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ABSTRACT 

THE GOOD, THE BAD, AND THE UGLY: POLLINATORS AS VECTORS OF 
MUMMY BERRY DISEASE IN HIGHBUSH BLUEBERRY 

 

FEBRUARY, 2019 

MATTHEW D. H. BOYER, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Lynn S. Adler 

 
Background: Many plants must balance the need for pollination services with mediating 

the risk of pollinator-vectored pathogens.  Vaccinium corymbosum, highbush blueberry, 

is negatively affected by an insect-vectored, fungal plant pathogen, Monilinia vaccinii-

corymosi (MVC), the cause of mummy berry disease, in which the asexual spore mimics 

pollen grains and is transferred from blighted tissue to flowers via pollinators, resulting in 

inedible, hardened fruits.  Highbush blueberry plants require outcrossed pollen for 

maximum yield and fecundity.  Therefore, yield of blueberry plants rely on a balance 

between adequate pollination service and disease avoidance.   

 

Approach: To explore the relationship between pollinator community and infection we 

used field observations and infection assessments to determine if differences in floral 

visitors can help to explain variation in infection between cultivars.  To better understand 

the key vectors involved in transmission of MVC we used molecular quantification 

techniques to assess pathogen load on insect bodies and used a cage trial to determine 

how much of the pathogen is deposited by two common pollinators in a single visit.  

Finally, we used inoculation trials followed by fluorescence microscopy to determine if 
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plants must balance pathogen inhibition with fertilization success, as well as assessing 

whether pathogen germination contributes to disease resistance.    

 

Results and Conclusions: When investigating community composition we found that 

Apis, Bombus and Andrena visitation varied with cultivar and that there was also a 

positive relationship between the proportion of floral visits by honeybees to individual 

plants and the percentage of infected fruits.  This is the first study to our knowledge 

comparing fruit infection with visits by different bee species.   

In our investigation of pathogen load on vectors and single-visit transmission 

success we found that bees, flies, and wasps were all common visitors and that all the bee 

species and several species of flies and wasps carried the pathogen.  We found no 

differences between A. mellifera or B. impatiens in pathogen load or transfer efficiency in 

cages, suggesting that both of these species are equally capable of vectoring MVC during 

a single visit to a blighted stem and then a flower.  Taken together, this research 

emphasizes the wide variety of floral visitors capable of carrying the MVC pathogen and 

demonstrates that two common pollinator species have similar potential to vector MVC 

to blueberry flowers during a single visit.   

Finally, we found no tradeoff between pollen and fungal spore germination on 

floral reproductive parts, suggesting that disease resistance traits mediated by stigma 

traits may not come at a cost of reduced pollination. We also did not find a relationship 

between spore germination and published disease resistance.  This study adds to our 

understanding of disease resistance in natural and agricultural systems, which is 

especially important due to mounting concerns over the use and cost of fungicides, 
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including negative effects on non-target organisms.  Our findings also increase our 

understanding of the potential for both wild and managed pollinator species to contribute 

to the vectoring of a highly damaging blueberry pathogen, and plant pathogens in other 

systems as well. 
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CHAPTER 1 
 

POLLINATOR COMMUNITY ASSOCIATED WITH PROPORTION OF 
Vaccinium corymbosum FRUITS INFECTED BY Monilinia vaccinii-corymbosi 

(MUMMY BERRY DISEASE)  
 
 

Abstract 
 

Plant diseases are a major source of economic loss and reduction in agricultural 

yield.  Many plant diseases are vectored by the same pollinators relied upon on for 

outcrossing and increased fruit-set.  Cultivars of crop plants often have both varying 

levels of resistance to these pathogens, and differences in floral traits that can influence 

pollinator preferences.  Monilinia vaccinii-corymbosi, or mummy berry disease, is a 

fungal plant pathogen of highbush blueberry (Vaccinium corymbosum) in which the 

asexual spore mimics pollen grains and is transferred from blighted tissue to flowers via 

pollinators, resulting in inedible, hardened fruits.  We used field observations of 14 

blueberry cultivars over two years to investigate whether pollinator community varies by 

cultivar, if bee visitation is associated with fruit infection, and if the proportion or 

absolute number of floral visits by honeybee, bumblebee, and solitary bees is associated 

with differences in cultivar resistance.  We found that Apis, Bombus and Andrena 

visitation varied with cultivar.  We also found a positive relationship between the 

proportion of floral visits by honeybees to individual plants and the percentage of 

infected fruits.  While bees have been known to carry M. vaccinii-corymbosi, this is the 

first study to our knowledge comparing fruit infection with visits by different bee species.   
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Introduction 

Plant diseases cause major loss to food producers worldwide, and hinder the 

efforts of production agriculture to meet the food demands of an ever-growing human 

population (Pinstrup-Andersen 2000).  Over one third of all agricultural crops are 

pollinated by animals, mostly insects (Klein et al. 2007).  Unfortunately, many 

devastating plant diseases are vectored by the same insects plants rely on for pollination 

services (McArt et al. 2014a).  Chemical pesticides and fungicides can help to mediate 

losses from disease in the short term, but both the use of chemical treatments and losses 

from disease continue to increase (Pinstrup-Andersen 2000), often due to the adaptation 

of pest organisms (Orke et al. 1994).  Economic costs of chemical treatments (Legard et 

al. 2005), concerns of human health effects (Pearson et al. 2016), and negative effects on 

non-target organisms (Ladurner et al. 2005; Dijksterhuis et al. 2011) make finding 

alternative ways to mediate losses from disease a chief concern in production agriculture.   

Morphological features of flowers can affect the suite of floral visitors (Bell 1985; 

Wilson et al. 2004), and cultivars of crop species often vary in their floral displays (Rick 

et al. 1978; Suso et al. 2007).  For example, in highbush blueberry, pollinator visitation 

can vary with small differences in floral morphological traits between cultivar 

(Courcelles et al. 2013).  Pollinators also vary greatly in their ability to transfer pollen 

(Adler & Irwin 2006), often due to morphological and behavioral differences (e.g., the 

presence of branched hairs and sonication, respectively) (Delaplane & Mayer 2000).  

Therefore, the suite of pollinators visiting individual cultivars may vary in their ability to 

vector pollen. 



 

3 

For pollinator-vectored diseases, variation in the suite of floral visitors could not 

only affect pollen transmission, but disease transmission as well.  Vaccinium 

corymbosum, or highbush blueberry, is a commercial crop that is impacted by an insect-

vectored, fungal pathogen.  Monilinia vaccinii-corymbosi (MVC), or mummy berry 

disease, can reduce yield by up to 80% and cause major economic losses (Stretch et al. 

2001).  MVC produces conidia (secondary spore) that mimics pollen grains 

morphologically and behaviorally, in that spores adhere to insect bodies upon visitation 

(Batra 1983).  Resistance to MVC infection varies greatly by blueberry cultivar 

(Ehlenfeldt et al. 2010), presenting an opportunity to examine the relationship between 

pollinator community composition and cultivar variation in disease resistance to a 

pollinator-vectored, plant pathogen.     

V. corymbosum flowers are visited by a wide variety of insect species, many with 

the potential to vector MVC.  A recent study found insects from 6 orders and 28 families 

visiting V. corymbosum flowers (McArt et al. 2016).  Additionally, using a nested PCR 

analysis the same study found that of those insects collected, 5 orders and 18 families 

tested positive for the presence of MVC DNA.  Social bee species, such as Bombus 

impatiens and Apis mellifera, are often used to supplement natural pollination services 

due to their large numbers of individuals per hive (hundreds to tens of thousands, 

respectively) and commercial availability.  However, many solitary bees in the Andrenid 

and Halictid families also visit blueberry plants (Moisan-Deserres et al. 2014), and some 

solitary bees have been shown in certain systems to be more efficient pollinators than A. 

mellifera (Vicens 2009). However, the effects of solitary bees on disease transmission are 

unknown.     
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For growers seeking to reduce their dependency on chemical fungicides or those 

with a ‘no-spray’ or ‘pick-your-own’ business model, understanding the impacts of 

natural and managed pollinators is clearly important.   In this study, we investigate the 

relationship between pollinator communities and MVC disease transmission by asking: 

1.) Do key pollinator taxa vary in visitation between cultivars, 2.) How is total bee 

visitation to flowers associated with fruit infection, and 3.) Is visitation by social vs 

solitary bees associated with fruit infection? 

Methods 

Study system 

Monilinia vaccinii-corymbosi is an ascomycete fungal plant pathogen infecting 

Vaccinium corymbosum plants across North America (Batra 1983).  MVC infection is 

characterized by two distinct stages beginning with the distribution of windborne spores 

released from apothecia emerging from the substrate in the spring.  This primary 

infection affects new shoot and stem tissues of V. corymbosum, creating blights, or 

‘pseudoflowers’, that attract insect visitors by exuding volatile organic compounds that 

mimic floral scent (McArt et al. 2016) and by visually mimicking floral UV reflectance 

(Batra & Batra 1985).  These co-opted tissues also produce larger, asexual spores 

(conidia) that, although sometimes spread by wind and rain, are primarily vectored by 

flower-visiting insects (Ngugi et al. 2002).  Once vectored to receptive V. corymbosum 

stigmas, conidia mimic pollen grains in both their method of delivery and germination on 

stigmatic surfaces (Ngugi & Scherm 2004).  Hyphae then grow, analogous to pollen 

tubes, extending down the stylar canal to the ovary resulting in secondary infection 

(Ngugi & Scherm 2004).  Fruit infection results in fungus-filled locules, causing the 
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mature berry to become hard and grey instead of ripening normally.  Infected berries, or 

mummies, then fall to the ground, overwinter, and emerge as ascocarps the following 

spring, each releasing upwards of 800,000 windborne spores and beginning a new 

infection cycle (Batra 1983; Batra & Batra 1985).   

Field observations 

From 29 May to 2 June 2014 and from 13 May to 2 June 2016, 239 highbush 

blueberry plants representing 14 cultivars (Table 1) at the Cold Spring Orchard in 

Belchertown MA (42.251143, -72.362321) were surveyed for insect visits.  Cultivars 

were selected to span the breadth of resistance to MVC infection.  Three-year-old plants 

were sourced from Fall Creek Nursery (Lowell, Oregon, USA), were between 0.5 and 1.5 

m in height, and were planted randomly in six equidistant rows (3 m between plants, 3 m 

between rows).  Each year, plants were surveyed on clear days, with 5 minutes per plant, 

from approximately 10 am to 3 pm, for a total of 44 person-hours/year, with each plant 

observed at least twice each year.  We recorded visitor identity each time a new insect 

visited a plant during the 5 minute observation time, with a ‘visit’ being defined as each 

time a new insect landed on and probed a flower, or group of flowers, on that plant.  

Insect visitors in 2014 were identified to functional group (e.g. bumblebee, honeybee, 

solitary bee, Vespid, Coleopteran, Hemipteran, and Lepidopteran) according to general 

morphology, while in 2016 all insects were identified at least to genus and to species 

when possible.  Andrena vicina was indistinguishable from A. carlini on the wing, as was 

A. carolina and A. bradleyi, and were combined for identification purposes in 2016.  In 

2014, total number of open flowers per plant was recorded once on 30 May during peak 

flowering to use as a covariate in analyses.  All plants were netted to prevent loss from 
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foraging birds prior to fruit maturation post-bloom, after observations had ceased.  Upon 

maturation in 2014, both healthy and infected fruits were counted, including those that 

had fallen to the ground.  Fruit infection was measured only in 2014 due to the host 

farm’s application of fungicide to control MVC in 2016. 

