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ABSTRACT 

TESTING RECOGNITION MEMORY MODELS WITH FORCED-CHOICE TESTING 
 

FEBRUARY 2019 
 

QIULI MA, B.Eng., XI’AN JIAOTONG UNIVERSITY 

B.A., XI’AN JIAOTONG UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Jeffrey J. Starns 
 

People’s ability to call an experienced item “old” and a novel item “new” is recognition 

memory. Recognition memory is usually studied by first asking participants to learn a list of 

words and then make judgments of old (studied) or new (not studied) for test words. It has long 

been debated whether the underlying process of recognition memory is continuous or discrete. 

Two types of models are compared specifically that assume either discrete or continuous 

information states: the 2-high threshold (2HT) model and the unequal variance signal detection 

(UVSD) model, respectively. Researchers have used the receiver operation characteristic (ROC) 

function and response time (RT) data to test between the two models. However, both methods 

have provided evidence for 2HT and UVSD, and the debate has not come to consensus. In this 

study, we used an alternative approach to look into this issue. After studying the words, 

participants first made “old/new” judgment for each single test item. Then, if there were falsely 

identified items, each of them was randomly paired with a correctly identified word of the same 

response. Participants were asked to choose the studied word from the word pair. Simulation and 

experimental results were able to discriminate the 2HT and UVSD model. Experimental results 
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showed that the UVSD model fitted the data better than the 2HT model. The forced-choice test 

paradigm provided an effective way to test between the 2HT and UVSD models.   
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CHAPTER 1 
 

THE CONTINUOUS AND DISCRETE ACCOUNTS OF RECOGNITION MEMORY 

 
1.1 Introduction 

Recognition memory is a form of declarative memory. It concerns people’s ability to tell 

whether something is “old” – meaning that they have experienced it before in a specified context 

– or “new” – meaning that they have not. Recognition memory is usually tested with word lists. 

In an experiment, participants first study a list of words. Later another set of words is shown to 

them. Participants respond “old” or “studied” if they think the tested word was on the study list; 

they respond “new” or “not studied” if they think the word was not on the list. Studied words are 

called targets; not studied words are called lures.   

Recognition memory has been extensively studied with mathematical modeling (e.g., 

Pazzaglia, Dube, & Rotello, 2013; Kellen, Klauer, & Bröder, 2013; Starns, Ratcliff, & McKoon, 

2012). One fundamental question in the modeling literature concerns the nature of the 

information retrieved from memory. There are two influential modeling approaches that starkly 

disagree on this question: multinomial processing tree (MPT) models and signal detection theory 

(SDT) models. MPT holds that recognition decisions are informed by several discrete inner 

cognitive states (e.g., Swets, 1961; Snodgrass, & Corwin, 1988; Luce, 1963), whereas SDT holds 

that those decisions are the result of comparisons between decision criteria and memory strength 

values drawn from a continuous distribution (Green, & Swets, 1966).  

The most successful form of MPT model has been the two high-threshold (2HT) model 

(Snodgrass, & Corwin, 1988). According to this model, a target word can lead to two mental 

states. If any evidence showing the word is on the study list is remembered, the detect old mental 
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state is reached which leads to an “old”/“studied” response. If no evidence is remembered, the 

guess state is reached. For a lure word, if it provides any information proving its absence on the 

list, a detect new mental state is reached which leads to a “new”/“not studied” response. If no 

discounting information is retrieved, then the guess state is reached. Once target or lure test 

words enter into the guess state, they will be treated equally. Since no evidence is recollected 

about them, “old”/“studied” or “new”/“not studied” responses will be made by pure guessing. 

The critical property that defines the model as a high-threshold process is that targets never enter 

into the detect new state, and lures never enter into the detect old state. 

In the 2HT model, for a given target, a subject enters the “detect old” state with 

probability do, yielding an “old” response. For a given lure, the subject enters the “detect new” 

state with probability dn, yielding a “new” response. With probability 1 - do and 1 – dn, the 

subject enters a state of uncertainty and guesses “old” with probability g and “new” with 

probability 1- g. So the detection (d) parameters represent how effectively participants remember 

the items, and the guessing (g) parameter represents response biases. 

In contrast with the 2HT model, a standard signal-detection model assumes a continuous 

distribution of memory evidence for both targets and lures (Green, & Swets, 1966; Macmillian, 

& Creelman, 2005). As shown in Figure 1, the mean of target distribution is greater than that of 

the lure distribution, reflecting the fact that memory evidence tends to be stronger for these items. 

A decision criterion is set along the dimension of memory strength, and is usually denoted with λ. 

Recognition decisions are made based on the retrieved strength value’s relative location to λ: if 

the evidence falls on the right of the criterion, an “old” response is made, and if it falls on the left, 

a “new” response is made. A basic version of the SDT recognition memory model includes two 

equal-variance Gaussian distributions of memory strength across items, i.e., the EVSD model. 
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However, in practice, an unequal variance signal detection (UVSD) model is found to be a better 

account quantitatively (Wixted, 2007). In UVSD, the target distribution’s standard deviation is 

larger than the lure’s, indicating that more variability is added in when subjects have gone 

through extra phases of studying. 

The means of the target and lure distribution are denoted by µt and µl , and their variances 

σt and σl. The mean and standard deviation of the lure distribution are set to 0 and 1 by 

convention. The criterion λ can move along the dimension ranging from the most liberal at the 

left end to the most conservative at the right end. 

The 2HT model has been used by vast majority of recognition memory studies in the 

MPT field. Other models, such as the low threshold (LT) account, have only been recently 

considered. Also, the UVSD model outperforms EVSD for its better ability to fit the recognition 

data (Egan, 1958; Ratcliff, Sheu, & Gronlund, 1992; Wixted, 2007). So in our study, the 2HT 

model from MPT family and the UVSD model from the SDT family will be compared. 

 

1.2 Testing the Models with ROC Functions 

The 2HT and UVSD models have been primarily tested in terms of their ability to match 

the receiver operating characteristics (ROCs) (see Yonelinas, & Park, 2007, for a review). An 

ROC function plots the hit rate (the proportion of “old” responses among targets) against the 

false alarm rate (the proportion of “old” responses among lures) across different levels of 

response bias or confidence, reflecting the subject’s willingness to say “old” to test items.  

The 2HT model produces linear ROC functions, where the hit rate is do + (1- do)g and 

false alarm rate is (1 – dn )g. The line intersects the y and x axes at (0, do) and (1 – dn, 1), 



	

4	

respectively. Predicted hit and false-alarm rates move up along this line as the probability of 

guessing “old” increases.  

For the UVSD model, the hit rate is and false alarm rate is . p() is 

the cumulative probability density function of a Gaussian distribution. µ and σ are the mean and 

variance of memory evidence for targets, and λ is the decision criterion. When the criterion 

decreases, the area of the target and distractor distributions that falls to the right of the criterion 

(and thus the proportion of “old” responses) both increase. As a result, both hit rate and false 

alarm rate increase. However, due to the nonlinearity of the Gaussian distribution, the hit rate 

and false alarm rate do not increase with the same rate, making the ROC function a curve rather 

than line. In the ROC function, this is reflected as a convex curvature between (0, 0) and (1, 1). 

Furthermore, because the standard deviations of target and lure are different, this curvature is 

asymmetrical.  

Previous studies have largely shown support for the ROC of recognition memory to be 

curved (Yonelinas, & Park, 2007). This is because subjects are able to retrieve some information 

about the test item even when they respond at low confidence levels. This is made possible by 

the overlapping nature of the target and lure distributions in SDT, which is contrary to 2HT 

model’s assumption that low-confidence responses are the result of guesses in the absence of 

clear evidence identifying a target or a lure.  

Malmberg (2002) pointed out that 2HT can also generate curved confidence rating ROCs 

because the slope of two adjacent points on the ROC function was determined by the ratio of the 

probability of a target being assigned to a certain confidence level and the probability of a lure 

being assigned to that level. Those probabilities could change across confidence levels. If the 

mapping of “detect old” and “detect new” responses were allowed to vary across confidence 

1− p(λ,µt,σ t ) 1− p(λ)
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levels instead of all responses being set at the highest confidence level, the ratio would vary 

across different levels, thus producing a curved function. Consequently, the conclusion that 

curvilinear ROCs supported the continuous model rather than discrete state model was not 

necessarily valid for confidence rating ROCs.  

More recently researchers have focused on the bias manipulation ROCs. Bröder and 

Schutz (2009) reanalyzed 59 data sets in the literature that manipulated response bias in 

recognition via payoffs or base rates in recognition experiments. For data sets with two-step bias 

manipulation, they assumed equal variances in the SDT model and equal detect old and new rate 

in the 2HT model. For data sets with more than two bias levels, they fit the UVSD model and the 

2HT model with different detect old and detect new parameters. They found no apparent 

advantage for the SDT or 2HT model, so the 59 data sets did not reject 2HT in favor of SDT. 

