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ABSTRACT

MACHINE LEARNING METHODS FOR PERSONALIZED
HEALTH MONITORING USING WEARABLE SENSORS

FEBRUARY 2019

ANNAMALAI NATARAJAN

B.Tech., UNIVERSITY OF MADRAS

M.Sc., COLORADO STATE UNIVERSITY, FORT COLLINS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Deepak Ganesan and Professor Benjamin M. Marlin

Mobile health is an emerging field that allows for real-time monitoring of individu-

als between routine clinical visits. Among others it makes it possible to remotely gather

health signals, track disease progression and provide just-in-time interventions. Consumer

grade wearable sensors can remotely gather health signals and other time series data. While

wearable sensors can be readily deployed on individuals, there are significant challenges

in converting raw sensor data into actionable insights. In this dissertation, we develop ma-

chine learning methods and models for personalized health monitoring using wearables.

Specifically, we address three challenges that arise in these settings. First, data gathered

from wearable sensors is noisy making it challenging to extract relevant but nuanced fea-

tures. We develop probabilistic graphical models to effectively encode domain knowledge

when extracting features from noisy wearable sensor data. Second, prediction models de-

veloped on one population in lab settings may not generalize to other populations in field

vii



settings. We develop domain adaptation techniques to improve lab-to-field generalizabil-

ity. Third, collecting ground truth labels for health monitoring applications is expensive

and burdensome. We develop active learning methods to minimize the effort involved in

collecting ground truth labels. We evaluate these methods and models on two case studies:

cocaine use detection and human activity recognition.
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CHAPTER 1

INTRODUCTION

1.1 Overview

According to the centers for disease control and prevention, key risk factors including

high blood pressure, tobacco use, alcohol use, inadequate physical inactivity, unhealthy

diets and abnormal sleep patterns play a key role in many chronic diseases1. Hence, there

is a need to continuously monitor at risk individuals for their health status and activities

over extended periods of time in their natural settings with the goal of improving their

health and well being.

Wearable devices make it possible to continuously and remotely monitor individuals in

their natural settings. Wearable devices are devices worn on, in or around the body. With

reduced form factors, longer battery life and enhanced networking capabilities, wearable

devices make it possible to monitor individuals over extended periods of time. Additionally,

most consumer grade wearable devices come equipped with an accelerometer, gyroscope

and/or magnetometer, making it possible to detect motion, orientation and direction. When

wearable sensors are coupled with smartphones and cloud computing, large volumes of

data can be remotely analyzed to find interesting patterns, detect abnormalities and de-

tect target activities from continuous streams of sensor data. The resulting insights may

benefits both the individual on whom the sensors are deployed as well as the individual’s

healthcare providers. Among other applications, wearable sensors make possible proac-

tive healthcare monitoring (e.g., tracking diseases before symptoms otherwise manifest),

1CDC’s National Center for Chronic Disease Prevention and Health Promotion
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personalized interventions (e.g., just-in-time intervention) and tracking disease progression

(e.g., diabetes).

We have seen great success in the ability of commercial, off-the-shelf wearable sensors

to count steps [27], estimate heart rate [7], detect sleep [77] and recognize physical activity

[27, 77]. Beyond simple activities, we have seen limited commercial success in the usabil-

ity of wearable sensors. A handful of research studies have demonstrated the feasibility of

wearable sensors to detect human emotional states (mood[111], stress[95]), detect activi-

ties of daily living (eating[105], smoking[5], drinking[6]), and detect activities specific to

certain populations (drug addiction[43], autism[26], epilepsy seizures[89]). We attribute

this limited success to the many challenges that arise in complex activity detection. To

illustrate these challenges, we present a generic activity detection framework used to detect

complex human activities.

The generic activity detection framework consists of three components: (1) data sens-

ing and logging, which includes an appropriate choice of sensing modality and data logging

frequency. (2) feature extraction, in which raw sensor data is analyzed to extract useful in-

formation in order to detect target activities. Here the challenge is to extract features rele-

vant to the task from sensor data that may be corrupted by many artifacts. (3) classification,

where a machine learning model is used to detect or predict complex activities of interest.

Additionally, for many applications, we develop this activity detection framework in one

environment and would like to deploy it in another environment and/or another user cohort.

Among the many challenges that arise in this framework, we focus on three challenges in

this dissertation, which we detail in the nest section.

1.2 Challenges and Contributions

In this section, we present three challenges that arise in the generic activity detection frame-

work and our contributions to addressing each of them.

1. Challenges in extracting nuanced features from wearable sensor data
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Most wearable devices are not approved for medical use but are rather consumer grade

devices with limited functionalities. Typically, off-the-shelf wearable sensors are non-

adhesive and placement of sensors is not specific to any one location. These traits which

make wearable sensors easy to use also directly affect the quality of data due to devices

shifting, occasionally dropping contact with body, and introducing noise in data streams.

These problems are even more exacerbated when performing complex activities, (e.g., drug

use), which systematically give rise to windows of poor quality of sensor data thereby

rendering them unusable. All these factors affect the quality and volume of sensor data

available for further analysis.

While there are a diverse set of wearable sensors available to choose from, there are

only a limited number of physiological signals that can be measured using wearable sen-

sors. The vast majority of prior work relies on extracting a limited number of features

from physiological signals for use in downstream tasks. Common examples include heart

rate from electrocardiogram (ECG) and photoplethysmogram (PPG) signals, breathing rate

from respiratory inductance plethysmography, electrodermal activity from galvanic skin re-

sponse and core body temperature. While these features are adequate for detecting simple

activities, they can be inadequate for detecting complex activities. For example, arrhyth-

mia detection relies on precise location and shapes of ECG waves[46], special populations

with autism and epilepsy seizures require access to more nuanced features from galvanic

skin response[38, 71], and stress markers rely on heart rate variability [45], which is rel-

atively more challenging to estimate when compared to heart rate. Despite having access

to raw sensor data, it is much more challenging to extract nuanced features due to the ar-

tifacts introduced by wearable sensors, as well as the inherent between user variance in

physiological signals.

To address this challenge, we develop probabilistic graphical models to encode domain

knowledge when extracting features and learning models from streams of sensor data. We

demonstrate the usefulness of our approach in the electrocardiogram (ECG) signal domain.
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The ECG signal consists of repetitive patterns, which we encode as domain knowledge in

probabilistic graphical models to perform structured prediction. This work is published in

5th ACM conference on Bioinformatics, Computational Biology, and Health Informatics,

September, 2014 [73]. To the best of our knowledge, this is one of the first lines of work to

demonstrate the use of structured prediction models to effectively and principally encode

domain knowledge in mobile health settings. This work has directly or indirectly inspired

several other works on the use of structured prediction models in mobile health applications

[3, 8, 75, 15, 85].

2. Challenges in deploying the activity detection framework in real world settings

A common study design to many recent mobile health (mHealth) studies is a two-stage

study design [105, 43]. The first stage is executed in controlled settings in order to obtain

clean, isolated physiological responses within specific target activities or conditions. In the

second stage, activity detection models are deployed in real world settings. By designing

experiments in controlled settings, we can exert control over the duration and sequence of

activities of interest and limit the occurrence of confounding activities. As a consequence,

data gathered in controlled settings can have low ecological validity with limited gener-

alization performance. This is a serious limitation when deploying the activity detection

framework in real world settings. One other advantage to designing experiments in con-

trolled settings is that it allows for gathering reliable ground truth labels at fine granularity

(e.g., start and end times of target activity and activity types). This is often not the case in

real world settings in which ground truth labels are unavailable or unreliable. In some ap-

plications, reliable labels are only available at coarse granularity (e.g., number of cigarettes

smoked in one hour time periods). This leads to a mismatch in labels collected in controlled

settings and real world settings, making it challenging to evaluate lab-based models in field

settings.
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Lastly, as other prior work has noted, there is significant variability between users when

performing the same activity in different environments [9, 121]. This variability is even

more pronounced for complex tasks when compared to tasks with repetitive patterns.

To address this challenge, we develop domain adaptation techniques to improve lab-to-

field generalizability. Specifically, our use case is a novel drug use detection study using

wearable sensors. In the first stage, we develop a drug use detection framework in lab

settings to demonstrate the feasability of using wearable sensors. In the second stage, we

deploy this framework to detect drug use in real-world settings. The framework, as hypoth-

esized, exhibited poor generalization performance due to the change in the environments.

We identified three shifts in datasets gathered in the lab and field settings. We develop

domain adaptation techniques to handle all three dataset shifts. When handling all three

dataset shifts, we show that we can achieve good generalization performance, better accu-

racy than self-report, and comparable accuracy to existing gold standards in drug testing.

We published this research in the 2013 ACM International Joint Conference on Pervasive

and Ubiquitous Computing [74] and the 2016 ACM International Joint Conference on Per-

vasive and Ubiquitous Computing [72].

3. Challenges in the availability of ground truth labels in real world settings

While wearable sensors can be readily deployed leading to collection of large volumes

of unlabeled sensor data there are significant challenges when collecting associated ground

truth labels. We alluded to some of the problems in collecting ground truth labels in the

previous challenge as well, but in this challenge we focus on the scarcity of ground truth

labels in real world settings. We require ground truth labels to train prediction models in

the first place and to personalize prediction models to each user. Availability of ground

truth labels from real world settings is essential to deployment of the activity detection

framework in the same environment.

The most popular and practical approach is to request that users proactively supply

labels, but the manual effort involved is prohibitive [91, 110]. Another approach is to
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query users for labels selectively via prompts. Here again, it is challenging to determine

when users are willing to respond and are most likely to supply correct labels. [39, 18]. In

yet another approach, experimenters follow study participants to note their activities, which

are then used as labels [17]. This last approach is simply impractical and will not scale to

large user studies.

To handle this challenge, we develop a hierarchical active learning framework to mini-

mize the number of labeled examples required per user. At the core of this framework are

active learning methods to address label scarcity in real world settings. Our framework also

allows for sharing of labeled examples between users that are very similar, further mini-

mizing the number of labeled examples required. We show that we can achieve comparable

performance to fully personalized models, but with a significant reduction in labeling ef-

fort. This work is a proof of concept that active learning methods can reduce the manual

labeling effort in real world health monitoring and mobile health applications.

1.3 Case Studies

Below, we provide a brief description of the two case studies used in this dissertation.

1. Cocaine use detection using wearable electrocardiogram sensors

The first case study is a novel cocaine use detection study using a wearable chest

band sensor. The long term goals of this work were to provide personalized treatment

plans to cocaine addicts and to improve our understanding of addiction related trig-

gers. The short term goal of this work is to reliably detect cocaine use with wearable

sensors. We collected data from habituated cocaine users in both the lab and field

settings. Our choice of sensing modality was wearable ECG sensors since cocaine is

believed to cause robust and predictable changes in ECG (discussed in more detail in

Chapter 2). In this dataset, we have access to about 900 hours of ECG data from 15

participants. More details on the lab and field study protocols are given in Sections

4.1 and 5.1 respectively.
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2. Human activity recognition using wearables

The second case study focuses on human activity recognition. The goal of human

activity recognition is to segment and label various activities of interest given contin-

uous streams of sensor data. We use a publicly available dataset that has data from

60 participants in real world settings. Users have supplied labels for about 116 ac-

tivities. Subsequently, the experimenters cleaned the user supplied labels when there

were label inconsistencies. In this study, users wear a Pebble wrist watch paired to a

study smartphone. More details on this dataset can be found in Section 6.1.1.

While cocaine use detection applies to a specific population of individuals, activity

recognition has widespread applications from chronic diseases to fitness monitoring. De-

spite their differences, both applications exhibit significant between user variability and

hence personalization maybe useful to improve accuracy.

At this point, it is worth discussing the need for two diverse datasets in the dissertation.

Two of the three challenges discussed above pertain to the cocaine use study for which we

develop and evaluate machine learning methods. However, due to lack of reliable ground

truth labels in the cocaine field study, we are unable to evaluate our techniques to collect

ground truth labels in real world settings. One way to get around this problem is to use

the lab cocaine dataset (for which we have reliable ground truth labels) to simulate the

dynamics of users supplying labels. But this requires us to create transitions among scripted

activities which are abrupt and artificial. We adopted the human activity recognition task

due to the availability of a long term, labeled dataset gathered in real world settings. Due to

the simple nature of the task, most users provide reliable ground truth labels that can also

be verified from the corresponding sensor data. This also serves to illustrate a practical

problem in developing machine learning methods for wearable sensor data analysis – the

scarcity of long term, annotated datasets collected in environments with high ecological

validity.
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1.4 Dissertation Outline

In this dissertation, we propose machine learning methods and models to address the

three challenges described above. We develop and evaluate these methods on two case

studies: cocaine use detection and human activity recognition.

In Chapter 2, we review machine learning models that we use in cocaine use detec-

tion and human activity recognition problems. In both case studies, we treat target activity

detection as a classification problem in machine learning. We provide details on the clas-

sification models as well as how we perform domain adaptation and transfer learning in

these models. We also provide relevant background on cocaine, a brief introduction to

electrocardiogram and electrocardiography, and cocaine-induced morphological changes

in ECG.

In Chapter 3, we present machine learning methods to extract morphology from noisy

ECG sensor data. Our processing pipeline consists of two components for ECG morphol-

ogy extraction. The first is a sparse coding model that learns sparse underlying basis repre-

sentations of ECG waves that effectively handles the variance in shapes of the ECG waves

across time and across users. The second is a conditional random field model that ef-

fectively encodes domain knowledge in the ordering and shapes of ECG waves to extract

morphology from ECG cycles. We evaluate both components on ECG data gathered from

wearable chest band sensors.

In Chapter 4, we present a framework to detect cocaine use in controlled settings. We

present a framework that encompasses data sensing, data logging, ECG morphology extrac-

tion, feature aggregation and classification. We use the Zephyr BioHarness [117] wearable

chest band sensor to gather ECG data. We extract ECG morphology as outlined in Chapter

3. We perform feature aggregation over temporal windows which are then classified as co-

caine use or non-cocaine events. We evaluate this framework on a novel cocaine use study

on habituated cocaine users in controlled clinical settings.

8



In Chapter 5, we extend cocaine use detection to real world settings. Our approach

is to the deploy lab-based cocaine use detection framework (as outlined in Chapter 4) to

detect cocaine use in real world settings. This is challenging due to the systematic dif-

ferences in ECG feature distributions and label proportions between lab and field datasets

respectively. As a result, directly deploying lab-based models results in poor generalization

performance. We develop techniques to quantify and handle dataset shifts, which allows

for lab-based models to be deployed more effectively in real world settings. In addition

to the above dataset shifts, we propose methods to handle label granularity shift – a mis-

match in label granularity between lab and field datasets. Handling this novel form of shift

makes it possible to evaluate cocaine use detection in field settings. We evaluate these do-

main adaptation techniques on data gathered from habituated cocaine users in real world

settings.

In Chapter 6, we focus on the problem of collecting ground truth labels in wearable

sensing applications. This work is largely inspired by the challenges and lessons learned

with data collection in the cocaine use field study. We observed that subjects had low com-

pliance with supplying labels and on many occasions supplied incorrect labels. Among the

many challenges pertaining to collecting ground truth labels, we specifically focus on min-

imizing the number of labels required to learn personalized prediction models. We present

a transfer active learning framework that learns personalized prediction models while min-

imizing the number of labeled examples per user. The core of this framework is active

learning, which determines what examples to label during learning. This is complemented

by transfer learning, which leverages similarities between users to further reduce the num-

ber of examples required by the active learner. Both techniques work in tandem with the

goal of improving performance. We evaluate the feasability of these techniques on the

human activity recognition dataset.
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CHAPTER 2

BACKGROUND

2.1 Machine Learning Methods and Models

In this section, we provide background on machine learning methods that we use in the

cocaine use detection and human activity recognition tasks.

2.1.1 Logistic Regression

We use a standard linear logistic regression classifier for binary classification [28] since

it directly outputs probabilities, which are often more desirable in health settings such as

ours. We denote random variables in upper case (e.g., X) and the values these variables

take in lower case (e.g., x). Given a feature vector X ∈ RD consisting of D features, the

binary logistic regression classifier returns the probability of that feature vector belonging

to the positive class:

P (Y = +1|X = x) =
1

1 + exp (−(b+W>x))
(2.1)

where, W is a length D vector of feature weights, b is the bias term and Y ∈ {−1,+1}

represents the label for the instance X . An equivalent representation to compute class

probabilities is,

P (Y = y|X = x) =
1

1 + exp (−y(b+W Tx))
(2.2)

This prediction model has a linear decision boundary specified by the weights W . The

default classification rule when using logistic regression is to predict that the data case

belongs to the positive class if P (Y=+1|X=x)
P (Y=−1|X=x)

> 1.0.
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Learning the weights of the logistic regression classifier is accomplished by maximizing

the log likelihood of the training data using numerical optimization [28]. Given a dataset

D = {(yn, xn)}n=1:N of N labeled examples, the objective function is defined as,.

argmin
b,W

N∑
n=1

log
(
1 + exp(−yn(b+W Txn))

)
+ λ‖W‖22 (2.3)

The first term is the log likelihood of N data examples and the second term provides regu-

larization of the norm of the weight vector to minimize overfitting. λ determines the relative

contribution of the two terms to the objective function. Minimizing this objective function

is equivalent to minimizing the logistic loss. It is very similar to the hinge-loss function

used in support vector machines [28]. It is a continuous, convex optimization problem with

no constraints. It can be solved using any gradient-based optimizer. In this work, we use the

limited memory Broyden Fletcher Goldfarb Shanno (BFGS) algorithm [78]. This binary

model can be extended to multiple classes using multinomial logistic regression [36].

2.1.2 Transfer Learning in Logistic Regression

In the standard logistic regression model’s objective function, the regularization term

penalizes the square of the l2 norm of the weight vector W , as in Equation 2.3. This has

an equivalent interpretation as incorporating a zero-mean Gaussian prior with covariance

1
2λ
I on the weights. One can also incorporate prior knowledge into the prediction model by

penalizing the deviation of the model parameters, W , from a prior set of model parameters,

Wp, as shown below,

argmin
W,b

N∑
n=1

log
(
1 + exp(−yn(b+W>xn))

)
+ λ‖W −Wp‖22 (2.4)

Setting Wp = 0 yields a standard penalized l2 model. Prior model parameters Wp can also

be set to model parameter estimates derived from a source domain, effecting a simple, but

powerful form of transfer learning [16].

11



2.1.3 Domain Adaptation in Logistic Regression

The generalization performance of prediction models is affected when the test data

distribution is shifted away from the training data distribution. This shift is referred to

as a dataset shift problem in machine learning. Examples of dataset shifts in wearable

sensing applications include training a prediction model on data gathered in controlled

clinical settings and testing on data from real world settings. It has been demonstrated

that making the prediction model aware of dataset shift leads to improved performance

[102, 32]. One approach to making prediction models aware of dataset shifts is to assign

importance weights to the training distribution to reweight the training distribution to match

that of the test distribution. This approach to domain adaptation – reweighting the dataset

in the source domain to help with prediction in the target domain – is called importance

weighting. When using importance weights, the prediction model parameters are tuned to

the reweighted dataset and the model often performs better on the test set.

We incorporate this reweighting directly into the objective function of the prediction

model. For example in logistic regression the objective function has two terms: the log

likelihood and the regularizer. To accommodate the reweighting of data examples to miti-

gate dataset shifts, we augment the standard conditional log likelihood with a per data case

importance weight, δ(y, x), that can depend on the features and the label of the data case,

as seen below.

argmin
W,b

N∑
n=1

δn(yn, xn) log(1 + exp(−yn(b+W Tyn))) + λ‖W‖22 (2.5)

2.1.4 Conditional Random Fields

Conditional random fields (CRFs) are a sub-class of probabilistic graphical models

[54] that generalize independent probabilistic classifiers like logistic regression [42] to the

case of structured prediction. CRF models contain feature variables and label variables

connected in a graph that captures problem-specific probabilistic dependencies between

the label variables. In this dissertation, we use a linear chain CRF model like the one

12



Y1

X1

Y2

X2

Y3

X3

YL

XL

WF WF WF WF

WT WT

Figure 2.1: Linear Chain CRF

shown in Figure 2.1. Here L corresponds to the length of the input sequence. The shaded

nodes X1 to XL represent the feature variables, and the unshaded nodes Y1 to YL are the

corresponding label variables. We assume the label variables take values in the set V .

The feature variables Xi ∈ RD represent a D-dimensional vector. Each (Xi, Yi) pair is

associated with a feature potential W F that captures the dependence between the features

and the associated labels. Each pair of adjacent labels, Yi, Yi+1, are associated with a

transition potential W T to capture the first order Markov dependence between pairs of

label values.

In a CRF model, the probability of a sequence of observed labels y = [y1, ..., yL] con-

ditioned on the observed feature values x = [x1, ..., xL] is given by,

PW(Y = y|X = x) =
exp(EW (y, x))

ZW (x)
(2.6)

where EW is the energy function of the model and ZW (x) is the partition function. The

feature and transition potentials that define a CRF model are collectively represented by

W = [W F ,W T ]. The energy function is given by,

EW(y, x) =
( L∑
i=1

D∑
d=1

∑
v∈V

W F
dv[yi = v]xi

+
L−1∑
i=1

∑
v∈V

∑
v′∈V

W T
vv′ [yi = v][yi+1 = v′]

)
(2.7)

The partition function is given by,
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ZW(x) =
∑
y∈VL

exp(EW(y, x)) (2.8)

The dimensions of W F and W T matrices are d × |V| and |V| × |V| respectively, where

|V| is the cardinality of the label set V . The unknown parameters W = [W F ,W T ] must

be learned from training data before using the model for inference. Given a dataset D =

{(yn, xn)}n=1:N of fully labeled training sequences, the parameters can be estimated by

maximizing the objective function as shown below,

argmax
W

N∑
n=1

logPW(yn|xn)− λ‖W‖22 (2.9)

The first term is the conditional log likelihood and the second term provides regularization

of the weight matrices to avoid overfitting. Transfer learning can also be incorporated

into the CRF model, like in logistic regression, by penalizing the deviation of the weight

matrices W from a prior set of model parameters, Wp:

argmax
W

N∑
n=1

logPW(yn|xn)− λ‖W −Wp‖22 (2.10)

In either the l2 penalty or transfer case, this objective function is strongly convex, so

gradient-based methods are guaranteed to find the unique optimal solution. Computing

the gradients requires all single label variable marginal probabilities as well as pairwise

marginal probabilities for all pairs of adjacent label variables [54]. All of these marginal

distributions can be found in time linear in the length of the chain (as can the partition

function) using the well-known sum-product belief propagation algorithm [54].

2.1.5 Sparse Coding

Sparse coding is an unsupervised dimensionality reduction technique. It reconstructs

input vectors as sparse linear combinations of a set of K basis vectors βk and coefficients
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αk [80]. The objective function is as follows,

argmin
α,β

N∑
n=1

∣∣∣∣∣
∣∣∣∣∣xn −

K∑
k=1

αkβk

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ‖α‖11 (2.11)

s.t.‖βk‖22 ≤ 1∀k ∈ 1, ..., K

The first term is the reconstruction error between input data examples and linear combina-

tions of coefficients and basis elements. The second term is the l1 norm of the coefficients,

which induces sparsity. Given a dataset D = {xn}n=1:N of labeled examples, the basis

itself is learned to minimize the sum of the errors between each data case and its recon-

struction under the constraint of l2 regularized basis vectors, as seen above. The typical

approach to solving this problem is an alternating minimization strategy since the objective

function is not jointly convex in both α and β, but is convex in one variable when fixing

the other. We used the SPAMS toolbox to perform sparse coding [68].

