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ABSTRACT

LEARNING WITH AGGREGATE DATA

FEBRUARY 2019

TAO SUN

B.Sc., ZHENGZHOU UNIVERSITY

M.Sc., TSINGHUA UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel R. Sheldon

Various real-world applications involve directly dealing with aggregate data. In

this work, we study Learning with Aggregate Data from several perspectives and try

to address their combinatorial challenges.

At first, we study the problem of learning in Collective Graphical Models (CGMs),

where only noisy aggregate observations are available. Inference in CGMs is NP-

hard and we proposed an approximate inference algorithm. By solving the inference

problems, we are empowered to build large-scale bird migration models, and models

for human mobility under the differential privacy setting.

Secondly, we consider problems given bags of instances and bag-level aggregate

supervisions. Specifically, we study the US presidential election and try to build

a model to understand the voting preferences of either individuals or demographic

groups. The data consists of characteristic individuals from the US Census as well as

vi



voting tallies for each voting precinct. We proposed a fully probabilistic Learning with

Label Proportions (LLPs) model with exact inference to build an instance-level model.

Thirdly, we study distribution regression. It has similar problem setting to LLPs

but builds bag-level models. We experimentally evaluated different algorithms on

three tasks, and identified key factors in problem settings that impact the choice of

algorithm.
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CHAPTER 1

INTRODUCTION

Aggregate data is ubiquitous in many reseach domains and in different forms. But

there is no consensus on which models to use for what types of data. In this thesis, I

will present our development of new models and algorithms with real-world use cases,

and recommend models that are naturally fit for two typical forms of aggregate data.

The first form of aggregate data we will study are noisy sufficient statistics. In

ecological studies, researchers use count statistics (e.g., the number of animals trapped,

seen, heard, or otherwise detected) to estimate species abundance (Seber et al., 1973),

estimate species distributions (Hefley and Hooten, 2016), infer arrivals, departures, and

population size of transient species (Winner et al., 2015), estimate death rates of moths

and butterflies (Zonneveld, 1991), reconstruct bird migration routes (Sheldon et al.,

2007), etc. These count statistics turn out to be sufficient statistics. In clinical, census,

human mobility and other information-sensitive domains, data publishers anonymize

their data before release in order to protect individual privacy, the anonymized data

is usually in the form of noisy sufficient statistics (Fredrikson et al., 2014; McSherry

and Talwar, 2007; de Montjoye et al., 2013).

We recommend solving these problems using Collective Graphical Models (CGMs)

(Sheldon and Dietterich, 2011), which directly work on noisy sufficient statistics.

In this work, we designed efficient inference algorithms that make large-scale real-

world applications possible. We demonstrated the potential of CGMs through two

applications: bird migration and collective human mobility.
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The second form of aggregate data we will study consists of bags of instances and

bag-level aggregate supervisions. Computer vision researchers classify point clouds

and each cloud is a set of permutation-invariant points (Qi et al., 2017a). Cosmologists

estimate the red-shift of a galaxy cluster based on photometric features of its galaxy

members (Connolly et al., 1995; Zaheer et al., 2017). Social scientists try to understand

voting preferences of specific demographical groups based on their voting tallies and

characteristics of their voters (Flaxman et al., 2015; Sun et al., 2017).

Depending on the intent, a modeler can train either an instance-level or a group-

level model given these data. We can train an instance-level model to predict individual

voting preference, or predict which part of an object a point belongs to in a point

cloud. We can also train a group-level model to estimate the entropy of a bag of

samples, or estimate the mass of a galaxy cluster. In this work, we designed a fully

probabilistic instance-level model that performs exact marginal inference. We also

investigated into how different problem settings impact the choice of a group-level

model.

1.1 Synthesis of Different Parts

In this section, we will synthesize the different parts of the thesis, and provide a

general guidance on how to choose models given aggregate data of different forms.

Chapter 2 is based on Collective Graphical Models (CGMs) proposed by Sheldon

and Dietterich (2011). CGMs are used when individual data is hard to collect because

we are unable to identify individuals, or when there are privacy concerns, etc. Instead,

noisy aggregate statistics are readily available. We focus on observed noisy sufficient

statistics of individuals that summarize all their information and have the same data-

generating mechanism as individuals. Given these sufficient statistics, we could use

CGMs to infer individual behavior such as the transition probability pt,t+1(A,B) of a

bird from location A to B from time t to t+ 1.
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Chapter 3 and Chapter 4 deal with a completely different form of aggregate data.

They work on bags of instances and have bag-level aggregate supervisions. The setting

is similar to standard supervised learning but instead of having one supervision for

one data instance, it has one supervision for a bag of instances. This supervision

summarizes the property of the entire bag. Chapter 3 falls into the learning framework

of Learning with Label Proportions (LLPs), that tries to learn an instance-level model

for predicting individual supervisions in a bag. For LLPs, the aggregate supervision

is in the form of proportion of instances that belong to each class. In Chapter 3, we

work on a close alternative that the aggregate supervision is the count statistic of how

many individuals for each class. Our probabilistic LLP model exploits the aggregation

mechanism for developing an efficient inference procedure. Chapter 4 falls into the

learning framework of distribution regression, that tries to learn a bag-level model

for predicting a characteristic of the entire bag. Distribution regression skips the

intermediate step of inferring individual supervisions, and is more scalable to large

bag sizes. Distribution regression also takes richer forms of aggregate supervision,

such as class counts, class labels, proportions, scalars, and vectors. Moreover, new

task is flexible in defining its own mechanism of aggregating individual supervisions,

such as “logical OR” (as in multi-instance learning), max pooling, etc. Depending on

the goal of building either an instance-level model or a bag-level model, the readers

may choose LLPs or distribution regression for the task at hand.

Next, we will discuss the assumptions, capabilities and limitations of each model.

CGMs are compact graphical models for the sufficient statistics of a population.

The compact graphical representation is derived by marginalizing away all i.i.d.

individuals. The i.i.d. assumption is handy for deriving the objective function that we

will optimize, but the assumption itself may not be accurate in practice. For example,

a bird rarely migrates alone, so the independence assumption breaks. However, since

aggregate data is the first-class citizen in CGMs, the aggregation mechanism cancels
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out most randomness in individuals, and massages the non-independence among

individuals. Admitting these imperfections, CGMs are straightforward and scalable

solutions for learning with noisy aggregate observations.

It is also worth mentioning that the larger the population size is, the more accurate

our CGM inference algorithms will be. We empirically demonstrate this in the

experiment section. This suggests CGMs will not work well for very small populations,

which may not be of concern for most real-world applications.

The theoretical underpinning for LLPs and distribution regression (Szabó et al.,

2015) assumes a two-stage sampling procedure: first sample i.i.d. distributions for

bags Pb ∼ P from a meta distribution P, then sample i.i.d. instances for a bag xbi ∼ Pb

from the bag’s distribution Pb. At test time, we also assume test bags are sampled

from the same distribution as training bags, and test instances within a bag are

sampled from the same distribution as training instances. In practice, however, these

assumptions may be violated. For example, many voting precincts – as training bags –

are geographically adjacent and therefore dependent. Moreover, we may want to use

distribution regression for predicting voting preferences of demographic subgroups in

election (Flaxman et al., 2015; Sun et al., 2017), but “ecological fallacy” may come

into play and cause problems. Fallacy means we incorrectly deduce inference of an

individual or a sub-population from the inference of the whole population. For our

problem, the distribution of test bags of only males will differ from the distribution of

training bags of both males and females. Consequently, direct predictions of those

test bags based on models learned from a different distribution will be inaccurate.

In practice, a test bag should be more similar to the training bags, so that the

generalization error is small. Last, the prediction of a highly fine-grained bag may

deviate a lot from the ground truth. An example of highly fine-grained bag may

include females of age > 65, with high school education, and lives in LA. To the best

4



of our knowledge, for distribution regression we are unaware of any theoretical analysis

about how much the deviation will be from the ground truth.

For LLPs, since we are learning an instance-level model, there is no need to deduce

inference of an individual from the inference of population. When we aggregate indi-

vidual supervisions to obtain an aggregate-level supervision, it may also be interesting

to see whether anything occurs at the aggregate level that adds to the understanding

of the task. Moreover, LLPs assumes the aggregate supervisions take the form of

class counts or class proportions. When this assumption is violated, existing LLP

algorithms, including the state-of-the-art Alternating Mean Map (AMM) (Patrini

et al., 2014) and our probabilistic LLP (Sun et al., 2017), will not work. We shall

resort to alternative models, such as multi-instance learning when the aggregate super-

vision for a bag is the logical OR of individual labels, or learning with mutual-label

constraints when an explicit relationship between individual class labels is provided

for each bag. The latter includes, for example, all individuals in a bag have the

same categorization (Kumar and Rowley, 2007), or when a bag contains at most one

instance from each class (Kuncheva, 2010).

Next, I will describe my contributions of the thesis to each problem setting.

• My contributions to CGMs: I co-formulated (with Dan) the approximate MAP

inference of CGMs as an optimization problem, co-proposed (with Dan) a

message passing algorithm for the approximate MAP inference, which is more

efficient than all alternatives when the work was published. I also proposed a

new application: collective human mobility under the differential privacy setting.

My work advanced the state-of-the-art by tapping into the real-world sized

applications that were previously intractable.

• My contributions to LLPs: I co-formulated (with Dan) the first fully probabilis-

tic version of LLPs that performs exact marginal inference using cardinality
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potentials. I applied this algorithm to the 2016 US presidential election for

predicting voting preferences of both individuals and demographic subgroups.

• My contributions to distribution regression: I experimentally evaluated different

algorithms for distribution regression on three tasks. I identified distribution

regression as a two-step procedure: for each bag, first build a bag-level embedding,

then regress to bag-level supervision. I also identified three key factors that have

major impact on the performances of different algorithms, and suggested the

choice of algorithms given different problem settings. From experiment results, I

also highlighted the competitiveness of several quantization based approaches,

which are largely ignored in the distribution regression literature.

Next, we will discuss aggregate data problems in a big picture and existing studies,

and also lay positions of our work in context.

Aggregate data is widely used in many application domains, but to the best of

our knowledge, there is not a specialized survey discussing what models are more

amenable to what forms of aggregate data. My goal of this thesis is to fill the gap

and provide general guidance on how to deal with aggregate data.

Garcıa-Garcıa and Williamson (2011) discussed multi-instance learning and label

proportions as two examples in a spectrum of problems of varied “degrees of supervision”.

Hernández-González et al. (2016) focused on weakly supervised learning (WSL) and

incorporated instance-label relationship as one axis of their WSL taxonomy (the other

two axes are whether we have supervision in the learning stage and whether we have

supervision in the prediction stage.). For the instance-label relationship, they specified

three types: single instance with multiple labels (SIML), a set of instances with a

single label (MISL), and multi-instance multi-label (MIML). Our basic settings for

LLPs and distribution regression are exactly MISL. These works provide perspectives

on how to recognize and differentiate aggregate data problems with supervision. But

none of them address aggregate count statistics as we did in CGMs. Also, for the

6



problems with aggregate supervisions, they did not recommend what models are

available and suitable for what types of tasks.

There are also rich studies in social, biological, and statistical sciences that focus

on meta-analysis of aggregate data. They target summarizing evidence across studies

of the same problem to investigate whether there is consistent or inconsistent evidence

supporting specific input-output relationships and to examine sources of heterogeneity

in those studies that might produce differences in finding (Blettner et al., 1999). In

this thesis, we use already prepared aggregate data and we don’t have control over

how the data is collected and aggregated, such as bird counts and voting tallies.

It is also worth discussing whether ecological fallacy (EF) applies. EF means we

incorrectly deduce individual-level inferences from population-level inference. EF does

not apply to CGMs. CGM algorithms operate on compact graphical representation

of a population. This representation is derived by marginalizing away all individual

variables yet keeps the same data-generating mechanism as individuals. Therefore, the

two levels of inferences are intrinsically the same thing. For example, the migration

probabilities of an individual bird between locations are the same as population-level

migration probabilities between the same locations obtained from CGM algorithms.

EF does apply to distribution regression but not to LLPs. Distribution regression is a

group-level model and its inference does not automatically generalize to individuals. For

example, a voting precinct that prefers Democrats to Republican does not necessarily

indicate a voter in this precinct has the same voting preference. LLPs is an instance-

level model. There is no need to deduce individual-level inferences from population-level

inference since individual-level inferences are obtained directly from the model.

Next, we will discuss the sensitivity of each model to violation of its assumptions.

This is critical to understanding the limit of each model. The three general assumptions

we will consider (but may not apply all to each model) are:

• How sensitive are estimates to spillover (non-i.i.d. or non-exchangable instances)?
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• Heterogeneity: how sensitive are estimates to heterogeneity in the underlying

generative mechanism? How bad can it be before it substantially biases the

estimates?

• Measurement error: how sensitive are the estimates to measurement error?

For CGMs, our algorithms work on the sufficient statistics of a population, which

would cancel out most randomness in individuals and ease non-independence among

individuals. So to some extent it’s not very sensitive to spillovers. For sensitivity to

heterogeneity in the underlying generative mechanism, at first for our two real-world

applications of bird migration and human mobility, we need to choose a spatiotemporal

granularity for aggregating individual observations for inferring the migration/commute

routes. We could aggregate many individuals to move from macro cell A to macro

cell B, or we can further partition each macro cell to several smaller cells so that the

migration between smaller cells are more detailed and informative. The moves between

macro cells A and B would hide differences in migration patterns that the moves

between finer cells would otherwise expose. From this perspective, CGMs are more

sensitive to heterogeneity in the underlying generative mechanism given finer-grained

data aggregation (such as two essentially indistinguishable bird species that migrate

with different patterns), and less sensitive to coarse-grained data aggregation. However,

coarser data aggregation will introduce more biases from fine-grained ground truths

in the estimates, because delicate details are buried in aggregation. For measurement

error, we run experiments for a synthetic human mobility task: assuming observations

were corrupted by Laplace noises that mimic systematic measurement error, our goal

was to recover true move patterns from noisy observations. The results showed that

more measurement errors – represented by larger Laplace noises – make it harder to

recover ground truth, which is quite intuitive.

For distribution regression, theoretical results assume bags are i.i.d. and instances

within a bag are i.i.d.. In practice, however, these assumptions are usually violated.

8



For example, contiguous voting regions or family groups are dependent. We can choose

data carefully for training models such as using non-contiguous regions for the election

task or choosing point clouds from diverse classes for the point cloud classification

task. But for some applications we don’t have much control: the number of voting

regions is only a few and researchers prefer to use them all for training models and for

not wasting valuable information; the individuals from the US Census were prepared

(by some sampling algorithm) to be representative. One critical step in distribution

regression is to compute bag-level embedding vector, and its quality depends heavily

on both the embedding algorithm and the representativeness of the input data. When

the input data is not representative enough, say, non-i.i.d. and only convey partial

information of the bag, there is no hope the embedding vector will be accurate. Qi

et al. (2017a) also provided important stability analysis for PointNet, intrinsically

a distribution regression model for point cloud classification. We can borrow their

results for our sensitivity analysis. The architecture of PointNet max pools individual

embeddings to obtain a point cloud embedding. The authors proved that for every

input set S, given max pooling u and a composite function f = γ ◦ u where γ is a

continuous function (treated as a final stage regressor or classifier), there exists a lower

bound set CS and an upper bound set NS such that f(T ) = f(S) if CS ⊆ T ⊆ NS. In

other words, f(S) is unchanged up to input corruption if all points in CS are preserved;

also unchanged with extra noise points up to NS. The two boundary sets CS and

NS can be derived given S, and CS acts like a sparse set of the input S. Similarly,

a general distribution regression model with max-pooling is insensitive to spillovers

as long as they stay within the boundaries. For some applications, mean-pooling

or sum-pooling may work better than max-pooling, but we cannot derive analogous

boundary sets CS, NS as in the max-pooling scenario. The sensitivity analysis for

these cases are still lacking.
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LLPs can be treated as a special case of distribution regression with sum pooling, so

the sensitivity to spillover is lacking. It also requires the input data to be representative

of the underlying distribution.

In the end, we provide future directions for each work.

For CGMs, we identified two future directions: designing more efficient inference

algorithms and applying CGMs to real-world applications. For the first direction,

Vilnis et al. (2015) discovered the approximate MAP inference in CGMs can be solved

by proximal gradient descent based algorithms. We experimentally compared our

message passing algorithm to several of them in synthetic experiments, see Section 2.6.

The results showed those algorithms converged faster than message passing, but on

some parameter settings they converged to poorer values. It is worth understanding

the limits and use cases of different algorithms, their convergence properties and

assumptions.

The second direction is to apply CGMs to real-world problems. Firstly, we have

obtained some preliminary results on constructing bird migration routes for several

species. But there are practical challenges we have not completely overcome: for

most species the data (bird counts) is sparse and noisy, and the bird totals vary a

lot across time while CGMs assume the population size is fixed. To overcome these

limitations, we applied Gaussian Process Regression (GPR) as a preprocessing step.

GPR helps to interpolate missing values, smooth noisy observations, and maintain the

population size constant. But it needs to learn some kernel parameters at first, and

the learning is computationally intensive. We need to train GPR for each species and

when a new year’s worth of data for a species is available we have to retrain the GPR.

Moreover, the higher the spatiotemporal resolution we use to build the migration

routes (e.g., from weekly to daily), the more expensive the learning. Future work may

target building more efficient GP training using sparse or incremental GP, or train

the data preprocessing and CGMs in an end-to-end fashion.
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The second application domain connects to differential privacy. Bernstein et al.

(2017) provided a new approach for differentially private learning of undirected graph-

ical models using CGMs. Their approach consists of a release mechanism and a

learning algorithm to collectively ensure privacy. The release mechanism adds Laplace

noise – the most common noise mechanism in differential privacy – to the sufficient

statistics of the private individuals. The learning algorithm uses CGMs to work on

noisy observations of the sufficient statistics in a principled way. They took initial

step towards applying CGMs to a real-world human mobility data, and experimentally

demonstrated the advantage of CGMs over alternative private learing algorithms.

There could be more work done in this privcy domain, and extend to more practical

and large-scale problems.

For LLPs, the challenge to our exact inference algorithm is that for large bag-size

problems, it is computationally expensive for multiclass problems and numerically

unstable when computing messages using FFT due to numerical underflow. Future

direction could be to design more efficient, scalable, and stable approximate inference

algorithms. One straightforward change to the current EM algorithm could be to

use SGD to process one bag at a time and update model parameters immediately

after. A second future direction is to design more general instance-level models.

They can be designed as a direct generalization of LLPs and inspired by distribution

regression. Distribution regression solves f(X) = ρ(pooliφ(xi)) where ρ and φ are two

transformation functions, φ(xi) is the local embedding of instance xi and pooliφ(xi)

is the pooled global embedding of the bag. LLPs can be treated as a special case

of distribution regression where φ infers individual labels, pool is the sum pooling,

and ρ simply copies the pooled result. A more general instance-level model could be

designed to solve f(X) = ρ(concat(φ(xi), global)) that concatenates both instance-

level embedding and global embedding before feeding to ρ. The global embedding

could be simply pooliφ(xi), or provided information of the bag, or both. If ρ and
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φ are two neural networks, this model can be trained end-to-end as performed in

DeepSets and PointNet. PointNet has be applied for part segmentation, that requires

assigning a label to each point in a point cloud.

For distribution regression, future directions could be to investigate theoretically

and experimentally how the number of bags, bag sizes and embedding dimension affect

the choice of distribution regression method, and how sensitive the choice of method

is to the violation of the i.i.d. assumption.

1.2 Published and Non-published Work

My published work
• Approximate inference in Collective Graphical Models.

[ICML 2013] Daniel Sheldon, Tao Sun, Akshat Kumar, and Thomas Dietterich.

• Message Passing for Collective Graphical Models.
[ICML 2015] Tao Sun, Dan Sheldon, and Akshat Kumar

• Differentially Private Learning of Undirected Graphical Models Using Collective Graphical
Models.
[ICML 2017] Garrett Bernstein, Ryan McKenna, Tao Sun, Daniel Sheldon, Michael
Hay, and Gerome Miklau

• A Probabilistic Approach for Learning with Label Proportions Applied to the US Presidential
Election.
[ICDM 2017] Tao Sun, Dan Sheldon, and Brendan O’Connor

The first three papers are about CGMs. I included the content of the first two in

Chapter 2. The last paper is about probabilistic LLPs and is included in Chapter 3.