Bröder and Schutz also conducted three recognition experiments with 5-step bias manipulations 

and kept the encoding and testing conditions equivalent. They fitted the data with seven-

parameter versions of both models, including sensitivity, standard deviation and the five bias 

steps. They compared the G2 statistics and found that the 2HT model was able to fit the data 

better than the SDT models. They argued that the SDT and 2HT models were equally valid as 

measurement tools for recognition memory. 

A reanalysis of Bröder and Schutz’s study by Dube and Rotello (2012) found that among 

the 62 cases in Bröder and Schutz’s meta-analysis, 43 of them varied biases over only two levels. 

As two-point ROCs could be fitted with either a curve or a line, misfits of both models were 

unable to provide distinguishable information. Moreover, among the remaining 19 cases that had 

3 to 5 bias levels, 15 supported the SDT models.  
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Dube and Rotello (2012) also pointed out that in one of their three new experiments, 

where Bröder and Schutz showed that the SDT model was outperformed by 2HT, instead of 

using word stimuli as in the first experiment, they used line drawings, whose different coding 

operation could usually produce more linear ROCs (Onyper, Zhang, & Howard, 2010).   

Dube and Rotello then reported two newly designed experiments that closely examined 

the confidence rating ROCs and bias manipulation ROCs. A large number of trials were 

collected which enabled comparisons of the two models on both individual and aggregated 

ROCs. The goodness-of-fit indicators supported the UVSD model.  

In order not to solely rely on the goodness-of-fit parameters that lack the consideration of 

different models’ flexibilities in model fitting, other indices were introduced. Among them were 

the Akaike information criterion (AIC) (Akaike, 1973; Wagenmakers, & Farrell, 2004) and the 

Bayesian information criterion (BIC) (Schwarz, 1978; Anderson, & Burnham, 2002). However, 

as the two indices both determined model flexibilities based on the number of free parameters, 

the 2HT and UVSD model would be treated as equally flexible for many studies, even though 

the models might differ in their true flexibility to match noise in the data. Therefore, some 

researchers have turned to a more comprehensive measurement called normalized maximum 

likelihood (NML). NML contains two components. The first component corresponds to the 

maximum log-likelihood of the observed data in a particular experiment, representing model fit. 

The second one is a penalty factor that is the sum of the maximum log-likelihoods of all possible 

data patterns that could be observed from the experiment. These two terms correspond to the two 

considerations in model fitting: overfitting and generation error respectively, trying to find out 

the best fitting model that is also the most parsimonious one. Kellen et al. (2013) reanalyzed 41 
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datasets and multiple models of recognition memory with NML, and concluded that models from 

the 2HT family were most supported by the individual level analyses. 

 

1.3 Non-ROC Tests of the Models 

Another important aspect of recognition memory decision is the response time (RT), 

which has been used to test between 2HT and UVSD models in a few studies. The diffusion 

model assumes a continuous evidence accumulating process over time, rather than several 

discrete inner cognitive states for recognition (Ratcliff, 1978). This is consistent with the UVSD 

model. Small steps of evidences are accumulated towards two boundaries that correspond to “old” 

or “new” responses. The distance between two boundaries reflects the speed-accuracy trade-off. 

The starting point of the accumulator is affected by manipulations of bias. There have not been 

too many studies that focused on the RT account of the 2HT model, but it would be reasonable to 

conjecture from the model that the more links on a MPT tree a test item has to go through, the 

larger RT it will take (Hu, 2001). Taking the two models together, it can be seen that 

manipulating biases will affect both the shape of ROC functions and RT distributions. 

Implementing this idea, Dube and Rotello (2012) conducted two experiments with bias 

manipulations and found out that UVSD was supported over 2HT with both ROC fitting and 

response time modeling. 

Another prediction that the 2HT model makes for the RT data is that study-strength 

should only affect the detect probability of a studied item, but not its mapping to different 

response states nor response times once the information state is determined. This is called the 

conditional independence assumption (Province, & Rouder, 2012). In contrast, the SDT model 

would predict that strength values farther from the criterion would result in faster RTs. Province 
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and Rouder (2012) used a two-alternative forced-choice (2AFC) paradigm tested this prediction. 

In a typical forced-choice study, participants first view a list of words and then complete the 

memory test. In contrast to single-word recognition, two words were presented side by side in 

each trial of forced-choice. One word was studied and the other was not. Participants’ task was to 

indicate which one of the two was the target. Providence and Rouder found that the conditional 

mean RT, which was the RT for targets that entered the detect state, did not vary with the 

number of study opportunities. This supported the 2HT model. Another study tested this theory 

with both group and individual RTs (Kellen, Singmann, Vogt, & Klauer, 2015). The mean RTs 

replicated Province and Rouder’s result (2012). The individual RTs, which were tested with a 

linear mixed-model (LMM) where the conditional probability that a response was produced by a 

certain state was used as the covariate, showed significant effects on RT of conditional detection-

probability when study-strength was controlled but not the other way around. In other words, the 

results were consistent with the conditional independence in that RT was not predicted by the 

encoding condition after the internal state produced by the item was statistically controlled. 

 

1.4 Forced-choice study 

Several studies have used ROC functions from a forced-choice task to test alternative 

models (Province, & Rouder, 2012; Kellen, Singmann, Vogt, & Klauer, 2015; Jang, Wixted, & 

Huber, 2009; Kellen, & Klauer, 2011; Kroll, Yonelinas , Dobbins, & Frederick, 2002; Parks, & 

Yonelinas, 2009; Smith, & Duncan, 2004). For instance, in Jang et al., (2009), after studying a 

single list of words, participants were tested with yes/no word recognition trials and 2AFC test 

trials. Participants responded to both forms of test with 6-level confidence rating. Apart from the 

UVSD model, two additional models, DPSD (dual-process signal detection) and MSD (mixture 
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signal detection) were compared. The DPSD model contains a threshold-like, high confidence 

recollection process and a continuous familiarity process that equals to an EVSD model. The 

mixture model also assumes a continuous value of memory strength, but its target distribution is 

a mixture of two equal variance Gaussian distributions with different means. The three models 

were simultaneously fit to recognition and 2AFC data for each participant with parameter 

constraints derived from the 2AFC and recognition test response relationship. The UVSD model 

was found to be the best model among the three to describe the relationship between yes/no and 

2AFC recognition performance. The UVSD model also provided the best fit to participants’ 

performance considering model flexibility. The DPSD model outperformed the MSD model.  

Parks, & Yonelinas (2009) and Kellen, & Klauer (2011) used four-alternative forced-

choice task with two responses (4AFC-2R) to distinguish recognition memory models by 

examining the accuracy of the second response when the first response was a lure. In the test, 

participants were presented with four words and alternatively tested on “standard” 4AFC trials 

and second choice trials. On the “standard” 4AFC trials, participants chose one word out of four 

as the target word. On the second choice trials, they made two ordered responses, where the first 

response was the most likely to be the studied word, and the second response was the next most 

likely to be the studied word. There were three categories of response: first choice incorrect and 

second choice correct, first choice incorrect and second choice incorrect, and first choice correct 

and second choice incorrect. The UVSD model provided better fit to the response patterns than 

the other models. Model fitting results favored the UVSD model over EVSD, DPSD, MSD and 

threshold models, with model complexity analyses of the NML method. 

Kellen and Klauer (2014) also conducted a ranking study. Participants completed a four-

alternative ranking task and a three-alternative task in two experiments. In this task, participants 
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rank the test items according to their belief that they were studied. For example, participants may 

be presented with three words on a screen, they are asked to assign 1, 2, and 3 to each word, with 

1 representing the word is mostly to be on the study list, and 3 representing the word is least 

likely to be on the study list among the three. In Kellen and Klauer (2014), there were two types 

of word stimuli presented randomly during the test. Weak stimuli were words studied once, and 

strong stimuli were words studied three times. The SDT model predicted that the conditional 

probability of a studied item being assigned to the second rank given it was not assigned to the 

first rank increased with memory strength. The 2HT model predicted that this probability stayed 

constant as item strength changes. Kellen and Klauer stated that the ranking judgment provided 

an alternative comparison method between memory models with several advantages. It did not 

require model fitting and parameter estimation. There was also no need for distributional 

assumptions, exhaustive experimental manipulations and complex model selection methods. The 

experimental results were found to be more consistent with SDT model’s prediction.  