The advantage of sparse coding over methods like principal components analysis (PCA)

is that it produces sparse feature vectors, which can help to reduce over-fitting when these

features are used for classification. Unlike PCA, sparse coding can also be used to learn

an over-complete basis (K > D). This can help to make classification problems easier

by making the feature vectors more linearly separable than the original data in the higher-

dimensional feature space.

2.1.6 Active Learning

Active learning methods query an oracle for labels to improve the performance of a

prediction model [63]. Traditional approaches to active learning have focused on the pool-

based setting where all unlabeled examples are available to query and the goal is to pick

and choose examples with high utility, which generally leads to improvement in the perfor-

mance of the prediction model. We first describe various components of the active learning

framework, followed by a description of the basic active learning algorithm.
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2.1.6.1 Prediction Model

At the core any active learning algorithm is a prediction model. The goal of active

learning is to improve the performance of this prediction model by picking unlabeled ex-

amples to label. Most active learning algorithms also use the prediction model to determine

the utility of unlabeled examples. At the very first iteration, when no labeled examples are

available, the prediction model randomly guesses the utility of unlabeled examples. In sub-

sequent iterations, when the prediction model has access to a sufficient number of labeled

examples, this generally leads to better estimates of utility. Typically prediction models are

retrained after each query to accurately represent what the model is certain and uncertain

about. Classification models such as neural networks [34], support vector machines [107]

and multinomial logistic regression [97] have been investigated as prediction models.

2.1.6.2 Querying Strategy

When evaluating a pool of unlabeled examples, the querying strategy is used to com-

pute utilities. The higher the utility of an unlabeled example, the more likely it is to be

queried for a label. Querying strategies are largely organized into optimizing decision the-

oretic or information theoretic criteria. The former queries for examples with the objective

of minimizing error on the test dataset, while the latter queries examples with the objective

of shrinking the hypothesis space [44]. A vast majority of querying strategies minimize de-

cision theoretic criteria and rely on prediction models to determine the utility of unlabeled

examples. Some of the most popular querying strategies include uncertainty sampling,

query-by-committee, expected error reduction, variance reduction, model change and their

hybrids [101].

2.1.6.3 Oracle

Oracles provide labels for a chosen example. Additionally, active learning makes the

assumption that the oracle is always responsive to queries and always provides the correct

label. In practice these assumptions may not hold since oracles (e.g., human labelers)
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may or may not respond to a query and oracles may inadvertently supply incorrect labels.

Relaxing these assumptions leads to proactive learning [25].

2.1.6.4 Label Cost and Budget

Active learning typically assumes that the cost of obtaining a label is uniform irrespec-

tive of label type or perceived difficulty in supplying a label. In practice this assumption

can be utilized to train the active learning algorithms to issue queries only for windows

of sensor data where oracles are likely to provide labels by making certain windows very

expensive to query (e.g., when the user is driving). Budget constraints enforce limits on

the number of queries that can be issued. Active learning terminates when the budget is

exhausted or there are no more unlabeled examples in the pool.

2.1.6.5 Algorithm

In this section we describe the basic active learning algorithm for classification. To do

so, we first introduce some notation. Assume we have access to a dataset of U examples

of the form {(x1, y1), ..., (xU , yU)} where, each xi ∈ RD be data samples and yi ∈ V be

labels. The goal of active learning is learn a prediction model: f : RD → V . In order to

simulate active learning, we assume the U data samples are available in a sample pool as

unlabeled examples, and the corresponding labels are only accessible through an oracle.

The general setup is illustrated illustrated in Figure 2.2. Active learning proceeds by

first randomly drawing an unlabeled example, X , from the sample pool (Figure 2.2 step

1) and querying the oracle for a label (Figure 2.2 step 2). The labeled example, (x, y),

is added to the labeled set D and the prediction model f is retrained (Figure 2.2 step 3).

This updated prediction model is used in querying strategies to compute utilities for all

available unlabeled examples in the sample pool (Figure 2.2 step 4). Following this step,

the example with the highest utility is selected to be queried by the oracle (Figure 2.2 steps

1 and 2). These steps are repeated for a predetermined budget, B, or until the sample pool

is exhausted.
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f: RD → ν

X

Figure 2.2: Active learning algorithm

The original active learning problem can be viewed as optimally selecting N data ex-

amples from a sample pool of U data examples. This problem is intractable in general [37],

but in practice, it has been shown that a myopic (greedy) approach to active learning leads

to good solutions [101].

2.1.7 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering is a type of unsupervised clustering algorithm

that recursively merges clusters pairwise based on a linkage distance criterion [92]. The al-

gorithm begins by having access to M clusters, in each iteration it merges a pair of clusters

until all M clusters are merged into a single cluster.

The advantage of this clustering approach is that we do not need to specify the number

of clusters ahead of time. However, hierarchical agglomerative clustering requires defining

a notion of similarity or distance to merge clusters. Typical examples include distance-
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based measures (e.g., euclidean distance). In personalized health monitoring applications,

we perform clustering on users versus individual data examples hence the distance metrics

will need to be computed using all data examples from each user. A default approach is to

compute the mean of feature vectors for each user and then compute the similarity using

distance-based measures as described above. Many alternates exist that leverage summary

statistics of each user to compute similarity [10, 48, 60, 116]. The results of hierarchical

agglomerative clustering are often organized and presented via a dendrogram. The leaf

nodes in the dendrogram correspond to the original M clusters and the non-leaf nodes are

a result of the recursive merges.

We used the implementation of hierarchical agglomerative clustering in Python’s sklearn

module [87]. We supplied a precomputed similarity matrix between all pairs of users. We

provide more details on how we compute the similarity matrix in Section 6.4.6. In each

iteration of the hierarchical agglomerative clustering, two users with the smallest distance

in the smilarity matrix are merged. All other settings were set to default.

2.2 Cocaine Use and Electrocardiogram

In this section we provide relevant background on cocaine use, electrocardiography and

cocaine-induced morphological changes in electrocardiography signals.

2.2.1 Psychological and Physiological Effects of Cocaine Use

Cocaine is a powerful, addictive stimulant drug made from coca plants native to South

America. In 2014, global cocaine use was reported to be close to 18 million users1. Co-

caine is typically consumed in one of three forms: as hydrochloride salt, freebase cocaine,

or crack cocaine [88]. Once consumed, cocaine acts as a stimulant on the central nervous

system, creating a feeling of euphoria and high energy. Cocaine taps into the reward path-

ways in the brain that usually respond to other rewarding and pleasurable behaviors such

1United Nations World Drug Report, 2016
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as eating and sex. This stimulus-reward response serves as a positive reinforcement to the

brain leading to an addictive, compulsive behavior [88].

Cocaine

Sympathetic output
catecholamines

Na transport
Local anesthetic effect

Heart rate
Blood pressure
Contractility
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vasoconstriction

Platelet adherence
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Oxygen demand Oxygen supply
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Figure 2.3: Psychological and Physiological effects of cocaine use in humans. Figure
recreated from [99]. Boxes are drawn around physiological effects that we are interested in
using to detect cocaine use with wearable sensors.

Cocaine addiction is associated with predictable and highly characteristic physiolog-

ical, behavioral, and subjective effects [79]. Such effects derive directly from cocaine’s

well-established pharmacological mechanism of action: it is an indirect agonist/monoamine

reuptake inhibitor. By virtue of its peripheral actions on the sympathetic nervous system,

cocaine produces changes in primary indices of cardiovascular and neurological function

(increases in heart rate, systolic, and diastolic blood pressure and pupillary diameter) and

tremors and muscle twitches [81]. As a psychostimulant, cocaine also produces a char-

acteristic profile of centrally-mediated, behavioral effects including increased restlessness,

irritability, panic attacks, paranoia and psychosis [82]. In Figure 2.3 we show a flowchart

of the psychological and physiological effects of cocaine use in humans.
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Figure 2.4: This figure illustrates two ECG cycles. The P, Q, R, S and T waves are labeled
on the left cycle. ECG morphological features such as RR, QT, PR, QRS intervals and T
wave height are labeled on the right cycle

2.2.2 Electrocardiogram and Electrocardiography

An Electrocardiogram (ECG) is a graphical recording of the heart’s electrical activity

as a function of time. The source of the electrical impulse is the sinoatrial node, impulese

then pass through the arteries and finally through the ventricles. The depolarization and

repolarization of these muscles causes the heart to pump blood. A healthy heart has an

orderly progression of electrical impulse through the heart’s muscles which translates to a

sequence of waves in the ECG signal.

Figure 2.4 illustrates two cardiac cycles of an ECG signal. We can see that each cycle is

characterized by a series of five deflections away from the baseline referred to as the P, Q,

R, S and T waves. These five deflections are collectively known as the PQRST complex.

The P wave corresponds to the atrial depolarization, the QRS wave corresponds to the

ventricular depolarization and the T wave corresponds to the ventricular repolarization.

Typically, ECG is recorded by placing 12-lead electrodes on the surface of the skin.

2.2.3 Effects of Cocaine on Electrocardiogram

There is substantial evidence from human and animal studies that cocaine use causes

changes in cardiovascular function that are observable in ECG signals. Cocaine use has

a robust effect on heart rate, causing it to increase significantly [99]. An increased heart

rate manifests as a reduced RR interval, as shown in Figure 2.4. Cocaine has also been

reported to have an effect on the QT interval [99]. Some research has also made use of a
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corrected QT interval, QTc, meant to partially normalize out the effect of heart rate on QT

interval. QTc is typically computed as the length of the QT interval divided by the square

root of the length of the RR interval (Bazett’s correction) [113]. Two studies have reported

QTc prolongation in the presence of cocaine [67, 62]. Magnano et al. have also reported

changes in the height and shape of T waves in the presence of cocaine. Animal studies have

pointed to additional effects of cocaine on the PR and QRS intervals [33, 98].

2.2.4 Summary

In this chapter, we presented background information on machine learning models and

techniques that we use in this dissertation. We use the conditional random field model in

Chapter 3 to extract morphology from ECG signals. The background material on ECG and

cocaine-induced morphological changes will be useful when extracting features from ECG

morphology to be used in cocaine-use detection. We use the penalized logistic regression

model in detecting cocaine use as well as specific activities in the problem of human activity

recognition. We utilize domain adaptation techniques in Chapter 5 to adapt a lab-based

cocaine use detection model to detect cocaine use in field settings. Lastly, we utilize the

active learning framework in Chapter 6 to collect ground truth labels in human activity

recognition problem. The prediction model used in active learning is penalized logistic

regression with transfer learning.
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CHAPTER 3

PROBABILISTIC GRAPHICAL MODELS TO ENCODE DOMAIN
KNOWLEDGE IN ECG FEATURE EXTRACTION

Many physiological signals exhibit repetitive patterns. Examples include respiratory

(inhalation-exhalation cycles), photoplethysmogram and elecrocardiogram signals. In or-

der to detect complex target activities (e.g., smoking, drug use) we would like to extract

features from these signals, particularly information on the constituent peaks within each

repetitive pattern. One approach is to segment the peaks and label each segment indepen-

dently using existing machine learning models (e.g., SVM, multinomial logistic regression).

The disadvantage of this approach is that it does not leverage the temporal ordering of peaks

within each cycle. An alternate is to segment and perform joint labeling of the sequence of

peaks within each cycle. This approach leverages the temporal ordering of peaks. In this

chapter, we illustrate the utility of sequential labeling using structured prediction models

applied to one type of physiological signal: the electrocardiogram.

A substantial body of work has explored the use of wearable ECG sensors for applica-

tions in personalized health monitoring [40, 31, 86, 111]. Nearly all of these studies used

instantaneous heart rate and heart rate variability as features in conjunction with features

from other sensing modalities. For more complex tasks such as cocaine use detection or ar-

rithymia detection, we would like access to more nuanced ECG features, specifically ECG

morphology. For example, one of the symptoms of myocardial infarction is elevation or

depression of the ECG segment between the S and T peaks. Hence we require access to

locations of both the S and T peaks to detect ST elevation or depression which is useful for

mycardial infarction.
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(a) (b) (c)

Figure 3.1: This figure depicts some of the issues that occur when using a wearable ECG
device. (a) The data are inherently noisy compared to ICU-quality ECG. (b) Various forms
of signal dropout occur in our data, including cases that manifest as extreme noise. (c) The
data are also subject to baseline drift even over short time scales.

Extracting morphology from ECG data is a challenging problem due to inherent vari-

ability in locations and shapes of ECG waves coupled with underlying target activity and/or

medical conditions that dynamically change ECG morphology. These problems are exacer-

abated when using consumer grade wearable sensors with a small number of non-adhesive

electrodes. We present several examples of raw data obtained from wearable ECG sensors

in Figure 3.1. This figure illustrates various difficulties with the use of a wearable sensor

like the Zephyr BioHarness [117] chest band where the electrodes are not adhesive.

1. Data quality: Figure 3.1a gives an indication of how noisy the raw data is in the

best case. We also often see ECG periods that have larger-scale distortions where the R

wave may still be evident while the other waves are not discernible. Such distorted periods

would not pose a difficulty for features based on the RR interval only (heart rate), but they

do pose challenges when attempting to extract the complete PQRST complex. Fortunately,

these distorted periods appear to be transients and don’t frequently occur in long runs.

We also observe that there is significant variance in shapes of ECG peaks even over

short time intervals. For example, in Figure 3.1a, there is substantial variability in shapes

of the T waves especially at the start and end points of these waveforms. This makes it

challenging to directly use the shapes to detect ECG peaks.
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2. Sensor dropout: Figure 3.1b shows an example of signal dropout resulting in ex-

tended intervals of extreme noise. They typically result from large-scale disturbances to the

sensor like completely removing or readjusting the chest band. These intervals are easy to

identify because their characteristics differ widely when compared to normal signal. They

contain no useful information and no features can be extracted from them. Ideally, we

would want our feature extraction techniques to elegantly ignore such windows without

manual interventions.

3. Baseline shifts: Figure 3.1c shows the degree to which the signal baseline drifts

over short time spans. The baseline is also observed to drift over longer time spans. The

long-run drift is likely due to slippage of the sensor over time. It is unclear what causes the

short-run drift, but it is likely a hardware issue with the sensor itself. Again, the drift is a

minor issue when extracting features based on the RR interval, but needs to be accounted

for when extracting morphological features.

Despite these challenges, we would like to be able to accurately extract morphology

from wearable ECG signals collected in real world settings. We observe that there is known

structure in the ordering of valid ECG peaks within each cardiac cycle. Additionally, the

ordering is preserved across time as well as as across users. The research question we

address in this chapter is how to encode this domain knowledge to extract morphology in

wearable ECG?

The primary contributions of this chapter are, we encode domain knowledge about ECG

morphology via structured prediction models, specifically the linear chain CRF model.

We demonstrate the usability of sparse coding – an unsupervised dimensionality reduc-

tion technique, to learn the underlying basis representations from ECG peaks that exhibit

substantial variance in shapes. We evaluate the performance of both structured prediction

models and sparse coding on real world ECG data gathered from wearable chest band sen-

sors worn by users when consuming cocaine and performing other activities.
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Figure 3.2: Illustrates (a) the ECG morphology extraction pipeline and (b) the ground truth
data labeling pipeline

The rest of this chapter is organized as follows. We first describe our machine learning

pipeline to extract ECG morphology (Section 3.1). We then describe the dataset that we

used in our experiments (Section 3.2) and our empirical protocols (Section 3.3). We next

present results to demonstrate the performance of ECG morphology extraction (Section

3.4). Finally, we review related work (Section 3.5) and present conclusions in Section 3.6.

3.1 ECG Peak Labeling Pipeline

Our approach to ECG peak labeling is based on exact probabilistic inference in chain-

structured conditional random fields [58]. We label ECG peaks by following four primary

steps: candidate peak generation, feature extraction, dynamic CRF graph generation and

CRF inference. These steps are illustrated in Figure 3.2.

Before performing candidate peak generation, we perform a small amount of pre-

processing on the raw ECG data. Raw ECG data is measured in millivolts and is typi-

cally recorded at hundreds of samples per second. Over extended time periods typically

encountered in mHealth settings, ECG data from wireless on-body sensors exhibits signif-
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icant baseline drift. We apply a standard low-pass Gaussian filter with a standard deviation

of 600ms to estimate the baseline drift. We subtract the estimated drift from the raw data

to yield baseline corrected data. All of our subsequent processing is based on baseline

corrected ECG.

3.1.1 Candidate Peak Generation

The core of our approach is based on the idea of over-generating a set of candidate peak

locations that will subsequently be labeled. Our aim is for this set to include the locations

of all valid P, Q, R, S and T waves, as well as a minimal number of additional peaks caused

by noise and other artifacts in the ECG data. Candidate peak generation is illustrated in

Step 1 of Figure 3.2a. In this work, we apply Billauer’s PeakDet method as we have found

it be simple, fast and robust to noise [12].

3.1.2 Candidate Peak Feature Extraction

Given a set of candidate peak locations, we next extract features from the ECG data

in the local neighborhood of each candidate peak. Specifically, we define a window of

width w samples centered at each candidate peak location and extract features from the

ECG data contained in that window. In this work, we use sparse coding [80], as outlined

in Section 2.1.5, to learn an over-complete basis from ECG data in a fully unsupervised

manner. Sparse coding is an attractive choice for this application as it aims to describe

each candidate peak as resulting from a sparse linear combination of basis vectors. The

sparse coefficient vectors of these linear combinations are the sparse coding feature vec-

tors. Sparse coding feature extraction is illustrated in Step 2 of Figure 3.2a. We combine

the sparse coding feature vectors with additional features representing the height of each

candidate peak.
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3.1.3 Dynamic Conditional Random Fields

Given a set of candidate peak locations and their corresponding features, we construct

a dynamic CRF model. We instantiate one label variable yi and one feature variable xi for

each candidate peak location i. Importantly, we augment the label set with an additional

label N to indicate candidate peaks that do not correspond to any of the valid ECG waves.

We set the feature vector xi to the sparse coding feature vector extracted for candidate peak i

in the previous step. Finally, we connect adjacent label variables to form a chain-structured

graph. This process is illustrated in Step 3 of Figure 3.2a.

3.1.4 Learning and Inference

We perform maximum likelihood learning as outlined in Section 2.1.4. Once a CRF has

been dynamically instantiated given the candidate peak locations, standard probabilistic in-

ference methods can be used to infer the most likely values for the labels of the candidate

peaks. The restriction to a chain-structured graph permits the application of linear-time ex-

act inference methods [54]. Compared to an independent classification model like logistic

regression, the CRF model is able to leverage the high degree of regularity in the ECG peak

label transitions to aid in determining labels in regions of high noise. The CRF model has

the advantage that it determines all peak labels jointly. This makes it more robust in cases

where the local evidence for identifying e.g., QRS waves is weak due to transient noise, but

other waves like P or T are clearly discernible. Inference for an ECG trace with six peaks

is illustrated in Step 4 of Figure 3.2a.

3.2 Dataset

Wearable ECG data was collected from six habituated cocaine users in a NIDA-approved

clinical study in lab settings. The subjects wore the Zephyr BioHarness single-channel

ECG chest band sensor [117]. The wireless sensor on these chest bands samples ECG data

at 250Hz and transmits the data to a smartphone via bluetooth. Data were collected from
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Subject Session # Samples # Candidate # Labeled # Clusters
length peaks peaks

1 6h36m 5,624,954 217,941 3145 175
2 7h01m 5,649,203 214,563 4558 462
3 7h42m 6,537,902 301,317 3231 141
4 11h01m 9,492,152 333,165 4104 219
5 11h55m 6,736,003 245,995 2341 135
6 15h45m 13,565,502 450,256 3966 332

Total 60h 47,605,716 1,763,237 21,345 1464

Table 3.1: Dataset details including the total dataset sizes and the number of labeled peaks
per subject.

subjects both in the presence and absence of cocaine use. More details on the protocol used

to collect data in the lab settings are presented in Section 4.1.

3.3 Empirical Protocols

In this section, we describe the details of our training and evaluation protocols, fea-

tures extracted around candidate peaks, generating ground truth ECG peak labels, baseline

methods and evaluation metrics.

3.3.1 Manually Labeling ECG Peaks

We manually labeled over 20,000 candidate peak locations across six subjects. An

advantage of our approach is that it is not necessary to fully label the raw ECG data to

indicate which wave each individual sample belongs to. Instead, we first run the peak

detection method to generate a set of candidate peak locations and then manually specify

labels for the candidate peak locations only. This makes the entry of label information

much faster. This approach is illustrated in Steps 1 and 2 in Figure 3.2b.

We also note that it is not necessary to fully label each sequence of candidate peak

locations. For a chain-structured CRF, the learning algorithm only needs access to labels

for pairs of adjacent label variables to estimate the transition parameters. For each available

ECG trace, we labeled all candidate peaks in multiple short segments consisting of one to
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three cardiac cycles. We refer to these segments as clusters. We designed a simple GUI to

implement this labeling approach. Each labeled cluster serves as an instance that is used to

learn the CRF parameters. The details of the dataset are listed in Table 3.1. Importantly,

the use of the candidate peak generation step reduces the number of locations considered

by the CRF during inference by more than 27 times relative to making predictions for all

time points.

3.3.2 Train, Validation and Test Splits

We randomly partition the available data for each subject into a training set consisting

of 10% of labeled clusters, a validation set consisting of 45% of labeled clusters and a test

set consisting of 45% of labeled clusters, up to a total of 135 clusters, which is the minimum

number across all subjects. These splits remain fixed for each subject throughout all exper-

iments. The training sets are used to train the CRF model. The validation sets are used to

select the CRF regularization parameter as well as to select between different feature sets

(outlined in Section 3.3.4). The test sets are used to evaluate model performance.

3.3.3 Evaluation Protocols

Our evaluation uses three different learning protocols: within-subjects, between-subjects,

and transfer learning. In the within-subjects protocol, we use the training and validation

set for each subject s to learn a subject-specific model and evaluate the model on the test

data for subject s. In the between-subjects evaluation, for a given subject s, we pool the

training set and the validation set for the subjects other than s and use this pooled data to

learn a model. We evaluate this model on the data for subject s. In the transfer learning

evaluation, for a given subject s, we begin by learning the between-subjects model. We

then use the learned weights from the between-subjects model to define a data-dependent

regularizer when learning the within-subjects model for subject s. We present more details

on this regularization towards the end of Section 2.1.4.
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3.3.4 Extracting Features from Candidate Peak Windows

We set the size of the sparse coding basis to K = 100 and the sparsity parameter to

λ = 0.01. The basis vectors were learned on ECG data extracted from a window of size

51 samples (204ms) centered at each candidate peak location. These values were found

to yield good performance in preliminary testing. For within-subjects training, we learn

a separate set of sparse coding basis vectors from all of the data windows available for

each subject s. In between-subjects training and transfer learning, we learn the sparse

coding basis for subject s using all of the available data windows for each subject other

than subject s. We also make the height and the height squared of each candidate peak

location available as additional features. We consider three different feature sets when

learning a model: sparse coding only (SC), sparse coding with peak height (SCH), and

sparse coding with height and height squared (SCHH2).