My un-published work

• A software for real-world bird migration, collaborated with Liping Liu and

advised by Dan Sheldon.

• Calibrating moth data: initial experiment design and evaluation.

• Chapter 4: systematic evaluation of several methods for distribution regression

on several applications.
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1.3 Background for Graphical Models

In this section we will provide general background for graphical models for Chapter 2

and Chapter 3. We will describe the graphical models from the exponential families

point of view, and present the fact that the marginal inference can be treated as a

variational optimization problem, which is the key for developing the message passing

algorithms and the proximal gradient based algorithms for solving the inference

problem in Chapter 2.

1.3.1 Exponential Family, Sufficient Statistics, and Marginal Inference

An exponential family (Wainwright and Jordan, 2008)is defined as

Pθ(x) =
1

Zθ
h(x) exp(θTφ(x)) (1.1)

where θ is the vector of natural parameters, φ(x) is the sufficient statistics, whose

value contains all the information needed to compute any estimator of the parameter

vector θ. h(x) is a base measure independent of θ, and Zθ is the partition function

(normalizer to make Pθ(x) a distribution). For discrete x

Zθ =
∑
x∈X

h(x) exp(θTφ(x)) (1.2)

For continuous x, replace the sum with integral. Many popular distributions are in the

exponential family, such as the Gaussian, Poisson, Laplace, and Discrete distribution.

From now on, we will omit the dependence of θ for Zθ and Pθ to simplify the notation.

We will emphasize the dependence of θ when necessary.

A graphical model can be represented by a graph structure G = (V,E), where V

and E are the set of vertices and edges. We also use the index set I to represent the

set of all the (maximal) cliques of the graph.
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Marginal inference computes the expected sufficient statistics:

µ := EPθ
[φ(x)] = ∇θ logZ (1.3)

When all the sufficient statistics {φα, α ∈ I} are indicator functions, the marginal of

clique α equals to the probability of α: µα = EPθ
[φα(x)] = Pα.

The set of marginals µ is a compact representation of Pθ and is easier to reason

about (Wainwright and Jordan, 2008, Proposition 3.2). Especially, the marginal

inference can be cast as a variational optimization problem

µ? = arg min
µ∈M

−〈θ,µ〉 −H(µ) (1.4)

where H(µ) is the entropy of µ andM is the standard marginal polytope, define as

the set of all vectors of expected sufficient statistics µ that are realizable from some

probability distribution

M =

{
µ ∈ Rd : ∃p s.t. µ = Ep[φ(x)] for some p(x) ≥ 0,

∑
x

p(x) = 1

}
(1.5)

Since M is exponentially large, it is usually infeasible to optimize over. Instead,

we relax M to the local polytope M′ that only satisfies the following consistency

constraints andM′ is a convex set:

M′ =

µ ≥ 0 :
∑
xi

µi(xi) = 1,∀i ∈ V,
∑
xj

µij(xi, xj) = µi(xi),∀(i, j) ∈ E

 (1.6)

Define the Bethe entropy as

HBethe(µ) = −
∑
i∈V

(νi − 1)Hi(µi) +
∑

(i,j)∈E

Hij(µij) (1.7)
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where νi is the degree of node i and Hi, and Hij are the entropies for vertex i and

edge ij respectively. The marginal inference given the Bethe free energy is

µ = arg min
µ∈M′

−〈θ,µ〉 −HBethe(µ) (1.8)

For trees, the Bethe entropy is concave (Heskes, 2006) andM′ =M, so µ is exact.

For cyclic graphs, Bethe entropy is not concave andM′ is approximate, so µ is an

approximate solution.
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CHAPTER 2

COLLECTIVE GRAPHICAL MODELS

This chapter focuses on Collective Graphical Models (CGMs), introduced to model

the problems of learning and inference about a population of i.i.d. individuals when

only noisy aggregate observations are available.

We will review the background in Section 2.1, and analyze the complexity of the

inference problem in CGMs in Section 2.2: unlike inference in convertional graphical

models, exact inference in CGMs is NP-hard even for tree-structured models. We will

then develop a tractable convex approximation to the NP-hard MAP inference problem

in CGMs in Section 2.3, and show how to use the MAP inference to approximate the

marginal inference within the EM framwork. We demonstrate empirically that, by

using off-the-shelf solvers, these approximations can reduce the computational cost

of both the inference and the learning by orders of magnitude, and at the same time

provide solutions of equal or better quality than the only existing Gibbs sampling

alternative.

The approximate inference using off-the-shelf solvers does not scale to realistic-sized

problems. In Section 2.4 we highlight a close connection between the approximate

MAP inference in CGMs and the marginal inference in standard graphical models.

The connection leads to a novel Belief Propagation (BP) style algorithm for CGMs.

This BP algorithm exploits the graph structure, that the off-the-shelf solvers ignores,

and is orders of magnitude faster. In Section 2.5, we will also discuss approximate

MAP inference based on proxmial gradient descent. It is a whole slew of optimization

algorithms that is guaranteed to converge and enjoys fast convergence. We will evaluate
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Figure 2.1: CGM example: (a) Individual are explicitly modeled. (b) After marginal-
ization, the latent variables are the sufficient statistics of the individual model.

the aforementioned algorithms in a synthetic bird migration setting. We will also

apply these algorithms to a new application: human mobility under the differential

privacy setting.

2.1 Introduction to CGMs

2.1.1 Motivation

Sheldon and Dietterich (2011) introduced Collective Graphical Models (CGMs) to

model the problem of learning and inference with noisy aggregate data. CGMs are

motivated by the growing number of applications where data about individuals are

not available, but aggregate population-level data in the form of counts or contingency

tables are available. For example, the US Census Bureau cannot release individual

records for survey effort and privacy reasons, so they commonly release low-dimensional

contingency tables that classify individuals according to a few demographic attributes.

In ecology, survey data provide counts of animals trapped, seen, heard, or otherwise

detected in different locations, but they cannot identify individuals.

CGMs are generative models that serve as a link between individual behavior and

aggregate data. As a concrete example, consider the model illustrated in Figure 2.1(a)

for modeling bird migration from observational data collected by citizen scientists

through the eBird project (Sheldon et al., 2007; Sheldon, 2009; Sullivan et al., 2009).

Inside the plate, an independent Markov chain describes the migration of each bird
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among a discrete set of locations: Xm
t represents the location of the mth bird at time

t. Outside the plate, aggregate observations are made about the spatial distribution

of the population: the variable nt is a vector whose ith entry counts the number of

birds in location i at time t. By observing temporal changes in the vectors {nt}, one

is possible to infer migratory routes without tracking individual birds.

A key to efficient inference in CGMs is the fact that, when only aggregate data

are being modeled, the same data-generating mechanism can be described much more

compactly by analytically marginalizing away the individual variables to obtain a

direct probabilistic model for the sufficient statistics (Sundberg, 1975; Sheldon and

Dietterich, 2011). Figure 2.1(b) illustrates the resulting model for the bird migration

example. The new latent variables nt,t+1 are tables of sufficient statistics: the entry

nt,t+1(i, j) is the number of birds that fly from location i to location j at time t. For

large populations, the resulting model is much more amenable to inference, because it

has many fewer variables and it retains a graphical structure analogous to that of the

individual model. However, the reduction in the number of variables comes at a cost,

the new variables are tables of integer counts, which can take on many more values

than the original discrete variables in the individual model, and this adversely affects

the running time of inference algorithms.

Xm
1

Xm
2 Xm

3

Xm
4 Xm

5

m = 1, . . . ,M

n5 y5

n1,3

n3,5 y3,5

Figure 2.2: General observational model: observe contingency tables on small sets of
variables (or plus noise).
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In general CGMs, any discrete graphical model can appear inside the plate to

model individuals in a population (for example Figure 2.2), and observations are made

in the form of (noisy) low-dimensional contingency tables (Sheldon and Dietterich,

2011). A key problem we would like to solve is learning the model parameters (of

the individual model) from the aggregate observations, for which inference is the key

subroutine. Unfortunately, standard inference techniques applied to CGMs quickly

become computationally intractable as the population size increases, due to the large

number of latent individual-level variables that are all connected by the aggregate

counts.

2.1.2 Problem Statement

In this subsection, we describe the generative model in more details, introduce the

CGM distribution, and state the marginal and MAP inference problems for CGMs.

2.1.2.1 Generative Model for Aggregate Data

Let G = (V,E) be an undirected graph with N vertices, and consider the following

pairwise graphical model over the discrete random vector X = (X1, . . . , XN). Let

x = (x1, . . . , xN) be a particular assignment (for simplicity, assume each xi takes

values in the same finite set [L] = {1, . . . , L}). The individual probability model is

p(x;θ) =
1

Z(θ)

∏
(i,j)∈E

∏
x′i,x

′
j

φij(x
′
i, x
′
j;θ)I[x

′
i=xi,x

′
j=xj ]

=
1

Z(θ)

∏
(i,j)∈E

φij(xi, xj;θ). (2.1)

Here I(·) is the indicator function and φij : [L]2 7→ R+ are edge potentials defined on

edge (Xi, Xj) ∈ E. These local potentials are controlled by a parameter vector θ, and

Z(θ) is the partition function. We assume G is a tree. For graphical models that are

not trees or have higher-order potentials, our results can be generalized to junction
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trees, with the usual blowup in space and running time depending on the clique-width

of the junction tree.

To generate the aggregate data, first assume M vectors x(1), . . . ,x(M) are drawn

i.i.d. from the individual probability model to represent the individuals in a population.

Aggregate observations are then made in the form of contingency tables on small sets

of variables, which count the number of times that each possible combination of those

variables appears in the populations. Specifically, we define the contingency node table

ni = (ni(xi) : xi ∈ [L]) over nodes of the model and edge table nij = (nij(xi, xj)) :

xi, xj ∈ [L] over edges of the model

ni(xi) =
M∑
m=1

I[X(m)
i = xi],

nij(xi, xj) =
M∑
m=1

I[X(m)
i = xi, X

(m)
j = xj].

Define n to be the concatenation of all edge tables nij and all node tables ni. This

is a random vector that depends on the entire population.

The joint probability of a population of M individuals is

g(n,θ) := p(x(1), . . . ,x(M);θ) =
M∏
m=1

p(x(m);θ)

=
1

Z(θ)M

∏
(i,j)∈E

∏
x′i,x

′
j

φij(x
′
i, x
′
j;θ)

∑M
m=1 I[x′i=x

(m)
i ,x′j=x

(m)
j ]

=
1

Z(θ)M

∏
(i,j)∈E

∏
xi,xj

φij(xi, xj;θ)nij(xi,xj)

= exp{
∑

(i,j)∈E

∑
xi,xj

nij(xi, xj) log φij(xi, xj;θ)−M logZ(θ)}

= exp{ηTnij −M logZ(θ)}, (2.2)
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where η = {log φij(xi, xj;θ)} is the vector of natural parameters, the edge tables nij

are the sufficient statistics of the individual model and will play a prominent role we

will see later on.

In CGMs, one obtains noisy observations y of some subset of the statistics n

and then seeks to answer queries about the sufficient statistics given y (e.g., for the

purpose of learning the parameters θ) through the conditional (posterior) distribution

p(n | y;θ) ∝ p(n;θ)p(y | n). (2.3)

The first term p(n;θ) is the CGM distribution, we will describe how it is derived in

section 2.1.2.3. We refer to the second term, p(y | n), as the noise model or the CGM

evidence term. It is often assumed that p(y | n) is log-concave in n, which makes the

negative log-likelihood convex in n, though most of results later on do not rely on

that assumption.

For node-based noise model, each entry yi(xi) has one of the following distributions:

Exact observation: yi(xi) = ni(xi)

Noisy observation: yi(xi) | ni(xi) ∼ Pois(α · ni(xi))

The Poisson model is motivated by the bird migration problem for count observations,

and models birds being counted at a rate proportional to their true density. While it is

helpful to focus on these two observation models, considerable variations are possible

without significantly changing the results:

1. Observations of the different types can be mixed.

2. Higher-order contingency tables, such as the edge tables nij, may by observed,

either exactly or noisily.

3. Some table entries may be unobserved while others are observed, or, in the noisy

model, they may have multiple independent observations.
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4. The Poisson model can be replaced by any other noise model, for example, we

will use the Laplace noise model for the application of collective human mobility,

which is the common noise mechanism for differential privacy.

In Section 2.2, the exact observation model is used to prove the hardness results,

while the Poisson model and Laplace model are used in the experiments. Since the

exact model can be obtained as the limiting case of a log-concave noise model (e.g.,

y | n ∼ N (n, σ2) as σ2 → 0), we do not expect that noisy observations lead to a more

tractable problem.

2.1.2.1.1 Example. For modeling bird migration, assume X = (X1, . . . , XT ) is

the sequence of discrete locations (e.g., map grid cells) visited by an individual bird, and

the graphical model p(x;θ) = 1
Z(θ)

∏T
t=1 φt(xt, xt+1;θ) is a chain model governing the

migration of an individual, where the parameter vector θ controls how different relevant

factors (distance, direction, time of year, etc.) influence the affinity φt(xt, xt+1;θ)

between locations xt and xt+1. In the CGM, M birds of a given species independently

migrate from location to location according to the chain model. The node table

entries nt(xt) indicate how many birds are in location xt at t. The edge table entries

nt,t+1(xt, xt+1) count how many birds move from location xt to location xt+1 from

time t to time t+ 1. A reasonable model for eBird data is that the number of birds of

the target species counted by a birdwatcher is a Poisson random variable with mean

proportional to the true number of birds nt(xt), or yt(xt) | nt(xt) ∼ Pois(αnt(xt)),

where α is the detection rate. Given only the noisy eBird counts and the prior

specification of the Markov chain, the goal is to answer queries about the distribution

p(n | y;θ) to inform us about migratory transitions made by the population. Because

the vector n consists of sufficient statistics, these queries also provide all the relevant

information for learning the parameter θ from this data.

22



2.1.2.2 Inference Problems

We wish to learn the parameters θ of the individual model from the aggregate

observations y. To do this, we need to know the values of the sufficient statistics of

the individual model – namely, nij for all edges (i, j) ∈ E. Our observation models do

not directly observe these. Fortunately, we can consider n as a latent variable and

apply the standard EM algorithm, in which case we need to know the expected values

of the sufficient statistics given the observations: E[nij | y], or more loosely E[n | y]

(will show in Section 2.3).

This leads us to define two inference problems: marginal inference and MAP

inference. The aggregate marginal inference problem is to compute the expected

(conditional) sufficient statistics E[n | y] (see Eq. (1.3)), which are exactly the

quantities needed for the E step of the EM algorithm1.

The aggregate MAP inference problem is to find the tables n that jointly maximize

p(n | y). A primary focus of CGMs is approximate algorithms for approximate MAP

inference. One reason for conducting MAP inference is the usual one: to reconstruct

the most likely values of n given the evidence as a way of “reconstruction” (e.g., for

bird migration, reconstruct the migration routes). However, a second and important

motivation is the fact that the posterior mode of p(n | y) is an excellent approximation

for the posterior mean E[n | y] in this model (as we will show in Section 2.3), so

approximate MAP inference also gives an approximate algorithm for the important

marginal inference problem needed for the EM algorithm.

2.1.2.3 CGM Distribution

In the setting we are considering, our observations and queries only concern

aggregate quantities. The observations are (noisy) counts and the queries are MAP or

1Sheldon and Dietterich (2011) also showed how to generate samples from p(nij | y), which is an
alternative way to query the posterior distributions without storing a huge tabular potential.
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marginal probabilities over sufficient statistics (which are also counts). In this setting,

we don’t care about the values of the individual variables
{
x(1), . . . ,x(M)

}
, so we can

marginalize them away. This marginalization can be performed analytically to obtain

a probability model with many fewer variables. It results in a model whose random

variables are the vector n of sufficient statistics2 and the vector y of observations.

Sundberg (1975) originally described the form of the CGM distribution p(n;θ) for

a graphical model that is decomposible (i.e., its cliques are the nodes of some junction

tree), in which case its probabilities can be written in closed form in terms of the

marginal probabilities of the original model. For pairwise models, given the marginal

probabilities µi(xi) = Pr(Xi = xi;θ) and µij(xi, xj) = Pr(Xi = xi, Xj = xj;θ)3:

p(n;θ) = M !
∏
i∈V

∏
xi

(
ni(xi)!

µi(xi)ni(xi)

)νi−1 ∏
(i,j)∈E

∏
xi,xj

µij(xi, xj)
nij(xi,xj)

nij(xi, xj)!
· I[n ∈ LZ

M ].

(2.4)

Here, νi is the degree of node i, and the final term I[·] is a hard constraint that restricts

the support of the distribution to vectors n that are valid sufficient statistics of some

ordered sample. Sheldon and Dietterich (2011) showed that, for trees or junction trees,

this requirement is satisfied if and only if n belongs to the integer-valued scaled local

polytope LZ
M defined by the following constraints:

LZ
M =

{
n ∈ Z|n|+

∣∣∣M =
∑
xi

ni(xi) ∀i ∈ V, (2.5)

ni(xi) =
∑
xj

nij(xi, xj) ∀i ∈ V, xi ∈ [L], j ∈ N(i)
}
,

2Note n is the concatenation of ni and nij and only nij is the sufficient statistics. Since ni can
be easily derived from nij , sometimes we loosely claim n as the sufficient statistics.

3If marginal probabilities are not given, they can be computed by performing inference in the
individual model.
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whereN(i) is the set of neighbors of i. The reader will recognize that LZ
M is equivalent to

the standard local polytope (Eq. (1.6)) of a graphical model except for two differences:

1. The marginals, which in our case represent counts instead of probabilities, are

scaled to sum to the population size M instead of summing to one.

2. These counts are constrained to be integers.

The set LZ
M is the true support of the CGM distribution. Let LM be the relaxation of

LZ
M obtained by removing the integrality constraint, i.e., the set of real-valued vectors

with non-negative entries that satisfy the same constraints.

Liu et al. (2014) refined the result of p(n;θ) above to be written in terms of the

original potentials instead of marginal probabilities. Applied to our tree-structured

models, this gives the following distribution:

p(n;θ) = M !

∏
i∈V
∏

xi
(ni(xi)!)

νi−1∏
(i,j)∈E

∏
xi,xj

nij(xi, xj)!
· g(n,θ) · I[n ∈ LZ

M ]. (2.6)

The first term is a base measure (it does not depend on the parameters) that counts

the number of different ordered samples that give rise to the sufficient statistics n. The

second term, g(n,θ), is the joint probabilities of any ordered sample with sufficient

statistics n as defined in Eq. (2.2).

The distribution p(n;θ) is the CGM distribution, which is defined over the random

variables nij and ni. The CGM distribution satisfies a hyper Markov property : it

has conditional independence properties that follow the same essential structure as

the original graphical model (Dawid and Lauritzen, 1993). (To see this, note that

Eq. (2.4) or Eq. (2.6) factor into separate terms for each node and edge contingency

table; when the hard constraints of LZ
M are also included as factors, this has the

effect of connecting the tables for edges incident on the same node, as illustrated in

Figure 2.1.)
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We can combine the CGM distribution p(n;θ) (as prior) with the evidence term

p(y | n) (as likelihood) to derive an explicit expression for the (unnormalized) posterior

p(n | y;θ) ∝ p(n;θ)p(y | n).

2.1.2.4 Generalization

For general graph structures, Sheldon and Dietterich (2011) gave a probability

model analogous to Eq. (2.4) defined over a junction tree for the graphical model. In

that case, the vector n includes contingency table nC for each clique C of the junction

tree. Different junction trees may be chosen for a particular model, which will lead

to different definitions of the latent variables n and thus slightly different inference

problems, but always the same marginal distribution p(y) over observed variables.

Higher-order contingency tables may be observed as long as each observed table

nA satisfies A ⊆ C for some clique C, so it can be expressed using marginalization

constraints such as LZ
M . The approximate inference algorithms in Section 2.3 extend

to these more general models in a straightforward way by making the same two

approximations presented in that section for the expression log p(n | y;θ) to derive a

convex optimization problem.