As previous research did not come to consistent conclusions, there needs to be some 

novel methods to distinguished the two models. Our study also used the forced-choice test to 

discriminate recognition memory models, but with critical differences. In previous research, a 

stimulus was either tested in the single-item recognition test, or the forced-choice test. There is 

not much connection between the single-item recognition and the forced-choice test. The two are 

essentially separate tests. In our study, the single-item and forced-choice tests made use of the 

same set of stimuli. Each forced-choice trial was consisted of a target and a distractor that had 

the same response during the single-item recognition. So one word was correctly recognized and 

the other one was incorrectly recognized.  As detailed below, this procedure allowed us to test 
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specific predictions about forced-choice accuracy conditional on the outcome of the earlier 

single-item trials. 

As the 2HT and UVSD models assume different mechanisms of recognition error, 

determining which model is more consistent with the real performance data can help us better 

understand why recognition errors happen. The 2HT model assumes that recognition errors 

happen because of unlucky guesses when people fail to remember anything from past experience. 

The UVSD model assumes that recognition errors happen because of misleading information 

retrieved from memory. These two reasons suggested by the 2HT and UVSD respectively are 

totally different from each other. Moreover, recognition memory models are useful measurement 

devices that can help us answer research questions, such as whether different populations (young 

and older adults) differ in their memory abilities. Different models can make different 

conclusions about research questions, so it is important to determine which models make 

assumptions that are most consistent with observed data. Knowing which model is true not only 

allow people understand more about the psychological reason of their behavior, but could also 

help them make less recognition errors in real life. 
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CHAPTER 2 
 

EXPERIMENT 

 
2.1 Introduction 

We conducted two experiments that tested the UVSD and 2HT models without using 

ROC functions. After learning a list of words, participants first completed the single-item 

recognition task; that is, they saw a single word appear on the computer screen and decided 

whether it was “old” (seen on the study list) or “new” (not seen before). In the first experiment, 

participants responded to this word without bias and in the second experiment, participants were 

encouraged to respond with conservative or liberal biases. Biases were manipulated with payoffs. 

In the conservative condition, participants gained 1 point or lost 3 points for correct and incorrect 

“old” responses, respectively, and gained 3 points or lost 1 point for correct and incorrect “new” 

responses, respectively. In the liberal condition, participants gained 3 points or lost 1 point for 

correct and incorrect “old” responses, respectively, and gained 1 point or lost 3 points for correct 

and incorrect “new” responses, respectively. The purpose of the bias manipulation was to test 

contrasting qualitative predictions of the two models, as explained below. Participants’ responses 

at different levels of bias reflected their willingness to call a test word “old” (or “new”).  

After the single-item test, participants were brought to a forced-choice phase where they 

were shown a target and a lure, one of which was previously classified incorrectly. Some trials 

were “old”-“old” (O-O) trials, comprising a target that was correctly called “old” and a lure that 

was incorrectly called “old.” Some trials were “new”-“new” (N-N) trials, comprising a target 

that was incorrectly called “new” and a lure that was correctly called “new.” So the condition 

labels (O-O and N-N) refer to the previous response that the participant made for both items, not 
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the actual items in the trial (which was always one target and one lure). Participants were asked 

to choose which word was studied. The UVSD and 2HT models make different predictions for 

the forced-choice data, as described in the next section. 

 

2.2 Model predictions 

Take the situation that both words are called “old” in the single-item test as an example 

(i.e., an O-O forced-choice trial). According to the 2HT model, the probability that a target is 

called old in single-item recognition is ; that is, the probability that it will 

be detected as “old” plus the probability that the detection will fail but the participant will guess 

“old.” Therefore, the proportion of targets called “old” that were detected as old is 

. On the other hand, if a lure is called old, it has to be a guessing error, 

indicating no evidence is retrieved about this item. When the two words called “old” are 

presented together in a forced-choice trial, the probability that the target will be picked as the 

“old” one is . In other words, on p trials participants will select the target because 

they detected that it is old, and on the remaining trials they have to randomly choose an item, 

leaving them with a .5 chance of selecting the target.1 Substituting p into the previous equation 

reveals that the forced-choice percent correct is a linear function of the guessing parameter g: 

. With do < 1, the percent correct of forced choices decisions goes down as 

guessing parameter g increases in the O-O task. Similarly, in a N-N task (both target and lure 

																																																								
1 We assume that the information available from memory for an item is the same when it is 
tested in the single-item trials and when it is tested in the forced-choice trials. In the experiments, 
there will be a short lag between two test trials with the same item, so it is unlikely that the 
memory state will change drastically. 

p(old) = do + (1− do )g

p = do
do + (1− do )g

p+ (1− p)*0.5

0.5+ 0.5do
do + (1− do )g
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have been called “new” in the single-item test), the probability that a lure is selected as “new” is 

also a linear function of g: . With dn < 1, the percent correct goes up as g 

increases. This trend is illustrated in Figure 2. The forced-choice test percent correct plotted 

against the probability of guessing “new” (1-g); thus, values farther to the right reflect more 

conservative single-trial responding. As responding becomes more conservative, the percent 

correct of O-O trials increases and N-N trials decreases.  

The predictions stated above are also psychologically plausible: if people are more 

willing to guess new, then large portion of “old” responses to targets would have come from the 

detect-old state. When shown together with a lure that has been called “old” in an O-O forced-

choice trial, participants will most likely select the target word as “old” because it is usually a 

word that they detected was on the list. However, if people are less willing to guess new, there 

will be more guesses among “old” responses, including the “old” responses of targets. Because 

all stimuli in the guessing state have no memory evidence retrieved, when such a target is shown 

together with a lure that has been called “old”, participants would have to make a random guess 

again. In short, the forced-choice percent correct increases when participants are more willing to 

guess new (conservative), and decreases when participants are less willing to guess new (liberal). 

For N-N task, lures called “new” will be more likely to be based on detection when the 

participant is less likely to guess “new”. Thus, participants will be more likely to recognize the 

lure and respond correctly in N-N tasks. Contrary to the O-O task, the forced-choice percent 

correct of N-N task is higher when participants are less willing to guess “new” (liberal) than 

when they are more willing to guess “new” (conservative).  

In the UVSD model, a lure is called “old” because its evidence strength falls to the right 

of the decision criterion. In order for the target to be correctly picked out in an O-O forced-

0.5+ 0.5dn
1+ (dn −1)g
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choice trial, the target’s evidence strength has to be even further to the right of the criterion than 

its paired lure. So in an old-old task, the probability that a target is selected as old is 

. In this equation, d() indicates a probability density functions and 

p() indicates a cumulative probability density function of a Gaussian distribution. For example, 

 is the likelihood of strength value (x) on the target distribution given its mean (µt) 

and standard deviation (σt). The first fraction is the likelihood that a recognized target has 

strength value x, and it is found by dividing all likelihoods above the recognition criterion by the 

probability that a target is called “old” (meaning that it is above the criterion). The second 

fraction is the probability that a falsely recognized lure has a strength value below x, and it is 

found by dividing the proportion of all lures between the criterion and x by the proportion of all 

lures above the criterion. In other words,  represents all possible lures that have been 

falsely recognized as old but have smaller memory strength than the target. 1 – p(λ) represents all 

lures that have been falsely recognized. Multiplying the two fractions gives the joint probability 

that a recognized target has strength value x and has a higher strength value than a randomly 

selected lure that was falsely recognized. Integrating over x gives the total probability that any 

recognized target would have a higher strength value than a lure called “old,” corresponding to 

the predicted forced-choice percent correct. Likewise, in a new-new task, the probability that the 

lure is recognized is .  

It is hard to get a simple linear relationship between the forced-choice percent correct and 

the decision criterion λ. However, it can be inferred that when the decision criterion λ increases, 

lures called “old” in the old-old task will have higher strength. Under many parameterizations, 

this makes it more likely the lure’s strength will exceed that of the target’s, so the lure is more 

d(x,µt,σ t )
1− p(λ,µt,σ t )

p(x)− p(λ)
1− p(λ)λ

∞

∫

d(x,µt,σ t )

p(x)− p(λ)

d(x,µt,σ t )
p(λ,µt,σ t )

p(x)
p(λ)−∞

λ

∫
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likely to be incorrectly selected as “old”. In other words, percent correct decreases for old-old 

trials as single-item responding gets more conservative for most parameter values. In the new-

new task, when decision criterion increases, targets called “new” can come from regions with 

higher memory strength. When randomly paired with a correctly rejected lure, it is more likely 

that this high memory strength will exceed the strength of the lure. In other words, the percent 

correct of the new-new forced-choice task will increase as criterion goes up. This prediction 

holds for all parameter sets, so it is more general than the old-old prediction. An illustration of 

the change is plotted in Figure 3, where the target distribution has a mean of 1 and standard 

deviation of 1.2.  

