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ABSTRACT 

VISUAL ATTENTION IN JUMPING SPIDERS 

FEBRUARY 2019  

MARGARET A. BRUCE, B.A., BOSTON UNIVERSITY 

Directed by: Dr. Elizabeth M. Jakob 

The different ways that animals extract and analyze visual information from their 

environment is of interest to sensory ecologists. Jumping spiders, well-known for visually 

guided mating and hunting behavior, are an interesting model for the study of visual 

attention because they quickly and efficiently integrate information from eight eyes with 

a small brain. Stimuli in front of the spider are examined by two functionally and 

morphologically distinct pairs of forward-facing eyes. The principal eyes discern fine 

details and have small retinas and thus a small visual field. However, their position at the 

back of moveable tubes within the cephalothorax expands this visual field. The 

anterolateral eyes, one of the three pairs of secondary eyes, have lower spatial acuity and 

a larger visual field that overlaps with that of the principal eyes. They act as motion 

detectors, directing the principal eyes to objects appearing in their visual field. In Chapter 

1, using a salticid-specific eyetracker, I explore how characteristics of a stimulus 

influence whether the secondary eyes redirect the gaze of the principal eyes from a 

principal stimulus to a new stimulus appearing in the visual field. I found that 

spiders suppressed redirection of the principal eyes when engaged by a salient stimulus, 

and redirected to moving peripheral stimuli more frequently than to stationary peripheral 

stimuli.



 v 

          The principal eyes are also known to engage in a complex behavior called 

“scanning,” involving both dorsoventral and rotational movement. One hypothesis 

regarding scanning’s function is that it helps spiders identify important lines and angles 

in stimuli. However, scanning routines are not well understood. In Chapter 2, I measured 

scanning behaviors when spiders were watching quickly moving versus still or slowly 

moving images. I found that spiders spent more time overall looking at still or slowly 

moving images, and that stimulus speed does not appear to affect rotational movement of 

the retinas. Overall, I conclude that motion in an appearing stimulus elicits the attention 

of the principal eyes, but it remains unclear how and whether scanning functions in the 

extraction of detail from moving stimuli.  
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CHAPTER I 
 

SHIFTS OF VISUAL ATTENTION IN JUMPING SPIDERS 
 

A. Abstract 
 

 Jumping spiders have a visual system consisting of functionally and 

morphologically distinct pairs of eyes that overlap in their field of view. While the 

principal eyes detect fine detail and have a small field of view, the anterior lateral eyes 

have a wide field of view with coarser vision, and act as motion detectors. Here, a 

salticid-specific eyetracker was used to monitor retinal movements. Spiders viewed a 

video of a pair of visual stimuli: a primary target stimulus and a peripheral stimulus, 

which appeared after the primary stimulus. This tested the malleability of the relationship 

between the principal and secondary eyes, and whether the redirection of attention to a 

new stimulus can be suppressed depending on the salience of the stimulus. Spiders’ 

attention shifted from a non-salient stimulus more frequently than it did from a putatively 

salient stimulus, and moving stimuli more frequently caused a redirection of attention. 

These findings suggest that the relationship between the principal and secondary eyes is 

plastic and attentional shifts depend on the nature of both the primary and peripheral 

stimuli. 

 
B. Introduction 

 
 Attention is the process of focusing on a selected aspect of a complex, 

multifaceted environment. In humans and other vertebrates, visual attention is often 

assessed by measuring gaze direction via eye or head movements (Corrigan et al. 2017 , 

Land and Hayhoe 2001, Tatler et al. 2010, Yorzinski et al. 2013, Yorzinski et al. 2015, 

Yorzinski et al. 2017). However, although selective visual attention has been 
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demonstrated in invertebrates (Giurfa and Menzel 1997, Morawetz and Spaethe 2012, 

Spaethe et al. 2006, van Swinderen and Greenspan 2003, Wiederman and O’Carroll 

2013, Humphrey et al. 2018), precise gaze direction can be very difficult to monitor in 

these animals (Land 1995). Here, we use a custom-built modified ophthalmoscope (Jakob 

et al. 2018, Canavesi et al. 2011) to record the gaze direction of jumping spiders, 

Phidippus audax, and test how gaze direction is influenced by the presence of appearing 

peripheral stimuli. 

