
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

July 2018 

Transfer Learning with Mixtures of Manifolds Transfer Learning with Mixtures of Manifolds 

Thomas Boucher 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Boucher, Thomas, "Transfer Learning with Mixtures of Manifolds" (2018). Doctoral Dissertations. 1218. 
https://doi.org/10.7275/ng3w-f136 https://scholarworks.umass.edu/dissertations_2/1218 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/ng3w-f136
https://scholarworks.umass.edu/dissertations_2/1218?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1218&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


TRANSFER LEARNING WITH
MIXTURES OF MANIFOLDS

A Dissertation Presented

by

THOMAS BOUCHER

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2018

College of Information and Computer Sciences



c© Copyright by Thomas Boucher 2018

All Rights Reserved



TRANSFER LEARNING WITH
MIXTURES OF MANIFOLDS

A Dissertation Presented

by

THOMAS BOUCHER

Approved as to style and content by:

Sridhar Mahadevan, Chair

M. Darby Dyar, Member

Erik Learned-Miller, Member

Daniel Sheldon, Member

James Allan, Chair
College of Information and Computer Sciences



ACKNOWLEDGMENTS

I would like to thank my advisor Sridhar Mahadevan for providing a fountain

of ideas and wisdom throughout the years. He welcomed me into UMass and his

outstanding lab to explore my interests, and he taught me to enjoy the rigor of

machine learning. At the start of my second year I met my other advisor Darby

Dyar, and by the end of the year she had taken me from Amherst to Mars. I would

like to thank Darby for always helping in the details, for exploring a new domain of

machine learning with me, and especially for her mentorship and friendship.

I would like to thank my committee members, Erik Learned-Miller and Dan Sheldon,

and the rest of the faculty for providing me a firm base to build my computer science

research career.

I would like to thank the staff of the College of Information and Computer Sciences,

especially Leeanne Leclerc and Susan Overstreet. Thank you to Susan, who kept my

career on track and kept me paid (for quite a long time). Thank you to Leeanne,

who helped me innumerable times, before I was accepted to UMass and during every

semester since.

I would like to thank the members of the Autonomous Learning Laboratory for

giving me a stimulating and comforting home during graduate school. I worked

especially close (and lived) with some colleagues throughout the years, thank you to

Luke Vilnis, CJ Carey, Peter Krafft, Steve Giguere, Phil Thomas, Ian Gemp, Stefan

Dernbach, Francisco Garcia, and Clemens Rosenbaum. I would like to thank all of my

friends outside of UMass too, whose encouragement, humor, and camaraderie have

been absolutely crucial to me on my graduate school journey.

iv



I would like to thank my whole family, especially my parents Anne and Tom.

They raised me in a loving home and have encouraged me continuously throughout

a winding course of life paths. I would like to thank my sisters, Juliana Caruso and

Regina Fitek, for paving the way, helping me through, and putting me in my place,

and I would like to thank their families, Jason, Alexandra, Matthew, and Dan, Jamie,

Evan, who I am so grateful to have in my family.

During graduate school I married my wife Amanda. Most of all, I would like to

thank Mandy a thousand times over. She has supported me in every way; she is my

deepest love and my closest friend. Most important to this dissertation, she made me

finish.

Lastly (since they cannot read), I would like to thank my cats Ehrie and Obie, a

couple of great little distractors and comforters.

v



ABSTRACT

TRANSFER LEARNING WITH
MIXTURES OF MANIFOLDS

MAY 2018

THOMAS BOUCHER

B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc., UNIVERSITY OF TENNESSEE KNOXVILLE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

Advances in scientific instrumentation technology have increased the speed of data

acquisition and the precision of sampling, creating an abundance of high-dimensional

data sets. The ability to combine these disparate data sets and to transfer information

between them is critical to accurate scientific analysis. Many modern day instruments

can record data at many thousands of channels, far greater than the actual degrees of

freedom in the sample data. This makes manifold learning, a class of methods that

exploit the observation that high-dimensional data tend to lie on lower-dimensional

manifolds, especially well-suited to this transfer learning task.

Existing manifold-based transfer learning methods can align related data sets in

differing feature representations, but their inherent single manifold assumption causes

them to fail in the presence of complex mixtures of manifolds. In this dissertation, a

vi



new class of transfer learning algorithms is developed for high-dimensional data sets

that intrinsically lie on multiple low-dimensional manifolds. With a more realistic

mixture of manifolds assumption, this class of algorithms allows for accurate and effi-

cient transfer of information between data sets by aligning their complex underlying

geometries.

In this dissertation, algorithms are presented that leverage corresponding sam-

ples between data sets and available label information, continuous or categorical.

The two primary tasks are aligning mixtures of manifolds and heterogeneous domain

adaptation of multi-manifold data sets. Linear, non-linear, and robust versions of

the algorithm are described, as well as a method for actively selecting cross-data set

correspondences. To show the practical effectiveness of these algorithms, they are

compared across a number of synthetic and real-world domains, but most notably

to align data recorded by spectroscopic instruments during space exploration, a new

domain for transfer learning.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

As machine learning practitioners tackle increasingly large and complex data sets,

better data representations are necessary to improve task performance while reduc-

ing computational burden. This need is especially pervasive in data collected using

modern scientific instrumentation, where advances in technology have increased the

speed of data acquisition and the precision of sampling, creating an abundance of

high-dimensional data sets. For example, instead of spectrometers recording at mi-

crometer (10−6) wavelength intervals, it is common to now record at picometer (10−12)

wavelength intervals. This type of trend occurs throughout many domains in machine

learning, such as natural language processing, information retrieval, and bioinformat-

ics. Manifold learning methods that exploit the observation that high-dimensional

data tend to lie on lower-dimensional manifolds have proven to be especially useful

in combating the curse of dimensionality, the demand for more training samples to

fit a model in higher-dimensional space [5, 55,65,76].
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(a) Single “Swiss roll” manifold.

(b) Non-overlapping distinct manifolds.

(c) Mixture of manifolds.

Figure 1.1: Types of manifold data.
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One drawback of existing manifold learning approaches is their assumption that all

data are drawn from one or more non-overlapping manifolds, as seen in Figure 1.1 a &

b. This assumption stems from the use of distance-weighted local neighborhoods for

graph construction, a technique that fails when data are drawn from an intersecting

mixture of manifolds. As data sets begin to use representations that employ thou-

sands or millions of features [54], the assumption of non-mixing manifolds becomes

increasingly tenuous. This mixture of manifolds problem is demonstrated in Figure

1.1 c: when input manifolds are poorly separated, local neighborhood information

is insufficient for recovering the true structure at manifold junctions. Thus, the use

of traditional nearest neighbor graph construction algorithms induces incorrect con-

nections at these intersection points, known as short-circuits, distorting the manifold

representation. Figure 1.2 shows how both k-nearest neighbors and ε-ball approaches

cause short-circuits between two non-intersecting manifolds that are simply nearby

in space.

Figure 1.2: Using nearest neighbor with k = 5, the magenta point induces a short-
circuit between nearby manifolds M1 and M2.

Another class of algorithms from dimensionality reduction that is related to man-

ifold methods is subspace estimation [26, 29, 79]. In this paradigm, the data are

assumed to be drawn from a set of underlying, typically low-dimensional, linear sub-

spaces. These methods are attractive because instead of assuming a single underlying

space, like traditional manifold methods, they are designed to tease apart multiple

3



underlying subspaces into their constituent parts. Many of these methods have fo-

cused on the task of clustering, whereby data are segmented based upon membership

in particular underlying subspaces [26, 27, 71]. One limitation of these techniques is

that they assume linear subspaces. The work in this dissertation is motivated by the

idea that subspace estimation techniques can be used to empower traditional manifold

learning algorithms to accomplish the task of multi-manifold estimation.

Transfer learning has especially benefited from manifold-based approaches, through

continued advancements in manifold alignment [3, 41, 62, 69, 82, 84]. Data set align-

ment is a semi-supervised task where correspondences are learned between multiple

data sets based on intra-set geometry and a provided partial set of pairwise corre-

spondences between the data sets. Manifold alignment is a class of techniques that

solves the data set alignment problem when the sets are assumed to share a common

underlying structure, embedding each input set into a shared latent manifold space.

Data set alignment would greatly benefit from mixture of manifold modeling. With

a divide and conquer approach, the alignment problem is made simpler by first sepa-

rating each data set to its constituent subspaces. The correspondences act as anchor

points to orient the different manifolds between the data sets.

Data set alignment is unsupervised except for the known correspondences, but a

related supervised transfer learning task is heterogeneous domain adaptation (HDA)

[23, 83, 97]. HDA seeks to train a model using multiple related source data sets, in

possibly very different ambient feature representations, for classification or regression

of a related target data set, where training data are minimal. This is different from

traditional domain adaptation, where the features are shared across source and target

sets and are assumed to be nearby in distribution space. HDA solves a much broader

set of problems, and like manifold alignment would equally benefit from mixture of

manifold modeling.
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1.2 Contributions and Outline of the Dissertation

In this dissertation, a new class of transfer learning algorithms is described for

high-dimensional data sets that intrinsically lie on a shared set of low-dimensional

manifolds. Existing methods that assume a single manifold fail in the presence of

mixtures of manifolds. With a more realistic multi-manifold assumption, this class

of algorithms allows for accurate and efficient transfer of information between data

sets by aligning their complex underlying geometries. The dissertation is composed of

manifold alignment and domain adaptation algorithms. Instead of aligning or map-

ping all data into a single latent manifold space, potentially mixing unrelated data,

the methods developed in this dissertation only align related sections of data across

sets by separating them apart according to their underlying mixture of manifolds.

The first contribution of the dissertation is low rank alignment, LRA

(Chapter 3), an unsupervised multi-manifold alignment algorithm based upon a low

rank reconstruction framework [9]. The input to the algorithm is a set of heteroge-

neous data sets, where each data set may be in dramatically different feature repre-

sentations. Each data set is assumed to intrinsically lie on a set of low-dimensional

manifold spaces. Additionally, samples present across multiple data sets, called cross-

data set correspondences, are used to tie the disparate manifold spaces together. The

method is unsupervised because it does not use label information about the data,

though it relies on the overlapping correspondences to reason across data sets. For

each sample in each data set, LRA calculates a low-dimensional representation in a

joint space called an embedding, whereby the geometry of the joint space is seman-

tically meaningful. For example, if the task is to align pictures of cats and dogs

from different cameras and drawings, then in the joint space photos and drawings of

cats ought to be close together and separate from those of dogs. More generally, an

embedding is a function from the ambient space to the joint space whose domain is

restricted to the training set. The low rank penalty captures the underlying subspaces
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of the individual data sets, while the correspondences anchor the subspaces between

data sets. It is primarily a two step algorithm, with an optional preprocessing step,

where each step has a closed-form solution. It does not suffer from the sensitive near-

est neighbor hyperparameter present in traditional manifold alignment, nor does it

require prior knowledge of the number of manifolds.