Statistical analysis 

To determine whether number of visits per 5 minute observation by Andrena, 

Bombus, and Apis species (the three most common genera to visit plants) differed 

between cultivar in 2014, we used generalized linear models with a Poisson distribution 

and log link function, cultivar as a fixed factor and number of flowers per plant as a fixed 

covariate.  We then analyzed differences between cultivar using Tukey’s HSD pairwise 

comparisons in the MultComp package for R (R Development Core Team 2018).  To 

determine if the proportion of visits by Andrena, Bombus, and Apis species (i.e. the 

number of visits by each genus per observation divided by the number of all visitors per 

observation) differed between cultivar in 2014, we used generalized linear models with 

binomial distributions and logit link functions, cultivar as a fixed factor and number of 

flowers per plant as a covariate.  We conducted the same analyses for the 2016 data, but 

included date as a random covariate because observations spanned a longer rate of dates, 

and Andrena at the species scale.  Apis mellifera visits were too infrequent to analyze in 

2016. 

To determine whether the proportion of bee visitation (i.e. number of combined 

Andrena, Apis, Bombus, Halictid and Megachilid visits per observation divided by total 

visits per observation) is associated with the percentage of infected fruits for each plant, 

including all cultivars, linear regression analyses were used for the 2014 data.  
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Regressions included number of flowers per plant as a covariate.  Linear regressions were 

also used to determine the relationship between the proportion of Andrena, Apis, and 

Bombus visits separately and the percentage of infected fruits.  To determine whether 

cultivars varied in the proportion of infected fruits for 2014 only, arcsine transformed 

proportions of infected fruits to healthy fruits were analyzed using an ANOVA with 

cultivar as a fixed factor and a Tukey’s HSD to determine differences between cultivars.  

GLMs assessing bee visitation differences between cultivars and associated multiple 

comparisons were analyzed in R (version 3.5.1, R Foundation for Statistical Computing), 

and all other statistical analyses were carried out using JMP Pro 13.2.1 (SAS Institute 

Inc., Cary, NC, 1989-2007).  

 
Results 

We recorded insect visitors from four orders: Hymenoptera, Diptera, Coleoptera, 

and Lepidoptera.  However, Hymenoptera represented the majority of visits, including 

species in Andrenidae, Apidae, Halictidae, Megachilidae, and Vespidae.  Bombus 

impatiens, Andrena spp., and A. mellifera were the most common taxa in 2014, in that 

order, while Andrena spp., B. impatiens, were the most common in 2016.   

Results from generalized linear models applied to absolute insect counts from 

2014 revealed insect visits by Andrena, Apis and Bombus species varied significantly 

with cultivar (Table 1-2).  Number of flowers per cultivar was also a significant predictor 

of bee visitation (Table 1-2).  Results from Tukey’s HSD multiple comparisons showed 

significant differences between cultivars in Bombus (Figure 1-1) and Andrena (Figure 1-

2) visits in 2014, while there were no differences in Apis visits (Figure 1-3).  Generalized 

linear models for absolute insect counts from 2016 revealed insect visits by all Andrena 
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species, A. vicina/carlini, and Bombus varied by cultivar (Table 1-3).  However, results 

from Tukey’s HSD multiple comparisons showed no significant differences between 

individual cultivars.  There was no significant difference between models with and 

without date as a random factor, and thus date was dropped from the model.  In any year, 

only absolute counts of insects were significantly associated with cultivar while 

percentage of visitation was not.   

There was a significant, positive relationship between the percentage of infected 

fruits and both proportion of overall bee visits (Figure 1-4. r2 = 0.06, n = 239, p < 0.0013) 

and proportion of A. mellifera visits (Figure 1-5. r2 = 0.265, n = 239, p = 0.0001).  

However, there was no significant relationship between fruit infection and proportion of 

visits by any other bee taxa, including Bombus (Figure 1-6; r2 = 0.188, n = 239, p = 

0.6046), and solitary bees (Figure 1-7; r2 = 0.19, n = 239, p = 0.6761).  Cultivars varied 

significantly in proportion of infected fruit (Figure 1-8; F13, 233 = 28.1975, p < 0.0001).  

Jubilee had the highest proportion of infected fruit, with over 45% of total fruits infected 

by MVC, followed by Blueray with 23%, and Earliblue and Toro each at approximately 

15%, while Bluejay, Reka, and Southmoon had the lowest with under 5% infection.   

Discussion 

Insect visitors recorded in this study were consistent with those in prior work 

assessing V. corymbossum pollinator communities.  We recorded visitations by four 

orders: Hymenoptera, Diptera, Lepidoptera, and Coleoptera.  By far, Hymenoptera were 

the most common and were comprised of the families Andrenidae, Apidae, Halictidae, 

and Vespidae.  One study using molecular identifications of insects netted in blueberry 

plantings recorded three additional Hymenopteran families: Megachilidae, Cephidae, and 
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Tenthredinidae (McArt et al. 2016).  Another study characterizing V. corymbosum bee 

visitation in central New York state found predominantly A. mellifera, B. impatiens, and 

Andrena spp. (MacKenzie & Eickwort 1996).  Interestingly, that study found differences 

in the dominant species from site to site.  Although all observations in our study were 

conducted at a single site, we saw a two-fold reduction in the abundance of A. mellifera 

from 2014 to 2016.  Yearly variation in pollinator communities is not uncommon.  For 

example, one study examining pollinator efficiency in Asclepias tuberosa noted a ten-

fold increase in A. mellifera as well as a 50% reduction in B. impatiens abundance over a 

two-year survey (Fishbein & Venable 1996).  Other studies on V. ashei have noted 

fluctuation in temporal abundance of A. mellifera, likely resulting from shifts in foraging 

preference between competing flowering species (Cane & Payne 1993).  Changes in the 

abundance of one pollinator species can affect others (Brosi & Briggs 2013); for 

example, one study found that in the presence of honeybees, bumblebee diet became 

more limited or shifted to different plant species (Forup & Memmott 2005).  This 

indicates that although key pollinators may be consistent across blueberry plantings, the 

dominant pollinator species may change spatially and temporally, possibly impacting 

pollination services and disease transmission.  

  There was a significant effect of cultivar on insect visitation, indicating that 

pollinators may prefer floral traits that vary between highbush blueberry cultivars.  

Cultivar had a significant effect on Apis, Andrena, and Bombus visits in 2014 (Table 1-2), 

and on Andrena and Bombus visits in 2016 (Table 1-3).  Additionally, cultivar had a 

significant effect on A. vicina/carolina visits, but not on A. carlini/bradleyi, in 2016 

(Table 1-3).  Insect pollinators are often attracted to flowers by shapes, colors, and scent 
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(Leonard et al. 2011), and these traits can vary between cultivars of agricultural plants.  

Highbush blueberry cultivars often vary in flower morphology (Arrington & Wasko 

DeVetter 2018), and a recent study found differences in bumblebee and honeybee visits 

to plants between four V. corymbosum cultivars based on five floral dimensions 

(Courcelles et al. 2013).  That study concluded that A. mellifera and B. impatiens visits 

may be a function of corolla opening and depth.  Only one cultivar, Bluecrop, was 

common between that study and ours, as our cultivars were selected based on disease 

resistance and not differences in floral size or shape.  Bluecrop was least preferred by 

honeybees and bumblebees in Courcelles et al. and was among those least preferred by 

both Andrena (Figure 1-1) and Bombus (Figure 1-2) in our study in 2014.  Bluecrop 

flowers have a smaller throat diameter that may make access for larger bees difficult, but 

easier for the smaller Andrena species.  Since Bluecrop was not preferred by small or 

large bees (Andrena and Bombus, respectively), this suggests that floral dimensions alone 

are not the trait to which these genera are attracted, but instead that a suite of traits may 

work in combination.  A recent study has shown that volatile organic compounds vary 

between blueberry cultivars, and that blueberry pollinators were attracted to traps baited 

with compounds mimicking floral VOCs (Rodriguez-Saona et al. 2009), providing 

another source of variation that may explain differences in pollinator visits between 

cultivars.   

  We found a significant, positive relationship between bee visits and percentage of 

infected fruits (Figure 1-4).  A recent study using a nested PCR analysis to detect the 

presence of MVC on insects netted in the field showed that not only do bees carry MVC 

(5 of 7 Hymenopteran families sampled), but that many Dipteran families do as well (7 of 
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9 families), and so all are potential vectors (McArt et al. 2016).  Additionally, that study 

used camera traps to film insect visitors and found that bees accounted for 75-80% of 

total visits, with flies at 14- 23%.  Flies were more likely to visit blighted tissues than 

bees, and MVC conidia were more likely to be present on bees than flies, raising the 

question of what role flies play in overall disease transmission.  The rarity of observing 

flies on floral tissues, coupled with our result that bee abundance is significantly 

associated with fruit infection, demonstrates that bees are likely a primary vector of MVC 

to V. corymbosum flowers.   

  A wide variety of bee species have been recorded visiting highbush blueberry, but 

generally Apis, Bombus, and solitary bees are considered the primary pollinators (Rao et 

al. 2009; West & McCutcheon 2009; Isaacs & Kirk 2010).  In examining how visitation 

by these individual groups affects MVC infection, we found a significant, positive 

relationship between the proportion of honeybee visitations and the percent of infected 

fruits (Figure 1-5), and no significant relationship between the proportion of bumblebee 

(Figure 1-8) and solitary bee visitations (Figure 7).  In a cage trial evaluating MVC 

transmission between the two species, A. mellifera readily visited pseudoflowers while B. 

impatiens did not (Boyer unpublished data), and thus may carry more MVC conidia when 

visiting flowers.  Additionally, honeybees only accounted for 5% of total bee visits 

overall, yet had the strongest relationship with fruit infection (Figure 1-5), suggesting that 

they are the most efficient vector of MVC of the species we tested.  In some studies the 

most abundant pollinator is the most important to pollen transfer (Olsen 1997), but in 

other systems, common floral visitors do not contribute equally to vectoring of pollen 

grains by either carrying low levels of pollen loads on their bodies (Watts et al. 2011) or 
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having low transfer efficiency of pollen to flowers (Javorek et al. 2002).  Pollinators vary 

greatly in their pollination efficiency (Adler & Irwin 2006), or the number of pollen 

grains picked up and transferred to receptive stigmas (Primack & Silander 1975; Herrera 

1987).  Since fungal conidia mimic pollen grains chemically and morphologically (Ngugi 

& Scherm 2004), as well as in delivery method (Batra 1983), it is likely that pollinator 

species vary in MVC transmission as well.  While honeybees are expected to be a vector 

of MVC (Batra & Batra 1985), this is the first study to our knowledge to compare visits 

by different pollinator species with subsequent fruit infection.  

  The relationship between honeybees and fruit infection may be important for 

growers wishing to supplement natural pollination services.  Vaccinium corymbosum 

yield is often increased by outcrossed pollination (Delaplane & Mayer 2000; Ehlenfeldt 

2001a), and many farms supplement pollination services with commercially available 

colonies of A. mellifera or B. impatiens.  While honeybee colonies are perennial, workers 

are numerous, and are able to pollinate a wide variety of crops, they may also be more 

likely vectors of MVC.  Although bumblebee colonies are short-lived with fewer 

workers, bumblebees demonstrated no significant relationship between visitation and 

fruit infection, work in a wider variety of weather conditions, and are able to sonicate 

blueberry flowers to release greater amounts of pollen per visit (Delaplane & Mayer 

2000).  Farms with a history of MVC infection may consider supplementation with 

bumblebees, while farms opting for A. mellifera may consider a targeted biocontrol 

strategy to curb losses to MVC.  Efforts to use bees as vectors of biocontrol agents to 

control MVC in Vaccinium virgatum have been successful.  For example, Bacillus 

subtilis dispensers mounted to A. mellifera hives reduced the incidence of MVC in 
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Vaccinium virgatum (Dedej et al. 2004), and may be effective in V. corymbosum as well.     

  Cultivars in our field plot differed significantly in levels of infection (Figure 1-8).  

Jubilee and Blueray had the highest proportion of infected fruit, followed closely by 

Earliblue and Toro (Figure 1-8).  This is consistent with prior work assessing cultivar 

resistance to MVC (Batra 1983), with proportion of infected fruit corresponding to 

resistance rankings developed over a multiyear field study (Ehlenfeldt et al. 2010).  