2.2 Computational Complexity

There are a number of natural parameters quantifying the difficulty of inference in

CGMs: the population size M ; the number of variables N (e.g., N = T for T time

steps in the bird migration model); the variable cardinality L (e.g., L = `2 for a grid

of `× ` cells for bird migration); and the clique-width K (largest clique size) of the

junction tree used to perform inference, which is bounded below by the tree-width of

G plus one. The inputs are: the vector y, the integer M , and the CGM distribution.

The vector y has at most NL entries of magnitude O(M), so each can be represented

26



in logM bits. The CGM is fully specified by the potential functions in Eq. (2.1),

which has size O(NL2). Thus the input size is poly(N,L, logM).

We first describe the best known running time for exact inference in trees (K = 2),

which are the focus of this paper, and then generalize to running time on junction

trees for general graphical models. The proof sketch can be found in Appendix A.1.

Theorem 1. When G is a tree, message passing in the CGM solves the aggregate

MAP or marginal inference problems in time O(N ·min(ML2−1, L2M)).

Theorem 2. Message Passing on a junction tree with maximum clique size K and

maximum variable cardinality L takes time O(N ·min(MLK−1, LKM)).

Thus, if either L orM is fixed, message passing runs in time polynomial in the other

parameter. When M is constant, then the running time O(NLKM) is exponential

in the clique-width K, which captures the familiar case of discrete graphical models.

When L is constant, however, the running time O(NMLK−1) is not only exponential

in L but doubly-exponential in the clique-width. Thus, despite being polynomial in

one of the parameters, message passing is unlikely to give satisfactory performance on

real problems. Finally, the next result tells us that we should not expect to find an

algorithm that is polynomial in both parameters.

Theorem 3. Unless P = NP , there is no algorithm for MAP or marginal inference

in a CGM that is polynomial in both M and L. This remains true when G is a tree

and N = 4.

The proof is by reducing the exact 3-dimensional matching to CGM where both

M and L grow with the input size. The detail can be found in Appendix A.1.

2.3 Approximate MAP Inference

In this section, we address the problem of MAP inference in CGMs under the noisy

observation model from subsection 2.1.2.1. That is, the node tables for an observed
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set are corrupted independently by noise, our goal is to find n ∈ LZ
M to maximize the

following (log-posterior) objective:

log p(n | y;θ) = log p(n;θ) + log p(y | n) + constant

Henceforth, we will suppress the dependence on θ to simplify notation when discussing

inference with respect to fixed parameters θ.

2.3.1 Approximate Objective Function

As highlighted in Section 2.2, it is computationally intractable to directly optimize

log p(n | y). Therefore, we introduce two approximations. First, we relax the feasible

set from LZ
M to LM (i.e., removing the integrality requirement). For large population

size M , the effect of allowing fractional values is minimal. Second, as it is hard to

incorporate factorial terms log n! directly into an optimization framework, we employ

Stirling’s approximation: log n! ≈ n log n− n.

Given the CGM distribution log p(n), and using these two approximations:

log p(n | y) =
∑
i

(νi − 1)
∑
xi

log ni(xi)!−
∑
(i,j)

∑
xi,xj

log nij(xi, xj)!

+
∑
(i,j)

∑
xi,xj

nij(xi, xj) log φij(xi, xj)−M logZ + log p(y | n) + c

≈
∑
i

(νi − 1)
∑
xi

ni(xi) log ni(xi)−
∑
i

(νi − 1)
∑
xi

ni(xi)

−
∑
(i,j)

∑
xi,xj

nij(xi, xj) log nij(xi, xj) +
∑
(i,j)

∑
xi,xj

nij(xi, xj)

+
∑
(i,j)

∑
xi,xj

nij(xi, xj) log φij(xi, xj)−M logZ + log p(y | n) + c

=
∑
i

(νi − 1)
∑
xi

ni(xi) log ni(xi)−
∑
(i,j)

∑
xi,xj

nij(xi, xj) log nij(xi, xj)

+
∑
(i,j)

∑
xi,xj

nij(xi, xj) log φij(xi, xj) + log p(y | n) + c.
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We have absorbed all constants in c. Since our goal is now to find n ∈ LM to maximize

the log-posterior log p(n | y;θ), we arrive at the following optimization problem:

min
z∈LM

FCGM(z) := ECGM(z)−HB(z). (2.7)

ECGM(z) = −
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log φij(xi, xj)− log p(y | z),

HB(z) = −
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log zij(xi, xj) +
∑
i∈V

(νi − 1)
∑
xi

zi(xi) log zi(xi).

We write z instead of n to emphasize that the contingency tables are now real-valued.

Theorem 4. The optimization problem (2.7) for approximate MAP inference in

tree-structured CGM is convex if and only if p(y | z) is log-concave.

Proof. The quantity HB(z) is the Bethe entropy. It’s well known the Bethe entropy is

concave over the local polytope of a tree graph (Heskes, 2006). The only difference of

HB here from the conventional Bethe entropy is that the variables z ∈ LM instead of

z ∈ L1, i.e., z are normalized to sum to M instead of 1, but scaling in this way does

not affect concavity. Also the constraints in LM are identical to the constraints for

pariwise and node marginals used in Bethe entropy (Eq. (1.6)). On the other hand,

the CGM energy function ECGM(z) is convex if the noise model p(y | z) is log-concave

in z, and therefore FCGM is convex.

Given this theorem, we can solve our approximate MAP inference using off-the-shelf

solvers

2.3.2 MAP Inference for EM

We now describe how the approximate MAP inference problem for CGMs can

be used to significantly accelerate the E-step of the EM algorithm for learning the

parameters θ of the individual model. Let x = (x(1), · · · ,x(M)) be the latent variables

for all individuals in the population, and y be the (noisy) aggregate observations. The
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EM algorithm iteratively finds parameters θ that maximize the following expected

log-likelihood:

Q(θ;θt−1) = Ex|y;θt−1 [log p(x,y;θ)]

where θt−1 denotes the parameters from the previous iteration. When the joint

distribution p(x,y;θ) is from an exponential family, as in our case, then the problem

simplifies to maximizing log p(n̄,y;θ), where n̄ = E[n | y] is the expected value of the

sufficient statistics n = n(x,y) used to define the model; these are exactly the latent

variables in the CGM. In general, this expectation is difficult to compute and requires

specialized sampling approaches as in Sheldon and Dietterich (2011).

Instead, we will show that the approximate MAP solution, which approximates

the mode of the distribution p(n | y;θ), is also an excellent approximation for its

mean E[n | y]. While this may seem surprising, recall that the random variables in

question take values that are relatively large non-negative integers. A good analogy

is the Binomial distribution (a CGM with only one variable), for which the mode is

very close to the mean, and the mode of the continuous extension of the Binomial

pmf is even closer to the mean. These characteristics make our approach qualitatively

very different from a typical “hard EM” algorithm. Our experiments show that the

approximate mode arg minz∈LM
FCGM(z) can be computed extremely quickly and is

an excellent substitute for the mean. It is typically a much better approximation of

the mean than the one found by Gibbs sampling for reasonable time budgets, and

this makes the overall EM procedure many times faster.

2.4 Message Passing for CGMs

We can solve the approximate MAP inference using generic optimization solvers,

as described in Section 2.3. However, the generic solvers ignore the structure of a
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graphical model, and does not scale to realistic-sized problems. In this section, We

will develop a message passing algorithm for approximate MAP inference, that would

overcome this limitation. We will start by introducing some related work.

2.4.1 Related Work

Yedidia et al. (2000) published an influential paper showing that the loopy Belief

Propagation (BP) algorithm for marginal inference in graphical models can be un-

derstood as a fixed-point iteration that attempts to satisfy the first-order optimality

conditions of the Bethe free energy, which approximate the true variational free energy.

The result shed considerable light on the convergence properties of BP and led to

many new ideas for approximate variational inference.

In this section, we highlight a connection between the Bethe free energy and the

objective function for approximate MAP inference in CGMs (Section 2.3). We then

follow reasoning similar to that of Yedidia et al. (2000) to derive a novel message

passing algorithm for CGMs. The algorithm, Non-Linear energy Belief Propagation

(NLBP), has the interesting property that message passing updates are identical to

BP, with the exception that edge potentials change in each step based on the gradient

of the nonlinear “evidence terms” log p(y | n) that are present in the CGM objective

but not in the Bethe free energy. NLBP is a strict generalization of BP to deal with

the presence of these additional nonlinear terms.

2.4.2 Message Passing Algorithm

We will derive an efficient message passing algorithm to solve the approximate

MAP optimization problem. We start by comparing the MAP objective for CGMs to

the Bethe free energy for standard graphical models as follows:
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FB(z) = EB(z)−HB(z),

EB(z) = −
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log φij(xi, xj)

where z ∈ L1, the standard local polytope, is defined in Eq. (1.6)

The function FCGM(z) (defined in Eq. (2.7)) and FB(z) differ only in the energy

term: while the standard energy EB(z) is linear in z, the CGM energy ECGM(z) is

non-linear (but typically convex). In what follows, we will generalize the analysis by

Yedidia et al. (2000) of Pearl’s classical belief propagation (BP) algorithm (1988) to

derive a BP algorithm for arbitrary non-linear energies E(z) such as the one in the

CGM MAP objective.

Classical BP maintains a set of messages {mij(xj)} from nodes to their neighbors,

which are updated according to the rule:

mij(xj) ∝
∑
xi

φij(xi, xj)
∏

k∈N(i)\j

mki(xi)

Upon convergence, the node marginals are zi(xi) ∝
∏

k∈N(i)mki(xi) and the edge

marginals are zij(xi, xj) ∝ φij(xi, xj)
∏

k∈N(i)\jmki(xi)
∏

l∈N(j)\imlj(xj), normalized

to sum to one. Yedidia et al. (2000) showed that if BP converges, it reaches a zero-

gradient point of the Lagrangian of the Bethe free energy with respect to the constraint

z ∈ L1, which is the standard local polytope. In practice, if BP converges on a loopy

graph, it usually converges to a minimum of the Bethe free energy (Heskes, 2003).

For trees, BP always converges to the global minimum and the Bethe free energy

is equal to the true variational free energy, so BP is an exact method for marginal

inference. For graph with cycles, the Bethe free energy is non-convex and both the

Bethe free energy and the constraint set L1 are approximations of their counterparts

in the exact variational inference problem (Wainwright and Jordan, 2008), so loopy

BP is an approximate marginal inference method. A key contribution of Yedidia et al.
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Algorithm 1: Non-Linear Belief Propagation
Input: Graph G = (V,E), (non-linear) energy function E(z), population size M
Output: Solution to minz∈LM

E(z)−HB(z) (upon convergence)

Initialization :mij(xj) = 1, φ̂ij(xi, xj) = φij(xi, xj),
zij(xi, xj) ∝ φij(xi, xj), ∀(i, j) ∈ E, xi, xj .

while ¬ converged do
Execute the following updates in any order:

φ̂ij(xi, xj) = exp
{
− ∂E(z)

∂zij(xi, xj)

}
(2.8)

mij(xj) ∝
∑
xi

φ̂ij(xi, xj)
∏

k∈N(i)\j

mki(xi) (2.9)

zij(xi, xj) ∝ φ̂ij(xi, xj)
∏

k∈N(i)\j

mki(xi)
∏

l∈N(j)\i

mlj(xj) (2.10)

end

Extract node marginals: zi(xi) ∝
∏
k∈N(i)mki(xi)

(2000) was to reveal the nature of this approximation by its connection to the Bethe

free energy.

2.4.2.1 Non-Linear Energy Belief Propagation

We now present a generalized belief propagation algorithm to solve problems in

the form of Eq. (2.7):

min
z∈LM

F (z) := E(z)−HB(z) (2.11)

where the energy function E(z) need not be linear with respect to node and edge

marginals z. As with standard BP, we first present the algorithm and then show

the connection to the Lagrangian. Algorithm 1 shows Non-Linear Belief Propagation

(NLBP). Note that the only difference from standard BP is that we replace the edge

potential φij(xi, xj) by the exponentiated negative gradient of E(z). For the standard

linear energy EB(z), this is always equal to the original edge potential, and we recover

standard BP. For non-linear energies, the gradient is not constant with respect to z,

so, unlike in standard BP, we must track the value of the marginals z (normalized to
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sum to M) in each iteration so we can use them to update the current edge potentials.

Note that the algorithm stores the current edge potential φ̂ij as separate variables,

which is not necessary but will add useful flexibility in ordering updates.

One subtle aspect of NLBP is that the vector z is overcomplete since edge marginals

determine the node marginals, and therefore the gradient of E(z) may depend on

details of how the function is defined. For example, the two CGM noise models

yi(xi) | z ∼ Poisson(αzi(xi)),

yi(xi) | z ∼ Poisson(α
∑
xj

zij(xi, xj)),

give the same distribution over y but yield log-likelihood functions log p(y | z) (and

thus energy functions ECGM(z)) that differ in their gradient with respect to z. To

resolve this ambiguity, we assume the energy function E(z) (and hence the CGM noise

model p(y | z)) is always written as a function of only the edge variables {zij}. This can

be considered a non-linear generalization of the standard practice of absorbing unary

potentials into binary edge potentials in a graphical model, and explains why only the

gradient with respect to edge variables appears in the updates of the algorithm.

Theorem 5. Suppose the NLBP message passing updates converge and the resulting

vector z has strictly positive energies. Then z is a constrained stationary point of F (z)

in problem (2.11) with respect to the set LM . If G is a tree and E(z) is convex, then

z is a global minimum.

The derivation is relatively straightforward, interested readers could find in Ap-

pendix A.1. Note the proof of the theorem does not rely on the convexity of the

noise term log p(y | z) except to guarantee that a global minimum is reached in the

case of tree-structured models. Also note that NLBP maintains positive marginals

as long as the gradient of E(z) is finite (which is analogous to the assumption of

positive potentials in the linear case), so the assumption of positivity is not overly
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restrictive. Unlike standard BP, which is guaranteed to converge in one pass for trees,

in NLBP the edge potentials change with each iteration so it is an open question

whether convergence is guaranteed even for trees. In practice, we find it necessary to

damp the updates to messages (Heskes, 2003) and marginals z, and that sufficient

damping always leads to convergence in our experiments. See Algorithm 2 for details

of damping.

2.4.2.2 Edge Evidence vs. Node Evidence

In our applications we consider two primary types of CGM observations, one where

noisy edge counts are observed and one where noisy node counts are observed. In

both cases, we assume the table entries are corrupted independently by a univariate

noise model p(y | z):

pedge(y | z) =
∏

(i,j)∈E

∏
xi,xj

p(yij(xi, xj) | zij(xi, xj))

pnode(y | z) =
∏
i∈V

∏
xi

p(yi(xi) | zi(xi))

The first model occurs in our human mobility application: a data provider wishes

to release sufficient statistics (edge tables) but must add noise to those statistics to

maintain differential privacy. The second model occurs in bird migration: birdwatchers

submit counts that provide evidence about the locations of birds at a particular time,

and not about the migratory transitions they make.

With noisy edge counts, it is clear how to update the edge potentials within NLBP.

Let `(z | y) = − log p(y | z). Eq. (2.8) becomes

φ̂ij(xi, xj) = φij(xi, xj) exp {`′(zij(xi, xj) | yij(xi, xj))} ,

where `′ is the partial derivative with respect to the marginal. With noisy node

counts, we rewrite p(y | z) using only the edge tables. We choose to write zi(xi) =
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Algorithm 2: Feasibility Preserving NLBP
Input same as Algorithm 1, damping parameter α ≥ 0

Initialization : z← STANDARD-BP
(
{φij}

)
while ¬ converged do

φ̂ij(xi, xj)← exp
{
− ∂E(z)

∂zij(xi, xj)

}
, ∀(i, j) ∈ E

znew ← STANDARD-BP
(
{φ̂ij}

)
z← (1− α)z + αznew ; // damped updates

end

1
νi

∑
j∈N(i)

∑
xj
zij(xi, xj) as the average of the marginal counts obtained from all

incident edge tables. This leads to symmetric updates in Eq. (2.8):

φ̂ij(xi, xj) = φij(xi, xj) exp

{
1

νi
`′(yi(xi) | zi(xi)) +

1

νj
`′(yj(xj) | zj(xj))

}

where zi(xi) and zj(xj) are marginal counts of zij.

2.4.2.3 Update Schedules and Feasibility Preservation

The NLBP algorithm is a fixed-point iteration that allows updating of edge

potentials, messages, and the marginals in any order. We first considered a naive

schedule, where message updates are sequenced as in standard BP (for trees, in a pass

from leaves to root and then back). When message mij is scheduled for update, the

operations are performed in the order listed in Algorithm 1: first the edge potential is

updated, then the message is updated, and then all marginals that depend on mij

are updated. Unlike BP, this algorithm does not converge in one round, so the entire

process is repeated until convergence. In our initial experiments, we discovered that

the naive schedule can take many iterations to achieve a solution that satisfies the

consistency constraints among marginals (Eq. (2.5)).

We devised a second feasibility-preserving schedule (Algorithm 2) that always

maintains feasibility and has the appealing property that it can be implemented as a

simple wrapper around the standard BP. This algorithm specializes NLBP to alternate
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between two phases. In the first phase, edge potentials are frozen while message and

marginals are updated in a full pass through the tree. This is equivalent to one call to

the standard BP algorithm, which, for trees, is guaranteed to converge in one pass

and return feasible marginals. In the second phase, only edge potentials are updated.

Algorithm 2 maintains the property that its current iterate z is always a convex

combination of feasible marginals returned by standard BP, so z is also feasible.

2.5 Projected Proximal Gradient Descent for CGMs

We will complete our discussion of approximate MAP inference for CGMs following

Vilnis et al. (2015). These new algorithms are based on proximal gradient descent for

composite optimization, and have theoretical guaranteed convergence. By exploring

these algorithms, we wish to inspire new research ideas and directions.

2.5.1 Background on Composite Optimization and Proximal Algorithms

Composite optimization minimizes h = f + R, where we have an oracle for

minimizing R in closed form (R usually takes the form of a regularizer). The vanilla

approach of minimizing h is by projected proximal gradient :

xt+1 = arg min
x∈X

〈∇f(xt), x〉+
1

2ηt
‖x− xt‖22 +R(x),

given some decreasing sequence of learning rate ηt, and X is the feasible set.

It is straightforward to generalize to a broader family of optimization by replacing

the Euclidean distance ‖ · ‖2 with any Bregman divergence (Bregman, 1967), defined

as

Bϕ(x, x0) = ϕ(x)− ϕ(x0)− 〈∇ϕ(x0), x− x0〉, (2.12)

where ϕ is the distance-generating function and must be strongly-convex.

37



This family of proximal algorithms is very rich, we will illustrate with regularized

dual averaging (RDA) (Nesterov, 2009) and mirror descent (MD) (Beck and Teboulle,

2003).

The update for RDA is:

xt+1 = arg min
x∈X

〈ḡt, x〉+
βt
t
ϕ(x) +R(x),

where ḡt = 1
t

∑t
k=1∇f(xk) and βt is the learning rate. When R is strongly convex, we

can take βt = 0 and RDA can be interpreted as using Bregman divergence generated

by the strongly convex function ϕ+R.

The update for MD is:

xt+1 = arg min
x∈X

〈∇f(xt), x〉+
1

ηt
Bϕ(x, xt) +R(x),

2.5.2 Proximal Algorithms for CGMs

Vilnis et al. (2015) proposed to use composite optimization for solving the aug-

mented marginal inference problem:

µ∗ = arg min
µ∈M

−H(µ)− 〈θ,µ〉+ Lψ(µ) (2.13)

whereM is the standard marginal polytope and Lψ(µ) is some arbitrary function of

the marginal vector µ, parameterized by ψ. Lψ(µ) could be nonlinear and enforce

many types of non-local properties such as each sentence should have at least one

verb in an NLP application. Lψ(µ) can be either convex or non-convex.

We can reformulate our approximate MAP inference Eq. (2.7) more compactly as

z∗ = arg min
z∈LM

−HB(z)− 〈θ, z〉 − log p(y | z), (2.14)
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Algorithm 3: Bethe-RDA
Input: Graph G = (V,E), non-linear term L(z), log-potential θ

Init : z0 ← standard-bp
(
θ
)
, θ0 = θ

while ¬ converged do
βt ≥ 0

ḡt = t−1
t ḡt−1 + 1

t∇L(zt)

θt = θ − t
βt+t

ḡt

zt ← standard-bp
(
θt
)

end

where θ = {log φij(xi, xj)}4. It’s obvious that Eq. (2.14) has exactly the same format

as Eq. (2.13) with Lψ(z) = − log p(y | z).