We also consider several different ways of normalizing the data within each window

prior to extracting the features. We consider subtractive normalization (SN ) where we shift

the data to have zero mean within each window; subtractive and divisive normalization

where we shift the data to have zero mean within each window and re-scale it to have

unit standard deviation within each local window (SDNL); and subtractive and divisive

normalization where we shift the data to have zero mean within each window and jointly

re-scale all of the windows to have unit standard deviation globally (SDNG).

In each of our experiments, we consider nine possible feature extraction pipelines given

by the cross product of a choice of feature set from {SC, SCH, SCHH2} and a choice of

data normalization framework from {SN, SDNL, SDNG}. For each model, we select one

of the nine possible feature extraction pipelines using the validation set in each experiment.

3.3.5 Baseline Methods

In each of our experiments, we consider three different methods for extracting ECG

peak locations and labels including our dynamic CRF approach, an independent multino-
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mial logistic regression model (MLR) and the open-source ECGPUWave toolbox [83, 59].

Multinomial logistic regression is a special case of the CRF model that makes independent

predictions for each candidate peak by not taking the transitions between adjacent peaks

into account.

The ECGPUWave toolbox follows a traditional two-stage approach based on first iden-

tifying QRS complex locations and then performing a local search to identify the peak

locations within each cardiac cycle. The ECGPUWave toolbox can operate in conjunction

with a number of different QRS complex detectors. The classical detector used with ECG-

PUWave is the Pan-Tompkins detector [84]. We found that the more recent open-source

WQRS detector of Zong et al. performed significantly better on our data. The WQRS

detector is based on the curve length transform and has been shown to be very robust,

achieving a QRS sensitivity of 99.65% and a gross QRS positive predictive accuracy of

99.77% on the MIT-BIH Arrhythmia Database [120].

Since our data is labeled in terms of candidate peak locations and the CRF and MLR

models are restricted to making predictions only at these locations, it is straightforward to

assess their prediction performance. ECGPUWave can predict peaks at arbitrary locations

so evaluating its accuracy requires some care. We apply a minimum weighted bipartite

matching algorithm to the ground truth and ECGPUWave label locations to establish a cor-

respondence between the true and predicted labels based on the distance between their time

points [55]. We allow the ECGPUWave predictions to match ground truth labels within a

window of plus or minus four samples (16ms). We define an ECGPUWave prediction as

being correct if it is matched to a ground-truth label of the correct type. As a result of

the matching window constraint, all correct peak labels must be within plus or minus four

samples of a ground truth label of the correct type. Also due to the matching window con-

straint, some ECGPUWave predictions may not match any ground truth label locations.

These predictions are considered as matching a ground truth label of N (not a valid peak

location), which counts as a labeling error.
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We performed a preliminary analyses of the effect of window size on the number of

matched ECGPUWave predictions and determined that the number of matches remains

nearly constant as the window size is increased to nearly the average width of a full cardiac

cycle. This indicates that the lack of a match for ECGPUWave typically means it did not

identify a given wave type within a cardiac cycle at all. Failure to identify a given ground

truth wave is assessed as a prediction of N (not a valid peak) for that ground truth label. By

contrast, the CRF and MLR methods are required to match the ground truth label locations

exactly for their predictions to be considered correct.

3.3.6 Evaluation Metrics

We evaluate the three morphology extraction methods described above using several

different metrics. All of the results that we report are averaged over the test set performance

of our six subjects and the standard error of the mean is also reported. The first metric we

employ is average labeling accuracy over all six label types (P,Q,R,S,T,N). We also report

confusion matrices where we list the fraction of each ground truth label that is predicted to

be of each label type. This allows for a detailed analysis of the types of prediction errors

that each method tends to make.

We are also interested in assessing the impact of morphology extraction accuracy on the

computation of ECG morphological feature values. We use the distance between the Q and

T waves as an example feature related to cocaine use. We assess the recall and precision

of QT intervals as well as the error in the distance for recalled QT pairs. The recall is the

number of complexes where the ground truth contained a QT pair and both Q and T peaks

were predicted to be present, divided by the number of complexes where the ground truth

contained a QT pair. The precision is the number of complexes where the ground truth

contained a QT pair and both Q and T peaks were predicted to be present, divided by the

number of complexes that were predicted to contain a QT pair. The error in the QT interval
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Figure 3.3: (a) Shows the average labeling accuracy for within-subject training. (b)-(d)
show the corresponding confusion matrices for PUW, MLR and CRF.

is defined to be the absolute difference between the predicted QT interval (the distance

between the predicted peaks) and the ground truth QT distance.

3.4 Results

In this section, we describe the results of our empirical evaluation including the within-

subjects evaluation, between-subjects evaluation and transfer learning evaluation. Through-

out this section, PUW refers to ECGPUWave using the WQRS detector, MLR refers to

multinomial logistic regression, and CRF refers to our dynamic CRF framework.

3.4.1 Within-Subjects Evaluation

The results of the within-subjects evaluation as shown in Figure 3.3. Figure 3.3a shows

the average prediction accuracy results for each of the three methods. We can see that

the CRF and MLR methods both achieve the same average accuracy above 0.95, while

PUW performs substantially worse with an average accuracy of about 0.87. The confusion

matrices shown in Figures 3.3b-3.3d provide a more detailed look at the performance of

the methods on a per-peak type basis. We can see that the prediction profiles for both the

CRF and MLR models are nearly identical. We can also see that the distribution of errors

for PUW is highly non-uniform. Consistent with past results for the WQRS detector, the

PUW’s identification of R peaks is highly accurate (99%). However, performance for all
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Figure 3.4: Shows average labeling accuracy as a function of number of training label
clusters for within-subjects training

of the other peak types is much worse. In essentially all cases, this poor performance is

caused by PUW failing to identify valid peaks, resulting in a prediction of N (not a valid

peak).

The fact that MLR and CRF have similar performance in the within-subjects case in-

dicates that the feature representation provided by sparse coding is rich enough and the

amount of data is large enough that there is no marginal benefit to structured prediction.

However, the full within-subjects training protocol is based on hundreds of peak labels per

subject. The need to label this much data for each individual subject is highly prohibitive.

To assess the performance of the MLR and CRF methods given less data, we repeated the

within-subjects evaluation while varying the number of labeled clusters available during

training between 1 and 14 (each cluster contains 15 labeled peaks on average). The results

of this assessment are given in Figure 3.4. We can see that the performance of MLR and

CRF are strongly differentiated in the more realistic low-data limit. With only one clus-

ter of labels, the CRF still out-performs PUW on average, while MLR does not. We can

also see that as more data become available, the CRF is able to improve its performance

significantly faster than MLR.
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Figure 3.5: (a) Shows the average labeling accuracy for between-subject training. (b)-(d)
show the corresponding confusion matrices for PUW, MLR and CRF.

3.4.2 Between-Subjects Evaluation

A natural alternative to learning ECG peak labeling models for each individual subject

is to learn a model from an existing database of ECG peaks and apply that model to new

subjects. The between-subjects evaluation assesses the performance of this approach when

a model is learned using data from 5 subjects and then evaluated on the 6th held-out subject.

We report results averaged over holding out each subject. Figure 3.5 gives the results of

this assessment. We can see that both MLR and CRF suffer a decrease in performance

relative to the full-data within subjects case. However, the CRF still out-performs PUW

in the between-subjects setting while MLR performs worse on average. The confusion

matrices show that MLR confuses a variety of similar wave types in this setting (P for T, R

for P and T, T for P). The CRF makes similar types of errors, but to a reduced extent. This

discrepancy can be explained by the fact that the CRF’s transition parameters are able to

exploit the regularity in the ordering of the waves within a cardiac cycle to compensate for

feature parameters tuned for other subjects. By contrast, MLR only has access to features

values. When there is a poor match between the shapes of the waves between-subjects, its

performance thus degrades much more quickly.
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Figure 3.6: Shows average labeling accuracy as a function of number of training label
clusters for transfer learning

3.4.3 Transfer Learning Evaluation

The drop in performance of MLR and CRF in the between-subjects setting motivates

the evaluation of a third training protocol: transfer learning. Under the transfer learning

approach we employ, (outlined in Section 3.3.3), data from other subjects is used to create

a prior distribution over the model parameters. In the absence of any data for a given

subject, the learned model falls back to the between-subjects model. As more data becomes

available for an individual subject, transfer learning can smoothly interpolate between the

between-subjects model and the within-subjects model. Figure 3.6 shows the results of this

analysis. We can see that transfer learning is able to dramatically improve the performance

of both MLR and the CRF in the low-data limit. With just one cluster of labels observed

(approximately 16 labels), both MLR and CRF out-perform PUW and their corresponding

between-subjects results.

3.4.4 QT Feature Extraction Evaluation

From the perspective of mHealth research, an important question is how differential

accuracy in ECG peak labeling relates to the accuracy of ECG feature extraction. As a case

study, we consider the problem of extracting QT distances from ECG data. The standard

approach to this problem is to first identify the individual peak locations, and then compute
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Figure 3.7: (a) shows the ground truth distribution of QT distances over all data. (b)-(d)
show recall rates as a function of ground truth QT distance for each method. These results
show that PUW exhibits a strong differential recall rate as a function of the ground truth
QT interval, while the CRF does not.

QT distances using the identified waves. The potential problem with this approach is that

failure to predict either the Q or T peak results in the absence of a QT feature. Complexes

for which feature values could not be extracted are typically discarded from subsequent

analysis. However, this can lead to a systematic bias in the subsequent analysis if there

is a relationship between the true value of a feature and the ability of a feature extraction
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method to extract it reliably. This is essentially a non-random missing data problem in the

sense of Little and Rubin [64].

30 35 40 45 50 55 60 65 70 75 80 85 90
0 

5 

10

15

20

N
o 

co
ca

in
e 

co
un

t

30 35 40 45 50 55 60 65 70 75 80 85 90
0  

50 

100

150

200

QT distance

C
oc

ai
ne

 c
ou

nt

(a) Ground truth

30 35 40 45 50 55 60 65 70 75 80 85 90
0 

5 

10

15

20

N
o 

co
ca

in
e 

co
un

t

30 35 40 45 50 55 60 65 70 75 80 85 90
0  

50 

100

150

200

QT distance
C

oc
ai

ne
 c

ou
nt

(b) PUW

30 35 40 45 50 55 60 65 70 75 80 85 90
0 

5 

10

15

20

N
o 

co
ca

in
e 

co
un

t

30 35 40 45 50 55 60 65 70 75 80 85 90
0  

50 

100

150

200

QT distance

C
oc

ai
ne

 c
ou

nt

(c) MLR
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(d) CRF

Figure 3.8: Distribution of QT distances for cocaine vs no cocaine. (a) shows ground truth
QT distance distribution. (b)-(d) shows distributions of predicted QT intervals for PUW,
MLR, and CRF.
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Model Error Recall Precision
PUW 8.5914±12.8231 0.8733 0.9689
MLR 0.8469±13.5030 0.9549 0.9912
CRF 1.9085±17.4729 0.9854 0.9830

Table 3.2: QT interval evaluation for PUW, MLR and CRF.

To assess the extent of this issue in our data, we used the MLR and CRF models trained

using transfer learning with four clusters of labeled data to give a more realistic scenario for

comparing subject-specific models to ECGPUWave. The results are summarized in Table

3.2. We can see that the lower accuracy of PUW results in significantly lower recall and

precision of QT distances, as expected. We can also see that PUW has much higher mean

error for the QT intervals that are retrieved than either MLR or PUW. Details of how we

compute QT errors, precision and recall are explained in Section 3.3.6.

However, the interesting question is whether the recall rate for QT distances is uniform

across all ground-truth QT distance values. Figure 3.7a shows the ground truth distribution

of QT distances for our test data, pooled over all subjects. Figures 3.7b to 3.7d show the

recall rate as a function of the ground truth QT distance (in bins of 5 samples). We can

see that both PUW and MLR exhibit a strong differential recall rate as the ground truth QT

distance increases. Only the CRF method achieves a nearly flat recall rate as a function of

ground truth QT.

The final component of this case study looks at the distribution of QT values as a func-

tion of the study condition (cocaine vs no cocaine). Figure 3.8a presents the distribution

of ground truth QT distances for both conditions pooled over all subjects. Figures 3.8b to

3.8d show the distribution of predicted QT distances for the complexes where both Q and

T waves were identified. We can see that the CRF matches the ground truth distribution of

QT distances quite closely for both the cocaine and no cocaine conditions as a result of its

flat recall profile. On the other hand, PUW fails to identify any of the QT distances in bins

65, 80, 85 under no cocaine and significantly skews the QT distribution in the presence of
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cocaine. MLR also misses a large number of cases in bins 75, 80, 85 under no cocaine, but

performs well in the cocaine setting.

3.5 Related Work

The vast majority of past work on ECG morphology extraction has focused on QRS

complex detection. Pan and Tompkins developed a widely used and widely cited QRS

complex detection algorithm based on simple features of the ECG trace. Their approach

achieves a QRS detection accuracy rate of 99.325% on the MIT-BIH dataset [84]. How-

ever, systematic errors were noted in cases where the ECG signals contained stretches of

noise, baseline shifts, unusual morphology and other artifacts. More recent work on QRS

complex detection has focused on methods based on various transforms including the curve

length transform [120] and the wavelet transform [69]. Both of these approaches give QRS

complex identification precision and recall rates above 99.5% on MIT-BIH dataset.

Other works on ECG morphology extraction first performs QRS detection followed by

a local search procedure to identify individual waves [49, 69]. Research on atrial fibrillation

has looked at extraction of specific morphological features from ECG. For example, [13,

14] uses QRS duration and PR interval to detect atrial fibrillation. A downside of these

approaches is that a large number of threshold parameters are involved in the local search

procedure. The method of Martinez et al. [69] for instance, depends on fifteen threshold

parameters that are set by hand for an existing dataset such as MIT-BIH. More recent work

has used supervised learning to select the set of scales used in wavelet decomposition [21].

The work of Hughes et al. [47] and de Lannoy et al. [23] treat morphology extraction as

an ECG segmentation problem using hidden Markov models (HMMs). However, Hughes

et al. specify the HMM directly over raw ECG samples and partially specify the transition

structure by hand. De Lannoy et al. specify the HMM over coefficients of multiple mother

wavelets and additionally make an assumption that all windows of ECG data start with a P
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wave. Both approaches are forced to introduce self transition constraints into the model to

counter the natural geometric distribution of self transition times inherent in an HMM.

CRFs have also been applied to ECG data previously, but for the problem of heartbeat

classification [22]. In the work of de Lannoy et al. the CRF labels correspond to the beat

type of each complete cardiac cycle. In fact, their work uses the method of Martinez et al.

to extract morphological features [22]. We refer interested readers to [30] for a review of

techniques and algorithms for ECG morphology extraction.

3.6 Conclusions

We started with the observation that there is domain knowledge in the cyclic patterns

exhibited in many physiological signals. We hypothesized that leveraging this information

will lead to improved performance on extracting low level features which in turn is used to

detect high level target activities. We demonstrated the usefulness of this approach on one

sample signal, ECG. We encoded domain knowledge via structured prediction models. We

also demonstrated the usability of sparse coding to handle the inherent variance in shapes

of ECG peaks. We evaluated the performance of these techniques on real world sensor

data.

The structured prediction model resulted in a relative error reduction of 33% when

compared to both independent and baseline methods in a between user evaluation study.

In order the minimize the manual labeling effort we also demonstrated transfer learning

techniques which achieved the same performance as personalized models but with 77%

reduction in the number of supplied labels (3 vs. 13 clusters of labels) on average. We also

demonstrated that the CRF model introduces less systematic bias in regard to extracted

features on downstream tasks when compared to baseline methods.

Inspired by this work, other researchers have used structured prediction models to en-

code domain knowledge when detecting target activities. The linear chain CRF model was

used to label hand-to-mouth gestures in a smoking detection study [85] and was also used
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to detect craving in smoking cessation studies [15]. In both studies, the structured predic-

tion model performed better than independent and baseline methods. Even in the case of

ECG morphology extraction, we observe improvement in performance when taking more

long range dependencies into account when labeling ECG peaks. The first order Markov

assumption in the linear chain CRF can restrictive when labeling ECG peaks especially,

when the CRF model encounters a sequence of N’s. The linear chain model looses track

of the valid ECG peak preceding the N’s. The context free grammar CRF (CRF-CFG)

model leverages long range dependencies and obtains a 20% relative error reduction when

compared to the linear chain CRF model on the same ECG dataset as ours [75].

Another variant is a hierarchical CRF model that both labels and segments continu-

ous streams of sensors data into high level activities [3]. This model further extends the

idea of structured prediction to a second level of activity segmentation from streams of

sensor data. More recently, the CRF-CFG model has been demonstrated to be useful in

conversation detection using respiratory signals [8]. This followup research demonstrates

the usefulness and generality of structured prediction models in the space of personalized

health monitoring using wearables.
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CHAPTER 4

MACHINE LEARNING PIPELINE FOR COCAINE USE
DETECTION USING WEARABLE ECG SENSORS IN LAB

SETTINGS

Presently, there are no FDA approved medications for cocaine addiction although re-

search is underway for such drugs. Cognitive behavioral therapy (CBT) has been demon-

strated to be effective in treating cocaine addiction [88]. CBT, among others, helps cocaine

addicts to self-monitor to recognize cravings early and to identify contexts that increase

chances of cocaine use. In general, drug users have a variety of reasons to not divulge de-

tails on drug use ranging from legal and social issues to self-denial and stigma surrounding

drug addiction. Another major problem with self-reporting in this subject population is

recall bias where a subject’s retrospective recall of events differ from actual events [35].

Continuous monitoring of drug users provides critical information on user behaviour, co-

caine use history, context surrounding cocaine use (e.g., location, time, social interaction,

visual cues, stress) while minimizing the impact of recall bias. All this information is per-

tinent to effective CBT treatment for cocaine addiction. Hence, for continuous monitoring

to be effective and useful, the first order of business is to reliably detect cocaine use in real

world settings.

In this research, we use wearable sensors to detect cocaine use in real world settings

since they are relatively easy to use, readily deployable, scalable and practical. We treat

this as an instance of personalized health monitoring using wearables. However this is

an extremely challenging problem since we have no prior evidence to demonstrate the

feasibility of detecting cocaine use with wearable sensors. Hence we resort to first detecting

cocaine use in more controlled clinical settings such as lab settings. The advantage is
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two-fold: one, we isolate cocaine use activity from other confounding activities making it

possible to obtain clean data; and two, we have more control over the design of experiments,

which leads to high quality sensor data and associated labels. The research question we

address in this chapter is can we reliably detect cocaine use in lab settings with wearable

sensors?

The primary contributions of this chapter are to design and evaluate the feasibility of

using wearable sensors to detect cocaine use in lab settings. We develop a cocaine use

detection pipeline which includes data sensing and logging, feature extraction, feature ag-

gregation and, lastly, cocaine use detection. We evaluate the usability of different ECG

features in cocaine use detection and compare two approaches to feature aggregation over

temporal windows. We evaluate the cocaine use detection pipeline on a novel cocaine use

dataset gathered in the lab setting on habituated cocaine users.

The rest of this chapter is organized as follows. We first describe the experimental

protocol used to gather data in the lab study (Section 4.1). We then describe our cocaine

use detection pipeline (Section 4.2) and empirical protocols (Section 4.3) corresponding to

our experiments (Section 4.4). We then present results (Section 4.5), review related works

(Section 4.6) and present conclusions (Section 4.7).

4.1 Lab Study Protocol

As part of a National Institute on Drug Abuse (NIDA) approved study, we collected

data from ten medically healthy, non-treatment seeking, experienced cocaine users. Sub-

jects typically participate in the study for a two week period. All subjects reviewed and

signed a consent form approved by Yale University’s institutional review board. All par-

ticipants were compensated monetarily for their time. This study was designed to isolate

physiological responses to cocaine from other confounding activities. The study consists

of multiple components that we describe below.
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1. Dry-Out Period: When subjects are first admitted to the unit, they undergo a dry-out

period to ensure that the acute influence of previous drug use does not affect the results of

the study. All subjects undergo a dry-out period that lasts for several days.

2. Cocaine Administration Session: Subjects participate in a single 6-hour cocaine

administration experiment comprised of a baseline session, three fixed-dose cocaine admin-

istration sessions and three cocaine self-administration sessions. These sessions appear in

the same order for all subjects with mandatory breaks between them. The baseline session

is conducted at the end of the dry-out period and immediately before cocaine administra-

tion. It provides physiological measurements in the complete absence of cocaine. The

three fixed-dose sessions last 20 minutes each. At the start of each of the these three ses-

sions, the subjects receive a single-bolus intravenous (IV) injection of cocaine. The three

cocaine sessions use a fixed-order, ascending dose regimen of 8, 16, and 32 mg per 70kg

respectively with a 100kg cap per adjusted dose. This procedure is based on extensive prior

experience, which has shown these doses and procedures to be safe, well tolerated, valid,

behaviorally relevant, and test-retest reliable [103].

The main purpose of the baseline and fixed-dose sessions is to assess subjects for par-

ticipation in subsequent cocaine self-administration sessions. Physiological (ECG, respi-

ration) and behavioral (visual analog scale) assessments are conducted at five-minute in-

tervals throughout each session. An advanced cardiac life support certified research nurse

and a basic life support certified research assistant are also present. Subjects who exhibit

a heart rate greater than 160 beats per minute, diastolic blood pressure greater than 110

mmHg, systolic blood pressure greater than 180 mmHg, and/or have evidence of clinically

significant cardiac ectopy, arrhythmia, or other dangerous symptoms are excluded from

further self-administration sessions.

The fixed dose sessions are followed by three self-administration sessions which give

subjects some control over the amount of cocaine they can receive. Each self-administration

session uses one dosage level (8mg, 16mg or 32mg). The order of the dosage levels is ran-
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domized and double blinded. The subject can click a button to receive an IV cocaine infu-

sion at the given dosage level within each self-administration session. There is a minimum

period of 5 minutes enforced between subsequent infusions. All cocaine self-administration

sessions take place at the Yale center for clinical investigation hospital research unit (YCCI-

HRU). A saline lock, or peripheral intravenous device, is used for infusions of cocaine.

Saline locks are maintained by trained research personnel in accordance with local, institu-

tional policies and procedures.

3. Physical Exercise Session: In order to match the high heart rates experienced in the

cocaine session, subjects were put through one (for some subjects two) physical exercise

sessions. Eight of the ten subjects ran on the treadmill for twenty minutes with no or

little resistance. Care was taken to ensure that median heart rates in the exercise session

overlapped with the median heart rate in cocaine session for each subject. Two subjects

went through a ping-pong session for the same duration.

4. Smoking Session:The goal here is to detect cocaine from yet another known con-

founder. It has been identified that nicotine causes acute changes in heart rate along with

simulation to sympathetic nerve activity. ECG data collected from nicotine sessions fol-

lowed a relaxed protocol were subject exit and re-entry time into clinical units were noted

along with the number of cigarettes smoked. Only seven of the ten subjects participated in

smoking sessions.

