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ABSTRACT

SEQUENCE DESIGN VIA SEMIDEFINITE
PROGRAMMING RELAXATION AND RANDOMIZED

PROJECTION

FEBRUARY 2019

DIAN MO

B.Sc., BEIHANG UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marco F. Duarte

Wideband is a booming technology in the field of wireless communications. The

receivers in wideband communication systems are expected to cover a very wide spec-

trum and adaptively extract the parts of interest. The literature has focused on mix-

ing the input spectrum to baseband using a pseudorandom sequence modulation and

recovering the received signals from linearly independent measurements by parallel

branches to mitigate the pressures from required extreme high sampling frequency.

However, a pseudorandom sequence provides no rejection for the strong interferers

received together with weak signals from distant sources. The interferers cause sig-

nificant distortion due to the nonlinearity of the subsequent amplifier and mask the

weak signals.
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In this dissertation, we optimize the modulation sequences with a specific spectrum

shape to mitigate interferers while preserving messages; the sequences have binary

entries to simplify hardware implementation. Though the resulting sequence design

problems are NP-hard, we solve them approximately by semidefinite relaxation and

randomized projection.

First, we formulate the design algorithm for a single spectrally shaped binary

sequence base on a randomized convex optimization method. We analyze the per-

formance of the algorithm in obtaining binary sequences and show its advantages

compared with method available in the literature. And, we show a comparison be-

tween the proposed sequence design method with the exhaustive approaches when

feasible. Additionally, we propose several custom sequence scoring functions that

allow for an improved selection of binary sequences for message preservation and

interference rejection.

Second, we propose an algorithm to design a multi-branch set of binary sequences

one by one by introducing the constrains on the orthogonality between pairs of se-

quences. Numerical results show the proposed algorithm obtains sequences with a

small search size compared with the exhaustive search.

Finally, we extend the randomized method to multi-branch sequence design. In

order to avoid the unstable performance and high complexity of designing multi-

branch sequence iteratively, the whole branch sequences will be obtained directly via

matrix randomized projection from the relaxed problems.
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CHAPTER 1

INTRODUCTION

Receivers for emerging wireless communication systems are expected to deal with

a very wide spectrum and adaptively choose which parts of it to extract. The in-

tense demand on the available spectrum for commercial users force many devices to

share the spectrum [1, 2]. As a result, wideband communication systems have caused

interference for applications using overlapping regions [3, 4]. Thus, a major issue

for wideband communication receivers is to process spectra having very weak sig-

nals from a distant source mixed with strong signals from nearby sources. Practical

nonlinearities in receiver circuits make the separation of such signals a key barrier

for wideband communication systems since unfiltered interferers are large enough to

cause distortion that can mask weaker signals.

1.1 Scalable Receivers

Recently, random sequences for wideband signal modulation have been employed

in the realization of communication system receivers [5–8], where a prominent ex-

ample is the wideband modulated converter (MWC). In essence, the signal after

random modulation contains a baseband spectrum that is the linear combination of

all frequency components of the input signal. Thus, using a large enough number of

modulation branches allows for the successful recovery of the wideband signal, where

the number of necessary branches is determined by the occupancy of the spectrum.

The resulting multi-branch modulation system can be abstracted as an all-pass filter

that preserves all frequency components of interest from the input signal.

1



In cases when the locations of one or more interferers are known, the modulation to

null out the interferer band is desirable to reduce the distortion due to nonlinearities.

Therefore, it is promising to replace the pseudo-random sequence with a spectrally

shaped sequence that effectively implements a notch filter to suppress interferers.

In addition to the strong interferer case described earlier, a similar problem arises

in dynamic spectrum management (DSM), an approach that allows for flexibility in

spectrum use. DSM attempts to determine the frequencies being used by previous

or licensed applications and selects an optimal subset from the remaining frequencies

for new or unlicensed applications. The signals for unlicensed applications should

be optimized to minimize the interference with licensed signals while keeping their

own capacities. More specifically, for Direct Sequence Spread Spectrum, a designed

spreading code with particular spectral characteristic has been used to shape the

unlicensed power spectra [9]. Another similar problem arises in active sensing, which

obtains valuable information of targets or the propagation medium by sending probing

waveforms toward an area of interest [10–12]. A well-designed waveform is crucial to

the performance of active sensing.

1.2 Sequence Design

Since the spectrally shaped sequences work as a bandstop filter for the interferer,

it is intuitive to design the spectrally shaped sequences by filter design with spec-

tral constraints. While such filter designs are usually expressed as an optimization

problem that maximizes stopband attenuation subject to a given bounded passband

ripple, they are, in general, not convex and global optimal designs are not guaranteed

since the magnitude response is not linear in the filter coefficients. It is shown in [13]

that the filter design with spectral constraints can be written in term of the spectral

power density and the Fourier transform of the autocorrelation of the filter coeffi-

cients. The resulting filter designs are convex optimization problems in the spectral

2



power density. However, the subsequent spectral factorization that determines the

filter coefficients from the autocorrelation coefficients prevents extending the method

to other sequence design where additional constraints on the filter coefficients are

needed.

To maximize the power efficiency of the designed probing waveforms in active sens-

ing, it is a standard requirement that the modulating waveform is constrained to be

unimodular. A common performance criterion gives preference to low autocorrelation

sidelobes in the time domain or a flat spectrum in the frequency domain since the au-

tocorrelation function and the power spectral density form a Fourier transform pair.

Such a choice improves the target detection performance [14]. Based on this relation-

ship, an iterative method has been developed to design unimodular waveforms with

the flat spectrum and impulse-like autocorrelation function by alternatively determin-

ing the waveform and an auxiliary phase [15, 16]. In [17], a majorization-minimization

method implements the waveform design by minimizing the integrated sidelobe level.

Additionally, it is desirable that the waveform possess some specific spectrum mag-

nitude to have spectral nulls in specific bands to keep the mutual interference within

acceptable levels. Based on the iterative method of [15, 16], the SHAPE algorithm

designs sequences that simultaneously approach the desired spectrum magnitude and

satisfy the envelope constraint [2, 12]. A sequence is obtained by alternatively search-

ing the frequency and time domains to minimize the estimation error while meeting

the two aforementioned criteria. In [18], a Lagrange programming neural network

(LPNN) algorithm [19], based on nonlinear constrained optimization, is applied to

design waveforms with unit modulus and spectral constrains. Recently, an alternating

direction method of multipliers (ADMM) solver was used for waveform design sub-

ject to constant modulus and spectral constraints [20]. While it is possible to modify

some of the algorithms in the literature to switch from a unimodular constraint to a

binary constraint, which is also required in the random modulation receivers so that

3



the resulting binary sequence can be easily implemented by a standard shift register

with high rate [8]. Our numerical simulations in the sequel show that such changes

result in significant performance losses in modulation.

Recently, the waveform design problems have been formulated as a quadratically

constrained quadratic program (QCQP) [21–25]. In [21, 22], [23] and [25], a sequence

is selected to maximize the Doppler estimation accuracy while the similarity with a

prefixed sequence is upper bounded, minimize the signal to noise ratio (SNR) while the

peak to average power ratio is upper bounded, and minimize the SNR and minimize

the power in stopband and the similarity with a prefixed sequence, respectively. All

of these waveform design can be written as a QCQP with different constraints and

solved by randomized projections.

As will be shown in Chapter 2, the design of spectrally shaped binary sequences

can be formulated as a QCQP with both equality constraints (for binary quantization)

and inequality constraints (for interferer mitigation). Though there are some simi-

larities between the mentioned waveform design and the proposed binary sequence

design, some gaps make it hard to apply the analysis in waveform design to binary se-

quence design: first, the sequences required in waveform design have complex-valued

entries, which allows more freedom than the binary sequences needed in our prob-

lems; second, the QCQP in waveform design contains either no inequality constraint

or only the inequality constraints whose characteristic matrices are diagonal.

1.3 Outline

This thesis is organized as follows.

Chapter 2 introduces notations and overviews the concepts in MWC including

the system description and frequency analysis. The following content about QCQPs

covers existing QCQP variations under different kinds of constraints, methods to

approximately solve the QCQP with semidefinite program (SDP) relaxation and ran-

4



domized projection, and the analysis of approximation ratio to measure the quality

of the approximate solution. Additionally, we give a brief review of the Slepian basis

and the difference between the Slepian basis and the Fourier basis.

Chapter 3 presents our approach of the design of a single spectrally shaped binary

sequences that can be used to replace a random sequence in any branch of MWC.

We formulate the sequence design using a QCQP to maximize the sequence power for

the message band while keeping the sequence power for the interferer band as low as

possible. Additionally, we provide a theoretical analysis of the feasibility probability

and approximation ratio for the obtained sequences from the solution of the SDP

relaxation by randomized projection. We also present a set of more suitable metrics

for sequence selection after randomized projection so that the resulting sequence

allows for better interferer rejection.

Chapter 4 provides the detail on our iterative sequence set design for multi-

branch modulation. The sequences are selected iteratively to have the smallest se-

quence power for the interferer band but be close to orthogonal to the sequences in

the set that have been previously obtained. Additionally, we include an analysis of

the connection between the condition number of the measurement operator matrix

and the tolerance of the sequence orthogonality to show the difficulty of searching

orthogonal sequence sets. Furthermore, we show the necessity of oversampling in the

multi-branch sequence design in order to obtain sequences set with stable invertibility.

Chapter 5 presents our approach for sequence set design based on matrix opti-

mization. The sequence set design is formulated as a matrix optimization after ex-

tending the metrics of power and orthogonality from a single sequence to a sequence

set. We also derive the convex relaxation of the matrix optimization by rewriting the

binary constraint in matrix form. Inspired by fact that the randomized projection

returns a rank-one approximation in the single sequence design, we develop a method
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to obtain a low rank approximation, whose columns correspond to the sequences after

binary quantization.

Chapter 6 presents a simulation example to show the performance of the de-

signed sequence sets when they are used by a modulated wideband converter with

nonlinearity and noise. Additionally, we provide a discussion on the bases that are

used to express the signals bandlimited to the message or interferer bands in the

sequence set design.

Finally, we conclude with a summary of our findings and a discussion of ongoing

work in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 Notation

We denote vectors (as columns by default) by bold lower case letters s, where the

entries are listed as s1, s2, . . . , sN . Matrices are denoted by bold upper case letters S,

where the entry in row i and column j is denoted by Si,j and the column vectors are

indexed as sj. Upper case letters (N,R,C) and lower case letters (i, j, k) are used to

represent scalar quantities. Most calligraphic letters denote sets except F , which is

a special complex exponential vector. Two commonly used operators (·)T and (·)H

return the transpose and conjugate transpose of a vector or a matrix.

2.2 Modulated Wideband Converter

As discussed in Chapter 1, signals for wideband communications consist of some

narrow occupied bands spread over a wideband spectrum. Due to the wide spectrum,

the sampling rates of the signals could be too high and exceed the specifications of

most analog-to-digital converters. Therefore, there is a needed for an approach to

acquire such signals with a sampling rate lower than the Nyquist rate of the signals.

When the location of each message band is known, it is common to demodulate a

signal with the center frequency of the message band such that the message band is

centered at the baseband [26, 27]. All other bands are rejected by a low-pass filter.

Then conversion can be performed at a sampling rate proportioned to the actual

frequency occupancy of the message band.
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When the location of message bands are unknown, the task is to design a receiver

which can operate at a sub-Nyquist rate. The output should contain sufficient infor-

mation so that the input could be fully reconstructed. In [6, 28, 29], a multi-coset

sampling method was proposed to acquire signals at low sampling rate. Instead of

sampling the entire signal uniformly, the multi-coset sampling method samples the

signal uniformly in blocks but the sampling of each block is shifted by a different de-

lay. The output of the multi-coset sampling contains a baseband consisting of a linear

combination of all pieces of the input spectrum, where the coefficients are determined

by the delays. Recently, a new architecture acquires signals at a low sampling rate by

random modulation [5, 7]. The signals are mixed with a high-rate pseudorandom se-

quence to alias the small bands of input spectra into the baseband of outputs. Based

on the random modulation method, MWC is developed to be composed of a set of

modulators and low-pass filters [8].

2.2.1 System Description

As shown in Figure 2.1, the system of MWC consists of a set of channels, also

known as branches. More specifically, the signal x(t) is processed by M channels

simultaneously. In the mth channel, the signal x(t) is modulated by mixing with the

sequence signal pm(t), which has periodic Tp. After modulation, the signal x̂m(t)

passes through a low pass filter with cut off frequency 1/2Ts to prevent the alias.

Then the filtered signal is sampled at rate 1/Ts.

While other periodic waveforms are possible, it is common to select a square-wave

waveform to modulate the signal for simplicity. The sequence signal is a piecewise

constant waveform that alternates between the levels of 1 and −1 for each of N

equal-size time intervals. Formally, we can express the sequence signal as

pm(t) = Sm,n,
n− 1

N
Tp ≤ t ≤ n

N
TP , n = 1, 2, . . . , N, (2.1)
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Figure 2.1. System diagram of modulated wideband converter. Signals are mixed
with pseudorandom sequence and sampled at each channel.

where Sm,n ∈ {−1, 1}. Thus, a sequence signal is totally characterized by the vector

sm = [sm,1, sm,2, . . . , sm,n]T .

Although the signal is obtained at sampling rate 1/Ts, which can be low enough

so that existing analog-to-digital converters can achieve the sampling task, the mod-

ulation and filtering are still operating at the condition of high rates. Fortunately,

the sign alternating waveform pm(t) can be implemented by a standard shift register,

which allows the alternation rates to reach as high as 23GHz or even higher [30, 31].

2.2.2 System Analysis

We now derive the relationship between the sampled output ym[l] and the signal

x(t). This analysis not only explains the reconstruction scheme, but also motivates

us to replace the pseudorandom sequence with a spectrally shaped sequence.

Consider the mth channel. Since pm(t) is Tp periodic, it can be written as a linear

combination of the Fourier series
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pm(t) =
∞∑

k=−∞

cm,ke
j2πk t

TP , (2.2)

where

cm,k =
1

Tp

∫ Tp

0

pm(t)e
−j2πk t

Tp d t. (2.3)

The modulated signal is evaluated as x̂m(t) = x(t)pm(t). Then the Fourier transform

of the modulated signal is

X̂m(f) =

∫ ∞

−∞
x̂m(t)e−j2πft d t

=

∫ ∞

−∞
x(t)pm(t)e−j2πft d t

=

∫ ∞

−∞
x(t)

∞∑

k=−∞

cm,ke
j2πk t

TP e−j2πft d t

=
∞∑

k=−∞

cm,k

∫ ∞

−∞
x(t)e

−j2π
(
f− k

Tp

)
t
d t

=
∞∑

k=−∞

cm,kX

(
f − k

Tp

)
. (2.4)

Therefore, the spectrum of the modulated signal x̂m(t) is a linear combination of

shifted copies of the spectrum of the signal x(t).

When the low pass filter is an ideal filter whose magnitude response is a rectangle

function, only the spectrum of x̂m(t) in the baseband [−1/2Ts, 1/2Ts] is preserved in

the output ym[l]. Thus, the discrete-time Fourier transform of ym[l] is expressed as

Ym(ej2πfTs) =
∞∑

l=−∞

ym[l]e−j2πflTp

=
K∑

k=−K

cm,kX

(
f − k

Tp

)
, f ∈

[
− 1

2Ts
,

1

2Ts

]
, (2.5)
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where K is the smallest integer such that all nonzero contributions of X(f) are con-

tained in the baseband. When the single x(t) is bandlimited to the band [−W/2,W/2],

the exact value of K can be calculated by

− W

2
+
K

Tp
<

1

2TS
≤ −W

2
+
K + 1

Tp

⇔ 1

2
WTp +

Tp
2Ts
− 1 ≤ K <

1

2
WTp +

Tp
2Ts

⇔ K =

⌈
1

2
WTp +

Tp
2Ts

⌉
− 1. (2.6)

Due to the ideal lowpass filter, the kth contribution X (f − k/Tp) only covers the

small band [k/Tp − 1/2Ts, k/Tp + 1/2Ts], which has width 1/Ts. Usually, Ts >> Tp.