For composite optimization h = f +R, define f(z) = Lψ(z) = − log p(y | z) and

R(z) = −〈θ, z〉−HB(z). For trees with n nodes, since −HB(z) is 1
2
(2n−1)−2-strongly

convex with respect to the 2-norm over the interior of the marginal polytopeM = LM

(Fu et al., 2013), and there exists tractable oracle for minimizing R(z), which is the

standard belief propagation (BP) for marginal inference, we can apply RDA with

R(z) = ϕ(z) as follows:

zt+1 = arg min
z∈LM

〈ḡt, z〉 −
βt
t

(HB(z) + 〈θ, z〉)−HB(z)− 〈θ, z〉

= arg min
z∈LM

〈ḡt −
βt + t

t
θ, z〉 − βt + t

t
HB(z).

= arg min
z∈LM

−
〈
θ − t

βt + t
ḡt, z

〉
−HB(z) (2.15)

where ḡt = 1
t

∑t
k=1∇Lψ(zk). The update is equivalent to marginal inference with new

parameters θt = θ − t
βt+t

ḡt and could be solved by standard BP oracle. Algorithm 3

presents the Bethe-RDA (Vilnis et al., 2015) algorithm. Since R(z) is strongly convex,

the convergence rate is O(ln(t)/t) (Xiao, 2010).

4With slight abuse of notation, we use θ for all log potentials. The potentials can be parametric
in themselves as well, i.e., φij(xi, xj) = φij(xi, xj ;θ

′).
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We leave in Appendix A.2 the derivation of Mirror Descent and Accelerated RDA

of , the former converges in O(ln(t)/t) and the latter converges in O(1/t2).

2.5.2.1 Discussion

The work by Vilnis et al. (2015) assumes ∇L(z) exists, but it could be the cases

that L(z) is non-smooth and/or non-differentiable. For example, the application of

human mobility corrupts the sufficient statistics with Laplace noise, and therefore

L(z) = − log p(y | z) is non-differentiable around 0. Alternative algorithms should be

developed for these cases, such as following the work by Nesterov (2005) that addresses

smooth minimization of non-smooth functions, or simply we use sub-gradients instead.

2.6 Evaluation

In this section, we first illustrate on a benchmark bird migration problem (1) the

accuracy and speed advantage of approximate MAP inference for CGMs compared

to the exact inference, and (2) to what extent NLBP and proximal algorithms could

accelerate the CGM inference and learning. Then, we demonstrate the benefits of

NLBP by evaluating on a new application: collective human mobility. We simulate

a task where a data provider wishes to release data about human mobility, and

anonymize the data with Laplace noise to preserve individual privacy.

2.6.1 Bird Migration

In this subsection, we run a sequence of evaluations to demonstrate

1. exact MAP inference is intractable even for small problem instances (illustrated

with chain graph and very small population size), while approximate MAP

inference using generic convex optimization solvers approximates the exact

solutions very closely and is orders of magnitude faster;
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2. the generic convex optimization solver for approximate MAP inference is also

orders of magnitude faster than the previous only alternative, the Gibbs sampler

for the marginal inference;

3. the extent to which NLBP and Proximal methods accelerate CGM inference

and learning.

For all experiments, we generated data from a chain-structured CGM to simulate

wind-dependent migration of a population of M birds from the bottom-left to the

top-right corner of an ` × ` grid to mimic the seasonal movement of a migratory

songbird from a known winter range to a known breeding range. Thus, the variables

Xt of the individual model are the grid locations of the individual birds at times

t = 1, · · · , T , and have cardinality L = `2. The transition probabilities between grid

cells were determined by a log-linear model with four parameters that control the effect

of features: the distance from xt to xt+1, the consistency of the transition direction

with wind direction, the consistency of the transition direction with the intended

destination, and the preference to move. The parameters θtrue were selected manually

to generate realistic migration trajectories. After generating data for a population of

M birds, we computed node contingency tables and generated observations from the

Poisson noise model y ∼ Poisson(αn) (α = 1) for every node. For the experiments

that do not involve learning, we perform inference in the same model used to generate

the data – that is, the marginal probabilities µij(·, ·) and µi(·) in the CGM are those

determined by θtrue.

2.6.1.1 Accuracy of Approximate MAP Solutions

We solved the approximate MAP convex optimization problem using MATLAB’s

interior point solver.

To evaluate the impact of the two approximations in our approximate MAP

algorithm, we first compare its solution n∗approx to the exact solution n∗exact obtained
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Figure 2.3: The effect of population size M on accuracy and running time of approxi-
mate MAP inference (L = 4, T = 6). Left: relative error vs. M . Right: running time
vs. M .

by message passing for small models (L = 4, T = 6). We expect the fractional

relaxation and Stirling’s approximation to be more accurate as M increases. By

Theorem 1, the running time of message passing in this model is O(M15), we are

limited to tiny populations. Nevertheless, Figure 2.3 shows that the relative error

‖n∗approx−n∗exact‖1/‖n∗exact‖1 is already less than 1% forM = 7. For allM , approximate

MAP takes less than 0.2 seconds, while the running time of exact MAP scales very

poorly.

2.6.1.2 Marginal Inference

We next evaluated the approximate MAP inference algorithm to show that it can

solve the EM marginal inference problem more quickly and accurately than Gibbs

sampling. For these experiments, we fixed M = 1000, T = 20 and increased the grid

size L. The largest models (L = 192) result in a latent vector with (T − 1)L2 ≈ 2.5

million entries. The goal is to approximate E[n | y]. Since we cannot compute the

exact answer for non-trivial problems, we run ten very long runs of Gibbs sampling

(10 million iterations), and then compare each Gibbs run, as well as the approximate

MAP, to the reference solution obtained by averaging the nine remaining Gibbs runs;

this yields ten evaluations for each method.
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Table 2.1: Comparison of Gibbs vs. MAP: seconds to achieve the same relative error
compared to the reference solution.

L 9 16 25 36 49

MAP time 0.9 1.9 3.4 9.7 17.2

Gibbs time 161.8 251.6 354.0 768.1 1115.5

To speedup Gibbs sampling, we developed an optimized C implementation of

the algorithm of (Sheldon and Dietterich, 2011) and developed an adaptive rejection

sampler for discrete distributions to perform the log-concave sampling by that algorithm

(Gilks and Wild, 1992; Sheldon, 2013).

The optimization solver quickly finds optimal solution to the approximate MAP

problem. Table 2.1 shows the time the solver takes, with varying problem size L,

compared to the reference solution: Gibbs consistently takes 50 to 100 times longer to

find a solution as close to the reference solution as the one found by MAP.

We conjecture that the approximate MAP solution may be extremely close to the

ground truth. Taking L = 49 for example, each Gibbs solution has a relative difference

of about 0.09 from the reference solution computed using the other nine Gibbs runs,

suggesting there is still substantial error in the Gibbs runs after 10 million iterations.

Furthermore, each time we increase the number of Gibbs iterations used to compute a

reference solution, the MAP relative error decreased, suggesting the reference solution

was getting closer to the MAP solution.

Based on these observations, from now on, we will take the solution of the generic

convex optimization solver as the baseline for EM marginal inference and evaluate

new approximate MAP inference algorithms against it.
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Figure 2.4: Inference: Comparison of approximate MAP inference algorithms on
15 × 15 grid: (a) convergence of objective function, (b) convergence of constraint
violation, (c) running time vs. number of grid cells (shaded error bars are 95%
confidence intervals computed from 15 repeated trials). Learning: (d–e) relative
error vs. runtime (seconds) for 60 EM iterations and 3 instances; (d) grid size 6× 6
and θtrue = [0.5, 1, 1, 1], (e) grid size 10× 10 and θtrue = [5, 10, 10, 10].

2.6.1.3 Approximate MAP inference using NLBP

We compared the speed and accuracy of NLBP and proximal algorithms both as

standalone inference methods and as subroutines for learning vs. the generic solver

baseline and inference in the Gaussian approximation of CGMs (Liu et al., 2014). We

report results for θtrue = (5, 10, 10, 10). The results for other parameter settings (e.g.,

those from Liu et al. (2014)) were very similar.

We compare MATLAB’s interior point solver (generic), NLBP with the naive

message passing schedule (nlbp-naive), feasibility-preserving NLBP (nlbp-feas),

and the Gaussian approximation (gcgm) for performing inference in CGMs.

Figure 2.4(a–b) show the convergence behavior of the first three algorithms, which

solve the same approximate MAP problem, in terms of both objective function and

constraint violation for L = 152. The objective values of the two NLBP algorithms

converge to the optimum an order of magnitude more quickly than the generic solver.

Both generic and nlbp-feas maintain feasibility, but nlbp-naive takes a long time

to achieve feasibility – much longer than it does to converge to the optimal objective

value. Since gcgm takes a different approach to inference, we do not evaluate it

directly in terms of the objective and constraints of the approximate MAP problem.

However, we note that when either the grid size or parameter values are large, gcgm
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Figure 2.5: Inference: Compare approximate MAP inference algorithms on 10× 10
grid: (left) convergence of objective function, (right) details for proximal algorithms.

produces marginals that violate the consistency constraints, which may explain why it

has difficulty in parameter learning in these cases (see below).

Figure 2.4(c) shows the total time to convergence as a function of problem size

for all four algorithms. Both NLBP variants are very efficient and their running time

scale much better than that of generic. nlbp-feas is approximately twice as fast

as nlbp-naive, and is approximately four times faster than gcgm.

2.6.1.4 Approximate MAP inference using Proximal algorithms

On the same benchmark, we evaluated the performance of several proximal algo-

rithms for approximate MAP inference.

We chosen to use three variants of regularized dual averaging (RDA). Since the

distance-generating function ϕ is strongly convex, we can set βt = 0 (rda) or not

(rda-tune).

Figures 2.5 (left) shows the convergence behavior of all algorithms for a L = 10×10

grid. NLBP converges to the optimal solution an order of magnitude faster than the

generic solver, and RDA and its variants converge an order of magnitude faster than

NLBP.
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Figure 2.5(right) shows the details of the three RDA algorithms, note the learning

rate parameter βt may lead to slower convergence. For accelerated RDA, since the

algorithm “damps” the marginals and emphasizes more recent gradients, it does not

overshoot and converges the fastest.

2.6.1.5 Learning

Finally, we evaluated approximate MAP as a substitute for marginal inference

within the full EM learning procedure. We initialized the parameter vector θ randomly

and then ran the EM algorithm using different inference routines in the E step. In the

M step, we applied a gradient-based solver to update the parameters θ of the log-linear

model for transition probabilities. For each algorithm we measured the relative error

of the learned parameter vectors from θtrue, defined as ‖θ(t) − θtrue‖1/‖θtrue‖1, where

θ(t) are the parameters from the t-th EM iteration.

Sheldon et al. (2013) demonstrated that approximate MAP using off-the-shelf

solver is an excellent substitute for marginal inference with the EM algorithm, both

in terms of accuracy and running time.

We generated data by fixing parameters θtrue and generating three independent

realizations of the entire bird migration process (T = 20) to simulate observing the

seasonal migration of the same species across three different years. Each realization

had different wind covariates, and was treated within EM as an independent data

instance. For EM details, see Sheldon et al. (2013); Liu et al. (2014)

Figure 2.4(d–e) show the reduction in error over 60 EM iterations for each algorithm

on 6× 6 and 10× 10 grids. The results confirm the speed advantages of NLBP over

the generic solver. All algorithms converge to a similar level of error, except for gcgm

in the largest grid size and parameter setting, which is consistent with the results for

inference. Both NLBP variants converge much more quickly than generic. The speed
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advantage of nlbp-feas over nlbp-naive is even greater within the EM procedure.

gcgm is only competitive for the setting with small grid size and parameter values.

Figure 2.6: Learning: Relative error vs. runtime. θtrue = [0.5, 1, 1, 1].

Figure 2.7: Learning: Relative error vs. runtime. θtrue = [5, 10, 10, 10].

Figures 2.6 and 2.7 show the reduction in relative error in 40 EM iterations on

a 4× 4 grid and a 9× 9 grid. Here we encompass more algorithms for comparison.

We only showed one proximal algorithm, the accelerated RDA, which performs the

best in the inference experiments. The NLBP in the figure is the feasibility-preserving

version of NLBP. Both NLBP and accelerated RDA converge much faster than the
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generic solver. As before we considered two parameter settings. In the large parameter

setting, NLBP converges to lower level of error than the accelerated RDA, which is

not fully understood yet.

In summary, feasibility-preserving NLBP is the best performer so far. We will use

it as a strong baseline in new applications.

2.6.2 Human Mobility

We now turn to a novel application of CGMs. We address the problem of learning

the parameters of a chain-structured graphical model for human mobility, where,

unlike the bird migration model, we have access to transition counts (edge counts)

instead of node counts. Transition counts are sufficient statistics for the model, so

learning with exact transition counts would be straightforward. However, we assume

the available data are corrupted by noise to maintain privacy of individuals. The

problem becomes one of learning with noisy sufficient statistics.

In particular, our application simulates the following situation: a mobile phone

carrier uses phone records to collect information about the transitions of people among

a discrete set of regions, for example, the areas closest to each mobile tower, which

form a Voronoi tesselation of space (Song et al., 2010; de Montjoye et al., 2013). Data

is aggregated into discrete time steps to provide hourly counts of the number of people

that move between each pair of regions. The provider wishes to release this aggregate

data to inform public policy and scientific research about human mobility. However,

to maintain the privacy of their customers, they choose to release data in a way that

maintains the privacy guarantees of differential privacy (Dwork and Roth, 2013; Mir

et al., 2013). In particular, they follow the Laplace mechanism and add independent

Laplace noise to each aggregate count (Dwork and Roth, 2013).
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2.6.2.1 Ground-Truth Model

We are interested in fitting models of daily commuting patterns from aggregate

data of this form. We formulate a synthetic version of this problem where people

migrate among the grid cells of a 15× 14 rectangular map. We simulate movement

from home destinations to work destinations across a period of T = 10 time steps (e.g.,

half-hour periods covering the period from 6:00 a.m. to 11:00 a.m.). We parameterize

the joint probability of the movement sequence for each individual as:

p(x1:10) =
1

Z
· φ1(x1) ·

( 9∏
t=1

ψ(xt, xt+1)

)
· φ10(x10).

The potentials φ1 and φ10 represent preferences for home and work locations,

respectively, while ψ is a pairwise potential that scores transitions as more or less

preferred. For the ground truth model, we use compact parameterizations for each

potential: φ1 and φ10 are discretized Gaussian potentials (that is, φ(xt) is the value of a

Gaussian density over the map measured at the center of grid cell xt) centered around

a “residential area” (top right of the map) and “commercial area” (bottom left). For

the transition potential, we set φ(xt, xt+1) proportional to exp
(
− ||vt− vt+1||2/(2σ2)

)
,

where vt and vt+1 are the centers of grid cells xt and xt+1, to prefer short transitions

over long ones.

2.6.2.2 Data Generation

To generate data, we simulated M = 1 million trajectories from the ground truth

model, computed the true transition counts, and then added independent Laplace noise

to each true count n to generate the noisy count y. The Laplace noise is controlled by

a scale parameter b:

p(y | n) = Laplace(b;n) =
1

2b
exp

{
−|y − n|

b

}
.
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To explore the relative power of edge counts versus node counts for model fitting, we

also performed a version of the experiments where we marginalized the noisy transition

counts to give only noisy node counts yt(xt) =
∑

xt+1
yt,t+1(xt, xt+1) as evidence.

2.6.2.3 Parameters and Evaluation

We wish to compare the abilities of CGM-based algorithms and a baseline algorithm

to recover the true mobility model. When fitting models, it would be a severe

oversimplification to assume the simple parametric form used to generate data. Instead,

we use a fully parameterized model with parameters θ = (log φ1, log φ10, logψ). Here

log φ1 and log φ10 are arbitrary L× 1 vectors, and logψ is an arbitrary L× L table.

Note that this parameterization is over-complete, and hence not identifiable. To

evaluate fitted models, we will compare their pairwise marginal distributions to those

of the ground truth model: unlike the potentials, the pairwise marginals uniquely

identify the joint distribution. The pairwise MAE is defined as the mean absolute error

among all L2 × (T − 1) entries of the pairwise marginals. We also considered node

MAE, which is the mean error among the L× T entries of the node marginals. Note

that these do not uniquely identify the distribution, but node MAE is an interesting

metric for comparing the ability to learn with node evidence vs. edge evidence.

2.6.2.4 Algorithms

Is it possible to estimate parameters of a graphical model given only noisy sufficient

statistics? An “obvious” approach is to ignore the noise and perform maximum-

likelihood estimation using the noisy sufficient statistics y in place of the true ones

n. To the best of our knowledge, this is the only previously available approach, and

we use it as a baseline. The approach has been criticized in the context of general

multidimensional contingency tables (Yang et al., 2012). To maximize the likelihood

with respect to our parameters, we use a gradient-based optimizer with message passing
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Figure 2.8: Pairwise / Node MAE vs Laplace scale parameter b after 250 EM iterations.
Shaded regions shows 95% confidence intervals computed from 10 trials for each setting.

as a subroutine to compute the likelihood and its gradient (Koller and Friedman,

2009).

For the CGM-based approach, we treat the true sufficient statistics as hidden

variables and use EM to maximize the likelihood. The overall EM approach is the

same as in the bird migration model. When the evidence is noisy edge counts, we

first run the baseline algorithm and use those parameters to initialize EM. When the

evidence is noisy node counts, the baseline algorithm does not apply and we initialize

the parameters randomly.

2.6.2.5 Results

Figure 2.8(a) shows the quality of the fitted models (measured by pairwise MAE)

vs. the scale of the Laplace noise. For the CGM-based algorithms, we ran 250 EM

iterations, which was enough for convergence in almost all cases. Initializing EM

with the baseline parameters helped achieve faster convergence (not shown). The

results demonstrate that the CGM algorithm with edge evidence improves significantly

over the baseline for all values of b. As expected, the node evidence version of the

CGM algorithm performs worse, since it has access to less information. However, it is
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Figure 2.9: Scatter plots of approximate vs. true edge counts for a small problem
(L = 4× 7, T = 5,M = 10000, b = 50): (a) original noisy edge counts, (b) shown only
in the same range as (c-d) for better comparison, (c) reconstructed counts after 1 EM
iteration, (d) reconstructed counts after EM convergence.

interesting that the CGM with only node evidence outperforms the baseline (which

has access to more information) for larger values of b.

Figure 2.8(b) shows node MAE vs b for the same fitted models. In other words,

it measures the ability of the methods to find models that match the ground truth

on single time-step marginals. We see that both CGM algorithms are substantially

better than the baseline, and the CGM algorithm with less information (node counts

only) performs slightly better. We interpret this as follows: node evidence alone

provides enough information to match the ground truth model on node marginals;

the additional information of the noisy edge counts helps narrow the model choices

to one that also matches the ground truth edge marginals. However, this does not

explain why the node evidence performs better than edge evidence for node MAE.

We leave a deeper investigation of this for future work—it may be a form of implicit

regularization.
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Figure 2.9 provides some insight into the EM algorithm and it’s ability to recon-

struct edge counts. The original, noisy counts have considerable noise and sometimes

take negative values (panels (a) and (b)). After one EM iteration (panel (c)), the

reconstructed counts are now feasible, so they can no longer be negative, and they are

closer to the original counts. After EM converges, the reconstructed counts are much

more accurate (panel (d)).

2.7 Conclusion

In this section, we presented the hardness results and approximate algorithms for

the problems of MAP inference and marginal inference in collective graphical models

(CGMs). We showed that exact inference by message passing runs in time that is

polynomial either in the population size or the cardinality of the variables, but there

is no algorithm that is polynomial in both of these parameters unless P=NP. We

then showed that the MAP problem can be formulated approximately as a non-linear

convex optimization problem. Next we highlighted a close connection between the

approximate MAP inference in CGMs and marginal inference in standard graphical

models. Inspired by this connection, we derived the non-linear belief propagation

(NLBP) algorithm and presented a feasibility-preserving version of NLBP that can be

implemented as a simple wrapper around standard BP. In the end, we discussed the

proximal gradient descent-based algorithms for approximate MAP inference, inspired

by (Vilnis et al., 2015). These algorithms are also simple wrappers around standard

BP but enjoy faster convergence, they provide opportunities for designing faster and

convergent inference algorithms for CGMs.