5. Routine Activities: In order to assess the subject’s resting heart rate and physi-

ological data in non-experimental settings, we gathered sensor data when subjects were

performing day-to-day activities like watching television, sitting quietly, conversation, eat-

ing, etc.

4.2 Cocaine Detection Pipeline

In this section we describe our cocaine use detection pipeline on data gathered from

ten subjects in the lab study. Our pipeline encompasses two levels of inference to analyze
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1. Sensing 2. Data Logging 3. ECG Peak Detection

P

Q
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T

4. Feature Extraction6. Classification 5. Feature Aggregation

…

Figure 4.1: Data acquisition, processing and cocaine use detection in lab settings

raw ECG data to detect cocaine use. At the first level, we extract ECG morphology from

raw sensor data using techniques described in Chapter 3. At the second level, we perform

feature aggregation to explicitly take into account noise in the ECG morphology extrac-

tion process. We acknowledge that this two step process may be sub-optimal as domain

knowledge can be incorporated to create a single framework to perform multilevel infer-

ence simultaneously as in [3]. We leave this to future work. We first describe the on-body

sensor system, followed by feature extraction and finally the cocaine use detection model.

4.2.1 Sensing and Data Logging

During the lab protocol, the subjects wore a Zephyr Bioharness 3 chest band [117]

which provides raw ECG data, chest band diameter, accelerometer and derived data such

as heart rate and respiratory rate. These chest bands are designed to be comfortable and

less intrusive to wear than Holter monitors. This sensor samples ECG data at 250 Hz and

has sufficient memory and battery life for 24 hours.

Our system encompasses two levels of data logging. The first level is on the sensor

itself. The second is on a Samsung Galaxy smartphone that is paired to the chest band

sensor via bluetooth. The data on the sensor is downloaded at the end of each day and
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Figure 4.2: Distribution of heart rates in three 30 second windows. All three windows have
an average heart rate of 85bpm with heart rate variability of 2beats

uploaded to a secure server. The sensor also transmits summary packets to the phone,

which are then periodically transmitted wirelessly to the secure server. The on-body sensor

system is illustrated in steps 1 and 2 in Figure 4.1,

4.2.2 ECG Peak Detection

We follow the pre-processing steps and ECG peak detection approach as described

in Chapter 3. ECG peak detection is illustrated in Step 3 in Figure 4.1. Since there is

substantial variability in size and shapes of ECG peaks between subjects, we build the

sparse coding dictionary and CRF model per subject in the lab dataset.

4.2.3 ECG Feature Extraction

We extract ECG features from ECG peak locations. ECG feature extraction is illus-

trated in Step 4 in Figure 4.1. Ideally, we would like to extract ECG features, for instance

QT interval, within each ECG cardiac cycle. To do so, we pair P, Q, S and T peaks to

the associated R peak thus grouping ECG peaks into individual cardiac cycles. Motivated

by prior studies on effects of cocaine on ECG (Section 2.2.3) we extract six features per

cardiac cycle: RR interval, QT interval, QTc1 (corrected QT), QS interval, PR interval, and

T-wave height.

1Bazett’s correction
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4.2.4 ECG Feature Aggregation

Raw ECG data is sampled at 250Hz, but changes in ECG morphology as induced by

cocaine happens at much lower frequency (it typically varies from 45 minutes to 3 hours

depending on quantity and form of intake, metabolism and habituation). Hence, there is a

temporal mismatch in the rate of arrival of sensor data and the rate at which we would like

to make decisions on cocaine use. Additionally, features extracted from ECG morphology

are susceptible to noise in the morphology extraction process which in turn affects down

stream task of cocaine use detection. For example, typical cardiac cycles are made of P, Q,

R, S and T waves, but due to noise or other artifacts a spurious peak may be mislabeled as

a valid ECG peak or a valid ECG peak may not be labeled at all. Hence features computed

using ECG morphology need to explicitly take into account noise in ECG morphology

extraction process.

We perform feature aggregation to mitigate the effect of potentially noisy ECG features

as well as to detect cocaine use over a given decision making window. Typical approaches

to feature aggregation are computing the mean and standard deviation, which captures

the location and shape of the underlying distribution. It is well known that both these

statistics are sensitive to outliers and perform poorly when the underlying distribution is

non-Gaussian or multi modal. As an illustration, we plot the distributions of heart rates in

three 30 second decision making windows in Figure 4.2. The three windows are chosen

such that the mean heart rate is 85 bpm and the heart rate variability is 2 beats. Despite the

fact that these three windows have identical mean and standard deviation, the underlying

distributions are starkly different.

Our approach to feature aggregation is to build 1D histograms of extracted features over

decision making windows. Building histograms is illustrated in Step 5 in Figure 4.1. The

use of histogram-based features for ECG is inspired by success in using these features in

computer vision. Histogram of Oriented Gradient (HoG) features have been demonstrated

to be successful in many computer vision tasks like face detection [24] and pedestrian
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detection [20]. While HoG features are described in the spatial domain, our 1D histogram

of ECG features are described over sliding time windows of ECG data. This approach is

akin to a non-linear transformation of features. These 1D histograms capture properties of

the feature distribution such as multiple modes by distributing its mass over multiple bins.

The 1D histograms also naturally handle outliers by placing them in the extreme histogram

bins (since theses features are farther away from the mean) while averaging explicitly takes

outliers into account.

4.2.5 Classification

The final stage of our pipeline is detection of cocaine use, as illustrated in Step 6 in

Figure 4.1. Given features aggregated from a sliding windows, we view the problem of

constructing a detector for cocaine use as a standard binary classifier learning problem. We

treat data from the self-administration session as positive instances of cocaine use and all

other activities as negative instances. Each data case consists of a feature vector, x ∈ RD,

of aggregated features and a corresponding class label, y ∈ {−1,+1}, indicating which

of the two classes the data case belongs to. We utilize penalized logistic regression as

discussed in Section 2.1.1.

4.3 Empirical Protocols

In this section, we describe the empirical protocols including how we partitioned the

data and evaluated cocaine use detection in the lab setting.

4.3.1 Cocaine and Non-cocaine Activities

For these experiments, we used ECG data from all activities in the lab protocol. ECG

data from breaks in the self-administration session were also considered instances of co-

caine use since cocaine has a half life of roughly ∼ 45 minutes. For the seven subjects

that participated in the smoking activity, we retained ECG data from the middle one-third
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of each smoking session only as the first and last one-third of ECG data included walking

to/from the smoking lounge.

4.3.2 ECG Morphological Features and Feature Aggregation

We experimented with six ECG features RR, QT, QTc, QS, PR and TH. We also experi-

mented with two feature groupings, ALL – all six features combined together and ALL-RR

–all features combined together expect RR. In total, we experimented with eight feature

sets. We experimented with two types of feature aggregation techniques: the proposed

histogram-based feature aggregation and, standard summary statistics such as mean and

standard deviation. The purpose of two different feature aggregations is to compare and

contrast traditional methods with our histogram approach. Both feature aggregations were

performed on the one minute sliding windows. We experimented with different sliding

window lengths ranging from 30 seconds to 7 minutes. We observed that the trends were

roughly similar with no significant difference between different window sizes for different

feature groupings. We present this analysis in the results section. For the purposes of pro-

viding enough data samples in both positive and negative classes we present results from

one minute sliding windows with zero overlap.

In order to build histogram-based features, we also require the number of histogram

bins (or alternately the bin boundaries). In our experiments, we observed computing his-

togram over four bins to be robust to noise typically found in ECG sensor data. Hence for

each subject we choose bin boundaries:
{[

minimum value-33rd percentile
]
,
[
34th − 50th

percentile
]
,
[
51st−66th percentile

]
,
[
67th percentile-maximum value

]}
. These boundaries

were computed per ECG feature (RR, QT interval, etc) on data collapsed from all activities

(cocaine, physical exercise, etc) within each subject. These boundaries result in four bins

per ECG feature with a total of 24 features per sliding window. To avoid absolute counts

from influencing downstream tasks we normalize histogram counts over bins per sliding

window such that they sum to one.
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4.3.3 Evaluation protocols

We perform both within-subjects and between-subjects evaluation. In the within-subject

experiments, we partition the available data from both cocaine and non-cocaine activities

into two temporally preserved halves. The training data corresponds to the first half of each

session (cocaine, physical exercise, etc) and the test data corresponds to second half. This

same partition was preserved within the fixed and self-administration cocaine sessions as

well. We resorted to this partition to simulate real-world scenarios and to retain time cor-

related samples in the train/test respectively. For the between-subjects evaluation, we train

the cocaine use detection model on M − 1 subjects and test on the held out M th subject

(i.e. a leave-one-user-out protocol). We repeat the same protocol for all ten subjects.

4.3.4 Cocaine Detection Model

In both the within and between-subjects case, we train and test one cocaine use de-

tection model per subject. We use penalized logistic regression as described in Section

2.1.1. For the within-subjects case, we perform hyperparameter selection by performing a

5-fold cross validation on the train set. For the between-subjects case we perform another

leave-one-user-out cross validation on M − 1 subjects to choose hyperparameter.

4.3.5 Evaluation Metrics

For both within and between-subjects analyses, we report the mean area under ROC

curve (AUROC) along with standard error bars over ten subjects.

4.4 Dataset

In Table 4.1, we report the number of data cases in each activity following feature

aggregation. Each data case corresponds to a one minute sliding window with no overlap.

We have only considered sliding windows in which all six ECG features could be reliably

extracted. We observe there are twice the number of data cases in the cocaine activity

when compared to all other activities put together. This imbalance in sample count is the
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consequence of experiment design which tends to focus on rare, target activities such as

cocaine use to build reliable, robust detectors.

Subject Age Sex Cocaine Baseline Physical Routine Smoking
session session exercise activities session

1 49 F 355 34 40 30 122
2 46 M 336 31 19 30 74
3 44 M 247 36 38 28 121
4 46 M 350 24 40 30 78
5 42 M 355 35 40 30 107
6 36 M 175 29 20 30 78
7 49 M 258 23 20 30 43
8 30 F 94 44 22 30 –
9 46 M 333 20 15 29 –
10 49 M 440 34 20 30 –

Total – – 2943 310 274 297 623

Table 4.1: Number of data cases (one minute windows) per subject for cocaine, baseline,
physical exercise, routine activities and smoking activities

4.5 Results

In this section we present results of both the within and between-subjects evaluation for

all eight feature sets and two feature aggregation techniques.

4.5.1 Within-subject Cocaine Detection

While training a classifier for each individual user is clearly not practical, studying

within-subject classification sheds light on which features work best if we ignore between-

subject variability induced by habituation and cardiac response to cocaine. We report the

mean AUROC as well as the standard error of the mean in Figure 4.3 for each feature set

and feature aggregation technique.

On the x-axis are different feature sets and on the y-axis is AUROC. The first observa-

tion is that all feature sets perform with AUROC >0.5, which is above chance. We observe

that using all features performs the best with an AUROC of 0.86 when compared to using

any one feature in isolation. This is followed by AUROC’s of PR interval, QTc and RR
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Figure 4.3: Mean within-subject AUROC over ten subjects along with standard error bars
for seven features and two feature aggregation techniques

interval at 0.83, 0.78 and 0.76 respectively. The differences in AUROC’s between the top

three features are not statistically significant as evidenced by the overlapping error bars.

In terms of feature aggregation techniques, we observe that six of the eight features us-

ing histogram-based aggregation performed as well as (or better) than summary statistics-

based feature aggregation, but this difference is not statistically significant. It is also worth

noting that the two feature sets for which the histogram-based feature aggregation per-

formed worse than summery statistics are both heart rate influenced features (R and QT). It

is well known that cocaine causes an increase in heart rate leading to good separability be-

tween cocaine and non-cocaine data cases. Additionally, it is relatively to easy to identify

and extract feature related to RR interval when compared to extracting features associated

to morphological changes in ECG.

Before moving on to the between-subjects case, we pause to consider the usefulness of

RR interval as a basis for cocaine use detection outside of the clinical setting. While the

RR interval has reasonable performance in the clinical setting, it is obviously confounded

by any other activity that results in an increase of heart rate. The fact that other ECG

features, such as QTc, yield better performance while completely removing the effect of
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Figure 4.4: Effect of different sliding windows for feature aggregation

heart rate implies that there are significant morphological changes in ECG in the presence

and absence of cocaine.

Lastly, we analyze the effect of different sliding window sizes. In Figure 4.4 we plot

the within user performance using histogram based feature aggregation technique for dif-

ferent sliding windows. We experimented with windows ranging from 30 seconds to seven

minutes. We observe that the trends for different window sizes are similar to the within

user performance but exhibit strong overlap as evidenced by overlapping error bars. The

performance is almost identical for ALL and ALL-RR features when compared to individ-

ual features. This suggests that when concatenating all features, the signal to noise ratio

roughly remains the same for different sliding windows. We also point out that as window

size grows, there are fewer data examples to train and test the classifier. This reduction in

sample size is reflected in the plot as performance corresponding to windows of size seven

performs better, on average, than windows of size 30 seconds.
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Figure 4.5: Mean between-subject AUROC over ten subjects along with standard error bars
for seven features and two feature aggregation techniques

4.5.2 Between-subject Cocaine Detection

We now turn to between-subjects cocaine use detection. We report the mean AUROC

as well as the standard error of the mean in Figure 4.5 for each feature set and both feature

aggregation techniques.

Ignoring the RR interval’s performance since its use outside of clinical settings is lim-

ited, we observe similar trends to that of the within-subject’s case, but there is an overall

reduction in AUROC across all features and aggregation techniques. This reduction is ex-

pected given the between-subject variability in the relationship between ECG and cocaine

use. We observe that the best AUROC is at 0.76 when using histogram-based ALL features.

We observe that histogram-based features do not perform very well compared to summary

statistic-based feature aggregation since the histogram bin boundaries, which are computed

per subject, do not align very well. This causes some features in some subjects to concen-

trate in some bins, while it causes the same features in other subjects to concentrate in other

bins which directly affects generalizability.
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4.6 Related Work

Following our work, wearable ECG has been used to detect cocaine use in both lab

and field settings [43]. Hossain et al., used heart rate and accelerometer data as features to

isolate cocaine use events from other confounding activities. Central to their approach is

the dynamics of the autonomic nervous system (ANS) to detect cocaine use events. Specif-

ically, an increase in heart rate is associated to the activation of the sympathetic branch of

the ANS. However increase in heart rate can be caused by several confounding activities

such as physical exercise, fear, stress, etc. This paper makes the crucial observation that the

parasympathetic branch handles heart rate recovery differently for cocaine and non-cocaine

events. The authors train a prediction model to label candidate windows as either belonging

to cocaine-free physical activity, activity-free cocaine use, or neither of these classes.

In order to minimize false positives, they perform classification only on candidate win-

dows that are likely to have cocaine use events. Their criterion for selection of candidate

windows includes a combination of heuristics, change point detection algorithms on in-

stantaneous heart rates, urine tests and accelerometer data to screen out physical activity.

Model parameters are tuned on a lab dataset and evaluation is performed on field data. On

a field dataset of 27 cocaine use events spread over 25 days their model has a true positive

rate of 100% and a false positive of 1.13/day.

This study differs from ours in four important ways,

1. Hossain et al., treat the subjects’ self-reported drug intake event timestamps in field

study as ground truth despite the fact that they are of unknown quality

2. This study uses heart rate and accelerometer data as features to isolate cocaine use

events from other confounding activities while we use ECG morphology only

3. Their prediction model localizes in time cocaine use events (referred to as fine-

grained predictions) and in our approach we extract features from these fine-grained

predictions to predict urine test outcome (referred to as coarse-grained predictions)
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4. The authors do not report any systematic differences between their lab and field

datasets (we observed systematic differences in our datasets which is discussed in

Chapter 5) obviating the need to perform any domain adaptation when compared to

datasets gathered in our study.

4.7 Conclusions

In this chapter, we developed a machine learning pipeline to detect cocaine use from

non-cocaine activities in the lab setting. Our pipeline consisted of data sensing and log-

ging, feature extraction and aggregation, and cocaine use detection. We compared multiple

ECG feature sets gathered from data in a novel cocaine use detection study on ten habitu-

ated cocaine users. In both within and between user evaluation protocols, all ECG feature

sets perform above AUROC 0.5, which is better than chance guessing. We observed that

concatenating all features performs much better than any feature separately with a best AU-

ROC of 0.95 (within-user) and 0.75 (between-user) respectively. We point out that this was

the first work to demonstrate the feasability of using wearable sensors to detect cocaine use

in lab settings.

Heart rate and heart rate variability are two most extensively used features in health

monitoring using wearables. We wanted to comment on our experience in the use of these

features in design of experiments and target activity detection pipelines. We observed that

cocaine causes an increase in heart rate, but so do other confounding activities like physical

exercise and stress. In our experiments we observed that the heart rate ranges for different

activities had less overlap, leading to easy detection of cocaine use from non cocaine ac-

tivties. Our initial approach was to create a balanced dataset by selecting positive (cocaine

use windows) and negative examples (non-cocaine activity windows) matched by heart

rate. This approach led to throwing away many data examples since we did could not find

matching heart rates, which seemed wasteful. We redesigned our data collection protocols

such that non-cocaine activties such as physical exercise exhibited an overlap in heart rate
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with heart rates from cocaine use for each subject respectively. This led to a better valida-

tion of our cocaine use detection pipeline. This insight is crucial to designing experiments

when relying on heart rate or heart rate influenced features to detect target activities.
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CHAPTER 5

DOMAIN ADAPTATION TECHNIQUES TO IMPROVE
LAB-TO-FIELD GENERALIZABILITY IN COCAINE USE

DETECTION

In the last chapter, we demonstrated the feasibility of using wearable sensors to detect

cocaine use in lab setting. However, it is clear that many aspects of these lab-based data col-

lection procedures have poor ecological validity. When activities are scripted or controlled,

the proportion of time subjects spend performing target activities (including cocaine in-

take) will be significantly distorted. The way that subjects consume cocaine under scripted

and controlled conditions also may not be representative of their behavior in the real world

settings. Indeed, data collected under controlled lab conditions typically encompass a very

limited number of the different contexts relative the real world settings. These factors can

lead to significant differences between the distribution of features extracted from wearable

sensors in the lab and the field. We refer to real world settings as field settings in this

chapter. Additionally, the groups of subjects that participate in lab and field cocaine studies

are typically different, leading to a further loss in performance when there is significant

between subject variability in any aspect of behavior.

Another persistent problem in lab-to-field generalization is the mismatch in the tech-

niques employed to gather ground truth activity labels. In our cocaine study, the ground

truth data available in the lab is often fine-grained, including precise start and end times. In

the field, subjects are often asked to self report cocaine use, but these self reports are known

to be unreliable. Instead, cocaine use studies typically rely on urine toxicology (utox) tests

as a gold standard for establishing cocaine use within a specified time period (i.e. the prior

24 hours). However, utox testing alone can not localize the exact time intervals correspond-
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ing to cocaine use. Hence, in cocaine use detection, the ground-truth labels available in the

lab are typically not available at the same level of temporal granularity in the field.

In summary, differences in experiment design, data collection and subject populations

gives rise to systematic differences in cocaine use datasets gathered in lab and field set-

tings. Despite these differences, we would like to deploy the lab-based cocaine use detec-

tion model to detect cocaine use in field settings. Directly deploying a lab-based cocaine

detection model in field settings will lead to poor generalization performance. The research

question we address in this chapter is how can we generalize a cocaine use detection model

developed in lab setting to field settings.

The primary contributions of this chapter are, we identify prior probability shift, which

results from different class distributions at train and test time, as a factor that affects lab-

to-field generalizability for cocaine use detection. We present methodology to assess and

evaluate domain adaptation techniques for mitigating prior probability shift. We identify

covariate shift, which results from differences in the distribution of features at train and

test time, as a factor that affects lab-to-field generalizability for cocaine use detection. We

present methodology to assess and evaluate domain adaptation techniques for mitigating

covariate shift. We identify label granularity shift, a problem we define as the result of

changes in the temporal granularity of labels across source and target domains. We de-

velop domain adaptation techniques to handle label granularity shift. To the best of our

knowledge, this last problem has not been addressed before in the context of personal-

ized health monitoring using wearables. We note that between-subjects variability is not a

distinct factor, but can be a contributor to both prior probability shift and covariate shift.

This chapter begins by describing the experimental protocol used to gather data in the

field study (Section 5.1). We compare and contrast the field dataset with the lab dataset

in Section 5.2. We then describe three factors that directly affect deploying a lab-based

cocaine use detection model on field data (Section 5.3). This is followed by a description

of our approach to mitigating the effects of these three factors (Section 5.4). Lastly, we
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present results on cocaine use detection in field data (Section 5.6), review related work

(Section 5.7) and present conclusions (Section 5.8).

5.1 Field Study Protocol

As part of the same NIDA approved study, we collected data from five medically

healthy, non-treatment seeking, experienced cocaine users in their natural environments

while performing day-to-day activities. Subjects participated in the study for a period of

eleven days. All subjects reviewed and signed a consent form approved by the local insti-

tutional review board. All participants were compensated monetarily for their time.

On the first day of the study (the habituation day), the recruited subjects were briefed on

the usage, upkeep and maintenance of devices. We used the same sensors and data logging

procedures as described in our lab study in Section 4.2.1. The study involved 10 clinical

visits including the habituation day visit. Clinical visits were not conducted on weekends

and other holidays. During the course of the study, participants were instructed to wear the

sensor continuously while they performed day-to-day activities (except while showering).

During each clinical visit, subjects met with the experimenters to provide urine samples,

download data and swap recharged devices. Subjects reported periods of cocaine use along

with the monetary value of cocaine used. This information was entered on the subject’s

cellphone using an ecological momentary assessment (EMA) protocol. These entries were

verified by the experimenter as part of compliance with the study protocol. In this field

study, the subjects were not asked to report on any activity other than cocaine use.

5.2 Field Dataset

In Table 5.1, we report summary statistics of the field dataset. For the purpose of the

field study, we give the self-reported time spent on cocaine use activities and assume that

time not self-reported as cocaine related activities corresponds to non-cocaine activities.

The study resulted in a total of 37 days of field data (data from some weekend days was not
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Dataset # Mean Cocaine Non-cocaine
Subjects age use activities

Field Study 5 46.8± 3 151h 46m 739h 25m
Lab Study 10 43.7± 6 56h 59m 29h 23m

Table 5.1: Total number of hours of cocaine use and non-cocaine activities over all subjects
in field and lab datasets respectively. Field statistics related to time of cocaine use are based
on self report.

captured due to devices running out of power between visits to the study coordinator). For

comparision purposes, we also report summary statistics for the lab dataset.

For each field day, we perform ECG peak detection, feature extraction and feature ag-

gregation as described in Chapter 4. We computed histogram-based features on five minute

sliding windows with zero overlap. One reason for using longer time windows is that we

observed subjects consumed relatively larger quantities of cocaine leading to longer du-

rations of cocaine related metabolism. Ideally, we would like to predict the presence of

cocaine in each sliding window. By using longer but fewer time windows we hope to min-

imize the number of false positives by accumulating more evidence. The bin boundaries

for histogram-based feature aggregation were computed using data from the lab study only.