Thus, the width of the small band is much smaller than the distance between the

adjacent center frequencies, which is 1/Tp. There is no pair of contributions in the

baseband that come from the same frequency of X(f).

In other words, after modulation and low pass filtering, the spectrum of the signal

X(f) is partitioned into small bands so that all the bands cover different parts of the

spectrum. All small bands are aliased into the baseband and each small band appears

only once in the baseband.

From (2.4), the small bands of X(f) are mixed in the baseband with coefficients

cm,k, the coefficients of the Fourier expansion of pm(t). When pm(t) are waveform

alternating at the rate of 1/NTp, as defined in (2.1), the coefficients can be evaluated

as
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cm,k =
1

Tp

∫ Tp

0

pm(t)e
−j2πk t

Tp d t

=
1

Tp

N∑

n=1

∫ n
N
Tp

n−1
N

Tp

pm(t)e
−j2πk t

Tp d t

=
1

Tp

N∑

n=1

∫ n
N
Tp

n−1
N

Tp

sm,ne
−j2πk t

Tp d t

=
1

Tp

N∑

n=1

sm,n
e−j2πkn/N − e−j2πk(n−1)/N

−j2πk/Tp

=
1

N

N∑

n=1

sm,ne
−j2πk n−1

N
1− e−j2πk/N
j2πk/N

. (2.7)

By Taylor series, we have the approximation 1 − e−j2πk/N ≈ j2πk/N . Thus, the

coefficients is approximated by

cm,k ≈
1

N

N∑

n=1

sm,ne
−j2πk n−1

N , (2.8)

which is the discrete Fourier transform (DFT) of the sequence sm.

An important conclusion from (2.8) is that the magnitudes of the small bands in

the baseband of Y
(
ej2pifTs

)
are directly proportional to the corresponding magnitude

response of the sequences sm. If the sm are pseudorandom sequences, all magnitudes

of the small bands will be almost the same since pseudorandom sequences have flat

spectra. The modulation with pseudorandom sequences is equivalent to an all pass

filter that preserves all parts of the signal x(t).

Combining (2.4) and (2.8) also provides us with the possibility to change the

magnitudes of the input components in the output: for those components that are

not of interest, we can use the sequences that have small magnitude responses at

the corresponding frequencies to reduce their contribution in the output. As we

mentioned in Chapter 1, this is very important to wideband communication when

some bands of spectrum are shared by many devices and then the received signals
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contain some interferers. We can use some specially designed sequences to reduce the

interferers before the processing in analog-to-digital converters.

2.3 Quadratically Constrained Quadratic Programming

In this section, we summarize QCQPs, including the related work and applications,

and provide available analytical frameworks for the approximation performance of

solving QCQPs by randomized projection. The approaches described here originate

from the seminal paper [32], which has been extended to several related problems [33–

39].

Goemans and Williamson [32] proposed a randomized projection and binary quan-

tization method to provide improved approximations for the Maximum Cut problem,

which sparked the rapid development of similar approximations for related optimiza-

tion problems. In [32], SDP relaxation and randomized projection was shown to

provide an approximation solution with the accuracy of no worse than 0.8756 for the

Maximum Cut problem, which is NP hard. Since then, several results in the literature

have approximately solved many similar optimization problems under different set-

tings, greatly improving the understanding of the capabilities of this method [33–39].

Even when the objective function satisfies the condition that there exists a binary solu-

tion such that the objective function is non-negative, SDP relaxation and randomized

projection provides an exact optimal solution to the original problems [38, 40, 41].

In the fields of signal processing and communications, many practical applica-

tions have already proved that SDP relaxation and randomized projection provide

accurate approximations. For example, SDP relaxation and randomized projection

are now known as an efficient high performance approach in MIMO detection [42–

44], beamforming [45], and sensor network localization [46–48]. More recently, the

randomized projection has been used for the waveform design problem in radar and

provide the theoretical approximation accuracy [21–25].
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2.3.1 Problem Formulation

In general, a QCQP problem can be written as

ŝ = arg max
s∈FN

sTAs

s.t. sTBis ≤ αi, i ∈ I,

sTCjs = βj, j ∈ E , (2.9)

where A, Bi and Cj are characteristic matrices for the objective function f = sTAs,

the inequality constraint function gi = sTBis and the equality constraint function

hj = sTCjs, respectively. F can be either the real valued space R or the complex

valued space C. Furthermore, A, Bi and Cj can be either real symmetric or complex

Hermitian. The class of non-convex QCQP (2.9) captures many problems that are

of interest in the signal processing and communications. Specific instances of this

QCQP, placing different conditions in the involved matrices, have been studied in the

literature, as follows:

(I) There are no inequality constraints (i.e., |I| = 0), |E| = N , and Ck = eke
T
k [22,

24, 32]. Then the general QCQP reduces to the following boolean quadratic

program:

ŝ = arg max
s∈FN

sTAs

s.t. s2
k = βk, k ∈ E . (2.10)

When all βk = 1 and s ∈ CN , the solutions of (2.10) have unit modulus, which is

commonly required in waveform design for radar. When all βk = 1 and s ∈ RN ,

the solutions take values of either 1 or −1. The most important application in

this class is the Maximum Cut problem, where A is additionally assumed to be

positive semidefinite and all of its off-diagonal entries are non-positive.
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Figure 2.2. Illustration of problem (2.11) in R2

(II) There are no equality constraints (i.e., |E| = 0) and Bk are all positive semidefi-

nite [25, 35, 37, 39]. Then the general QCQP reduces to the following quadratic

program:

ŝ = arg max
s∈FN

sTAs

s.t. sTBks ≤ αk, k ∈ I. (2.11)

An illustration of problem (2.11) is presented in Figure 2, where the colored

dashed lines are the contours of the objective function with different values, the

white ellipses are the feasible set for the individual constraints, and the black

lines are the boundaries of constrains. Since sTBks = β represents a high-

dimensional ellipsoid, the feasible set {s|sTBks ≤ αk, k ∈ I} is an intersection

of ellipsoids with common center, which is neither convex nor concave and makes

the problem difficult.

(III) There is only one inequality constraint and the characteristic matrix B is di-

agonal, |E| = N , and Ck = eke
T
k [23, 36, 38]. As shown in the sequel, this

problem is similar to the sequence design problem except that the matrix B is

not diagonal in the latter. This class is equivalent to the first class when the
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feasible set is not empty, due to the fact that any solution that satisfies the

equality constraints and thus belong to a vertex of a high-dimensional rectan-

gle will always lie inside the high-dimensional ball described by the inequality

constraint.

2.3.2 Semidefinite Programming Relaxation

Solving a QCQP is NP-hard [39]. Most optimization methods for QCQP are

based on a relaxation of the problems where an upper bound of the optimal objective

function value is computed. The SDP relaxation has been an attractive approach due

to its potential to find a good approximate solution for many QCQPs, including the

specific classes mentioned above.

By lifting s to a symmetric matrix T = ssT ∈ FN×N with Rank (T) = 1, the

objective function f in (2.9), the inequality constraint functions gk, and the equality

constraint functions hk have linear representations with respect to T:

f(s) = sTAs = Trace
(
AssT

)
= Trace (AT) = f(T), (2.12)

gk(s) = sTBks = Trace
(
Bkss

T
)

= Trace (BkT) = gk(T), (2.13)

hk(s) = sTCks = Trace
(
Ckss

T
)

= Trace (CkT) = hk(T). (2.14)

Therefore, the QCQP in (2.9) can be expressed equivalently as

T̂ = arg max
T∈SN

Trace (AT)

s.t. Trace (BkT) ≤ αk, k ∈ I,

Trace (CkT) = βk, k ∈ E ,

Rank (T) = 1, (2.15)

where SN represents the set of allN -dimensional positive semidefinite matrices. Given

that such matrices are positive semidefinite and rank-one, any feasible solution T to
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(2.15) can be factorized as ssT such that s is a feasible solution to (2.9). On the other

hand, for any solution s to (2.9), one can always obtain an feasible solution T = ssT

to (2.15).

Though (2.15) is as difficult to solve as (2.9), it indicates that the only non-convex

constraint is the rank constraint and that the objective function and all other con-

straints are convex with respect to T when A, Bk, and Ck are all positive semidefinite.

Thus the SDP relaxation of (2.9) is obtained by ignoring the rank constraint:

T̂ = arg max
T∈SN

Trace (AT)

s.t. Trace (BkT) ≤ αk, k ∈ I,

Trace (CkT) = βk, k ∈ E . (2.16)

The resulting convex problem (2.16) can be efficiently solved, e.g., by interior-point

methods [49, 50]. In the worst case, the SDP (2.16) can be solved with a complexity of

O (N4.5 log(1/ε)), given a solution accuracy ε > 0. Some SDPs with special structure

can be solved with more efficient customized interior-point algorithms. For instance,

with a special interior-point algorithm from [50], the complexity of the corresponding

SDP relaxation for problem (2.10) reduces to O (N3.5 log(1/ε)).

2.3.3 Randomized Projection

After solving the SDP relaxation, the next important step is to extract a feasible

solution s̃ to (2.9) from the optimal solution T̂ resulting from (2.16). If T̂ is rank-one,

then one can obtain s̃ by factorizing T̂ = s̃s̃T and s̃ will be the feasible and optimal

solution to (2.9). Otherwise, if the rank of T̂ is larger than one, then we need to

obtain a s̃ such that the multiplication s̃s̃T is close to T̂ while remaining feasible to

(2.9). However, in general, the obtained feasible solution s̃ will not be the optimal

solution ŝ.
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It is natural to use the principal eigenvector of T̂, the eigenvector correspond-

ing to the eigenvalue with largest magnitude, to build the rank-one approximation.

Specifically, when Rank
(
T̂
)

= r, then T̂ has r eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λr > 0 and eigenvectors u1,u2, . . . ,ur ∈ RN such that the eigendecomposition is

T̂ =
∑r

k=1 λkuku
T
k = UΛUT , where U = [u1,u2, . . . ,ur] and Λ is the diagonal

matrix with Diag (Λ) = [λ1, λ2, . . . , λr]
T . Since λ1u1u

T
1 is the best rank one approxi-

mation of T̂ in the Frobenius norm sense, w =
√
λ1u1 can be a candidate solution to

problem (2.9), provided that it remains feasible.

Randomization is another way to perform the rank-one approximation. Assume

that v ∈ Rr is a random vector whose entries are drawn independently and identically

according to the standard Gaussian distribution, i.e., v ∼ N (0, I), where I is the

identity matrix. Let w = UΛ1/2v, where Λ1/2 is the element-wise square root of Λ.

A simple calculation indicates that T̂ = E
(
wwT

)
, where E (·) returns the element-

wise expectation, i.e., w ∼ N
(
0, T̂

)
. Furthermore, we have

E
(
wTAw

)
= E

(
Trace

(
AwwT

))
= Trace

(
AT̂

)
(2.17)

E
(
wTBiw

)
= E

(
Trace

(
BkwwT

))
Trace

(
BkT̂

)
(2.18)

E
(
wTCjw

)
= E

(
Trace

(
CkwwT

))
Trace

(
CkT̂

)
(2.19)

Thus w maximizes the expected value of the objective function in (2.9) and satisfies

the corresponding constraints in expectation. In other words, the SDP relaxation in

(2.16) is equivalent to the following stochastic QCQP:

T̂ = arg max
T∈SN

E
(
wTAw

)

s.t. E
(
wTBkw

)
≤ αk, k ∈ I,

E
(
wTCkw

)
= βk, k ∈ E ,

w ∼ N (0,T) . (2.20)
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Such a stochastic interpretation of the SDP relaxation provides an alternative way to

generate the rank-one approximated solution to (2.16).

However, both approximated solutions w from the eigen-decomposition and the

randomized projection are not guaranteed to be feasible for the original problem (2.9).

A feasible solution s̃ can be obtained by projecting the approximated solution w onto

the feasible solution set such that s̃ is the nearest feasible solution to w. There is no

general method to convert the approximation solution w to a feasible solution s̃. The

mentioned specific classes have different procedures to obtain feasible solutions.

The feasible solutions for QCQP classes I and III are obtained by the element-wise

multiplication

s̃ = Sign (w)⊗ β1/2, (2.21)

where Sign (w) returns the signs of all entries of w and ⊗ represents element-wise

multiplication [36, 38]. It is easy to check that s̃2
k = βk for all k ∈ E ; thus, s̃ satisfies

the equality constraints for classes I and III and is a feasible solution to class I.

Additionally, when Ak is diagonal,

Trace
(
AkT̂

)
= Diag (Ak)⊗Diag

(
T̂
)

= Diag (Ak)⊗Diag
(
s̃s̃T
)

= Trace
(
Aks̃s̃

T
)

= s̃TAks̃. (2.22)

In other words, s̃ is also a feasible solution to class III. As a special case of QCQP

class I, the feasible solutions for QCQPs under binary constraints (i.e., all βk = 1)

are obtained via binary quantization s̃ = Sign (w) [32], which is known as binary

quantization.
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Alternatively, for class II, a feasible solution to (2.11) can be obtained by

s̃ = w min
i∈I

√
αi

wTBiw
. (2.23)

The solution s̃ is feasible because for each k ∈ I,

s̃TBks̃ = min
i∈I

αi
wTBiw

wTBkw ≤
αk

wTBkw
sTBkw ≤ αk. (2.24)

2.3.4 Approximation Ratio

The goal of the SDP relaxation (2.16) is to obtain the candidate solution s̃ for

problem (2.9) that is as close to the optimal solution ŝ as possible. Since any optimal

solution ŝ to the QCQP (2.9) can produce a feasible solution ŝŝT to the SDP relaxation

(2.16), we have f(ŝ) ≤ f
(
T̂
)
. Additionally, f(s̃) ≤ f(ŝ) due to the fact that the

solution s̃ resulting from the relaxation solution T̂ by any method should be feasible

to the original problem (2.9). Based on these relationships, if γ = f(s̃)/f
(
T̂
)

is

the ratio between the objective function for a feasible solution s̃ obtained by a rank-

one approximation method and the objective function value for the QCQP optimal

solution T̂, then this performance ratio is no smaller than that for ŝ with the same

factor:

γ =
f(s̃)

f
(
T̂
) ≤ f(ŝ)

f
(
T̂
) ≤ 1. (2.25)

The factor γ measures not only how good the approximation method is but also

how close the resulting solution is to the optimal solution in terms of the objective

function’s value.

20



The SDP relaxation with randomized projection provides guaranteed approxima-

tion ratios for many QCQP problems. In the work of Goemans and Willianson [32],

it was shown that the expected approximation ratio E (γ), which satisfies

E (γ) f
(
T̂
)
≤ E (f (s̃)) ≤ f (ŝ) ≤ f

(
T̂
)
, (2.26)

is no less than 0.88. For the problem (2.10) with the only assumption that A is

positive semidefinite, the expected approximation ratio satisfies E (γ) ≥ 2/π [34, 38].

If the problem (2.10) is set in complex space, such as waveform design in radar, it

is proved to have E (γ) ≥ π/4 > 2/π, which indicates that the QCQP with unit

modulus constraints has more freedom than that with binary constraints.

2.4 Slepian Transform

In this section, we introduce the Slepian transform, the Slepian basis, and the

fast Slepian transform. Additionally, we contrast the representations of spectrally

compact signals in the Fourier and Slepian bases.

We define an N -dimensional complex exponential vector as

F(f) =
1√
N

[
1, ej2πf , . . . , ej2π(N−1)f

]T
, (2.27)

where f ∈M = [0, 1] is the corresponding normalized frequency. The elements of the

Fourier basis fm = F(fm) (m = 1, 2, . . . , N) sample the normalized frequency range

Ω uniformly with the sampled frequencies fm = (m− 1)/N ∈ Ω, which we also refer

to as on-grid frequencies, while we refer to all other frequencies f ∈ M as off-grid

frequencies.