Empirically, we first demonstrated that the approximate MAP inference is very

accurate even for modest population sizes and that approximate MAP inference is

an excellent substitute for marginal inference for computing the E step of the EM

algorithm. Our approximate MAP inference algorithm leads to a learning procedure
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that is much more accurate and runs in a fraction of the time of the previous only

known alternative, the Gibbs sampling algorithm.

By applying NLBP and proximal algorithms to a synthetic benchmark problem

for bird migration modeling, we showed that NLBP runs significantly faster than a

generic convex optimization solver and is significantly more accurate than inference

in the Gaussian approximation of CGMs when the grid size or parameter values are

large. The feasibility-preserving version of NLBP is twice as fast as the naive NLBP.

We also demonstrated the proximal algorithms run an order of magnitude faster than

NLBP, but converge to an inferior level of relative errors than NLBP in the learning

problem with large parameter setting, which calls for future examination. In the end,

we demonstrated the utility of the NLBP algorithm by contributing a novel application

of CGMs for modeling human mobility. In this application, CGMs provide a way to

fit graphical models when the available sufficient statistics have been corrupted by

noise to maintain the privacy of individuals.
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CHAPTER 3

LEARNING WITH LABEL PROPORTIONS (LLPS)

Chapter 3 and 4 study a new class of Learning with Aggregate Data problems,

which has the basic setting that we have many “bags” of instances, as well as bag-level

aggregate supervisions. It is different from standard supervised learning problems

that every instance has its own supervision. Based on specific applications, we may

want to develop either bag-level models or instance-level models. The former has

been developed as distribution regression, multi-instance learning, learning from sets,

ecological inference, etc. For the latter, which is the focus of this chapter, we will

study Learning with Label Proportions and apply it to the election problem.

Ecological inference (EI) is a classical problem from political science to model

voting behavior of individuals given only aggregate election results. Flaxman et al.

(2015) recently solved EI using distribution regression, and applied it to analyze US

presidential elections. However, their distribution regression unnecessarily aggregates

individual-level covariates available from census microdata (Flaxman et al., 2016),

and ignores known structure of the aggregation mechanism. We instead formulate the

problem as learning with label proportions (LLP), and develop a new, probabilistic,

LLP method to solve it. Our model treats individual votes as latent variables and uses

cardinality potentials to efficiently perform exact inference over latent variables during

learning, We also introduce a novel message-passing algorithm to extend cardinality

potentials to multivariate probability models for use within multiclass LLP problems.

We show experimentally that LLP outperforms distribution regression for predicting
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individual-level attributes, and that our method is as good as or better than existing

state-of-the-art LLP methods.

3.1 Introduction

Ecological inference (EI) is the problem of making inferences about individuals

from aggregate data (King, 2013). EI originates in political science, where its history

is closely intertwined with the specific application of inferring voting behavior of

individuals or demographic groups from vote totals for different regions. EI maps onto

a growing number of problem settings within machine learning—including distribution

regression (Flaxman et al., 2015; Szabó et al., 2016), optimal transport (Muzellec et al.,

2017), learning with label proportions (Kück and de Freitas, 2005; Yu et al., 2013;

Patrini et al., 2014), multiple-instance learning (Dietterich et al., 1997; Hajimirsadeghi

and Mori, 2016), and collective graphical models (Sheldon et al., 2013; Sheldon and

Dietterich, 2011; Sun et al., 2015) – where one wishes to perform supervised learning,

but supervision is only available at an aggregate level, e.g., as summary statistics for

“bags” of instances.

We consider the classical EI problem of analyzing voting behavior, motivated in

particular by US presidential elections. Although there has been vigorous historical

debate about the inherent limitations of EI (King, 1999, 2013; Freedman et al., 1998;

Schuessler, 1999), work in machine learning makes it clear that, if one is careful to

state assumptions and goals clearly, it is indeed possible to learn individual-level

models from aggregate data (Szabó et al., 2016; Bernstein and Sheldon, 2016; Patrini

et al., 2014), at least asymptotically. One must still be careful to map these results

back to the application at hand; for example, a typical result may be that it is possible

to consistently estimate the parameters of an individual-level model given enough

group-level observations. This would not imply the ability to infer the outcome or

behavior of a single individual.
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We will focus on the EI voting problem formulated in (Flaxman et al., 2015, 2016),

where a collection of individual-level demographic covariates is available for each

geographical region in addition to the region-level voting totals. In the US, individual-

level demographic data for different regions is readily available from the US Census

Bureau (ACS). In (Flaxman et al., 2015, 2016), the EI problem is then formulated as

distribution regression (aka learning from distributions), where a function is learned

to map directly from the distribution of covariates within each region to voting

proportions. This is accomplished by creating kernel mean embedding vectors for each

region, and learning a standard regression model to map mean embedding vectors

to voting proprortions. Theoretical results about distribution regression support the

ability of such an approach to correctly learn a model to make region-level predictions

for new regions, assuming they are distributed in the same way as the regions used to

train the regression model (Szabó et al., 2016).

We argue that EI is more naturally modeled as a learning with label proportions

(LLP) problem. Distribution regression treats voting proportions as generic labels

associated with the covariate distributions for each region, which ignores a great deal

of information about the problem. First, we know the precise aggregation mechanism:

there is one vote per individual and these votes are added to get the totals. Second, in

solving the problem, distribution regression unnecessarily aggregates the information

we do know about individuals (the covariates) by constructing a mean embedding.

In contrast, LLP acknowledges that the voting proportions come from counting the

number of times each label appears in a bag of instances. It is able to use individual

covariates and reason relative to the actual aggregation mechanism.

We posit a simple and natural probabilistic latent variable model for EI that places

it within an LLP framework. In our model, each individual possesses an observed co-

variate vector xi and an unobserved label yi (the candidate they voted for), and, within

each region, the total number of votes for each candidate is obtained by aggregating the
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yi values. We then learn a logistic regression model mapping directly from covariates

to individual-level labels. Because the individual labels are unobserved at training

time, we use expectation maximization (EM) for learning. The key computational

challenge is therefore to perform inference over the yi values given the totals. We show

that techniques for graphical models with counting potentials (Gupta et al., 2007;

Tarlow et al., 2012) solve this problem exactly and efficiently. Furthermore, we de-

velop a novel message-passing algorithm to extend counting potentials to multivariate

probability models, and thus multiclass classifiction. The result is the the first direct

maximum-likelihood approach to LLP based on the “obvious” latent variable model.

To evaluate different EI methods, we design a realistic testbed for designing

synthetic problems that mimic the voting prediction problem. We use geographic

boundaries and individual-level covariates that match those used in analysis of the US

presidential elections. We then design a variety of synthetic tasks where we withhold

one covariate and treat this as the variable to be predicted. At training time, only

aggregated per-region counts are provided for the withheld variable. Within this

framework we control factors such as the number of individuals per region and the

number of classes to obtain a variety of realistic EI tasks. For the task of learning

models to make individual-level predictions, we show that LLP methods significantly

outperform distribution regression, and that our fully probabilistic approach to LLP

outperforms other existing state-of-the-art methods. We also assess the ability of

different LLP methods as well as distribution regression to predict the voting behavior

of different demographic groups in the 2016 US Presidential Election by making

predictions using EI and then comparing the results with exit poll data. We find that

EI methods do better on qualitative tasks, such as ordering subgroups by their level

of support for Hillary Clinton, than they do in predicting precise voting percentages.
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3.2 Related Work

LLP has been applied to many practical applications such as object recognition

(Kück and de Freitas, 2005), ice-water classification (Li and Taylor, 2015), fraud

detection (Rueping, 2010), and embryo selection (Hernández-González et al., 2013).

Early approaches to LLP do not atempt to infer individual labels: the Mean Map

approach of Quadrianto et al. (2009) directly estimates the sufficient statistics of each

bag by solving a linear system of equations. The sufficient statistics summarize the

information from each bag that is relevant for estimating model parameters. The

Inverse Calibration method of Rueping (2010) treats the mean of each bag as a “super-

instance” (similar to the kernel mean embedding used in the distribution regression

approach to EI (Flaxman et al., 2015)) and treats label proportions for each bag as

target variables within a variant of Support Vector Regression. In contrast, our work

explicitly models individual labels and the structural dependency between individual

labels and their aggregate class counts.

Several recent LLP approaches reason explicitly about individual labels, but not in

a fully probabilistic manner. Stolpe and Morik (2011) first cluster training data given

label proportions, and classify new instance using either the closest cluster label, or a

new classifier trained from cluster-predicted training data labels. Alter-∝SVM (Yu

et al., 2013) poses a joint large-margin optimization problem over individual labels

and model parameters, and solves it using alternating optimization. One step in the

alternating optimization imputes individual labels.

Alternating Mean Map (AMM) (Patrini et al., 2014) and Alter-CNN (Li and Taylor,

2015) alternate between inferring individual lables and updating model parameters.

However, all of these approaches infer “hard” labels for each instance (either 0 or 1).

Alter-CNN is formulated probabilistically, but uses “Hard”-EM for learning, which

is a heuristic approximate version of EM. In contrast, our method is conventional
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maximum-likelihood estimation in the straightforward probability model, and we

conduct marginal inference instead of MAP inference over missing individual labels.

Several other papers formulate probabilistic models for LLP, but, unlike our

method, resort to some form of approximate inference, such as “hard”-EM (Li and

Taylor, 2015) or MCMC (Kück and de Freitas, 2005; Hernández-González et al., 2013).

Hernández-González et al. (2013) also propose an EM approach with exact probability

calculations in the E step, but using brute-force algorithms that do not scale beyond

very small problems; for larger problems they instead resort to approximate inference.

In contrast to all previous work, we apply exact and efficient inference algorithms

using counting potentials (Gupta et al., 2007; Tarlow et al., 2012) to directly maximize

the likelihood in the natural probability model.

One of the latest and closest work to ours is by (Rosenman and Viswanathan,

2018). This work also studies individual voting preference, given both aggregate count

data and individual-level characteristics. The major difference from ours is that they

model the count data by Poisson Binomial (PB), which is the sum of independent

and not identically distributed Bernoulli random variables. By applying the Central

Limit Theorem (CLT) to PB, they can write the objective and gradient explicitly and

run gradient descent. On the contrary, we don’t have the PB assumption and don’t

have closed form log-likelihood of the aggregate counts, and we resort to EM.

3.3 Background and Problem Statement

We now formally introduce the ecological inference problem and describe how it

fits within an LLP context. Recall that we assume the availability of individual-level

covariates and region-level voting totals for each voting region. In this section, we

restrict our attention to binary prediction problems, i.e., we assume there are only

two voting options (e.g., candidates from the two major US political parties). We will

generalize to multiclass problems in Section 3.4.3.
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Within a single voting region, let xi denote a vector of demographic covariates for

the ith individual, and let yi ∈ {0, 1} denote that individual’s vote, e.g., yi = 1 if the

individual votes for the Purple party. Note that we never observe yi, and we obtain a

sample of xi values from the Public Use Microdata Sample (ACS). We also observe z,

the total number of votes for the Purple party, and n, the total number of voters in

the region.

Assume there are B regions in total, and, following LLP terminology, refer to

regions as “bags” of instances. The underlying data for bag b is {(xi, yi)}i∈Ib where

Ib is the index set for bag b. In the training data, instead of observing individual yi

values, we observe zb =
∑

i∈Ib yi, the number of positive instances in the bag. The

overall training data is

(
{xi}i∈I1 , z1

)
, . . . ,

(
{xi}i∈IB , zB

)
,

where each example consists of a bag of feature vectors and total number of positive

votes for the bag. The goal is to learn a model to do one of two tasks. The first task

is individual-level prediction: predict yi given a new xi. The second task is bag-level

prediction: predict zb given a new bag {xi}i∈Ib without any labels.

3.3.1 Comparison Between LLP and Distribution Regression

The generative model for LLP is illustrated in Figure 3.1a. The figure shows a

single bag, for which the feature vectors xi and vote total z are observed, but the

individual labels yi are unobserved. The conditional distribution of z is specified by

the deterministic relationship z =
∑

i yi. In a probabilistic LLP model, p(yi | xi) is

Bernoulli, and the modeler may choose any regression model for the success probability,

such as logistic regression, as we do below, or a CNN (Li and Taylor, 2015).

For comparison, Figure 3.1b illustrates the mean embedding approach to distri-

bution regression (Flaxman et al., 2015; Szabó et al., 2016). Here, the yi variables
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Figure 3.1: LLP and distribution regression models for EI. (a) In LLP, there is a latent
variable yi for each individual, and z =

∑
i yi is the number of positive instances. (b)

In distribution regression, yi is ignored; µ is an aggregated summary of the xi’s, and
a regression model is learned to map directly from µ to z.

are ignored, as is the known relationship between the yi variables and z. Instead,

the (empirical) distribution of the xi values in the bag is summarized by a mean

embedding into a reproducing kernel Hilbert space. In practice, this means computing

the average µ = 1
n

∑n
i=1 φ(xi) of expanded features vectors φ(xi) for each individual.

Then, a standard regression model is learned to predict z directy from µ. Distribution

regression introduces a tradeoff between the ability to preserve information about

the individual-level covariates and complexity of the model. A feature expansion

corresponding to a characteristic kernel preserves information about the distribu-

tion of the covariates, but is necessarily infinite and must be approximated; a very

high-dimensional approximation will likely lead to increased variance in the following

regression problem. If a simple feature expansion, such as a linear one, is used,

it is clear the approach discards significant information about the individual-level

covariates by simply computing their mean. LLP avoids this tradeoff by leveraging

known structure about the problem.
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3.4 Our Approach

We now present our approach, which is based on the generative model in Figure 3.1a

and the EM algorithm. We adopt the logistic regression model p(yi = 1 | xi;θ) =

σ(xTi θ) where σ(u) = 1/(1 + e−u). It is straightforward to consider more complex

regression models for p(yi = 1 | xi;θ) without changing the overall approach. This

completes the specification of the probability model

We now turn to learning. A standard approach is to find θ to maximize the

conditional likelihood p(z | x;θ) =
∑

y p(y, z | x;θ) where

p(y, z | x;θ) =
B∏
b=1

(
nb∏
i=1

p(yi | xi;θ)

)
p(zb | yb).

In this equation, let yb = {yi}nb

i=1 denote the set of labels in bag b, let xb = {xi}nb

i=1

denote the set of feature vectors, and let y, z, and x denote the concatenation of the

yb, zb, and xb variables from all bags. Also recall that p(zb | yb) = I[zb =
∑nb

i=1 yi].

The obvious challenge to this learning problem is that the y variables are unobserved.

3.4.1 EM

EM is the standard tool for learning with latent variables (Dempster et al., 1977).

At first, we will derive the EM algorithm for our model.

The model is:

p(y, z | x;θ) =
B∏
b=1

(
p(zb | yb)

nb∏
i=1

p(yi | xi;θ)

)

where p(zb | yb) = I[zb =
∑nb

i=1 yi].

We wish to maximize the marginal log-likelihood of the observed data z conditioned

on x, i.e., maximize
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`(θ) = log p(z | x;θ) = log
∏
b

p(zb | xb;θ)

=
∑
b

log
∑
yb

p(zb,yb | xb;θ)

We may introduce a variational distribution µb(yb) and apply Jensen’s inequality to

obtain a lower bound Q(θ) for `(θ):

`(θ) =
∑
b

log
∑
yb

µb(yb)
p(zb,yb | xb;θ)

µb(yb)

≥
∑
b

∑
yb

µb(yb) log
p(zb,yb | xb;θ)

µb(yb)

=
∑
b

∑
yb

µb(yb) log
p(yb | xb;θ)p(zb | yb)

µb(yb)

= −
∑
b

KL(µb‖p(· | xb;θ))−
∑
b

KL(µb‖p(zb | ·))

:= Q(θ)

Given the value θt of the current parameters, this lower bound is maximized when

the KL divergence reaches 0, which happens when µb(yb) = p(yb | zb,xb;θt) for all bags

bs. After making this substitution and dropping the constant
∑

b

∑
yb
−µb(yb) log µb(yb),

and following the definition of the Q function in standard EM, we rewrite Q(θ) as:

Q(θ) = Ey|z,x[log p(y, z | x;θ)]

=
∑
b

Eyb|zb,xb;θt

(
log p(zb | yb) +

∑
i

log p(yi | xi;θ)

)

=
∑
b

∑
i

Eyi|zb,xb;θt log p(yi | xi;θ) + const

In the tth iteration, we will select θ to maximize Q(θ). The term log p(zb | yb) is

constant with respect to θ and is ignored during the optimization.
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In the M step, we maximize

Q(θ) =
∑
b

∑
i

Eyi|zb,xb;θt log p(yi | xi;θ) (3.1)

Specializing to our logistic regression model, the lower bound simplifies to:

Q(θ)=
∑
b

∑
i

qi log σ(xTi θ) + (1−qi) log(1−σ(xTi θ)) (3.2)

where qi := p(yi = 1|zb,xb;θt). We dropped an dditional constant term from Eq. (3.1).

The M step, which requires maximizing Q(θ) given the qi values, is straightforward.

Eq. (3.2) is the standard logistic cross-entropy loss, but uses “soft” labels qi in instead

of the 0-1 labels. It can be optimized with standard solvers.

The E step, however, is challenging. It requires computing the posterior distribution

p(yi | xb, zb;θt) over a single yi value given the observed data xb and zb for bag b and

the current parameters θt. This corresponds exactly to inference in the graphical

model shown in Figure 3.1a. Note that all variables are coupled by the hard constraint

I[zb =
∑nb

i=1 yi]. It is not clear based on standard graphical model principles that

efficient inference is possible.

3.4.2 Efficient Exact Inference with Cardinality Potentials

Tarlow et al. (2012) showed how to perform efficient marginal inference for a set of

n binary random variables y1, . . . , yn described by a probability model of the form:

q(y1, . . . , yn) ∝ φ
(∑

i

yi
)∏

i

ψi(yi), (3.3)

where each variable has a unary potential ψi(yi), and there is a single cardinality

potential φ(
∑

i yi) that couples all variables yi via their sum. Our model fits in this

form. Consider the model for a single bag, and dispense with the bag index, so that the
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variables are x = {xi}, y = {yi} and z. Our model for the bag has unary potentials

ψi(yi) = p(yi | xi;θ) and a counting potential φ
(∑

i yi
)

= I[z =
∑

i zyi]. The method

of (Tarlow et al., 2012) computes the marginal probability q(yi) for all i in O(n log2 n)

time. In our model q(yi) = p(yi | x, z;θ) is exactly what we wish to compute during

the E step, so this yields an E step that runs efficiently, in O(n log2 n) time.

We now give details of the inference approach, but present them in the context

of a novel generalization to the case when y1, . . . , yn ∈ {0, 1}k are binary vectors of

length k. Such a generalization is necessary for the most direct extension of our LLP

approach to multiclass classification, in which p(yi | xi;θ) is a categorical distribution

over three or more alternatives. In Section 3.4.3, we describe this approach in more

detail as well as a different and faster “one-vs-rest” approach to multiclass LLP.

Henceforth, assume that y1, . . . , yn are binary vectors that follow a joint distribution

in the same form as Equation (3.3). To preview the meaning of the multivariate model,

the binary vector yi will be the “one-hot” encoding of the class for individual i, the unary

potential is ψi(yi) = p(yi | xi;θ),1 and the counting potential φ
(∑

i yi
)

= I[
∑

i yi = z]

will encode the constraint that the total number of instances in each class matches

the observed total, where z is now a vector of counts for each class. The description

of the multivariate model is symbolically nearly identical to the scalar case.

The key observation of (Tarlow et al., 2012) is that it is possible to introduce

auxiliary variables that are sums of hierarchically nested subsets of the yi variables,

and arrange the auxiliary variables in a binary tree with z =
∑

i yi at the root. Then,

inference is performed by message-passing in this binary tree.

Figure 3.2 illustrates the construction as a factor graph for an example with n = 4.