The second contribution of the dissertation is a set of three extensions

to the low rank alignment algorithm (Sections 3.3-3.5). In the first step of

the standard algorithm, a reconstruction matrix is calculated for each data set, and

all three extensions make use of these reconstruction matrices. First, a kernelized

variant of the algorithm specifically designed to handle highly non-linear manifold

subspaces is presented. This variant requires little overhead cost compared to the

original algorithm, while providing a much higher degree of adaptiveness in its re-

construction of individual data sets. Second, a variant of the standard algorithm for

the task of clustering is described. A simple post-processing step is performed to

the reconstruction matrix to encourage samples from the same underlying space to

cluster closely together in the joint space. The integrity of the global geometry of

the data sets is sacrificed to encourage subspace partitioning in the joint space. This

intermediate step adds little computational burden to the algorithm and is shown

to successfully dissect the samples according to subspaces. Third, a variant of the

low rank alignment algorithm is presented that can actively learn high-value corre-

spondences. Depending on the geometry of the underlying spaces of the data, not all

samples are equally useful as correspondences. The reconstruction matrices can be

used to actively learn which samples in each data set would be most useful for the

alignment. Correspondences are typically expensive to acquire, so the ability to ac-

tively select a small number of them instead of relying on an abundance of randomly

selected correspondences is very useful.
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The third contribution of the dissertation is a set of robust low rank

alignment algorithms (Chapter 4). Real-world data are often complex and noisy.

While low rank alignment is good at using only samples of the same underlying space

for reconstruction, when there are many non-linear intersection points, small noisy

short-circuits can develop in the low rank reconstruction matrix. To suppress these

short-circuits, a sparsity term is added to the calculation of the reconstruction ma-

trices. This is shown to outperform standard low rank alignment in many cases;

however, the additional sparsity term requires the optimization problem be solves it-

eratively. An iterative algorithm using the alternating direction method of multipliers

(ADMM) [11] is described.

The low rank alignment algorithm is still susceptible to noise in the ambient data

representation and to outliers. To address these issues, a noise term can be directly

modeled in the first step of the alignment algorithm, thereby completely removing

the noise and outliers from the calculation of the embedding in the second step of the

algorithm. Two types of error modeling are described, one intended more for general

noise and one intended more for outlier detection. The error term forces this step to

be solved iteratively, and an ADMM-based algorithm is detailed.

The fourth contribution of the dissertation is heterogeneous domain

adaptation (HDA) of multi-manifold sets (Chapter 5). In addition to these

data alignment algorithms, methods for domain adaptation are presented. There

are three key differences between the alignment methods and these HDA methods:

(1) these are supervised methods, i.e., they make use of label information; (2) they

are designed with a subsequent task in mind, e.g., classification, regression; and (3)

they provide a map (function) to the joint space for each input data set for samples

outside the original training set. First in this section, the existing work on single man-

ifold HDA [83] that uses categorical (class) labels is extended to the multi-manifold

case. Next, a novel framework for using continuous (real-valued) labels for the task
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of regression is described. Like the class label type, it is assumed that the data

sets each share a common response surface (label space), and then the algorithm

uses that information to reason between the data sets. The methods maximize the

squared cross-correlation between the shared label space and each of the data sets

while preserving correspondences between data sets. Like alignment, this is a two-

step algorithm, where a closed-form solution is provided for each step. Finally, a

non-linear version of the algorithm is constructed by kernelizing the algorithm. In

addition to providing a non-linear mapping, the kernel formulation poses the problem

in its dual formulation. Typically it is the case that the dimensionality of the ambient

space is much larger than the number of samples, so the dual formulation is often

more computationally efficient. The linear kernel can be used to take advantage of

the dual formulation while keeping the mapping linear.

The fifth contribution of the dissertation is a new real-world domain

and problem for transfer learning (Sections 2.5, 3.6.1, 4.3.3, 5.2.3). To show

the practical merit of this class of multi-manifold alignment methods, their effective-

ness is primarily evaluated using spectroscopic and chemical data acquired by the

Curiosity rover on Mars or in support of the mission in labs on Earth. These data,

known as spectra, have a high ambient dimensionality but likely have a very low

intrinsic dimensionality, making them good candidates for manifold methods. By

aligning spectra from disparate instruments and laboratories, correcting for differ-

ences found in data recorded on Earth and those recorded on another planet, more

accurate and complete chemical and mineralogical models can be trained. Labeled

samples used to calibrate the classification and regression models of instruments are

known in the literature as standards. Standards are frequently shared between labs,

and these can be used as correspondences in the alignment model, but they come at

a high price because their characterization is expensive. The feature representations

of spectra are energy values, where the features are ordered according to wavelength,
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and thus the data are structured. These spectra are typically partially labeled, by

either their scientific classification (hierarchical discrete labels) or their chemical com-

position (multi-task continuous labels). In addition to traditional alignment tasks,

the task of calibration transfer (CT) is presented. CT solves the problem of trans-

ferring a calibration curve from one instrument or set of conditions to another using

a calculated transfer function, without the need to resample the calibration stan-

dards on both instruments/conditions. In all spectroscopic applications, there is a

need to ensure that possible differences in instruments, environment, or experimental

conditions are mitigated or negated.

9



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, relevant related work is discussed, starting with a brief descrip-

tion of the grandparent of transfer learning methods, canonical correlation analysis

(CCA). Next follows an overview of manifold alignment, a field intended to correct the

shortcomings of CCA. The general manifold alignment algorithm is then explained in

detail, because it is a building block for the novel algorithms in the dissertation. The

existing work on mixtures of manifolds is described next, followed by a brief overview

of domain adaptation to address the usage of multiple related data sets. Finally, a

description of the dissertation’s motivating case study is presented: spectroscopy in

space exploration.

2.1 CCA

Canonical correlation analysis (CCA) [44] is perhaps the most popular transfer

learning technique. Given two data sets X ∈ RN×p and Y ∈ RN×q, CCA calculates

the linear subspace that maximizes correlation between the two sets. Assuming the

data sets are first mean-centered, CCA optimizes the function

maximize
f,g:‖f‖=1,‖g‖=1

corr (Xf, Y g) = maximize
f,g:‖f‖=1,‖g‖=1

f>X>Y g√
(f>X>Xf) (g>Y >Y g)

.

where f : Rp → Rd and g : Rq → Rd are linear transformations to a joint latent space,

such that d ≤ min (p, q). It can be shown that this equation is maximized through a

generalized eigenvector problem.
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While CCA has proven to be a very successful algorithm, it does have some limiting

features. CCA is only able to accept two input data sets, and these data sets must be

of the same cardinality. Moreover, CCA only provides linear subspaces, which may

be a limiting factor for data sets with more complex relationships.

2.2 Manifold Alignment

Manifold alignment was introduced as a non-linear alternative to CCA that is able

to align multiple data sets that may or may not have corresponding samples between

sets [55]. The general manifold alignment framework for two data sets [82] is the

following. Given the data sets X and Y of shapes NX ×DX and NY ×DY , each row

is a sample (or instance) and each column is a feature, and a correspondence matrix

C(X,Y ) of shape NX ×NY , where

C
(X,Y )
i,j =

 1 : Xi is in correspondence with Yj

0 : otherwise
(2.1)

Manifold alignment calculates the embedded matrices F (X) and F (Y ) of shapes

NX ×d and NY ×d for d ≤ min(DX , DY ) that are the embedded representation of X

and Y in a shared, low-dimensional space. These embeddings aim to preserve both

the intrinsic geometry within each data set and the sample correspondences among

the data sets. More specifically, the embeddings minimize the loss function V ,

V
(
F (X), F (Y )

)
=
µ

2

NX∑
i=1

NY∑
j=1

||F (X)
i − F (Y )

j ||22C
(X,Y )
i,j

+
1− µ

2

NX∑
i,j=1

||F (X)
i − F (X)

j ||22W
(X)
i,j

+
1− µ

2

NY∑
i,j=1

||F (Y )
i − F (Y )

j ||22W
(Y )
i,j , (2.2)
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where µ ∈ [0, 1] is the correspondence tuning parameter, and W (X),W (Y ) are the

calculated similarity matrices of shapes NX ×NX and NY ×NY , such that

W
(X)
i,j =

 k(Xi, Xj) : Xj is a neighbor of Xi

0 : otherwise
(2.3)

for a given kernel function k(·, ·). W (Y )
i,j is defined in the same fashion. Typically, k

is set to be the nearest neighbor set member function or the heat kernel

k(Xi, Xj) = exp (−|Xi −Xj|2).

In the loss function of equation (2.2), the first term corresponds to the alignment

error between corresponding samples in different data sets. The second and third

terms correspond to the local reconstruction error for the data sets X and Y respec-

tively. This equation can be simplified using block matrices by introducing a joint

weight matrix W and a joint embedding matrix F , where

W =

 (1− µ)W (X) µC(X,Y )

µC(Y,X) (1− µ)W (Y )

 (2.4)

and

F =

 F (X)

F (Y )

 . (2.5)

The loss function V can be reduced to a matrix trace formulation,

arg min
F :F>DF=I

V(F ) = arg min
F :F>DF=I

tr(F>LF ), (2.6)

where tr(·) is the matrix trace and L is the combinatorial graph Laplacian L = D−W ,

where D is the diagonal matrix of row sums D(i, i) =
∑

jW (i, j) [82].

The constraint F>DF = I ensures that the problem is well posed and removes

arbitrary scaling factors in the embedding. The d columns of the embedding matrix F
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in equation (2.6) are equal to the d smallest eigenvectors, the eigenvectors associated

with the smallest non-zero eigenvalues, of the Laplacian matrix in the generalized

eigenvalue problem LF = λDF [82].

Extensions of Manifold Alignment

In addition to the non-linear manifold alignment technique presented above, there

is also a linear formulation that provides a natural map for out-of-sample extensions.