2.4.1 Discrete Prolate Spheroidal Sequences

It is well-known that any bandlimited signal must be infinite in the time domain

and no signal with finite length in the time domain can be bandlimited. In [51, 52],
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Slepian provided a remarkable representation for bandlimited, approximately finite-

length discrete-time signals using discrete prolate spheroidal sequences (DPSSs).

Given a length N and a half-bandwidth W ∈ (0, 0.5), the DPSSs are a collection

of N discrete infinite-length signals that are strictly bandlimited to the frequency

range [−W,W ] but highly concentrated in their first N entries. DPSSs are defined as

the eigenvectors of a procedure that suppresses all entries of an infinite-length signal

except for the first N entries and then filters out all components of the signal outside

the frequency range [−W,W ].

We denote by T the operator that keeps the first N entries of an infinite-length

discrete signal and sets all other entries to zero. Additionally, we use B to represent the

operator that implements a perfect low pass filter for the frequency range [−W,W ].

Then the DPSSs is defined to be the set of N real-valued infinite-length vectors

x1,x2, . . . ,xN that satisfy

B (T(xi)) = λixi, i = 1, 2, . . . , N, (2.28)

where the eigenvalues 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0, and the DPSSs are normalized

such that

‖T (xi)‖2 = 1 (2.29)

for all i = 1, 2, . . . , N .

In [51], one of the center contributions indicates that the first 2NW eigenvalues

are extremely close to 1, while the remaining eigenvalues are extremely close to 0,

which is precisely shown in the following lemma.

Lemma 1 [51] For arbitrary fixed W and ρ ∈ (0, 1), there exist constants C1 and N1

such that
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λi ≥ 1− e−C1N (2.30)

for all i ≤ 2NW (1 − ρ) and all N ≥ N1, and there exist constants C0 and N0 such

that

λi ≤ e−C0N (2.31)

for all i ≥ 2NW (1 + ρ) and all N ≥ N0.

Lemma 1 shows that the effective dimension of the two-step procedure B (T) is

about 2NW . Additionally, we can approximate the eigenvalues λi by either 1 or 0

except for those with indices around 2NW .

2.4.2 Slepian Basis

Due to their infinite length, DPSSs have limited impact in practice. It is important

for computational convenience to have finite-length vectors that capture as much

energy of DPSSs as possible. From [51], it was shown that

‖B (T (xi))‖2 =
√
λi (2.32)

for all i = 1, 2, . . . , N . By comparing (2.29) and (2.32), for those sequences xi with

corresponding eigenvalues λi ≈ 1, nearly all the energy in T (xi) is contained in the

frequency range [−W,W ]. In other word, while any DPSS is perfectly bandlimited,

the corresponding time-limited DPSS will have their spectrum almost completely con-

centrated in this bandwidth for the first 2NW DPSS elements. Thus, the first 2NW

time-limited DPSSs can be used to approximate the entire infinite-length DPSSs.
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Additionally, the time-limited DPSSs are orthogonal:

〈T (xi) ,T (xj)〉 = 0 (2.33)

for any i, j ∈ 1, 2, . . . , N and i 6= j. With the unit norm defined in (2.29), the

time-limited DPSSs provide an orthonormal basis for time-limited signals.

Finally, the time-limited DPSSs have a similar eigenvalue relationship with the

time-limiting and band-limiting operators to the DPSSs. By applying the time-

limiting operator T on both side of (2.28), we have

T (B (T (xi))) = λiT (xi) . (2.34)

So the time-limited DPSSs T (xi) are actually the eigenvectors of the procedure of

first band-limiting and then time-limiting the sequence.

All these properties motivate the definition of the Slepian basis to be the time-

limited DPSSs:

gi = T (xi) , i = 1, 2, . . . , N. (2.35)

All N elments indeed provide an orthonormal basis for CN .

The first 2NW elements of the Slepian basis are usually sufficient to represent the

N -length samples of any signal bandlimited to the frequency range [−W,W ] [53, 54].

By modulating the baseband Slepian basis with an element of the Fourier basis, one

can obtain a subspace approximation of signals restricted to any frequency subset of

[0, 1]. For example, the modulated Slepian basis F (f) ◦ g1,F (f) . . . ,F (f) ◦ gN can

be used to compactly represent signals bandlimited to the range [f−W, f+W ], where

◦ denotes an element-wise product. We can also concatenate such bases for different

frequency ranges to obtain a frame that can successfully approximate multi-band

signals of interest.
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2.4.3 Slepian versus Fourier

Both Slepian and Fourier bases can be used to form an orthonormal basis for a

subspace approximation to the set of signals band-limited to [−W,W ]. There are

some similarities between the Fourier and Slepian bases.

From (2.34), the Slepian basis elements are eigenvectors of the operator of time-

limiting and band-limiting. It can be shown that an alternative way to derive the

Slepian basis g is to consider the eigenvectors of the prolate matrix Q [55], which is

the matrix with entries given by

Qm,n = 2W sinc (2Wπ(m− n)) =
sin (2Wπ(m− n))

π(m− n)
. (2.36)

In fact, G can be interpreted as the finite truncation of the infinite matrix repre-

sentation of B (T (·)). Assume that y (ω) is the discrete-time Fourier transform of

T(x):

y(ω) =
N∑

n=1

xne
−jωn. (2.37)

The entries of B (T (x)) can be obtained as

B (T (x))m =
1

2π

∫ 2πW

−2πW

y(ω)ejωmdω

=
N∑

n=1

xn
1

2π

∫ 2πW

−2πW

ejω(m−n)dω

=
N∑

n=1

xn
ej2πW (m−n) − e−j2πW (m−n)

j2π(m− n)

=
N∑

n=1

xn
sin(2πW (m− n))

π(m− n)
. (2.38)

Let P be the matrix to projects a signal to the subspace spanned by the elements

of the Fourier basis with frequencies lying in the range [−W,W ], which is also the
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Gram matrix of those elements. Then the entries of P are given by

Pm,n =
1

N

NW− 1
2∑

k=−NW+ 1
2

ej2π(m−n)k/N

=
ej2π(m−n)(−NW+ 1

2)/N − ej2π(m−n)(NW− 1
2)/N

N (1− ej2π(m−n)/N)

=
sin(2πW (m− n))

N sin(π(m− n)/N)

=
sin(2WNπ(m− n)/N)

N sin(π(m− n)/N)
. (2.39)

Comparing (2.36) with (2.39), it is easy to see that Q and P share the similar

structure: Q is a Toeplitz matrix with rows and columns given by the sinc function;

P is a circulant matrix with rows and columns given by the digital sinc or Dirichlet

function. Actually, it has been shown in [53] that the difference between these two

matrices has low rank, which is formally stated in the following theorem.

Theorem 1 [53] Let N ∈ N and W ∈
(
0, 1

2

)
be fixed. For any ε ∈

(
0, 1

2

)
, there exist

matrices L1,L2 ∈ RN×r and a matrix E ∈ RN×N such that

Q = P + L1L
T
2 + E, (2.40)

where r ≤
(

4
π2 log(8N) + 6

)
log 15

ε
and ‖E‖ ≤ ε

The most significant difference between the Fourier and Slepian representations

appears for signals containing off-grid frequencies. For example, when W = 1/N ,

a complex exponential x = F(f) for f ∈ [fm−1, fm+1] can be approximated as a

linear combination of three elements of either the Fourier basis M = [fm−1, fm, fm+1]

or the three modulated elements of the Slepian basis M = [fm ◦ g1, fm ◦ g2, fm ◦ g3]

with coefficients c = MHx. Figure 2.3 shows the energy of the coefficients for a

complex exponential signal under both bases as a function of its frequency, with
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Figure 2.3. Coefficient vector power of single-tone signal under the Slepian and
Fourier baes as a function of the component frequency. The Fourier basis captures
all of the signal energy only for on-grid frequencies, while some energy is lost when
the signal contains off-grid frequencies. The Slepian basis preserves almost all energy
at most frequencies.

m = 4. Although the Fourier basis compacts the signal energy to a single coefficient

when the frequency is on-grid (i.e., f ∈ {fm−1, fm, fm+1}), some energy is leaked to

other coefficients when the frequency is off-grid. In contrast, the top three coefficients

of the signal in the Slepian basis capture almost all of the energy of a signal at all

values of the frequency within the band of interest. Nonetheless, the Fourier basis

has better rejection than the Slepian basis for signals with on-grid frequencies outside

the bandwidth of interest, which also affects its suitability to model signals restricted

to a bandwidth within our design approach.
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CHAPTER 3

SINGLE SEQUENCE DESIGN VIA SDP RELAXATION
AND RANDOMIZED PROJECTION

In this chapter,1 we present an algorithm to design binary sequences targeted to

meet a specific spectrum shape. The algorithm is based on an SDP relaxation of a

QCQP followed by a randomized projection and binary quantization, an approach

that is inspired by [32]. Our main contributions can be detailed as follows. First, we

propose a spectrally shaped binary sequence design approach based on optimization

via a QCQP. Second, we extend the randomized projection and binary quantization

method of [32] to our QCQP, which features both equality and inequality constraints.

Third, we provide analytical and numerical results that study the feasibility of the

sequences obtained from the proposed randomization, as well as the quality of the

approximation achieved by the proposed algorithm. Fourth, we propose several cus-

tom score functions for the sequences obtained from randomization that allow for an

improved selection of binary sequences that achieve both message preservation and

interference rejection. Finally, we present numerical simulations that perform a com-

parison between an exhaustive search and the proposed sequence design method when

the sizes that are sufficiently small to make the exhaustive search feasible. Numerical

results verify that our proposed method finds the optimal binary sequences. We also

provide numerical simulations that show the advantages of the proposed algorithm

against algorithms from the literature that have been modified when necessary to

provide binary sequence designs.

1This work is in collaboration with Marco F. Duarte [56, 57]
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3.1 Related Work

We summarize in this section existing approaches for the problem of sequence

design with unit modulus. Furthermore, we introduce some proposed modifications

to these algorithms that change the constraint in the sequences from unimodularity to

binary quantization, for the purpose of later comparison with our proposed approach.

3.1.1 SHAPE Algorithm

The SHAPE algorithm aims to find an unimodular sequence s whose normalized

spectrum x ∈ CN has magnitude that meets both an upper bound u ∈ RN and a

lower bound l ∈ RN , repectively [2, 12]:

ŝ = arg min
s,x∈CN ,α∈C

∥∥FHs− αx
∥∥2

2

s.t. |sk|2 = 1, k = 1, 2, . . . , N

|xk| ≤ uk, k = 1, 2, . . . , N

|xk| ≥ lk, k = 1, 2, . . . , N, (3.1)

where F collects all elements of a discrete Fourier transform basis and α is a scalar

factor accounting for the possible energy mismatch between the sequence and the

constraints. The SHAPE algorithm solves (3.1) using an iterative approach with the

following three main steps.

1. Given s and α, find the spectrum x:

x̂ = arg min
x∈CN

∥∥FHs− αx
∥∥2

2

s.t. |xk| ≤ uk, k = 1, 2, . . . , N,

|xk| ≥ lk, k = 1, 2, . . . , N. (3.2)
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The solution is given by

x̂k =





uk
fHk s/α

|fHk s/α| ,
∣∣fHk s/α

∣∣ ≥ uk

lk
fHk s/α

|fHk s/α| ,
∣∣fHk s/α

∣∣ ≤ lk

fHk s/α, otherwise

, k = 1, 2, . . . , N (3.3)

where fk denotes the kth column of F.

2. Given s and x, find the factor α:

α̂ = arg min
α∈C

∥∥FHs− αx
∥∥2

2
. (3.4)

The solution is given by

α̂ =
xHFHs

‖x‖2
2

. (3.5)

3. Given α and x, find the sequence s:

ŝ = arg min
s∈CN

∥∥FHs− αx
∥∥2

2

s.t. |sk|2 = 1, k = 1, 2, . . . , N. (3.6)

The solution is given by

ŝi =
α 〈fk,x〉
|α 〈fk,x〉|

, k = 1, 2, . . . , N (3.7)
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A straightforward change to the SHAPE algorithm to provide binary sequences

instead of unimodular ones is to replace the optimization (3.6) with the binary con-

straint problem

ŝ = arg min
s∈RN

∥∥FHs− αx
∥∥2

2

s.t. |sk|2 = 1, k = 1, 2, . . . , N. (3.8)

The resulting binary sequence can be obtained as

ŝk = Sign (Real (α 〈fk,x〉)) , (3.9)

where Real (·) denotes the real part of a complex number and Sign (·) denotes the

sign of a real number.

3.1.2 LPNN Algorithm

In [18], a Lagrange programming neural network (LPNN) for unimodular sequence

design with target spectrum x is formulated as follows:

ŝ = arg min
s∈CN ,α∈R

N∑

i=1

wi

(∣∣fHi s
∣∣2 − αxk

)2

+ c0

N∑

i=1

(∣∣eHi s
∣∣2 − 1

)2

s.t.
∣∣eTi s

∣∣2 = 1, i = 1, 2, . . . , N. (3.10)

Here ei denotes the canonical basis whose ith entry is 1 and others are 0, and wi are

weights for each frequency component. The second term in the objective function is

the augmented term to improve the convexity and stability. By separating the real

and imaginary parts of the matrices and vectors in the equation as

31



s̄ =




Real (s)

Imag (s)


 ,

Fi =




Real (fi) − Imag (fi)

Real (fi) Imag (fi)


 ,

Ei =




ei 0

0 ei


 , (3.11)

where Imag (·) denotes the imaginary part of a complex number, the complex-valued

optimization (3.10) is transformed into the real-valued optimization

min
s̄∈R2N ,α∈R

N∑

i=1

wi

(
s̄TFiF

T

i s̄− αxi
)2

+ c0

N∑

i=1

(
s̄TEiE

T

i s̄− 1
)2

s.t. s̄TEiE
T

i s̄ = 1, i = 1, 2, . . . , N. (3.12)

The Lagrangian function for this problem is set up as

l (s̄, α,µ) =
N∑

i=1

wi

(
s̄TFiF

T

i s̄− αxi
)2

+ c0

N∑

i=1

(
s̄TEiE

T

i s̄− 1
)2

+
N∑

i=1

µi

(
s̄TEiE

T

i s̄− 1
)
, (3.13)

where µ is the Lagrange multiplier. The LPNN then computes increments for the

parameters and solution of this problem as follows:
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∆s̄ = − ∂l
∂s̄

= −4
N∑

i=1

wi

(
s̄TFiF

T

i s̄− αxi
)

FiF
T

i s̄− 4c0

N∑

i=1

(
s̄TEiE

T

i s̄− 1
)

EiE
T

i s̄

− 2
N∑

i=1

µiEiE
T

i s̄, (3.14)

∆α = − ∂l
∂α

= 2
N∑

i=1

wi

(
s̄TFiF

T

i s̄− αxi
)
xi, (3.15)

∆µi = − ∂l

∂µi
= s̄TEiE

T

i s̄− 1. (3.16)

The LPNN algorithm initializes the so-called neurons s̄, α, µ randomly. The neurons

are updated using the increments above at each iteration k:

s̄k+1 = s̄k + ρ∆s̄, (3.17)

αk+1 = αk + ρ∆α, (3.18)

µk+1 = µk + ρ∆µ. (3.19)

Finally, the unimodular sequence ŝ is constructed by taking the first and lastN entries

of s̄ as its real and imaginary parts.

The LPNN algorithm can be modified to provide binary sequences by changing

the s ∈ CN constraint in (3.10) to s ∈ RN , making (3.10) a real-valued optimization.

Thus, we can directly obtain the dynamics for the neurons s, α, and µ by replacing

s̄ to s, F to F, and Ei to ei in (3.15-3.17).

3.2 Binary Sequence Design via QCQP

In this section, we develop an efficient method to generate a binary sequence that

is based on the SDP relaxation and randomized projection introduced in Section 2.3.