Additionally, Blueray and Jubilee had the highest numbers of both Andrena and Bombus 

visits (Figures 1-1 & 1-2), but there was no significant relationship between visits by 

these taxa and infected fruits.  These cultivars may exhibit traits that make them generally 

desirable to many pollinator species and thus receive more conidia, or other biological 

mechanisms, such as conidia and hyphal inhibition in the stigma and stylar canal 

(Lehman et al. 2007), may help to explain variation in resistance to secondary infection.  

While long surmised that bees were the likely primary vectors of MVC, this is the first 

study, to our knowledge, linking a particular clade of bees to the proportion of infected 

fruit.  Honeybees service a wide variety of crops and are often considered top pollinators 

(Delaplane & Mayer 2000).  Even in systems such as blueberry with poricidal anthers 

that require buzz pollination, incidental contact of anthers by honeybees, coupled with 

abundant visits, makes them effective pollinators of blueberry.  However, their 

effectiveness as pollinators may extend to vectoring MVC as well.  In this study, we 

provide evidence that cultivars vary in both their proportion of infected fruit as well as 

pollinator visits.  Further, we provide supporting evidence that bees are the primary 

vectors of MVC.  In particular, honeybees are linked to higher proportion of infected fruit 
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and have no preference for specific cultivars in our study.  These findings may help to 

guide growers in their decisions pertaining to the use of supplemental pollinator species.   
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Table 1-1. Cultivars in observational plot.  n = number of plants of that cultivar.   
 
Cultivar N 
Bluecrop  19 
Bluegold 19 
Bluejay 18 
Blueray 18 
Chippewa 18 
Darrow 18 
Earliblue 18 
Hardyblue 18 
Jubilee 16 
Patriot 15 
Polaris 18 
Reka 18 
Southmoon 10 
Toro 16 
Total 239 
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Table 1-2. Summary of GLM results testing the effect of cultivar and number of flowers 
per plant on Andrena, Bombus, and Apis visitation in 2014.  Significance is considered at 
p=<0.05 (bold type). 
 
Factor Andrena  Bombus  Apis 

 χ2 df p  χ2 df p  χ2 df p 
Cultivar 58.9590 13 <0.0001  59.5460 13 <0.0001  43.8410 13 <0.0001 
Flowers 19.3500 1 <0.0001  41.0490 1 <0.0001  28.7990 1 <0.0001 
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Table 1-3. Summary of GLM results testing the effect of cultivar on Andrena, 
A.vicina/carlini, and Bombus impatiens visits in 2016.  Significance is considered at 
p=<0.05 (bold type). 
 
 
Factor           Cultivar 
 
         χ2  df     p 
All Andrena   28.8020 13 0.0070 
Bombus   23.7790 13 0.0332 
A. vicina/carlini  22.4090 13 0.0493 
A. carolina/bradleyi  20.7550 13 0.0779  
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Figure 1-1. Mean number of Bombus visits per observation by cultivar.  Error bars are 
+/- one standard error of the mean.  Cultivars not sharing letters are significantly 
different, as determined by Tukey’s HSD comparison.   
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Figure 1-2. Mean number of Andrena visits per observation by cultivar.  Error bars are 
+/- one standard error of the mean.  Cultivars not sharing letters are significantly different 
as determined by Tukey’s HSD comparison.   
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Figure 1-3. Mean number of Apis visits per observation by cultivar.  Error bars are +/- 
one standard error of the mean.  No significant differences were found between cultivars.  
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Figure 1-4. Results from linear regression illustrating the relationship between the 
proportion of visits by bees (all Andrena, Apis, and Bombus divided by total number of 
visits by all taxa) and the percentage of infected fruits.  r2 = 0.06, n = 239, p < 0.0013. 
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Figure 1-5. Results from linear regression illustrating the relationship between the 
proportion of visits by honeybees and the percent of infected fruits. r2 = 0.265, n = 239, p 
= 0.0001 
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Figure 1-6.  Results from linear regression illustrating the relationship between the 
proportion of visits by bumblebees and the percent of infected fruits.  r2 = 0.188, n = 239, 
p = 0.6046 
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Figure 1-7. Results from linear regression illustrating the relationship between the 
proportion of visitations by Andrena and the percent of infected fruits.  r2 = 0.19, n = 239, 
p=0.6761,  
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Figure 1-8. Percent of infected fruits varied by cultivar. F13, 233 = 28.1975, p< 0.0001.  
Cultivars not sharing letters are significantly different as determined by Tukey’s HSD 
comparison.   
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CHAPTER 2 
 

VARIATION IN POLLINATOR POTENTIAL TO CARRY A BLUEBERRY 

FUNGAL PATHOGEN AND ASSESSMENT OF TRANSFER EFFICIENCE IN 

TWO MANAGED BEE SPECIES  

 
Abstract 

  Plant diseases are ubiquitous in agricultural systems and are major sources of 

economic loss.  Vaccinium corymbosum, or highbush blueberry, is an economically 

important crop affected by an insect-vectored, fungal pathogen, Monilinia vaccinii-

corymbosi, or mummy berry disease.  Highbush blueberry yield is maximized through 

outcrossed pollination; however, the pathogen is vectored by pollinators.  We used field 

collections and molecular techniques to identify floral visitors to highbush blueberry and 

quantify levels of pathogen spores carried by each visiting species.  We also conducted a 

cage trial using single flower visits to determine differences in vectoring efficiency 

between two managed pollinators, Apis mellifera and Bombus impatiens.  We found that 

bees, flies, and wasps were all common visitors, and that all bee species and several fly 

and wasp species carried the pathogen.  Of the bee species, A. mellifera most often tested 

positive for the pathogen, while Dolichovespula maculata (Bald-faced Hornet) tested 

positive most among wasps and Mallota posticata among flies.  Considering only 

individuals that tested positive, mummy berry levels per individual were highest in D. 

maculata and Andrena bees, and relatively low in flies.  In cage trials, we found no 

differences between A. mellifera and B. impatiens in pathogen load or transfer efficiency, 

suggesting that these managed species are equally capable of vectoring mummy berry 

during a single visit to a blighted stem and then a flower.  This research demonstrates the 
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variety of floral visitors that carry mummy berry and that two common commercial 

pollinator species have similar potential to vector mummy berry to blueberry flowers 

during a single visit.   

 
Introduction 

Over one third of the world’s agricultural crops rely on insect-mediated 

pollination services to reproduce (Klein et al. 2007).  A diverse assemblage of pollinators 

can increase yield as a result of flower visitation (Garibaldi et al. 2013).  To increase the 

efficiency of pollination services, growers in North America often supplement the natural 

pollinator community with commercially available pollinators, Apis mellifera (European 

Honeybee) or Bombus impatiens (Common Eastern Bumblebee).  Whether present 

naturally or supplemented by growers, bee pollination is vital to the economic prosperity 

and stability of agricultural systems (Delaplane & Mayer 2000) since both wild and 

managed insect taxa often vary widely in their efficiency as pollinators (Willmer et al. 

2017).   

Despite the benefits provided by insect pollinators to many food crops, pollinators 

and other insect floral visitors may also transmit plant pathogens that reduce both fitness 

and yield (Dobson & Crawley 1994).  At least 26 plant pathogens are vectored by 

pollinators that infect plant floral reproductive tissue (Roy 1994; McArt et al. 2014b).  

For example, Microbotryum violaceum, or anther smut, is a common fungal pathogen 

vectored by insect pollinators that infect the plants in the family Caryophyllaceae 

(Jennersten 1988; Shykoff & Bucheli 1995).  Additionally, Erwinia amylovora, or fire 

blight, is a bacterial pathogen carried by A. mellifera and other pollinators that infects 

apples, pears, and other crops in the Rosaceae, with domestic losses and control costs 
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exceeding $100 million annually (Norelli et al. 2003). Describing variation in how floral 

visitors contribute to vectoring pathogens as well as pollinating crops may help to 

understand tradeoffs between balancing effective pollination services with disease 

avoidance.   

Monilinia vaccinii-corymbosi (MVC), or mummy berry disease, is an insect-

vectored fungal pathogen that is the most damaging pathogen of highbush blueberry 

(Vaccinium corymbosum), with some infections reducing yield up to 80% and causing 

severe economic losses (Stretch et al. 2001).  Highbush blueberry is an agriculturally 

important crop in the United States, with over 588 million pounds of berries produced 

from the 37,554 hectares dedicated to cultivated blueberry production (Ross et al. 2017).  

Vaccinium corymbosum is visited by a variety of insect pollinators, including bee species 

in the Andrenidae, Halictidae, Megachilidae, and Apidae families (Scott et al. 2016).  

Although mummy berry can be inhibited with repeated fungicide application, the cost of 

such applications and consumer demand for ‘no spray’ orchards, coupled with mounting 

environmental concerns over the use of fungicides (Wightwick et al. 2010) make 

understanding which pollinators are most likely to vector the pathogen both relevant and 

economically desirable.   

Understanding which wild and managed pollinators are involved in the spread of 

the pathogen may help to minimize the damaging effects of mummy berry in 

environments where fungicide application is not feasible. Early work in this system 

established that floral infection is primarily vectored by insects that first visit blighted 

leaf tissue (Batra 1983), but until recently little was known about the specific insect taxa 

involved in transmission.  Recent observational work combined with nested PCR analysis 
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determined the presence of fungal spores on insect bodies and identified five 

Hymenopteran and nine Dipteran families as MVC carriers and potential vectors (McArt 

et al. 2016).  Using camera traps to record visits to both flowers and blights, McArt et al. 

(2016) determined that although bees and flies often visited both blighted leaf tissue and 

flowers, bees were more likely to visit flowers than flies, and flies were more likely to 

visit blights than bees.  Despite these behavioral differences, bees were more likely to be 

carriers of fungal spores than flies (McArt et al. 2016).  The authors suggest that the 

discrepancy could be explained by differences in morphology between bees and flies, 

with the latter lacking branched hairs that are effective at collecting pollen and potentially 

conidia, or behavioral differences in contact and interaction with floral reproductive 

structures.   

Behavior and morphology can vary widely among insects, and insect pollinators 

differ in their pollination efficiency, both in the amount of pollen that can be picked up 

and in what is transferred from their bodies onto flowers (Primack & Silander 1975; 

Herrera 1987; Olsen 1997).  Since mummy berry conidia mimic pollen grains (Ngugi & 

Scherm 2004), pollinators may also differ in their effectiveness as vectors for the 

pathogen.  This variation can be caused by differences among pollinator taxa in cuticular 

structure, body fit to flower structure, or behavior, such as pollen grooming or collecting 

nectar vs. pollen (Delaplane & Mayer 2000; Adler & Irwin 2006).  Although previous 

work assessed the presence of fungal conidia on different insect pollinator taxa, we do 

not know the amount of conidia carried by these taxa, or how this relates to pollinator 

ability to transfer conidia to new host material.  Depending on an insect’s body shape, 

hairs, and way of interacting with flowers, presence or even quantity of conidia carried 
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may not reflect the amount transferred to floral tissues. Therefore, we do not know 

whether insect pollinators differ in rates of transfer of mummy berry conidia.   

The goals of this study were to assess (1) how much MVC is carried on insect 

taxa visiting V. corymbosum flowers and (2) the transfer efficiency of two commercially 

available pollinator species.  To address Goal 1, we collected blueberry-visiting insects 

from a no-spray orchard infected with mummy berry disease.  We then identified insect 

taxa to genus or species using cytochrome c oxidase I (COI) sequencing, and using a 

targeted sequencing approach combined with a competition assay, we estimated the 

amount of MVC carried on the sampled insects.  To address Goal 2, we performed a cage 

trial to assess comparative transfer efficiency of mummy berry conidia by Apis mellifera 

and Bombus impatiens.  

Methods 
 

Study system 

Monilinia vaccinii-corymbosi (MVC hereafter), or mummy berry disease, 

employs a two-stage infection process (Batra 1983).  Primary infection by mummy-berry 

ascospores creates ‘pseudoflowers’ in new blueberry shoots, inducing the production of a 

sugar-rich solution, while causing blighted shoots to reflect UV light (Batra & Batra 

1985) and exude volatile organic compounds that mimic floral scent (McArt et al. 2016).  