This algorithm uses a construction similar to locality preserving projections [42].

A two-step alignment algorithm was described that first uses Procrustes analysis

[81]. More recently, an extension of manifold alignment for semi-supervised domain

adaptation with categorical labels was detailed [83]. And finally, a global geometry

preserving version of manifold alignment was reported [84].

2.3 Mixtures of Manifold Learning

In the literature, mixtures of manifolds of learning are also called multi-manifold

or multiple manifold learning. While the terms may vary, the goal of the field is

the same, extending manifold learning to the case of multiple intersecting or nearby

manifolds (as shown in Figure 1.1c).

Many mixed manifold methods employ a common approach, using local neigh-

borhood estimates of curvature or shape to discriminate between manifolds. The

multiple manifold problem is described in [6], where the authors use local tangent

space estimates across all samples to find global trends in the geometry. In [87], the

principal angle between local tangent spaces is used to help define neighborhoods on

the manifold. In [35], Gaussians are fit over local neighborhoods until the space is

covered, then a modified Hellenger distance is used to construct a neighborhood graph

over the space of Gaussians where the edges are weighted by Mahalanobis distance.
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Other mixed manifold methods have been proposed that do not rely on neighbor-

hood geometry when discriminating manifolds. The problem of multiple intersecting

manifolds was first explicitly solved in [72], where an Expectation Maximization style

algorithms was used to partition the samples such that within each partition the

Euclidean distance within the embedded space best matched an estimated geodesic

distance. This approach requires the number of manifolds and their dimensionalities

as input, a drawback common to all of the multi-manifold methods listed. In low rank

embedding (LRA) [53], a low rank representation is used to construct the manifold

adjacency graph. This method is notable because it does not require the number of

manifolds as a parameter. However, it its original description, it does not support

manifolds of varying dimension.

2.4 Domain Adaptation

Domain adaptation (DA) is a sub-field of transfer learning that uses one or more

source data sets to predict a target data set drawn from a different but related distri-

bution. Unsupervised domain adaptation is the subfield of DA that solves problems

where no label information is known for either the target or source data sets. These

methods are widely studied in the literature [19, 28, 38, 59] and perform well when

label information is not available. Unsupervised DA methods are often agnostic to

the subsequent task (e.g., classification, regression). While this results in wide appli-

cability, unsupervised DA cannot benefit from label information in cases where it is

available.

Supervised and semi-supervised DA are subfields that seek to solve problems where

label information is present, if only partially, in the target or source domains. These

methods are also widely studied [20,83]; however, prior work has largely assumed that

the label information is categorical, as is often the case for classification tasks. In a

regression setting with continuous labels, label preprocessing techniques such as bin-
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ning or clustering may be used to discretize the label information. These techniques

enable the use of existing DA methods, but this work demonstrates that such label

manipulation is an imperfect stopgap. Supervised methods that natively handle con-

tinuous labels have been proposed [29], but no intra-data set learning happens using

the label information and the subsequent learning task is again ignored.

An SDP-based algorithm for domain adaptation for regression is presented in [16],

including point-wise learning guarantees. However, it is assumed that the source and

target distributions be “reasonably close” and that the feature space be shared. This

work is extended in [17] to include new guarantees and a faster algorithm, to address

scaling issues present in [16], but the same strong assumptions about the source

and target domain similarity pervades. Source and target set bias correction with

continuous labels is discussed in [94], but this too requires a homogeneous feature

space representation across data sets. Although not explicitly domain adaptation

algorithms, in [85,86], location-scale shifts based on the support of the data are used

to transform multiple data sets for regression, but a shared feature space is assumed.

2.5 ChemCam and LIBS

ChemCam is a laser-induced breakdown spectrometer (LIBS) aboard the Curiosity

rover that analyzes the chemical composition of the rocks, minerals, and soils on

the Martian surface. For a period of three years, I was a participating scientist on

the ChemCam team of NASA’s Mars Science Laboratory. My work with this team

has directly motivated my dissertation. This dissertation covers topics related to the

instrument, as well as LIBS spectra and spectroscopy in general, so a brief background

is provided because it is outside the computer science domain.

To begin, a description of how the instrument records a spectrum from a sample.

The LIBS laser pulses the target sample, ablating the surface and creating a plasma.

The sample may be up to 7 meters away from the rover, so a telescope is used
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to observe the photons emitted as the excited electrons return to their usual valence

shells. Using mirrors, the light emitted from the plasma is passed through a diffraction

grating to separate the beam into three frequency ranges. The three sub-beams

are directed to three charge-coupled devices (CCD), which are sensitive to different

frequency ranges. The number of photons that strike the surface of each CCD is

recorded to produce the spectrum. Figure 2.1 contains a depiction of the ChemCam

instrument sampling a rock on Mars, a closeup of the rock before and after sampling,

and the resulting spectra recorded.

Figure 2.1: Curiosity rover on Mars with a simulated ChemCam laser pulse. The
photos on the left are of a Martian rock surface before and after laser ablation. The
rock was lased 50 times in each of the five locations. In the insert at the bottom are
the five mean spectra from each location. Photos courtesy of NASA.
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There are four distinguishing characteristics to address with the types of space

science data that we will describe. These characteristics are born out of the unique-

ness of the challenge inherent in space science and spectroscopic applications. While

individually these characteristics are not unique to space science data, the combina-

tion presents a unique challenge that has been little studied in the machine learning

literature. First, we define space science to be all scientific studies conducted with

instruments outside of Earth or its atmosphere, including remote-sensed data of any

planet by an orbiting body. When exploring a foreign body in the solar system and

beyond, it is often the case that little or no ground-truth data are known about the

new system, so these extraterrestrial instruments must be calibrated before launch

and subsequently with similar instruments in terrestrial laboratories. In the following

section, each of these four characteristics will be explored in detail.

The most distinguishing and consistent characteristic of space science data are

that they have many more features than examples. For instance, before sending

Curiosity to the Martian surface, a small calibration database of pressed rock powders

was analyzed using the ChemCam flight model under simulated Mars conditions at

Los Alamos National Laboratory [91]. The chemical composition of each powder,

expressed as the weight % oxide of elements like SiO2 and Al2O3, of each powder,

was known, and a regression model, referred to as a calibration curve, was fit on the

spectra to predict oxide composition. Each rock powder resulted in a spectrum with

6144 channels each corresponding to a wavelength increment, but only 69 unique rock

powders were recorded to form the entire database! To verify the quality of the Earth-

based calibration model, a tray of ten sintered rock powders of known composition,

referred to as the ChemCam calibration targets, was affixed to the rover. So the

labeled Martian data are spectra of just ten samples recorded at 6144 channels, though

repeatedly analyzed. Models fit on these poorly conditioned problems are unlikely to

result in quality predictions. Preprocessing the data using dimensionality reduction
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(DR) can remedy this poor conditioning and avoid the demand for more training

samples to well fit a model in higher-dimensional space.

The small labeled databases common throughout space science have another uni-

fying similarity: they typically have continuous, or real-valued, label information,

and many share a common response surface (e.g., weight % oxide). Consequently,

the task associated with the data is generally regression. Supervised DR with con-

tinuous labels is certainly not a new problem; the well-known canonical correlation

analysis (CCA) algorithm was first described by Hotelling in 1936 [44]. However, most

supervised DR algorithms assume the labels are categorical, and so little has been

published exploring continuously labeled data that also exhibit these other character-

istics of space science data. Furthermore, utilizing the label information is especially

important when working with space science data because the feature space is often

quite noisy and highly collinear. Precise label information is necessary for analyzing

the feature space and determining which channels have a low signal-to-noise ratio.

While labeled space science data often come at a premium, especially in-situ

ground-truth readings like those from the ChemCam calibration targets, unlabeled

data are often abundant. Within the machine learning community, this field is known

as semi-supervised learning. In this field, information from unlabeled data is gleaned

by comparing it with a small set of labeled samples or by analyzing the geometry of the

combined feature space. In the case of ChemCam, to date more than 300,000 spectra

have been recorded on the Martian surface, where the overwhelming majority are

unlabeled (and the remaining spectra are from the ten calibration targets). Fitting

a calibration curve using only the 69 pre-flight samples and ignoring the 300,000

unlabeled spectra would be irresponsible of a machine learning practitioner, as would

a calibration based only on the ten in-situ targets. As space instrumentation continues

to be better engineered, like the Martian rover Opportunity that is still gathering
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scientific data now at over 47 times its designed lifespan, the semi-supervised nature

of the data will only become more pronounced.

The use of overabundant unlabeled samples is not the only means of overcoming

the small labeled data sets found in space science. Domain adaptation is another

approach that may be used to expand the number of known samples in a training set.

This technique is especially well-suited to scientific instrument data, which exhibit

distributional variation as a result of differences across instrumentation and environ-

mental conditions. It is often necessary to correct for differences arising from variable

experimental geometries (close-up vs. long distance measurements), environmental

conditions (e.g., deep sea vs. ambient lab conditions vs. the Martian surface), and

analytical parameters such as laser wavelength, power density, and beam size, be-

fore the union of disparate data sets becomes advantageous for training. Within the

chemistry community, this problem is known as calibration transfer. Some of the

most successful domain adaptation and calibration transfer methods incorporate DR

in their algorithms by selecting only the d-dimensions that are most transferable (by

some measure varying with algorithm). By combining domain adaptation and DR

into one algorithm, both sub-tasks benefit.
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CHAPTER 3

MIXED MANIFOLD ALIGNMENT

One task that has especially benefited from manifold-based approaches is data

set alignment, a semi-supervised task in which correspondences are learned between

multiple data sets based on intra-set geometry and a provided partial set of pairwise

correspondences between the data sets. Manifold alignment is a class of techniques

that solves the alignment problem when these data sets are assumed to share a com-

mon underlying structure, by embedding each input set into a shared latent manifold

space [41,82].

Manifold alignment was introduced as a semi-supervised, nonlinear extension of

canonical correlation analysis (CCA) [44] that aimed to preserve both local geometry

and inter-set correspondences [82]. One drawback of existing manifold alignment

approaches is their assumption that all data sets are drawn from one or more non-

overlapping manifolds. This assumption stems from the use of distance-weighted

local neighborhoods for embedding construction, a technique that fails when the data

are drawn from an intersecting mixture of manifolds. As data sets begin to use

representations that employ thousands or millions of features [54], the assumption of

non-mixing manifolds becomes increasingly tenuous.