A filter implemented to have such a sequence as its impulse response provides a

frequency response with a bandpass and a notch for the message and interferer bands,
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respectively. We also provide a theoretical analysis of the algorithm to show its

approximation ratio and the likelihood of feasibility for the randomized sequences

obtained. To improve the performance of the algorithm, we end the section with

a discussion on possible additional criteria to select among the multiple sequences

obtained via the proposed randomization.

3.2.1 Design Algorithm

We desire for the spectrally shaped sequence to provide a passband and notch for

the pre-determined message and interferer bands, respectively. We denote by FP and

FS the collection of all discrete Fourier transform basis elements corresponding to the

message band P ⊆ {1, 2, . . . , N} and interferer band S ⊆ {1, 2, . . . , N}, respectively.

We also assume that P ∩ S = ∅, but we do not place any other restrictions on

the message and interferer bands. A least-squares fitting approach for designing an

N -points binary sequence can be written as the QCQP

ŝ = arg max
s∈RN

f(s) =
∥∥FH
P s
∥∥2

2

s.t. g(s) =
∥∥FH
S s
∥∥2

2
≤ α,

hk(s) = s2
k = 1, k = 1, 2, . . . , N, (3.20)

for some interferer tolerance α > 0, where sk denotes the kth entry of s. As mentioned

in Section 2.3, such an integer optimization problem is NP-hard. Though it is possible

to use an exhaustive method that searches over all possible binary sequences to return

the optimal sequence when the sequence length is very small, it is too inefficient and

even impossible to use the exhaustive method when the sequence length is relatively

large.

Following the framework prescribed in Section 2.3, the SDP relaxation for the

QCQP (3.20) can be obtained by noting that ‖FPs‖2
2 = Trace

(
FPFH

P ssT
)

and
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‖FSs‖2
2 = Trace

(
FSF

H
S ssT

)
, providing us with the optimization

T̂ = arg max
T∈SN

f(T) = Trace
(
FPFH

PT
)

s.t. g(T) = Trace
(
FSF

H
S T
)
≤ α/2,

hk(T) = Tk,k = 1, k = 1, 2, . . . , N, (3.21)

where Tk,k denotes the kth diagonal entry of T. Note that we omit the redundant

operations that take the real part of f(T) and g(T) since both FPFH
P and FSF

H
S are

Hermitian and these quadratic functions will always be real-valued. Note also that

the inequality constraint bound has been halved, which will be justified in Theorem 2.

Our proposed SDP approximation and randomization for the QCQP is detailed

in Algorithm 1. After obtaining and decomposing the optimal solution T̂ for the

SDP relaxation, a randomly generated vector v ∼ N (0, IN) is used to project T̂

from a high dimensional space to a low dimensional space and obtain the approxima-

tion vector w`. A candidate binary sequence s̃` is then obtained by quantizing the

approximation vector w`. The algorithm repeats the random projection L times to

provide a set of candidate sequences and finally outputs the sequence that maximizes

the message band power while meeting the requested upper bound for the interferer

band power.

3.2.2 Approximation Performance

As mentioned in Section 2.3.4, the key to the performance analysis of the spectrally

shaped binary sequence design (i.e., the performance of using a candidate sequence s̃

as the approximation of optimal sequence ŝ) is to evaluate the approximation ratio γ

such that any s̃ generated in step 7 of Algorithm 1 satisfies f (s̃) ≥ γf(ŝ). The larger

that approximation ratio γ is, the closer that candidate sequence s̃ could be to the

optimal sequence ŝ in the sense of objective function value.
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Algorithm 1 Binary Sequence Design
Input: message band P , interferer band S, interferer tolerance α, random search size

L
Output: binary sequence ŝ
1: generate bases FP , FS for message and interferer bands
2: obtain optimal solution T̂ to SDP relaxation (3.21)
3: compute eigendecomposition for T̂ = UΛUT

4: for ` = 1, 2, . . . , L do
5: generate random vector v ∼ N (0, I)
6: obtain approximation by projecting w` = UΛ1/2v
7: obtain candidate by quantization s̃` = Sign (w`)
8: end for
9: select best binary sequence

ŝ = arg max
s̃`:1≤`≤L

{f (s̃`) : g (s̃`) ≤ α}

Our binary sequence design has a very similar form as the QCQP class III (cf.

Section 2.3): both contain equality constraints and inequality constraints, and the

characteristic matrices for the inequality constraints can be factorized as the multi-

plication of a canonical vector and its transpose. Those similarities inspire us to use

the binary quantization s̃ = Sign (w) after the randomized projection in sequence

design.

However, while the characteristic matrices for inequality constraints in the QCQP

class III are diagonal, those in sequence design are rarely diagonal. It is impossible for

FSF
H
S , the characteristic matrix for the inequality constraint in (3.21), to be diagonal

except for the uninteresting case when S = {1, 2, . . . , N} and P = ∅, i.e., the inter-

ferer band covers the whole spectrum. This causes the result discrepancy between our

proposed approach and the QCQP class III relaxation: while the characteristic matrix

B for the inequality constraints of a class III QCQP is diagonal, the inequality con-

straint function for the candidate solution g(s̃) = s̃TBs̃ = Trace
(
Bs̃s̃T

)
is equal to the

inequality constraint function for the SDP relaxation solution g
(
T̂
)

= Trace
(
BT̂
)
,

since the diagonal entries of s̃s̃T and T̂ are the same. In contrast, in our pro-
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Figure 3.1. Illustration of feasible sets in (Left) the QCQP class III and (Right)
sequence design. Red dots represent the possible binary vectors. Black ellipses rep-
resent the bounds of inequality constraints.

posed sequence design algorithm, given that FSF
H
S is not diagonal, we have that

g(s̃) = s̃TFSF
H
S s̃ is not equal to g

(
T̂
)

= Trace
(
FSF

H
S Ŝ
)
, even when the diagonal

entries of s̃s̃T and T̂ are still the same.

There is also some geometric intuition behind this difference. Any binary vector

obtained via randomized projection and binary quantization is one of the vertices

of a hypercube. To be a feasible solution, the binary vector must lie inside the set

defined by the inequality constraints. Both g(s) in (2.9) and (3.20) are quadratic

functions and both characteristic matrices B and FSF
H
S are positive semidefinite, so

each inequality constraint defines a set bounded by an ellipsoid in a high dimensional

space. The eigenvectors for B and FSF
H
S are the principal axes of the two ellipsoids.

Since B is diagonal, the eigenvectors are the canonical vectors and the ellipsoid is

symmetric with respect to any axes. If a binary vector lies inside the ellipsoid, then

all binary vectors also lie inside the ellipsoid. In contrast, the eigenvectors for FSF
H
S

are rarely the canonical vectors, so it is possible for some binary vectors to lie outside

the ellipsoid even when others lie inside. Figure 3.1 shows the difference in an example

two-dimensional space.

In summary, binary sequences s̃ resulting from T̂ via randomized projection and

binary quantization may not be feasible to the inequality constraint, i.e., ‖FS s̃‖2
2 ≥

α. Analyzing the performance of s̃ consists of evaluating the feasibility probability
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and approximation ratio: the former describes how often s̃ satisfies the inequality

constraints and the latter measures how good s̃ is provided that it is feasible.

Intuitively, the feasibility probability of s̃ highly depends on α and the rank of FS ,

which is also the width of the interferer band. As can be seen in Figure 3.1, decreasing

α shrinks the ellipsoid defined by the inequality constraints and therefore fewer binary

sequences are contained in the ellipsoid, which causes a reduced feasibility probability.

Furthermore, a wider interferer band put more strict constraints on the sequences,

which makes it harder for the sequences to be feasible. These can be shown in the

following theorem, proven in Appendix 7.

Theorem 2 Assume that T̂ is a solution for the SDP relaxation (3.21) and s is a

binary vector obtained via randomized projection and binary quantization from T̂.

Define the ratio

β =
Trace

(
FSF

H
S arcsin T̂

)

Trace
(
FH
S FST̂

) . (3.22)

Then, we have

Prob

{∥∥FH
S s
∥∥2

2
≥ 1

π
(β + 1)α

}
≤ exp

(
−C α2

K2

)
, (3.23)

where C is a constant and K is the number of columns of FS .

It is worth noting that the ratio β depends on the particular solution T̂. Fur-

thermore, it is not possible to obtain a probability tail bound that is independent

of T. To see this, consider the case when all columns of T̂ lie in the null space

of FS , which would cause Trace
(
FSF

H
S T̂
)

= 0. The ratio β will be infinite even

if Trace
(
FSF

H
S arcsin T̂

)
is very small but not zero. We also evaluate this depen-

dence numerically: Figure 3.2 shows the empirical probability of the ratio β over 106
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Figure 3.2. Empirical probability of the ratio β between Trace
(
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)

and Trace
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FSF

H
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)

in different setting of sequence length N , interferer width K,

and rank R of T̂.

randomly generated positive semidefinite matrices T̂ for several choices of sequence

design problems. Virtually all instances of the ratio β are below π− 1 ≈ 2.14. When

this bound on β holds, the result above is reduced to

Prob
{∥∥FH

S s
∥∥2

2
≥ α

}
≤ exp

(
−C α2

K2

)
. (3.24)

We note that the reduction of the feasibility bound in (3.21) from α to α/2 is necessary

to obtain the result above, given the values of β that are observed in practice.

Numerical simulations in the sequel serve as further validation of Theorem 2,

and confirm the conclusion that the larger that α is, and the narrower that the

interferer band is, the more likely that the sequence s̃ will meet the interferer band

power constraint. Additionally, Theorem 2 implies that it is necessary to generate a

sufficiently large number of candidate sequences to meet the feasibility constraints,

as described in Algorithm 1.

When s̃ is feasible to all constraints, it is possible to calculate the approximation

ratio. We claim the approximation ratio by the following conjecture. Such result

matches the results of other QCQPs proved repeatedly in the literature, e.g., [58,
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Corollary 2.1] and [36, Proposition 1]. Though we have found it difficult to establish

a theoretical proof of the following statement, we will verify the conjecture numerically

in the sequel.

Conjecture 1 Consider a binary sequence s̃ obtained via randomized projection and

binary quantization from T̂, which is the solution to (3.21). Given that s̃ meets the

inequality constraints, i.e., ‖FH
S s̃‖2

2 ≤ α, the approximation ratio

γ =
‖FH
P s̃‖2

2

Trace
(
FPFH

P T̂
)

satisfies γ ≥ π/2− 1.

Theorem 2 and Conjecture 1 together establish that it is possible to use the

randomized projection and binary quantization to generate feasible binary sequences

with high probability for which the message band power is no less than π/2−1 of the

optimal power among arbitrary sequences. These two theorems are the theoretical

foundation for our proposed binary sequence design method.

3.2.3 Sequence Selection

In Algorithm 1, the final sequence selection step not only excludes the candidate

sequences that fail the interferer constraints but also finds a sequence that has an

objective function value as close to that of the optimal sequence as possible. Intu-

itively, one would choose the feasible sequence that maximizes the objective function

of (3.20), which corresponds to the sequence with maximal energy in the message

band.

However, the sequence with the largest message power is not necessarily the best

suited sequence for the problem of interest. As shown in Figure 3.3, the sequence

selected according to the message band power maximization often has a large mag-

nitude dynamic range (i.e., the ratio between the largest magnitude and smallest
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Figure 3.3. Spectra of example binary sequences that maximize (Left) the message
power and (Right) the interferer rejection ratio (3.25). Green and red markers denote
the interferer and message bands.

magnitude in the sequence spectrum), in both the message band and the interferer

band. Additionally, the sequence fails to attenuate the interferer with respect to the

message since some magnitudes in the message band are even smaller than some in the

interferer band, which potentially does not allow for successful interference rejection.

To ensure the necessary attenuation, we propose the use of the interferer rejection

ratio as the metric for sequence selection after randomization. This metric is defined

as the ratio between the minimum magnitude of the spectrum in the message band

and the maximum magnitude in the interferer band, i.e.,

ρ (s) :=
min

∣∣FH
P s
∣∣

max |FH
S s| , (3.25)

where the absolute value is taken in an element-wise fashion and the minimum and

maximum are evaluated over the entries of the corresponding vectors. We find that

a sequence selection driven by this criterion provides more amenable spectra for the

applications of interest, as shown in Figure 3.3. Furthermore, we also find in Figure 3.3

that the dynamic range of the spectra in the bands of interest is reduced as well.
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3.3 Numerical Experiments

To test our proposed binary sequence design algorithm, we present two groups of

experiments: the first group provides experimental validation to the two theorems;

the second group studies the performance of the obtained sequences in comparison

to existing approaches, including the modifications listed in Section 3.1 and the ex-

haustive search when feasible. In all experiments, the SDP optimization (3.20) is

implemented using the CVX package [59, 60].

In the first experiment, we illustrate the probability that the candidate sequences

s̃, obtained according to Algorithm 1, satisfy the interferer constraint. To validate

the theorems, we set the sequence length to N = 128, and draw L = 106 candidate se-

quences to evaluate the statistical behavior of the algorithm. Figure 3.4 shows the fea-

sibility probability as a function of the interferer tolerance α ∈ [0.5, 10] when the mes-

sage and interferer bands include the frequencies P = {25, 26, . . . , 30, 40, 41, . . . , 45}

and S = {10, 11, . . . , 15, 50, 51, . . . , 55}, respectively, and the feasibility probability,

when the message band is P = {1, 2, . . . , 10, 50, 51, . . . , 60} and the interferer toler-

ance is α = 3, as a function of the interferer width |S| ∈ [1, 20] such that the interferer

band includes frequencies with indices S = {20, 21, . . . , 20 + |S|}. Both validate the

exponential relationships predicted by Theorem 2. “Random sequence” in the figures

corresponds to sequences drawn uniformly at random from {−1, 1}N . The random

sequences have much lower probability to satisfy the interferer constraints than the

candidate sequences. This indicates that it is beneficial to use the combination of an

SDP relaxation and randomized projection to find the feasible sequence.

In the second experiment, we illustrate the distribution of the approximation

ratio of the candidate sequence resulting from the randomized projection and binary

quantization. The approximation ratio corresponds to the ratio of the values of the

objective function f(s) from (3.20) for the solution s̃ obtained from Algorithm 1 to

the objective function f (T) from (3.21) for the solution T̂. The setting is the same
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Figure 3.4. Probability of a candidate sequence satisfying the interferer constraint
as a function of (Left) interferer tolerance and (Right) interferer bandwidth.

as in the previous experiments. We also compare to R random binary sequences with

entries drawn from a uniform Rademacher distribution. Figure 3.5 shows that all

feasible sequences generated by Algorithm 1 have approximation ratio γ ≥ π/2 −

1, which is marked by the red dotted line; the figure also shows that Algorithm 1

consistently outperforms random sequence designs, as expected from the spectral

shaping. This numerically proves that the sequences obtained from Algorithm 1 meets

the approximation ratio π/2−1, as detailed in Conjecture 1. Additionally, the results

motivate the use of random projections rather than the only eigendecomposition to

obtain the candidate sequences, given that some feasible solutions are able to achieve

a higher approximation ratio than the quantized principal eigenvector of T̂, whose

approximation ratio is marked by the black dashed line in Figure 3.5. These numerical

results show that the candidate sequences obtained from Algorithm 1 have a high

probability of satisfying the interferer constraints and large message band power,

which we can interpret as successful spectrally shaped binary sequence design.

In the third experiment, we compare the performance of the sequences obtained

from Algorithm 1 versus the optimal sequences obtained by the exhaustive search.