In addition to distribution via wind and rain, pollinators and other insects visit the 

pseudoflowers and vector conidia, asexual fungal spores, to flowers (Ngugi et al. 2002).  

These spores mimic pollen grains by germinating on the stigma, and hyphal growth 

extends down the stylar canal from the conidium to the ovary, causing secondary 

infection (Ngugi & Scherm 2004).  Infected flowers develop inedible berries composed 
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of hard, hyphal masses that drop, overwinter, and produce ascospores that begin a new 

cycle of infection (Batra 1983).   

Insect field collection 

During peak bloom from May 5 to June 4, 2014, insect visitors of highbush 

blueberry flowers were collected at Quonquont Orchard in Whately, Massachusetts, USA 

(42.444° N -72.639° W).  Collection took place from 1000 to 1600 hours in weather 

conditions ranging from full sun to light rain.  We did not net specimens to avoid rubbing 

off conidia due to contact with the net.  Instead, we captured insects visiting flowers in 

snap-cap vials (one insect sample per vial) upon emergence from corollas.  Specimen 

vials were immediately placed in dry ice for transport back to the lab.  Two hundred and 

thirty-two samples were maintained in a -20°C freezer until processing for molecular 

analysis. 

Sequencing analysis 

Field-collected insects were sent to Floodlight Genomics LLC (Knoxville, TN) in 

snap-cap vials set in dry ice for processing to determine insect genus and species based 

on cytochrome c oxidase I (COI) sequencing and to measure the amount of MVC using a 

targeted-sequencing approach.  Insects were weighed to determine wet mass prior to 

DNA extraction. 

  DNA extraction - Insects were assigned provisional identifications to order or 

family based on visual inspections (not removed from plastic containers). Provisional 

identifications are not reported and only served to confirm that molecular identification 

was reasonable for easily classified insects (e.g., Bombus). Unwashed insects were placed 

whole into 2 ml or 5 ml tubes containing three to five 3 mm glass balls and freeze-dried 
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for 24 hours.  A mixer mill (Retsch GmbH, Germany) was used to disrupt and powder the 

freeze-dried material prior to genomic DNA extraction.   

Genomic DNA was extracted using the MagJET Genomic DNA Extraction Kit 

(Thermo Fisher Scientific) according to the manufacturer specifications, including lysis 

with a digestion buffer and Proteinase K followed by magnetic bead separation of 

genomic DNA from cellular debris, proteins and RNA. 

Cytochrome c oxidase I amplifications and sequencing 

A multiplex mixture of 11 primers (Table 2-1; see Elbrecht and Leese 2017) with 

varying degrees of degeneracy were used to amplify the genomic DNA using a Hi-Plex 

approach (Nguyen-Dumont et al. 2013).  The resulting amplicons ranged in size from 127 

to 218bp and were sequenced on an Illumina HiSeq X device running a 2x150 paired-end 

configuration according to manufacturer directions (NovoGene, USA). The resulting raw 

sequences were processed using CLC Genomics Workbench version 9.5.3 (Qiagen, 

USA) to merge the paired reads and to conduct de novo assemblies using the default 

settings of CLC.  The resulting contigs were BLAST searched (blastn, using non-

redundant database) in CLC batch mode at the NCBI using default settings.  Contigs 

receiving 10 or more hits were examined further to assign putative genus and species. 

Estimation of M. vaccinii-corymbosi using a sequencing approach 

Primers amplifying a 93bp portion of the M. vaccinii-corymbosi internal 

transcribed spacer (ITS) region (Forward primer: AAG GGC AGA ACC TCT CCA CCC 

TT; Reverse primer: AGG GTT AGG TCA TTG GCG GG) were tested on genomic 

DNA extracted from insects kept in axenic conditions that were entirely free of MVC and 

insects that had MVC spores applied to them by physically dusting insect bodies with 
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conidia collected from blighted blueberry tissues.  The primers amplified a properly sized 

amplicon from the dusted insects and there was no amplification for MVC-free insects. 

To determine the amount of fungal ITS carried on wild insects, a competition-assay was 

devised.  The assay included the above primers and a mock-ITS target which had the 

central bases replaced with a 28bp string of ATCG(x7). The exact M. vaccinii-corymbosi 

amplicon sequence was: 

AAGGGCAGAACCTCTCCACCCTTTGTGTATTATTACTTTGTTGCTTTGGCGG

GCCGCCTCCGGGCCTCGCGTGCCCGCCAATGACCTAACCCT 

The mock-ITS sequence, added to each PCR amplification, was (replaced bases in bold): 

AAGGGCAGAACCTCTCCACCCTTTGTGTATTATTAATCGATCGATCGATCGA

TCGATCGATCGGCCTCGCGTGCCCGCCAATGACCTAACCCT 

A dilution series for the mock-ITS was tested to estimate the amount of mock 

template suitable for use as an amplification control and to determine the relative amount 

of exact M. vaccinii-corymbosi sequences in the insect samples.  Amplification products 

were prepared for sequencing on an Illumina HiSeq X device running a 2 x 150 paired-

end configuration using the KAPA Hyper-Prep PCR-free kit according to the 

manufacturer directions (KAPA Biosystems, Wilmington, Massachusetts, USA) and 

quantified using the KAPA qPCR quantification kit (KAPA, USA).  The resulting 

sequences were then mapped to the above exact and mock ITS sequences, requiring 99% 

similarity across 99% of the sequence, and the number of exact sequences was divided by 

the number of mock sequences to provide an estimate of total exact sequences within an 

insect sample.  From these estimates we can compare relative amounts of ITS sequences 

between insect species.   
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Cage trials 

From May 17 through June 2, 2017, cage trials were conducted to determine the 

number of fungal conidia deposited per visit on blueberry floral stigmatic surfaces by 

honey and bumble bees.  One nucleus colony of A. mellifera was purchased on April 13, 

2017 (New England Apiaries, Westfield Massachusetts USA) and transported to 

Wilbraham, Massachusetts USA (42.136, -72.434) to an outdoor, south-facing Langstroth 

hive attached to a 1.22 x 1.22 x 2.44 m fiberglass insect screen enclosure (Phifer Inc., 

Tuscaloosa, Alabama, USA).  All exits from the hive except those leading to the screen 

enclosure were secured, ensuring that bees could not forage outside.  Two B. impatiens 

research colonies (with queen but no drones) were obtained from Biobest USA, Inc. 

(Leamington, Ontario, Canada) on May 10, 2017 and placed within a separate screen 

enclosure (one hive at each end) identical to that for A. mellifera.  Both A. mellifera and 

B. impatiens were fed ad libitum sucrose and water solution (1:1) from inverted jar 

feeders and BeePro FD200 Pollen Substitute (Mann Lake Ltd., Hackensack, Minnesota, 

USA) on an open platform within the enclosure.   

To provide a source of conidia in cage trials, blighted, conidia-producing stems 

were collected from Quonquont Farm in Whately, Massachusetts, USA (42.444, -72.639) 

on a weekly basis from May 9 to 30, 2017.  Blights were left on stems, which were set in 

Floralife cut-flower solution (15.63 ml/l concentration; Floralife North America, 

Waterboro, South Carolina USA) prior to use.  To assess transfer of conidia to flowers, 

clippings with unopened floral clusters were taken from the same orchard on the same 

dates that blighted tissues were collected.  These clippings were also provided Floralife 

solution and kept separate from blighted tissues in an enclosed area to prevent 
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contamination from wild pollinator visitation.  Only newly opened ‘virgin’ flowers were 

used in trials.   

Artificial arrays of blighted tissue and virgin flowers were created by inserting 

blights and flowers into a 30 cm x 15 cm x 5 cm foam block.  Blocks were placed next to 

sucrose feeders so they could be easily located by foraging bees. Three clippings with 

blight (one blighted patch per clipping) and three clippings with virgin flowers (1-3 

flowers per clipping) were used in each trial.  To ensure there was no difference in blight 

sizes used in each trial, the length and width of blighted tissue on each blight was 

measured and did not differ between honeybee and bumblebee trials (F1,36 = 2.36, P = 

0.1332).   

To begin each honeybee trial, the gate from the hive to the enclosure was closed, 

leaving only a small number of foraging bees in the enclosure. The array was observed 

until a honey bee visited blighted tissue, and bees were not allowed to contact a flower 

until after visiting blights.  If bees were investigating a flower before contacting blight, 

they were pushed away manually.  For blighted tissue, we define ‘visit’ as an insect fully 

landing on a blight with cessation of wing movement.  The visit time was recorded from 

moment of landing and cessation of wing movement to departure. Once the visiting bee 

moved to a flower, we recorded the time spent within the corolla in contact with 

reproductive parts. The bee was removed from the enclosure after a single visit, and the 

clipping with visited flowers was removed and returned to a weatherproof screen 

enclosure in Floralife solution. Stigmas of visited flowers were harvested after three days 

and fixed in 90% ethanol until subsequent fluorescence microscopy (as in Lehman et al. 
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2007) to determine how many fungal spores were deposited on the stigma.  Clippings of 

both blighted tissue and floral tissue were discarded after the first visit.   

Honeybees were far more apt to visit blighted tissues than bumblebees; B. 

impatiens had to be coaxed to forage on blighted tissue.  Individual B. impatiens were 

chilled to 4oC for 20 minutes and then placed and allowed to waken on blighted tissues 

amongst a floral array similar to that used in honeybee trials; once bumblebees warmed 

they were more likely to forage.  The time spent foraging on blights was measured 

starting from the first sustained, consistent movement of the bee abdomen lasting longer 

than one second on blights and ending when the bee left the tissue.  Bumblebee visits to 

flowers were measured using the same honeybee protocols described above.   

To quantify conidia deposited on floral reproductive surfaces, stigmas were 

examined using fluorescence microscopy (Lehman et al. 2007).  Stigmas were removed 

from EtOH solution and rinsed twice in sterile dH2O.  Stigmas were then cleared and 

fixed for 2 hours at 60°C in 0.3% trichloroacetic acid dissolved in a 3:1 vol/vol solution 

of 95% EtOH and chloroform.  Stigmas were again rinsed twice with sterile dHOH and 

softened in 8 M sodium hydroxide for 20 min at 60°C.  Stigmas were then stained in 

0.1% methyl blue in 0.1 M K3PO4 (pH 12) and again rinsed twice in dH2O.  Styles were 

bisected longitudinally on a glass microscope slide and viewed using a Chroma 31000 

filter set (Chroma Technology Corp., Bellows Falls, VT) excitation filter (300 – 400 nm, 

barrier filter 400 nm, emitter filter 410- 500 nm). 

Statistical analysis 

For field-collected insects on blueberry, we analyzed two components of the 

potential to transmit MVC. First, we analyzed the likelihood of insect species carrying 
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MVC using a Chi squared test of independence, with species as the predictor and 

presence or absence of ITS sequence counts as the response. Then to assess differences in 

potential to transmit for insects that were carrying MVC, we compared the pathogen load, 

defined as the number of MVC ITS sequences found on insect bodies, between species or 

functional groups, only including insects in which we detected the presence of MVC ITS 

sequences.  ‘Functional groups’ included flies, social bees, and solitary bees as 

categories. To compare pathogen load between species or functional groups as fixed 

effects, number of copies of MVC (both raw counts and values adjusted by insect 

bodyweight (ITS count/fresh body weight in g)) were compared using generalized linear 

models with negative binomial distributions (to adjust for overdispersion) and log link 

functions.  Species with fewer than five samples (Table 2-3) were dropped from this 

analysis.  To compare means of ITS sequence counts, a Tukey’s post hoc comparison in 

the MultComp package for R was used (R Development Core Team 2018).  

For the cage trials, foraging time on blights and flowers was analyzed using 

ANOVA with species as a fixed factor.  To determine whether A. mellifera or B. 

impatiens differed in deposition of conidia per floral visit, a generalized linear model 

with a Poisson distribution was used with ‘species’ as a predictor and number of conidia 

deposited as a response.  GLMs and associated multiple comparisons were analyzed in R 

(version 3.5.1, R Foundation for Statistical Computing), and all other statistical analyses 

were carried out using JMP Pro 13.2.1 (SAS Institute Inc., Cary, NC, 1989-2007). 