This mixture of manifolds problem is demonstrated in Figure 1.1: when input

manifolds are poorly separated, local neighborhood information is insufficient for

recovering the true structure at manifold junctions. Thus, the use of traditional

nearest neighbor graph construction algorithms induce incorrect connections at these

intersection points, distorting the manifold representation.
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This shortcoming of conventional manifold methods has given rise to a number of

unsupervised clustering algorithms that attempt to segment input data by identifying

the individual manifold components of a mixed manifold structure [72,88]. One such

algorithm is low rank embedding (LRE) [53], which notably avoids the construction

of a nearest neighbor graph.

In this chapter, a novel manifold learning algorithm, low rank alignment (LRA),

is presented, building on the ideas of manifold alignment and LRE to align data sets

drawn from mixtures of manifolds. LRA does not suffer from the sensitive nearest

neighbor hyperparameter present in traditional manifold alignment, nor does it re-

quire prior knowledge of the number of manifolds, a common requirement for many

mixed manifold clustering techniques.

3.1 Low Rank Embedding

Low rank embedding (LRE) is a variation on locally linear embedding (LLE) [65]

that uses low rank matrix approximations instead of LLE’s nearest neighbor approach

to calculate a reconstruction coefficients matrix [53]. LRE is a two part algorithm.

Given a data set X, LRE begins by calculating the reconstruction coefficients matrix

R by minimizing the loss function

min
R

1

2
||X −RX||2F + λ||R||∗, (3.1)

where λ > 0, ||X||F =
√∑

i

∑
j |xi.j|2 is the Frobenius norm, and ||X||∗ =

∑
i σi(X)

is the nuclear norm, for singular values σi. In [12], it was shown that the nuclear norm

is the best convex relaxation of the rank minimization problem, and so the solution

RX is a low rank representation of the original data matrix X. To solve equation

(3.1), the alternating direction method of multipliers (ADMM) [11] is used.
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To apply ADMM, a new variable Z is introduced and equation (3.1) becomes

min
Z,R

1

2
||X −RX||2F + λ||Z||∗, s.t. R = Z. (3.2)

To solve the constrained optimization problem of equation (3.2), the augmented La-

grangian function L̂ is introduced,

L̂(Z,R,G) =
1

2
||X −RX||2F + λ||Z||∗

+ 〈G,R− Z〉+
β

2
||R− Z||2F , (3.3)

where G is the Lagrange multiplier and β > 0 is the penalty parameter that controls

the convergence of the ADMM algorithm.

The second step of LRE preserves the point-wise linear reconstruction by holding

R fixed while minimizing the reconstruction loss in the embedded space,

min
F (X)

1

2
||F (X) −RF (X)||2F s.t. (F (X))>F (X) = I, (3.4)

where F (X) is the embedding of X and I is the identity matrix. The constraint

(F (X))>F (X) = I ensures that it is a well-posed problem. In [67], it was shown that

equation (3.4) can be minimized by calculating the d smallest non-zero eigenvectors

of the Gram matrix (I −R)>(I −R).

3.2 Low Rank Alignment

Low rank alignment (LRA) is a novel algorithm for the manifold alignment task

that uses a variant of LRE to embed the data sets to a joint manifold space, unlike

previous alignment methods that have been based on Laplacian eigenmaps [5,81,82]

and Isomap [76, 84]. These methods rely on nearest neighbor graph construction
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algorithms, and are thus prone to creating spurious inter-manifold connections when

mixtures of manifolds are present. These so-called short-circuit connections are most

commonly found at junction points between manifolds. In contrast, LRA is able to

avoid this problem, successfully aligning data sets drawn from a mixture of manifolds.

Figure 3.1 shows an example of this phenomena using a noisy dollar sign data set.

LRA differs from other manifold alignment algorithms in several key aspects.

While some previous algorithms embed data using exclusively the eigenvectors of

the graph Laplacian to preserve both inter-set correspondences and intra-set local

geometry, LRA uses the eigenvectors of the sum of the Laplacian and the Gram

matrix of low rank representations to preserve the inter-set correspondences and the

intra-set local linearity. Moreover, previous manifold alignment algorithms require a

reliable measure of similarity between nearest neighbor samples, whereas LRA relies

on the linear weights used in sample reconstruction. Lastly, because LRA uses the

global property of rank to calculate its reconstruction matrix, it can better discern

the global structure of mixing manifolds [53].

We now describe the low rank alignment algorithm for two data sets. It begins with

the same setup as manifold alignment: two data sets X and Y are given, along with

the correspondence matrix C(X,Y ) describing inter-set correspondences (see equation

2.1). The goal of LRA is to calculate a set of embeddings F (X) and F (Y ) to a joint,

low-dimensional manifold subspace that best preserves both inter-set correspondences

and intra-set geometries.

In the first step of LRA, the reconstruction weight matrices R(X) ∈ RNX×NX and

R(Y ) ∈ RNY ×NY are calculated individually according to equation (3.1). In this step,

the low rank constraint defines a barycentric coordinate for each sample that preserves

locally linear relationships between samples. In [27], it is shown that the low rank

representation problem in equation (3.1) can be solved in closed form. This avoids

the iterative ADMM calculation found in the original LRE algorithm.
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Figure 3.1: Manifold construction on synthetic data. For each star, the large points
are the four neighbors used to define the manifold. The lines match the stars with
their neighbors. Notice that traditional nearest neighbor construction (on the left)
has short-circuits incorrectly connecting the two manifolds, whereas the low rank
construction (on the right) selects points that correctly differentiate the mixed man-
ifolds.

We begin by decomposing X using singular value decomposition (SVD), X =

USV >. Next, the columns of V and S are partitioned into V = [V1V2] and S = [S1S2]

according to the sets

I1 = {i : si > 1 ∀si ∈ S} and I2 = {i : si ≤ 1 ∀si ∈ S}.

Then the reconstruction matrix R(X) is calculated as

R(X) = V1(I − S−21 )V >1 . (3.5)

R(X), R(Y ) are calculated independently and so may be computed in parallel to

reduce compute time. We next define the block matrices R,C ∈ RN×N as

R =

 R(X) 0

0 R(Y )

 and C =

 0 C(X,Y )

C(Y,X) 0

 (3.6)
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and F ∈ RN×d as

F =

 F (X)

F (Y )

 . (3.7)

The second step of LRA is to calculate the embedding F of X, Y by minimizing

the loss function

Z(F ) = (1− µ) ‖F −RF‖2F + µ

N∑
i,j=1

||Fi − Fj||2Ci,j, (3.8)

where µ ∈ [0, 1] is the hyperparameter that controls the importance of inter-set

correspondences. The first term of the sum in equation (3.8) accounts for the local

geometry within each data set, and the second term accounts for the correspondences

between sets. We can then reduce this loss function to a sum of matrix traces:

Z(F ) = (1− µ)tr((F −RF )>(F −RF ))

+ µ
d∑

k=1

N∑
i,j=1

||Fi,k − Fj,k||22Ci,j

= (1− µ)tr
(

((I −R)F )> (I −R)F
)

+ 2µ
d∑

k=1

F>·,kLF·,k

= (1− µ)tr(F>(I −R)>(I −R)F )

+ 2µ tr(F>LF ). (3.9)

As with LLE and LRE, we introduce the constraint F>F = I to ensure that the

minimization of the loss function Z is a well-posed problem. Thus, we have

arg min
F :F>F=I

Z = arg min
F :F>F=I

(1− µ)tr(F>MF ) + 2µ tr(F>LF ), (3.10)
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where M = (I − R)>(I − R). To construct a loss function from equation (3.10), we

take the right hand side and introduce the Lagrange multiplier Λ,

L(F,Λ) = (1− µ)tr(F>MF ) + 2µ tr(F>LF )

+ 〈Λ, F>F − I〉. (3.11)

To minimize equation (3.11), the roots of its partial derivatives must be found,

∂L
∂F

= 2(1− µ)MF + 4µLF − 2ΛF = 0

∂L
∂Λ

= F>F − I = 0. (3.12)

From this system of equations, results the matrix eigenvalue problem

((1− µ)M + 2µL)F = ΛF and F>F = I. (3.13)

Therefore, to solve equation (3.10), calculate the d smallest non-zero eigenvectors of

the matrix

(1− µ)M + 2µL. (3.14)

This eigenvector problem can be solved efficiently because the matrix M + L is

guaranteed to be symmetric, positive semidefinite (PSD), and sparse. These proper-

ties arise from the construction,

M + L =

 (I −R(X)
)2

0

0
(
I −R(Y )

)2


+

 DX −C(X,Y )(
−C(X,Y )

)>
DY

 , (3.15)
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where by construction D =

 DX 0

0 DY

 is a PSD diagonal matrix and C(X,Y ) is a

sparse matrix.

The time complexity of LRA is dominated by two operations: the full singular

value decomposition necessary for step 1 and the sparse eigenvector decomposition

in step 2. The runtime of the SVD is cubic O (max(NX , Xy)
3) proportional to the

number of samples in the set. Calculating the reconstruction matrix R in step 1 of

LRA is naturally parallelizable by data set, so the cost of the SVD is limited to the

individual data set size. The eigenvector decomposition also runs in cubic, but it

is proportional to the total number of samples O
(
(NX +NY )3

)
. This calculation is

only performed once during the algorithm. Because the matrix is symmetric, it can

be first converted into a tridiagonal Hessenberg matrix using the Lanczos algorithm,

and then the QR algorithm can be used to find the eigenvectors [39].

Algorithm 1: Low Rank Alignment

Input: data matrices X, Y , embedding dimension d,
correspondence matrix C(X,Y ) and weight µ.

Output: embeddings matrix F .
Step 0: Column normalize X & Y (optional but recommended if X and Y
differ largely in scale).

Step 1: Compute the reconstruction coefficient matrices R(X), R(Y ):
USV > = SVD(X)
R(X) = V1(I − S−21 )V >1
Û ŜV̂ > = SVD(Y )
R(Y ) = V̂1(I − Ŝ−21 )V̂ >1

Step 2: Set F equal to the d smallest eigenvectors of the matrix in equation
(3.14).

3.3 Kernelized LRA

In the first step of low rank alignment, a reconstruction matrix is calculated for

each data set to capture the underlying subspaces. In practice, for high-dimensional

data this linear reconstruction will suffice to describe the underlying space, but some
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data drawn from complex mixtures of manifolds require a non-linear reconstruction.