 Jumping spiders (Family Salticidae) are well known for their visually guided 

behaviors, especially courtship and predation (Harland & Jackson 2012). These spiders 

possess a visual system distinct from both vertebrates and insects that allows for unique 

solutions to the challenges of visual attention. The visual system consists of a set of 

moveable principal eyes which possess the best spatial acuity known for a terrestrial 

invertebrate (Warrant & McIntyre 1993) which overlap in their field of view with the 

stationary anterior lateral secondary eyes (reviewed in Land and Nilsson 2012). The 

ALEs are less spatially acute than the principal eyes but have a larger field of view, and 

serve to direct the movement of the principal eyes to moving objects and objects that 

suddenly appear, much like motion detectors (Jakob et al. 2018). Thus, a spider can 

monitor a broad field of view but direct its high-acuity eyes quickly to examine objects of 

interest. Once the principal eyes are directed to an object, spiders exhibit a unique 

behavior called scanning, in which the retinas are moved repeatedly over the stimulus 

field while being rotated (Land 1969a). 

 The question arises as to whether a spider examining an object with its principal 

eyes should always redirect its principal eyes to a new stimulus when it is detected by the 
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ALEs. In some cases, it may be evolutionarily beneficial to suppress distraction from a 

target stimulus. For example, dragonflies can track the movements of a single individual 

in a swarm of flies without getting distracted by the movements of other flies 

(Wiederman and O’Carroll 2013). In contrast, when presented with distractors in a visual 

search task, honeybees frequently make incorrect decisions when choosing a target 

(Spaethe et al. 2006, Morawetz and Spaethe 2012). In still other cases, failing to attend to 

peripheral stimuli may be costly: animals face a trade-off between focusing on a single 

task and remaining vigilant. Blue jays attending to a difficult foraging task are hindered 

in their ability to detect a target in the peripheral field, which could be a predator (Dukas 

and Kamil 2000). Similarly, a pilot experiment suggested that salticids may suppress a 

redirection of their principal eyes to a new, potentially relevant stimulus appearing in the 

field of view of their ALES when they are visually “locked on” to prey. Freya pachomius 

jumping spiders that were watching a video of a moving cricket were captured more 

quickly in a vial approaching from the side of the arena than were spiders looking at a 

blank screen. Furthermore, a recent study showed that vigilance in jumping spiders 

decreases with the complexity of a visual stimulus (Humphrey et al. 2018).  

 Here, we used a spider eyetracker to test the malleability of the relationship 

between the principal and secondary eyes, and whether a redirection of attention to an 

appearing peripheral stimulus can be suppressed. We showed spiders videos of pairs of 

stimuli: a primary target stimulus and a peripheral stimulus, which appeared after the 

primary stimulus and while the spiders were looking at the primary stimulus. First, we 

varied the qualities of the primary stimulus, and in a second experiment we varied 

qualities of the peripheral stimulus.  
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C. Materials and Methods 
 

 We tested 31 adult female Phidippus audax jumping spiders, captured using 

sweep nets and vials from fields and metal structures in Hampshire Country, MA, USA. 

Spiders were housed in a lab kept at 25° C and with a 16L:8D light cycle. They were kept 

in individual plastic boxes (18 x 13 x 10 cm), and provided a stick, a hollow black tube, 

and plastic foliage for habitat enrichment (Carducci and Jakob 2000). Spiders were fed 

crickets (Acheta domesticusonce weekly and provided with water ad libitum.  

 We used a customized salticid-specific eyetracker (Jakob et al. 2018, Canavesi et 

al. 2011) to map the changing position of spiders’ principal eye retinas as they viewed 

stimuli. The eyetracker is a modified ophthalmoscope that uses infrared light (Thorlabs 

IR 850 nm Mounted High-Power LED 1000 mA with T28 Cube LED Driver, directed 

with an Edmund's dual branch light guide #54202 equipped with 29 Thorlabs OSL2 

focusing lens) shined through the spider’s carapace, and was inspired by the work of 

Land in 1969 (Land and Nilsson 2012, Land 1969a,b). The image of the retinas is 

overlaid and aligned with stimulus videos, resulting in data similar to those generated in 

human-eyetracker research (Jakob et al. 2018). 