 We simulated 20,000 sets of randomly selected model parameters to make predictions of 

forced-choice data for the 2HT and UVSD models. The parameters were sampled from uniform 

distributions in the following way: Mean of the target distribution (µt) of UVSD model varied 

from .4 to 1.8; standard deviation varied from 1.1 to 1.4. To calculate the bias criteria, first a 

random value was generated from the uniform distribution between  and  to serve 

as the halfway point between the criteria. Then a distance was randomly sampled between .2 

and .8. The conservative criterion was calculated by adding half the distance to the halfway point, 

and the liberal criterion was calculated by subtracting half the distance from the halfway point. 

Detect old and new probabilities of the 2HT model were both allowed to vary in uniform 

distributions between .25 and .6. To calculate the two guessing parameters, first a value was 

randomly sampled between .3 and .7 to serve as the halfway point. A distance was drawn 

between .2 and .6. The conservative and liberal guessing parameters were calculated by 

subtracting and adding half the distance to the halfway point, respectively. 

µ
2
−.25 µ

2
+.25
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Figure 4 shows percent correct difference between liberal and conservative bias trials. 

The first panel shows that in the 2HT model, conservative trials’ forced-choice percent correct 

was always greater than that of the liberal trials’ for O-O trials. But for N-N trials, the forced-

choice percent correct was always greater in liberal trials than in conservative trials. The 

opposite was true in the UVSD model. In O-O trials the liberal trials’ percent correct was mostly 

greater than that of the conservative trials, and in N-N trials, it was conservative trials that 

always had the greater percent correct. Figure 4 suggests that not only the way that the percent 

correct changes as the bias level changes was opposite for O-O and N-N forced-choice trials, it 

was also opposite for the 2HT and UVSD models.  

The above showed that different models predicted different patterns of the forced-choice 

data. Thus in this study we used a forced-choice task to determine whether the 2HT or UVSD is 

a better recognition memory model. Figure 4 showed that data from our forced-choice test could 

discriminate the two models without model fitting or using sophisticated statistics for fitting 

evaluations. The critical data we analyzed in the forced-choice test was straightforward and easy 

to compare. Thus, our paradigm is a simple but very powerful way to differentiate the two 

models of 2HT and UVSD. 

 

2.3 Method 

2.3.1 Participants 

In the simulations described below, the proportion of simulated participants that were 

better fitted by the true model than the alternative model was .83 for 2HT and .73 for UVSD in 

Experiment 1, and .90 for 2HT and .83 for UVSD in Experiment 2. Taking the lowest value 

of .73, in order to have over 90% power for binomial tests to determine if one model fits better to 
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more participants than would be expected by chance (with alpha = .05), at least 40 participants’ 

data are required. 

A total of 88 UMass Amherst undergraduate students participated in Experiment 1. We 

recruited more participants than needed because the experiment data would also be used for a 

study involving RT analysis. We kept all participants’ data to achieve high power for this study. 

The participants were recruited through the SONA system and received experimental credit in 

exchange for their participation.  

Experiment 2 had 45 participants. Among them 39 were recruited from the SONA system 

and 6 from an online advertisement posted on the psychology department website. Participants 

attended two sessions of Experiment 2. SONA participants received 1 credit per session they 

attended. The other 6 participants received $12 for each session they attended. 

 

2.3.2 Materials 

Words for the study and test lists were randomly sampled from 1098 nouns from the 

SUBTLEXus dataset (Brysbaert & New, 2009). The word frequency ranges from 10.02 to 99.49 

per million words based on subtitles from American films and television series. Each participant 

completed three study-test cycles per session, with new words for each cycle. They were 

encouraged to respond as accurately as they could. 

There were two types of trials in the test phase: single-item trials and forced-choice trials. 

In a single-item trial, a word showed up on the computer screen for participants to decide if it 

was on the study list or not. Participants hit “z” key to respond “new” and “/” key to respond 

“old,” and they were asked to keep their index fingers on the “z” and “/” key throughout the test.  
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After the single-item test, words that were incorrectly classified were paired with correct 

ones to make forced-choice trials. For example, a lure that was falsely recognized as “old” would 

be randomly paired with a correctly recognized target, i.e., a target that was responded with “old.” 

Participants were asked to indicate which one of the two was studied. Table 1 shows an example 

of a cycle of single-item and forced-choice trials. 

There are 3 incorrect trials: “restaurant,” “spectacular,” and “disaster” in Table 1. In this 

case, “restaurant” was randomly paired with a correctly responded target, (e.g., “way”) to make 

an O-O forced-choice trial. The other two incorrectly classified targets (“spectacular” and 

“disaster”) were each paired with a word randomly selected from “lady,” “flight,” or “obedient” 

to make N-N force-choice trials. Participants chose one word from the two that they thought was 

indeed studied. 

If there were not enough correctly responded targets to make O-O forced-choice pairs, 

the number of such trials was determined by the number of correct target trials. The same was 

true for the N-N test. So the number of forced-choice trials was determined by both the number 

of incorrect trials and their corresponding correct trials, whichever was smaller. 

 

2.3.3 Procedure 

2.3.3.1 Experiment 1 

In Experiment 1, participants went through three study-test cycles. The first cycle was 

practice where participants studied 28 words. The real cycles each had 68 studied words, among 

which 8 words were fillers. Studied words were grouped into blocks of four. So a total of 68 

studied words appeared in 17 blocks. Fillers appeared in the first two blocks. We included fillers 

in study list to control for primacy effects.  
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In study phase, each block of four words was followed by a recall task that prompted 

participants to type in a word from the block with the keyboard. The word was identified by its 

order in the block, and every word had equal probability of being probed. The purpose of the 

recall task was to make sure that participants focused on learning the words throughout the study 

phase. None of the words probed for recall were used as targets on the subsequent recognition 

test to avoid increasing variability in memory across items given that recall should improve 

subsequent memory. In this case, discarding one word from every block, every block contained 3 

“real” target words. Subtracting words from the two filler blocks, a study list ended up 

contributing 45 target words towards the following recognition test. 

  Immediately following the last study block, a screen appeared prompting participants to 

begin the single-item test. A word showed up on the computer screen with two choices: “not 

studied” and “studied” respectively. Participants hit the “z” key to respond “new” and the “/” key 

to respond “old.” 

Because words recalled during the study phase were not tested in recognition, there were 

90 trials in single-item recognition with 45 targets and 45 lures (94 if one includes the four filler 

trials that began the test – 2 targets from the filler study blocks and 2 filler lures). After every 10 

real trials of single-item test, participants were prompted to start the forced-choice test. If it was 

the first time for the participant to run through the forced-choice test, she or he would read a 

short instruction about the forced-choice test. Participants were informed that all words in the 

forced-choice test came from the past 10 items. To make sure that participants read both words 

before they responded to the forced-choice word pair, the two words first appeared one at a time 

for 1000 ms each on the computer screen, during which time participants did not have chance to 

respond until the two words appeared simultaneously side by side with response alternatives on 
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the screen. In the forced-choice test trials, words that were incorrectly classified during the 

single-item test were randomly paired with ones that were correctly classified with the same 

response category. Participants hit the “z” key if the studied word was on the left, or hit the “/” 

key if it was on the right. After the forced-choice trials were complete, participants were 

prompted to start the next test block by subsequently hitting the “z” and “/” key, respectively.  

 

2.3.3.2 Experiment 2 

Participants completed 2 sessions on different days for Experiment 2. Each session 

consisted 3 study-test cycles. The first cycle of the first session was a practice cycle. When 

studying, the first and last 4 words on list were always fillers. So there were 8 fillers for every 

study list. The study list of the practice cycle contained 40 words, and the real cycles contained 

72 words (including 8 fillers). Unlike Experiment 1, there was no recall test in study phase.  

During the single-item test trials, participants responded with bias towards or against 

“studied” response in two types of blocks. Bias was manipulated by payoffs. In liberal blocks, 

participants gained 3 points for correct “old” responses and 1 point for correct “new” responses; 

they lost 1 point for incorrect “old” responses but lost 3 points for incorrect “new” responses. In 

conservative blocks, participants gained 1 point for correct “old” responses and 3 points for 

correct “new” responses; they lost 3 points for incorrect “old” responses and 1 point for incorrect 

“new” responses. Responses that earned participants 3 points if they were correct and lost 1 point 

if they were incorrect were labeled as safe responses in the instructions, and were indicated with 

green font throughout the test phase. Responses that earned participants 1 point if they were 

correct but lost 3 points if they were incorrect were labeled as risky responses, and were 

indicated with red font. For example, on conservative blocks “Not Studied” appeared in green 
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and “Studied” appeared in red to label the alternative responses on each trial. Before every block, 

participants were notified whether the “Studied” or “Not Studied” response was the safe 

response in the following block.   