To this end, a kernelized formulation of low rank alignment is derived here. This

requires modifying the first step of the LRA algorithm, where the reconstruction

matrices are calculated for each data set.

Given a data set X ∈ X , let φ be a feature map from X to a possibly infinite

dimensional inner product space V . On V , the inner product can be described by a

kernel function k(x, x′) = 〈φ(x), φ(x′)〉V , and the kernel trick can be used. Rewriting

equation 3.1 with this feature map yields

min
R

ω

2
‖Φ−RΦ‖2F + ‖R‖∗ (3.16)

where Φ = [φ(X1), . . . , φ(XN)].

Theorem 1. Let K be the kernel matrix K = ΦΦ> and U,Σ, V > = SVD(K). The

optimal solution R̂ to equation 3.16 is given by the formula

R̂ = U1

(
I − 1

ω
Σ−11

)
U>1 , (3.17)

where Σ1 is the diagonal matrix of singular values greater than ω−2 and U1 are the

columns of U associated with Σ1.

Before proving this theorem, some basic facts must be covered. First, in addition

to defining Σ1, define Σ2 as the diagonal matrix of singular values less than or equal

to ω−2 and U2 as the columns of U associated with Σ2, i.e., U = [U1U2], V = [V1V2].

Because these subset matrices have orthogonal columns, they have a left inverse

relationship U>1 U1 = I and V >1 V1 = I (and likewise for U2 and V2), and the property

U1U
>
2 = 0 and U2U

>
1 = 0. Furthermore, from this construction comes the relationship

K = U1Σ1V
>
1 + U2Σ2V

>
2 . (3.18)
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From these two facts, it can be deduced that

U1U
>
1 + U2U

>
2 = V1V

>
1 + V2V

>
2 = I. (3.19)

The proof for theorem 1 is now provided.

Proof. Expanding equation 3.16 yields

min
R

ω

2

(
tr
(
ΦΦ>R>R

)
− 2tr

(
ΦΦ>R

))
+ ‖R‖∗. (3.20)

Now that the equation has been written in terms of inner products ΦΦ>, the kernel

trick can be applied to 3.20 to yield

min
R

ω

2

(
tr
(
KR>R

)
− 2tr (KR)

)
+ ‖R‖∗. (3.21)

Completing the square in this expansion yields the equivalent

min
R

ω

2
‖K

1
2 −RK

1
2‖2F + ‖R‖∗. (3.22)

To optimize equation 3.22, we calculate its differential as

ωK (R− I) + ∂R‖R‖∗, (3.23)

where ∂R‖R‖∗ is the subdifferential of R. It suffices to show that equation 3.23

evaluated at R̂ contains zero matrix.
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Given the compact SVD of R = URΣRV
>
R , the subdifferential of the nuclear norm

of a matrix is

∂R‖R‖∗ = {URV >R +W : U>RW = 0,WVR = 0, ‖W‖ ≤ 1}, (3.24)

[89]. Substituting this in equation 3.23 for UR = VR = U1 yields

ωK (R− I) + U1U
>
1 +W = 0. (3.25)

From equation 3.18 and because K is a symmetric matrix, it follows that

K = U1Σ1U
>
1 + U2Σ2U

>
2 (3.26)

Plugging in the solution R̂ and using equation 3.19 gives

I − R̂ = I − U1

(
I − 1

ω
Σ−11

)
U>1 =

1

ω
U1Σ

−1
1 U>1 + U2U

>
2 . (3.27)

Combining equations 3.26 and 3.27 yields

K (I −R) =
(
U1Σ1U

>
1 + U2Σ2U

>
2

)( 1

ω
U1Σ

−1
1 U>1 + U2U

>
2

)
(3.28)

=
1

ω
U1Σ1U

>
1 U1Σ

−1
1 U>1 + U2Σ2U

>
2 U2U

>
2 (3.29)

=
1

ω
U1U

>
1 + U2Σ2U

>
2 . (3.30)

Substituting this back into equation 3.25 returns

U1U
>
1 +W − ω

(
1

ω
U1U

>
1 + U2Σ2U

>
2

)
= 0, (3.31)
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which yields the result W = ωU2Σ2U
>
2 . Plugging this back into equation 3.24 confirms

that

ωU>1 U2Σ2U
>
2 = 0, (3.32)

ωU2Σ2U
>
2 U1 = 0, (3.33)

‖U2Σ2U
>
2 ‖ = ‖Σ2‖ ≤ 1/ω. (3.34)

With this kernel formulation, LRA is able to parse and align non-linear manifold

subspaces. To show the difference in reconstruction between LRA and kernel LRA, the

reconstruction matrices from the two variants are compared using a small synthetic

data set. These data are points sampled from two intermixed S-curve manifolds,

colored blue and orange in Figure 3.2 (a), and are ordered by manifold. An ideal

reconstruction matrix should have all zero entries in the off-diagonal blocks and any

non-zero entries in the diagonal blocks. The two manifolds are sampled an equal

number of times, so all blocks of the matrix should be of equal size. As shown in

Figure 3.2 (b), standard LRA confuses the two non-linear manifolds, with many low-

value non-zero entries in the off-diagonal blocks. In contrast, kernel LRA has only

trace noise values in the off-diagonal entries, as shown in Figure 3.2 (c), and it uses

more of a neighborhood-based reconstruction.
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(a) Mixture of s-curves in ambient space.

(b) Reconstruction matrix from low
rank alignment (LRA).

(c) Reconstruction matrix from ker-
nel LRA.

Figure 3.2: When embedding highly non-linear and entangled manifolds, like this
mixture of s-curves (a), kernel LRA (c) proves advantageous over standard LRA (b),
as is demonstrated by the reconstruction matrices. LRA (b) conflates the two curves
as seen in the non-zero off-diagonal blocks, whereas KLRA (c) has only trace noise
in those entries.
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3.4 Clustering with LRA

In addition to aligning and embedding high-dimensional data, LRA is also very

effective at clustering data. LRA has two key advantages over other clustering meth-

ods. (1) It is able to distinguish between mixtures of manifolds, even at challenging

manifold junction areas, and so it is able to separate clustered data by manifolds.

Other clustering methods that rely only on a single manifold assumption, Euclidean

distance, or probability measures may fail. (2) It is able to cluster across multiple

heterogeneous data sets that do not share a common feature representation. LRA

accomplishes this by simultaneously aligning multiple heterogeneous data sets and

clustering them. Furthermore, by aligning the disparate data sets first, LRA can

transfer knowledge between the sets, whereby it is able to cluster multiple data sets

more accurately than it could cluster any of the single data sets alone.

For example, when classifying stars and star systems, it is common practice to

observe the object with multiple instruments that record at differing wavelengths and

resolutions. These objects can be used as correspondences between instruments to

help in the alignment of the discordant data sources. It has been shown that the

high-dimensional spectra collected from these objects by the sensors lie on a low-

dimensional manifold or mixture of manifolds [57, 78]. By aligning the data sensors

while clustering, LRA is able to transfer knowledge between instruments to better

analyze the astronomical objects.

To cluster heterogeneous data sets, LRA first calculates the data reconstruction

matrix R = diag
(
R(1), . . . , R(k)

)
∈ RN×N by solving equation 3.1. After calculating

R, the matrix is post-processed to encourage samples on the same manifold to be

embedded in similar regions. To do this, an auxiliary version of R is calculated

R̂ ∈ RN×N as

R̂i,j = |Ri,j|

(
N∑
j=1

|Ri,j|

)−1
. (3.35)
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Thus, the zero blocks in R are preserved in R̂, but the non-zero block diagonals

are normalized such that the rows are convex combinations, i.e., all rows are non-

negative entries that sum to 1. This is a simple transformation that greatly improves

the clusterings produced by LRA. The transformation can be interpreted as a two-

part procedure, replacing signed values with magnitudes and scaling entries. Both of

these actions encourage samples from the same manifold to be embedded in the same

small neighborhood. By using magnitudes instead of signed values, all points drawn

from a single manifold are forced to embed in the same region. Scaling the rows

forces the manifold groupings to be more densely packed. After calculating R̂, the

clustering embedding F is calculated in the same way as standard LRA, by solving

the eigenvalue problem of equation 3.14, where M is replaced by

M̂ = (I − R̂)>(I − R̂). (3.36)

Lastly, the k-means clustering algorithm is applied to F in the low-dimensional shared

space. A step by step listing of the algorithm is presented in algorithm 2.

Algorithm 2: LRA-Cluster

1. Calculate the reconstruction matrix R(i) for each data set Xi ∈ X1 . . . Xk

to form R.

2. Post-process the reconstruction matrix R to form R̂ according to

equation 3.35.

3. Calculate the embedding for each sample F by solving the eigenvalue

problem (1− µ)M̂F + µCF .

4. Use k-means to cluster the aligned embedding F .
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(a) Two mixture of manifold data sets in a shared 2-D ambient
space, with example correspondences indicated by black lines.

(b) The 2-D embedding from manifold alignment and low rank
alignment.

(c) The 1-D embedding from manifold alignment and low rank
alignment.

Figure 3.3: A comparison of 1-D and 2-D embeddings for cluster analysis of two data
sets, where each is a mixture of two sinusoidal manifolds. The ambient dimension of
the data is two, but the intrinsic dimension of all manifolds is one. LRA successfully
disentangles the mixtures of manifolds, aligns the data sets, and embeds the samples
for cluster analysis. Manifold alignment successfully aligns the data sets, but fails
to separate the mixture of manifolds, so cluster analysis remains difficult with this
embedding.
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To demonstrate LRA for clustering, it was first applied to a simple synthetic

data set in Figure 3.3. In this example, there were two data sets where each set

contains two mixed manifolds, where one manifold was sampled from a 1-D manifold

and the second was a parameterized sine curve. The second data set used the same

parameterization as the first data set, so that all points between data sets would

be in correspondence. Moreover, the manifolds in the second data set were linearly

transformed by scaling, translation, and rotation and non-linearly transformed by

adding noise to the parameterization and varying the period of the sine function. To

show how traditional manifold methods fare at aligning and clustering the data, LRA

was compared to manifold alignment (MA). In this case, MA tangles the mixtures of

manifolds together, so while it successfully aligns the data sets, it cannot pull apart the

mixed manifolds. In contrast, LRA for clustering was able to completely and flawlessly

separate the mixtures of manifolds while aligning the data sets. Furthermore, the

preprocessed auxiliary reconstruction matrix R̂ pushed the clusters closer together so

that k-means could handily and perfectly divide the two clusters. However, the MA

embedding was a much greater challenge for k-means, where a clean partitioning was

not possible.