Results 
 

We identified 47 species of insects spanning 21 families visiting Vaccinium 

corymbosum flowers, 25 of which carried MVC on or in their bodies (Table 2- 2).  Of the 
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232 specimens collected, 164 were comprised almost equally of B. impatiens, Andrena 

vicina and A. mellifera.  We found that species was a significant predictor of the presence 

of MVC (χ2 = 37.157, df = 9, P < 0.0001).  Of all bee species, A. mellifera was most 

likely to carry MVC (76.9% positive), while D. maculata (83.3% positive) was highest 

among the wasps and Mallota posticata (100% positive) highest among the flies (Table 

2-3).  Of insects that carried MVC, comparison between generalized linear models with 

and without species as a fixed factor revealed that both raw counts of ITS sequences and 

those adjusted by insect body weight varied by species (χ2 = 32.34, df = 7, P < 0.0001 

and χ2 = 32.28, df = 7, P < 0.0001, respectively).  Additionally, results from Tukey’s post 

hoc analyses show significant differences in both ITS and adjusted ITS means between 

species, with A. vicina carrying significantly more raw ITS sequences than A. mellifera, 

and more than both A. mellifera and B. impatiens when adjusted for body weight (Fig. 2-

1).  Comparisons of generalized linear models with and without functional group as a 

fixed factor revealed that both raw counts of ITS sequences and those adjusted by body 

weight varied by functional group (χ2 = 19.30, df = 2, P < 0.0001 and χ2 = 24.74, df = 2, 

P < 0.0001, respectively).  Tukey’s post hoc tests showed differences in ITS and adjusted 

ITS counts between functional groups (Figure 2-2) with solitary species carrying the most 

pathogen load in both raw counts and analyses adjusted by bodyweight, and solitary 

species carrying more than flies in raw counts.   

In our cage trials, A. mellifera and B. impatiens did not differ in conidia 

deposition (χ2 = 0.01385, df = 1, P = 0.9063; Figure 2-3).  A. mellifera and B. impatiens 

also did not differ in time spent foraging per flower (F1, 46 = 0.1022, P = 0.7507). 
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Although A. mellifera spent 35.5% more time on blighted tissues than B. impatiens, this 

difference was not significant (F1, 51 = 2.3577, P = 0.1310).   

Discussion 
 

Pollination is needed to maximize yield in highbush blueberry (Ehlenfeldt 2001b), 

and an assortment of bee species have been observed visiting V. corymbosum flowers 

(MacKenzie & Eickwort 1996; Tuell et al. 2009).  For example, one study investigating 

V. corymbosum bee communities in Oregon recorded 30 bee species spanning 5 families 

(Rao et al. 2009).  Generally, bees are considered to be the primary pollinators (West & 

McCutcheon 2009; Isaacs & Kirk 2010); thus, little attention has been paid to non-bee 

visitors.  We found 19 hymenopteran species visiting V. corymbosum spanning 5 families 

including Apidae, Andrenidae, and Halictidae, but also found Ichneumonids and seven 

species of Vespids visiting flowers, including common and aerial yellowjackets and 

Bald-faced Hornets (Table 2-2).  However, the contribution of these species to blueberry 

pollination is uncertain as these taxa may be nectar robbers, thieves, or searching for prey 

species.  We also identified 13 species of flies (Table 2-2), and fly species are often 

overlooked as contributors to pollination services in both natural and agricultural systems 

(Larson et al. 2001; Ssymank et al. 2008). The decline of several bee species, including 

bumblebees and honeybees (Cameron et al. 2011; Smith et al. 2013) has prompted 

concerns over the effects on managed crop systems, including blueberry yield (Gibbs et 

al. 2016).  Diverse assemblages of native pollinators may be able to provide ‘biological 

insurance’ that protects against the loss of key pollinator taxa (Winfree et al. 2007).  

Although not all of the insects sampled in our study are considered key pollinators, the 
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broad community of insect visitors found may indicate that V. corymbosum crops will be 

resilient to decline of particular bee species.   

We found that 25 of the 46 floral visitor species tested positive for MVC (Table 

2-2), and of those species with six or more representatives, 9 out of 10 species tested 

positive (Table 2-3).  The prevalence of MVC in our study is congruent with prior work 

that found 18 of 28 families and 5 of 6 orders that tested positive for the presence of 

MVC DNA (McArt et al. 2016).  Of bees tested in our study, A. mellifera tested positive 

most often, with over 76% of samples returning positive results.  A. mellifera are widely 

used as supplemental pollinators due to their commercial availability, large colony size, 

and high pollination efficacy (Delaplane & Mayer 2000). However, because MVC 

conidia mimic pollen grains in their mode of delivery (Ngugi & Scherm 2004), A. 

mellifera may also be an efficient mummy berry vector.   

We found a great disparity in the presence of MVC between fly species (Table 2-

3).  We identified ten specimens of Chrysops carbonarius (deer fly), with none of the 

samples testing positive for MVC.  However, in Mallota posticata, a bee mimicking fly, 

all 6 samples tested positive for MVC.  Behavioral differences are unlikely to explain this 

disparity since M. posticata and C. carbonarius are both floral visitors (Maier & 

Waldbauer 1979; Karolyi et al. 2014), but morphological differences may.  Bee mimics 

have an abundance of body hairs compared to deer flies like Chrysops and other 

Tabanids, perhaps making the transfer of conidia more likely.  Recent camera trap work 

has shown that flies are more likely to visit blighted blueberry tissues than bees, although 

bees are more likely to carry MVC than flies (McArt et al. 2016).  This suggests that both 

blight-visiting behavior and morphological features may work in tandem to maximize 
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vectoring potential.  Further, flies are less commonly observed on blueberry flowers than 

bees (McArt et al. 2016), suggesting that although they may carry MVC, their role in 

transmission may be limited.  

   In our comparison of raw counts of MVC ITS regions, D. maculata, or the Bald-

faced Hornet, carried the highest average MVC load of all insects sampled, when 

considering only insects that tested positive for the presence of MVC (Figure 2-1, Table 

2-2).  Prior work using PCR to determine presence/absence of MVC on or in insect 

bodies found that the presence of MVC in Vespids was relatively low when compared to 

other taxa (McArt et al. 2016).  This suggests that while incidence of Vespids carrying 

MVC may be relatively low on a presence-absence basis, when MVC is present it may be 

carried in large quantities.  Although D. maculata is primarily a predator upon insects 

including other Vespids, it often also acts as pollinator while searching for nectar (Jacobs 

2015), and is commonly found foraging on V. corymbosum flowers (McArt et al. 2016).  

However, field observations during 2014 and 2016 that recorded visiting taxa indicate 

that large Vespid species may visit V. corymbosum flowers too infrequently to be a major 

vector of MVC, having comprised only 7% of all visitor observations (Boyer, 

unpublished data).   

In our comparison of ITS regions adjusted for insect body size, we found that A. 

vicina had the highest average MVC ITS count.  Andrena vicina is a solitary bee and 

common V. corymbosum forager and pollinator (Scott et al. 2016).  In addition, one A. 

vicina sample had the highest MVC count of any insect sampled, with over 198 million 

ITS copies, almost three times as much as the next highest sample.  In some cases, 

solitary bees can be more effective pollinators than A. mellifera (Vicens 2009).  
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Additionally, many solitary bee species lack corbiculae, or pollen baskets, on their hind 

legs, instead carrying pollen on brushes of hairs (scopa) on their ventral abdomen or legs 

(Chambers 1946).  While conidia mimic pollen grains in rough form and function, they 

are smaller than blueberry pollen and thus may be more easily transferred on scopa.   

Solitary bees carried more MVC than social bees, and social bees carried more 

than flies when comparing raw ITS counts (Figure 2-2A).  When comparing counts 

adjusted for body size, social and solitary bees did not differ significantly from one 

another but did carry more than flies (Fig. 2-2B).  Congruent with prior work (McArt et 

al. 2016), we found that flies are less likely to carry any MVC than bees, and when they 

do they carry MVC,  they carry less. The wide variety of behaviors exhibited by Dipteran 

taxa found in our study may help to explain the lower quantity of MVC found in flies.  

For example, taxa such as those in the Sarcophagidae often feed on nectar (Rathman et al. 

1990) and may be attracted to blights due to pseudoflower mimicry of floral volatiles, 

leaving shortly after discovering no nectar rewards.  However, flies in the Sphaeroceridae 

are often larval microbial grazers on decaying plant material or fungi, and thus may visit 

blights at different intervals and with different behaviors than other Dipteran taxa.  Given 

the vast diversity of Dipteran species, more study relating fly behavior to MVC 

transmission is needed.    

Encouraging native pollinators may help to decrease reliance on managed bees 

(Rogers et al. 2014), but managed colonies of A. mellifera and B. impatiens are often 

used by growers (Delaplane & Mayer 2000).  We found no significant difference in raw 

or adjusted ITS counts (Figure 2-1), nor in number of conidia deposited by A. mellifera 

and B. impatiens (Figure 2-3).  Our findings suggest that growers using honeybees 
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compared to bumblebees for supplemental pollination services, or environments with 

more of one species and less of the other, are unlikely to see a difference in pathogen 

transmission.   Bombus impatiens are more effective extracting blueberry pollen due to 

their sonication behavior, as blueberries have poricidal anthers adapted to buzz-

pollinators (Delaplane & Mayer 2000).  A. mellifera often have difficulty legitimately 

pollinating blueberry flowers due to corolla structure, orientation, and a lack of buzz-

pollination behavior (Delaplane & Mayer 2000).  Despite the lack of sonication behavior, 

honeybees may incidentally release small amounts of pollen while retrieving nectar from 

blueberry flowers (Javorek et al. 2002).  Although the amount of incidental pollen 

released by nectar harvesting is small in comparison to buzz-pollination on a per-visit 

basis, differences in colony size between the two species may increase overall honeybee 

pollination effectiveness.   Bumblebee colonies have hundreds of individuals, while a 

single honeybee colony often has tens of thousands.  A recent study investigating efficacy 

of highbush blueberry pollinators found that while per-visit efficiency of A. mellifera was 

low, they were also the most abundant pollinators observed in the field (Rogers et al. 

2013), but this was often dependent on the presence of managed hives. While arguments 

may be made for the effectiveness of each species as a blueberry pollinator, our findings 

suggest that they may be equal vectors of mummy berry spores on a per-visit basis.   

Differences in vectoring success between A. mellifera and B. impatiens may be 

complex, and while single visit deposition is a good first step to understanding pathogen 

transmission efficacies between these taxa, it may not reflect deposition in the field due 

to differences in bee species behavior.  Bees of either species may visit multiple blights 

before any given flower, or vice versa.  Conidia deposition may rely on a cumulative 
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effect of multiple visits, in which case single visits may not be enough to determine 

differences between species.  Field observations combined with fruit infection 

assessments have indicated that higher proportions of A. mellifera visitation are 

associated with greater incidence of fruit infection (Boyer, unpublished data). Thus, while 

our single-visit experiment demonstrated that conidial deposition per visit does not differ 

between these species, more comprehensive behavioral observations of visits to blights 

and flowers in the field may be necessary to understand transmission dynamics. Bombus 

impatiens may transfer fewer conidia in field conditions due to the overall aversion we 

observed for bumblebees landing on blights.  B. impatiens had to be chilled to a state of 

immobility and allowed to revive on blighted tissues, while A. mellifera often preferred 

pseudoflowers to flowers, and needed no coaxing to visit blighted tissues.  However, our 

presence/absence data indicate that B. impatiens do carry MVC (Table 2-3), but 

differences in floral manipulation may cause conidia to be present on bee body parts that 

do not often contact floral stigmas.  Either way, these behavioral differences would be 

expected to impact pathogen transfer under natural conditions.   

 Blueberry is an important economic crop in the United States whose pollinator 

community has been previously described (MacKenzie & Eickwort 1996; Ross et al. 