To make sure that participants attend to the bias information during the single-item test, 

they were asked to make two responses. First, “studied” and “not studied” choices appeared on 

the screen before the test word was presented. Participants made a response solely based on the 

bias information. It was anticipated that the green colored response would be chosen more often 

since it was the safe one. After the first response, the test word was presented with the “old/new” 

choices. Participants made the second response based on their memory about the word and bias 

information. When participants made more than one risky response guess and lost points, they 

saw feedback on how many points they had lost due to irrational guessing, and they were 

informed that the better strategy was to always guess the safe (green) response than the risky (red) 

response. This was again to make sure that participants respond according to the bias information. 

In single-item recognition, participants went through 48 “real” test trials and 4 filler trials 

in practice cycles. They went through 4 fillers and 96 “real” trials in real cycles. The first 4 test 

words were always fillers. After every 12 real trials, the forced-choice test immediately followed 

if there were incorrectly recognized words. Each study-test cycle contained 8 single-item and 

forced-choice test blocks. Experiment 2 terminated when participants had earned at least 1,286 

points in total or they had been in the experiment for 45 minutes. 1,286 points was a high 

standard that equaled to a situation when participants’ every single-item test response and half of 

the guessing responses were correct. So participants were not able to leave the experiment until 

they had completed all three study-test cycles. Any additional trials after the third cycle were not 



	

	23	

analyzed. Participants completed 2 sessions of Experiment 2 on different days. The first cycle on 

the first day was a practice cycle. 

 

2.4 Simulations 

We conducted simulations with exact the same conditions and trial numbers as the actual 

experiments to explore the predictions of the models. Data were generated from the 2HT and 

UVSD models, and then each model was fitted to the simulated data. G2 was used as the 

indicator of goodness-of-fit. If the 2HT model fits the performance better, its G2 would be 

smaller than that of the UVSD model. The opposite would be true if UVSD fits the result better.  

 

2.4.1 Parameters 

In the UVSD model, the lure distribution was conventionally set as a normal distribution 

with a mean of 0 and a standard deviation of 1. To sample simulated data sets, the mean of the 

target distribution (µt) was allowed to vary between .4 and 1.8 and the standard deviation (sdt) 

was allowed to vary between 1.1 and 1.4. For Experiment 1 where we did not manipulate the 

response bias, the single criterion (λ) was randomly sampled from a uniform distribution 

between  and . For Experiment 2 that has two bias conditions, the distance 

between the criteria (the size of the criterion shift) was drawn from a uniform distribution 

between .2 and .8 and the halfway point between the criteria was drawn from the same 

distribution used for λ in Experiment 1. The conservative criterion was calculated by adding half 

the distance to the halfway point, and the liberal criterion was calculated by subtracting half the 

distance from the halfway point.  

µ
2
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To generate simulated data sets from the 2HT model, do and dn were sampled from the 

uniform distributions between .25 and .6. For Experiment 1, the guessing parameter was drawn 

from uniform distribution between .3 and .7. Again, for Experiment 2 with two bias conditions, a 

difference in the guessing parameter between conservative and liberal blocks was drawn from 

the uniform distribution of .2 and .6 and the halfway point between them was sampled from the 

same distribution used for the guessing parameter in Experiment 1. The conservative and liberal 

guessing parameters of biases were calculated by subtracting and adding half the distance to the 

halfway point.  

 

2.4.2 Simulation results of Experiment 1 

Data were simulated for 2,000 participants. Each simulated participant went through 180 

trials of single-item test (90 targets and 90 lures), the same number of trials as the empirical 

subjects in Experiment 1.  

Both the 2HT and UVSD models were used to fit the data. When simulation data were 

generated by the 2HT model, the summed G2 was 8,212 for the UVSD model, and 2,199 for the 

2HT model across all participants. In a head-to-head comparison of the UVSD and 2HT models, 

1,663 (83%) out of 2,000 participants were better fit by the 2HT model. When the simulation 

data were generated by the UVSD model, the summed G2 was 2,113 for the UVSD model, and 

5,428 for the 2HT model. Among the 2,000 participants, 1,451 (73%) were better fit by the 

UVSD model.  

In this simulation, the G2 of all simulated participants should follow a χ2 distribution with 

1 degree of freedom (4 response frequencies minus 3 free parameters) if the model fitted to the 

data was the true model (plotted with red lines in the first two panels of Figure 5 and 6). Figure 5 
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shows the model fitting results when the data were generated with a UVSD model. The first two 

panels show histograms of G2 when the data were fitted with the UVSD and 2HT models, 

respectively. The third panel plots the G2 differences between the two fits. It can be seen that the 

spread of G2 was smaller for the UVSD fits than for the 2HT’s, and the median of the G2 

differences (indicated with a red line in the third panel) between the two was less than 0, 

meaning that the UVSD model has better fits than 2HT model.  

Figure 6 shows the results when the data were generated with a 2HT model. The first two 

panels also show the G2 histograms when the data were fitted with the two models respectively. 

The data were better accounted by the 2HT model, as reflected by the smaller G2 values in the 

2HT fits 2HT panel. The median of G2 differences between the UVSD and 2HT fittings was 

greater than 0, showing that 2HT fitted the data better than UVSD.  

Simulation results in Figure 5 and 6 show that the performances of the two models, 2HT 

and UVSD, were separable in Experiment 1. When the participants’ data are fitted with the two 

models, the fitting results will be more like Figure 5 if the UVSD model better captures the data 

pattern, which will suggest that UVSD model describes the underlying recognition memory 

mechanism better than the 2HT. If the 2HT model better captures the data, the fitting results will 

be more like what’s presented in Figure 6. This demonstrates that evaluating the relationship 

between single-item and forced-choice performance provides a new way to test the models that is 

independent of bias ROC tests. With our design, the models are discriminated even without a 

bias manipulation. 

2.4.3 Simulation results of Experiment 2 

To keep consistent with the real Experiment 2, 192 trials of single-item test (96 targets 

and 96 lures) were simulated with 2,000 participants.  
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When the simulation data were generated by the 2HT model, the summed G2 was 19,787 

when fitted by the UVSD model, and 8,310 when fitted by the 2HT model. In a head-to-head 

comparison of the UVSD and 2HT models, 1,804 (90%) out of 2,000 participants were better fit 

by the 2HT model. When simulation data were generated by the UVSD model, the summed G2 

was 8,509 when fitted by the UVSD model, and 17,129 when fitted by the 2HT model. Among 

the 2,000 participants, 1,663 (83%) were better fit by the UVSD model. 

In Experiment 2, the G2 should follow a χ2 distribution with 4 degrees of freedom (8 

response frequencies minus 4 free parameters) when the model fitted to data was the true model. 

Histograms of the G2 values give more intuitive comparison. Figure 7 shows the model fitting 

results when the data were generated with a UVSD model. The first two panels are G2 

histograms when the data were fitted with the UVSD and 2HT model respectively. Like in 

Figure 5, the G2 was smaller when the data were fitted by UVSD model than when it was fitted 

by the 2HT model. Again, the median of G2 differences was less than 0, indicating the UVSD 

models were able to fit the data better than the 2HT models. Figure 8 is similar to Figure 6, 

where the data were generated by the 2HT model and was better fitted by the 2HT models.  

Simulations of Experiment 2 showed that with the 2-step bias manipulation, the 

performances of the UVSD and 2HT models were distinguishable. If the UVSD model better 

accounts the experimental data, G2 values for the UVSD model fits will be smaller than that of 

the 2HT model; if the 2HT model better accounts the data, G2 values for the 2HT model fits will 

be smaller than that of the UVSD model.  
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2.5 Results 

2.5.1 Experiment 1 

 Of all the 88 UMass students who participated in Experiment 1, 19 participants data 

were dropped because their percent correct of single-item recognition was below .6. Participants’ 

performances are reported in Table 2. The mean percent correct of the single-item recognition 

is .69. The mean percent correct of the forced-choice trials was .64. The fact that the percent 

correct of forced-choice test was smaller than single-item recognition might seem surprising at 

the first sight, given that forced-choice testing provides the benefit of getting information from 

two items instead of one. However, our forced-choice trials were constructed in such way that 

both stimuli had the same previous responses. This was very likely to have made the task more 

difficult. Parameters of the best fit model across all participants were reported in Table 3.  