3.5 Actively Learning Correspondences

Typically, machine learning algorithms are passed a set of labeled or unlabeled

data, in batch or on-line, and the algorithm learns from the data it passively receives.

Active learning is a sub-field of machine learning that studies algorithms that can

actively request (labeled) examples from the user. In certain domains, it is often

expensive and laborious, and sometimes impossible, to collect labeled data. When

modeling physical systems, like fluid dynamics or particle interactions, labels can of-

ten only be attained after running intensive computer simulations. When working

with privacy-constrained data, the cost to obtain permission may be great. Chal-
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lenges may be more physical, as when calibrating scientific instrumentation. To build

an instrument-specific calibration regression curve appropriate for a certain class of

samples, standards, samples of known analyte value, must be collected or created and

then sampled by the instrument. In cases like these, it is highly advantageous for

a learning algorithm to select which samples would be most helpful. Rather than

randomly receiving more labels, like a passive online learner, active learners can learn

faster by requesting labels for high-value samples.

The general active learning setup is the following: given a set of unlabeled or

partially labeled data, the learning algorithm, whose goal is to calculate a map be-

tween samples and labels, must request labels for unlabeled examples it has seen or

has generated. Not all labeled samples will be equally helpful to the learner, whether

it be because of noise, geometry, etc, so the goal of the active learner is to identify

these samples. In the task of multi-data set alignment, correspondences between

sets can be difficult to acquire. In the previous instrumentation example, acquiring

correspondences to aid alignment between multiple instruments would require physi-

cally sampling the same standard on at least two of the instruments. In the case of

cross-lingual document retrieval, attaining new correspondences requires an expert to

translate text between languages. In the simplest case, acquiring a correspondence

means requesting a label, but for a full correspondence with n − 1 labels for n-data

sets, actively learning correspondences is especially beneficial.

LRA is naturally amenable to actively learning correspondences. In practice, LRA

primarily uses a smaller subset of the data during the reconstruction step, and it is a

simple matter to identify this subset. To modify algorithm 1, mean center the data

set samples, then a step can be added between 1 and 2 that identifies key samples in

each data set to select as correspondences. After calculating a reconstruction matrix

R(k) ∈ RNk×Nk for the centered data sets X1, . . . , Xn, the active learning importance

score vector τ
(
R(k)

)
∈ RNk can be calculated as
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τ
(
R(k)

)
=

Nk∑
i 6=j

|R(k)
i,j |+ |R

(k)
j,i |. (3.37)

The importance score τ calculates the total magnitude by which each sample is used

to reconstruct other samples. Intuitively, the importance score of a sample is large

when it is frequently used to reconstruct other samples and low otherwise. In some

cases where the magitude of the samples in a data set vary greatly, equation 3.37 can

be modified to incorporate the norm ‖xi‖ as a multiplicative scaling factor to each

sample score.

Once τ has been calculated for all data sets, correspondences can be selected from

each. If an algorithm is allotted c correspondences, then one scheme to pick samples

is to greedily select those c/k from each data set with the largest τ score. This process

continues until all k data sets are processed and c correspondences are requested. If

there is prior knowledge about the data sets being aligned, different selection scheme

may be more appropriate. For example, if one data set is known to be noisier than

others, then fewer samples can be selected from this noisy data set when choosing

correspondences. An overview of the steps is listed in algorithm 3.

Algorithm 3: Active Learning Correspondences for LRA

Input : R, a k block diagonal reconstruction matrix,
c, number of correspondences.

Output: Indices, a k-dimensional array containing indices of selected
correspondences.

begin
Indices[k]← Null
for R(i) : i ∈ (1, . . . , k) do
T ← τ

(
R(i)

)
(from equation 3.37)

for j : (1, . . . , c/k) do
I ← argmax (T )
Indices[k].add(I)
T [I] = 0

end

end

end
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The runtime for the active learning step is minimal because the reconstruction

matrix R is calculated in the first step of LRA. For each of the nk samples in the

k data sets, the magnitude of its reconstruction matrix R(k) must be calculated,

which can be accomplished in O (k · n2
k). This results in k vectors of length nk. The

maximum element of a vector can be found in linear time O (nk), and this must be

done c/k times for each of the k data sets costing O (c · nk). The total runtime is the

quadratic O (c · nk). This results in a runtime of O (k · n2
k + c · nk). If c is large (i.e,

close to nk in value), it may be more efficient to first presort the vectors magnitudes

and select in bulk. This active learning scheme is also naturally parallelizable by

data sets. Furthermore, for very large nk, the rows of R can be batched and the sums

performed in parallel.

3.6 Experimental Results

To evaluate the effectiveness of LRA and kernel LRA (KLRA), experiments were

performed on two very different types of real-world data, spectroscopic data sets and

cross-lingual documents. For comparison, three state of the art alignment techniques

were implemented: (instance-level/non-linear) manifold alignment [82], affine match-

ing alignment [51], and Procrustes alignment [81]. All of the methods evaluated align

data sets by embedding the sets into a shared low-dimensional space. Affine matching

and Procrustes alignment can only align two data sets at a time, and while LRA and

manifold alignment do not suffer this limitation, we chose to limit our experimentation

to alignment problems involving pairs of data sets.

All experiments were implemented in Python by the author, with help from the

machine learning library Scikit-learn [61]. An implementation of LRA is available for

download on the author’s website. 1

1https://github.com/all-umass/lowrank_alignment
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3.6.1 Calibration Transfer

The task of these experiments is calibration transfer (CT). CT is a transfer learn-

ing problem well-studied in chemometrics [10, 30, 64, 93], but largely unknown to the

machine learning community. The general setup of the problem is the following. The

spectra of a set of samples (e.g., rock powders) are recorded on different instruments

or on the same instrument under varying conditions. The goal is to find a mapping

or an alignment between the two (or more) sets of spectra. Frequently in all types

of spectroscopic studies there is a need to ensure that possible differences in envi-

ronmental or experimental conditions are mitigated or negated, allowing data from

multiple instruments to be compared. CT provides an excellent solution to the task of

reconciling data in inter- and intra-lab comparisons on Earth and in extraterrestrial

applications.

Aligning Processed and Raw Spectra

The first data set was a suite of laser-induced breakdown spectra (LIBS) ac-

quired from 100 different geological samples under Mars-like atmospheric conditions

at Mount Holyoke College. LIBS instruments are spectrometers composed of a high

energy laser that pulses a sample to create plasma, which is observed by a charge-

coupled device (CCD) that records the energy emitted. This data set was created in

support of the Mars Science Laboratory mission for the ChemCam instrument, the

LIBS spectrometer on the rover Curiosity [25, 77].

The spectra are provided in two different formats, a raw unprocessed format

recorded directly from the instrument and a processed format that has been cleaned

using the standard ChemCam routine [91]. Briefly, the preprocessing routine includes:

a non-linear transformation to adjust for the CCD’s sensitivity to particular wave-

length regions, iterative wavelet-based noise removal for both background radiation

and Bremsstrahlung (the interference from colliding particles in the plasma), shot
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averaging over a series of pulse integrations, and wavelength-region-specific feature

normalization. The raw spectra have 6609 channels in their feature representation,

while the processed spectra have been transformed to a 6144 channel representation.

In Figure 3.4, example raw and processed spectra from the data sets are shown.

Figure 3.4: Five mineral spectra selected at random from the 100 sample LIBS data
sets. The left hand side shows the raw unprocessed spectra, and the right hand side
shows the corresponding spectra after a series of processing steps.

The task of the experiment was to align the set of raw spectra with the set of

processed spectra. 5-fold cross validation was used to evaluate the competing meth-

ods. In each iteration, correspondences were provided for 80 spectra while the other

20 spectra were used for evaluation. A raw test spectrum was considered correctly

aligned if the corresponding processed spectrum was its nearest neighbor in the em-

bedded space. The results of the experiment are plotted in Figure 3.5.

LRA was the top performing model of those evaluated, with an accuracy of 84%

at embedding dimension d = 16. Kernel LRA (KLRA), using an RBF kernel with

γ = 0.1, performed nearly as well with an accuracy of 78% at d = 17. The other three
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competing models performed about half as well as the LRA methods, with Procrustes

alignment and affine matching both getting 36% accuracy.

Figure 3.5: Cross validation results of 100 sample raw/processed LIBS spectra align-
ment experiment, including bars indicating the standard error of the mean.

High and Low Laser Power Spectra

The next CT experiment used a 159 sample LIBS data set of crushed mineral

mixtures recorded at Mount Holyoke College. The samples were recorded on the same

instrument under a low and high laser power setting, 3% and 5% power respectively,

as seen in Figure 3.6. Like the previous experiment, the spectra were processed

according to [91]. The resultant spectra were 6144-dimensional real-valued vectors,

where each feature corresponded to the response of a particular wavelength channel

between 225-925 nm.

42



Figure 3.6: Five mineral spectra selected at random from the LIBS data sets. The
left hand side shows the spectra recorded with a high power laser, and the right hand
side shows the corresponding spectra recorded at a low power.

The task of this experiment was to align the set of low power spectra with the

set of high power spectra. A low power spectrum was considered correctly aligned

if the corresponding high power spectrum was within its 5-nearest neighbors in the

embedded space.

For all models evaluated, the correspondence weight was set to µ = 0.8, based

upon the ratio of train/test data. All competing models required an additional near-

est neighbor hyperparameter. This hyperparameter was optimized using grid search

and cross validation. For affine matching and Procrustes alignment the number of

neighbors used was k = 10, and for traditional manifold alignment k = 4. For all of

these competing methods, a binary weight was used in the graph construction because

it proved more accurate than the heat kernel for this experiment.

The 5-fold cross validation results are shown in Figure 3.7. In each iteration, the

training samples were provided as correspondences and the test samples were used
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for evaluation. LRA outperformed all other models tested, achieving an accuracy of

67.8% at d = 16. The next best performing model, KLRA with a degree 3 polyno-

mial kernel, had an accuracy of 56.3% at d = 66. The three non-LRA methods all

performed comparably well, manifold alignment 42.0%, Procrustes alignment 38.7%,

and affine matching 36.5%.

