role for 

INO1 transcription in bipolar disorder159.   Since so much is still unknown about the 

role of the protein degradation genes in regulating the phospholipid biosynthetic 

genes, it is still too early to suggest that a connection can be found in the 

phospholipid genes behavior and autism.  More research is needed to further 

confirm a connection between both pathways, but if this indicates a connection, it 

could lead to the use of INO1 transcriptional behavior in early detection in autistic 

children. 
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Figure 21: INO1 Growth Phase regulation model 

Figure 21: INO1 Growth Phase regulation model 
Proposed model which shows possible mechanism of INO1 regulation at stationary 
phase. Refer to text for complete description. 
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CHAPTER 

IV. NUA4 HAT IS A REGULATOR OF PHOSPHOLIPID BIOSYNTHETIC GENE 

EXPRESSION 
 

Introduction 
 

Eukaryotes show a higher degree of complexity in terms of regulation of gene 

expression.  Eukaryotic DNA is organized into a complex structure called 

chromatin91.  Chromatin in turn is a very active and dynamic player in many 

processes that involve gene regulation90.  One type of modification that plays an 

important role for regulating the function of chromatin is a post-translational 

modification of histones, acetylation160.  Histones are a family of basic proteins that 

are associated with DNA in the nucleus and help condense it into chromatin.  

Histones can have several types of modifications including methylation, 

phosphorylation, ubiquitination, and acetylation161.  Acetylation of histones is 

proposed to play a double role in the cell.  It is known that acetylation of lysines in 

histones neutralizes the positive charge of histone tails which leads to weaker 

interaction with DNA, this leads the chromatin to decondense and make promoters 

more accessible for transcription.  Second, acetylation can provide an epigenetic 

marker for gene expression by blocking the heterochromatin-stabilizing association 

complexes91–94 

Acetylation is driven by Histone Acetyl Transferases (HAT), which exist in 

large complexes, such as NuA4 (Nucleosome acetyltransferase of H4).  NuA4 is one 

of the most conserved HAT complexes in eukaryotes95,96 (Figure 6).  The NuA4 
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complex is important because of its role in different essential processes such as DNA 

repair and transcription regulation97–101.  It is composed by 13 subunits encoded in 

both essential and non-essential genes.  The essential genes include ESA1 (encodes 

the catalytic subunit), EPL1, TRA1, ARP4, ACT1, EAF2 (SWC4), and YNG2, while EAF1, 

EAF3, EAF5, EAF6, EAF7, and YAF9 are non-essential in Saccharomyces cerevisiae.  

However, all of these are very well conserved throughout eukaryotes90. HAT 

complexes are well known for their ability to acetylate histones tails, but in addition 

to these well-established substrates NuA4 and other HAT complexes are known to 

acetylate non-histone substrates, which can control different processes such as 

metabolism, autophagy, and homeostasis104,145,162–164.  Some subunits of NuA4 have 

also been associated with tumorigenesis in colon, breast and prostate cancers111,165.   

Our lab previously conducted genome-wide screens that discovered 

interactions between the NuA4 HAT and phospholipid biosynthetic gene 

regulation71,72.  Nine of the thirteen NuA4 HAT subunits displayed an Opi- 

phenotype, suggesting a role in repressing expression of the phospholipid 

biosynthetic genes.  While HAT complexes are known to play a role in gene 

activation, the Opi- phenotype that we see with NuA4 suggests that it may play a role 

in repression.  Interestingly, published experiments suggest NuA4 HAT binds the 

INO1 promoter but is not required for transcriptional activation143, which suggests 

that the role of NuA4 HAT in the regulation of the phospholipid genes is due to an 

uncharacterized role.  In this project, we explore the effect of mutating NuA4 on 

INO1 transcriptional regulation. 
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Materials and Methods 
 

Yeast strains, media, and growth conditions 
 

The S. cerevisiae strains used in this study were BY4741 (MATa, his3Δ1, 

leu2Δ0, met15Δ0, ura3Δ0) and an isogenic eaf7 strain (VYDS)67,68.  Strains with 

Tandem Affinity Purification (TAP)-tagged INO2 and INO4 were purchased from 

Open Biosystems 151.  Gene-specific cassettes containing a C-terminally positioned 

TAP tag were synthesized by PCR using pFA6a-TAP-His3MX (CBP-TEV-ZZ-His3MX6) 

as template to generate eaf7, INO2-TAP strain. 