 During a trial, individual spiders were tethered with a plastic microbrush 

(Easyinsmile dental disposable 38 microapplicator brush) attached to the cephalothorax 

using a mixture of gum rosin (Acros Organics) and beeswax (Stackich) (Jakob et al. 

2018). The waxed microbrush was then painted with blackboard paint (Americana 

Chalkboard Paint) to eliminate glare from the infrared light.  

 Once tethered and aligned in the eyetracker (see Jakob et al. 2018 for details), 

spiders were presented with a trial video. Using Processing (v 2.2), we created a program 
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that presented a primary stimulus at the center of a spider’s visual field, which was 

ascertained prior to the experiment using a calibration program (jakob et al. 2018). Once 

spiders’ retinas were clearly engaged with the primary stimulus, we presented the 

peripheral stimulus in an area of the screen only visible to the secondary eyes. In the first 

experiment, we used multiple primary stimuli but kept the peripheral stimulus constant 

Primary stimuli included a black cricket silhouette (N = 16), a black oval (N = 16), or a 

treatment with no stimulus at all (N = 15). The peripheral stimulus was a black oval in 

every treatment. One trial consisted of one spider receiving each treatment in random 

order with a 3-minute break in between each presentation. 

 In the second experiment (N = 15), we tested whether the type of peripheral 

stimulus influenced a shift in gaze direction by the principal eyes. Spiders always began 

these trials by examining a cricket silhouette as the primary stimulus. Peripheral stimuli 

were presented in random order and included a cross, a cricket, a rapidly expanding 

(“looming”) circle, and a rapidly shrinking (“receding”) circle. Jumping spiders are 

known to ignore receding stimuli but respond to and back away from looming stimuli, a 

response mediated by the secondary eyes (Spano et al. 2012). Pilot data also suggests that 

spiders in the eyetracker spend some time scanning images of crosses, which bear some 

resemblance to cricket antennae and the upraised legs of spiders, but not as much time as 

they spend on cricket silhouettes. 

 For both experiments, I video-recorded trials and scored whether or not a spider 

shifted its gaze from the primary stimulus to the peripheral stimulus immediately upon its 

presentation. 
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D. Results 

	
 In the first experiment, spiders looked at the peripheral stimulus significantly 

more frequently when there was no primary stimulus or an oval stimulus than when the 

cricket primary stimulus was presented (Fig. 1.1, Pearson’s Chi-squared, χ2=17.73, df=2, 

P=0.0002). In the second experiment, there was a trend in spiders’ response to the four 

different peripheral stimuli (Pearson’s Chi-squared, χ2=7.33, df=3, P=0.0628). When I 

combined moving stimuli (looming or shrinking) and stationary images (cross or cricket), 

spiders were significantly more likely shift their gaze to moving stimuli. (Fig. 1.2, 

Pearson’s Chi-squared, χ2=5.50, df=1, P=0.019). 
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Figure 1.1. Response to peripheral stimulus based on type of primary stimulus. Spiders 
shifted their gaze to the peripheral stimulus significantly less often when the primary 
stimulus was a cricket. 
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 8 

 

Figure 1.2. Response to peripheral stimulus based on type of peripheral stimulus. There 
was a tendency for responses to all four stimuli (P<0.07); when moving (looming and 
shrinking) and stationary (cricket and cross) were combined, differences were significant. 

 

 
E. Discussion 

	
 Spiders’ propensity to shift the gaze direction of their principal eyes to a new 

stimulus detected by the ALES depended on characteristics of both the primary 

(Experiment 1, Figure 1.1) and peripheral (Experiment 2, Figure 1.2) stimuli. These 

findings demonstrate that the redirection of attention of the principal eyes by the ALEs is 

plastic.  

 These results are relevant to the important function of ‘distractability’ in a 

complex environment where an animal must forage and avoid predators simultaneously. 

Failure to notice an approaching predator while examining a prey item could be fatal. 
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Indeed, some evidence suggests that predators selectively attack prey that appear to be 

distracted by a foraging task (Krause and Godin 1996). A larger body of evidence 

supports the hypothesis that animals already attending to a stimulus are less likely to 

respond to approaching predators (Blumstein 1998, Brick 1998). For example, blue jays 

fail to detect peripheral targets while engaged in difficult foraging tasks (Dukas and 

Kamil 2000), and guppies exhibiting a nose-down foraging posture are less likely to flee 

from a predator model than those not engaged in foraging or exhibiting a different, 

horizontal foraging posture (Krause and Godin 1996). Humans, as well, pay less attention 

to peripheral moving stimuli when performing a difficult central task (Rees et al. 1997). 