2HT and UVSD models were used to fit the data. The summed G2 across all participants 

was 98 for the UVSD model and 244 for the 2HT model. The summed G2 should follow a χ2 

distribution with 69 degrees of freedom, assuming the fitted model was true. Both models’ 

summed G2 value went past .95 quantile of this comparison χ2distribution (89); thus, the fits are 

unexpectedly bad if one assumes that the fitted model is the true model producing the empirical 

data. This suggests that the two models both failed to fit some participants’ data. Notably, the 

2HT model missed much more participants than the UVSD. Among the 69 participants, the 

UVSD model produced a better fit than the 2HT model for 55 participants (80%, p < .001 by 

binomial test). For individual G2s, 10 (14%) participants’ values were significant with χ2 test (p = 

0.05) with the 2HT model, meaning 14% of the participants were not fit well by the assumed 

model. For UVSD model, 2 (3%) participants’ values were significant (p = 0.05). Since the 
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proportion of misfitting data, 3%, was even less than the α level (5%) we assumed, the UVSD 

model seems to be describing the data well at the individual-participant level. 

G2 histograms are shown in Figure 9. The fitting results of the UVSD and 2HT model 

were plotted in the first and second panel respectively. The χ2 distribution that G2 should follow 

for a true model is indicated with red lines. The third panel plots the G2 differences between the 

two fits. It can be seen that the spread of G2 was smaller for UVSD fits than for 2HT’s, and the 

median of the G2 differences (indicated with a red line in the third panel) between the two is less 

than 0. It suggests that the UVSD model fits the data better than 2HT does, in line with the result 

of the binomial test. 

It is possible that participants’ memory might have changed during the period between 

the single-item test and the forced-choice test. In that case, the assumption that participants make 

forced-choice judgment based on the same evidence retrieved during single-item test would not 

be valid. This could produce a spurious fitting advantage for the UVSD model over the 2HT 

model, for reasons I will now explain. 

According to the 2HT model, the forced-choice task can be easier than the single-item 

recognition. In comparing the two stimuli that have the same responses, participants view one 

incorrectly recognized stimulus, meaning no memory is associated with it, and another correctly 

recognized stimulus, making the word more likely to be from the detection state than a random 

word. The increased probability of one of the forced-choice test words coming from detection 

state makes it easier for participants to discriminate the two words. Therefore, percent correct of 

the forced-choice test should be higher than the single-item recognition. 

The UVSD model may predict the opposite. Taking the O-O forced-choice test pair as an 

example. According to UVSD’s assumptions, when a target and a lure are responded as “old”, 



	

	29	

both of them have memory strength falling on the right of the decision criterion. The lure has 

stronger memory strength than average lures, and thus more similar strength to targets than 

average lures. This can be seen from an illustration of how distribution means change when only 

parts on the right of the criterion are considered. In Figure 10, the distance between the two 

means is smaller in the second panel than the first one. As a result, it is more difficult to separate 

words from the two truncated distributions. Percent correct of the forced-choice test should be 

lower than single-item recognition. 

The UVSD’s prediction of lower percent correct for forced-choice test is in the same 

direction with the effects memory decay. Therefore, the above model fitting result favoring the 

UVSD model may be created by changes in memory across the two test types as opposed to 

demonstrating that this model is a better description of performance. However, this can be 

resolved in Experiment 2 because the two models predict opposite bias effects in O-O and N-N 

trials, and the bias predictions are not changed even if there is memory loss between the two trial 

types. 

We also ran the simulation again with memory decay incorporated. A decreasing 

parameter d was randomly drawn from a uniform distribution between 0 and .2. After single-item 

recognition and before forced-choice test, the target distribution mean of the UVSD model 

decreased by d, and the criterion also decreased by half the decreasing parameter. For the 2HT 

model, the probability of detection result of both “old” and “new” responses decreased by d. 

Critically, we applied both models under the assumption that there was no memory change 

across test types, as we did for the empirical data. Thus, these simulations explore how results 

could be distorted if this assumption is incorrect. 
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Figure 11 and 12 show the simulation result. When the data were generated with the 2HT 

model, the fitting performance of the UVSD model did not change too much compared to when 

memory drop was not considered in the model. There were more large G2 values for the 2HT fits 

compared to before. This made the median of the G2 difference histogram now flipped over and 

was slightly smaller than 0, indicating a better fit by the UVSD model. When data were 

generated with the UVSD model, the fitting performance of the UVSD model was not affected as 

much as the 2HT model. The data were still better fitted by the UVSD model.  

If a memory drop does occur during the period between single-item recognition and 

forced-choice test, Experiment 1 will not be able to discriminate the two models, since the 

UVSD model will win in both cases. Experiment 2 will address whether the advantage for the 

UVSD model in Experiment 1 is based only on a memory change between the two tests or 

indicates that the UVSD model better describes recognition memory. 

  

2.5.2 Experiment 2 

 We obtained complete data from 45 participants of Experiment 2. We excluded 5 

people’s data from analysis. One person’s single-item recognition percent correct was smaller 

than .6 (.53), one person had incomplete cycles, and another one did not make the initial guesses 

according to the bias information. The other two participants were dropped because they 

misunderstood the experiment procedure. The remaining 40 participants made guesses consistent 

with the payoff cues on .98 of trials: the proportion of “studied” guesses was .98 for the liberal 

trials and .02 for the conservative trials. Thus, participants closely followed the bias information 

on guess trials. The median RTs were 338 ms, 1,012 ms and 1,378 ms for the guess, single-item, 

and forced-choice trials, respectively. 



	

	31	

The hit rate and false alarm rate of recognition test are shown in Table 3. The shift of bias 

observed in false alarm rates was .06 across two levels. Of all the 40 participants, 27 (68%) 

people had a bigger false alarm rate in the “studied safe” condition than the “not studied safe” 

conditions.  

The 2HT and UVSD models make different predictions about the change of the forced-

choice percent correct across bias levels. It can be seen in Figure 2, 3 and 4.  From visual 

inspection, Figure 13 and 14 plotted from empirical data are very similar to Figure 3, which 

shows the UVSD model’s prediction. The percent correct of O-O trials starts larger than that of 

the N-N trials, and from liberal to conservative, O-O trials’ percent correct goes down. Also, the 

percent correct of the N-N trials goes up as the test becomes more conservative. This is exactly 

the opposite of the 2HT model’s prediction.  

 The response percent correct of forced-choice trials was tested with a repeated measure 2 

by 2 ANOVA in Experiment 2. There was a significant main effect of test type (O-O and N-N), 

F(1, 39) = 64.96, p < .001. The mean percent correct for the O-O and N-N test were .84 and .66, 

respectively. Interaction of bias and test type was also found to be significant, F(1, 39) = 5.16, p 

= .03. The bias effect was not significant, F(1, 39) = 1.87, p = .18. Mean percent correct for 

conservative and liberal trials were .77 and .74, respectively. The results are shown in Figure 13.  

Considering the fact that not all participants in Experiment 2 showed bias in their single-

item recognition test, the ANOVA was performed again on those who responded with biases 

(participants who had higher false alarm rates when “studied” was the safe response than when 

“not studied” was the sage response in single-item trials). There were 27 participants included in 

this analysis. The results are plotted in Figure 14. There was again a significant main effect of 

test type, F(1, 26) = 40.23, p < .001. Mean percent correct for the O-O and N-N test were .82 
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and .66, respectively. The bias effect did not reach significance, F(1, 26) = 1.88, p = .18, with 

means being .76 and .72 for conservative and liberal trials. The interaction between bias and test 

types was not significant this time, F(1, 26) = 4.00, p = .06. Despite the disappearance of the 

significance of interaction, Figure 13 and 14 resemble each other very well.  

 To further compare each model fit, we simulated performance data from the best fitting 

model parameters of each participant, and then plotted percent correct of the forced-choice trials 

the same as in Figure 13 and 14. Figure 15 is when performance data were generated with 

parameters of the 2HT model. Figure 16 is when the data were from the UVSD model. The 

simulation results followed the original models’ predictions very well, and thus were very 

different from each other. For the 2HT model, the percent correct of O-O and N-N trials intersect 

around the no bias point. As bias became more conservative, the O-O trial’s percent correct 

increased and N-N trial’s percent correct decreased. When data were simulated with the UVSD 

model, the percent correct of O-O trials went down and N-N trials went up from liberal to 

conservative bias conditions. The percent correct difference between O-O and N-N trials became 

smaller from liberal to conservative, but did not reach zero. Still, data generated with the UVSD 

model followed the pattern of the actual data. In Figure 16, the simulated percent correct change 

from liberal to conservative of N-N trials is smaller than that of the actual data shown in Figure 

13. Participants’ percent correct in the liberal condition is lower than what was produced by the 

model. They had more difficulties in comparing memory evidence than the models.  