   
Growth phase assays: 
 

Precultures of cells were grown on YEPD until saturation.  Cells were pelleted 

and washed with dH20 and transferred to complete I-C- synthetic medium at a 1:10 

dilution.  Samples were taken at different OD600 measurements (0.4, 0.6, 0.8, 1.0, 

1.2) until cultures reached the stationary phase of cell growth. 

 
RNA extraction and quantitative real-time PCR (QRT-PCR) analysis: 
 

RNA was extracted by a hot-acid phenol method55, followed by DNase 

digestion using RQ1 DNase (Promega), and purification using an RNA Clean & 

Concentrator kit (ZYMO).  RNA was used to synthesize cDNA using Superscript II 

reverse transcriptase (Invitrogen).  For quantification, cDNA was diluted 1:10, and 

quantitative PCR (QPCR) was performed as described previously123.  INO1 and TCM1 

transcripts were quantified by using the INO1-ORF and TCM1-ORF primer pairs 

(Table 1). 
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-galactosidase assay: 

 -galactosidase assays were performed as previously described9.   Assays 

were performed in -Gal Assay Buffer (20% glycerol, 0.1 M Tris/HCl pH8.0 1 mM 

DTT, 10 M PMSF, 1 g/ml Pepstatin A) following the addition of 160 g/l of 

ONPG.  The plasmid pJH330 contains an INO1-lacZ construct which was transformed 

into the relevant strains.  Kinetic activity was measured in a microtiter plate reader 

at OD420 measured every 12 seconds for 30 minutes. 

 

Protein extraction, SDS-PAGE, Western blotting: 
 

Whole cell extracts from S. cerevisiae were prepared by sonicating cells in 

Extraction Buffer (40 mM HEPES pH7.4, 350 mM Sodium chloride, 0.1% NP40, 10% 

Glycerol, 100 M PMSF, and 2 g/ml Pepstatin A).  Protein extract concentration 

was quantified by the Bradford Method and denatured on Laemlli Buffer, DMSO at 

95˚C and fractionated on 8% polyacrylamide gels in Tris/Glycine/SDS Buffer (Bio-

Rad).  Proteins were transferred in 1X Tris/Glycine, 20% methanol onto PVDF 

membranes at 4C overnight.  Membranes were washed with 1X PBS Tween 0.05% 

(Genesee) blocked with 1X PBST 5% dry milk.  Membranes were incubated 3 hrs 

with Peroxidase Anti-Peroxidase Antibody (Sigma) for detecting the TAP-tag.  TBP 

was detected using a Monoclonal Primary Antibody, Mouse Anti-TBP (Sigma) for 2 

hrs followed by a secondary antibody, Donkey Anti-mouse HRP (Thermo) for 1 hr.  

Proteins were detected using an ImageQuant LAS4000 mini Luminescent Image 

Analyzer (GE). 
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Results 
 

INO1 regulation is affected in NuA4 HAT mutants in stationary phase 
 

Since the Nua4 HAT complex has been identified in both screens our lab has 

conducted looking for mutants with an Opi- phenotype71,72, we tested to determine if 

NuA4 HAT plays a role in the regulation of INO1 in response to inositol.  To do this 

we assayed -gal activity in strains harboring and INO1-lacZ reporter (pJH330) 

grown in exponential phase (Figure 22).  The eaf7 NuA4 HAT subunit mutant strain 

did not show any sign of a repression defect in I+C+.  However, INO1-lacZ expression 

was higher under activating conditions.  This suggests that if NuA4 HAT plays a role 

in the regulation of INO1, it is not in the response to inositol. 