The nodes are arranged in a binary tree. Each internal node zp is connected to two

1Note: this factor has 2k entries indexed by the binary values yi1, . . . , yik. In this particular
model, the binary vector is a one-hot vector, so ψi(yi1, . . . , yik) is nonzero if and only if there is a
single nonzero yij . The inference technique also applies to arbitrary distributions over binary vectors,
for which potentials would not have this structure.
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z1

y1 y2

z2

y3 y4

z3

φ

Figure 3.2: Illustration auxiliary variables arranged in a binary tree factor graph for
inference with a cardinality potential. Each non-leaf node is a deterministic sum of its
children. The root node z is equal to

∑
i yi.

children, which we will denote zl and zr (for left and right), by a factor which encodes

that zp is deterministically equal to the sum of zl and zp, i.e., ψ(zp, zl, zr) = I[zp =

zl + zr]. The unary factors at each leaf are the original unary potentials ψi(yi). The

auxiliary nodes and factors enforce that the root node z satisfies z =
∑

i yi. Then, the

factor attached to the root node is the cardinality potential φ(z) = I[z = zobs], where

zobs is the observed total.

This model is a tree-structured factor graph. Hence, exact inference can be

performed by message passing using a leaf-to-root pass followed by a root-to-leaf

pass. Although there are only O(n) messages, the support of the variables grows with

height in the tree. A node zl at height i is a sum over 2i of the yi values, so it is a

vector with entries in {0, 1, . . . , 2i}. We will write this as zl ∈ [m]k where m = 2i and

[m] = {0, 1, . . . ,m}. Note that m is never more than n.

The message passing scheme is illustrated in Figure 3.3. For any internal node zu,

let αu(zu) denote the incoming factor-to-variable message from the factor immediately

below it. Similarly, let βu(zu) be the incoming factor-to-variable message from the

factor immediately above it. Because each internal variable is connected to exactly
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zp

zl zr

ψ

αp(zp)

αl(zl) αr(zr)

zp

zl zr

ψ

βp(zp)

βl(zl) αr(zr)

(a) (b)

Figure 3.3: Illustration of messages from the factor ψ = I[zp = zl+zr]. (a) The upward
message αp(zp) is computed from αl(zl) and αr(zr); (b) The downward message βl(zl)
is computed from βp(zp) and αr(zr), similarly for βr(zr). See text for details.

two factors, the variables will simply “forward” their incoming messages as outgoing

messages, and we do not need separate notation for variable-to-factor messages.

The message operation for the upward pass is illustrated in Figure 3.3(a). The

factor ψ connects children zl and zr to parent zp. We assume that zl, zr ∈ [m]k for

some m, and therefore zp ∈ [2m]k. The upward message from ψ to zp is

αp(zp) =
∑

zl∈[m]k

∑
zr∈[m]k

αl(zl)αr(zr)I[zp = zl + zr]

=
∑

zl∈[m]k

αl(zl)αr(zp − zl). (3.4)

Similarly, the downward message to zl, illustrated in Figure 3.3(b), has the form

βl(zl) =
∑

zp∈[2m]k

∑
zr∈[m]k

βp(zp)αr(zr)I[zp = zl + zr]

=
∑

zp∈[2m]k

βp(zp)αr(zp − zl). (3.5)
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Upward message computation:

αp(zp) =
∑

zl∈[m]k

αl(zl)αr(zp − zl)

Downward message computation:

βl(zl) =
∑

zp∈[2m]k

βp(zp)αr(zp − zl)

βl(zr) =
∑

zp∈[2m]k

βp(zp)αl(zp − zr)

Figure 3.4: Summary of message passing for cardinality potentials. Each message
operation is a convolution; the entire message can be computed in O(mk logm) time by
the multi-dim FFT. The overall running time to compute all messages is O(nk log2 n).

Note that the upward and downward message operations in Equations (3.4) and (3.5)

both have the form of a convolution. Specifically, if we let ∗ denote the convolution

operation, then αp = αl ∗ αr, and βl = βp ∗ α̂r, where α̂r(zr1, . . . , zrk) = αr(m −

zr1, . . . ,m− zrk) is the factor with the ordering of entries in every dimension reversed.

While a direct iterative convolution implementation can compute each message in

O(m2k) time, a more efficient convolution using multidimensional fast Fourier transform

(FFT) takes only O(mk logm) time.

The max computation time for a single message is O(nk log n), for the messages

to and from the root. It can be shown that the total amount of time to compute all

messages for each level of the tree is O(nk log n), so that the overall running time is

O(nk log2 n). The upward and downward message-passing operations are summarized

in Figure 3.4. Note when we consider binary classification, we can simplify yi ∈ {0, 1}

indicating voting for the positive class or not. The overall running time is O(n log2 n).
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3.4.3 Multiclass Classification

We explore two different methods to extend our LLP approach to multi-class

classification: softmax or multinomial regression and one-vs-rest logistic regression.

Consider the case when there are C ≥ 3 classes. It is convenient to assume yi is

encoded using the “one-hot” encoding, i.e., as a binary vector of length C with yic = 1

if and only if the label is c. For each bag, we now observe the vector z =
∑

i yi; the

entry zc is the total number of instances of class c in the bag.

3.4.3.1 Softmax regression

The obvious generalization of our logistic regression model to multiclass classifica-

tion is multinomial or softmax regression. In this case, p(yi | xi;θ) is a categorical

distribution with probability vector µi = E[yi] obtained through a regression model.

The entry µic is the probability that yi encodes class c, and is given by:

µic =
exp(θTc xi)∑
c′ exp(θTc′xi)

.

The parameters θ of the model now include a separate parameter vector θc for each

class c.

Our EM approach generalizes easily to this model. The M step remains a standard

softmax regression problem. The E step requires computing the posterior probability

vector qi = E[yi | x, z;θ] for every instance in the bag. This is exactly the problem

we solved in the previous section for cardinality potentials over binary vectors. Since

each yi, µi, and qi vector sums to one, we may drop one entry prior to performing

inference, and complete the E step for a bag with n instances in O(nC−1 log2 n) time.

This approach is appealing because it is follows a widely used multiclass classifi-

cation model, which is the natural generalization of logistic regression. However, a

drawback is that the running time of the E step grows exponentially with the number
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of classes, which may be too slow in practice when the numbers of instances or classes

grows large.

3.4.3.2 One-vs-Rest Classification

An obvious alternative to softmax regression is one-vs-rest logistic regression, in

which a separate logistic regression model is learned for each class c by training on

the binary task of whether or not an instance belongs to class c. At test time, the

class that predicts the highest probability is selected. This model has been observed

to work well in many settings (Rifkin and Klautau, 2004). For our LLP model, it

has a significant running-time advantage: each classifier can be trained in the binary

prediction setting, so the E step will always run in O(n log2 n) time, regardless of the

number of classes.

3.5 Evaluation

3.5.1 Overview

Our approach is designed for the setting where the learner has access to individual-

level covariates, but the outcome variable has been aggregated at the bag level. Given

voting results and Census demographic data, we would like to, for example, infer what

proportion of a particular minority group voted for a particular candidate. In this

setting,

• The aggregate supervision is at the bag-level: voting is anonymous, and propor-

tions of how people voted are known only at coarse aggregations by geographic

region, from officially released precinct-level vote totals.

• Demographics are individual-level: the U.S. Census releases anonymized “micro-

data,” which consists of covariate vectors of demographic attributes of individuals.

It is not known how individuals voted, of course.
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Flaxman et al. (2015, 2016) apply distribution regression for this problem, per-

forming aggregation on microdata demographics as a preprocessing step. In order to

test our hypothesis that individual-level modeling can improve these inferences, we

conduct a series of experiments:

• (§3.5.2): Synthetic experiments. We follow (Yu et al., 2014) and hide a known

attribute from the individual-level data, and at training time our model accesses

the attribute only as aggregated proportions per region. We evaluate models in

their ability to accurately predict the hidden attribute for individuals.

• (§3.5.3): 2016 presidential elections. We look at the same task as in (Flax-

man et al., 2016): trying to infer the individual-level conditional probability

p(vote Dem | f) for any arbitrary feature f(x) of an individual’s covariates x

(e.g., “person is Hispanic/Latino and lives in Illinois”). We train the model with

official per-geography voting tallies for the outcome, and a large set of Census

demographic covariates for individuals, and aggregate the model’s prediction for

individuals to analyze f(x) selections. Quantitative performance is evaluated by

comparing to separate survey evidence (exit polls) for the same election.

Individual-level census data (x) is obtained from American Community Survey’s

Public Use Microdata Sample (PUMS), which covers all of the United States (including

D.C. and Puerto Rico).2 Its millions of records each represents a single person or

demographically typical person, along with a survey weight representing how many

people are represented by that record, based on the Census’ statistical inferences to

correct for oversampling, non-response, and to help preserve privacy. We use Flaxman

et al.’s open-source preprocessor (used for (Flaxman et al., 2016))3 to select and

2https://www.census.gov/programs-surveys/acs/data/pums.html

3https://github.com/dougalsutherland/pummeler
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process the Census data. It merges PUMS data from 2012–2015, resulting in 9,222,638

records, with an average survey weight of 24.2.

PUMS is coded and partitioned geographically by several hundred Public Use

Microdata Areas (PUMAs), which are contiguous geographic units with at least 100,000

people each. Since PUMAs do not exactly coincide with counties for which official

electoral statistics are reported, the processing scripts merge them with overlapping

counties (taking connected components of the bipartite PUMA-county overlap graph),

resulting in 979 geographical regions. On average each region contains 9,420 PUMS

records, representing on average 228,342 (stdev 357,204) individuals per region, when

accounting for survey weights.

Each raw individual record x is comprised of 23 continuous covariates such as

income and age, and 97 categorical covariates such as race, education, and spoken

language. Flaxman et al. (2015) used FastFood (Le et al., 2013) to approximate a

kernel map φ(x), then averaged φ(x) vectors to produce per-region mean embeddings

for distribution regression.

Materials posted for later work (Flaxman et al., 2016) suggest that linear embed-

dings may perform similarly as nonlinear, random Fourier features-based embeddings.

To simplify our investigation, we only consider linear embeddings in this work.

We use the same preprocessing routine to further process the covariates; it stan-

dardizes continuous covariates to z-scores, binarizes categorical covariates as features,

and adds regions’ geographical centroids, resulting in 3,881 dimensions for x in the

model.

For reference, descriptions of several covariates are shown in Table 3.1, including

ones inferred for the synthetic prediction experiments as well as exit poll analysis.4

In some cases, the number of categories results from coarsening the original Census

4Details of all variables are available at: https://www2.census.gov/programs-surveys/acs/
tech_docs/pums/data_dict/PUMSDataDict15.txt
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Table 3.1: Covariates

Covariate Num.
Classes

Description

SEX 2 Gender
DIS 2 With or without disability
WKL 3 When last worked
SCHL 4 Educational attainment (high school or less, some col-

lege/assoc degree, college graduate, postgraduate study)
RAC1P 5 Race (White, Black, Asian, Hispanic/Latino, Other)

categories (e.g. SCHL has 25 categories in the original data, but is coarsened to 4 for

prediction purposes), using the same preprocessing rules as in previous work. (The

3,881 dimensions for modeling use the original non-coarsened covariates.)

Finally, for computational convenience, we perform two final reductions on the x

data before model fitting. First, for most experiments we subsample a fixed number

of individuals per region, sampling them with replacement according to the PUMS

survey weights. Second, we use PCA to reduce the covariates to 50 dimensions, which

preserves approximately 80% of the variance in x.

3.5.2 Synthetic experiments

3.5.2.1 Partial synthetic data

We create partial synthetic data following the same procedure as (Yu et al., 2014):

we hide a known discrete attribute from x and try to predict it from the other attributes.

At training time, we supply it as supervision only as an aggregated count by region

(zb =
∑

i∈Ib yi). We evaluate models in their ability to predict the hidden attribute

for individuals in held-out data.

The training data is prepared by sub-sampling either 10 or 100 individual records

per region (as described in §3.5.1); we test both settings since prior literature has

occasionally examined performance as a function of bag size.
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The test set is constructed to include 10,000 records sampled from all regions (by

survey weight), from records that were never selected for the training set.

For certain hidden response variables, some covariates are duplicates or near-

duplicates, which makes the prediction problem too easy. We make the problem harder

by removing attributes in x that have at least one value with Pearson correlation

higher than 0.7 with the response (i.e., hidden attribute). For example, if nativity

(native or foreign born) was the response variable, it has high absolute correlations

to two different binarized values of cit (citizenship status): cit_4 (US citizen by

naturalization) and cit_1 (born in the US) have correlations (with nativity) of 1

and 0.85, respectively. Furthermore, decade_nan (Decade of entry is N/A, meaning

born in the US), and waob_1 (world area of birth is US state) also have high absolute

correlations (both 0.85). Thus all cit, decade, and waob attributes are removed.

Depending on which hidden attribute is used as response and how many covariates

are highly correlated, the number of covariates (out of 3,881) we removed ranges from

0 for hicov (health insurance available) to 965 for wkl (when last worked).

3.5.2.2 Models

We test a series of logistic regression models, all of which can make predictions for

individuals.

• individual: an oracle directly trained on the individual labels. This is expected

to outperform all other methods, which can only access aggregated counts.

• mean-emb: logistic regression trained with mean embedding vectors and label

proportions for each region. (Since the sampling already accounts for survey

weights, the mean embedding vector for one region is the simple average µ̂b =

1
n

∑
i∈Ib xi.)

• AMM: logistic regression trained on bags of instances and label proportions. For

multiclass problems, we use a one-vs-rest (ovr) approach (Patrini et al., 2014).

75



• cardinality: our method, trained on bags of instances and label proportions,

for binary labels (§3.4.1,3.4.2).

• card-exact: our method for multiclass problems, with exact inference (§3.4.3).

• card-ovr: our method for multiclass problems, with an alternative one-vs-rest

formulation, using binary cardinality inference.

Following (Patrini et al., 2014), we initialize all LLP methods (AMM, cardinality,

card-exact, card-ovr) from mean-emb’s learned parameters. We expect LLP meth-

ods would improve mean-emb by a large margin.

3.5.2.3 Results

Figure 3.5 shows predictive accuracies of all trained models on the test set, for

several hidden attributes (with 2, 3, and 4 categories each), with the mean and

standard deviation of performance across 10 different trials. Each trial consists of

one sampled training set, shared between all models (all trials use the same test set).

Results are broadly similar for other hidden attributes (omitted for space).

The results show:

1. LLP outperforms mean embeddings: amm and cardinality models substantially

improve on mean-emb, presumably because they can exploit individual-level

covariate information and the structure of the aggregation mechanism.

2. Our cardinality method is the most accurate LLP method: it outperforms

amm, the previous state-of-the-art with statistically significant differences for

most sample sizes of regions and individuals. The cardinality method is a little

slower than amm, though the difference is minimal in the larger bag setting.

Asymptotically, the running time for the “E”-steps of AMM and card-ovr are

nearly the same: O(kn log n) and O(kn log2 n), respectively.
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3. For multiclass, card-ovr performs similarly as card-exact, and is computation-

ally advantageous: card-ovr takes O(kn log2 n) in runtime and only requires a

1D FFT, versus card-exact’s O(nk−1 log2 n) runtime and additional memory

consumption for multidimensional FFT. The exact method also has some preci-

sion issues (numerical underflow of downward messages) when running message

passing in larger binary trees. Future work could pursue improvements to exact

multiclass cardinality inference; in the meantime, we recommend one-vs-rest as

an effective practical solution.

4. General observations: as expected, the oracle individual model outperforms

all others. Also note that the larger per-bag samples (100) result in a harder

problem than smaller (10) per-bag samples, since the training-time aggregation

hides more information when bags are larger.

3.5.3 2016 US Presidential Election Analysis

For real-world experiments, our goal is to infer an individual’s or a demographic

group’s voting preference via the individual-level conditional probability p(vote Dem |

f) for any arbitrary feature f(x) of an individual’s covariates x. We will compare our

predictions for such subgroups to an alternative, well-established source of information,

the exit polls at state and national levels.

3.5.3.1 Experiment

This experiment requires exit polls for validation, and voting data for model

training. Exit polls are surveys conducted on a sample of people at polling stations,

right after they finish voting; we use the widely reported 2016 exit poll data collected

by Edison Research.5

5This questionnaire was completed by 24,537 voters at 350 voting places throughout the US on
Election Day, from 28 states intended to be representative of the U.S. We use data scraped from the
CNN website, available at: https://github.com/Prooffreader/election_2016_data.
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Voting data (z) is based on county-level official results,6 aggregated to the 979

regions. This results in a tuple of vote totals (vD, vR, voth) for each region: how many

people voted for Clinton (D), Trump (R), or another candidate. Since the PUMS data

includes information on all people—including nonvoters—we add in nonvoters to the

third category, resulting in the following count vector for each region:

z = (vD, vR, S − vD − vR)

where S is the PUMS estimate of the number of persons in the region (sum of survey

weights). This is a somewhat challenging setting for the model, requiring it to learn

what type of people vote, as well as their voting preference.

We test the mean embedding model, AMM, and the one-vs-rest cardinality model,

using all 3,881 covariates. Unlike the previous section, we give the mean embedding

model additional access to all instances in the data (mean embeddings are constructed

from a weighted average of all PUMS records per region), following previous work. By

contrast, for the LLP models we sample 1000 individuals per region. PCA is again

applied for all models in the same manner as before, and the LLP models are again

initialized with mean-emb’s learned parameters.

For evaluation, we prepare a held-out dataset with a 1% subsample from all regions

in the 28 exit poll states. After training each model, we make predictions on held-out

records and aggregate them to state-level and nation-level statistics, so they can be

compared against exit polls. We specifically infer fraction of the two-party vote

p(vote D | vote D or R, f(x)) =
nD,f

nD,f + nR,f

6We use Flaxman et al. (2016)’s version of the data, scraped from NBC.com the day after the
election: https://github.com/flaxter/us2016
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where nD,f and nR,f are counts of the model’s (hard) predictions for individuals in

the test set with property f(x): for example, nD,f (and nR,f) might be the number

of Clinton (and Trump) voters among Hispanics in Illinois. These quantities are

calculated from exit polls as well for comparison.

3.5.3.2 Results

The scatter plots in Figure 3.6 show predictions made by different methods vs. the

exit poll results. The columns correspond to methods, and the rows correspond to

the feature used to define subgroups. Each data point represents the subgroup for

one feature value (e.g., males) in one state. There are up to 28 points per feature

value; there may be fewer due to missing statistics in some state-level exit polls. For

example, only 1% of respondents in Iowa exit polls were Asian, and the Iowa exit polls

do not report the voting breakdown for Asians.

The scatter plots show that EI methods are indeed able to make correct inferences,

but also make certain mistakes. For most methods and feature values (e.g., mean-emb,

males), the state-level predictions are strongly linearly correlated with the exit polls—

that is, the method correctly orders the states by how much individuals from different

groups in the state supported Clinton. However, subgroups are often clustered at

different locations away from the 1:1 line, indicating systematic error for that group—

this is especially prominent for SCHL, where all methods tend to overestimate support

for Clinton among college graduates, and underestimate support among individuals

with high school or less education or with some college. In other examples, such as

mean-emb for ethnicity=white, the overall positioning of the subgroup is correct

and the state-level predictions are well correlated with the exit polls, but the slope is

wrong. This suggests that the model has not correctly learned the magnitude of other

features that vary by state. Overall, the LLP methods appear qualitatively better
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(predictions more clustered around the 1:1 line) for sex and ethnicity, while there

is no clear “winner” for schl.

It is also interesting to aggregate the state-level predictions to national-level

predictions. Table 3.2 shows national-level predictions as well exit polls for subgroups

defined by gender (sex), race (rac1p), and educational attainment (schl). We see

here that the models make mostly correct qualitative comparisons, such as: Which

subgroup has a higher-level of support for Clinton? Does the majority of a subgroup

support Clinton or Trump? However, the models make notable errors predicting

the majority among men and women. Moreover, the models have a difficult time

predicting the exact percentages even when the qualitative comparisons are correct.

To quantify these issues further and to gain a better comparison between the

methods, Table 3.3 evaluates the methods based on national-level predictions according

to three different metrics for each feature:

1. Binary prediction is the number of subgroups for which the method correctly pre-

dicts which candidate receives the majority (e.g., “a majority of males supported

Trump”, “a majority of women supported Clinton”).