2017). Our study adds to this knowledge by providing molecular identifications of floral 

visitor community beyond bees to the species level.  Additionally, our study is the first to 

assess relative quantities of MVC carried on insect bodies, as well as to evaluate 

differences in pathogen transmission between two commonly supplemented pollinator 

species.  All of the bee species and many of the fly species we collected tested positive 

for MVC, and of those that carry the pathogen, D. maculata carried the most in terms of 
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raw counts, but A. vicina carried the most when adjusted for body size.  We found that 

there was no significant difference between the amount of MVC carried by bumblebees 

and honeybees, nor was there a significant difference in per visit deposition.  In total, our 

findings increase our understanding of the potential for both wild and managed pollinator 

species to contribute to the vectoring of a highly damaging blueberry pathogen.   
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Table 2-1. Cytochrome c Oxidase I (COI) primer sets targeting the Folmer region for DNA  

metabarcoding of insects. 

Primer 

Name* 

     Primer Sequence Amplicon 

Size 

Citation 

Uni-MinibarR1 GAAAATCATAATGAAGGCATGAGC 127 Meusnieretal.2008 

Uni-MinibarF1 TCCACTAATCACAARGATATTGGTAC 127 Meusnieretal.2008 

ZBJ-ArtF1c AGATATTGGAACWTTATATTTTATTTTTGG 157 Zealeetal.2010 

ZBJ-ArtR2c WACTAATCAATTWCCAAATCCTCC 157 Zealeetal.2010 

LepF1 ATTCAACCAATCATAAAGATATTGG 127 Hebertetal.2004 

EPT-long-univR AARAAAATYATAAYAAAIGCGTGIAIIGT 127 Hajibabaeietal.2011 

MLepF1-Rev CGTGGAAAWGCTATATCWGGTG 218 Brandon-Mongetal.2015 

BF1 ACWGGWTGRACWGTNTAYCC 217 herein 

BR1 ARYATDGTRATDGCHCCDGC 217 herein 

L499 ATTAATATACGATCAACAGGAAT 178 VanHoudtetal.2010 

H2123d TAWACTTCWGGRTGWCCAAARAATCA 178 VanHoudtetal.2010 

*Primers described in doi: 10.3389/fenvs.2017.00011 (2017)  
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Table 2-2. Comprehensive list of species identified by BLAST search with sample sizes 

and mean counts of MVC ITS sequences indicating pathogen load.  Families are listed 

alphabetically within order, and species are ordered from highest raw ITS count to lowest 

within family. 

 

Species  n  Family Common name Mean ITS 

 

Hymenoptera 

Andrena vicina 54  Andrenidae Neighborly Miner Bee 7,423,087 

Andrena carolina 9  Andrenidae Blueberry bee 140,521.5 

Andrena clarkella 1  Andrenidae Blueberry bee 51,706 

Apis mellifera 54  Apidae European Honey Bee 2,136,683 

Bombus bimaculatus 16  Apidae Two-spotted Bumble Bee 1,947,150 

Bombus impatiens 56  Apidae 

Common Eastern 

Bumble Bee 1,777,119 

Apis florea 1  Apidae Dwarf Honey Bee 262,579 

Bombus hypnorum 1  Apidae Tree Bumblebee 101,649 

Bombus perplexus  2  Apidae Confusing Bumblebee 31,908 

Xylocopa virginica 1  Apidae Eastern Carpenter Bee 0 

Augochlorella sp. 1  Halictidae Sweat Bee 0 

Tryphon seminiger 1  Ichneumonidae Parasitoid Wasp 0 

Pristiphora cincta 1  Tenthredinidae Saw Fly 70,457 

Empria maculata 1  Tenthredinidae Saw Fly 0 
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Dolichovespula maculata 6  Vespidae Bald-faced Hornet 10,018,580 

Vespula vidua 14  Vespidae Widow Yellowjacket 631,404 

Euodynerus foraminatus 1  Vespidae Potter Wasp 302,476 

Dolichovespula adulterina 1  Vespidae Parasitic Wasp 258,704 

Dolichovespula arenaria 2  Vespidae Arial Yellowjacket 102,962 

Vespula sp. 4  Vespidae Widow Yellowjacket 16,735 

Polistes fuscatus 1  Vespidae Northern Paper Wasp 0 

 

Diptera 

Delia antiqua 1  Anthomyiidae Onion Fly 0 

Pollenia labialis 1  Calliphoridae Cluster fly 0 

Pollenia pediculate 1  Calliphoridae Cluster fly 0 

Pollenia rudis 3  Calliphoridae Cluster fly 0 

Conops rondanii 1  Conopidae Fly (Bee Parasite) 1,196,821 

Dolichopodidae sp.  3  Dolichopodidae Long-legged Fly 45,433 

Desmometopa sordida 1  Milichiidae Freeloader Fly 36,934 

Anthomyiinae sp. 1  Muscidae House Fly 0 

Coenosia tigrine 1  Muscidae House Fly 0 

Chrysopilus sp. 3  Rhagionidae Snipe Fly 0 

Chrysopilus proximus 4  Rhagionidae Snipe Fly 0 

Blaesoxipha sp. 2  Sarcophagidae Flesh Fly 0 

Leptocera erythrocera 1  Sphaeroceridae Lesser Dung Fly 88,580 

Syrphinae sp. 1  Syrphidae Hover Fly 1,670,285 
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Mallota posticata 6  Syrphidae Hover Fly 549,321 

Eristalis dimidiata 1  Syrphidae Hover Fly 0 

Parhelophilus sp. 2  Syrphidae Hover Fly 0 

Platycheirus hyperboreus 1  Syrphidae Hover Fly 0 

Chrysops carbonarius 11  Tabanidae Deer Fly 0 

Chrysops dawsoni 1  Tabanidae Deer Fly 0 

Epalpus signifer 6  Tachinidae Bristly Fly 316,521 

Klugia marginata 1  Tachinidae Bristle Fly 122,649 

Gonia ornata 1  Tachinidae Bristle Fly 0 

 

Coleoptera 

Bibioninae sp. 1  Cantharidae Soldier Beetle 83,505 

Pterolophia formosana 1  Cerambycidae Longhorn Beetle 0 
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Table 2-3.  Sample sizes and percentages of taxa testing positive for MVC.  Species are 

listed alphabetically.  Only species with sample sizes of 5 or greater were included.   

 

  

 
Percent               

with MVC 

Individuals 

with MVC 

Individuals 

without MVC 

Sample 

Size 
 
Bees     

Andrena carolina 44.4 4 5 9 

Andrena vicina 44.2 23 29 52 

Apis melifera 76.9 40 12 52 

Bombus bimaculatus 40 6 9 15 

Bombus impatiens 55.6 30 24 54 

Flies     

Chrysops carbonarius 0 0 10 10 

Epalpus signifer 83.3 5 1 6 

Mallota posticata 100 6 0 6 

Wasps 
    

Dolichovespula 

maculata 
83.3 5 1 6 

Vespula vidua 64.3 9 5 14 
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Figure 2-1.  Species comparison of MVC ITS regions for (A) raw counts and (B) counts 

adjusted by body size (g fresh weight).  Samples without MVC and species with fewer 

than five samples were not included in this analysis.  Species with different letters are 

statistically different as determined by Tukey’s post hoc comparisons.  Error bars are +/- 

one standard error of the mean.   
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Figure 2-2.  Functional group comparison of MVC ITS regions for (A) raw counts and 

(B) counts adjusted by body size (g fresh weight); ‘social’ and ‘solitary’ refer to bee 

species.  Groups with different letters are statistically different as determined by Tukey’s 

post hoc comparisons.  Error bars are +/- one standard error of the mean.  
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Figure 2-3.  Mean conidia on stigmas visited by A. mellifera and B. impatiens in field 

cage trials.  Bee species do not significantly differ in conidia deposited per single visit 

(see Results). Error bars are +/-1 standard error of the mean. 
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CHAPTER 3 
 
NO TRADEOFF BETWEEN POLLEN GERMINATION AND RESISTANCE TO 

A FLORAL PATHOGEN (Monilinia vacinii-corymbosi) IN Vaccinium corymbosum 

 
 

Abstract 

  Many plants must balance the need for pollination services with mediating the 

risk of pollinator-vectored pathogens.  Highbush blueberry (Vaccinium corymbosum) 

plants require outcrossed pollen to maximize yield.  Monilinia vaccinii-corymbosi, the 

cause of mummy berry disease, is the most damaging fungal pathogen affecting 

blueberry crops and is principally vectored by pollinators. Therefore, yield of blueberry 

crops relies on a balance between adequate pollination service and disease avoidance.  

Agricultural cultivars have varying levels of resistance to the pathogen, but the 

mechanisms of resistance are unclear.  We examined whether resistance is related to 

inhibition of fungal spore germination at the floral stigma, and whether fungal spore 

germination is correlated with germination of pollen grains, creating a potential tradeoff 

between pollination and disease resistance.  Flowers from 25 cultivars were hand 

inoculated with pollen and conidia that were allowed to germinate and then stained for 

fluorescence microscopy to determine germination success.  Germinated pollen and 

conidia were counted and compared with published cultivar resistance rankings, and 

cultivars were evaluated for relationships between pollen and conidia germination.  We 

did not find a tradeoff between pollen and fungal spore germination, suggesting that 

disease resistance traits mediated by stigma traits may not come at a cost of reduced 

pollination. We also did not find a relationship between spore germination and published 
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disease resistance. However, published disease resistance rankings are based on infection 

in the field, which would be a result of pollinator visitation as well as stigmatic 

interactions with conidia. With mounting concerns over the use and cost of fungicides, 

including negative effects on non-target organisms, adding to our understanding of 

disease resistance in economically important crops such as blueberry can help to inform 

breeders and growers to maximize yield while combating the negative effects of this 

pathogen.   

 
Introduction 

  Trade-offs between reproduction and avoiding antagonists are ubiquitous in both 

animals and plants.  Mobile animals must reconcile the challenges of attracting mates 

while avoiding predation (Andersson 1994). Similarly, sessile plants often must balance 

attracting pollinators with avoiding antagonists that use flowers as cues to find hosts, 

such as florivores, nectar robbers, and seed predators (Strauss and Whittall 2006, Adler 

2007).  For example, high concentrations of a volatile organic compound emitted by 

Polemonium viscosum flowers can deter nectar robbers but also reduce visitation by 

pollinators (Galen et al. 2011).  Similarly, high concentrations of nectar alkaloids can 

deter nectar robbers, but also reduce pollination services (Adler and Irwin 2005).  These 

examples highlight conflicting selection on floral traits driven by multispecies 

interactions, shaping selection in directions not expected in a simple pairwise interaction 

(Strauss and Irwin 2004).   

  For several plant species, reproduction can also carry the cost of disease 

transmission vectored by pollinators (McArt et al. 2014).   Flowers may provide both 

signals and rewards to attract pollinators, but high visitation combined with a 
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microclimate conducive to infection can make flowers a point of entry for pathogens.  In 

several cases, specific floral traits have been identified that mediate successful infection. 

For example, anther smut fungi (Microbotryum violaceum) infect floral tissues of Silene 

spp. (Alexander and Antonovics 1988), and floral traits such as bloom duration and 

morphology can influence the outcome of pathogen infection (Kaltz and Shykoff 2001).  

Also, when male Silene latifolia flowers senesced quickly following inoculation, these 

flowers were less likely to become infected (Kaltz and Shykoff 2001).  Nectar provides a 

climate rich in resources that can promote microbial growth, but may also defend against 

pathogens via the nectar redox cycle (Carter and Thornburg 2004) Additionally, 

secondary metabolites in nectar may alter pathogen interactions (reviewed in McArt et al. 

2014).  For example, Cucurbita sp. nectar can inhibit the growth of the pathogen Erwinia 

tracheiphilia (Sasu et al. 2010), although the compounds mediating this inhibition are 

unknown.  Infection may also be inhibited by volatile compounds exuded by floral 

stigmatic surfaces.  Volatile compounds commonly produced by floral tissues, such as 

(E)-B-caryophyllene, can increase resistance to Pseudomonas syringae in Arabadopsis 

thaliana (Huang et al. 2012).  Thus, a wide range of floral traits that can influence 

pollinator attraction may also mediate pathogen transmission through flowers.  