With the understanding that INO1 is growth phase regulated, we tested to 

determine if INO1 regulation in the NuA4 HAT mutant is affected as cells enter 

stationary phase (Figure 23).  As was the case with the proteasome mutants, INO1 

mRNA was significantly elevated in I-C- conditions when compared to WT at 

stationary phase.  This suggest that NuA4 HAT is important for INO1 regulation at 

the stationary phase of growth.  
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Figure 22:  INO1 expression in a NuA4 HAT mutant at exponential phase
b-galactosidase activity from an INO1-LacZ reporter in a NuA4 mutant, eaf7,
grown in I-C- and I+C+ media to exponential phase.
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Figure 22: INO1 expression on NuA4 HAT mutant at exponential phase 



 

 81 

 
 
 
 
 
 
 

 
Figure 23: INO1 expression on NuA4 HAT mutant at stationary phase 
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Ino2p activator protein levels are regulated by the Eaf7p NuA4 subunit in stationary 
phase 
 
 Our current understanding of INO1 regulation proposes that the protein 

degradation pathway is involved in regulation at stationary phase.  Interestingly, in 

yeast it has been shown previously that in order for cells to enter meiosis, a 

transcriptional repressor Ume6p needs to be degraded in order to activate the 

meiosis activating genes.  The first step for degradation of Ume6p has been shown 

to require acetylation by the SAGA HAT complex104,164.  Knowing that the protein 

degradation pathway and NuA4 HAT are important regulators of INO1 during 

stationary phase, we tested if NuA4 HAT plays a role in the protein stability of the 

INO1 regulator, Ino2p. 

 Ino2p levels throughout growth phase were similar to the pattern of 

expression of WT cells (Figure 24).  This led us to conclude that NuA4 HAT does not 

necessarily play a role in INO1 regulation via transcription factor degradation. 
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Figure 24: Ino2p stability throughout growth phase on NuA4 HAT mutant 
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Figure 24: Ino2p stability in a NuA4 HAT mutant throughout growth phase.

Western blots showing stability of INO1 activator (Ino2p) stability in a strain 
harboring an eaf7∆ mutant (NuA4 HAT subunit).  
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Discussion 
 
 Currently our understanding of how NuA4 affects INO1 expression is not 

completely formalized.   With respect to NuA4 playing a role in INO1 regulation in 

response to inositol it appears to have a slight effect under activating conditions, but 

no evidence of a role in inositol-mediated repression in exponential phase (Figure 

22).  Knowing INO1 can be growth phase regulated, we tested INO1 transcription at 

stationary phase in a NuA4 mutant and found that INO1 mRNA levels remained high 

in stationary phase (Figure 23).  We learned in the earlier project, that INO1 growth 

phase regulation depends on the protein degradation pathway.  Also, there is 

evidence in yeast that acetylation of the Ume6p transcription factor by a HAT 

complex is a first step towards protein degradation104,164.  However, Ino2p levels 

were not affected in a NuA4 mutant (Figure 24).  This suggested that the role NuA4 

might be playing in order to regulate INO1 is not through protein degradation. 

 It has been shown that lysine acetylation contributes to lipid metabolism by 

regulating gene expression and metabolic enzymes161.  It is also known that NuA4 

has the ability to bind the INO1 promoter, despite not being required for 

transcriptional activation143,166.  NuA4 is also an important negative interactor with 

Sec14p167, a phospholipid-remodeling protein.  This could can provide a way to 

decipher a possible role of NuA4 with respect to regulating phospholipid synthesis.  