Model fitting result is shown in Figure 17. Both UVSD and 2HT models were fitted to 

the combined single-trial and forced-choice data. The best fit parameters of both models are 

reported in Table 5. The summed G2 followed a χ2 distribution with 160 degrees of freedom, 

assuming the fitted model was the true description of the actual data. The summed G2 value of 
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the UVSD model was 174, and was within the 0.95 quantile of the expected χ2 distribution if 

UVSD is the true model. The summed G2 value of the 2HT model was 688, and it exceeded the 

0.95 quantile of the χ2 distribution.  

Among the 40 participants, 37 had smaller G2 values for the UVSD fits than the 2HT 

(93%, p < .001 with binomial test). For individual G2s, there were 28 (70%) out of 40 values that 

had significant χ2 values (p =0.05) with the 2HT model; no participants’ value was significant 

with the UVSD model. 

In Figure 17, the red curve in the first two panels outlined a χ2 distribution with 4 degrees 

of freedom. A visual inspection reveals that the G2 values of the UVSD model follow the χ2 

distribution better than the 2HT model does. Although there were two outliers whose G2 values 

were significantly large, the median of the G2 difference between the UVSD model and the 2HT 

model fits is still smaller than 0, suggesting a better fit of the UVSD model than the 2HT for the 

performance data.  
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CHAPTER 3 
 

DISCUSSION 

This study investigated the mechanism of recognition memory, with a focus on the debate 

between the continuous and discrete processes of recognition memory. We compared the most 

studied models from each field, i.e., the UVSD model from the continuous account and the 2HT 

model from the discrete account. Previous studies have tested these two models extensively, with 

techniques such as ROC functions and RT modeling, but consensus has not been reached. Our 

study further researched recognition memory by providing a new type of data: single-item 

recognition followed by the forced-choice testing on the same items.  

Although a number previous studies have used the forced-choice testing method, or have 

conducted single-word recognition and forced-choice testing simultaneously to discriminate the 

two recognition memory models, our experiment combined the two tests together and made 

better use of the relationship between the types of responses. For instance, in previous studies, 

the single-item and forced-choice trials may occur intermixed with each other, but the two tasks’ 

stimuli were separately sampled from the word list. Thus, the single-item and forced-choice tasks 

were essentially independent tests, and researchers were interested in the relationship between 

the two tests across participants. In contrast, for our experiments the item recognition and forced-

choice tests were constructed from the same items. The forced-choice trials were created by 

pairing an incorrectly recognized target (or lure) with a correctly recognized lure (or target) from 

the single-item test. Each error in the single-item recognition task went through two decision 

making processes. The forced-choice responses were able to determine a stimulus’ inner 
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cognitive state during the recognition process more precisely. To our knowledge, this is a novel 

way to make the forced-choice test trials.  

With our way of making the forced-choice stimulus, the 2HT and UVSD models have 

different predictions on the pattern of forced-choice data with their different assumptions about 

error mechanisms. The 2HT model assumes that people’s recognition judgments come from 

three discrete inner cognitive states: detect old, detect new and guessing. An item enters into the 

detect old or detect new state when some information that infallibly proves its previous presence 

or novelty is retrieved. For example, in a word recognition test, a participant may be tested on 

word that he remembers seeing on the word list. This word will be detected old and then given 

the “studied” response. He may also be tested on a verb but he knows every word on the word 

list was noun. This word is then detected new and given the “not studied” response. There will 

also be cases when no accountable information is retrieved about a test word, yet a response has 

to be made. This word then enters into the guessing state through where it is randomly given the 

“studied” or “not studied” response. An important feature of this model is that retrieval of 

infallible information will always lead to the correct response, so errors can only occur from the 

guessing state.  

The UVSD model assumes continuous memory evidence of test stimuli, even for lures. 

Memory evidences are represented with two Gaussian distributions. Conventionally, the 

distribution of lures has a mean of 0 and standard deviation of 1. The distribution of targets has 

larger mean and standard deviation than the lures because of stronger memory evidence. The 

decision maker has a predetermined criterion set along the evidence axis. Any item with an 

evidence value smaller than the criterion will be called “not studied”, and any items with larger 

evidence than the criterion will be called “studied”.  As part of the lure distribution has to extend 
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to the right of the criterion (“studied” area), and part of the target distribution extends to the left 

of the criterion (“not studies” area), when an item falling into such regions appear in recognition 

test, participants will be misled to make the incorrect decision. In other words, under UVSD’s 

assumption, every test word is retrieve with some memory evidence. Errors occur not because of 

guessing failure, as the evidence has been successfully retrieved, but because the evidence is 

misleading. This is the point where the 2HT and UVSD model performances are able to be 

distinguished.  

For the 2HT model, a recognition error is simply an unlucky guess. In the forced-choice 

test, when this word is paired with a correctly recognized item, the word will not be able to insert 

any useful information into the comparison. All the decision maker has to rely on is the other 

word in the forced-choice pair. If the other word is a detection result, the person will be able to 

pick the right word, because words from detection states are remembered with infallible 

information. If the other word of the pair is also a guessing result, then this person has no 

information to rely on. All he has to do is make another random guess. The fact that the pairing 

word is correctly recognized makes it more likely to have been detected than items overall, 

especially when participants are biased in the opposite direction, as there are fewer correct 

responses that are lucky guesses. In this case, the forced-choice test becomes easier than the 

single word recognition under assumptions of the 2HT model. 

 Unlike the 2HT model’s prediction that only the correct response is affected when the 

response bias changes, under the UVSD model’s prediction, both the correct and incorrect 

responses will change. The UVSD model assumes that an incorrect recognition response happens 

because the decision maker has indeed retrieved misleading information. When such word 

appears together with a correctly recognized one, their memory evidence will compete with each 
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other, making the participant more confused than in the single-item test. In this case, the forced-

choice test is made to be more difficult than the single item recognition. 

 The 2HT model performed worse than the UVSD in our experiments because it over 

predicts the percent correct of the forced-choice test, due to its assumption of the error 

mechanism. More fundamentally, the reason why the two models make different predictions as 

well as different fitting results lies in the models’ different assumptions about inner cognitive 

processes of decision making, namely, whether decisions come from comparisons between 

criteria and evidences drawn from a continuous strength value, or come from several discrete 

definite or guessing states. The continuous and discrete state account of memory information is 

the focus of the controversy.  

 In two experiments of this study, participants first studied a list of words and were tested 

on them. During the test, participants were presented with a word that either has been studied or 

not studied. They first went through the single-item test where they were asked to respond “old” 

to a word they thought was studied and “new” to a word they thought was not studied. In 

Experiment 1 participants responded to the single-item test without bias. In Experiment 2, they 

responded with two levels of bias. After every 10 or 12 such trials, participants were brought to a 

forced-choice test where they were presented with two words to which they had made the same 

responses: responses were both called “old” or both “new”. Participants were notified that one of 

the decisions was incorrect and they had to choose a word that they think was studied before.  

 The forced-choice test provides an alternative way to test the continuous and discrete 

models. Simulations of Experiment 1 and 2 show that, when the forced-choice test data are 

generated from the UVSD model, UVSD will fit the data better than 2HT model, indicated by a 

smaller G2. When the data are generated from the 2HT model, 2HT will fit the data better. 



	

	38	

Modeling results of Experiment 1 and 2 have both supported the UVSD model. In Experiment 1, 

all 69 participants’ performance was fitted by the two models. The UVSD model won over the 

2HT for 55 cases. The G2 distributions of the true model should follow a χ2 distribution of 69 

degrees of freedom. From visual inspection, the G2 distribution of the UVSD model follows the 

χ2 distribution better than the 2HT does. Also, the χ2 test showed that the summed G2 values of 

the 2HT model went past 0.95 quantile of the χ2 distribution. In Experiment 2, the UVSD model 

fitted 37 participants better out of 40. It also performed better than 2HT model in the χ2 test.   

 Result of the ANOVA test in Experiments 2 was also informative. According to the 2HT 

model’s prediction of the forced-choice data, when the guessing parameter decreases (decision 

becomes more conservative), one would expect the percent correct of the old-old test to increase 

and the percent correct of the new-new test to decrease. There will be an interaction between the 

guessing bias and test types, like what is shown in Figure 2. However, this is not observed in the 

data. On the contrary, the effect in Figure 13 was very much like what was shown in Figure 3, 

where the simulation data were generated with the UVSD model. In Figures 13 and 3, the 

percent correct of old-old test was higher than that of the new-new test. As the decision criterion 

increases, percent correct of old-old test slightly goes down and the new-new test goes up. 