This pattern is also found in jumping spiders: recent research shows that vigilance 

decreases as visual tasks increase in difficulty (Humphrey et al. 2018). The current 

experiment shows that while spiders’ propensity to examine a distracting stimulus is 

diminished when they are examining a salient object, they appear able to “flip” their 

focus from the object if the distracting stimulus is in motion. Indeed, wasps, well-known 

predators of spiders (Finch 2005, Schlinger 1987), move quickly and may descend from 

above or approach laterally, much like a looming stimulus.  

 These results are also reflected in our current understanding of spider 

neurophysiology. In the central nervous systems of all spiders, input from the principal 

and secondary eyes is processed independently until being combined later in the neural 

pathway (Strausfeld et al. 1993, Strausfeld and Barth 1993, Barth 2001, Long 2016). 

There are two pre-protocerebral optic neuropils associated with each secondary eye (ON1 

and ON2), and a single third optic neuropil, known as the mushroom body, shared by all 

secondary eyes (Barth 2001). Similarly, there are three visual neuropil regions associated 



 10 

with the principal eyes: AMON1, AMON2, and the arcuate body, which is likely a visual 

center (Barth 2001). In jumping spiders, the arcuate body is connected to the secondary 

eyes as well as the principal eyes, and possibly acts as an integration center for 

information from these two sets of eyes. More support for this hypothesis comes from 

neurophysiological recordings made in jumping spiders, where spatiotemporal receptive 

fields were only recorded in or near the arcuate body when both sets of eyes were 

unoccluded (Menda et al. 2014). Jumping spiders appear to be the only spiders that 

exhibit communication between the secondary eyes and the arcuate body (Strausfeld 

2012).  

 In the second experiment, spiders looked at both looming and receding peripheral 

stimuli with comparable frequencies. Previous work investigated spiders’ physical 

response to looming stimuli, finding that they back away from them (Spano et al. 2012). 

However, Spano et al. also found that spiders showed no response to a receding stimulus. 

Taken together, these results indicate that the spiders in this experiment were able to 

detect the receding stimulus, but did not physically react to it, suggesting the involvement 

of higher-order processing in mediating the response to visual stimuli.  
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CHAPTER II 
 

RETINAL MOVEMENT CHANGE WITH SPEED OF VISUAL STIMULI 
  

A. Abstract 
	

 Jumping spiders (Family Salticidae) are well-known for their visually guided 

courtship and predatory behaviors. These behaviors are mediated by two functionally and 

morphologically distinct forward-facing pairs of eyes: the principal, or anterior median, 

eyes, which small field of view but are moveable; and the secondary, or anterior lateral 

eyes, which are stationary and have a larger field of view. The narrow, boomerang-

shaped principal eye retinas exhibit a unique pattern of movement called scanning, in 

which they simultaneously move along the dorso-ventral or latero-medial planes and 

rotate around a central axis. Using a custom-built salticid-specific eyetracker, we 

observed that scanning behaviors can last up to several minutes. However, spiders in the 

wild must make split-second decisions about when to approach quickly moving prey 

items. Using the eyetracker, we tested whether Phidippus audax jumping spiders scan 

quickly moving stimuli as extensively as they appear to scan slowly moving stimuli. We 

found that spiders spend less time overall looking at quickly moving images compared to 

images moving more slowly, but found no evidence that stimulus speed has an effect on 

rotational motion. We suggest that evaluation of fast-moving stimuli may be mediated by 

the anterior lateral eyes, and recommend avenues for future investigation. 

 
B. Introduction 

 
 Across the animal kingdom are many species whose retinas possess foveas, or 

areas of higher ganglion cell density (Land 2015). To bring stimuli of interest in front of 

the fovea, these species are more likely to exhibit specialized eye or head movements 
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(Land 2015) than animals without fovea. For example, frogs have retinas with nearly 

uniform cell distribution (Aho 1997), and rarely shift their heads and eyes (Dieringer and 

Prechet 1982). In many granivorous and insectivorous birds, the retinal area of highest 

resolution is directed around a visual scene using characteristic head movements, while 

humans and higher primates use combined eye and head movements to keep the fovea 

trained on objects of interest (Land 2015). Similarly, stomatopods use rapid eye 

movement routines to examine objects with the area of heightened acuity within their 

stalked compound eyes (Marshall et al. 2014).  