By setting the sequence length N = 16, we can feasibly perform an exhaustive search

over all the 216 = 65536 possible binary sequences. Both the message and interferer
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Figure 3.5. Distribution of approximation ratio γ of candidate sequences that are
feasible to the interferer constraints. The red dotted and black dashed lines represent
the bound predicted by Conjecture 1 (γ ≥ π/2 − 1) and the approximation ratio
corresponding to the quantized principal eigenvector of T̂, respectively.

band contain only two frequency bins, and so there are
(

8
2

)
×
(

6
2

)
= 420 different

choices to set the message and interferer band in the spectrum accordingly, given

that message and interferer bands share no common frequency and the spectrum of a

binary sequence is symmetric. Figure 3.6 shows the ratio of the performance metrics

for the sequences obtained by Algorithm 1 over those for the optimal sequences from

an exhaustive search as a function of the size of the random search size L (i.e., the

number of candidate sequences generated in Algorithm 1) after being normalized

by the size of the exhaustive search space. We use three measures of performance

averaged over all 420 choices: the message band power, the interference rejection

ratio (3.25) and reciprocal message dynamic range, which is defined as

χ(s) =
min

∣∣FH
P s
∣∣

max |FH
P s| (3.26)

to measure the dynamic range in message band. Noting that each of these metrics can

be correspondingly used as the score function in the selection step of Algorithm 1.

The message power of the sequences obtained from Algorithm 1 matches that ob-

tained from exhaustive search, even if L, the random search size in Algorithm 1, is
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Figure 3.6. Average ratio of message power and interferer rejection ratio and recip-
rocal message dynamic range between the sequences obtained from Algorithm 1 and
the optimal sequences from an exhaustive search.

much smaller than the exhaustive search size. Though the proposed method could

not find the sequence with the largest interferer rejection ratio, it provides a good

approximation with low complexity.

In the fourth experiment, we compare the performance of the sequences obtained

from Algorithm 1 versus both unimodular and binary sequences from SHAPE and

LPNN algorithms (cf. Section 3.1) over 100 randomly drawn message and interferer

configurations. The sequence length and the message bandwidth are fixed to be

N = 128 with |P| = 10 and |S| varying between 1 and 10. The proposed algorithm

chooses the best sequence from L = 105 candidate sequences, while the maximum iter-

ation for SHAPE and LPNN algorithms is 104. Figure 3.7 shows the average rejection

ratio and computation time for all tested algorithms. Our proposed algorithm shows

the ability to obtain a binary sequence with a clear distinction in the magnitude of the

message and interferer bands. The performance of our proposed algorithm decreases

as the interferer bandwidth becomes larger. Although it can be expected that the uni-

modular sequences obtained from both the SHAPE and the LPNN algorithms provide

better interference rejection, surprisingly, our proposed method achieves performance

similar to the unimodular sequences found by existing methods. Furthermore, our
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Figure 3.7. Average interferer rejection ratio (Left) and computation time (Right)
of SHAPE and LPNN for unimodular sequence and binary sequence and Algorithm 1
for binary sequence.

proposed method outperforms their binary-constrained versions, which is indicative of

the difficulty of this more severely constrained problem. Note also that the quantized

principal eigenvectors have much worse performance than the designed sequences,

which is evidence of the benefit provided by the randomized projection search in-

cluded in Algorithm 1. We finally note that the computation time for each algorithm

is roughly constant over the interferer widths chosen: our proposed algorithm takes

356 seconds on average while both versions of SHAPE take 0.5 seconds on average,

and the two versions of LPNN take 606 and 181 seconds on average, respectively.
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CHAPTER 4

ITERATIVE SEQUENCE SET DESIGN FOR
MULTI-BRANCH MODULATION

In Chapter 3, we presented an algorithm to design a single binary sequence tar-

geted to meet a specific spectrum shape. Such sequences provide a passband and

notch for the message and interferer bands, respectively. These previous results can

be leveraged in the multi-branch modulation by mixing the signal with the same de-

signed sequence but with different delays in different branches. The resulting linear

measurement operator can be represented by a Toeplitz matrix of which each row is

a circularly shifted version of the sequence. However, there are no guarantees that

such modulation can provide stable recovery, as shown in the numerical experiments

in this chapter.

In this chapter,1 we propose an algorithm to design multi-branch binary sequences

that are capable of mitigating strong narrowband interferers. The algorithm is based

on our previously proposed single sequence design, which is used repeatedly to obtain

spectrally shaped sequences for all branches iteratively. Furthermore, in order to

provide stable recovery performance, an additional constraint is included to require

the expected sequence in each branch to be approximately orthogonal to all previously

designed sequences for other branches. Our main contributions can be detailed as

follows. First, we propose a multi-branch sequence design approach based on the

single sequence design. Second, we introduce the inner product constraints to obtain

sequences that are as pairwise mutually orthogonal as possible. Third, we provide an

1This work is in collaboration with Marco F. Duarte [61, 62]
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analysis of the connection between the condition number of the measurement operator

matrix, which serves as a measure of the stability of the recovery to noise, and the

tolerance of the sequence orthogonality, and show that the number of sequences that

can be obtained meeting the constraints is dependent on the sequence length. Fourth,

we show the necessity of oversampling in the multi-branch sequence design in order to

obtain sequences with stable invertibility performance. Finally, we present numerical

results to show the advantages of the sequences obtained from the proposed algorithm

in interferer mitigation and recovery stability against the pseudorandom sequence and

the sequence from the single sequence design in Chapter 3.

4.1 Iterative Sequence Set Design

In this section, we present the details of our proposed approach to the multi-

branch sequence design. Our approach is based on our prior work for single sequence

design from Chapter 3, which is used iteratively to obtain sequences for different

branches, and an approximate orthogonality constraint is included. We also analyze

the relationship between the condition number and the tolerance value. Our analysis

shows that it is difficult to obtain a set of mutual orthogonal sequences of size equal

to the sequence length in order to provide stable recovery, and so it is necessary to

introduce oversampling in the sequence design.

4.1.1 Problem Formulation

We seek a set of binary sequences s1, s2, . . . , sN ∈ {−1, 1}N that are used to

modulate the received signals in a multi-branch modulation architecture. In the

modulation, the interferer band should be suppressed as much as possible; after the

modulation, the message band should be recovered from the multiple modulations

of the signal. To mitigate the interferer, the binary sequence modulation should

work as a band-stop filter that provides a notch at the interferer band. Therefore,
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the sequences shall have small power in the interferer band. In order to obtain a

stable reconstruction of the message, the modulation system involving the sequence

set should be well-conditioned to prevent large distortion in the output due to noise.

As we will show in the next subsection, the requirement for the sequences to be as

close to mutually orthogonal as possible provides a guarantee that the sequence set

has small condition number.

We denote by FS and FP the collection of basis elements for the interferer and

message bands, respectively. We also assume that S and P are disjoint, i.e., there is

no overlap between the message and interferer bands. The power of a sequence sk (k =

1, 2, . . . , N) in the interferer band can be measured by ‖FH
S sk‖2

2. The orthogonality

between a pair of sequences si and sj can be measured by the normalized inner product

〈si, sj〉 /
(
‖si‖2 ‖sj‖2

)
= sTi sj/N due to every binary sequence satisfying ‖si‖2 =

√
N .

The sequence design problem for each channel is then to find a binary sequence s

such that the corresponding sequence power in the interferer band is minimized while

the inner product between the sequence and each previously designed sequence for

other channels is sufficiently small. Thus an approach for designing the sequence for

kth channel (k = 1, 2, . . . , N) can be written as the QCQP

ŝk = arg min
s∈RN

∥∥FH
S s
∥∥2

2

s.t.
∣∣ŝTi s

∣∣2 ≤ αN, i = 1, 2, . . . , k − 1,

s2
n = 1, n = 1, . . . , N, (4.1)

where α is the orthogonality tolerance, and ŝi (i = 1, . . . , k − 1) is the obtained

sequence for the ith channel.

It is easy to verify that (4.1) is a QCQP due to the fact that
∣∣ŝTi sk

∣∣2 = sTk ŝiŝ
T
i sk =

Trace
(
ŝiŝ

T
i sks

T
k

)
. Following the framework prescribed in Section 2.3, the sequence

design can be approximately solved by the SDP relaxation and randomized projection.
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Before we present the details about solving (4.1), some discussion about the condition

number for the equivalent modulation operator matrix of the obtained sequence set

is necessary.

4.1.2 Condition Number

From [5–7], the modulation of the input signal x can be simplified as y = Sx when

noise and nonlinearity are ignored, where S = [ŝ1, . . . , ŝN ]T represents the sequence

set and y is a vector containing the modulation samples after integration for the

different channels. When S is invertible, the original sequence can be recovered by

x̂ = S−1y.

When there is noise or distortion e added to the receiver samples y before recovery,

the error in the output will be S−1e. Thus, the recovery performance can be measured

by the proportion of the signal-to-noise ratios (SNRs) before and after recovery:

‖y‖2/ ‖e‖2

‖S−1y‖2/ ‖S−1e‖2

=
‖S−1e‖2

‖e‖2

‖y‖2

‖S−1y‖2

=
‖S−1e‖2

‖e‖2

‖Sx‖2

‖x‖2

(4.2)

Smaller values for this ratio indicate better recovery performance. The condition

number of S can be similarly defined as the maximum possible value of the ratio

product

κ = max
e6=0

‖S−1e‖2

‖e‖2

max
x 6=0

‖Sx‖2

‖x‖2

, (4.3)

which shows the maximum possible error occurring in the recovery. The larger that

the condition number is, the worse that the recovery can potentially be.

We denote the singular value decomposition of S = UΣVT , where U = [u1, . . . ,uN ]

and V = [v1, . . . ,vN ] are both unitary matrices and Σ is a diagonal matrix whose

diagonal entries are the singular values σ1 ≥ · · · ≥ σN > 0. Then
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max
x 6=0

‖Sx‖2

‖x‖2

= σ1, (4.4)

where the equality is satisfied if and only if vT1 x = 1 and vTi x = 0 for i = 2, . . . , N ,

i.e., x = v1.

Since both U and V are unitary, S−1 = (UΣV)−1 = VTΣ−1U, where Σ−1 is a

diagonal matrix whose diagonal entries are 1/σN ≥ · · · ≥ 1/σ1 > 0. Similarly,

max
e6=0

‖S−1e‖2

‖e‖2

=
1

σN
. (4.5)

Thus the condition number is also equal to

κ =
σ1

σN
, (4.6)

which indicates that the condition number is also defined as the ratio between the

largest and smallest singular values. When the condition number is infinity, σN = 0

and S is not invertible. When σN is close to zero rather than strictly equal to zero,

the condition number is extremely large. The error after recovery is very large even

if the error before recovery is very small; such recovery is not stable. The closer that

the minimum singular value is to zero, the worse that the recovery is. To guarantee

the stable recovery, it is required that the minimum singular value S is far away from

zero.

We can leverage the relationship between the minimum singular value of S or the

minimum eigenvalue of the Gram matrix Q = SST , whose diagonal entries Qi,i =

ŝTi ŝi = N due to the binary entries of ŝi, and all off-diagonal entries Qi,j = ŝTi ŝj

are upper bounded in the sequence design. In [63], Gershgorin proved the following

theorem to reveal the relationship between the eigenvalues and entries of a matrix.

Theorem 3 (Gershgorin Circle Theorem) For a square matrix Q ∈ CN×N , let

Ri =
∑

j 6=i |Qi,j| (n = 1, 2, . . . , N) be the sum of the absolute values of the off-diagonal
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entries in the ith row, and D (Qi,i, Ri) ⊂ C be a closed disc centered at Qi,i with radius

Ri, which is called a Gershgorin disc. Then each eigenvalue of Q lies within at least

one of the Gershgorin discs D (Qi,i, Ri).

In other words, there exists at least one index i = 1, . . . , N such that the minimum

singular value satisfies |σ2
N −Qi,i| ≤

∑
j 6=i |Qi,j|. If there exists i ∈ {1, . . . , N} such

that
∑

j 6=i |Qi,j| ≥ Qi,i = N , which implies that the corresponding Gershgorin discs

of Q contain the origin, then the minimum singular value of Q could be arbitrarily

close to zero, and so the condition number could be arbitrarily large. In order to have

a stable recovery, the value of the off-diagonal entries should be as small as possible,

which indicates that sequences should be as close to mutually orthogonal as possible.

For a pair of binary sequences si, sj ∈ {−1, 1}N , 〈si, sj〉 =
∑N

n=1 si,nsj,n, where

si,n is the nth entry of si. Since the product term si,nsj,n also takes a binary value,

the pair of binary sequences are orthogonal, i.e., 〈si, sj〉 = 0 if and only if N/2 pairs

of entries of si and sj at the same indices have the same values, and the other pairs

of entries of si have the opposite values. If there are more or less than N/2 matching

pairs of entries, then the numbers of positive and negative terms do not match.

When N is odd, it is obviously impossible for a pair of binary sequences si and sj

to be be orthogonal; additionally, | 〈si, sj〉 | ≥ 1. Thus, the sum of absolute values of

all off-diagonal entries
∑

i 6=j |Qi,j| ≥ N − 1 for all rows. According to Theorem 3, the

minimum eigenvalue may be as small as 1 and the maximum eigenvalue may be as

large as 2N − 1, making the condition number of Q as large as 2N − 1 even in this

case where all sequences are as orthogonal to each other as possible.

There are special cases of orthogonal binary sequence sets when N is a power of

2: a well-known example is the Walsh-Hadamard codes. These codes are constructed

from the elementary matrix
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H2 =




1 1

1 −1


 . (4.7)

This so-called Hadamard matrix contains the two codewords in the 2-dimensional

Walsh-Hadamard codes. Higher-dimensional Walsh-Hadamard codes can be con-

structed using the Hadamard matrix as follows:

Hn =




Hn/2 Hn/2

Hn/2 −Hn/2


 (4.8)

The matrix Hn contains n orthogonal binary codewords of length n. Although

the Walsh-Hadamard codes in multi-branch modulation provides a perfect recovery,

their construction is binary only when N is a power of 2. Additionally, the Walsh-

Hadamard codes are fixed and its interferer mitigation cannot be tailored to prior

knowledge of the interferer band. In fact, it is straightforward to verify that the

Hadamard codes for N -dimensional space contains the sequences [1, 1, . . . , 1]T and

[1,−1, . . . ,−1]T . Those two sequences have non-zero spectra only at normalized fre-

quencies 0 and 1/2, respectively. Therefore, the Walsh-Hadamard codes mitigation

performance suffers when the interferer bands contain those frequencies.

Although it is difficult to provide an analytical proof of the difficulty of the design

of approximately mutually orthogonal binary sequences, we will numerically explore

the feasibility of the QCQP (4.1) that aims to find N binary sequences of length N

that are approximately mutually orthogonal.

4.1.3 Oversampling

The analysis above shows that it is hard to obtain N binary sequences in N -

dimensional space that are approximately orthogonal such that the Gershgorin discs

are far away from the origin. Intuitively, it is easier to find N binary sequences that
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are approximately mutually orthogonal in a higher dimensional space. Assume that

each sequence has length RN , which can be used to modulate signals oversampled

by a factor of R.

As described in Section 2.3, we obtain candidate sequences s` from the solution of

a SDP relaxation T̂ via randomized projection and binary quantization. In summary,

we generate random vectors w` as independent samples from a multivariate Gaussian

distribution and the candidate binary sequences are obtained via the quantization

s` = Sign (w`). While the presence of T̂ in the design of the sequences introduces

correlations, we study the simpler case in which the sequence entries are independent,

i.e., when T̂ = I and w` ∼ N (0, I). In this case, the entries of s`,n = Sign (w`,n)

(n = 1, 2, . . . , RN) are random variables drawn independently and identically from a

Rademacher distribution, i.e., P (s`,n = 1) = P (s`,n = −1) = 1/2, where P (·) returns

the probability of an event. Additionally, the pairwise entry products involved in the

computation of the inner products of si and sj also follow a Rademacher distribution,

i.e., P (si,nsj,n = 1) = P (si,nsj,n = −1) = 1/2 for any i 6= j. The following theorem

shows an upper for a so-called Rademacher sum.

Theorem 4 ([64]) Assume that s1, s2, . . . , sN is a sequence of random variables fol-

lowing a Rademacher distribution and x1, x2, . . . , xN is a set of real numbers. Then

P
(∑N

n=1 xnsn ≥ t
√∑N

n=1 x
2
n

)
≤ e−t

2/2 for any t ≥ 0.