 One benefit of the forced-choice paradigm is that the 2HT and UVSD models are 

distinguishable without a bias manipulation. It also does not require specific features from the 

2HT or UVSD models, so it can be used to test other models of recognition memory, such as the 

single high-threshold model (1HT) and low threshold (LT) models of the discrete account, and 

the dual-process signal detection (DPSD) model of the hybrid account. The model’s prediction 

can be determined by either mathematical analysis or simulation. As long as the tested models 

make different predictions about the forced-choice data, their performances can be distinguished.  
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 Previous studies have tried to distinguish the discrete state and signal detection theory 

models of recognition memory with techniques such as the ROC functions and RT modeling. 

There was also research based on the forced-choice test. Jang et al., (2009) asked participants to 

respond to single-item and 2AFC trials with 6-level confidence rating. There was no connection 

between the two test trials. During the model fitting, data from each test were fitted with 

parameters predetermined according to the relationship of the two tests. Parks & Yonelinas 

(2009) designed a 4AFC task with two responses. The first response was to choose one word out 

of four as the target word. The second response contained two ordered responses. The first one 

was to choose a word that most likely to be the target, and the second response chose the next 

most likely target word. Memory models were also fitted to the pattern of the two series 

responses separately. 

 In previous studies, the forced-choice test stimuli were directly sampled from the word 

list. During tests, the forced-choice test was usually accompanied by some response 

manipulations, such as confidence rating or ranking. In our experiments, the 2AFC test pairs 

were made based on the result of the single-item recognition tests. Without further manipulation, 

the 2HT and UVSD models were distinguishable with our tests (Experiment 1). Experiment 2 

was conducted to address the concern of memory decay. Two levels of biases were introduced to 

the single-item and forced-choice tests. The 2HT and UVSD models made different predictions 

about the forced-choice percent correct on New-New and Old-Old trials. Model fitting results 

favored the UVSD model in Experiment 1, so did the ANOVA and modeling results in 

Experiment 2.  

 The present study has a few limitations. First, there was big variability in the number of 

forced-choice trials completed across participants. Conventional tests such as ANOVA are not 
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sensitive to this variance. Further analysis can use hierarchical Bayesian models to account for 

the individual differences. Further study can also make the forced-choice trials appear 

immediately after the single-item trial to avoid memory decay from happening. To prevent 

participants from guessing the correct response in this design, every single-item trial will be 

followed by a forced-choice trial. 

 Our study aims to distinguish two major models of recognition memory: the 2HT model 

and the UVSD model. The experiments combined the single-item recognition and the forced-

choice test. To our knowledge, this is a novel way to test recognition memory. Two experiments 

provided strong support for the UVSD model. 
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Table 1: An example of a cycle of single-item and forced-choice trials 
 

  

Single-item Trail Subsequent Forced-Choice Trial 

Word Attribute Response Trial type Word pair 

Compassion Target Old   

Restaurant Lure Old O-O Restaurant-Way 

Lady Lure New   

Flight Lure New   

Obedient Lure New   

Spectacular Target New N-N Lady-Spectacular 

Way Target Old   

Alien Target Old   

Potency  Target  Old    

Disaster Target New N-N Disaster-Flight 
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Table 2: Descriptive statistics of Experiment 1 

 
Single-item recognition Forced-choice test 

HR FAR Percent correct Percent correct  
.64 (.02) .25 (.01) .69 (.007) .64 (.01) 
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Table 3: Best fit parameter values of Experiment 1 
 

 Measure 2HT  UVSD  
Do Dn g µ s l 

Mean .34 (.02) .24 (.02) .39 (.02) 1.06 (.06) 1.20 (.04) .664 (.05) 
Upper CI .38 .28 .43 1.18 1.28 .76 
Lower CI .29 .21 .35 .94 1.13 .57 
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Table 4: Hit (HR) and false alarm rates (FAR) in Experiment 2. Standard errors are in 
parenthesis. 

 
Performance 

measure 

Single-item recognition Forced-choice test 

Liberal Conservative  Liberal Conservative  

HR .75 (.02) .82 (.02) .63 (.03) .70 (.02) 

FAR .20 (.02) .14 (.01) .15 (.02) .16 (.02) 
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Table 5: Best fit parameter values of Experiment 2. l indicates liberal and c indicates 
conservative 

 

Measure 

 

2HT UVSD 

Do Dn gl gc µ s lc ll 

Mean .66 (.03) .38 (.03) .37 (.03) .24 (.02) 
2.64 

(.46) 

1.67 

(.30) 

1.22 

(.07) 
.94 (.08) 

Upper 

CI 
.72 .45 .42 .29 3.57 2.26 1.37 1.11 

Lower 

CI 
.60 .31 .31 .20 1.72 1.07 1.07 .78 
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Figure 1: SDT model for recognition memory 
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Figure 2: Illustrations of the forced-choice test percent correct as the guessing parameter 

changes. Data were simulated with 1,000 trials. Detect old and detect new parameters 
were .5. 
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Figure 3: Illustrations of the forced-choice test percent correct as the decision criterion 
changes. Data were simulated with 1,000 trials. The mean and standard deviation of the 

target distribution were 1 and 1.2. 
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Figure 4: Predicted bias effects with randomly sampled parameter values. 
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Figure 5: Simulation results of Experiment 1 when data were generated with the UVSD 
model. The first two panels show the G2 histogram of the UVSD and 2HT fits respectively. 
The third panel plots the difference of G2 between the two models fits. The red lines in the 

first two panels were the χ2 distributions that the histograms should follow. The red vertical 
line in the third panel indicates the median of the histogram. 
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Figure 6: Simulation results of Experiment 1 when data were generated with the 2HT 
model. The first two panels show the G2 histogram of the UVSD and 2HT fits respectively. 
The third panel plots the difference of G2 between the two models. The red lines in the first 
two panels were the χ2 distributions that the histograms should follow. The red vertical line 

in the third panel indicates the median of the histogram. 
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Figure 7: Simulation results of Experiment 2 when data were generated with the UVSD 
model. The first two panels show the G2 histogram of the UVSD and 2HT fits respectively. 
The third panel plots the difference of G2 between the two models. The red lines in the first 
two panels were the χ2 distributions that the histograms should follow. The red vertical line 

in the third panel indicates the median of the histogram. 
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Figure 8: Simulation results of Experiment 2 when data were generated with the 2HT 
model. The first two panels show the G2 histogram of the UVSD and 2HT fits respectively. 
The third panel plots the difference of G2 between the two models. The red lines in the first 
two panels were the χ2 distributions that the histograms should follow. The red vertical line 

in the third panel indicates the median of the histogram. 
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Figure 9: Model fitting results of Experiment 1. The first two panels show the histogram of 
G2 for each model fits. The third panel shows the difference of G2 between the two fits. The 

red lines in the first two panels were the χ2 distributions that the G2 distributions should 
follow. The red vertical line in the third panel indicates the median of the histogram. 
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Figure 10: The distributions of target and lure. The two vertical lines plot the means. The 
left panel shows the entire distributions and their means. The right panel shows only the 

“old” stimuli and their means. 
 
 
 
 
 

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

 

 

Memory Strength

Pr
ob

ab
ilit

y 
D

en
si

ty

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

 

 

Memory Strength

Pr
ob

ab
ilit

y 
D

en
si

ty

Lure

Target



	

	56	

Simulations with memory drop 

 
Figure 11: Simulation result when memory drop was considered. Data were generated with 

the 2HT model. The red lines in the first two panels were the χ2 distributions that the G2 

distributions should follow. The red vertical line in the third panel indicates the median of 
the histogram. 
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Simulations with memory drop 

 
Figure 12: Simulation result when memory drop was considered. Data were generated with 
the UVSD model. The red lines in the first two panels were the χ2 distributions that the G2 

distributions should follow. The red vertical line in the third panel indicates the median of 
the histogram. 
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Figure 13: Percent correct of the forced-choice test of Experiment 2.  
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Figure 14: Forced-choice test percent correct of participants showed bias effect in single-

item recognition trials. 
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Figure 15: Percent correct of the forced-choice trials. Data were simulated from the best 

fitting 2HT model parameters of each participant. 
 
 

0.5

0.6

0.7

0.8

0.9

1.0

Liberal Conservative
Bias

Ac
cu
ra
cy

Test
N-N

O-O



	

	61	

 
Figure 16: Percent correct of the forced-choice trials. Data were simulated from the best 

fitting UVSD model parameters of each participant. 
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Figure 17: Model fitting results of Experiment 2. The first two panels show the histogram 
of G2 for each model fits. The third panel shows the difference of G2 between the two fits. 

The red lines in the first two panels show the χ2 distributions that the G2 distributions 
should follow. The red vertical line in the third panel indicates the median of the histogram. 
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