Sec14p is an essential phospholipid-binding protein important for the metabolism 

of phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylcholine (PC) at the 

Golgi apparatus.  This protein functions to create a favorable environment for lipid 

trafficking168.  SEC14 mutants display an increase in intracellular PC, a decrease in 
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PI-4-P, and a growth deficiency in media lacking inositol169–174.  Recently a study 

attempted to decipher the role NuA4 plays in phospholipid synthesis.  It was 

hypothesized that since NuA4 mutants over-produce inositol (Opi- phenotype), 

combining both NuA4 mutants with SEC14 mutant, would suppress the growth 

defects that Sec14 displays in inositol-depleted conditions.  Surprisingly, NuA4 

mutants increased the growth defects present in a sec14-1ts under inositol-depleted 

conditions175.  Consistent with our previous data, INO1 was upregulated in NuA4 

mutants and in combination with sec14-1ts, but other genes that have UASINO in their 

promoter were not affected by these mutants.  This suggests that the role NuA4 

plays may be through other aspects of homeostasis.  In fact, through genetic and 

chemical approaches, it was suggested that the role NuA4 plays might lie in 

phospholipid homeostasis through regulation of fatty acid synthesis and lipid 

droplets175. 
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CHAPTER  

V. DISCUSSION 

 

Summary 
 
 This study adds considerable insight to our understanding of phospholipid 

biosynthetic gene regulation and which biological processes are important for 

regulation.  Our research focused on learning how INO1 is regulated in response to 

growth, which has been known to be occur for over twenty years, but little to 

nothing was known about the mechanism.   

 Our lab’s genome-wide screens looking for potential repressors for INO1 

transcription revealed that our understanding of the regulation of the phospholipid 

biosynthetic pathway is incomplete71,72.  During the course of studying this pathway, 

there were only eight genes identified (by many labs) to have an Opi- phenotype, a 

phenotype that is correlated with a repression defect.  In our first project (Chapter 

II) we identified 122 essential genes with an Opi- phenotype which adds to the 91 

Opi- mutants found screening the VYDS71,72, for a total of over 200 genes responsible 

for potentially repressing INO1 transcription.  Processes identified in our screen 

included, gene looping, protein degradation, protein post-translational modification, 

the nuclear pore complex, transcriptional regulation, and lipid synthesis.  With these 

results it was reasonable to conclude that more research is needed in order to fully 

understand transcriptional regulation of the phospholipid biosynthetic genes. 

 In our second project (Chapter III), we focused on trying to understand how 

one of the novel biological processes identified in the essential gene screen affects 
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phospholipid transcriptional regulation.  The protein degradation machinery is a 

biological process that was overrepresented in our screen leading us to suspect that 

it plays an important role in gene regulation.  We learned that the protein 

degradation genes are responsible for the transcriptional regulation of INO1 in 

response to growth.  We successfully identified that at stationary phase INO1 shows 

a repression defect in the presence of proteasome mutants.  In addition, we 

determined that INO1 transcription activators (Ino2p and Ino4p) levels decrease as 

cells enter stationary phase, leading to lack of activation of INO1.  When inducing a 

conditional shutdown of the proteasome or using a chemical inhibitor of the 

proteasome (MG132) we determined that both Ino2p and Ino4p levels stabilize in 

stationary phase, suggesting that the proteasome degrades both activators.  We 

attempted to identify the role of ubiquitination, although we were not successful in 

identifying Ub-modified activators, we were able to mutate potential sites for 

ubiquitination in both Ino2p and Ino4p and found that these were stabilized in 

stationary phase.  This suggests that ubiquitination might be happening in the high 

confident sites we mutated.  With this new knowledge about INO1 growth phase 

regulation we were able to build a preliminary model that explains the growth 

phase regulation with respect to entry in stationary phase. 

 In our third project (Chapter IV), we focused on trying to understand the role 

of the NuA4 HAT complex in the regulation of INO1.  Nine of the thirteen NuA4 

subunits have been identified in screens looking for the Opi- phenotype, which 

includes Esa1p the catalytic subunit of the complex.  Our initial thought was that 

NuA4 could be acetylating a non-histone protein and that could be the initial signal 
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that could target the INO1 regulators for protein degradation, something that has 

been shown to be possible in yeast104,164.  In addition to determining that NuA4 

mutants show higher levels of INO1 during activating conditions, we also 

determined that NuA4 is playing a role in the growth phase regulation of INO1.  