  Disease transmission vectored by pollinators can play a significant role in 

agricultural as well as wild systems. For example, both wild and cultivated highbush 

blueberry (Vaccinium corymbosum; Ericaceae) are frequently infected by Monilinia 

vaccinii-corymbosi (MVC hereafter), the cause of mummy berry disease (Batra 1983). A 

highly damaging pathogen affecting highbush blueberry crops, MVC causes major 

economic losses with infections that can reduce yield up to 80% (Stretch et al. 2001).  
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Floral visitors vector asexual spores, or conidia, to blueberry flowers (Batra 1983). Like 

pollen grains, spores germinate on stigmas and hyphae grow down the stylar canal to 

infect the ovary, resulting in infected and inedible fruits (Batra and Batra 1985).  Thus, 

there is the potential for variation in stigmatic properties that could affect spore 

germination and growth as well as pollination. 

  Vaccinium corymbosum is susceptible to both sexually produced ascospores 

(primary spores), which are wind-disbursed and infect new shoots and stems, a process 

referred to as ‘primary infection,’ and by asexual conidia (secondary spores), wherein 

conidia are vectored from blighted vegetative tissues to flowers, which are subjected to 

‘secondary infection.’  While many studies have demonstrated cultivar variation in 

resistance to both primary and secondary infection, little is known about the mechanisms 

of resistance (Stretch et al. 2001, Ehlenfeldt et al. 2010).  One study found that hyphal 

growth rate in five cultivars roughly correlated with established resistance rankings of 

secondary infection (Lehman et al. 2007).  Since subsequent hyphal growth requires 

germination success, traits influencing conidial germination may comprise a component 

of resistance.  While this provides an important starting point to suggest possible 

mechanisms of resistance, over 150 cultivars have been evaluated for disease resistance, 

providing the opportunity to expand prior work to a greater number of cultivars.  

Additionally, no study to our knowledge has assessed trade-offs between conidial 

germination and pollen germination.  If inhibitory stigmatic chemicals reduce conidia 

germination but also inhibit pollen germination, this may lead to a trade-off between 

reproduction and resistance to infection.   
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  We hypothesized that published resistance to infection in cultivars (Ehlenfeldt 

2010) will correlate with conidia germination, and that mechanisms inhibiting conidia 

germination may also reduce pollen germination.  We used laboratory pollination and 

inoculation techniques and fluorescence microscopy to answer the following questions: 

1) Do cultivars differ in conidia and pollen germination?  2) Does conidia germination 

correspond with published resistance rankings for cultivars, suggesting a mechanism of 

resistance?  3) Is there a trade-off such that cultivars with lower conidia germination also 

have lower pollen germination?   

Methods 

Study system 

Monilinia vaccinii-corymbosi is an ascomycete fungal pathogen infecting 

Vaccinium corymbosum, highbush blueberry, across North America (Batra 1983).  It 

employs a two-stage infection process, starting with infection through windborne 

ascospores disbursed from ascocarps emerging in the spring.  This primary infection 

affects new shoot and stem tissues and creates blighted tissues known as ‘pseudoflowers.’  

These co-opted tissues induce production of large amounts of asexual spores (conidia) 

and attract insect visitors by reflecting UV light (Batra and Batra 1985) and exuding 

volatile organic compounds that mimic floral scent (McArt et al. 2016).  Although wind 

and rain can spread conidia, flower-visiting insects are the primary vectors (Ngugi et al. 

2002), transferring conidia from pseudoflowers to floral tissues, resulting in secondary 

infection.  Conidia mimic pollen grains in both their mode of delivery and germination on 

stigmatic surfaces (Ngugi and Scherm 2004).  Hyphal growth, analogous to pollen tubes, 

extend down the stylar canal to the ovary and result in secondary infection (Ngugi and 
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Scherm 2004).  Infection results in fungus-filled locules, with berries becoming grey and 

hard upon ripening.  These inedible berries then drop and overwinter, emerging with 

apothecia in the spring and releasing spores that begin a new cycle of infection (Batra 

1983, Batra and Batra 1985).   

Highbush blueberry cultivars have varying levels of resistance to infection (Ngugi 

et al. 2002, Ehlenfeldt et al. 2010). Some cultivars may be highly resistant to primary 

infection while being susceptible to secondary infection, or vice versa (Lehman et al. 

2007, Ehlenfeldt et al. 2010). While levels or resistance have been assessed in the field 

for more than 150 cultivars in multiple years (Ehlenfeldt et al. 2010), mechanisms 

underlying this resistance are largely unknown.   

Cultivar selection and collection 

On April 24th 2014, bud-bearing clippings were collected from 29 cultivars at the 

Rutgers University Phillip M. Marucci Center for Blueberry and Cranberry Research.  

Cultivars were selected to represent the available range of resistance to secondary 

infection, from highly resistant to highly susceptible, as ranked by Ehlenfeldt (2010).  

Between five and ten clippings, each bearing 10-25 bud clusters, were taken from each 

cultivar.  When possible, clippings were taken from separate plants.  For cultivars 

represented by few or a single plant, clippings were taken from different branches of the 

same plant.  Cuttings were placed in water with Floralife (Smithers-Oasis Co., Kent, 

Ohio) plant cutting fertilizer powder mixed with tap water (10g /L) and driven to the 

University of Massachusetts at Amherst.  On April 25, cuttings were stored in darkness to 

retard flowering.  On May 1, cuttings were moved to cold storage at 11°C without light to 

further delay bloom.  Cuttings were moved from cold storage to standard lab benches on 
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May 13 and exposed to ambient light at 24°C for inoculation. All cuttings were routinely 

re-wounded to aid in water uptake.  Other research evaluating fungal species associated 

with blueberry stem canker has also used cuttings rather than live plants for logistical 

reasons, as we did here (Elfar et al. 2013). 

  To collect conidia for treatments, blighted tissues were collected haphazardly 

from the range of cultivars at the Marucci center (Chatsworth, New Jersey, USA) on May 

9 and received at UMass Amherst on May 13.  Blighted tissues were kept refrigerated 

until May 20.  A sample of conidia was plated onto half-strength potato dextrose agar 

(PDA) every two days to ensure they were viable and capable of germination.   

Inoculation and pollination 

To determine whether trade-offs or differential germination occur on floral 

stigmas, flowers of all cultivars were inoculated with equal amounts of conidia and pollen 

grains.  For pollen collection, one donor flower was chosen haphazardly from one plant 

per cultivar on each day and pollen was extracted by vibrating the flower with a spindle 

obtained by removing the brush components from an Oral-B battery-powered toothbrush 

(Procter & Gamble, Cincinnati, OH) onto a glass slide. Conidia were extracted in similar 

fashion from sporulating tissue received from the Marucci Center on May 13, to a 

separate glass slide on each day of inoculation.  A subsample of conidia from each 

extraction was plated onto ½ strength PDA and allowed to germinate to ensure viability.  

Under a dissecting microscope, approximately 10 - 20 pollen grains and 10 - 20 conidia 

were collected with a dissecting needle by passing it through pollen and conidia on the 

glass slides, and this mixture was applied to the stigmas of newly opened flowers.  

Needles were visually spot-checked to ensure a relatively equal ratio of pollen and 
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conidia for each inoculation.  Each cultivar was only treated with pollen from the same 

cultivar.  Highbush blueberry cultivars are generally self-compatible, although fruit set is 

improved by outcrossing (Elagamy et al. 1981; Ehlenfeldt 2001a).  Flowers were 

individually labeled to indicate date of inoculation, and after four days, stigmas were 

collected with forceps and immediately submerged in EtOH as a preservative and 

fixative.  Due to the range of flowering phenology between cultivars, inoculations 

continued until May 19 as flowers opened.  In total, 337 floral stigma samples were 

collected from 25 cultivars. 

Fluorescence microscopy 

Beginning on August 10, 2015, stigmas were processed for fluorescence 

microscopy following the protocol in Lehman (2007).  Stigmas were removed from the 

EtOH solution and rinsed twice in sterile dH2O.  Stigmas were then cleared and fixed for 

2 hours at 60°C in 0.3% trichloroacetic acid dissolved in a 3:1 vol/vol solution of 95% 

EtOH and chloroform.  Stigmas were again rinsed twice with sterile dHOH and softened 

in 8 M sodium hydroxide for 20 min at 60°C.  Stigmas were then stained in 0.1% methyl 

blue in 0.1 M K3PO4 (pH 12) and then rinsed twice in dH2O.  Styles were bisected 

longitudinally on a glass microscope slide and viewed using a Chroma 31000 filter set 

(Chroma Technology Corp., Bellows Falls, VT 05101) excitation filter (300 – 400 nm, 

barrier filter 400 nm, emitter filter 410- 500 nm).  Pollen tubes and fungal hyphae were 

counted from germinating grains and spores, respectively. 

Statistical analysis 

To determine if pollen or conidia germination varied by cultivar, we compared 

generalized linear models with and without cultivar as an explanatory fixed factor with 
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plant, branch and date sampled (stigma harvested) as random effects, with branch nested 

within plant. Separate analyses were conducted for pollen and conidia germination. 

ANOVA comparisons between models with and without cultivar were made using the 

ANOVA function and χ2 test statistic in the lme4 package for R (R Core Team 2011, 

Version 2.13.1, The R Foundation for Statistical Computing, Vienna, Austria) with a 

Poisson distribution.  Upon finding a significant cultivar effect, a Tukey’s HSD post hoc 

test was run using the multcomp package to determine which cultivars differed from one 

another. 

  To assess trade-offs between pollen and conidia germination, Pearson product 

moment correlations were run within each cultivar and across cultivars using samples as 

replicates (JMP Pro 13.2.1, SAS Institute Inc., Cary, NC, 1989-2007).  Cultivars with 

samples sizes of fewer than 5 were not included in correlation analysis.  

To determine the relationship between published cultivar resistance ranking for 

secondary infection and observed conidia and pollen germination, a general linear model 

was used (JMP Pro 13.2.1, SAS Institute, Inc.) with relative resistance rankings as 

predictors and cultivar average values of germinated pollen and conidia as responses.  

Cultivars were assigned a resistance rank relative to the other cultivars used in this study 

(Table 3-1), adapting ranks first published in Ehlenfeldt (2010).   

Results 

  Comparison between models with and without cultivar as a fixed factor revealed 

that conidia germination varied by cultivar (χ2 = 36.103, df = 20, p = 0.015), but pollen 

germination did not (χ2 = 31.66, df = 24, p = 0.136).  In post hoc comparisons, Patriot and 
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Jersey cultivars had notably high numbers of conidia germinated, while Darrow had the 

fewest (Figure 3-1). 

  Correlation analysis revealed no relationship between published resistance rank 

and either pollen (r2 = 0.0038, df = 21, p=0.261) or conidial germination (r2 = 0.0017, df 

= 21, p=0.453; Figure 2).  There was also no significant correlation between pollen and 

conidial germination across cultivars (Pollen: r2 = 0.0038, df = 21, p=0.261, Conidia: r2 = 

0.0017, df = 21, p=0.453), indicating no support for the hypothesis that cultivars would 

experience tradeoffs. In within-cultivar analyses, Bounty and Weymouth were the only 

cultivars that had a significant negative relationship between pollen and conidia 

germination, indicating that individuals with high pollen germination also had low 

conidial germination, while Early Blue had a significantly positive relationship (Table 3-

2), indicating that individuals of that cultivar with high pollen germination also had high 

conidial germination, showing a tradeoff.   

Discussion 

  In highbush blueberry, although plants are self-compatible, fruit set is maximized 

by outcrossing (Isaacs et al. 2016), and therefore traits affecting pollen germination could 

have important impacts on agricultural production.  Since pollinators vector fungal 

conidia in addition to pollen, plants must balance increasing pollen deposition against 

infection risk.  Ideally, plants would benefit from maximizing outcrossed pollen 

germination while inhibiting the germination of fungal spores.  If unrelated traits promote 

pollen versus conidia germination, no trade-off would be present.  However, trade-offs 

may be expected if some of the same plant traits control pollen and conidial germination.  