Specifically, we computed bin boundaries by collapsing all sessions from all lab subjects

into one lab set and computed the bin boundaries on this lab set.

5.3 Factors Limiting Lab-To-Field Generalization

In this section, we describe three factors that can have a significant impact on lab-to-

field generalization performance and discuss how they can be assessed given samples of

data from the lab and from the field. Here data samples, in both lab and field datasets,

refers to ALL features (from Chapter 4) using histogram-based feature aggregation in five

minute sliding windows.
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5.3.1 Prior Probability Shift

During the lab-based component of our study, each subject spent roughly the same

amount of time performing various activities, and we have access to precise timestamps

corresponding to periods of cocaine use and non-cocaine activities. During field-based data

collection, subjects self-reported (via EMA’s) consuming cocaine for a small fraction of the

total time. The difference in the amount of time subjects spend performing various activities

in the lab and field environments results in prior probability shift. Prior probability shift is

defined as a systematic difference in the label proportions present in train and test datasets.

The likelihood of significant prior probability shift increases as the ecological validity of

lab-based data collection decreases.

The severity of prior probability shift can be easily characterized in terms of the dif-

ference between the proportion of labels of each type in the lab and in the field. In our

study, the base inference of interest is the prediction of cocaine use over five minute win-

dows, so the degree of prior probability shift is directly reflected in the proportion of time

that subjects spend consuming cocaine. In Figure 5.1a, we summarize the lab and field

datasets in terms of the amount of time subjects spend on cocaine use versus non-cocaine

activities. As expected, a smaller fraction of time is spent on cocaine use in the field setting

(about 17%), while the lab-based data collection protocol significantly over-represents the

proportion of time spent on cocaine use (about 66%).

5.3.2 Covariate Shift

Cocaine administration in the lab-based component of our study was restricted to one

day when subjects were administered cocaine intravenously while not performing any other

activities. Non-cocaine activities were scripted and performed by subjects in a very limited

number of contexts that are not representative of the complexity of natural field environ-

ments. However, performing cocaine and non-cocaine activities in new contexts can result

in significant changes in the per-class feature distributions. This problem is referred to

65



Lab Field
0

0.2

0.4

0.6

0.8

1

Datasets

P
ro

po
rt

io
n(

T
im

e)

 

 

Cocaine use
Non−cocaine activities

(a)

Features Accuracy

RR interval 0.57± 0.0066

QT distance 0.52± 0.0108

QTc distance 0.67± 0.0107

QS distance 0.75± 0.0087

PR distance 0.64± 0.0081

T-wave height 0.52± 0.0088

ALL features 0.87± 0.0067

(b)

−2 −1 0 1 2 3 4 5
0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Decision boundary

VTQS

N
or

m
al

iz
ed

 c
ou

nt
s

 

 

Lab
Field

(c)

−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 101112

0   

0.05

0.1 

0.15

0.2 

0.25

Decision boundary

WTALL

N
or

m
al

iz
ed

 c
ou

nt
s

 

 

Lab
Field

(d)

Figure 5.1: (a) Proportion of time spent on cocaine and non-cocaine activities in lab and
field environments respectively. Quantifying covariate shift between lab and field datasets:
(b) Mean accuracy ± standard error for the task of discriminating lab data from field data.
Distribution of lab and field classifier scores for (c) QS feature and (d) all features

as covariate shift. Covariate shift is defined as a systematic difference between the fea-

ture distributions contained in training and test datasets. There is an increased possibility

of significant covariate shift when moving from lab-based training data to field-based test

data.

The severity of covariate shift can be assessed by comparing the distribution of features

in lab and field data. Simple histograms can reveal the presence of significant covariate
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shift when they have an effect on the marginal distributions of the features. The effects of

covariate shift may be more subtle, affecting the joint distribution of features while leaving

the univariate marginal distributions mostly invariant. This scenario can be assessed by

drawing equal sized samples of lab and field data, and fitting a classification model that

aims to discriminate the data collected in the lab from the data collected in the field. If the

two distributions coincide, the expected accuracy achieved on this task will be 50%. As the

feature distributions diverge, the classification accuracy will increase toward 100%.

In Figure 5.1b, we report the classification accuracy for discriminating lab versus field

data for a variety of ECG-based features used for cocaine use detection. We assess the

classification ability of these features when used individually and when they are used in

combination. The model used is l2 regularized logistic regression (details in Section 2.1.1)

with hyper-parameters set via 10-fold crossvalidation. We see that all accuracies are greater

than 0.5, suggesting the presence of covariate shift.

Among the individual features, the QS interval obtains the best accuracy indicating

that it carries the most information with respect to the task of discriminating lab data from

field data. In Figure 5.1c, we show histograms of the QS classifier score function values

when applied to the lab and field datasets. If v and v0 are the optimal weight vector and

bias parameters learned for a logistic regression model, then the classifier score function

is simply v0 + vTx (see Equation 2.2 for details). For single features, the score function

value is a scaled and shifted version of the raw feature value, so Figure 5.1c reflects the

class conditional QS distributions for the lab and field datasets. We can see that the score

function values are fairly distinct, with particularly low overlap for high values of the score

function.

In Figure 5.1d, we show histograms of the logistic regression score function values for

the lab and field datasets when training using all features. In this case, the score function is

a linear combination of all of the feature values. We can see that there is substantially less

overlap between the score function values when using all features, which is consistent with
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the increase in classification accuracy when using all features. This is strong evidence for

a significant multivariate covariate shift effect between the lab and field datasets. However,

it also shows that the lab and field feature distributions are not completely disjoint. As we

will see, the presence of some overlap is required for the application of instance weighting

methods to correct for covariate shift.

5.3.3 Label Granularity Shift

In the lab setting, subjects were closely monitored, and the precise times and amounts

of cocaine consumed are all known exactly. In the field, subjects self-reported periods of

cocaine use as well as the dollar amount of the cocaine consumed. However, for this sub-

ject population, self-reports of the activity of interest can be quite unreliable. We present

evidence of unreliable self-reporting in Table 5.2. To obtain a measurement that can be con-

sidered ground truth for whether subjects consumed cocaine on a given day, urine samples

were collected during each visit for the duration of the study. A semi-quantitative urine tox-

icology test (utox) is performed on these samples. A positive utox test indicates presence

of cocaine (and its metabolite – benzoylecgonine) with values ranging from 300ng/mL to

> 5000ng/mL and negative utox test indicates absence of cocaine with values< 300ng/mL.

Benzoylecgonine has an elimination half-life of roughly 13 hours thus providing ground-

truth evidence for the consumption of cocaine in the period preceding the administration of

the test. For purposes of clinical decision making utox values above 5000 (below 300) are

cutoff at 5000 (300) respectively and are only reported as > 5000ng/mL (< 300ng/mL).

We define label granularity shift as a difference between the temporal granularity at

which ground truth labels are defined across domains. There is clearly a significant shift in

temporal label granularity between the lab and the field settings in our cocaine use study.

As with prior probability shift and covariate shift, label granularity shift is a systemic prob-

lem in many mHealth study designs. It arises due to the fact that it is impractical for

subjects in field-based data collection protocols to provide labels at the same level of tem-
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Figure 5.2: Proposed two stage processing pipeline

poral granularity that is possible in lab-based data collection protocols where subjects are

closely monitored (and activity sessions are often video recorded). Methods for detect-

ing such shifts are not necessary as their presence is obvious from the study design, but

methods for adapting detection models across large temporal discrepancies are required to

enable accurate lab-to-field generalization. In the next section, we turn to the problem of

mitigating each of these three problems.

5.4 Mitigating Dataset Shifts

In this section, we present methods for mitigating factors affecting lab-to-field gener-

alizability of cocaine use detection. Given ECG data from a subject on a field day, f, our

goal is to predict whether the subject used cocaine on that day. We propose a two-stage

data processing and prediction pipeline for this problem as shown in Figure 5.2. In the first

stage, we use a cocaine use detection model to predict cocaine use at a fine grain level (e.g.,

5-minute windows). In the second stage, we use a utox prediction model which rolls up the

fine grain cocaine predictions into coarse grain cocaine predictions (e.g., a predicted utox

outcome for field day f).

In the following sections, we describe dataset reweighting methods from the domain

adaptation literature for dealing with prior probability shift and covariate shift. These

reweighting methods are introduced in the first stage of the processing pipeline. We ad-

dress the problem of label granularity shift in the second stage of the processing pipeline

where we convert cocaine use predictions to utox predictions.
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5.4.1 Base Classifier

For lab-to-field generalizability, consider we are given a dataset D = {xn, yn}n=1:N of

N labeled examples. Let Xi ∈ RD be a random variable representing a feature vector for

data case i. Let Yi ∈ {−1,+1} be a binary random variable representing a label for data

case i. We use logistic regression as a base classifier. To accommodate for dataset shifts

we introduce a per data case importance weight in the objective function. More details in

using importance weighting in logistic regression objective function is in Section 2.1.3.

5.4.2 Prior Probability Shift

Prior probability shift is characterized by different proportions of class labels in the lab

and field data. Let PL(y) be the probability distribution of labels from the lab, and PF (y)

be the distribution of labels from the field. To mitigate prior probability shift, we learn

the base classifier using instance weights that correct for the difference between the class

proportions in the lab and field datasets.

Specifically, we instantiate instance specific weights δi(yi, xi) as shown below where

P̂F (yi) is an estimate of the prior probability of label yi under the field data distribution,

and P̂L(yi) is an estimate of the prior probability of label yi under the lab data distribution.

These weights correct the distribution of labeled instances in the lab data so that it matches

the label distribution of the field data.

δi(yi, xi) =
P̂F (yi)

P̂L(yi)
(5.1)

Recall that in the cocaine study, xi corresponds to ECG features in 5-minute sliding win-

dows and yi are its associated labels. Hence P̂L(y) can easily be estimated from the avail-

able lab data. We do not have direct access to 5-minute labels from the field, so we instead

estimate P̂F (y) based on the proportion of time that subjects self-reported consuming co-

caine. While not perfect due to issues with self report, this estimate is likely to be much

closer to the true time spent on cocaine consumption in the field than the lab proportions.
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5.4.3 Covariate Shift

Covariate shift is characterized by significant differences in PL(x) and PF (x), the lab

and field feature distributions. Learning under covariate shift has also been addressed by

incorporating appropriate importance weights during training. The importance weights

needed to correct for covariate shift are the ratio of the probability densities of test to

train sets PF (x)
PL(x)

[102]. These weights can correct for the mismatch between lab and field

distributions when the discrepancy between the distributions is moderate, but there is still

overlap between the support of the distributions.

While early approaches to computing the importance weights attempted to model the

individual densities directly, a better approach is to directly estimate the density ratio. This

can be accomplished by learning a classifier to discriminate between feature vectors from

the field (positive class), and the lab (negative class), exactly as was done in Section 5.3.2.

If we defineQ(xi) to be the probabilistic output of a classification model for discriminating

between lab and field feature vectors, then the importance weights are defined as

δi(yi, xi) =
1

(1−Q(xi))
(5.2)

In our experiments, we use an l2 regularized logistic regression model to estimate Q(xi)

learned using 5-fold cross validation. Note that estimating this model only relies on ECG

features and does not rely on availability of cocaine use labels in either the lab or field data.

5.4.4 Label Granularity Shift

Label granularity shift is defined as a change in the temporal granularity of the class

labels from the lab to the field. To address this problem, we propose a two-stage approach.

We first learn a model on the lab data to predict label probabilities at a temporal granularity

of 5-minute windows. Prior probability shift or covariate shift corrections can be applied

as described above during the learning of this first stage model. The output of the first stage
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Figure 5.3: (a–b) Predicted probability of cocaine use for two sample field days. (c–d)
Histogram features that represent cocaine use for the same two sample field days.

model is a time series of predicted cocaine use probabilities for each subject and each field

day.

We then extract features from each time series of predicted probabilities and learn a

second-stage model that predicts utox outcome from the extracted features. In this work,

we use a simple histogram feature extractor that compresses the time series of cocaine

use prediction over five minute windows into a histogram that indicates the proportion of

windows that fall into each bin. The bins correspond to ranges of cocaine use probabilities.

In our experiments, we used five equally spaced bins.

Figure 5.3 illustrates the basic concept. The left plots show the predicted probability of

cocaine use for each five minute window on two sample field days. The right plots show

the extracted histogram descriptors. The top plots correspond to a day with cocaine use,

while the bottom plots correspond to no cocaine use. We can see from the left plots that

time series of predictions for both field days are noisy, but the period of cocaine use is

reasonably localized by the first stage cocaine use detection model. While the histogram

descriptor discards the temporal information about when periods of increased cocaine use

probability occur, the fact that they have occurred is clearly captured by the descriptor.
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Self- utox utox
report < 5000 ng/mL ≥ 5000 ng/mL

Cocaine use 2 24
No cocaine use 7 4

Table 5.2: Characterizing the field dataset (37 days) by utox outcomes and subjects’ self-
reporting

The last step in handling label granularity shift is to learn a utox prediction model that

maps the histogram descriptors to utox outcomes. We again use l2 regularized logistic

regression as the classifier. For our experiments, we convert utox results of 5000ng/mL and

above to positive instances and utox results below 5000ng/mL to negative instances. This

is a reasonable grouping of utox outcomes since it aligns with the threshold used in clinical

decision making to determine significant amounts of cocaine i.e. utox ≥ 5000ng/mL. A

lower threshold could be used, but would result in even more imbalanced data for this

particular study. The breakdown of positive and negative cases and how they correspond

to self report is shown in Table 5.2. We can see that on a total of four days, no cocaine

was reported, but the utox results showed significant cocaine consumption. This grouping

results in a ground truth labeling based on utox with 28 positive days and 9 negative days.

Though the number of positive and negative instances appear to be small, this is typical

of many drug studies where the cost to obtain such data can be very high. An interesting

observation is lower right corner entry where users report no cocaine use for four days but

the urine test outcome is positive with significant amounts of cocaine. This further adds

evidence that self-report is unreliable for this subject population.

The need to create a compressed representation comes from availability of few labeled

examples from the field. Recall that in the field data we have one label corresponding urine

test outcome for every 24 hours. Hence using the cocaine predictions over five minute

windows as is would result in more feature than labeled examples available to train the

utox prediction model. This is an instance of the curse of dimensionality problem where

we have more features than labeled examples. By creating compressed representations we
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have fewer features than labeled examples making it possible to learn model parameters.

We note that if a greater number of field days were available to estimate the utox prediction

model, a richer feature set could be used in this stage of the pipeline.

5.5 Empirical Protocols

In this section, we describe the different cocaine use detection (Stage I) and utox pre-

diction (Stage II) models we experimented with, as well as several different application

scenarios motivated by potential use cases. Lastly, we describe the evaluation metrics used

to assess performance.

5.5.1 Stage I: Cocaine detection models

We use a penalized l2 logistic regression classifier as the base classifier for cocaine use

detection on five minute windows. We choose the penalty, λ, by performing a leave-one-

subject-out importance-weighted cross validation on the lab dataset [32]. We experimented

with the default base classifier and three extensions that incorporate the prior probability

shift and covariate shift mitigation approaches described below:

1. Default: In this model, we do not account for any type of dataset shift by setting all

δi(xi, yi) = 1.

2. Prior probability shift: In this model, we handle prior probability shift by setting

δi(xi, yi) according to Equation 5.1.

3. Covariate shift: In this model, we handle covariate shift by setting δi(xi, yi) accord-

ing to Equation 5.2.
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4. Both shifts: In this model, we handle both covariate shift and prior probability shift

by setting δi(xi, yi) to the product of their respective importance weights.1

5.5.2 Stage II: Utox prediction models

We use l2 regularized logistic regression as the base classifier for utox prediction mod-

els as well. We choose the logistic regression penalty, λ, by performing a 5-fold cross

validation on the training dataset. We consider several different feature sets to predict utox

outcomes as described below:

1. Utox-default: This model uses the cocaine use probability histogram features as

described in the Section 5.4 and illustrated in Figure 5.3. At the utox prediction

level, this model does not account for any type of dataset shift i.e. δi(xi, yi) = 1.

2. EMA-based classifier: This model does not use any wearable sensor data, but in-

stead relies on subjective self-report for features. We extract three pieces of infor-

mation for each field day including self-reported cocaine use in hours, self-reported

monetary value of cocaine consumed, and compute elapsed time between the last co-

caine use event and the time of the utox test. For field days in which this information

is missing, we set these features to zero.

3. Predict majority class: This model does not use any features from either wearable

sensors or self-reporting. It simply predicts the majority class on the training data.

This model takes advantage of the class imbalance in field utox outcomes.

5.5.3 Application Scenarios

To evaluate the performance of the model variations described in the previous sections,

we investigated several scenarios that reflect possible real-world use cases for the appli-

1Note that the product combination rule assumes that the two types of shifts are independent. In many
real world applications this may not be the case since one underlying latent source may give rise to multiple
types of dataset shift. We leave further investigation of this point to future work.
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Prior access
Scenarios Lab Preceding field days Field days from Test field day

dataset within subject other subjects
ECG Self- Utox ECG Self- Utox ECG Self-

report report report
A X – – – – – – – –
B X X X – – – – – –
C X X X – X X X X X
D X X X X – – – X X

Table 5.3: This table describes four application scenarios that assume different access to
prior field data

cation of a wireless cocaine use monitoring system. The primary goal is to predict utox

outcomes on a daily basis. We assume that predictions are made at the end of each day.

The four scenarios that we focus on in this work are summarized in Table 5.3. In all

four scenarios, we assume we always have access to lab data. This implies that all cocaine

use detection models have access to the exact same lab dataset in all scenarios. However,

the instance specific weights δi(xi, yi) used to mitigate dataset shifts change depending on

what type of field data we have prior access to. Across all four scenarios, we are interested

in handling dataset shifts in the cocaine use detection model, hence the utox prediction

model always operates in utox-default mode. We first describe each scenario in detail. We

present results for each scenario in the next section.

1. Scenario A - Strict Lab-to-Field: In this scenario, we assume we only have access

to lab data i.e. no prior access to field data of any type (Table 5.3, Scenario A). The best

we can do in this scenario is to train a cocaine use detection model while not accounting

for any type of dataset shift (i.e. the default model).

Since we assume no prior field data in this scenario, we construct a synthetic utox

training set from lab data to train the utox prediction model. Specifically, we process the lab

data to obtain daily cocaine use probability histogram descriptors as shown in Figures 5.3c–

d. We assume that lab days with cocaine use sessions correspond to positive utox outcomes,

and days with only non-cocaine activities correspond to negative utox outcomes. While
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utox values were not recorded in the lab, sufficient cocaine was consumed by subjects

that the tests on those days would have been positive. This synthetic utox training dataset

has exactly twenty instances (one day with cocaine use and one without for each of ten

subjects).

To make utox predictions under this scenario, we first use the lab data to train the

cocaine prediction model. We then form the synthetic utox training dataset and train a

utox prediction model. We then apply the cocaine use detection model to each test field

day’s ECG data to produce cocaine use prediction curves and extract the daily cocaine use

histogram features. Finally, we apply the trained utox prediction model to the daily cocaine

use histogram features.

2. Scenario B - Unlabeled/Weakly Labeled Field Data: In this scenario, we assume

we have prior access to two types of field data: ECG data and self-reported cocaine use

(Table 5.3, Scenario B). In particular, we assume that for each field subject, we have prior

access to ECG and self-reported cocaine use for field days preceding the test field day. For

test field days for which there are no preceding field days (i.e. the very first field day within

each subject), we revert to using the default model to make predictions like in scenario A.

Since we have no prior access to any data from the test field day, we use ECG and

self-reported cocaine use from preceding field days to estimate importance weights for

mitigating dataset shifts in the first stage of the processing pipeline. We handle label gran-

ularity shift in the second stage of the processing pipeline. We follow the same steps as

in scenario A to predict utox outcomes for each test field day including training the utox

model on synthetic data derived from the lab as this scenario assumes we do not have prior

access to utox measurements from the field.

3. Scenario C - Across Subjects: In this scenario, we assume we have prior access to

both ECG and self-reported cocaine use data from prior field days for the test subject, as

well as ECG, self-reported cocaine use, and utox for all field days from other subjects (Ta-

ble 5.3, Scenario C). Importantly, we have no access to utox outcomes for the test subject.
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In this scenario, we estimate importance weights for prior probability shift and covariate

shift by using all available data from the test subject and all of the available lab data,

similar to Scenario B. But, unlike Scenario B there are two important differences: one,

in this scenario we use data from the test field day along with data from preceding field

days to compute importance weights for covariate shift and prior probability shift; two, this

scenario assumes prior access to utox measurements from other field subjects. The ECG

data from other field subjects is processed to extract histogram feature descriptors and the

labeled data cases are added to the synthetic utox dataset extracted from the lab subjects

when estimating the utox prediction model.

4. Scenario D - Personalization: In this scenario, we assume we have access to ECG,

self-reported cocaine use data, and utox measurements from prior field days for the test

subject (Table 5.3, Scenario D). We use prior field data exactly as in scenario C, but with

additional utox data cases coming from the test subject’s prior field days instead of field

days from other subjects. This scenario thus models the online construction of personalized

cocaine use detection models.

5.5.4 Evaluation metrics

We report the mean accuracy and standard error for utox outcome prediction over all

37 test field days, as well as the area under ROC curve (AUROC), which is less sensitive to

class imbalance. We use the probabilities output by the utox prediction model as input to

the AUROC computation.

5.6 Results

In this section, we present the results of applying the dataset shift mitigation approaches

to the four utox prediction application scenarios. We present classification accuracies for

all four scenarios along with standard error bars in Figures 5.4a–d. We present AUROC

results for each scenario in Figure 5.4f–i respectively.

78



0  
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1  

A
cc

ur
ac

y

 

 

(a) (b) (c) (d) (e)

Default Covariate Prior probability Both

0  
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1  

A
U

R
O

C

(f) (g) (h) (i) (j)

Figure 5.4: (a–e) Mean utox classification accuracies and standard errors over 37 field
days (f–j) AUROC for utox prediction. Each subfigure (left-to-right) corresponds to four
scenarios and a variant of scenario D respectively.

1. Scenario A - Strict Lab-to-Field: In scenario A, the default model has an accuracy

of 35% and an AUROC of 0.3, which translates to thirteen correctly classified field days out

of 37 days. The performance of the default model, which does not account for any dataset

shifts, is understandably low since the field dataset was observed to have significant shifts

relative to the lab dataset in terms of both both class proportions and feature distributions.

2. Scenario B - Unlabeled/Weakly Labeled Field Data: In scenario B, the perfor-

mance of the default model is identical to its performance in scenario A since this model

does not make use of the available unlabeled and weakly labeled data. While the covariate

shift and prior probability shift models result in improved accuracy relative to the default

model (43% and 60%, respectively), their performance in terms of AUROC is worse for the

covariate shift model and the same for the prior probability shift model.

3. Scenario C - Across Subjects: In scenario C, all models improve significantly in

terms of mean accuracy with the introduction of labeled utox data from other field subjects.
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All of the models (including the default model that does not account for dataset shifts at

all) achieve an accuracy above 70%.