 In addition to retinal topography, retinal shape can play a role in the evolution of 

specialized movements of the head or eyes. Some invertebrates have narrow retinas and 

use scanning behaviors to sample their environments more broadly. Diving-beetle larvae, 

which possess a pair of tubular stemmata with linear retinas, extend their visual field by 

pivoting their bodies up and down before striking prey (Buschbeck et al. 2007). Copepod 

crustaceans also perform scanning movements with their eyecups, containing a line of 

only 5-8 photoreceptors (Land 1988), and heteropod molluscs perform sweeping motions 

with their narrow, ribbon-like retinas (Land 1982).  

 Jumping spiders, well-known for their visually guided courtship and predatory 

behavior (Harland & Jackson 2012), sample their environment using narrow, vertical 

boomerang-shaped retinas (Land 1969b). These retinas of the antero-median eyes 

(AMEs) possess the best spatial acuity known for any terrestrial vertebrate (Warrant and 

McIntyre 1993), but they are very small and can only view a small area of the visual field 

at any given time. However, the field of view is extended because the retinas are located 

at the back of a long, moveable eye tube located inside the spider’s cephalothorax. The 
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motions of these tubes are directed by the immobile antero-lateral eyes (ALEs) (Jakob et 

al. 2018), which have much broader fields of view (Homann 1928) and are excellent 

motion detectors (Zurek and Nelson 2012). Two main types of movement by the 

principal eyes have been described (Land 1969a): displacement, where the retinas are 

moved along the dorso-ventral or latero-medial planes, and torsion, in which the retinas 

rotate around a central axis. Using these basic kinds of movement, retinas can engage in 

four classes of activities: spontaneous activity, saccades, tracking, and scanning (Land 

1969a, Harland and Jackson 2012). Scanning is the most complex class of movement 

(Harland and Jackson 2012), consisting of both displacement and torsional movement 

within the visual field of a stimulus. 

 A longstanding hypothesis (Land 1969a, Land and Nilsson 2012) about the 

function of scanning behavior in jumping spiders is that it helps the animal to identify 

important shapes and angles, for example the shape of a conspecific or the specific angle 

of a mosquito’s legs. Scanning routines have not yet been well characterized, but are 

quite slow, and our preliminary observations using a custom-built spider eyetracker 

(Canavesi et al. 2011, Jakob et al. 2018) show that spiders engage in periods of scanning 

lasting several minutes when viewing complex static stimuli, such as a cricket silhouette 

or a forward-facing wasp. Thus, we hypothesize that it takes a significant amount of time 

for spiders to gather information about spatial detail via scanning. This hypothesis is 

aligned with previous research that indicates that spiders are unable to distinguish 

between a moving cricket silhouette and a moving rectangle, even when motivated with 

aversive conditioning (Bednarski et al. 2012). In that study, spiders in an arena oriented 

toward a moving cricket silhouette and a moving rectangle stimulus with comparable 
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frequency, even when trained to associate one stimulus with an electric shock. In 

contrast, spiders easily discriminated between a moving cricket and a still cricket, with 

100% of the subjects orienting toward the moving stimulus. 

 Using a spider eyetracker, we showed jumping spiders videos of cricket 

silhouettes moving across the screen at varying speeds. We investigated whether spiders 

scan slow-moving or still cricket silhouettes more than fast-moving cricket silhouettes by 

measuring the overlap of the retinas with the stimulus field, and the amount of rotational 

movement (torsion) performed by the retinas while within the field of the stimulus. If 

spiders scan fast-moving stimuli less than slow-moving or still stimuli, they may be 

constrained in collecting detailed spatial information. 

 

C. Materials and Methods 
	
 We tested 11 adult female Phidippus audax jumping spiders, captured using 

sweep nets and vials from fields and metal structures in Hampshire Country, MA, USA. 