To apply Theorem 4 to the study of the inner product si and sj, we set t = α
√
RN

and xn = 1 for n = 1, . . . , RN to obtain the probabilities

P

(
RN∑

n=1

si,nsj,n ≥ αRN

)
≤ e−α

2RN/2, (4.9)

P

(
RN∑

n=1

si,nsj,n ≤ −αRN
)
≤ e−α

2RN/2, (4.10)

where the latter statement is obtained by symmetry. Thus,
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P
(∣∣sTi sj

∣∣ ≥ αRN
)

= P

(∣∣∣∣∣
RN∑

n=1

si,nsj,n

∣∣∣∣∣ ≥ αRN

)
≤ 2e−α

2RN/2. (4.11)

Equation (4.11) shows that the probability that the pair of binary sequences si

and sj is not approximately orthogonal is inverse proportional to the oversampling

rate R. With a higher oversampling rate, we are more likely to find approximately

orthogonal sequences. Although it is difficult to derive a similar result to (4.11) when

the sequences are drawn according to the solution of the SDP relaxation, the numerical

results in the sequel confirm the conclusion that increasing the oversampling helps to

obtain sequences with better interferer performance. Nonetheless, the signals cannot

be recovered when the oversampled sequences are used to modulate the signals, given

that the columns of the resulting modulation matrix operator S ∈ {−1, 1}N×RN are

not linearly independent.

We redefine the complex exponential vector for normalized frequency f ∈ M in

the oversampled space as

F (f) =
1√
RN

[
1, ej2πf , . . . , ej2π(RN−1)f

]
. (4.12)

The Fourier basis elements fm (m = 1, 2, . . . , RN) corresponding to the complex

exponential vectors with the on-grid frequencies fm = (m− 1) /RN ∈M that sample

the normalized frequency range more finely than those in original space. Due to the

oversampling, The original frequency range [0, 1] for N-dimensional signals is mapped

to the frequency range [0, 1/R] for RN-dimensional signals. Thus, while discussing

the oversampled signal representations, we focus on signals that lie in the normalized

frequency range [0, 1/R], which contains the on-grid frequencies f1, f2, . . . , fN .

Note that the signal can be expressed as the linear combination of the basis el-

ements for message band and interferer bands, i.e., s = FPcP + FScS , where cS

and cP are the corresponding basis coefficients. Then the observations y = Sx =
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SFPcP + SFScS . When the message band does not cover the whole spectrum, i.e.,

|P| < N , SFP has linearly independent columns, and so it is possible to recover the

coefficients via the pseudoinverse ĉP = (SFP)†y =
(

(SFP)T (SFP)
)−1

(SFP)Ty.

In the observations, the error with respect to the message, denoted by e′ = e +

SFScS , consists of both an additional error e from noise and nonlinearity and the

interferer. Following an analysis similar to (4.2), the recovery performance for the

message coefficients can be measured by

‖SFPcP‖2/ ‖e′‖2∥∥∥(SFP)†y
∥∥∥

2

/∥∥∥(SFP)†e′
∥∥∥

2

=

∥∥∥(SFP)†e′
∥∥∥

2

‖e′‖2

‖SFPcP‖2

‖cP‖2

.

Thus, the recovery performance can be measured by the condition number of SFP ,

i.e., the ratio between the maximum and minimum nonzero singular value of SFP .

This indicates that the sequence projections onto the message band are required to

be as close to be orthogonal to each other as possible.

4.1.4 Design Algorithm

Based on the analysis in the previous section, the sequence design of each channel

finds a binary sequence s such that the corresponding sequence power in the interferer

band is minimized while the inner products between the projections of each pair of

sequences on the message subspace are sufficiently small. Thus, it can be written as

the QCQP

ŝk = arg min
s∈RN

∥∥FH
S s
∥∥2

2

s.t.
∣∣〈FH

P ŝi,F
H
P s
〉∣∣2 ≤ αRN, i = 1, 2, . . . , k − 1,

s[n]2 = 1, n = 1, . . . , RN. (4.13)

The SDP relaxation for (4.13) can be obtained by noting that
∥∥FH
S s
∥∥2

2
= Trace

(
FSF

H
S ssT

)

and
∣∣〈FH

P ŝi,F
H
P s
〉∣∣2 = Trace

(
FPFH

P ŝiŝ
T
i FPFH

P ssT
)
. By lifting s to T = ssT , the SDP
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relaxation is

T̂k = arg min
T∈SRN

Trace
(
FSF

H
S T
)

s.t. Trace
(
FPFH

P ŝiŝ
T
i FPFH

PT
)
≤ αRN,

i = 1, 2, . . . , k − 1,

Tn,n = 1, n = 1, 2, . . . , RN. (4.14)

After obtaining each T̂k, we use the randomized projection and binary quantiza-

tion to extract a binary sequence ŝk for each channel. As shown in Algorithm 2, we

repeatedly generate a random vector v to project T̂k from a matrix space to a vector

space and obtain the approximation vector w`. A candidate binary sequence s̃` is then

obtained by applying binary quantizion on the approximation vector s̃` = Sign (w`).

The algorithm repeats the random projection L times to provide a set of candidate

sequences and finally outputs the sequence ŝk that minimizes the objective function

and satisfies the constraints in the QCQP (4.1). All sequences are obtained iteratively

by following the same process.

It is important and necessary to generate a sufficiently large number of candidate

sequences to meet the constraints and return the best sequence for each channel. The

results in the following section show that the size of the proposed randomized search

is far smaller than that of an exhaustive search.

4.2 Numerical Experiments

We conduct several experiments to test the performance of the proposed algo-

rithm for the design of multi-branch binary sequences. In the following experiments,

we fix both the sequence length and the number of channels to be N = 15. The

oversampling rate varies in the range R ∈ {1, 2, . . . , 10}. The half bandwidth of the

interferer band is W = 1/RN such that the band covers the frequency rangeMS =
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Algorithm 2 Multi-Branch Sequences Set Design
Input: interferer band basis FS , message band basis FP , coherence tolerance α,

sequence length N , oversampling factor R, number of randomized projections L
Output: sequences ŝ1, ŝ2, . . . , ŝN
1: for k = 1, 2, . . . , N do
2: obtain optimal solution T̂k to SDP relaxation (4.14)
3: compute eigendecompostion for T̂k = UΛUT

4: for ` = 1, 2, . . . , L do
5: generate random vector v ∼ N (0, I)
6: obtain approximation by projecting w` = UΛ1/2v
7: obtain candidate by quantization s̃` = Sign (w`)
8: end for
9: select best binary sequence

ŝk = arg max
s̃`:1≤`≤L

{∥∥FH
S s̃`
∥∥2

2
:
∣∣ŝTi FPFH

P s̃`
∣∣ ≤ αRN

}

10: end for

[fc−1, fc+1] ⊂M, where the on-grid frequency fc = (c− 1)/RN (c = 2, 3, . . . , N − 1)

is its center frequency. The message band covers the rest of spectrum, i.e., MP =

(f1, fc−1) ∪ (fc+1, fN) ⊂ M. We denote the indices of the on-grid frequencies that

fall into the message and interferer band by P = {i : fi ∈MP , i = 1, 2, . . . , N} =

{1, . . . , c− 2, c+ 2, . . . , N} and S = {i : fi ∈MP , i = 1, 2, . . . , N} = {c− 1, c, c+ 1},

respectively.

We use two metrics for the performance of the obtained sequence set S = [ŝ1, . . . , ŝN ]T .

To measure the interferer mitigation, we use the normalized sequence power in the

interferer band, i.e. ‖SFS‖2
F /RN = Trace

(
FH
S STSFS

)
/RN , where RN represents

the total power of the sequence set. To measure the recovery stability, we use the

condition number of SFP , the projection of the sequence set onto the message space.

Additionally, when no sequence set candidate meeting the constraints of (4.13) is

found, we set the interferer power and condition number to be infinity.

In the first experiment, we fix the number of the randomized projections L = 105

and coherence tolerance α = 0.4. Figure 4.1 shows the average interferer power and

condition number of 100 independently generated multi-branch sequence sets when
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Figure 4.1. Average interferer power (Left) and condition number (Right) as a func-
tion of the oversampling rate R. When there is no oversampling, both the interferer
power and the condition number are outside the plotted range as no feasible sequence
set was found. When oversampling is included, the interferer power decreases and
the condition number increases as the oversampling rate increases.

the oversampling rate R varies among [1, 8]. Values of the interferer power above

0dB and of the condition number above 20 are not shown in the figures. As we

mentioned, when R = 1, i.e., there is no oversampling, it is hard to obtain N binary

sequences that are approximately orthogonal to each other. Thus, the condition

number is very large. When R > 1, i.e., oversampling is included in the sequence

design, the interferer power decreases as the oversampling rate increases at the cost

of an increasing condition number.

In the second experiment, we vary the coherence tolerance in the range [0.1, 1].

Figure 4.2 shows the corresponding average interferer power and condition number,

and demonstrates that there is a trade-off between the interferer power and condition

number: relaxing the coherence tolerance helps to obtain sequences with better inter-

ferer mitigation performance; however, the recovery performance decreases in turn.

Note that when R = 2 and α is small, the condition number falls outside the plotted

range. This again confirms the conclusion that it is hard to obtain a binary sequence

set that is approximately mutually orthogonal in a low-dimensional space.
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Figure 4.2. Average interferer power (Left) and condition number (Right) as a func-
tion of the coherence tolerance α. When R=2, setting the coherence tolerance to a
small value makes it difficult to search for a feasible solution. For all oversampling
rates, increasing the coherence tolerance improves the interferer mitigation perfor-
mance but also increases the condition number.

In the third experiment, we fix the coherence tolerance α = 0.4. Figure 4.3 shows

the average interferer power and condition number when the number of randomized

projections L varies among [100, 106]. As shown in the figure, when the randomized

projection number is not sufficiently large, the sequence obtained in at least one iter-

ation is suboptimal or even not feasible, which results in high values in the interferer

power and condition number. Additionally, the necessary number of randomized pro-

jections decreases as the oversampling rate increases. When L increases, we have

decreasing interferer power, since the larger size of randomized search provides better

interferer mitigation performance, as well as more stable condition numbers, which

are bounded by the constraints.

60



100 101 102 103 104 105 106

Number of Randomized Projections

-25

-20

-15

-10

-5

0

In
te

rf
e
re

r 
P

o
w

e
r,

 d
B

R = 2

R = 3

R = 4

R = 5

100 101 102 103 104 105 106

Number of Randomized Projections

2

4

6

8

10

12

14

16

18

20

C
o
n
d
it
io

n
 N

u
m

b
e
r

R = 2

R = 3

R = 4

R = 5

Figure 4.3. Average interferer power (Left) and condition number (Right) as a
function of the number of randomized projections L. The interferer power decreases
as the number of randomized projections increases, while the condition number remain
stable. The necessary number of randomized projections to obtain a feasible sequence
set is inversely proportion to the oversampling rates.
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CHAPTER 5

SEQUENCE SET DESIGN BASED ON MATRIX
OPTIMIZATION

In Chapter 3, we have developed an algorithm to design a single binary spectrally

shaped sequence via SDP relaxation and randomized projection. In Chapter 4, we

proposed an extension of the single sequence design to a sequence set design for

multi-branch modulation. Based on the single sequence design, the sequence set

design iteratively obtains the sequences for all branches. An additional constraint is

included in the sequence set design to enforce that all sequences in the obtained set

are approximately mutually orthogonal.

Unfortunately, the iterative approach of designing a sequence set for multi-branch

modulation suffers some disadvantages. First, the iterative method repeats the single

sequence design multiple times to find the sequence set. Redundant work is intro-

duced in the sequence set design that increases its complexity unnecessarily. Second,

since the single sequence design obtains only an approximately optimal sequence,

the iterative method can propagate the error from one sequence to another sequence

due to the constraints. Third, the coherence constraints in the iterative method re-

quire every pair of the sequences in the set to be as orthogonal as possible. Such

constraints may be far more strict than what is necessary for stable recovery. As

shown in Chapter 4, it is difficult to find a feasible sequence set without the help of

oversampling.

In this chapter, we present a promising approach to design sequence sets for multi-

branch modulation based on a matrix optimization. The proposed method obtains
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the entire sequence set simultaneously by a single optimization to prevent redundant

work and cumulative approximation error caused by obtaining sequences iteratively.

The main contributions of this chapter are summarized as follows. First, we propose a

spectrally shaped sequence set design based on a matrix optimization after extending

the metrics of power and orthogonality from sequences to a sequence set. Second,

we derive a novel approach to obtain the convex relaxation of the formulated matrix

optimization. Third, we build a new randomized projection for a sequence set based

on the one that is used to obtain the approximation for a single sequence. Finally,

we present numerical experiments that compare the performance of the sequence set

design algorithms proposed in this chapter and Chapter 4.

5.1 Sequence Design

In this section, we present the details of the sequence set design based on ma-

trix optimization. We start with the problem formulation for sequence set design to

highlight the difference between the method introduced here and the one described in

Chapter 4. We then continue by presenting an approximation to the resulting opti-

mization that consists of a convex relaxation and a modified randomized projection.

5.1.1 Problem Formulation

Recall that the goal of sequence set design for multi-branch modulation is to find

multiple sequences which provide good rejection for the interferer and stable recovery

for the message. While there are many measurements that can be used to evaluate

those conditions, we used the sequence power in the interferer band and the maximum

normalize inner products of the sequences as the metrics in the sequence set design

in the iterative method presented in Chapter 4.

As in previous chapters, the bases for the message and interferer bands are denoted

by FP and FS , respectively. For each binary sequence sk (m = 1, 2, . . . , N) in the set,
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the sequence power in the interferer band is measured by
∥∥FH
S sk
∥∥2

2
. Therefore, the

sequence set power in the interferer band can be measured by the sum of the interferer

power of the different sequences, i.e.,
∑N

k=1

∥∥FH
S sk
∥∥2

2
. By denoting the sequence set

by S = [s1, s2, . . . , sN ], which collects all sequences as the columns, we have the

relationship
∥∥FH
S S
∥∥2

F
=
∑N

k=1

∥∥FH
S sk
∥∥2

2
. Therefore, we can use the Frobenius norm

∥∥FH
S S
∥∥2

F
to measure the sequence set power for the interferer bands. In order to have

good rejection for the interferer band, it is necessary to obtain the sequence set S

that minimizes this norm.

In order to provide stable recovery, all sequences in the set should be approximately

orthogonal to each other. In the iterative approaches, this condition is achieved by the

constraints |〈si, sj〉| = sTi sj ≤ αN for any i 6= j, where α is the coherence tolerance.

Due to its binary entries, each sequence satisfies 〈si, si〉 = ‖si‖2
2 = N . Under these

constraints, we have

∥∥STS−NI
∥∥2

F
=

N∑

i=1

∣∣sTi si −N
∣∣2 +

N∑

i=0

∑

j 6=i

∣∣sTi sj
∣∣2 ≤ α (N − 1)N2. (5.1)

Therefore, we can use the constraint
∥∥STS−NI

∥∥2

F
≤ α (N − 1)N2 to search se-

quence set with approximate orthogonality.

There are many similarities between this matrix constraint and the vector con-

straints |〈si, sj〉| ≤ αN . However, the vector constraints require that every pair of

sequences should have small coherence, which is far more strict than the matrix con-

straints. In fact, any sequence set satisfying the vector constraints must be feasible

to the matrix constraints. As discussed in Chapter 4, it is difficult to find sequence

sets that are feasible to the vector constraints. Therefore, the relaxed constraint in

the proposed method may make it easier to find a sufficient number of orthogonal

sequences, but, at the expensive of worse recovery stability. Even when the norm
∥∥STS−NI

∥∥2

F
is small, it is not guaranteed that the sum of absolute values of off-
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diagonal entries in every row of STS is small. When there are some rows containing

off-diagonal entries with a large value, the corresponding Gershgorin discs cover the

origin and the minimum eigenvalue of STS can potentially very close to 0 according

to the Gershgorin circle theorem. Therefore, the condition number, which is inversely

proportioned to the minimum eigenvalue, can be very large.