To explain this uniform accuracy increase, we also applied the baseline classifier that

simply predicts the training set majority class for all test instances. This classifier achieves

an accuracy of 76% due to the class balance on the field data, the same performance

achieved by the default classifier. Thus, a significant effect of introducing utox data from

other subjects is to decrease the initial prior probability shift between the data used to train

the utox model and the field data it is applied to at test time.

Interestingly, the AUROC performance of the covariate shift model increases signifi-

cantly under Scenario C, where it outperforms all the other models, while the prior proba-

bility shift model performance actually decreases.

We also evaluate the EMA-based utox prediction model in this scenario, which per-

forms slightly worse than guessing the majority class at 70%. This directly follows from

the unreliability in subjective self-reporting. For eight of the 34 field days that tested posi-

tive for cocaine (i.e. utox > 300ng/mL), either the monetary amount of cocaine consumed

or the self-reported cocaine use time was missing.

4. Scenario D - Personalization: In scenario D, the switch to personalized models

leads to further improvements in terms of mean accuracy, with the model that accounts

for both prior probability shift and covariate shift obtaining 81% accuracy and an AUROC

above 0.8. In this scenario, all of the models for mitigating dataset shift strongly outperform

the default model in terms of both accuracy and AUROC. This suggests that in the presence

of between subject variability, methods for mitigating dataset shift are most helpful when

applied to the problem of learning personalized models.

5. Utox-Level Prior Probability Shift: As a final experiment, we extend the tech-

niques to handle dataset shifts to the utox prediction level as well. Up until now we have

assumed the utox prediction model operated in utox-default mode. However, since we

know that there is prior probability shift at the utox prediction level of the model as well,
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Figure 5.5: Receiver Operating Characteristics curve when applying BOTH shifts to co-
caine prediction model and only prior probability shift to utox prediction model. Handling
dataset shifts at both stages of the pipeline achieves a sensitivity of 80% and specificity of
90% respectively

we explore the application of a second level of prior probability shift mitigation during

the learning of the utox prediction model. We compute importance weights by computing

the prior distribution of positive and negative instances in the utox train set. Specifically,

positive utox instances in the train set are assigned weights as:

δi(xi, yi = +1) =
Proportion of preceding field days with positive utox

Proportion of train set with positive utox
(5.3)

and negative utox instances are assigned weights computed using proportions of negative

utox outcomes.
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We apply the updated model to scenario D only. For test field days which have no

preceding field days we revert to using utox-default prediction model. We present accuracy

and AUROC results for this variant in Figures 5.4e, j respectively.

As we can see, handling prior probability shift in both the cocaine use detection stage

and utox prediction stage achieves the best accuracy of any approach considered at 84%

(31 field days correctly classified), while achieving an AUROC of 0.81. We present the

ROC curve for this specific analysis in Figure 5.5 which shows that it achieves a sensitivity

of 80% and a specificity of 90%.

5.7 Related Work

A common approach to handling prior probability shift is to augment the learning of

classification models using instance weights that better match the label distribution on the

training set to that of the test set. Once the weights are specified, standard cost sensitive

learning methods can be applied to learn the models with the instance weights [29, 56, 50,

106].

The covariate shift problem has been studied in a number of areas including human

physical activity recognition [32]. A common approach to dealing with covariate shift is to

again learn models with instance weights. The instance weights are selected to provide a

better match between the training set feature distribution and the test set feature distribution.

The weights are often derived from density ratios between the training and test feature

distributions. In early work in this area, the feature distributions were estimated for the

training and test sets, and the density ratios were computed explicitly. Later work observed

that it is much more efficient to directly estimate the density ratio [109]. Other work,

including that of Hachiya et al. [32] and Bickel et al. [11] account for covariate shift while

learning the primary classifier in a joint optimization procedure with a specialized model.

In this paper, we use the two-stage approach of directly estimating density ratios, followed

by the application of instance weighted classification models.
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Finally, we are not aware of any prior work on the temporal label granularity shift

problem, although there are a number of related problems in mobile health and ubiquitous

computing. For example, the temporal label uncertainty problem occurs when the time

stamps associated with event labels are noisy or uncertain. The segmentation boundary

uncertainty problem occurs when there is noise or uncertainty associated with the start and

end time stamps of activity sessions [76, 53]. Approaches to these problems are not well

matched to our setting as in our case the field labels provided by utox assessment are only

available at a daily resolution.

5.8 Conclusions

We identified three systematic differences in lab and field cocaine use datasets making

it challenging to directly deploy a lab-based cocaine use detection model in field settings.

We handled prior probability shift and covariate shift by assigning importance weights to

reweight the lab data distribution to better match that of the field data distribution. While

both these shifts have been handled in isolation in the past, they have never been handled

together in the context of cocaine use detection using wearables. Lastly, we handled a novel

label granularity shift by combining cocaine predictions over 24 hour periods to predict the

urine test outcome. Only by handling the label granularity shift it is possible to reliably

evaluate cocaine use detection in field settings, but we are left with the option of handling

the other two dataset shifts. Hence when comparing the performance of lab-based models

versus field-based models that handle both prior probability and covariate shift, we observe

a significant improvement in performance from 35% to 81%. This performance is better

than both guessing the majority class as well as relying on just subject self report to predict

utox outcomes. Through this work we provide evidence that wearable sensors can be used

in conjunction with other sources to reliably detect cocaine use in field settings, albeit at a

course granularity.
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We performed an assessment of our framework in several real-world scenarios, each

with access to different data. We primarily experimented with three data sources: ECG,

self-reported hours of cocaine use and utox outcomes. While ECG and self-report of co-

caine use was primarily made available to the Stage I - cocaine use detection model, the

utox outcome was made available only to the Stage II - utox prediction models. We ob-

served that having access to only ECG and self-report of cocaine use leads to a small boost

in performance, but well below the field majority class prediction (Scenario B). However,

also having access to utox outcomes leads to a large boost in performance relative to base-

line methods (Scenarios C and D). We observe that this trend holds even for lab-based

models that only handle label granularity shift. These results suggest that in order to detect

cocaine use, we require access to labeled examples (utox outcomes) in order to train good

prediction models. We can further improve performance by personalizing these models us-

ing labeled data per user (Scenario D and E). This adds evidence that personalized models

perform better than population level models for the problem of cocaine use detection.
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CHAPTER 6

HIERARCHICAL ACTIVE LEARNING TO ADDRESS LABEL
SCARCITY

From the previous chapter as well as other applications [5, 73], it has been demonstrated

that personalized models perform better on average than non-personalized models. But in

order to develop personalized models, we require access to at least a few labeled examples

per user. Furthermore, we would like these labeled examples to come from real world

settings. While off-the-shelf wearable technology can be readily deployed leading to an

abundance of unlabeled data, the availability of ground truth labels in real world settings is

low.

The vast majority of prior work has relied on either users to self-report labels of interest

[104] or require experimenters to follow study participants in order to make notes of users’

activities [17]. While the latter approach does not scale and is simply impractical, there

are also issues with the former approach. The manual effort is prohibitive when users are

asked to log start and end times of target activities or to segment streams of sensor data into

multiple activities. These labeled data collection approaches can be burdensome to users,

require users to supply multiple labels for the same activity, and can suffer from recall bias

and label noise (e.g., start and end times are misreported [4]). These factors affect the

quality of ground truth labels and consequently the performance models trained using the

data. The research question we address in this chapter is can we learn activity detection

models with small numbers of carefully selected labeled examples using active learning.

The primary contributions of this chapter are, we develop active learning techniques to

minimize the number of labeled examples required to train activity detection models. We
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develop a framework to leverage similarity between users to further reduce the number of

labeled examples required per user. We evaluate these techniques on a publicly available

human activity recognition dataset.

Active learning has been demonstrated to perform as well as supervised machine learn-

ing techniques but with fewer labeled examples [63]. Choosing and labeling a small num-

ber of high utility examples minimizes the labeling effort from an end user point of view.

Typically in wearable sensing applications, the labels are requested for a window of sensor

data (e.g., one minute window) which further minimizes recall bias and label noise.

We develop active learning methods in the pool-based setting, which assumes that we

have access to a pool of unlabeled data examples (e.g., one minute windows of sensor

data). The active learner is allowed to evaluate the entire pool to choose an example to

be queried for a label. While this setup is unrealistic for real-world health applications

where sensor data continuously arrives in a stream, we use the pool-based setting as an

initial experimental test bed and leave the evaluation of these techniques in more real world

stream-based setting to future work.

The rest of this chapter is organized as follows. We begin by introducing the problem

of human activity recognition in Section 6.1. Following this, we present two approaches to

active learning: personalized active learning (Section 6.2) and group-based active learning

(Section 6.3). We present empirical protocols in Section 6.4 followed by results in Section

6.5 and future work in Section 6.6. Lastly, we discuss related work on active learning for

wearable sensing in Section 6.7.

6.1 Human Activity Recognition using Wearable Sensors

In ubiquitous and pervasive computing, the goal of human activity recognition (HAR)

is to accurately recognize various activities performed by humans in natural settings using

data from wearable sensors. Since the late 90’s, research in HAR has focused on detecting

postures and motions from daily activities (e.g., walking, biking) using a variety of devices
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equipped with one or more sensors such as accelerometers, gyroscopes, location and phy-

isiology sensors [61]. What makes this problem challenging is that there are observable

differences between repetitions of the same activity by individuals as well as significant

variability between individuals when performing similar activities [9, 121]. Despite these

challenges, HAR is an active area of research with many applications [61].

The two dominant machine learning approaches to HAR are supervised learning and

unsupervised learning. In unsupervised learning, the goal is to cluster wearable sensor

data into various activities [108]. The advantage of unsupervised HAR is there is no need

for users to supply ground truth labels, but the disadvantage is that these methods are not

robust when it comes to developing personalized HAR models. Unsupervised models have

been demonstrated to perform suboptimally when the number of activities is unknown or

when the space of hyperparameters is not fully explored [57, 100]. Supervised learning,

on the other hand, assumes access to both wearable sensor data and ground truth labels to

develop personalized HAR models. One of the biggest challenges is availability of ground

truth labels. We propose to leverage techniques from active learning to collect ground truth

labels for human activity recognition.

6.1.1 Extrasensory Dataset

The human activity recognition dataset we study was collected at the University of

California, San Diego and is called the ExtraSensory dataset [110]. The dataset is the

first large scale HAR dataset that is publicly available. It includes 60 users, 300K minutes

and about 116 reported activity types. Subject participation in the study varied from two

to fourteen days in natural settings. The study subjects wore a smartwatch and carried a

smartphone. Both devices were equipped with accelerometer and gyroscope sensors. In

addition, the smartphone was equipped with GPS tracking and a microphone. One version

of the dataset has features computed over one minute windows of sensor data. In total

175 features are organized into five groups: smartphone accelerometer and gyroscope (52),
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S. No Activity # Users # Target activity # Other activity Best reported
Samples Samples Performance

1 Sleep 38 42955 134045 0.89
2 Computer 38 23698 153302 0.71
3 Drive 24 5034 171966 0.87
4 Surf internet 28 11641 165359 0.63

Table 6.1: List of target activities along with number of users, data example counts along
with best reported performance from [110]

smartwatch accelerometer and gyroscope (46), microphone (26), location information (17)

and features pertaining to phone status (34).

Study participants provided labels of activities via the study app running on the smart-

phone. Activities ranged from physical activities, social, transportation and routine mun-

dane activities. Among the many activities for which labels were provided, we focus on a

suite of four activities. We chose these four activities since the labels are reliable across

users, the activities are performed in isolation, and lastly the number of labels supplied by

users are large enough to simulate different variants of active learning. In Table 6.1 we

provide the number of users, number of positive examples, number of negative examples

and best reported performance in a binary classification setting for the four activities.

Note that the number of users, and as a consequence the positive and negative exam-

ple count, do not exactly match the published numbers since we recreate the entire pre-

processing pipeline from the paper. In our experiments, we disqualify users that do not

have at least 100 minutes of sensor data and users that do not have at least 5 minutes of

either target or non-target activities. Nevertheless, the numbers are very close to published

numbers in [110]. We point out that the ‘surfing internet’ activity did not have any overlap

with ‘computer’ activity. While no explanation is given, we speculate that the former is

primarily happening on the smart phone while the latter is work performed primarily on a

laptop or personal computer. We note that choice of ‘sleep’ and ‘drive’ activities for active

learning is not practical since it involves querying users for labels at a time when they are
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most unlikely to provide labels. Regardless, we use these activities as a test bed to evaluate

our methods.

6.2 Personalized Active Learning

Our goal is to minimize the number of labels required per user. The most straightfor-

ward approach to collecting labels for each user is to develop one active learning model

per user. This per-person model is personalized and the modeling effort is focused on the

specific user’s needs. In the very first iteration, the active learner picks an example at ran-

dom, but in subsequent iterations it picks examples with high utility. In the context of

active learning we define utility as how beneficial or profitable an example is with respect

to learning the decision surface. For example in uncertainty-based active learning, an ex-

ample with high uncertainty (i.e. entropy) is more likely to benefit in learning the decision

surface. The prediction model is retrained after each query and is subsequently used to as-

sign utility scores to unlabeled examples in the pool. More details about the active learning

algorithm are in Section 2.1.6.

From the above description, there are two issues that an active learner encounters. Both

issues stem from the fact that in the initial iterations, the active learner has access to no

(or very few) labeled examples. When starting active learning with no labeled examples

the active learner has no knowledge of the decision surface. This is also referred to as the

cold start problem in active learning [96]. As a result, the active learner can assign sub-

optimal utility scores to unlabeled examples in the pool. This can lead to poor performance

of the active learner in the first few iterations until the active learner has seen enough

labeled examples to start to identify the decision surface. This is particularly problematic

in wearable sensing applications where the goal is to achieve good performance using only

few labeled examples. To address these issues, we combine transfer learning with active

learning to perform transfer active learning.
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Transfer active learning is a technique to transfer domain knowledge from a source to

a target domain followed by active learning in the target domain to further tune the predic-

tion model to improve performance. This framework is directly applicable to personalized

health monitoring where the prediction models learned on other users (source domain) can

be transferred to a new user (target domain) followed by active learning to personalize the

prediction model to each user. This framework has the added advantage of mitigating the

uncertainty of the active learner in the initial iterations by relying on the prediction model

transferred from the source domain.

The transfer active learning framework has the same four components as standard ac-

tive learning with one subtle difference in issuing the initial query. Recall that during the

very first iteration of active learning, an unlabeled example was chosen at random. In

transfer active learning, we use the prediction model from the source domain to issue this

very first query. The insight is that there are some commonalities in the way in which hu-

mans perform certain activities, and the transfer active learning framework exploits these

commonalities to accelerate active learning.

We introduce transfer learning directly in the objective function of the classification

model. We presented transfer learning for logistic regression in Section 2.1.2. For conve-

nience we include the objective function below,

L(W, b|D) = −
N∑
n=1

log
(
1 + exp(−yn(W>xn + b))

)
+ λ‖W −Wp‖22 (6.1)

where,D = {xn, yn}1:N is the set of actively learned labeled examples, λ is the penalization

parameter on deviation of W from the prior model parameters, Wp. When transfer active

learning is operating in the initial iterations (D = ∅; W is initialized to random values)

then the contribution to the objective function comes exclusively from the second term. As

actively learned labeled examples become available, the primary contribution shifts to the

first term.
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Figure 6.1: Variants of active learning. (a) personalized active learning (b)–(d) group-based
active learning with flat, shallow and deep transfer. Here SRC refers to the source domain
model.

Algorithm 1 Personalized active learning
1: procedure PERSONALIZED ACTIVE LEARNING(N , Data, Budget, Query)
2: xtrain, ytrain ← [ ], [ ]
3: xpool, ypool ← Data(N)
4: xSRC , ySRC ← Data(¬N)
5: WSRC ← Classifier(xSRC , ySRC ,∅)
6: WN ← WSRC

7: while Budget 6= 0 & xpool 6= ∅ do
8: x, y ← Query(xpool, ypool,WN)
9: xtrain, ytrain ← xtrain ∪ x, ytrain ∪ y

10: WN ← Classifier(xtrain, ytrain,WSRC)
11: xpool, ypool ← xpool − x, ypool − y
12: Budget← Budget− 1
13: end while
14: return WN

15: end procedure
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Personalized active learning with transfer is graphically represented in Figure 6.1a. In

the absence of any prior knowledge on user populations, a standard approach is for each

user to have their own prior model. This is denoted in the figure by SRC. Examples of

this type of transfer include using data from M − 1 users to learn prior model parameters

while performing active learning on the M th user. We investigate the alternative of using a

single common prior model for all users in Section 6.3.3. Examples of this type of transfer

include using data from a similar dataset gathered during a different phase of the study or

from another publicly available dataset (provided the features match).

We present the pseudocode for personalized active learning in Algorithm 1. This algo-

rithm is executed separately for each user denoted by N . In line #3, we create sample pool

for active learning. In lines #4 and #5, we learn a SRC model using data examples from

other users (also referred to as between user model). The main active learning loop runs

from lines #7 through #13. The very first query is issued using the between-user model by

setting WN to WSRC in line #6. In each iteration of active learning, we choose an example

to query using the current classification model (denoted by WN ). The classification model

is updated in each iteration in line #10 using the actively learned examples. This update

uses the prior model, WSRC , to perform transfer learning like in Equation 6.1.

The advantage of personalized active learning is that we develop one prediction model

per user, which can lead to better personalization. The drawback is that each user may

require many labeled examples to achieve good performance. We address this problem by

leveraging the similarities between users to further minimize the number of queries.

6.3 Group-based Active Learning

When users have very similar activity patterns, a natural approach is to group users

based on activity patterns and develop one active learning model per group. In this setup,

queries issued to users in a group only benefit users within that group. Relaxing this as-

sumption allows for sharing of labeled examples between groups, which further minimizes
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the number of redundant queries. Sharing labeled examples between groups is especially

useful when users partially overlap in similarity space, but not strongly enough to be in the

same group. Leveraging similarities within and between groups can further minimize the

number of queries per group while still achieving good performance. This we refer to as

group-based active learning.

In this framework, we assume that all users’ unlabeled sample pools are available si-

multaneously to query. This changes the problem description. We would now like to use

active learning to improve the overall performance for all users simultaneously. We per-

form group-based active learning in three steps that we explain below.

6.3.1 Step I: Grouping Users

The first step is to group users based on their similarities. We learn user groupings using

only their activity patterns in an unsupervised manner and ideally we would want groups

that overlap to be organized closer to each other. Our approach to learn user groupings

is via hierarchical agglomerative clustering. In this approach, users are grouped pairwise

based on similarity scores in an iterative fashion. In each iteration of the algorithm, the pair

of groups of users that are most similar are combined into a new group. The algorithm pro-

ceeds to merge groups in a hierarchical, bottom-up fashion until it reaches the root where

the last merge occurs. The resulting hierarchical clustering has the following interpretation:

the first merge corresponds to the pair of most similar users and the last merge corresponds

to the pair most dissimilar groups. All merges in between the first and last merge proceed

in a greedy fashion. More details about this clustering algorithm is presented in Section

2.1.7.

The results of hierarchical agglomerative clustering are often presented in a dendrogram

as shown in Figure 6.2. In this example, five users are represented as individual leaf nodes

in the dendrogram. Unlike a regular dendrogram, in this dendrogram we introduce non-

leaf nodes corresponding to each merge and a root node corresponding to the last merge
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Figure 6.2: Example dendrogram of five users as output by hierarchical agglomerative
clustering

in order to facilitate group-based active learning. The interpretation is that users 1 and 2

are more similar than any other pair of users in this example dataset. Hence, in the very

first iteration, users 1 and 2 are merged to form a new group which is labeled as ’user 1-2’,

in the second iteration users 4 and 5 are merged to form another group ’user 4-5’ and so

on. Also, as evident in this dendrogram user 3 has much less overlap with users 1, 2 when

compared to users 4, 5. This information can be inferred from the order of the merges in the

dendrogram. At the root of the dendrogram is the result of merging group ’user 1-2-4-5’

with user 3. This clustering algorithm has the added advantage of not needing to specify

the number of clusters.

Hierarchical agglomerative clustering groups users using a similarity matrix that can

be precomputed and cached. Each entry in the similarity matrix represents the similarity

between pairs of users rather than pairs of data examples. A default approach is to compute
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statistics on data examples for each user and then to compute the similarity between pairs

of users using these statistics. Common statistics include moments [48, 118], probability

densities [10], quantization profiles with hard (e.g., kNN [60]) and soft (e.g., GMM [116])

clustering of data examples to cluster centers. Some of these statistics are sensitive to

outliers and others require additional hyper parameters to be tuned.

Our approach to computing similarity between users is fully data-driven, but compu-

tationally expensive with large numbers of users. Our approach computes the similarity

between pairs of users as a discriminability score, D. Large values of D imply that the

users are dissimilar and vice versa. We treat the performance on a binary classification

task of distinguishing between pairs of users’ activity patterns as a proxy for D. Here the

discriminability score is very similar to the techniques used to assess covariate shift (dis-

cussed in Section 5.3.2), but with the interpretation that smaller D implies more similarity.

This approach is very robust, easy to compute, less sensitive to outliers and no additional

hyperparameters are introduced.

6.3.2 Step II: Active Learning over Groups

The second step is to perform active learning over groups. We leverage the dendrogram

presented in the previous step as a data structure to perform group-based active learning.

In order to perform group-based active learning we need to specify the number of

groups. Equivalently, we can specify the height at which to slice the dendrogram. Slic-

ing the dendrogram at the leaf nodes (specified at height zero on the y-axis in Figure 6.2)

results in each user forming their own group. Slicing the dendrogram at the root (specified

at height 4 on the y-axis in Figure 6.2) results in all users forming a single group. Each

slice through the dendrogram will result in one or more groups. The groups can be made

up of leaf nodes, non-leaf nodes or a mix of both. The higher we slice the dendrogram, the

fewer groups exist in our dataset and vice versa.
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Given a slice of the dendrogram, we develop one active learning model for each group

in the slice. If a group is a leaf node, we use the sample pool associated to that user to

perform active learning. If a group is a non-leaf node, we combine the sample pools of all

users under that non-leaf node to create the pool to perform active learning. We perform

active learning over the groups in a round robin fashion. Hence, in each iteration we sweep

through left-to-right to update the prediction models of each group.

For example, in the dendrogram with five users, slicing the dendrogam at height 2,

bottom-up, results in 3 groups. This slice is represented by a red dotted line in Figure 6.2.

This slice results in partitioning the dataset into three groups: group ’user 1-2’, group ’user

4-5’ and user 3. We combine the sample pools of users 1,2 to create a pool that corresponds

to the respective group ’user 1-2’. Similarly we create a pool for group ’user 4-5’. One

iteration of group-based active learning proceeds as follows. An unlabeled example is

chosen from the pool of group ’user 1-2’ and queried for a label. This labeled example is

now used to update the prediction model corresponding to group ’user 1-2’ only. We follow

the same steps to update the prediction models for groups ’user 4-5’ and user 3 respectively.

Since there are only three groups, the group-based active learner alternates between these

three groups until the querying budget is exhausted.