When we tested for the effect of NuA4 mutants on Ino2p stability throughout 

growth phase, we did not see a clear effect in Ino2p stability.  Recent reports have 

suggested that NuA4 HAT could be contributing to phospholipid homeostasis in 

yeast175.  With this limited knowledge about the effect of NuA4 in INO1 transcription 

we concluded that further investigation is needed for a better understanding of its 

role in regulating transcription of phospholipid biosynthetic genes. 

 

Future Directions 
 

Growth phase regulation via protein degradation 
 
 In our work we discovered a possible explanation for how genes involved in 

protein degradation are involved in INO1 growth phase regulation.  Still, many 

questions remain that could be answered in the future.  Although, we found sites in 

both Ino2p and Ino4p that are suspicious for ubiquitination, physical evidence of 

ubiquitination is still non-existent.  Determining if these activators are being 

modified by Ub will be another piece of the puzzle.  In addition, there is an 

alternative view that could explain why we didn’t identify ubiquitination, namely 

that there are Ub-independent pathways that lead to protein degradation155.  This 

pathway is still not well understood in terms of how it works, but it has been 

already suggested that it plays a role in regulating Pah1p, an important player in the 
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Kennedy pathway (the recycling pathway for phospholipids)157.  With this 

knowledge it is necessary to determine if INO1 activators are being degraded by an 

Ub-dependent mechanism or an Ub-independent mechanism.  This will also help 

decipher if the Ub-independent regulation that was reported in the past in a 

different part of the phospholipid genes is a phenomena specific for the 

phospholipid genes or just for the particular case of Pah1p. 

 Knowing that protein degradation is important for synapse formation in 

mammals158, it will be worth investigating if INO1 regulation can give us a clue 

about synapse formation.  This is driven by the observation that INO1 is regulated 

by protein degradation and both synapse formation and INO1 regulation via protein 

degradation require the ubiquitin conjugation enzyme encoded by UBC13. In order 

to determine this, first we will need to test if UBC13 is required for INO1 regulation 

(similar to UBA1 in the current study).  If INO1 shows signs that UBC13 is required 

for its regulation we will need a different model system to study this in depth, in 

order to test directly synapse formation and INO1 regulation.   

 

Role of NuA4 HAT in the phospholipid biosynthetic pathway 
 
 Thanks to de development of innovative computational technologies, the 

field has been able to advance and increase our understanding and capacity in 

studying complex systems.  Recently a workflow called Octopus-toolkit was 

developed to automate mining of public epigenomic and transcriptomic next-

generation sequencing (NSG) data176.  It retrieves and processes large sets of NGS 

data from the most popular model organisms like humans, mouse, dog, plant, 
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zebrafish, worm, and yeast.  Researchers used this tool to try to identify DNA-

binding proteins that recruit histone-modifying complexes.  They analyzed a ChIP-

seq data set (GSE52339) and their results show that the majority of Esa1p-binding 

sites contained a significant number of Opi1p-binding motifs.  Their results 

suggested  that a spatiotemporal recruitment of Esa1p-containing NuA4 HAT might 

be mediated by Opi1p176.  This suggests new mechanistic insight between the NuA4 

complex and phospholipid homeostasis72,175.  

In addition, if NuA4 plays a role in phospholipid homeostasis it has been 

suggested that the reason NuA4 mutants show an Opi- phenotype is due to a 

downregulation of CDS1 expression175.  Downregulation of CDS1 leads to 

accumulation of PA which reflects an Opi- phenotype72,120.  Under those 

circumstances, it will be worth studying the role NuA4 HAT plays in the regulation 

of CDS1.  If NuA4 positively regulates CDS1, it could give an explanation on why 

NuA4 mutants show an Opi- phenotype. 
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