Spiders were housed in a lab kept at 25° C and with a 16 L : 8 D light cycle, and kept in 

individual plastic boxes (18 x 13 x 10 cm). They were provided a stick, a hollow black 

tube, and plastic foliage for habitat enrichment (Carducci and Jakob 2000). Spiders were 

fed crickets (Acheta domesticus) once weekly and provided with water ad libitum.  

 We used a specialized salticid-specific eyetracker (Jakob et al. 2018, Canavesi et 

al. 2011) to map the changing position of spiders’ principal eye retinas as they viewed 

stimuli on a projector screen. The procedures were identical to those in Jakob et al. 2018, 

with exceptions as noted.  

 During a trial, individual spiders were tethered using a plastic microbrush 
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(Easyinsmile dental disposable 38 microapplicator brush) attached to the cephalothorax 

using a mixture of gum rosin (Acros Organics) and beeswax (Stackich) (Jakob et al. 

2018). The waxed microbrush was then painted with blackboard paint (Americana 

Chalkboard Paint) to eliminate glare from the infrared light.  

 Once in the eyetracker, spiders remained tethered for the entire trial and viewed a 

cricket silhouette (170x50 pixels) moving across the projector screen at 4 different 

speeds: fast (330 pixels/sec), medium (120 pixels/sec), slow (60 pixels/sec), and 

completely still. This stimulus was constructed in Processing (v. 2.2). We presented each 

speed treatment for 45 seconds to each spider in random order, with 3 minutes of rest (a 

blank, dim gray screen) in between.  

 Trials were video-recorded, and videos of the retinas were overlaid and aligned 

with stimulus videos. To quantify how well the retinas followed each stimulus in each 

treatment, we measured the average overlap between the retinas and the stimulus in 

pixels across trials, so that each spider generated a single average mean for each stimulus. 

To quantify the extent to which spiders scanned the stimulus, we calculated the amount 

of torsion using two measures: the change in retinal angle when the retinas overlapped 

with the stimulus, and percent change in retinal direction when retinas overlapped with 

the stimulus. Each spider and stimulus combination generated an average for frames in 

which there was overlap with the stimulus.  

 Retinal data was scored by first overlaying retinal videos with stimulus videos, 

where we set the stimulus video at 50% opacity in Final Cut Pro X on an iMac. We 

compressed these overlaid videos and exported them as image stacks (10 frames/sec). We 

then imported these images into ImageJ where we used the MTrackJ plugin to mark three 
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points on each retina and one point on the stimulus, frame by frame (see Jakob et al. 2018 

for a more detailed description). These x y coordinates were exported to Excel and then 

run through a custom R program that calculated the overlap in pixels between the retinas 

and the stimulus image. We also exported the coordinate data to Excel, where we 

calculated the angle of each retina in each frame.  

 Using these inputs, we measured the two following variables. (1) The average 

rotation of each retina as the absolute value of the angle change from frame to frame. We 

calculated this value over the course of whole trials as a measure of general activity, as 

well as only when the retinas overlapped with the stimulus as a measure of exploration of 

the stimulus itself. (2) The number of times during a trial that the retina changed direction 

of movement (e.g., moving counterclockwise and then clockwise). We counted the 

percentage of frame sequences in which there was a direction change when the retinas 

overlapped and did not overlap with the stimulus. Each spider generated one number for 

each stimulus speed. 

 Because spiders’ attention can diminish over the course of a trial, we took each 

measure over the entire trial and also only for the first complete pass of the stimulus 

across the screen.  

 We tested the influence of the two independent variables (spider identity and 

stimulus speed) on the dependent variables (amount of overlap in pixels, retinal angle 

change, and retinal directional change) in an ANOVA.  

 
D. Results 

 
 We found that stimulus speed had a significant effect on the percentage of retinal 

overlap in pixels, with spiders less frequently directing their retinas toward the fastest-
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moving stimulus compared to the other three speeds (whole model: F16,54=3.93, P = 

0.0003; spider ID: F13,54=1.77, P < 0.09; speed: F3,54=13.31, P < 0.0001) (Fig. 2.1). This 

trend was also reflected in the analysis of the second pass of the stimulus only (whole 

model: F16,54=3.42, P = 0.0009; spider ID: F13,54=0.99, P = 0.47; speed: F3,54=14.01, P < 

0.0001) (Fig. 2.1).  

 

 

Figure 2.1. The effect of stimulus speed on the overlap of the retinas with the stimulus. 