Formally, we propose the sequence set design based on a single matrix optimization

problem

Ŝ = arg min
S∈RN×N

∥∥FH
PS
∥∥2

F

s.t.
∥∥STS−NI

∥∥2

F
≤ α(N − 1)N2

S2
i,j = 1, i = 1, 2, . . . , N, j = 1, 2, . . . , N. (5.2)

It is worth noting that the matrix optimization (5.2) is not a QCQP, since the in-

equality constraint cannot be expressed as a quadratic function with respect to S.

Therefore, we cannot directly extend the method described Section 2.3 to obtain a

SDP relaxation for (5.2).

5.1.2 Oversampling

As mentioned in Section 4.1.2, it is hard to obtain N binary sequences that are

approximately mutually orthogonal in N -dimensional space. Therefore, we have to

introduce the oversampling into sequence set design, in a similar way to the iterative

method described in Section 4.1.3. We have to modify the constraint in (5.2) to

require the projections of sequences onto the subspace spanned by message band are

mutually orthogonal, i.e.,
∣∣〈FH

P si,F
H
P sj
〉∣∣ for any i 6= j is small enough.

Though the value of
∣∣〈FH

P si,F
H
P si
〉∣∣ =

∥∥FH
P si
∥∥2

2
depends on FP and si, we could

obtain an upper bound as

∥∥FH
P si
∥∥2

2
≤
∥∥FH
P
∥∥2

2
‖si‖2

2 = Nσ2
1 = N, (5.3)
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where σ1 = 1 is the maximum singular value of FH
P . Additionally, it is necessary that

∥∥FH
P si
∥∥2

2
are as close to N as possible for every i = 0, 1, . . . , N so that the majority of

the message power in the received signal is preserved. Finally, we use the constraint
∥∥STFPFH

PS−NI
∥∥2

F
≤ α (N − 1)N2 in the sequence set design to obtain sequence

sets with stable recovery.

5.1.3 Convex Relaxation

In order to implement the convex relaxation and randomized projection to solve

the matrix optimization problem (5.2) approximately, it is necessary to rewrite both

the objective function and constraints as functions with respect to SST .

Similarly to (2.16), the objective function in (5.2) can be expressed as
∥∥FH
S S
∥∥2

F
=

Trace
(
STFSF

H
S S
)

= Trace
(
FSF

H
S SST

)
= Trace

(
FSF

H
S T
)
by lifting S to T = SST .

In other words, the objective function is also a linear function with respect to the

matrix variable T.

For the inequality constraint, we have the following relationship:

∥∥STFPFH
PS−NI

∥∥2

F
= Trace

((
STFPFH

PS−NI
)T (

STFPFH
PS−NI

))

= Trace
(
STFPFH

PSSTFPFH
PS
)
− 2N Trace

(
STFPFH

PS
)

+N3

= Trace
(
FH
PSSTFPFH

PSSTFP
)
− 2N Trace

(
FH
PSSTFP

)
+N3

= Trace
((

FH
PSSTFP −NI

)T (
FPSSTFP −NI

))
+N2 (N − |P|)

=
∥∥FH
PSSTFP −NI

∥∥2

F
+N2 (N − |P|) . (5.4)

Thus we can replace the constraint in (5.2) by the equivalent formulation

∥∥FH
PTFP −NI

∥∥2

F
≤ α(N − 1)N2 −N2 (N − |P|) . (5.5)

Such constraint is not a linear function with respect to T, but it is still convex due

to the Frobenious norm.
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For the equality constraint, when the condition S2
i,j = 1 is satisfied for any i =

1, 2, . . . , N and j = 1, 2, . . . , N , we have Ti,i = Trace
(
sis

T
i

)
= ‖si‖2

2 = N . However,

the converse is not necessarily true: it is impossible to obtain S2
i,j = 1 given only

Ti,i = N . In other words, Ti,i = N is the relaxed constraint to S2
i,j = 1 and any

binary sequence set S can be used to build a matrix SST that is feasible to the former

constraint.

Therefore, the convex relaxation of (5.2) can be restated as

T̂ = arg min
T∈SN

Trace
(
FPFH

PT
)

s.t.
∥∥FH
PTFP −NI

∥∥2

F
≤ α(N − 1)N2 −N2 (N − |P|)

Ti,i = N, i = 1, 2, . . . , N. (5.6)

Again, we emphasize that the relaxation (5.6) is not a SDP since the inequality

constraint is not a linear function with respect to the matrix variable T. Nonetheless,

it is still convex and can be solved the many algorithms, including the interior-point

methods.

The biggest difference between the relaxation problems of (5.6) and (3.21), which

is used for single sequence design, is that the latter is derived by dropping the rank

constraint Rank (T) = 1. In the sequence set design based on matrix optimization,

the rank constraint is not necessary. The solution T̂ should have sufficient rank

if the coherence tolerance is sufficiently small such that all obtained sequences are

approximately orthogonal to each other.

5.1.4 Randomized Projection

After obtaining the solution T̂ for the relaxation (5.6), we still need to use the

randomized projection to obtain approximation solution. Recall from Section 2.3.3

given the eigendecomposition T̂ = UΛUT , a randomly generated vector v drawn
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from the standard Gaussian distribution v ∼ N (0, I) is used to obtain the projection

w = UΛ1/2v, which then produces a candidate sequence s̃ = Sign (w) by binary

quantization.

To adapt this approach to our sequence set search, we need to generate multiple

random vectors. Each vector is used to obtain one sequence of the entire set. More

specifically, we generate a set of random vectors v1,v2, . . . ,vN , where each vi are

independently and identically drawn from the standard Gaussian distribution, i.e.,

vi
i.i.d∼ N (0, I). Denote by V the random matrix that collects all random vectors vi

in columns. Then the random matrix V is used to generate the projections W =

UΛ1/2V/
√
N .

In Section 2.3.3, it is mentioned that a single projection satisfies E
(
wwT

)
=

T̂. Such property is preserved for the projection matrix W when the randomized

projection described above is used. Since vi
i.i.d∼ N (0, I), E

(
viv

T
j

)
= 0 for any i 6= j

and E
(
viv

T
i

)
= I, we have

E
(
VVT

)
= E

(
N∑

i=1

N∑

j=1

viv
T
j

)
=

N∑

i=1

N∑

j=1

E
(
viv

T
j

)
=

N∑

i=1

E
(
viv

T
j

)
= NI. (5.7)

Therefore,

E
(
WWT

)
=

1

N
E
(
UΣ1/2VVTΣ1/2UT

)

=
1

N
UΣ1/2E

(
VVT

)
Σ1/2UT

= UΣUT

= T̂. (5.8)

In other words, the projection W minimizes the expectation of the objective function

while also satisfying the constraint in expectation.

In Chapter 3, we show that the principal eigenvector of T̂, the one corresponding

to the eigenvalue with largest absolute value, is a suboptimal approximation vector
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since the resulting T̂ in the single sequence design always has rank greater than 1.

In order to obtain a single approximation vector, we have to use a random vector to

project all eigenvectors from high dimensional space to low dimensional space. As

we mentioned in Section 5.1.3, the resulting T̂ from the matrix optimization (5.6)

should have full rank. Then the numbers of the eigenvectors of T̂ and the designed

sequences are matched. In fact, when the matrix V is selected to be the matrix

V =
√
NI, each column of the projection W = UΛV/

√
N is a scaled eigenvector of

T̂. This provides an alternative way to obtain the candidate sequence with smaller

complexity. It has less complexity than the randomized projection method since the

repeated optimization and random projection in the latter approach can be avoided.

5.1.5 Design Algorithm

Based on the analysis above, the sequence set design based on matrix optimization

is formulated as Algorithm 3. In a similar way to Algorithm 1, Algorithm 3 starts

with the formulation of a convex relaxation to obtain the optimal solution T̂. After

eigendecomposition, T̂ is projected onto the space spanned by each random vector in

the set V to obtain an approximation of the sequence set W`. The subsequent binary

quantization produces a candidate sequence set S̃` by preserving only the sign of all

entries. The algorithm repeats the randomized projection and binary quantization L

times to return the optimal sequence set with minimum power for the interferer band

while satisfying the constraints in (5.2).

5.2 Numerical Experiments

We conduct several experiments to test the performance of the proposed algorithm

on designing multi-branch binary sequences. In the following experiments, we fix both

the sequence length and the number of channels to be N = 15. The oversampling

rate varies in the range R ∈ {1, 2, . . . , 10}. The half bandwidth of the interferer band
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Algorithm 3 Sequence Set Design Based on Matrix Optimization
Input: Fourier basis FP for the message band, Fourier basis FS for the interferer

band, coherence tolerance α, random search size L
Output: binary sequence set Ŝ
1: obtain optimal solution T̂ to SDP relaxation (5.6)
2: compute SVD for T̂ = UΛUT

3: for ` = 1, 2, . . . , L do
4: generate random vectors vi

i.i.d∼ N (0, I)
5: obtain approximations by projecting W` = UΛ1/2V
6: obtain candidate by quantization S̃` = Sign (W`)
7: end for
8: select best binary sequence

Ŝ = arg max
S̃`:1≤`≤L

{∥∥∥FH
P S̃
∥∥∥

2

F
:
∥∥∥S̃TFPFH

P S̃−NI
∥∥∥

2

F
≤ α(N − 1)N2

}

is W = 1/RN so that the band covers the frequency rangeMS = [fc−1, fc+1] ⊂ M,

where the on-grid frequency fc = (c − 1)/RN (c = 2, 3, . . . , N − 1) is its center

frequency. The message band covers the rest of spectrum, i.e., MP = (f1, fc−1) ∪

(fc+1, fN) ⊂ M. We denote the indices of the on-grid frequencies that fall into the

message and interferer band by P = {i : fi ∈MP} = {1, . . . , c− 2, c+ 2, . . . , N} and

S = {i : fi ∈MP} = {c− 1, c, c+ 1}, respectively.

We use two metrics for the performance of the obtained sequence set S = [ŝ1, . . . , ŝN ]T .

To measure the interferer mitigation, we use the normalized sequence power in the

interferer band, i.e. ‖SFS‖2
F /RN , where RN represents the total power of the se-

quence set. To measure the recovery stability, we use the condition number of SFP ,

the projection of the sequence set onto the message space. Additionally, when no

sequence set candidate meeting the constraints of (5.2) is found, we set the interferer

power and condition number to be infinity. Values of the interferer power above 0dB

and of the condition number above 20 are not shown in the following figures.

In the first experiment, we fix the number of randomized projection L = 105

and coherence tolerance α = 0.1. Figure 5.1 shows the average interferer power

and condition number of 100 independently generated multi-branch sequence sets
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Figure 5.1. Average interferer power (Left) and condition number (Right) as a func-
tion of the oversampling rate R. When there is no oversampling, both the interferer
power and the condition number are outside the plotted range as no feasible sequence
set was found. When oversampling is included, the interferer power decreases and
the condition number increases as the oversampling rate increases.

when the oversampling rate R varies among [1, 10]. As we mentioned, when R =

1, i.e., there is no oversampling, it is hard to obtain N binary sequences that are

approximately orthogonal to each other. Thus, the condition number is very large.

When R > 1, i.e., oversampling is included in the sequence design, the interferer power

decreases as the oversampling rate increases at the cost of an increasing condition

number.

Compared to the iterative method shown in Figure 4.1, the matrix optimization

method has worse performance in interferer mitigation and stable recovery, even when

we use the smaller coherence tolerance. The bad performance may be due to the

modified random projection used in Algorithm 3. The modified random projection

provides us the benefit of obtaining sequence set in smaller complexity but at the cost

of worse performance.

In the second experiment, we vary the coherence tolerance in the range [10−3, 100].

Figure 5.2 shows the corresponding average interferer power and condition number,

and demonstrates the benefit from the oversampling: increasing coherence tolerance

improves the interferer mitigation while the condition number increases slightly when
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Figure 5.2. Average interferer power (Left) and condition number (Right) as a func-
tion of the coherence tolerance α. Small coherence values make the search for a feasible
solution difficult. The necessary coherence tolerance decreases as the oversampling
rate increases.

the sequence set design is feasible. Note that the interferer power and condition

number are not sensitive to the choice of tolerance after tolerance valuer is sufficiently

large. Additionally, the necessary level of coherence tolerance to obtain a feasible

sequence set is inversely proportional to the coherence tolerance.

In the third experiment, we fix the coherence tolerance α = 0.1. Figure 5.3 shows

the average interferer power and condition number when the number of randomized

projections L varies among [100, 106]. As shown in the figure, when the randomized

projection number is not sufficiently large, the sequence obtained in each iteration is

suboptimal or even not feasible, which results in high values in the interferer power

and condition number. When L increases, we have decreasing interferer power, since

the oversampling provides better interferer mitigation performance, and almost stable

condition number, which is bounded by the constraints.
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Figure 5.3. Average interferer power (Left) and condition number (Right) as a
function of the number of randomized projections L. The interferer power decreases as
the number of randomized projections increases, while the condition number remains
stable. The necessary number of randomized projections is inversely proportion to
the oversampling rates.
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CHAPTER 6

MODULATED WIDEBAND CONVERTER SIMULATION

In previous chapters, we have presented several algorithms to design three different

kinds of binary spectrally shaped sequence sets: Chapter 3 shows the design of single

binary sequences which provide a pass and notch for the message and interferer bands,

respectively; in Chapter 4, we design binary sequence sets that minimize the sequence

set power for the interferer band while keeping all sequences mutually orthogonal; and

we propose a second extension of the single sequence design to sequence set design in

Chapter 5, where a matrix optimization is used to obtain all sequences simultaneously.

The optimization problems in all three design approaches are solved approximately

by convex relaxation and randomized projection.

In each chapter, we included experiments to test the performance of the designed

sequences to mitigate or suppress the interferer, which is measured by the sequence

power for interferer band. Additionally, we use the condition number to measure the

recovery stability for the designed sequence sets. However, all numerical experiments

in previous chapters show the performance of sequence sets under the assumption of no

noise and nonlinearity. In this chapter, we will present some results of a simulation

model for the modulated wideband converter (MWC) architecture to receive and

recover the signals. Such results present the performance of the designed sequence

sets when noise and nonlinearity are included.

We start with the description of the simulation model for the MWC. Then we pro-

vide some alternative bases that can be used to express signal models. We also show

the performance comparison among sequence sets obtained using those bases. Finally,
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Figure 6.1. System Diagram for Simulation.

we present numerical results under different values of the parameters, including the

noise level and nonlinearity level.

6.1 Simulation Description

Recall from Section 2.2.1 that the MWC system consists of multiple channels. A

signal is modulated by different sequences, and the modulated signal of each channel

is filted by an identical low-pass filter. The output of each filter is sampled at a low

rate simultaneously for all channels.

In this simulation, we use the model described by the system diagram shown in

Figure 6.1. In detail, at the kth (k = 1, 2, . . . , N) channel, the input signal x is

modulated by a binary sequence sk with period N , i.e., sk,n = sk,n+lN for any integer

` ∈ Z. Then the modulated signal is

x̂k,n = sk,nxn. (6.1)

The low-pass filter is performed by the integration block, which, when combined with

the low rate samping, produces the observations
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yk,m =
1

N

mN∑

n=(m−1)N+1

x̂k,n =
1

N

mN∑

n=(m−1)N+1

sk,nxn. (6.2)

For our purposes, it is convenient to write the observation as

ym =
1

N
Sxm, (6.3)

where ym = [y1,m, y2,m, . . . , yN,m]T and xm =
[
xmN+1, xmN+2, . . . , x(m+1)N

]T when

we ignore the noise and nonlinearity. We assume that the noise is white Gaussian

at the baseband with standard deviation σ and the nonlinearity is third-order with

nonlinearity coefficient µ. For the sake of simplicity, the observation with noise and

nonlinearity is written as

ym =
1

N
Sxm − µ

(
1

N
Sxm

)3

+ nm, (6.4)

where nm
i.i.d∼ N (0, σ2I).