2. AUC measures the ability of the methods to order subgroups by their level

of support for Clinton (e.g., “females showed higher support for Clinton than

males”). It is measured by ordering the groups by predicted support for Clinton,

and then measuring the fraction of pairs of groups that are in the correct order

relative to the exit polls; this is related to the area under the ROC curve (Fawcett,

2006).

3. Weighted RMSE measures the numerical accuracy of the predictions. It is the

square root of the weighted mean-squared error between the predicted and exit

poll percentages, with weights given by the size of each subgroup.
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The results show that the models are indeed generally good at the comparison tasks,

as shown by the binary prediction and AUC metrics. However, they have considerable

error (RMSE more than 5% in all cases) predicting percentages. There is no clear

winner among the methods across all metrics. The mean embedding model has the

lowest AUC for two out of three variables, and is tied on the third variable.

Table 3.2: National-level voting predictions for Clinton per demographic group

Covariate mean-emb AMM card exit

sex
M 0.57 0.51 0.41 0.44
F 0.44 0.47 0.45 0.57

rac1p

Latino/Hispanic 0.63 0.69 0.77 0.70
White 0.42 0.38 0.31 0.39
Black 0.74 0.93 0.99 0.92
Asian 0.58 0.91 1.00 0.71
Others 0.77 0.83 0.94 0.61

schl

High school or less 0.44 0.32 0.18 0.47
Some college 0.34 0.34 0.26 0.46

College graduate 0.71 0.73 0.71 0.53
Postgraduate 0.60 0.68 0.68 0.61

Table 3.3: Demographic-level model accuracy in predicting voting proportions, com-
pared to exit polls.

Covariate Binary
prediction

AUC Weighted
RMSE

sex
embed 0/2 0 0.13
AMM 0/2 0 0.09
card 1/2 1 0.09

rac1p

embed 5/5 0.7 0.08
AMM 5/5 0.9 0.06
card 5/5 0.8 0.11

schl
embed 4/4 0.83 0.12
AMM 4/4 0.83 0.15
card 4/4 0.83 0.20
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3.6 Conclusion

To analyze the US presidential elections, we formulated the ecological inference

problem in the framework of learning with label proportions (LLPs). Compared with

previous approaches, we exploit the known aggregation mechanism of the problem,

and preserve information in individual-level covariates available to us from Census

microdata. We contributed a novel, fully probabilistic, LLP method that outperforms

distribution regression and a state-of-the-art LLP method on a range of synthetic

tasks. Our probabilistic approach is enabled by adapting message-passing inference

algorithms for counting potentials to a natural latent-variable model for LLP. We also

applied several methods to analyze the 2016 US presidential election, and found that

models frequently make correct comparisons among different choices or groups, but

may not predict percentages accurately. Here, no method was a clear winner, but

state-level results suggest that LLP methods are in closer agreement with exit polls.

A direction for further exploration is the potential of non-linear methods to improve

performance. Previous work used non-linear feature embeddings, and, to a lesser

extent, non-linear kernels for classification (Flaxman et al., 2015). In this work we have

focused on linear embeddings and linear classifiers. However, our method can support

arbitrary non-linear regression models, e.g., neural networks, for the individual-level

model to predict yi from xi. Exploration of such models is a worthwhile avenue for

future research.
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Figure 3.5: Predictive accuracies of trained models for 2, 3, or 4 labels classification
tasks. The hidden attributes we chosen are Disability (DIS), When last worked (WKL),
and Ancestry recode (ANC). We consider a small bag and a larger bag (10 or 100
instances per bag)) for each hidden attribute. Shaded error bars are 95% confidence
intervals computed from 10 repeated trials.
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Figure 3.6: Model predictions versus exit polls, by demographic group and state. Each
color (demographic category) has up to 28 points for its subpopulation per state (for
subgroups large enough such that the exit poll results show voting numbers).
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CHAPTER 4

DISTRIBUTION REGRESSION

Standard supervised learning learns a function f : xi 7→ yi that maps from one

training instance xi to its supervision yi. Distribution regression (also called learning

from distributions) tries to learn a function f : Pi 7→ yi that maps from one training

distribution Pi to its supervision yi. In practice, however, these distributions Pi (for

all i) are generally not available. Instead we use samples {xij} ∼ Pi from Pi to

learn f : {xij} 7→ yi that maps from samples to the supervision. We consider each

distribution as a bag and we are trying to learn model f given bags of instances.

In this chapter, we will build bag-level models using distribution regression, given

bags of instances and bag-level aggregate supervisions. Many related problems, such

as ecological inference and multi-instance learning, can be cast as special cases of

distribution regression. The learning with label proportions (LLPs) from Chapter 3

can be treated as a special case of distribution regression, with an intermediate step

that infers and then aggregates individual supervisions. Distribution regression is

a more general learning framework, and has the potential to work with problems

with large bag sizes. Distribution regression is widely adopted for many applications

such as point estimation (estimating hyperparameters or population statistics), point

cloud classification (Qi et al., 2017a,b), estimating mass of galaxy cluster from veloci-

ties (Ntampaka et al., 2015, 2016), estimating red shift of galaxy clusters (Connolly

et al., 1995; Rozo and Rykoff, 2014), inferring demographic voting behavior (Flaxman

et al., 2015, 2016), and modeling radioactive isotope behavior (Jin, 2014).
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In this chapter, we will categorize distribution regression to two embedding strate-

gies: the “fixed-embedding” strategy will first construct an embedding vector for

each bag independently of the regression target, before feeding the embedding to a

(non)linear regressor; the “learned-embedding” strategy will learn the bags’ embed-

dings and the regressor end-to-end. We will start by providing background for the

fixed-embedding strategy, introducing the widely studied Kernel Mean Embedding

(KME), as well as two quantization-based approaches that are largely ignored by

the research community. We will continue by introducing the latest deep learning

approaches, which jointly learn the bag-level embeddings and the regressor.

We identified three key factors that directly contribute to the performance of

distribution regresssion: bag sizes, number of training bags, and embedding dimension.

In order to illustrate their impact, we constructed three relevant hypotheses, and

applied to three tasks: estimating population statistics, point cloud classification, and

predicting voting preferences. Each task will empirically validate one or two of our

hypotheses.

The results from the three tasks show that, given “large enough” training bags

and bag sizes, the deep learning approaches would be the best since the joint learning

would improve embeddings; given limited number of training bags, the simpler fixed

embedding approaches are more efficient and generalize better than the deep learning

approaches.

My main contributions to this work:

1. Empirically evaluated different algorithms for distribution regression on three

tasks.

2. Identified key elements of distribution regression and showed how a number of

different methods can be applied to it.

3. Highlighted quantization-based approaches as competitive baselines.
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This chapter is organized as follows. First we will introduce the background of

distribution regression, its categorization and major techniques. Next we will identify

three major factors that probably affect model performance. We formulate hypotheses

for each of them. In the end, we empirically evaluate these hypotheses on three tasks.

4.1 Background

x1 y1

x2 y2

xn yn

z

!

...

Figure 4.1: Distribution regression. The oval represents ONE bag and µ is the
embedding vector for this bag.

We can describe distribution regression as shown in Figure 4.1. The oval represents

one bag and we drop subscripts for indexing bags to simplify the notation. Given

bags of instances {xi} and bag-level aggregate supervision z, we want to build a

bag-level model g : µ 7→ z that maps from the embedding vector µ for a bag to its

supervision z. Our goal is to allow the embedding vector µ to summarize all the

information of the bag’s underlying distribution P. Distinct from learning with label

proportions (LLPs in Chapter 3), distribution regression skips an intermediate step

that explicitly infers individual supervisions yi and aggregates all individual yi to

obtain z. Therefore, distribution regression ignores the generative process, but enjoys

the benefit that there is no expensive inference of individual supervisions and it is

easy to work with problems with large bag sizes. The second difference from LLPs is

that the aggregate supervision z in distribution regression can be class counts, class
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labels, scalars, vectors, etc. While the aggregate supervision z in our probabilistic

LLPs in Chapter 3 can only take count statistics.

So the core question is: how to compute the embedding vector µ?

Distribution regression can be described as a two-step procedure: {xi} f−→ µ
g−→ z.

First an embedding function f : {xi} 7→ µ maps samples of a bag to the embedding

vector µ for the bag. Second a regressor g : µ 7→ z maps the embedding vector µ

to its supervision z. If we can obtain the embedding vector µb for each bag b, then

µb 7→ zb becomes a standard regression problem.

Depending on how to construct the embedding vector µ, we can categorize distri-

bution regression to a “fixed-embedding” strategy or a “learned-embedding” strategy.

The former builds µ via the embedding function f independently of the supervision z

and the latter learns both f and g end-to-end. In this section, we will review two fixed-

embedding approaches, the Kernel Mean Embedding (KME) and the quantization-

based embeddings. We will also review the latest deep learning architectures (Zaheer

et al., 2017; Qi et al., 2017a) for jointly learning both f and g.

4.1.1 Fixed-embedding: Kernel Mean Embedding

Most materials in this subsection are abstracted from the monograph by Muandet

et al. (2017). We provide minimum descriptions that are necessary for our discussion.

The first fixed-embedding technique is Kernel Mean Embedding (KME). KME

is the vast majority of research for distribution regression. KME represents each

distribution P as a mean embedding function

µP := Ex∼P[k(x, ·)] =

∫
X
k(x, ·) dP(x) ∈ H (4.1)

where k is a kernel function and µP transforms P to an element in the reproducing kernel

Hilbert space (RKHS) H. For characteristic kernels, KME captures all information

about P. As a result,
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1. We can use KME to define a metric over the space of probability distributions;

2. KME is suitable for applications that requires a unique characterization of

distributions such as two-sample homogeneity tests and distribution regression;

3. Learning algorithms can be extended to the space of probability distributions

with minimal assumptions of the underlying data generating process.

Therefore, we can use KME to bypass estimating a density, which is very difficult

especially in high dimensional space.

Given a bag of instances, the standard KME estimator is the empirical average

µ̂P :=
1

n

n∑
i=1

k(xi, ·). (4.2)

But one major problem is that for several characteristic kernels we are interested in,

µ̂P lives in infinite dimensional space. To address the problem, in practice, we use

finite dimensional approximation of µP by considering random feature map φ̂ (Rahimi

and Recht, 2008) in finite dimensional space, and obtains the KME estimator by

µ̃P =
1

n

n∑
i=1

φ̂(xi). (4.3)

The approximate estimator µ̃P can be easily derived as long as we know how to compute

φ̂. Many work follows this direction, such as Random Fourier Feature (RFF) (Rahimi

and Recht, 2008), Orthogonal Random Features (ORF) (Felix et al., 2016), and

Gaussian quadrature (Dao et al., 2017).

After obtaining µ̃Pi
for each bag i, distribution regression is straightforward as

standard supervised learning.

Theoretically, recent work by Szabó et al. (2015) analyzed distribution regression

as a “two-stage sampling” procedure: we are able to learn a distribution regression
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model if instances {xi} within each bag are sampled i.i.d. from the bag distribution

P and all bag distributions Pi are sampled i.i.d. from a meta-distribution.

In summary, KME has some underlying limitations that we want to overcome.

First, we need to assume a kernel function a priori to compute the KME estimator.

This requirement is very restrictive for many real-world applications. For example,

for the task of predicting voting preferences, it does not make sense to assume a

shift-invariant kernel – the most widely used one – for a socioeconomical feature vector

xi. Second, the two-stage sampling assumption is restrictive: bags may not be i.i.d. .

For example, adjacent voting districts are not independent. Third, KME is computed

independently of the supervision of the task, we may wish to build an embedding that

is both data- and task-dependent to further improve model performance. We will see

how deep learning approaches can help to overcome these limitations.

4.1.2 Fixed-embedding: Quantization-based Approaches

The second fixed-embedding technique uses quantization-based approaches. We

consider two of the most commonly used approaches: bag-of-words (BOW) and Fisher

vector (FV) (Perronnin and Dance, 2007; Perronnin et al., 2010). They would capture

the underlying distribution of each bag to different levels of granularity.

The BOW approach encodes each bag by count statistics. It runs k-means first

on all samples from all bags to obtain cluster centers, and represent each bag by a

(normalized) histogram of count statistics n. The entry ni is defined to be the total

number of instances in the bag belonging to cluster i.

The FV approach encodes each bag with richer information. It runs Gaussian

Mixture Models first to obtain model parameters θ = {wk, µk, σk, k = 1, · · · , K},

where wk, µk, and σk are respectively the mixture weight, mean vector, and standard

deviation vector of a diagonal Gaussian. FV will then assign each data instance

soft assignments γ(k) to all K Gaussians, and represents each bag by a Fisher
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vector, defined to be the gradients of the log likelihood of the bag with respect to

all Gaussian parameters θ. More specifically, we convert a data instance x ∈ RD

to a vector of gradients φ(x) = [ϕ1(x), · · · , ϕK(x)] ∈ R2KD, each ϕi is defined as

ϕk(x) = [ γ(k)√
wk

(x−µk
σk

), γ(k)√
2wk

( (x−µk)
2

σ2
k
− 1)], and then taking the average of all vectors for

the bag’s Fisher vector.

BOW only accounts for count statistics while FV accounts for both the count

statistics and the geometry of each bag. FV was the most successful feature represen-

tation for images before the surge of deep learning (Chatfield et al., 2011; Sánchez

et al., 2013). For distribution regression, we consider quantization-based approaches

as strong baselines, although for some unknown reasons they are not widely adopted

in distribution regression research. We will evaluate their strengths and weaknesses in

the evaluation section.

4.1.3 Learned-embedding: Deep Learning-based Approaches

Latest deep learning-based approaches for distribution regression assume all bags

are sets, i.e., elements in each bag are permutation-equivariant. In what follows, I

will present several recent work in this direction.

Zaheer et al. (2017) developed DeepSets, specialized for sets as input. They proved

that a system is permutation invariant to the elements of the input set X if the system

encodes a score function

S(X) = g(
∑
x∈X

φ(x)) (4.4)

where g and φ are two transformation structures and φ is shared among all instances

x ∈ X in the input set. They proved this design is a universal approximator to any

continuous set function f(X). The sum pooling in the score function can be replaced

with max pooling. In practice, both g and φ are neural networks. We can consider φ

as the feature extractor and g the regressor and pooliφ(xi) the embedding function
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in the two-step procedure for distribution regression. Both φ and g will be learned

end-to-end.

They also proposed a permutation-equivariant (PE) layer, which is a general

module that can be applied in any set based task and be stacked multiple times – just

like stacking convolution layers for images – to capture increasingly complex geometric

structure.

They applied DeepSets to both supervised and unsupervised learning tasks. The

supervised tasks, that include estimating red-shift of galaxy clusters and point cloud

classification, are exactly applications of distribution regression.

Qi et al. (2017a) developed PointNet, a DNN for 3D classification and segmentation

given point clouds. Each point cloud is a set and the goal of its architecture design is

to encode permutation-equivariance of cloud points, represented by xyz coordinates.

The main idea of PointNet is very similar to DeepSets, both applying max pooling

over local embeddings of instances processed by a multi-layer perceptron (MLP) φ(x).

4.2 Key Factors and Hypotheses

In this section, we will identify three key factors for distribution regression and

formulate our hypotheses. We will evaluate the hypotheses on three tasks in the next

section.

4.2.1 Bag Size

The first key factor for distribution regression is the bag size. To simplify notation,

we consider bags with equal sizes, i.e., N = Nb,∀b ∈ B.

Table 4.1 discusses the embedding function f : {xi} 7→ µ in the first stage of the

two-step procedure of distribution regression.

For KME, µ is constructed independently of the distribution of both the input

and the target. For example, Random Fourier Features (RFF) (Rahimi and Recht,
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Table 4.1: Embedding function f in µ = f({xi})

Embedding Embedding function f

KME f fixed

Quantization-based f depends on p(x)

DeepSets f, g trained jointly, f depends on p(x, z)

2008) is the most classical approach to computing the approximate feature map φ(xi)

in Eq. 4.3, and it only depends on an kernel choice and the number of Monte-Carlo

samples used to construct φ(xi). The bag size N does not directly play an role.

For quantization-based approaches, we construct for each bag either a histogram of

count statistics or a Fisher vector, both depending on the underlying bag’s distribution

p(x). We hypothesize that a large bag size N is required to capture the complex

geometrical structure of p(x).

For DeepSets, since the embedding function f and the regressor g are trained

end-to-end, f depends on the joint distribution of p(x, z). We hypothesize that a large

bag size N is required to fine-tune the large amount of model parameters and learn

the embedding µ well.

In summary, our hypothesis H1 is:

• Quantization-based approaches need large bag size N to capture p(x).

• DeepSets needs large bag size N to learn µ well since there are too many model

parameters.

4.2.2 Number of Bags

The second key factor is the number of bags, denoted by l. Consider the aa

regressor g in z = g(µ), the number l of bags is equivalent to the number of training

examples in a standard regression problem. Based on the VC theory and the theory of
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bias-and-variance decomposition (Abu-Mostafa et al., 2012), we would expect a large

l for small penalty for model complexity and small variance for out-of-sample error.

Our hypothesis H2 is:

• DeepSets can perform the best for large number of bags because it learns the

highly nonlinear regressor with large amount of parameters of g.

• Other methods may perform better for small number of bags.

4.2.3 Embedding Dimension

Suppose the input dimension is D and the embedding dimension is d given {xi ∈

RD} f−→ µ ∈ Rd g−→ z. Table 4.2 lists the embedding dimension d for all methods.

Table 4.2: Embedding dimension d

Embedding Embedding dimension d

KME, DeepSets d selected independently of the input dim D

k-means d = K, the number of clusters

Fisher vector (FV) d = 2KD

For KME, the embedding dimension d is selected independently of the input

dimension D. For example, RFFs construct µ of length 2X where X is the number of

sampled frequencies. For DeepSets, d is manually specified in advance. For k-means,

d is the length of the histogram, equivalent to the specified number of clusters. For

Fisher vector, d = 2KD since we have gradients with respect to all means and all

variances from all diagonal Gaussians found by GMM. In practice, we pick large K in

hopes of capturing complex geometrical structure of the data. But when the input

dimension D is also large, the Fisher vector could be extremely long and leads to the

d� n problem.

Our hypothesis H3 is: Fisher vector will suffer from large input dimension D, since

the classical d� n problem will lead to high variance and overfitting.
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4.3 Evaluation

We will evaluate the three hypotheses on distribution regression using both “fixed-

embedding” and “learned-embedding” strategies on three applications:

1. Estimating population statistics. The synthetic experiments follow (Zaheer et al.,

2017). We will try to estimate entropy or mutual information of new bags on four

tasks. The synthetic data is generated as follows: first a meta-distributionM is

a Gaussian distribution controlled by parameter(s) θ. We sample fromM by

varying θ to obtain distributions Pi ∼M for bags. Therefore every distribution

Pi is also Gaussian. Next for each bag we generate samples {x(i)
j } ∼ Pi from its

distribution Pi. We will try to learn from these bags of samples a regressor that

could predict a new bag’s entropy or mutual information.

2. Point cloud classification. We use the ModelNet10 and ModelNet40 datasets (Wu

et al., 2015), and perform the 10-class and 40-class classification tasks. Each

class has many training clouds and each cloud consists of points in the form of

xyz coordinates.

3. Predicting US presidential election. From 840 electoral regions for the 2012

election and 979 regions for the 2016 election, which cover the contiguous United

States, we collect (1) the voting fractions for Democrats and Republican, (2)

characteristic individuals’ socioeconomical covariates from the US Census. We

consider each region as a training bag, the voting preference for Democrats as

bag-level supervision, and individuals are sampled from the bag’s underlying

(unknown) distribution. The task is, for any demographic subgroup, such as the

white people live in LA with college degree, ages 30-44, we want to predict the

fraction of people that votes for the Democrats.

For each task, we will apply the following methods:
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• Kernel mean embedding by Orthogonal Fourier Features (but denoted RFFs as

follows). Fixed embedding.

• Bag-of-Words (BOW). Quantization-based approach and fixed embedding.

• Fisher Vector (FV). Quantization-based approach and fixed embedding.

• DeepSets (Zaheer et al., 2017). Learning the embedding and the regressor

end-to-end.

The three fixed embeddings will be fed to both linear and kernel ridge regressions.