6.3.3 Step III: Transfer Learning between Groups

The third step is to allow sharing of labeled examples between groups. Again, we take

advantage of the dendrogram structure to transfer knowledge on labeled examples between

groups. Note that each node in the dendrogram is associated with a parent node with the

exception of the root node. Our approach is to transfer knowledge on labeled examples

between siblings nodes via parent nodes hierarchically. We perform transfer learning via

parameter transfer as described in Section 2.1.2. We include the objective function with

parameter transfer below,

96



argmin
W,b

N∑
n=1

log
(
1 + exp(−yn(b+W>xn))

)
+ λ‖W −Wp‖22 + λ‖b− bp‖22 (6.2)

In order to perform parameter transfer we train a prediction model at each parent node

using the labeled examples available for all children. We treat the parent model parameters

as the prior model parameters, Wp, when updating model parameters for children nodes.

For the root node, we transfer knowledge on labeled examples from the source domain.

Continuing with the example grouping in Figure 6.2, the prediction model parameters

at the root node will serve as prior model parameters for nodes ’user 1-2-4-5’ and user 3

respectively. The prediction model parameters at node ’user 1-2-4-5’ will serve as prior

model parameters for nodes ’user 1-2’ and ’user 4-5’. The prediction model parameters

at node ’user 1-2’ will serve as prior model parameters for nodes user 1 and 2. Similar

parameter transfer occurs for users 4 and 5 respectively. Note that active learning is only

performed on groups ’user 1-2’, ’user 4-5 ’and user 3 in a round robin fashion. At any given

iteration, the prediction model at node ’user 1-2-4-5’ will be trained only using actively

learned examples from groups ’user 1-2’ and ’user 4-5’ respectively.

We interleave the model updates in the dendrogram with querying in active learning.

Within a single iteration of active learning all prediction models in the hierarchy (from

root to all nodes in the dendrogram) are updated in a top-down fashion. This is an expen-

sive operation, but is essential for all models to benefit from all subsequent queries. We

compared the benefit of hierarchical updates (referred to as deep transfer below) with two

other updates schemes that basically differ in the number of models and subsequently how

knowledge on labeled examples is transferred between groups.

1. Group-based active learning with flat transfer

This is the most simple approach to group-based active learning. We first group users

and then perform active learning per group in a round robin fashion among all groups at

any given slice of the dendrogram. We transfer knowledge from a single source domain

model to all groups. Graphically, this approach is shown in Figure 6.1b. In this setup, each
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user forms its own group and all groups transfer knowledge on labeled examples from a

common source domain model SRC. This model allows for sharing of knowledge within

groups, but only indirectly between groups via the SRC model. Knowledge on labeled

examples is transferred between groups by restricting each group’s model parameters to be

as close to the source domain.

Algorithm 2 Group-based active learning with flat transfer
1: procedure GROUP-BASED ACTIVE LEARNING FLAT TRANSFER(Data, Budget,
Query, Groups)

2: N ← Number of users
3: xSRC , ySRC ← Data(1 : N)
4: WSRC ← Classifier(xSRC , ySRC ,∅)
5: xpool[1 : Groups], ypool[1 : Groups]← Data(1 : N,Groups)
6: xtrain[1 : Groups], ytrain[1 : Groups]← [ ], [ ]
7: while Budget 6= 0 do
8: for g ← 1 to Groups do
9: if xtrain[g] = ∅ then

10: W [g]← WSRC

11: end if
12: x, y ← Query(xpool[g], ypool[g],W [g])
13: xtrain[g], ytrain[g]← xtrain[g] ∪ x, ytrain[g] ∪ y
14: W [g]← Classifier(xtrain[g], ytrain[g],WSRC)
15: xpool[g], ypool[g]← xpool[g]− x, ypool[g]− y
16: Budget← Budget− 1
17: if Budget = 0 then
18: Break
19: end if
20: end for
21: end while
22: return W [1 : Groups]
23: end procedure

We present the pseudocode for group-based active learning with flat transfer in Algo-

rithm 2. This algorithm is executed for all N users simultaneously. The number of groups

is provided as an input to the algorithm. In lines #3 and #4, we learn a SRC model using

ten (five positive and five negative) randomly chosen data examples from N users. In line

#5, we create sample pools for all groups from N users’ data for active learning. The main

98



active learning loop runs from lines #7 through #21. The very first query for each group

is issued using the SRC model by setting W [g] to WSRC in line #10. In each iteration of

active learning, we choose an example to query using the current classification model (de-

noted by W [g]). The classification model is updated in each iteration in line #14 using the

actively learned examples. This update uses the prior model, WSRC , to perform transfer

learning like in Equation 6.1.

Algorithm 3 Group-based active learning with shallow transfer
1: procedure GROUP-BASED ACTIVE LEARNING SHALLOW TRANSFER(Data,
Budget, Query, Groups)

2: N ← Number of users
3: xSRC , ySRC ← Data(1 : N)
4: WSRC ← Classifier(xSRC , ySRC ,∅)
5: xpool[1 : Groups], ypool[1 : Groups]← Data(1 : N,Groups)
6: xtrain[1 : Groups], ytrain[1 : Groups]← [ ], [ ]
7: xroot, yroot ← [ ], [ ]
8: WROOT ← WSRC

9: while Budget 6= 0 do
10: for g ← 1 to Groups do
11: if xtrain[g] = ∅ then
12: W [g]← WROOT

13: end if
14: x, y ← Query(xpool[g], ypool[g],W [g])
15: xroot, yroot ← xroot ∪ x, yroot ∪ y
16: xtrain[g], ytrain[g]← xtrain[g] ∪ x, ytrain[g] ∪ y
17: WROOT ← Classifier(xroot, yroot,WSRC)
18: W [g]← Classifier(xtrain[g], ytrain[g],WROOT )
19: xpool[g], ypool[g]← xpool[g]− x, ypool[g]− y
20: Budget← Budget− 1
21: if Budget = 0 then
22: Break
23: end if
24: end for
25: end while
26: return W [1 : Groups]
27: end procedure

2. Group-based active learning with shallow transfer
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In this approach, we transfer knowledge on labeled examples between groups via the

root node and the root node transfers knowledge on labeled examples from the source

domain. Graphically, this approach is shown in Figure 6.1c. In this setup, each user forms

its own group and all groups transfer knowledge on labeled examples from the root node.

The root node falls backs to the source domain model SRC. This model allows for sharing

of knowledge on labeled examples both within and between groups, but assumes all labeled

examples are useful to all groups.

We present the pseudocode for group-based active learning with flat transfer in Algo-

rithm 3. This algorithm is executed for all N users simultaneously. The number of groups

is provided as an input to the algorithm. In lines #3 and #4, we learn a SRC model using

ten (five positive and five negative) randomly chosen data examples from N users. In line

#5, we create sample pools for all groups from N users’ data for active learning. The main

active learning loop runs from lines #9 through #25. The very first query for each group

is issued using the model at the root node by setting W [g] to WROOT in line #12. In each

iteration of active learning, we choose an example to query using the current classification

model (denoted byW [g]). We update both the model at the root node as well as the classifi-

cation model for the gth group in each iteration of active learning. We first update the model

at the root node in line #17 using all actively learned examples from all groups. This update

uses the prior model, WSRC , to perform transfer learning like in Equation 6.1. Second, the

group-level classification model is updated in line #18 using the actively learned examples

available to that group only. This update uses the prior model, WROOT , to perform transfer

learning like in Equation 6.1.

3. Group-based active learning with deep transfer

In this last approach, we transfer knowledge on labeled examples between groups via a

deep hierarchical structure. The root node transfers knowledge on labeled examples from

the source domain. Graphically, this approach is shown in Figure 6.1d. In this setup,

each user forms its own group and each group transfers knowledge on labeled examples

100



Algorithm 4 Group-based active learning with deep transfer
1: procedure GROUP-BASED ACTIVE LEARNING DEEP TRANSFER(Data, Budget,
Query, Groups)

2: N ← Number of users
3: M ← Number of nodes in dendrogram
4: xSRC , ySRC ← Data(1 : N)
5: WSRC ← Classifier(xSRC , ySRC ,∅)
6: xpool[1 : Groups], ypool[1 : Groups]← Data(1 : N,Groups)
7: xtrain[1 : Groups], ytrain[1 : Groups]← [ ], [ ]
8: xroot, yroot ← [ ], [ ]
9: while Budget 6= 0 do

10: for g ← 1 to Groups do
11: if xtrain[g] = ∅ then
12: Wparent ← Get− Parent−Model(g)
13: W [g]← WPARENT

14: end if
15: x, y ← Query(W [g], xpool[g], ypool[g])
16: xtrain[g], ytrain[g]← xtrain[g] ∪ x, ytrain[g] ∪ y
17: for m← 1 to M do
18: xnode, ynode ← Get-Node-Examples(m,xtrain[1 : Groups], ytrain[1 :

Groups])
19: if m =ROOT then
20: Wparent ← WSRC

21: else
22: Wparent ← Get− Parent−Model(m)
23: end if
24: W [m]← Classifier(xnode, ynode,Wparent)
25: end for
26: xpool[g], ypool[g]← xpool[g]− x, ypool[g]− y
27: Budget← Budget− 1
28: if Budget = 0 then
29: Break
30: end if
31: end for
32: end while
33: return W [1 : Groups]
34: end procedure
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from its sibling via its parent. The root node falls backs to the source domain model SRC.

This model allows for sharing of knowledge on labeled examples both within and between

groups. Sharing of information between groups is local and meaningful. Prediction models

at different levels of the hierarchy have access to different pieces of information. The nodes

at the lower level are more group-focused whereas nodes closer to the root are learning

model parameters that benefits all users.

We present the pseudocode for group-based active learning with flat transfer in Algo-

rithm 4. This algorithm is executed for all N users simultaneously. The number of groups

is provided as an input to the algorithm. We denote the total number of nodes in the den-

drogram as M . In lines #4 and #5, we learn a SRC model using ten (five positive and five

negative) randomly chosen data examples fromN users. In line #6, we create sample pools

for all groups from N users’ data for active learning. The main active learning loop runs

from lines #9 through #32. The very first query for each group is issued using the model

at its parent node by setting W [g] to WPARENT in line #13. In each iteration of active

learning, we choose an example to query using the current classification model (denoted

by W [g]). We update all models in the dendrogram by starting at the root node and moving

top-down and left to right. Each update requires access to two pieces of information: one,

the labeled examples available to each node from its respective leaf nodes (shown here as

a function ‘Get-Node-Examples’); two, a prior model that it can transfer from (shown here

as a function ‘Get-Parent-Model’). This update is performed in a for loop that runs from

lines #17 to #25. All model update use the prior model, WPARENT , to perform transfer

learning like in Equation 6.1.

6.4 Empirical Protocols

In this section, we discuss the empirical protocols used to generate results in the next sec-

tion.
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6.4.1 Train and Test Data Partitioning

For each user, we randomly partitioned the data samples into k stratified folds. In our

experiments, we partitioned the data into five folds per user. For baseline methods (ex-

plained below), we perform straight k-fold cross-validation. For active learning methods,

we treat the data examples from k − 1 folds as the sample pool and test on the kth fold.

We repeat the above protocol for k folds. Hence the comparison between baseline methods

and actively learned models is fair since we are evaluating our methods on the same held

out test sets.

6.4.2 Data Preprocessing, Feature Extraction and Label Assignment

We followed the exact same preprocessing steps as specified in [110]. We explain the

steps below briefly. Specifically, from the available set of features we chose the relevant

175 features as mentioned in Section 6.1.1. Following this, windows where one or more

sensor groups were completely missing were filtered out.

Data within each user was normalized to have zero mean and unit standard deviation.

For personalized active learning where we develop one model per user, we normalize the

dataset using only statistics computed on the k − 1 folds. For group-based active learning,

we normalize the dataset using statistics computed on the k−1 folds from all users since we

assume data from all users is available simultaneously. Following this, any NaN‘s present

in the dataset were replaced by zeros.

All one minute windows pertaining to target activities (listed in Table 6.1) were as-

signed a positive label and all other activities were assigned a negative label. Additionally,

we enforced a constraint that the ‘sleep’ activity should span twenty consecutive minutes

or longer. Activities reported as sleep for less than twenty minutes were considered ‘lying

down’ and hence assigned a negative label.

6.4.3 Baseline Methods

We compare the performance of active learning approaches to two baseline methods.
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1. Within-User: This follows a straight within-user evaluation protocol. We train a

prediction model on k − 1 folds and evaluate on the held out kth fold for each user.

2. Between-User: This follows the leave-one-user-out evaluation protocol. We train

a prediction model on data from M − 1 users and test on the held out M th user. Using

all data examples from M − 1 users, ∼ 40, 000 labeled examples on average, leads to

a between-user performance that is very similar to the within-user performance leaving

no room for improvement via active learning. Additionally, the methods we propose in

this chapter obviates the need to collect large quantities of labeled examples from M − 1

users in the first place. Hence, in order to simulate real world settings we only use ten

labeled examples (five positive and five negative) uniformly sampled at random fromM−1

users. While, five positive examples all come from the same activity, the five negative

examples come from a diverse set of activities. Our rationale for choosing ten labeled

examples is that it is more practical to obtain ten minutes of ground truth labels in real

world settings. Additionally, in many active learning scenarios we use this between-user

model to perform transfer learning. Hence, by assuming only ten labeled examples the

boost in performance from transfer learning is minimal and only serves to warm start active

learning. We hypothesize that the performance, across all methods, would likely improve

if we assume we have access to more than ten labeled examples to begin with.

We view the baseline methods as two extremes of access to labeled examples. At one

end is the within-user protocol which has access to large quantities (∼ 80%) of labeled ex-

amples fromM th user and at the other end is the between-user protocol which has no access

to labeled examples from the M th user. For both baseline methods we perform hyperpa-

rameter selection by performing another stratified 5-fold cross validation using training

data only.
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6.4.4 Active Learning Evaluation Protocols

We evaluated active learning techniques on the human activity recognition dataset. Each

technique differed in how information was transferred between users and whether a query

benefited a single user or multiple users.

Across all evaluation protocols we used penalized logistic regression with transfer (de-

scribed in Section 2.1.2) as the prediction model. We investigated two querying strategies:

uncertainty simply using entropy and random querying. For entropy-based methods, we

use the current prediction model to compute entropies of all unlabeled examples in the

sample pool. Following this, we pick the example with the highest entropy.

For each protocol we explain the use of data, initial query choice, subsequent queries,

total budget, hyperparameter tuning and the prior model parameters, Wp, used in transfer

learning. We provide a comparison of the different evaluation protocols in Table 6.2 as

well.

6.4.4.1 Personalized Active Learning

This is the standard version of active learning were we develop one active learning

model per user. For each user we use the data from k − 1 folds as the sample pool and

test on the held out kth fold. We use the between-user model as a prior model (Wp is

set to between-user model parameters) that we transfer from. In the very first iteration, we

compute utilities for unlabeled examples using the prior model and pick the example which

has the highest utility. For second query and later, we use the active learning prediction

model to compute utilities for unlabeled examples in the sample pool. The active learning

prediction model is retrained after each query using only the actively learned examples.

We observe that active learning is sensitive to the penalty parameter as the prediction

model’s performance varies significantly for different penalties. Personalized active learn-

ing models start with a penalty from the prior model and they are re-tuned after every 20

iterations during active learning. During retuning we perform 5-fold cross validation on ac-
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tively labeled examples to pick the best penalty from a range of 1e−4 to 1e+4. This retuning

is triggered only when there are at least five positive and five negative actively learned ex-

amples. We perform personalized active learning for each target activity for a total budget

of 100 labeled examples per user.

6.4.4.2 Group-based Active Learning with Flat Transfer

In this protocol we perform group-based active learning but transfer knowledge on la-

beled examples from a common prior model. The sample pool and test partitions are similar

to personalized active learning with one difference: the sample pools are available simulta-

neously to query. Hence, when grouping users we can combine sample pools from multiple

users to create a single sample pool. In order to transfer knowledge on labeled examples

we create a proxy dataset as if it were from the source domain. We train a common prior

model using this source domain dataset. Specifically, we create this dataset by choosing

five positive and five negative examples uniformly at random from k − 1 folds of M users.

Importantly, we remove these ten labeled examples from the respective sample pools so

that they are not reused during active learning.

Group-based active learning models start with a penalty from the common prior model

and they are re-tuned after every M th iteration during active learning, where M is the

number of users in each target activity respectively. Retuning is triggered and performed

like in personalized active learning. We perform group-based active learning for each target

activity for a total budget of M × BT labeled examples where, BT is the budget for target

activity T . Note while this number might be large, when compared to personalized active

learning, it applies to all users in the dataset performing the target activity.

Lastly, we perform group-based active learning over g groups in a round robin fashion.

We learn a grouping of users into g groups using hierarchical agglomerative clustering

(outlined in Section 6.4.6). When g is set to M (slicing the dendrogram at the leaf nodes)

essentially each user forms its own group. The first query for each group is issued using
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the common prior model. Subsequent queries are issued using active learning models for

each group respectively. In this setup, each group issues a maximum of M×BT

g
queries

irrespective of the number of users within each group. While this is fair to groups with

roughly equal number of users it might be unfair to groups with large disparities (e.g., two

groups with M − 1 users in group one and one user in group two). The rationale for this

approach is that one single user in group two is significantly different from the rest of the

population that he/she requires more queries to achieve similar performance. In the results

section, we discuss the effect of the number of groups, g, in group-based active learning

for different active learning protocols.

Computing performance in group-based active learning requires some additional work.

We compute the performance of users within a group using the prediction model associated

to that group. For groups that do not have access to a prediction model we utilize the prior

model to assess performance. This typically happens in the very first iteration of round

robin sampling when some groups do not yet have access to labeled examples.

6.4.4.3 Group-based Active Learning with Shallow Transfer

In this protocol, we perform group-based active learning with two types of transfer.

The first transfer is from the source domain to target domain via a common prior model.

Hence, the prior model at the root node is the common prior model learned from the source

domain. The second transfer is between groups in the target domain via the root node of

the dendrogram. Hence, the prior model for each group in the dendrogram is the prediction

model from the root.

We perform group-based active learning like in the flat transfer case but each queried

example will directly benefit: one, the respective group that issued the query; two, the

root node. In order to facilitate transfer of knowledge on labeled examples, we first update

the prediction model at the root node and then update the prediction model of each group

respectively. Note that unlike the flat transfer case we need to update the active learning
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Protocol Sample Test Transfer No. of AL Budget HP No. of model
pool set model models updates

Person- k − 1 kth Between M 100 Every 20th 1
alized AL folds fold -subjects iteration

Group k − 1 kth Source g M ×BT Every M th g
+ Flat folds of fold of domain iteration

Transfer M users M users model
Group k − 1 kth Source g M ×BT Every M th g + 1

+ Shallow folds of fold of domain iteration
Transfer M users M users model
Group k − 1 kth Source g M ×BT Every M th g + g − 1
+ Deep folds of fold of domain iteration
Transfer M users M users model

Table 6.2: Table comparing the four variants active learning. Here k is the number of folds
in the dataset, M is the number of users in each target activity, g is the number of groups
in group-based active learning and BT is the budget per target activity T

models of all groups after each query (even groups that did not issue the query) since each

group uses the root model as a prior model, which gets updated after each query. Hence,

all groups indirectly benefit from each query issued in group-based active learning.

The total number of models to be updated after each query is g+1, where g is the num-

ber of groups. We perform hyperparameter tuning separately for each of the g + 1 models

using the same criterion as active learning with flat transfer. We compute the performance

of users within a group using the prediction model associated to that group. For groups

that do not have access to a prediction model we utilize the prediction model from the root

node to assess performance. All other details are the same as the flat transfer case.

6.4.4.4 Group-based Active Learning with Deep Transfer

The last evaluation protocol is the group-based active learning with deep transfer. Again

here we transfer knowledge on labeled examples from the source to target domain via the

root node in the dendrogram. The critical difference is the transfer of knowledge on labeled

examples between groups in the target domain. Here we leverage the full dendrogram

structure.
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We perform group-based active learning like in the shallow transfer case but each

queried example will directly benefit: one, the respective group that issued the query; two,

the root node; three all nodes along the path from the root to the group. In order to facili-

tate transfer of knowledge on labeled examples, we first update the prediction model at the

root node, followed by updating the prediction models in between the root node and group

level (layer-by-layer update from left to right) and then finally update the prediction model

of each group respectively. Very similar to the shallow transfer case, we need to update

the active learning models of all nodes in the the dendrogram since each node serves as a

parent to another node or is the node associated to the group itself. Hence, all nodes in the

dendrogram indirectly benefit from a single query issued in this framework.

The total number of models to be updated after each query ranges from just 1 (i.e. a

single group at the root node) to M +M −1 (i.e. each user forms its own group). We com-

pute the performance of users within a group using the prediction model associated to that

group. For groups that do not have access to a prediction model we utilize the prediction

model from the immediate parent node (grandparent if no prediction model exists at the

parent node and so on) to assess performance. All other details are the same as the shallow

transfer case.

6.4.5 Evaluation Metric and Reporting Results

Due the sample imbalances in both classes we report balanced accuracy as in [110].

Balanced accuracy (BA) is computed as,

BA =
1

2
(TPR + TNR)

where, TPR and TNR are true positive rate and true negative rate respectively. This metric

ranges between 0 to 1 interpreted as greater balanced accuracy is better performance. We

repeat each data analysis five times with different random seeds to mitigate the effects of

train, test partition and querying strategies in active learning. We compute the balanced
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accuracy per user as a mean over five repetitions and five folds. In the results section we

only report the mean balanced accuracy over users along with standard error bars.

6.4.6 Hierarchical agglomerative clustering

We perform hierarchical agglomerative clustering using a precomputed similarity ma-

trix. The similarity matrix is very similar to a gram matrix in kernel methods with diagonal

entries set to zero and is symmetric. The number of rows and columns correspond to the

users per activity. For each pair of users we compute the similarity score as the balanced

accuracy to discriminate between pair of users. Lower balanced accuracy implies that the

users are more similar and vice versa.

To compute balanced accuracy for a pair of users we assign a positive label to user i’s

data examples and negative label to user j’s data examples. We perform a stratified 5-fold

cross validation to compute the mean balanced accuracy. The stratification is to enforce

that the target activity is uniformly represented across all five folds for both users. We

compute one similarity matrix per target activity listed in Table 6.1. To avoid peeking, we

compute this similarity matrix using only data from k−1 folds (i.e. the sample pool) when

performing active learning on the kth fold.

6.5 Results

We present results for target activities listed in Table 6.1. For each activity we com-

pare performance of baseline methods to active learning methods. We present an in-depth

analysis for the ‘sleep’ activity only.

6.5.1 Sleep Activity

In this section, we compare the performance of baseline methods to active learning

methods for ‘sleep’ activity.
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Figure 6.3: Comparing performance of baseline methods to personalized active learning
for sleep activity. Here ‘B’ is between-subjects and ‘W’ is within-subjects. The lines plots
correspond to entropy and random querying strategies in active learning.

6.5.1.1 Baseline Methods and Personalized Active Learning

In Figure 6.3 we plot the mean balanced accuracy for the two baseline methods at the

two ends of the plot along with standard error bars. To the extreme left is the between-

subjects (B) results and the to the extreme right is the within-subjects (W) results.