Figure 3.7: Cross validation results of the hi/low power LIBS spectra alignment
experiment, including bars indicating the standard error of the mean.

In this last test, it was assumed that all of the spectra were recorded at both

power settings, but in reality CT is often used when only a portion of the sample set is

recorded under both conditions. For example, a researcher may have a large database

recorded at high power that he or she uses to fit a regression model for predicting the

chemical compositions (% weight) of the spectra. As commonly occurs, the researcher

also has a smaller calibration set recorded at both high and low powers. Unfortunately,

an unforeseen instrument malfunction occurs allowing the spectrometer to only use

low power. To predict subsequent low power spectra using the high power database,

an alignment must be calculated.
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To simulate this situation, an alignment was calculated using 30 samples at both

powers (the calibration set), 50 samples at only high power (the large database), and

20 samples at only low power. The 20 low power samples represent the out-of-sample

spectra recorded after instrument malfunction. To note, this results in a non-square

correspondence matrix C(X,Y ).

Next, a multivariate linear regression model was trained to predict 10 major el-

ements of the minerals (e.g., SiO2, Al2O3, CaO) using the embedded high power

database and the embedded calibration samples. To evaluate the regression model,

the compositions of the 20 embedded low power spectra were predicted and compared

to ground-truth composition values.

Setting d = 8, the experiment was repeated 30 times with randomized sets. The

regression model trained on LRA achieved on average a 1.8%, 4.8%, and 8.1% im-

provement in RMSEP over affine matching, Procrustes alignment, and traditional

manifold alignment, respectively. This shows that the high accuracy of LRA in align-

ment translates to improved performance in the final predictive model.

3.6.2 European Parliament Proceedings

In this second set of experiments, we used the transcribed proceedings of the

European Parliament [48] for a standard cross-language document retrieval task. The

task is simply stated: given a document in one language, find its matching document

in the second language. The parliament corpus was collected between April 1996

and November 2011 and transcribed into 21 European languages. In the corpus, each

utterance of a speaker was transcribed into paragraphs of typically 2-5 sentences. This

data set is commonly used when comparing manifold alignment algorithms [81,84].

In the first experiment, we align the German corpus with the English corpus, and

in the second experiment we align the Italian corpus with the English corpus. We

chose these languages because each had approximately 1.9 million sentence pairs.
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To represent the utterances, a bag-of-words model was used, where the 2500 most

frequently occurring words were considered, after filtering for stop-words. Unlike

methods like [31] and [63] that used domain knowledge in their model preprocessing,

we used a simple statistical model to compare the different alignment methods more

directly. To pare down the data set for efficient experimentation, only sentences with

more than 45 words were used, resulting in a subset of 1200 sentence pairs for both

English-German and English-Italian experiments. For accurate method comparison,

we used 5-fold cross validation. In each fold, 80% of the sentence correspondences

were provided and the remaining 20% of the sentences were used for evaluation. To

evaluate a sentence alignment, we define a correct translation as a sentence embedding

where the true correspondence pair appears within the 10-nearest neighbors in the

embedded space.

All LRA methods used the same default correspondence weight µ = 0.8. KLRA

used an RBF kernel with the bandwidth set to γ = 0.1. Grid search and cross

validation were used to tune the number of nearest neighbors for all competing models.

For affine matching and Procrustes alignment k = 125, and for manifold alignment

k = 5.

Results of the text alignment test are shown in Figure 3.8. KLRA outperformed

all other evaluated models in the English-German experiment and the English-Italian

experiment, with an accuracy of 94.3% at embedding dimension d = 80 and 96.8%,

respectively. Traditional LRA performed a few percent worse than KLRA on both

the English-German and the English-Italian experiments, with an accuracy of 90.1%

and 93.3%, respectively. In contrast, the three non-LRA methods, affine matching

having the highest accuracy, performed about half as well as LRA.

Traditional manifold alignment was clearly the worst-performing model. Affine

matching and Procrustes alignment are both two-step algorithms in the sense that

they rely on a second transformation after the embedding step. In contrast, manifold
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alignment and LRA are one-step algorithms that incorporate these constraints into

their embeddings and so could be seen to place more importance on their ability

to recover the shared manifold of the data sets. This skewed performance between

methods suggests that the corpora are drawn from mixtures of manifolds.

Figure 3.8: Cross validation results of the EU parallel corpus experiments for the
English-German sentence pairs (top) and the English-Italian sentence pairs (bottom),
including bars indicating the standard error of the mean.
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3.6.3 Clustering News Topics

The effectiveness of clustering with LRA on real-world problems is demonstrated

by a cross-lingual clustering experiment. The data set used was a publicly available

collection of news documents from Reuters where each document is available in five

languages: English, French, German, Italian, and Spanish [2]. Each article has been

categorized, and for this experiment, six of the most populous categories were selected:

C15, CCAT, E21, ECAT, GCAT, and M11. The whole data set consists of 12-30K

documents per language (depending on the language) and 13-20k documents per

class. To make the problem more computationally tractable, 300 documents for

each language comparison were randomly selected from each category totaling 1800

samples. The data were represented as a bag of words model and then transformed

using a TF-IDF-based weighting scheme. The top 11-35K words were used for each

language.

To measure the quality of the clustering, two metrics were used: the adjusted

rand score (ARS) and the adjusted mutual information score (AMIS). The traditional

rand score (or index) is like a measure of accuracy between two clusterings. Standard

accuracy cannot be used because the true clustering is only known up to a permutation

of the labels. The ARS is a corrected-for-chance version of the rand score. ARS

values range from (−∞, 1], where 1 is a perfect score. Mutual information (MI)

is an information theoretic measure of the mutual dependency between two random

variables, where the clusterings are the variables. The AMIS is a corrected-for-chance

version of the MI score. The AMIS is 1 when the clusterings are equal and 0 when

the MI between the clusterings equals to that expected by chance.

A total of four experiments were run, where each non-English language was aligned

and clustered with English. Each experiment was repeated with 10 random trials,

and one standard deviation is reported for both metrics. Two versions of LRA were

included, one where 25% of the correspondences were provided (LRA-25%) and one
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where 50% of the correspondences were provided (LRA-50%). These were compared

to two alternate methods, latent semantic analysis (LSA) [40, 43] and spectral clus-

tering (SC) [73]. Because the data were provided in only TF-IDF format, standard

methods like latent Dirichlet allocation (LDA) [7] could not be used. Also, because

SC required all of the data to be in the same representation, LSA was used to first

transform the samples in both languages to a 100-dimensional space, and then spec-

tral clustering was applied. For all algorithms evaluated, the clustering was performed

in 10-dimensional space. Results of the experiments are listed in Table 3.1. Overall,

SC was the worst performing method. This is potentially due to the required LSA

preprocessing. Also, similar to LSA, SC does not first align the data sets and cannot

use the correspondences in its embedding. So when combining different data sets,

neighborhood-based methods like SC can have a difficult time accurately measur-

ing distances between samples across data sets. LSA generally performs better than

SC, but it was a method made specifically for classifying and clustering text data.

However, LSA still does not match the performance of either LRA model. LRA-

50% has the highest scores for both metrics on all four experiments. As expected,

it consistently outperformed LRA-25%; however, there were diminishing returns on

the number of correspondences, whereby LRA-50% did not perform twice as well as

LRA-25%.

3.6.4 Actively Learning Synthetic Correspondences

To examine the effectiveness of the τ -score, it was first applied to two synthetic

examples. First, a simple two-data set synthetic example was examined, where the

ambient dimension was 2 and the intrinsic dimension was 1. The first data setX(1) was

composed of samples drawn uniformly from two crossed 1-dimensional parameterized

sine curves y = f(x) = (0.2) sin (kx) with varying periods k = 2, 20. The second

data set X(2) was a copy of the first that has been rotated, translate, and scaled.
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Adjusted Mutual Information Score
French German Italian Spanish

LRA-25% 0.202± 0.036 0.194± 0.014 0.150± 0.052 0.190± 0.053
LRA-50% 0.247± 0.038 0.244± 0.034 0.216± 0.045 0.225± 0.032
LSA 0.137± 0.017 0.147± 0.010 0.140± 0.010 0.117± 0.017
SC 0.076± 0.007 0.073± 0.001 0.083± 0.004 0.018± 0.001

Adjusted Rand Index Score
French German Italian Spanish

LRA-25% 0.133± 0.044 0.135± 0.039 0.105± 0.047 0.127± 0.049
LRA-50% 0.174± 0.036 0.177± 0.026 0.130± 0.045 0.153± 0.026
LSA 0.068± 0.009 0.083± 0.013 0.079± 0.007 0.048± 0.010
SC 0.015± 0.003 0.011± 0.000 0.016± 0.000 0.080± 0.003

Table 3.1: Results from clustering Reuters cross-lingual data set comparing low rank
alignment given 25% correspondences (LRA-25%) and given 50% correspondences
(LRA-50%), latent semantic analysis (LSA), and spectral clustering (SC). For both
metrics, higher is better.

In this experiment, the accuracy of the alignment was measured as the number of

correspondences c was varied. As a baseline comparison, the τ -score was compared

to randomly selected correspondences. For each setting of c, the random baseline

experiment was repeated 1000 times. It was also compared against the Kennard-

Stone (KS) representative subset selection algorithm [47]. In the KS algorithm, the

sample closest (in Euclidean space) to the mean was first selected for the training set,

then the set was constructed iteratively, where the next sample chosen was the one

farthest from the closest current training set sample [18]. To measure the accuracy

of the alignment, because both data sets used the same parameterization, meaning

all samples are technically in correspondence but not revealed to the algorithm, the

accuracy of the alignment can be directly measured as

error(F ) =
1

k

k∑
i 6=j

∥∥F (i) − F (j)
∥∥ , (3.38)

where F (1) and F (2) are the LRA embeddings of X(1) and X(2), respectively.

50



Figure 3.9: Results of the two active learning experiments performed on synthetic
data. Three methods were used to actively learn correspondences for low rank align-
ment (LRA): our active learning algorithm (Active), the Kennard-Stone representa-
tive subset selection algorithm (KS), and random selection. The error is defined in
equation 3.38.