Table 4.3: Characteristic information of datasets

Task Number of bags l Bag size Ni Instance dimension D

Estimate Pop. Statistics 128 ∼ 65536 512 ≤ 32

Point Cloud Classification 9843 {100, 500, 1000} 3

Predict Voting 2012 840 mean ± std: 12864 ± 21955, median: 7185 4674

Predict Voting 2016 979 mean ± std: 9421 ± 19940, median: 5633 3880

Table 4.3 summarizes key characteristic information of the datasets, including the

number l of bags, the bag size Ni (for bag i), and the input dimension D. For the

first two tasks, since we have large number of training bags, small bag sizes and small

feature dimensions, we would expect DeepSets to perform the best. For the voting

task, since we have only a small number of training bags, large bag sizes and very high

input dimensions, we will expect simpler fixed embedding approaches perform better.

4.3.1 Estimating population statistics

This synthetic experiment follows (Zaheer et al., 2017). The goal is to predict the

entropy or mutual information of new bags, given bags of samples for training and

prediction. The setups for the four tasks are:

• Rotation: Randomly choose a 2 × 2 covariance matrix Σ, and then generate

l = 27 ∼ 216 sample sets from N (0, R(α)ΣR(α)T ) of size N = 512 for l random
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Figure 4.2: Fitting results on a test set for each task using different trained models.
Left: all models trained on 27 training bags. Right: trained on 216 training bags.
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values of α ∈ [0, π], which is the only parameter of the meta distribution. The

goal is to learn the entropy of the marginal distribution of first dimension. R(α)

is the rotation matrix.

• Correlation: Randomly choose a d × d covariance matrix Σ for d = 16, then

generate l = 27 ∼ 216 sample sets from N (0, [Σ, αΣ;αΣ,Σ]) of size N = 512 for

l random values of α ∈ (−1, 1). The goal is to learn the mutual information of

among the first d and the last d dimensions.

• Rank 1: Randomly choose v ∈ R32 and then generate l = 27 ∼ 216 sample sets

from N (0, I + λvvT ) of size N = 512 for l random values of λ ∈ (0, 1). The goal

is to learn the mutual information.

• Random: Randomly choose d× d covariance matrices Σ for d = 32, and then

generate l = 27 ∼ 216 sample sets from N (0,Σ) of size N = 512. The goal is to

learn the mutual information.

For BOW and Fisher vector (FV), we specified 200 clusters for running k-means

and GMM. We used the default setting from the source code of DeepSets1: the

feature extractor component used 3 linear layers and Exponential Linear Unit (ELU)

as activations except for the last layer; the pooling layer used average pooling; the

regressor consists of 4 linear layers and ELU except for the last layer.

First, we will show the predictions on a test set of 512 test bags. We trained our

models on 27 = 128 bags and 216 = 65536 bags respectively to compare the impact of

the number of training bags on the performances of the learned models. The results

in Figure 4.2 show:

1. Given only 27 training bags, the first two tasks are relatively easy since the

predictions from all models are close to their ground truths, which are the blue

1https://github.com/manzilzaheer/DeepSets
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lines buried underneath the predictions. We observed that only DeepSets can

capture the high-curvature regions, like the bottom in task 1 and the two ends

in task 2. We found DeepSets > Fisher Vector > BOW (k-means) > RFF. We

use “>” to indicate the l.h.s. predicts better on a holdout testset than the r.h.s.

does. The last two tasks are relatively more difficult, since all methods perform

poorly in prediction. The predictions from FV bias away from the ground truth

in task 3 and none of the methods capture the high-curvature regions in task 4.

2. Given 216 training bags, the predictions from all methods get much more accurate:

the predictions from DeepSets become more concentrated on the ground truths

and capture more high-curvature regions, and the predictions from FV on task

3 are calibrated back towards the ground truth line.

Figure 4.3 shows the MSEs between the predictions and the ground truth of the

test set. We observe (1) more training bags helps to reduce MSE for all methods; (2)

DeepSets outperforms other models on the first three tasks and on the last task given

more than 211 training bags; (3) RFF perform the worst on “easy” tasks but perform

better than quantization-based methods on “more difficult” tasks, and is almost the

best on task 4.

We also compared linear ridge regressor to kernel ridge regressor (KRR) on the

easy task 1 and the more difficult task 4. The results in Figure 4.2 and 4.3 are based

on linear ridge regression. We use grid search to find the best parameters. The results

in Figure 4.4 show that KRR is highly unstable for these tasks. When we computed

the closed solution for KRR, we got warning messages “Ill-conditioned matrix detected.

Results is not guaranteed to be accurate” and “Singular matrix in solving dual problem.

Using least-square solution instead”. Based purely on these MSE results, linear ridge

regression performs better than KRR on these tasks.

The above results support that joint learning by DeepSets could improve the

embedding function f and the generalization, therefore the overall performance over
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Figure 4.3: MSE between prediction and ground truth on test bags.

Figure 4.4: Compare linear ridge regression and kernel ridge regression.

fixed-embedding approaches. They also support hypothesis H2: DeepSets outperforms

others given large number of training bags, fixed-embedding methods are doing well

given small number of training bags.
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4.3.2 Point cloud classification

Figure 4.5: Point Cloud: prediction accuracy on test set for different methods and
varying bag sizes.

We evaluate model performance on 10-class and 40-class classification tasks. The

ModelNet10 and ModelNet40 datasets (Wu et al., 2015) are widely used benchmarks

for evaluating computer vision models and algorithms. We have 9843 training clouds,

and each cloud contains 10000 cloud points in the form of xyz coordinates. We will

extract Ni ∈ {100, 1000, 5000} points uniformly at random for each bag to build our

models. We will evaluate hypothesis H1 to find out how bag sizes impact model

performance.

We use the default DeepSets architecture for this task. The feature extractor

component consists of 3 permutation-equivariant layers followed by tanh as activations.

The pooling component takes max pooling. The regressor (here is actually a classifier)

includes 2 linear layers with p = 0.5 dropout followed by tahh. We tried other

architecture settings with different depths and dimensions, and found the results were

very close. We speculate that more careful fine-tuning could improve the results a

little, but will not overturn the conclusion we drew.

Figure 4.5 shows the prediction accuracy on a test set of 2648 point clouds. It shows

(1) DeepSets is the best model. The advantage over all alternatives is more evident on
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the 40-class classification task, where DeepSets holds accuracies above 0.9 while all

others below 0.75; (2) generally larger bag size helps to improve performance for all

methods. There are only two exceptions when we increase bag size from 1000 to 5000:

the k-means on the 10-class task and RFF on the 40-class task; (3) quantization-based

methods are strong competitors to kernel mean embeddings (in the figure we denote

RFF but actually we used orthogonal Fourier features – better than RFF in practice –

for embedding).

The results support hypothesis H1: larger bag size (generally) improves perfor-

mances. For quantization-based approaches, since the embedding function f depends

on p(x), large bag size means we have more samples per bag to construct a richer

histogram of count statistics or Fisher vector. For DeepSets, large bag sizes help to

train parameters of the embedding components of the architecture. Notably, Szabó

et al. (2016) suggested optimal bag sizes in theory, which depends on the effective

input dimension, the number of training bags, and the smoothness of the regressor.

4.3.3 US presidential election

We collected data for both the 2012 and 2016 US presidential election. The data

includes district-level voting results for both Democrats and Republicans, in terms

of voting fractions, as well as characteristic individuals from the US Census. The

setting assumes the individuals within each district are sampled from the distribution

of the district, and distributions of all districts are sampled from an unknown meta-

distribution (i.e., the two-level sampling assumption).

The size of the two datasets are (more details in Chapter 3, consider a district as

a bag):

• 2012: l = 840 bags, bag sizeNi=(min: 3091, max: 438037, mean±std:12864±21955,

median: 7185), input dimension D =18 real-valued variables + 78 categorical

variables (or 4653 after one-hot expansion) + 3 centroids (=4674).
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• 2016: l = 979 bags, bag sizeNi=(min: 2214, max: 256352, mean±std:9421±19940,

median: 5633), input dimension D =19 real-valued variables + 101 categorical

variables (or 3858 after one-hot expansion) + 3 centroids (=3880).

Here the 3-dimensional centroids are from the Cartesian coordinate system.

Compared to the datasets for estimating population statistics and classifying point

clouds, the two datasets have two major differences: the number of training bags l

is very small, and the input dimension D is very large. This poses two challenges:

(1) DeepSets could fail since there is not enough data to fully train a neural network

with a huge number of parameters. (2) Fisher vector could fail since the Fisher vector

dimension, which is 2KD given K Gaussians and D input dimensions, could be far

larger than the number of training bags.

The goal for this task is to build a predictive model so that we can predict the

voting preference of any demographical group. The exit poll data contains voting

fractions for some pre-defined demographical groups, and is the only source of data

available for validating our model’s predictions.

For DeepSets, we tested several architecture variants: different permutation-

equivariant layers; concatenating instance-level “local” embeddings and pooled “global”

embedding to enrich feature representation; reducing input by SVD to simplify neural

network architecture. In our experiments, more complex architectures did not show

to improve performance for this task. Compared to the first two tasks – estimating

population statistics and point cloud classification – this task has larger bag sizes and

smaller number of bags for training, and may not be enough to train highly complex

architectures with too many parameters.

For Fisher vector, since the dimension d = 2KD for K Gaussians and D input

dimensions, we encountered the classical problem of feature dimension far larger than

the number of instances (d = 1.6M � l = 840 bags for 2012 or d = 1.9M � l = 979

for 2016). We could reduce the number of Gaussians K for training GMM, but it
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would limit the richness of the hypothesis space and introduce high estimation error.

In our experiments, we applied SVD to reduce the input dimension to D = 100. It

explained about 87% of the variance, yet d = 40K � 1K > l.

For BOW and kernel mean embedding like RFF, the dimension d is fixed (for RFF

it is twice of the chosen number of frequencies, d = 2048 in our case; for BOW it is

the number of clusters, d = 200 in our case). These ds are much smaller than d in

Fisher vector and DeepSets. The bag-level embeddings are then fed to a (non)linear

regressor.

In the experiments, we trained a model on 70% random bags and evaluated on

the remaining 30% bags. We repeated 10 times and reported average MSE. We

also compared linear and nonlinear regressor with hyperparameters chosen by cross

validation.

Figure 4.6: Average of MSE on 30% bags over 10 trials.

Figure 4.6 shows the average MSE. It’s evident that the fixed-embedding strategy

is doing better than DeepSets in average, and nonlinear regressor is doing slightly

better than linear regressor. The results support hypothesis H2: that fixed-embeddings

are doing just fine given small number of training bags. We expected the results also

support hypothesis H3 that large embedding dimension will negatively affects Fisher
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vector: for 2016, Fisher vector indeed performs the worst, but for 2012, it’s the best

performer. It’s still unclear why and we don’t have enough evidence to support H3.

It’s also worth mentioning that the high variance for RFF came from ill-conditioned

matrix when computing (XXT + αI)−1y. The solver detected this, used least-square

solution instead of solving the dual problem directly, and warned us the result was

not guaranteed to be accurate.

4.4 Summary

The choice of method for distribution regression depends on the number of bags,

bag sizes, and possibly embedding dimension. We evaluated three hypotheses relevant

to these factors on three tasks. Given our experiments, DeepSets is a good choice

given large training data, otherwise, fixed-embedding could be better. The results also

show that quantization-based embeddings, which is largely ignored by the research

community of distribution regression, could be a better choice than kernel mean

embedding.
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APPENDIX

APPENDIX FOR CGMS

A.1 Computational Complexity

We present the main theorems for the computational complexity of CGMs and the

proof sketch, which were developed by Dan Sheldon Sheldon et al. (2013).

Theorem 1 When G is a tree, message passing in the CGM solves the aggregate

MAP or marginal inference problems in time O(N ·min(ML2−1, L2M)).

Proof sketch. Because of the hyper-Markov property, the CGM also has the form of

a tree-structured graphical model. Message passing gives an exact solution to the

MAP or margina inference problem in two passes through the tree, which takes O(N)

messages (Koller and Friedman, 2009). In a standard implementation of message

passing, the time per message is bounded by the maximum over all factors of the

product of the cardinalities of the variables in that factor. However, due to the nature

of the hard constraints in the CGM, it is possible to bound the time per message by a

smaller number, which is the number of values for the random variable nij (details

omitted). The number of contingency tables with c entries that sum to M is
(
M+c−1
c−1

)
,

which is the number of ways to placing M identical balls in c distinct bins. This

number is bounded above by M c−1 and by (c− 1)M , which can be derived as follows:

(
a+ b

b

)
=

(a+ b)!

a!b!
=


a+b
b
· a+b−1

b−1 · · · a+2
2
· a+1

1
≤ ab

b+a
a
· b+a−1

a−1 · · · b+2
2
· b+1

1
≤ ba
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so
(
M+c−1
c−1

)
=
(
M+c−1
M

)
= O(min((c − 1)M ,M c−1)). In a CGM, the table nij has L2

entries, so the number of values for nij is O(min(ML2−1, L2M )), which gives the desired

upper bound.

It is worth noting that the two different upper bounds correspond to the dense and

sparse regimes for the contingency tables involved in the computations. For example,

when L2 �M , the table nij is sparse, so it can be stored compactly by recording the

values (x
(m)
i , x

(m)
j ) for every member of the population. Since there are L2 possibilities

for this pair, and M individuals, the total number of tables is at most L2M . When

M � L2, then the vast majority of tables will be dense, and the upper bound of

ML2−1 is the tighter bound. This number corresponds to a storage scheme that keeps

a value from {0, . . . ,M} for all but last of the L2 table entries, which is determined

by the others.

For general graphical models, message passing on junction trees can be implemented

in a similar fashion. For a clique of size K, the contingency table will have LK entries,

so there are O(min(MLK−1, LKM )) possible values of the contingency table. This gives

us the following result.

Theorem 2 Unless P = NP , there is no algorithm for MAP or marginal inference

in a CGM that is polynomial in both M and L. This remains true when G is a tree

and N = 4.

Proof. This proof is by reduction from exact 3-dimensional (3D) matching to a

CGM where both M and L grow with the input size. An instance of exact 3D

matching consists of finite A1, A2 and A3, each of size M , and a set of hyperedges

T ⊆ A1 × A2 × A3. A hyperedge e = (a1, a2, a3) ∈ T is said to cover a1, a2, a3. The

problem of determining whether there is a subset S ⊆ T of size M that covers each

element is NP-complete (Karp, 1972).
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X1 X2 X3
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Elements

Figure A.1: Reduction from 3-dimensional matching.

To reduce exact 3D matching to inference in CGMs, define a graphical model

with random variables X0, X1, X2, X3 such that X0 ∈ {1, · · · , |T |} is a hyperedge

chosen uniformly at random, and X1, X2, and X3 are the elements covered by X0

(see Figure A.1). Define the observed counts to be ni(a) = 1 for all a ∈ Ai, i = 1, 2, 3,

which specify that each element is covered exactly once by one of M randomly selected

hyperedges. These counts have nonzero probabilities if and only if there is an exact 3D

matching. Thus, MAP or marginal inference can be used to decide exact 3D matching.

For MAP, there exist tables n0i such that p({n0i} , {ni}) > 0 if and only if there is a

3D matching. For marginal inference p({ni}) > 0 if and only if there is a 3D matching.

Because the model used in the reduction is a tree with only four variables, the

hardness result clearly holds under that restricted case.

Theorem 5 Suppose the NLBP message passing updates converge and the resulting

vector z has strictly positive energies. Then z is a constrained stationary point of

F (z) in problem (2.11) with respect to the set LM . If G is a tree and E(z) is convex,

then z is a global minimum.

Proof. The proof follows Yedidia et al. (2000, 2005). We will write the Lagrangian of

(2.11) and set its gradients to zero to derive the first-order optimality conditions, and

then show that these are satisfied by a certain set of Lagrangian multipliers if NLBP

converges. The Lagrangian is
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L(z,λ) = E(z)−HB(z) +
∑
i

λi(
∑
xi

zi(xi)−M)

+
∑
i

∑
j∈N(i)

∑
xi

λji(xi)

zi(xi)−∑
xj

zij(xi, xj)

 .

Since we only consider vectors z that are strictly positive, we can drop the inequality

constraints z ≥ 0 when writing the Lagrangian. The partial derivative with respect to

the primal variables are:

∂L(z,λ)

∂zij(xi, xj)
=

∂E(z)

∂zij(xi, xj)
+ log zij(xi, xj) + 1− λji(xi)− λij(xj),

∂L(z,λ)

∂zi(xi)
= (1− νi)(log zi(xi) + 1) + λi +

∑
j∈N(i)

λji(xi).

Here we have used the assumption that E(z) depends only on edge variables, so
∂E(z)
∂zi(xi)

= 0. By setting these expressions to zero and factoring out terms that are

constant with respect to the individual edge and node marginal tables, we obtain the

following first-order conditions:

zij(xi, xj) ∝ exp

{
λji(xi) + λij(xj)−

∂E(z)

∂zij(xi, xj)

}
,

zi(xi) ∝ exp

 1

νi − 1

∑
j∈N(i)

λji(xi).

 (A.1)

Assume NLBP has converged to a particular set of messages {mji(xi)} and marginals z

that satisfy Eq. (2.8), (2.9) and (2.10). Construct Lagrangian multipliers as λji(xi) =

log
∏

k∈N(i)\jmki(xi). By substituting these values into Eq. (A.1) and simplifying the

node marginal expression, we obtain the fixed point equations for the marginals from

the NLBP algorithm, which are assumed to be satisfied. Therefore, for this set of

Lagrangian multipliers, the gradient with respect to the primary variables z is zero.

Finally, it is a standard exercise to check that the normalization and consistency
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constraints of z are satisfied when message passing converges, so that the gradient of

L(z,λ) with respect to λ is zero.

This establishes that all partial derivatives of L(z,λ) are zero, i.e., z is an (interior)

constrained stationary point. If G is a tree and Ez) is convex, then the problem is

convex and therefore z must be a global minimum.

A.2 Other Proximal Algorithms for CGMs

The Mirror Descent update is:

zt+1 = arg min
z∈LM

〈gt, z〉+
1

ηt
Bϕ(z, zt) +R(z)

= arg min
z

ηt〈gt, z〉+ ϕ(z)− ϕ(zt)− 〈∇ϕ(zt), z− zt〉+ ηtR(z)

= arg min
z
〈ηtgt −∇ϕ(zt), z〉+ ϕ(z) + ηtR(z) (let ϕ = R = −HB − 〈θ, z〉)

= arg min
z
〈ηtgt +∇HB(zt) + θ, z〉 −HB(z)− 〈θ, z〉 − ηt(HB(z) + 〈θ, z〉)

= arg min
z
〈ηtgt +∇HB(zt)− ηtθ, z〉 − (1 + ηt)HB(z)

= arg min
z
−
〈

ηt
1 + ηt

(
θ − gt −

1

ηt
∇HB(zt)

)
, z

〉
−HB(z), (A.2)

and the convergence rate is O(ln(t)/t) as well (Duchi et al., 2010).

In the end, we will present the accelerated RDA (Nesterov, 2005), which was

initially used to solve smooth convex optimization where the uniform average of

all past gradients is replaced by an weighted average that emphasizes more recent

gradients. Based on the slight variant of Xiao (2010):

zt+1 = arg min
z∈LM

〈g̃t, z〉 −
βt + L′

At
(HB(z) + 〈θ, z〉)−HB(z)− 〈θ, z〉

= arg min
z

〈
g̃t −

At + βt + L′

At
θ, z

〉
− At + βt + L′

At
HB(z).

= arg min
z
−
〈
θ − At

At + βt + L′
g̃t, z

〉
−HB(z) (A.3)
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where L′ is the Lipschitz parameter for L(z), and At, bt are defined to obtain the

optimal convergence rate O(4LD2/t2) whereD is the diameter of the marginal polytope

LM that is measured by the strongly convex auxiliary function ϕ = R = −HB −〈θ, z〉

and satisfies −HB(z∗) ≤ D2. According to Theorem 6 in (Xiao, 2010), At = t(t+ 1)/4,

we get

zt+1 = arg min
z∈LM

−
〈
θ − t(t+ 1)

t(t+ 1) + 4L′ + 4βt
g̃t, z

〉
−HB(z), (A.4)

thus we update θt = θ − t(t+1)
t(t+1)+4L′+4βt

g̃t and then run standard BP oracle given θt to

update zt+1. Note we could set βt = 0 since ϕ = R is strongly convex.
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