The within-subjects performance is at 0.91 which is slightly more than the best re-

ported (0.89) performance in [110]. The reason for this difference can be attributed to the

difference in the number of data examples between the two analysis. Two other sources of

difference are: (1) Vaizman et al., weighted data examples in the objective function when

performing classification. These weights were used to make the classifier aware of the class

imbalance, much like importance weights to handle prior probability shift in Section 5.4.2.

In our analysis we did not utilize instance level weighting (2) Vaizman et al., also set the

hyperparameter to be a constant 1 for all classification tasks whereas we performed hyper-
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parameter tuning. The between-subjects performance is at 0.77. There is performance gap

of 0.14 which we hope to close with active learning methods.

Between the two baseline methods we plots the results for personalized active learn-

ing. On the x-axis is a budget of 100 labeled examples We make two plots corresponding

to the entropy and random querying strategies respectively. Each line plot is the mean

over 38 users in sleep activity and the ribbons correspond to one standard error. In per-

sonalized active learning, we transfer knowledge on labeled examples from the between-

subjects model. Hence the performance of personalized active learning is very similar to the

between-subjects’ performance at lower budgets (≤ 10 labeled examples). The second ob-

servation is that entropy-based methods are on average performing statistically significantly

better then random querying for all active learning budgets. Lastly, the best performance of

personalized active learning at at 0.88 which is 2% from the within-subjects performance.

We attain this best performance by developing 38 active learning models, one per user,

with a total budget of 3800 labeled examples (38 users ×100 labeled examples per user).

Essentially, we have requested that each user label about 100 minutes of sensor data, which

is not practical in real world settings. We would like to further minimize the number of la-

beled examples per user by exploiting the similarities between users as well as transferring

knowledge on labeled examples between groups of users via group-based active learning.

6.5.1.2 Group-based Active Learning

In this section, we present results from group-based active learning. First, we perform

hierarchical agglomerative clustering using a precomputed similarity matrix. We compute

similarity matrix as outlined in Section 6.4.6. The similarity matrix for sleep activity is

shown in Figure 6.4a. The rows and columns correspond to 38 sleep activity users. This

is a symmetric matrix with diagonal entries carrying no relevant information. The heat

map should be interpreted as lighter shades imply more similarity. We find some users

to be more similar than others with balanced accuracies ranging from 0.72 to 1.0. We
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acknowledge that there is not a lot of similarity between users since the dataset is collected

over relatively short span of 14 days with lot of variance and sources of noise. Additionally

this matrix captures similarities between pairs of users that have very little overlap in the

set of activities performed.
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(a) Similarity matrix (b) Dendrogram

Figure 6.4: (a) Similarity matrix computed for 38 sleep users (b) dendrogram for 38 users
in sleep activity

We use this similarity matrix to perform hierarchical agglomerative clustering. We

present the clustering results in a dendrogram shown in Figure 6.4b. On the x-axis are the

38 users for sleep activity are arranged based on similarity score. On the y-axis we show

the order of merges, bottom-up, all the way to the root node. At a high level there appears

to be two groups (shown in red and green) and the remaining users are so disparate that

the merges only happen near the root. We can now slice this dendrogram at 38 possible

locations on the y-axis, each of which results in grouping of users into g groups.

We present results from group-based active learning with flat transfer. This is the most

simple case where each group has its own active learning model and all groups transfer
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Figure 6.5: Comparing performance of 1, 19 and 38 groups in group-based active learning
with flat transfer for sleep activity

knowledge on labeled examples from a common prior model from the source domain. We

present results from three groupings that are of interest,

1. g = 1 group; we slice the dendrogram at the root node and assume all users belong

to this one group.

2. g = 38 groups; we slice the dendrogram at the leaf nodes and assume each user

forms its own group

3. g = 19 groups; we slice the dendrogram such that there are 19 groups, roughly half

way between 1 and 38 groups.

We present the results for these three groupings in Figure 6.5. The x-axis is the total

labeling budget for sleep activity which is ∼ 760 (38 users ×20 examples per user). The

line plots here correspond to the entropy-based querying strategy which is significantly

better than random querying. At a labeling budget of 1, only group one has issued a query

and the other g − 1 groups rely on the prior model to estimate performance on the test set.
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Hence in this setup at labeling budgets of g × 1, g × 2, ..., g × 20 all groups should have

queried at least once, twice, ..., twenty times respectively.

From this plot we observe that performing group-based active learning with flat transfer

improves performance over personalized active learning. For comparison, at 20 iterations,

personalized active learning performed at ∼ 0.83 but group-based active learning ranges

between 0.85 and 0.86. Importantly there is substantial variability between different groups

at smaller labeling budgets specifically between 1 to 200 labeled examples. Group-based

active learning with a single group performs substantially better than other groupings at

smaller labeling budgets. At larger labeling budgets the personalized models show small

improvements over the single group model. The differences in performances can be at-

tributed to the number of labeled examples versus the number of model parameters to be

learned. The single group model only trains one model at the root node but the 38 group

model trains 38 models in the dendrogram structure using the same number of labeled

examples. This discrepancy is much more pronounced at smaller labeling budgets.

Another observation is that unlike personalized active learning, transfer learning in

group-based active learning is not working very well. We attribute the initial drop in per-

formance to the choice of hyperparameter λ. Recall that the hyperparameter used in the

first couple of iterations (until retuning) is the same as the one used in the prior model.

Typically this hyperparameter is small and hence allows for more deviation of the active

learning model parameters from the prior model. Setting the hyperparameter to be large

e.g., 1e+4 will ensure that the group-based active learning performance will be very similar

to the prior model, but this indirectly affects subsequent queries issued. This is a trade off

we encounter in group-based active learning.

We make a similar plot for group-based active learning with shallow transfer. In Figure

6.6, the three lines plots correspond to groups 1, 19 and 38 respectively. We point out that

transfer learning between groups is not working well, at least for 19 and 38 groups, since

we indirectly transfer knowledge of labeled examples between groups via the root node.
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Figure 6.6: Comparing performance of 1, 19 and 38 groups in group-based active learning
with shallow transfer for sleep activity

But the performance quickly stabilizes and starts to monotonically increase with as few

as ten labeled examples. We observe very similar trends as before but the gap between

different groupings at lower labeling budgets is closed in the shallow transfer case. We

observe that this gap is further closed in the deep transfer case. In Figure 6.7, the three

lines plots correspond to groups 1, 19 and 38 respectively when performing group-based

active learning with deep transfer.

Determining the ideal number of groups per target activity is a very challenging prob-

lem. Based on the observed trends in Figure 6.5 we could start with a single group and

create additional groups on a need basis as active learning progresses. This also poses

a problem since there is no principled way to know when to switch between groups and

whether to divide or merge groups. These problems are exacerbated by the availability

of a small number of actively learned examples. An alternate approach is to minimize

the variance in performance across different groupings and choose a fixed grouping for a

given target activity. This ensures that while performance is sub optimal at some labeling
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Figure 6.7: Comparing performance of 1, 19 and 38 groups in group-based active learning
with deep transfer for sleep activity

budgets, overall it can only deviate ε from the best possible performance. We observed

this phenomenon in group-based active learning with both shallow and deep transfer. This

phenomenon is more pronounced in the deep transfer case. We hypothesize that sharing

knowledge on labeled examples between groups in the hierarchical structure reduces the

variability in performance across different groupings, especially at smaller labeling bud-

gets. Hence, the non-leaf nodes in the deep transfer case serve dual purposes: one, to

transfer knowledge on labeled examples between children; two, to capture similarity be-

tween groups of users.

We performed a head to head comparison between all three variants of group-based

active learning. We assessed the deviation in performance between all possible groupings

as a function of the number labeled examples. While the performance of all three variants

eventually converge towards the end, the most interesting observations are at lower labeling

budgets. We plot the standard deviation of performance over all possible groupings in

Figure 6.8 up to a labeling budget of 350. As hypothesized, the deviation is much larger for
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Figure 6.8: Plot of standard deviatio of performance across 38 groups in group-based active
learning with flat, shllow, deep transfer respectively for sleep activity

flat transfer and requires more labeled examples to stabilize. In comparison, deep transfer

has higher deviation for a very short period, ≤ 15 labeled examples. The trend observed

for shallow transfer performs in between the two extremes.

In conclusion, we believe that group-based active learning with deep transfer minimizes

the deviation in performance across all possible groupings. Thereby removing one addi-

tional hyperparameter: the number of groups g. Hence, for group-based active learning

we propose to slice the dendrogram at the leaf nodes. The reason being that the models

at the leaf node are more personalized than other groupings. This assumes that each user

forms its own group and we transfer knowledge on labeled examples between groups via

the hierarchy.

Finally, we compare the performance of personalized active learning to group-based

active learning with deep transfer. In Figure 6.9 we plot the balanced accuracies of the

two active learning methods as a function of the total number of labeled examples. For
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Figure 6.9: Comparing performance of group-based active learning with deep transfer (760)
to personalized active learning (3800) as a function of number of labeled examples for sleep
activity

both variants we only plot the entropy-based querying strategy. As mentioned above, we

only compare the performance for g = M groups, where M is the number of users in the

target activity (i.e. each user forms its own group). To make the performance comparable

across the two settings we roll out the personalized active learning performance to a budget

of 3800. Specifically, we convert the personalized active learning performance from a

budget of 100 labeled examples to a budget of 3800 labeled examples by replacing each

personalized active learning performance entry with 38 copies of it. This is reflected as

small steps in the performance curve in Figure 6.9.

We observe that group-based active learning starts at a much lower performance but

quickly surpasses personalized active learning. The cross-over happens with as few as 50

labeled examples, which translates to each user labeling about a minute and half of their

sensor data. Group-based active learning performs at 0.874 with 20 minutes of labeled
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sensor data per user versus 0.884 for personalized active learning with 100 minutes of

labeled sensor data per user. Group-based active learning close the performance gap with

much fewer labeled examples.

Figure 6.10: Comparing performance of baseline methods to personalized active learning
for computer activity

6.5.2 Computer Activity

In this section we compare the performance of baseline methods to active learning

methods for computer activity.

6.5.2.1 Baseline Methods and Personalized Active Learning

From Figure 6.10 the within-subjects performance is at 0.79 and the between-subjects

performance is at 0.58. There is performance gap of 0.19 which we hope to close with

active learning methods. In between the two baseline methods we plots the results for

personalized active learning. Each line plot is the mean over 38 users and the ribbons

correspond to standard error bars. For this activity the entropy-based methods perform only
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Figure 6.11: Comparing performance of group-based active learning with deep transfer
(760) to personalized active learning (3800) as a function of number of labeled examples
for computer activity

as well as random querying for all active learning budgets. Lastly, the best performance of

personalized active learning at at 0.70 which is 9% from the within-subjects performance.

6.5.2.2 Group-based Active Learning

In Figure 6.11, we compare the performance of personalized active learning to group-

based active learning with deep transfer. We plot the balanced accuracies of the two active

learning methods as a function of the total number of labeled examples. For both variants

we only plot the entropy-based querying strategy. As mentioned above, we only compare

the performance for g = M groups, where M is the number of users in the target activity.

To make the performance comparable across the two settings we roll out the personalized

active learning performance to a budget of 3800. We observe that group-based active learn-

ing starts at a much lower performance but quickly surpasses personalized active learning.

Group-based active learning performs at 0.661 with 20 minutes of labeled sensor per user

data versus 0.708 for personalized active learning with 100 minutes of labeled sensor data
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per user. For comparison we also plot the performance of random querying which performs

significantly worse.

Figure 6.12: Comparing performance of baseline methods to personalized active learning
for drive activity

6.5.3 Drive Activity

In this section we compare the performance of baseline methods to active learning

methods for drive activity.

6.5.3.1 Baseline Methods and Personalized Active Learning

From Figure 6.12 the within-subjects performance is at 0.87 and the between-subjects

performance is at 0.74. There is performance gap of 0.13 which we hope to close with

active learning methods. In between the two baseline methods we plots the results for

personalized active learning. Each line plot is the mean over 24 users and the ribbons

correspond to standard error bars. For this activity the entropy-based methods perform

better than random random querying at lower active learning budgets and eventually the
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Figure 6.13: Comparing performance of group-based active learning with deep transfer
(1440) to personalized active learning (2400) as a function of number of labeled examples
for drive activity

two performances converge. We also observe that there is a small dip in performance in

entropy-based methods between 60 and 100 labeled examples. We hypothesize that this dip

is when the active learner starts to label examples which alter the decision surface leading

to erroneous predictions. Lastly, the best performance of personalized active learning at at

0.817 which is 6% from the within-subjects performance.

6.5.3.2 Group-based Active Learning

In Figure 6.13, we compare the performance of personalized active learning to group-

based active learning with deep transfer. We plot the balanced accuracies of the two active

learning methods as a function of the total number of labeled examples. For both variants

we only plot the entropy-based querying strategy. As mentioned above, we only compare

the performance for g = M groups, where M is the number of users in the target activity.

To make the performance comparable across the two settings, we roll out the personalized

active learning performance to a budget of 2400. Specifically, we convert the personalized
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active learning performance from a budget of 100 labeled examples to a budget of 2400

labeled examples by replacing each personalized active learning performance entry with

24 copies of it. We observe that group-based active learning starts at a lower performance

but surpasses personalized active learning around 1000 labeled examples. Group-based

active learning performs at 0.825 with 60 minutes of labeled sensor data per user versus

0.817 for personalized active learning with 100 minutes of labeled sensor data per user.

In comparison to sleep activity, the budget is larger (20 vs. 60) and fewer users (38

vs. 24) for drive activity. Vaizman et al, do not detail the transportation modalities that

fall under ‘drive - I am the driver’ activity. There could be substantial difference between

driving a car versus a bike versus a motor cycle. Hence despite 24 users participating in

this activity, the sub-activities could be very diverse.

Figure 6.14: Comparing performance of baseline methods to personalized active learning
for surfing the internet activity
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Figure 6.15: Comparing performance of group-based active learning with deep transfer
(1120) to personalized active learning (2800) as a function of number of labeled examples
for surfing the internet activity

6.5.4 Surfing the Internet Activity

In this section we compare the performance of baseline methods to active learning

methods for surfing the internet activity.

6.5.4.1 Baseline Methods and Personalized Active Learning

From Figure 6.14 the within-subjects performance is at 0.76 and the between-subjects

performance is at 0.49. There is performance gap of 0.27, which we hope to close with

active learning methods. In between the two baseline methods we plots the results for

personalized active learning. Each line plot is the mean over 28 users and the ribbons

correspond to standard error bars. For this activity the entropy-based methods perform only

as well as random querying for all active learning budgets. Lastly, the best performance of

personalized active learning at at 0.61 which is 15% from the within-subjects performance.
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6.5.4.2 Group-based Active Learning

In Figure 6.15, we compare the performance of personalized active learning to group-

based active learning with deep transfer. We plot the balanced accuracies of the two active

learning methods as a function of the total number of labeled examples. For both variants

we only plot the entropy-based querying strategy. As mentioned above, we only compare

the performance for g = M groups, where M is the number of users in the target activity.

To make the performance comparable across the two settings we roll out the personalized

active learning performance to a budget of 2800. We observe that group-based active learn-

ing starts at a much lower performance but surpasses personalized active learning at 500

labeled examples. Group-based active learning performs at 0.589 with 40 minutes of la-

beled sensor data versus 0.618 for personalized active learning with 100 minutes of labeled

sensor data. There is a small boost in performance, but it is not statistically significant.

6.6 Future Work

In order to deploy this active learning framework in real world applications, we discuss

three lines of future work.

1. Stream-based active learning: The immediate future work is to switch to stream-

based active learning. This change is necessary since data continuously arrives in a stream

from multiple sensors. Performing active learning in the stream-based setting is very chal-

lenging since most querying strategies are developed to be evaluated only in a pool. Even if

we ignore the memory constraints and store all data examples to create a pool, it is unlikely

for users to provide labels to data examples further away from the current timestamp. This

requires us to develop new querying strategies for sensor data streams. Recent work has

demonstrated the feasibility of stream-based active learning to engage visitors with avatars

[93], label video frames [66], and adapt prediction models to evolving concepts [52, 119].

2. Non-parametric models: Recall that in group-based active learning we first grouped

users based on similarity scores and then performed active learning on groups. This ap-
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proach is limited in that the number of groups is predetermined and remains fixed through-

out group-based active learning. A more robust approach to group-based active learning

is to develop non-parametric models. These models create g groups that best explain the

partitions in the dataset while also simultaneously learning prediction model parameters

for each group, thereby performing group-based active learning in one step rather than

two. Furthermore, g, can grow as more data becomes available which fits very well with

the stream-based active approach described earlier. Examples include Dirichelet process

models like in [115, 51]

3. Proactive learning: Up until now, we assumed that the labeling oracle will always

respond, provide the correct label, the cost to obtain a label is uniform, and there exists

a single oracle. Relaxing these assumptions leads to proactive learning [25, 114]. Proac-

tive learning directly applies to problems in wearable sensing since users are likely to be

unresponsive in certain time windows, are genuinely confused about ground truth labels

when performing multiple activities and respond to incentives by providing high quality la-

bels at higher costs. We could perform group-based active learning using multiple oracles

replacing the round robin schedule with choosing an oracle to provide a label as well.

6.7 Related Work

Most prior work in active learning for wearable sensing concerns the human activity

recognition task. We discuss related work separately for pool-based and stream-based ac-

tive learning.

Longstaff et al., propose pool-based active and semi-supervised learning techniques to

collect labels [65]. Specifically, they used data from a between-subjects model as a base

classifier and chose new examples to be added to the labeled set either using active learning

or semi-supervised learning. The conclusion was that active learning performed better than

other techniques only when there existed a performance gap when starting with a between-

subjects model. They also noted the difficulty of implementing an active learning model
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and emphasized user interaction as a potential problem. Saeedi et al., perform collaborative

active learning with a panel of experts rather than a single oracle [94]. This is very similar

to query by committee querying strategy in active learning [101].

Stream-based active learning is also referred to as online active learning. Hoque et al.,

used active learning to label clusters of activities in smart home settings [41]. Their method

assigns raw streams of sensor data from multiple, overlapping activities into separate clus-

ters. They minimize the number of labels required by asking users to only label clusters.

By default all data examples belonging to a cluster take on the cluster label with no option

to create new clusters or reassign examples to another cluster.

Another very similar approach to online active learning is to start with a supervised

machine learning model (like our prior model), monitor sensor data arriving in streams

and chunk them into segments. Lastly, use active learning to selectively query for a label

for each segment [70, 19]. In a variant of this pipeline, the segments are clustered first to

already existing clusters and a query is issued only when the segment forms a new cluster,

therby minimizing the number of labels [2, 1]. An assumption in this line of work is that

activities are performed in sequence and hence determining breakpoints is crucial to the

segmenting step. Additionally, every distinct pair of activities will trigger new queries, e.g.,

sitting and eating versus sitting and drinking, since the assumption is that each posture-

activity pair forms a separate cluster.

Transfer active learning is typically performed sequentially by first performing trans-

fer learning followed by active learning [90]. Recent work has shown that it is possible

to combine both transfer and active learning into a single framework of active transfer

learning [112]. A closely related line of work to transfer domain knowledge is the dataset

shift problem where unlabeled data from target domain is reweighed to match the marginal

distribution in the source domain. We investigated similar techniques in Chapter 5 under

domain adaptation for lab-to-field generalizability without active learning but under sce-

narios where small amounts of labeled data are available.
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6.8 Conclusions

In this chapter, we investigated active learning techniques to collect ground truth labels

from users in wearable sensor applications. Among the many challenges related to label

scarcity, we addressed one challenge: minimizing the number of required ground truth la-

bels while achieving comparable performance to baseline methods, which typically had

access to many more labeled examples. As a proof of concept, we demonstrated the per-

formance of active learning techniques on a set of activities in a publicly available dataset.

We first showed that personalized active learning performance continuously improves as

more labeled examples become available with performances matching that of supervised

machine learning for some activities. Following this, we presented a novel hierarchical ac-

tive learning framework that leveraged similarities between and within groups of users. We

showed that this framework can achieve a comparable performance to personalized active

learning while ranging from a 70% reduction in labeling effort for the ‘sleep’ activity to a

21% reduction in labeling effort for the ‘surfing the internet’ activity.

We evaluated our hierarchical active learning framework on a set of four activities.

The point of these experiments in this chapter was to demonstrate that the hierarchical

approach to transfer active learning is effective in reducing labeling effort for a diverse

set of activities. From these results, it obviously works for homogeneous activities (e.g.,

sleep) but requires more labeled examples for heterogeneous activities (e.g., drive). And yet

performs only slightly better than personalized active learning for ‘computer’ and ‘surfing

the internet’ activity. Another reason for this variability in performance could be the choice

of sensing modality in detecting a target activity of interest. Maybe there is not enough

information that can be leveraged from wrist band sensor and smartphone in order to detect

computer and internet activity. This is also reflected in the best reported performance from

[110] and listed in Table 6.1 for ‘computer’ and ‘surfing the internet’ activities at 0.71 and

at 0.63 respectively.
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One of the challenges we faced in developing these techniques is that the activity of

interest shows significant variability across users. Few activities of interest to health moni-

toring are rarely performed by individuals making it hard to train and evaluate personalized

models (e.g., eating, drinking). Even in cases of high frequency of an activity, the distri-

bution of this activity among users in the dataset is non-uniform (e.g., in the Vaizman et.

al., dataset users report sleep activity ranging from 30 minutes to 50 hours). This irreg-

ularity makes it challenging to evaluate personalized active learning techniques especially

for users that have a smaller representation. Another outcome of the limited representation

of an activity is that it introduces significant variance in the few limited contexts in which

it is performed. We encountered this problem when evaluating active learning methods

on ‘sleep’ activity. Specifically we performed active learning on data from week one and

tested on data from week two. We observed that performance was substantially worse since

there was significant covariate shift between train and test data. This led us to partition the

data into five folds for our experiments. We made similar observations for other activities

as well.

Lastly, as we noted earlier the homogeneity of the activity also plays an important role

especially in group-based active learning. We observed that when performing group-based

active learning on the ‘sit’ activity, which had as many labeled examples as sleep activity,

the performance trends were starkly different. On further scrutiny we discovered that sit

was one of the seven mutually exclusive activities labeled by users (along with sleep, walk,

bike, stand, etc) but could take on any secondary activity like eat, computer, internet, drive,

etc. This made detecting the ‘sit’ activity very challenging especially when using features

from a wrist worn device that was used to perform other secondary activities.
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[83] Pablo, Laguna, Raimon, Jané, Eudald, Bogatell, and David, Vigo Anglada.
Qrs detection and waveform boundary recognition using ecgpuwave. http://
physionet.org/physiotools/ecgpuwave/.

[84] Pan, Jiapu, and Tompkins, Willis J. A real-time qrs detection algorithm. Biomedical
Engineering, IEEE Transactions on 32, 3 (1985), 230–236.

[85] Parate, Abhinav, Chiu, Meng-Chieh, Chadowitz, Chaniel, Ganesan, Deepak, and
Kalogerakis, Evangelos. Risq: Recognizing smoking gestures with inertial sensors
on a wristband. In Proceedings of the 12th annual international conference on Mo-
bile systems, applications, and services (2014), ACM, pp. 149–161.
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