In this study, we found little evidence of such a tradeoff, with most cultivars exhibiting 
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no relationship between pollen and conidia germination.  This lack of trade-offs between 

conidia germination and pollen germination in most cultivars has agricultural 

implications, suggesting that breeding for traits that increase resistance by reducing 

conidial germination should not negatively impact pollination success, at least in terms of 

pollen germination.   

  The lack of trade-offs suggests that there are separate mechanisms mediating 

pollen and conidial germination.  For example, pollen grains are generally dehydrated 

before leaving the anther, aiding in survival across environmental stressors, and proper 

stigmatic moisture level is essential for pollen grain rehydration and germination 

(Kerhoas et al. 1987).  Further, proper balance of ions such as calcium, hydrogen, 

potassium, and chlorine are needed for pollen germination and navigation down the stylar 

canal (Song et al. 2009), and disruption of ion balances may affect germination.  In 

lowbush blueberry (Vaccinium augustifolium), boron and calcium play an integral role in 

pollen germination success, and trials augmenting B and Ca levels through foliar spray 

increased pollen germination over untreated plants (Brewbaker and Kwack 1963, Chen et 

al. 1998).  Some of these cues on stigmatic surfaces could also stimulate or inhibit 

germination of fungal spores.  For example, calcium ions have long been studied as 

promoters of spore germination and appressorial formation in ascomycete plant 

pathogens (Griffin 1966, Warwar and Dickman 1996).  However, because we found little 

relationship between pollen and conidial germination within or between cultivars, this 

suggests that separate mechanisms, or different synergistic combinations of mechanisms, 

cue germination of pollen and conidia in our system.   
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  Aside from promoting pollen germination (Ylstra et al. 1992), many secondary 

metabolites inhibit conidial germination and fungal growth, and could explain differences 

in conidial germination between cultivars.  For example, alkaloids such as beta-

carbolines have an inhibitory effect on fungi such as Botrytis cinerea and Penicillium 

digitatum, and are ubiquitously found in nature (Olmedo et al. 2017).  Similarly, some 

compounds inhibit germination of both plant pollen and fungal spores.  For example, 

volatile hexenal applications inhibit germination of both apple pollen (Hamiltonkemp et 

al. 1991) and fungal plant pathogens such as Colletotrichum coccodes (Black Dot) and 

Helminthosporium solani (Silver Scurf) (Wood et al. 2012).  A recent phytochemical 

analysis of blueberry flowers yielded 21 phenolic compounds (Wan et al. 2012), and 

phenolics are widely reported to inhibit growth and germination of fungal plant 

pathogens (del Río et al. 2004; Leontopoulos et al. 2015; Pizzolitto et al. 2015).  Further, 

blueberry cultivars can vary widely in levels of secondary metabolites, including 

phenolics, in floral and leaf tissue (Egan et al. in review). Thus, variation of phenolic 

concentrations between cultivars is a possible mechanism that could explain differences 

in conidial germination.  

  While cultivars varied in conidial germination, our conidia germination rankings 

did not correspond with published resistance levels for secondary infection in Ehlenfeldt 

(2010; Table 1).  This disparity is not necessarily surprising due to different methodology 

between the studies.  First, our study was conducted in the lab under controlled 

conditions, whereas Ehlenfeldt assessed resistance to mummy berry using naturally 

pollinated plants in unmanipulated orchard over multiple years.  Our study used hand 

inoculations of known fungal and pollen sources, while field-based plants were subject to 
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interactions with local pollinator communities that may vary widely in their capacity to 

carry and deposit pollen and conidia.  Further, pollinator preferences may differ between 

cultivars, resulting in some cultivars receiving more conidial deposition than others.  In 

addition, varying abiotic environmental conditions, such as temperature, relative 

humidity and moisture, would affect pathogen success.  For example, May temperatures 

were the only significant environmental predictor of Colletotrichum acutatum 

(Anthracnose fruit rot), another ascomycete fungal pathogen, incidents from year to year 

(Polashock et al. 2005).  Although our results indicate that conidial germination is 

unlikely to be a predictor of overall resistance to secondary infection, it may be an 

important component along with other factors.  For example, in cultivars visited more 

often by pathogen vectors, conidial inhibition on the stigma may be important for 

reducing infection.  Whatever trait, or combination of traits, is responsible, our result that 

cultivars vary in germination suggests an underlying genetic variation that could be 

selected for by breeders to aid in disease resistance.  

  In contrast with conidial germination, pollen germination did not vary across 

cultivars.  This suggests that there is little genetic variation in the traits that control pollen 

germination, consistent with general evolutionary theory that traits most closely linked to 

fitness are under strong selection that reduces or eliminates genetic variation (Futuyma 

2005).  Similar artificial selection by breeders to maximize yield may have resulted in 

uniformly high pollen germination across cultivars. The lack of genetic variation in 

pollen germination suggests that breeders can continue to breed disease resistant cultivars 

with little concern for reducing pollen germination, which could be an obstacle to 

maximum yield in pollinator-limited environments.   
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  Only one cultivar showed an individual-level tradeoff in our correlation analysis 

(Table 3-2), with two others exhibiting a negative relationship between conidia and 

pollen germination.  Bounty and Weymouth had significant negative correlations 

between number of germinated pollen and conidia, indicating stigmatic conditions 

conducive to either pollen or conidia germination.  Early Blue was the only cultivar with 

a significantly positive correlation (Table 3-2).  These within-cultivar variations should 

indicate non-genetic variation in stigmas that have the potential to affect germination of 

pollen and conidia.  Although the amount of time flowers were open was controlled to 

within one day, these cultivars may vary in how quickly stigmatic surfaces dry out or 

respond to stresses depending on the hour in which particular flowers open, perhaps 

comprising another component of resistance.  

  Our study was largely congruent with prior work measuring hyphal growth and 

infection of blueberry floral locules using fluorescence microscopy to measure the 

lengths of hyphae extending from germinated conidia down the stylar canal in five 

highbush cultivars (Lehman et al. 2007).  Lehman’s study concluded that differences in 

stylar growth are a likely component of resistance to infection, and it is possible that it is 

more indicative of resistance than conidial germination alone.  We used three cultivars in 

common with that study: Weymouth, Coville, and Jersey. While using different metrics, 

in both studies Jersey had low conidial germination or growth and Weymouth had higher.  

Although Coville had intermediate hyphal growth in Lehman (2007), it displayed 

relatively low conidial germination in our study, suggesting fairly high resistance.  

Several factors may contribute to the disparity.  First, Lehman measured both length of 

hyphae and locules infected, while we based our study on conidia germination alone.  We 
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used clippings taken from mature and established plants, while Lehman et al. used young, 

potted specimens.  Therefore, our results may be more relevant for established orchards 

and less so for young plants.  Further, cut branches may not respond as living ones do, 

and suspension in floralife may alter the chemical responses produced by clippings.  

 

  As with many crop plants, highbush blueberry yield is improved with outcrossed 

pollination (Ehlenfeldt 2001a), but the key pollinators in this system can be carriers of 

fungal pathogens.  While fungicides can be used to manage mummy berry, in situations 

where fungicide use is not ideal, such as ‘no spray’ or ‘pick-your-own’ farms, it is 

important to understand how the interactions of pollen and disease spores affect disease 

resistance across cultivars.  We found little evidence suggesting tradeoffs between pollen 

and conidia germination. Although conidia germination varied by cultivar, germination 

did not correspond to published resistance rankings for secondary infection.  Further 

studies seeking to understand the mechanisms behind resistance to secondary infection 

may benefit from examining interactions in the flower that occur post-inoculation, such 

as success rate of hyphal penetration of the locule and subsequent fruit infection.  

Considering the economic importance of this crop and growing concerns pertaining to the 

use of fungicides (Wightwick et al. 2010), adding to our understanding of resistance 

mechanisms can provide valuable information for breeders to combat the damaging 

effects of this pathogen.   
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Table 3-1. Cultivars are listed in order of resistance to secondary infection ranked from 

most to least resistant.  Published rank values are from the Ehlenfledt (2010) list of 117 

cultivars and the relative values are for cultivars compared in this study.    

Cultivar                 
Published 
rank 

Relative 
ranking 

  Avg 
Germinated 
Conidia 

Resistance 
Rank (this 
study) 

Plants 
sampled 

Clippings 
per plant 

Patriot 14 1   15.67 24 2 2 
Weymouth 18 2   3.67 9 4 4 
June 20 3   2.6 8 1 1 
Harrison 30 4   4.42 13 2 4 
Coville 43 5   2.5 6 1 1 
Meader 46 6   0 1 1 1 
Wareham 47 7   4 12 2 2 
Duke 50 8   4 11 1 1 
Collins 53 9   0 1 1 1 
Bounty 56 10   8.03 20 2 3 
Hanna's Choice 63 11   8.33 21 2 3 
Pemberton 67 12   4.71 15 2 3 
Darrow 74 13   1.37 3 5 6 
Nelson 81 14   4.7 14 1 3 
Jersey 83 15   13.22 23 2 2 
Ivanhoe 86 16   2.58 7 3 3 
Pender 88 17   1.83 4 1 1 
Elizabeth 92 18   11.33 22 2 2 
Earliblue 95 19   3.7 10 3 3 
Bluechip 96 20   5.3 16 2 3 
Stanley 100 21   7.71 19 3 3 
Blueray 101 22   1 2 2 2 
Elliot 107 23   7 18 1 2 
Herbert 113 24   6.85 17 4 5 
Atlantic 117 25   1.91 5 2 3 
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Table 3-2. Pearson’s Correlation tests of mean pollen and conidia counts within each 

cultivar.  Bold indicates significant value.   

 

Cultivar 
Mean Pollen 
(SD) 

Mean Conidia 
(SD) DF r2 P 

Atlantic 8.364 (1.502) 1.909 (4.011) 10 0.312 0.074 
Bluechip 10.20 (3.393) 5.3 (4.832) 9 0.003 0.873 
Blueray 6 (1.690) 1 (2.450) 7 0.171 0.308 
Bounty 5.8 (2.058) 8.033 (6.430) 29 0.157 0.03 
Darrow 8.556 (3.755) 1.370 (2.133) 26 0.006 0.694 
Early Blue 6 (4.0) 3.7 (4.596) 9 0.562 0.013 
Elliot 8.933 (4.399) 7.0 (4.884) 14 0.016 0.654 
Hanna's Choice 6.25 (8.51) 8.333 (6.429) 11 0.137 0.236 
Herbert 6.923 (5.003) 6.846 (5.746) 25 0.008 0.674 
Harrison 8.833 (3.460) 4.417 (6.789) 11 0.032 0.578 
Ivanhoe 13.167 (8.387) 2.583 (3.825) 11 0.002 0.888 
Jersey 7.189 (3.178) 13.216 (10.188) 36 0.07 0.115 
June 6 (5.228) 2.6 (4.742) 9 0 1 
Nelson 4.870 (3.935) 4.696 (5.397) 22 0.008 0.684 
Pembroke 9.708 (5.353) 4.708 (6.182) 23 >0.001 0.995 
Pender 6.333 (1.506) 1.833 (1.602) 5 0.049 0.674 
Stanley 6.333 (3.136) 7.714 (7.484) 20 0.131 0.107 
Wareham 5 (.633) 4 (3.286) 5 0.148 0.451 
Weymouth 6.143 (4.234) 3.667 (5.257) 20 0.272 0.015 
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Figure 3-1.  Columns indicate mean number of germinated conidia per cultivar, and error 

bars are +/- 1 standard error of the mean.  Cultivars that do not share the same letter 

above the bar are significantly different as determined by Tukey’s HSD test.   
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Figure 3-2. Number of (A) germinated conidia and (B) pollen grains plotted against the 

relative resistance ranking from Ehlenfeldt (2010).  First rank is the most resistant and 

25th is the least.   
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