When S provides stable recovery, i.e., the condition number is small, we can

directly obtained the recovered signal as x̂m = NS†ym. When oversampling is used,

we can only recovery the message signal via the Fourier coefficients for the message

band, i.e., x̂m = RNFP(SFP)†ym.

6.2 Basis Choice

In the sequence design or sequence set design, the message and interferer in the

signals are always assumed to lie in the space spanned by the Fourier basis elements

for the message and interferer bands, respectively. When there is no overlap between

the message and interferer bands, all elements in the basis for the message band

are orthogonal to those in the basis for the interferer band. If the signals contain

components with only on-grid frequencies, the frequencies sampled by the Fourier
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basis, there is no distortion caused by the interferer in recovering the message when

the system operates in the linear regime.

As mentioned in Section 2.4.3, when a signal contains components with frequencies

not belonging to the on-grid frequency set, the representation of the signal with the

Fourier basis is not perfect and not all energy of the signal is captured by the basis

projections. If the interferer in the signal has components with off-grid frequencies,

then some distortion appears in the recovered message even if a nonlinearity is not

present. Therefore, the sequence set designed using the Fourier basis has sub-optimal

performance when the interferer band covers all frequencies in a narrow band.

The Slepian basis has been advertised as a suitable representation for any sig-

nal with frequencies that lie in a small range containing both on-grid and off-grid

frequencies. However, the Slepian basis for a frequency range that is outside of base-

band relies on modulation with a complex exponential component whose frequency

is the center frequency of the range. When the complex exponential components for

the message and interferer bands are not orthogonal, the interferer may cause some

distortion during the message recovery.

We test the interferer mitigation performance when signals containing off-grid fre-

quencies are modulated by different sequences, including pseudorandom sequences.

We also include the sequences obtained from our single sequence design shown in

Algorithm 1 based on Fourier and Slepian bases, which we called Single Fourier and

Single Slepian sequences, respectively, the sequence sets obtained from our iterative

method shown in Algorithm 2, which are denoted by Multiple Fourier and Multi-

ple Slepian, and the sequence sets obtained from our matrix optimization shown in

Algorithm 3, which are denoted by Matrix Fourier and Matrix Slepian.

All design sequences are designed to block the frequency range [fc − 1/RN, fc + 1/RN ],

which is centered at the on-grid frequency fc. The input signal represents a single

interferer expressed by the complex exponential vector
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Figure 6.2. Average modulation gain as a function of the frequency offset d. The
sequences designed based on the Fourier basis have the small gain at on-grid frequen-
cies, but large gain at frequencies far away to any on-grid frequency. The sequences
designed based on the Slepian basis have almost the same gain across most frequen-
cies.

F
(
fc +

d

RN

)
=

1√
RN

[
1, ej2π(fc+d/N), . . . , ej2π(RN−1)(fc+d/RN)

]T
, (6.5)

where d denotes the frequency offset to the center frequency fc of the interferer

band. The output performance is then measured by the modulation gain, which

is defined as the power of the modulated signals normalized by the sequence power,

i.e., ‖SF (fc + d/RN)‖2
2 /RN .

Figure 6.2 shows the average modulation gain over 100 independently generated

sequence sets as a function of the frequency offset d. Since the pseudorandom se-

quences have a flat spectrum, the modulation gain of the pseudorandom sequences is

almost 0 dB at all frequency offsets. The sequences from Algorithm 2 when the Fourier

basis is used have a good rejection for the on-grid frequencies (i.e., the frequency offset

is 0 or 1). However, the rejection performance decreases as the interferer frequency

moves farther from the on-grid frequencies. By contrast, the sequences based on the

Slepian basis have good performance in interferer mitigation for most frequencies,

both on-grid and off-grid, except for those that are close to the edge of the interferer

bands.
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6.3 Simulation Experiments

We conduct several experiments to test the performance of all sequence sets, in-

cluding pseudorandom sequences, Multiple Fourier, Multiple Slepian, Matrix Fourier

and Matrix Slepian described in Section 6.2, in the simulation described in Section 6.1.

The input signal x = xP + xS consists of two single-tone components: one lies

in the message band and another one lies in the interferer band. More specifi-

cally, the interferer band covers all frequencies in the normalized frequency range

[fc − 1/RN, fc + 1/RN ], i.e.,

xS = AS [1, cos (2π(fc + d/RN)) , . . . , cos (2π(fc + d/RN)L)]T , (6.6)

where AS is the amplitude of the interferer, d ∈ [−0.5, 0.5] is the frequency offset,

and L = 1000RN . The message band contains only the on-grid frequencies in the

range (0, fc − 1/RN) ∪ (fc + 1/RN, 1/R), i.e.,

xP = AP [1, cos (2πfP) , . . . , cos (2πfPL)]T , (6.7)

where AP and fP are the message amplitude and frequency, respectively. The simu-

lation performance is measured by the recovered message SNR defined as

SNR = 20 log10

‖xP‖2

‖xP − x̂P‖2

. (6.8)

All results shown in this section are the average message SNR over 100 randomly

selected message and interferer frequencies.

In the first experiment, we fix the standard deviation of the noise σ = 10−6, the

message amplitude 0.01, the interferer amplitude 0.1 and the frequency offset d = 0

(i.e. the interferer frequency is also on-grid). Figure 6.3 shows the average recovered

SNR as a function of the nonlinearity coefficient µ. The SNRs for all sequence sets
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Figure 6.3. Average message SNR as a function of the nonlinearity coefficients µ.
All SNR decreases as the nonlinearity level increases. All designed sequence sets have
better performance than the pseudorandom sequences due to their ability to mitigate
the interferer.

decay as the nonlinearity coefficient increases. All designed sequence sets have better

recovery SNR than the pseudorandom sequences, which indicate their ability to reduce

the interferers. However, under the case with noise and nonlinearity, the gaps between

all designed sequence sets and the pseudorandom are not as significant as shown in

Figure 6.2, where no noise and nonlinearity is assumed.

In the second experiment, we vary the noise and fix the nonlinearity coefficient

µ = 1; the other parameters are the same as in the first experiment. Figure 6.4 shows

the average recovered SNR as a function of the standard derivate of the noise. When

the noise level is large, the pseudorandom sequences have better performance than

the designed sequence sets. The pseudorandom sequences have the smallest condition

number. As we discussed in Section 4.1.2, a smaller condition number of the sequence

set indicates better recovery performance. Additionally, when the noise level is small

enough such that the nonlinearity dominates the recovery error, the designed sequence

sets show better performance again.

In the third experiment, we test the performance of the designed sequence sets in

MWC for off-grid frequencies when the nonlinearity coefficient and the noise standard

deviation are µ = 1 and σ = 10−6, respectively. Figure 6.5 shows the average recov-
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Figure 6.4. Average message SNR as a function of the noise standard deviation
σ. All SNR decreases as the noise level increases. When the noise level is large, all
designed sequence sets have worse performance than the pseudorandom sequences
due to their larger condition number.

ered SNR as a function of the interferer frequency offset d, defined in (6.5). Though

all sequences have decreasing performance as the interferer frequency moves away

from the on-grid frequencies, the performance decay of the sequences sets obtained

based on the Slepian basis is slower than those based on the Fourier basis. This again

confirms that the Slepian basis is a more suited basis to represent signals with an

off-grid component.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we have proposed and studied three kinds of design for spectrally

shaped binary sequence sets. The sequence set obtained by all design algorithms can

be leveraged for multi-branch modulation to mitigate the interferer and thus reduce

the distortion caused by nonlinearity and noise present in receive systems.

In Chapter 3, we proposed an algorithm to design a spectrally shaped binary se-

quence that provides a passband and a notch for a pair of pre-determined message and

interferer bands, respectively. We first pose the sequence design problem as a QCQP

problem, and combine it with a randomized projection of the solution of an SDP

relaxation (a common convex relaxation) to obtain an approximation to the optimal

sequence in a statistical sense. The candidate sequences obtained by this method

are shown to satisfy the interferer constraints with a probability that depends on the

interferer tolerance and the interferer bandwidth. We numerically show that the can-

didate sequences are better approximations (in terms of the objective function value)

than sequences obtained by quantizing the principal eigenvector and than randomly

generated binary sequences. Our method also outperforms existing approaches for

unimodular sequence design that are modified to meet the required binary quantiza-

tion constraint. Our experiments show that for small sequence lengths the proposed

method is able to obtain the same optimal sequences as the exhaustive search at a

fraction of the search cost, which shows promise for the use of our randomized method

in spectrally shaped binary sequence design featuring larger lengths.
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In Chapter 4, we proposed an algorithm to design a set of binary sequences for

multi-branch modulation that provides a notch for interferer bands while the message

can be recovered from the modulated signals. The sequence design for each branch

can be written as a QCQP to minimize the sequence power in the interferer band with

the constraints that enforce approximate mutual orthogonality among the sequences

in the set. We provide an analysis of the difficulty of orthogonal binary sequence

set search for stable recovery and highlight the necessity of oversampling in sequence

design. We numerically showed that the performance of the designed sequence sets

increases as the number of randomized projections increases.

In Chapter 5, we presented another algorithm to design sequence set for multi-

branch modulation. By formulating the sequence set design problem as a matrix

optimization, we could obtain all sequences in the set simultaneously. We modified

the randomized projection, which is used to obtain single sequences so that it returns

the approximations to sequence sets. We numerically showed that the performance

of the matrix optimization method is slightly worse than the iterative method.

In Chapter 6, we described a simulation model for the MWC system which we can

use to test the obtain sequence sets from the mentioned design algorithms. We also

provided a discussion on the basis choice to compare the advantage and disadvantage

between the Fourier and Slepian Bases. With the simulation model, we tested the

performance of the designed sequence set when nonlinearity and noise exist. Numer-

ical results confirmed our work in sequence set design: designed sequence sets have

better interferer mitigation due to their small power for the interferer band but larger

noise degradation since their larger condition number.

7.2 Future Work

Many questions remain open both on the analysis and possible refinements of our

analysis and algorithms.
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For single sequence design, the theoretical proof of the approximation ratio is still

missing to complete the analysis of sequence design. It is necessary to provide a

good statistic model for the obtained binary sequence after randomized projection

and quantization.

For iterative sequence set design, one could consider changes to the objective

function and the constraints (e.g., switching the two) such that the optimization

searches for sequence sets with minimal orthogonality while the sequence power in

the interferer band is bounded. This may be beneficial by allowing for sequence sets

with better recovery performance.

For sequence set design based on matrix optimization, lots of significant work is

needed to improve the performance of obtained sequence sets. We need to seek a more

tight metric for the orthogonality constraints since not all sequences of an obtained

set are approximately orthogonal when the set is feasible to the constraints with the

Frobenius norm. Such metric should allow us to formulate the convex relaxation

so that it is possible to solve the sequence set design approximately via randomized

projection.
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APPENDIX

PROOF OF THEOREM 2

We will use the following results in our proof.

Theorem 5 (McDiarmid’s Inequality [65]) Let x = [x1, x2, . . . , xN ]T be a family

of random variables with xi taking values in a set Xi for each i ∈ I = {1, 2, . . . , N}.

Assume the function g :
∏

i∈IXi → R satisfies |g(x) − g(x̄)| ≤ cn whenever x, x̄ ∈
∏

i∈IXi differ only in their nth entries for some n ∈ I. For any ζ > 0, we have

Prob {g(x) > E (g(x)) + ζ} ≤ exp

(
− 2ζ2

∑
i∈I c

2
i

)
. (7.1)

To use Theorem 5 to prove Theorem 1, we need to present some additional results.

Lemma 2 ([32, Lemma 3.2]) If s is a binary vector obtained via randomized pro-

jection and binary quantization from T, then for any indices i, j ∈ I,

Prob {si 6= sj} =
1

π
arccos

(
ti,j√
ti,itj,j

)
. (7.2)

This lemma provides an important connection between the original binary se-

quence design and its SDP relaxation, and allows us to prove the following result.
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Lemma 3 If s is a binary vector obtained via randomized projection and binary quan-

tization from T, then

E (sisj) =
2

π
arcsin ti,j, (7.3)

for any indices i, j ∈ I.

Proof. Since T is a solution for the SDP relaxation (3.21), ti,i = 1 for each i ∈ I,

and so E (s2
i ) = 1 = 2

π
arcsin ti,i. When i 6= j,

E (sisj) = 1− 2 Prob {si 6= sj} =
2

π

(π
2
− arccos ti,j

)
=

2

π
arcsin ti,j, (7.4)

where the second equality is due to Lemma 2 �

To use McDiarmid’s Inequality, we need to prove the following conditions for

binary sequences.

Lemma 4 If s is a binary vector obtained via randomized projection and binary quan-

tization from T, then
∣∣‖FSs‖2

2 − ‖FS s̄‖
2
2

∣∣ ≤ 4|S| whenever s, s̄ ∈ {−1, 1}N differ only

in the nth entries for any n ∈ I.

Proof. We can express the entries of FS as ak,i = 1√
N
e(2π(k−1)(i−1)/N) (k ∈ S, i ∈ I).

Since FS is a row submatrix of the Fourier orthonormal basis matrix,
∑

i∈I |ak,i|2 = 1.

Additionally,

‖FSs‖2
2 = Trace

(
FHS FSssT

)

=
∑

i∈I

∑

j∈I

∑

k∈S

a∗k,iak,jsisj

=
∑

i 6=n

∑

j 6=n

∑

k∈S

a∗k,iak,jsisj +
∑

i 6=n

∑

k∈S

a∗k,iak,nsisn

+
∑

j 6=n

∑

k∈S

a∗k,nak,jsnsj +
∑

k∈S

a∗k,nak,ns
2
n. (7.5)
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Since s, s̄ ∈ {−1, 1}N differ only in the nth entries, si = s̄i if i 6= n and s2
n = s̄2

n = 1.

The first and fourth terms in the right hand side of (7.5) for ‖FSs‖2
2 and ‖FS s̄‖2

2 are

the same. Therefore,

∣∣‖FSs‖2
2 − ‖FS s̄‖

2
2

∣∣ =

∣∣∣∣∣
∑

i 6=n

∑

k∈S

a∗k,iak,nsi (sn − s̄n) +
∑

j 6=n

∑

k∈S

a∗k,nak,jsj (sn − s̄n)

∣∣∣∣∣

≤ 2

∣∣∣∣∣
∑

i 6=n

∑

k∈S

a∗k,iak,nsi

∣∣∣∣∣ |sn − s̄n|

≤ 4

√√√√∑

k∈S

|ak,n|2
∑

k∈S

∣∣∣∣∣
∑

i 6=n

a∗k,isi

∣∣∣∣∣

2

≤ 4

√∑

k∈S

|ak,n|2
√∑

k∈S

∑

i 6=n

|ak,i|2
∑

i 6=n

s2
i

≤ 4

√
|S|
N

√
|S|N − 1

N
(N − 1) ≤ 4|S|, (7.6)

where the second and third inequalities result from Cauchy-Schwarz inequality. �

Now, we are ready to prove Theorem 1. From (7.3), we have

E
(
‖FSs‖2

2

)
= E

(
sTFHS FSs

)

= E
(
Trace

(
FHS FSssT

))

= Trace
(
FHS FSE

(
ssT
))

=
2

π
Trace

(
FHS FS arcsin T

)

≤ 1

π
βα, (7.7)

where β is defined in (3.22). By picking ζ = 1
π
α > 0 and applying McDiarmid’s

inequality for g(s) = ‖FSs‖2
2 with Lemma 4 and (7.7), we finally obtain
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Prob

{
‖FSs‖2

2 ≥
1

π
(β + 1)α

}
= Prob

{
g(s) ≥ E

(
‖FSs‖2

2

)
+

1

π
α

}

≤ exp

(
− 2

(
1
π
α
)2

N(4|S|)2

)

≤ exp

(
− 1

8Nπ2

α2

|S|2
)
. (7.8)
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