  

 Overall, we found little evidence for an effect of stimulus speed on torsion of the 

retinas. Measured over the whole trial, there was no significant effect of speed on the 

average absolute angle change across both retinas, both during entire trials (F16,53=1.13, P 

< 0.37) and when the retinas overlapped with the stimulus (F16,53=1.56, P < 0.13) (Fig. 4). 
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These patterns were also when I analyzed only the first complete pass of the stimulus 

(whole pass: F16,53=1.30, P = 0.25; overlap only: F16,53=1.13, P = 0.36) (Fig. 2.2). 

 

 

Figure 2.2. The effect of stimulus speed on the average angle change of both retinas. 

 

 In the analysis of whole trials, there is a trend toward a significant effect of speed 

on the change in direction of the retinas when the retinas are over the stimulus (whole 

model: F16,54=1.90, P = 0.053; spider ID: F13,54=1.36, P = 0.22; speed: F3,54=4.75, P < 

0.007) (Fig. 2.3). However, contrary to expectations, there was less directional change 

while the retinas overlap with a stationary stimulus compared to a moving stimulus 

(speed: F3,54=4.75, P < 0.007). This pattern disappeared in the analysis of the first full 

pass of the stimulus only (F16,53=0.88, P < 0.60).  
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Fig 2.3. The effect of stimulus speed on angular directional change of retinas. 

 

E. Discussion 

	 Our results indicate that spiders spend less time examining quickly moving 

stimuli with their principal eye retinas than they do more slowly moving or still images 

(Fig. 2.1). It is unclear whether this trend is due to spiders being physically unable to 

follow our fast stimulus (moving across the screen at 330 pixels/sec), or if they are using 

their ALEs, which are specialized motion detectors (Zurek and Nelson 2012, Jakob et al. 

2018), to monitor these stimuli. Visual input by the ALEs alone could constrain the 

amount of	detail that could be extracted from a stimulus, as they are less specialized for 

high resolution vision than the principal eyes. They do, however, possess more densely 
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packed, optically isolated photoreceptors than the two other pairs of secondary eyes, 

supporting high spatial acuity (Zurek and Nelson 2012). Future researchers could use a 

simple experiment to search for the existence of a threshold for speed processing by the 

principal eyes; perhaps a physiological or perceptual limit constrains the ability of the 

retinas to track stimuli of a certain velocity. 	

	 Because we found no significant effect of stimulus speed on the amount of retinal 

angle change  (Fig. 2.2), we cannot draw any conclusions about the effect of speed on 

scanning behavior. Furthermore, our analysis of the effect of stimulus speed on angular 

directional change of the retinas shows that spiders rotate their retinas less when they are 

viewing still images of cricket silhouettes (Fig. 2.3). This finding countered our 

expectations and is distinctly different from pilot data collected in the eyetracker where 

spiders extensively scanned still images of crickets and wasps. Possible explanations are 

that the group of female spiders used in this experiment was elderly and less motivated to 

eat than spiders used during the collection of pilot data,  and that spiders are more 

interested in stationary stimuli that exhibit local motion. Phidippus audax has been 

shown to prefer local and global motion together over global motion alone, more often 

approaching videos depicting natural cricket motion than those depicting a cricket 

snapshot moving across a screen (Bednarski et al. 2012). Similarly, ongoing work with 

species of Habronattus jumping spiders in the eyetracker indicates that females 

extensively attend to images of courting males that are primarily stationary except for 

flicking legs. Future studies should investigate the role of local motion within a globally 

stationary stimulus in eliciting retinal scanning.   
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 Future research should also aim for a deeper understanding of the abilities of the 

ALEs, which are likely involved in other aspects of visual processing (Forster 1979, 

Zurek et al. 2010) besides motion detection, as suggested by their binocular overlap and 

central acute zone (Homann 1928, Land 1985). In addition, until now, the placement of 

the acute zone at the “elbow” of the boomerang-shaped principal-eye retina has received 

the most attention. Our observations of spiders in the eyetracker suggest that spiders also 

appear to momentarily place the distal “tips” of these retinas over stimuli. The function of 

this and other behaviors of spider eyes, and how these behaviors relate to the peculiar 

boomerang shape of salticid retinas, remains to be discovered.   
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