Results of this experiment are displayed in Figure 3.9. In this simple sine ex-

periment, active learning outperformed the competing methods, for all numbers of

correspondences c. The drop in error was so dramatic because the underlying man-

ifolds were simple 1-D line segments. Active learning requested the four ends of the

segments first, and it was able to fully disentangle the manifolds and embed them with

little loss after only three correspondences. In comparison, because the KS algorithm

iteratively selects samples dissimilar to those already selected, it did not choose the

segment ends in the second manifold. The random selection method decayed more

smoothly and slowly than the other methods, indicating that the underlying LRA

operation performs smoothly when randomly given correspondences.
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The second synthetic experiment was aligning two sets of intersecting planes in

3D. In each set, a plane was uniformly randomly sampled from the set of triplets:

{(x, y, 0) : x, y ∈ [0, 1)}.

Afterward, a second plane with the same parameterization was then created and

transformed by random rotations and translations. This problem was difficult because

all four of the planes were overlapping and intersecting one another. This experiment

was repeated for 100 random trials. Results of the experiments are shown in Figure

3.38. Because of the much larger sample size than the previous example, the error

curves for all of the methods evaluated were smoother. Initially when c < 25%,

because the KS method uniformly selects points in a grid-like fashion from the planes,

it performed better at selecting a representative set. With a smoother manifold than

the previous example, there were fewer intuitive key samples, so the active learning

approach did not surpass the competing methods until c >= 25%. The active learning

method tended to select central points on the planes and diffuse out towards the edges.

Both KS and random had nearly identical performance, and both lagging considerably

behind the active method in performance.

3.6.5 Learning Cross-lingual Correspondences

To examine the effectiveness of this active learning method on real-world data, the

technique was applied to the same multi-lingual European Parliament Proceedings

data set used in section 3.6.2. Two alignment experiments were performed: first a

set of English documents was aligned with their matching German documents, and

second, the experiment was repeated aligning a set of English and Italian documents.

In each experiment, 1000 documents per language were randomly selected from the

corpus. The same normalized bag-of-word representation (as in section 3.6.2) was

used for both experiments. The number of correspondences was varied from 10% to
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100%, and the same direct error from equation 3.38 was used to measure the quality

of the alignment. The KS selection algorithm computation was much too slow to be

included in this experiment, so instead the active learning method was only compared

to the random correspondence baseline. For each setting of correspondence number

(e.g., c = 10%), the average of 10 random trials was calculated, where a new set of

documents was selected in each trial.

Results from this experiment are listed in Table 3.10. The τ -score active learning

scheme proved effective at this real-world domain. In both German-English and

Italian-English experiments, the active learning model significantly outperformed

correspondences selected at random. The English-Italian alignment proved more

amenable to active learning, where for c >= 50% the error of the baseline double or

more the error of the actively selected correspondences. The English-German align-

ment showed a similar pattern of performance, with the exception of c = 40%, where

a dip in performance from the active learning method matched that of the baseline

method.
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Figure 3.10: Results of the active learning cross-language experiment, using Euro-
pean Parliament proceedings. Low rank alignment is to align English and German
documents and English and Italian documents. The error is defined in equation 3.38.

3.7 Remarks

This chapter presented a novel framework for manifold alignment that can align

data sets drawn from a mixture of manifolds. Unlike previous manifold alignment

algorithms that rely on nearest neighbor graph construction, LRA instead uses a

low rank matrix constraint to calculate its reconstruction weight matrix, which was

demonstrated to be less prone to short-circuit connections. Algorithms for both

linear and non-linear manifolds were presented. A small modification was introduced

to improve its performance for downstream clustering. Lastly, a method for actively

selecting the most beneficially correspondences was described.
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CHAPTER 4

ALIGNING MANIFOLDS UNDER NOISY CONDITIONS

Real-world data are often corrupted or noisy in nature, and these nuisances can

make aligning data sets difficult. While there are many sources of noise, a few types

of noise are described in this chapter, along with specific algorithms for solving them.

These robust modifications require a new iterative LRA algorithm.

Two general forms of noise are illustrated in Figure 4.1. First, there is general

set-wide noise, which can range from mild to severe, where the data are slightly per-

turbed around the manifolds. Second, there is sample-specific noise that are outliers

from the data distribution. Local neighborhood-based manifold methods are espe-

cially susceptible to noisy samples and outliers, and a number of methods have been

proposed to solve this problem [15,36].

4.1 Sparse and Low Rank Alignment

The reconstruction weight matrix R is composed of dense blocks R(X1), . . . , R(Xm).

These dense weight matrices can form a fully connected graph, where all samples

across all manifolds, not just neighbors, are connected. Ideally, only neighbors on

the same manifold are connected. This implies that given the proper row ordering,

whereby samples from the same manifold are stacked adjacent in blocks of the matrix,

the resulting data set reconstruction matrix R(Xk) should be block diagonal. The off-

diagonal zero entries show there are no short-circuits between the multiple manifolds.

To make the math of this section more readable, we will use R in place of R(Xk)

because this section applies on a per-data set basis. This should not be confused with
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(a) A clean sampling from a mixture of three in-
tersecting manifolds.

(b) Examples of outliers are points colored in red.

(c) A moderate amount of general noise. (d) A severe amount of general noise.

Figure 4.1: Examples of the types of noise encountered during manifold.

the block-diagonally constructed joint data reconstruction matrix R from equation

3.6. Using the standard LRA algorithm, the reconstruction matrix found in step

one (equation 3.1) may contain small amounts of noise in the off diagonal entries.

To eliminate these noisy short-circuits from the LRA algorithm, an additional ‖·‖1

penalty can be added to the reconstruction matrix,

min
R

1

2
‖X −RX‖2F + λ ‖R‖∗ + µ ‖R‖1 , (4.1)

where µ is a non-negative hyperparameter controlling the sparsity of the reconstruc-

tion matrix R.
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Equation 4.1 is convex but non-differentiable, and while the low-rank penalty

alone has a closed form solution, unfortunately the sparse low-rank penalty has no

known closed form solution. Instead, the equation can be optimized using the ADMM

algorithm [11]. Forward-backward splitting and proximal descent methods could also

be used [68], but in practice, ADMM converged much faster than these two methods.

The generic ADMM optimization problem considers convex functions f and g and

minimizes the constrained equation

min f(x) + g(z) subject to Ax+Bz = c. (4.2)

In the case of sparse LRA, it is f(X) = 1
2
‖X −RX‖2F , g(Z) = λ ‖Z‖∗+µ ‖Z‖1, with

the constraint R = Z. Constructing the loss function by splitting variables R and Z

allows the differentiable and non-differentiable terms of equation 4.1 to be optimized

separately. To impose the equality constraint R = Z the augmented Lagrangian Lρ

is formed

Lρ(R, Z,L) =
1

2
‖X −RX‖2 + λ ‖Z‖∗ + µ ‖Z‖1 + 〈L,R− Z〉+

ρ

2
‖R − Z‖2 , (4.3)

where L is the Lagrange dual variable to enforce the equality constraint and ρ > 0 is

a penalty parameter controlling the rate of convergence by enforcing equality.

To optimize equation 4.3, the ADMM algorithm iterates over three steps:

Rk+1 = arg min
R

Lρ(R, Zk,Lk) (4.4)

Zk+1 = arg min
Z

Lρ(Rk+1, Z,Lk) (4.5)

Lk+1 = Lk + ρ(Rk+1 − Zk+1). (4.6)

The first step (4.4) is a minimization of R. This can be solved in closed form using

standard matrix calculus techniques, resulting in
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Rk+1 =
(
X>X + ρI

)−1 (
X>X + ρZk − Lk

)
. (4.7)

The second step (4.5) is a minimization of Z. This is non-differentiable, so standard

gradient methods cannot be used. Instead, the proximal operator proxλg (x) of the

function g : D 7→ R is used,

proxλg (x) = argmin
u∈D

(
g(u) +

1

2λ
‖u− x‖22

)
, (4.8)

where λ > 0 is a mixing parameter controlling how far x is allow to stray from u to

minimize g. The proximal operator (or mapping) can be interpreted as a generaliza-

tion of the projection operator. If x is outside the domain D of g, then proxλg (x) will

map x to a point in D that also minimizes g. Moreover, if g is the indicator function

of a set C, then proxλg (x) is the Euclidean projection onto C.

The proximal operator can also be interpreted as a type of gradient descent op-

erator because it minimizes the function. Using this, the minimization problem in

equation 4.5 is rewritten as

Zk+1 = arg min
Z

(
λ ‖Z‖∗ + µ ‖Z‖1 − trace

(
Lk>Z

)
+
ρ

2

∥∥Rk+1 − Z
∥∥2
F

)
= arg min

Z

(
g(Z) +

ρ

2

∥∥∥∥Rk+1 +
1

ρ
Lk − Z

∥∥∥∥2
F

)

= prox g
ρ

(
Rk+1 +

1

ρ
Lk
)
, (4.9)

where trace(·) is the matrix trace. Therefore, to optimize 4.5, only the proximal

operator of g need be calculated.

The proximal operator of a vector norm h = ‖·‖ is proxλh (x) = x − λ
∏
B(x/λ),

where
∏
B is the projection onto the unit ball B of the norm. For a proof see section
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6.5 of [60]. From this, the proximal operator for the l1 norm, called soft thresholding,

can be deduced. The soft thresholding operator is defined as

proxµ‖·‖1 (Z) =


Zi,j − µ, Zi,j > µ

0, |Zi, j| ≤ µ

Zi,j + µ, Zi,j < −µ

. (4.10)

Here the vector norm is applied entry-wise to the matrix Z. This piece-wise definition

can be defined as a single function

proxµ‖·‖1 (Z) = sign(Z) ·max (0, |Z| − µ) . (4.11)

The nuclear norm is a Schatten matrix norm, i.e., ‖Z‖∗ = ‖diag (Σ)‖1 for

SVD(Z) = UΣV >, and so is equal to the proximal operator of the l1-norm applied to

the vector of singular values in the SVD,

proxλ‖·‖∗(Z) = U
(

proxλ‖·‖1 (Σ)
)
V >. (4.12)

Because ‖·‖∗ and ‖·‖1 are both norms, they are necessarily closed convex, positive

homogeneous functions. Therefore, Theorem 4 of Yu [96] applies, and the sum of

operators is equal to their composition,

proxµ‖·‖1+λ‖·‖∗ = proxµ‖·‖1 ◦ proxλ‖·‖∗ . (4.13)

Thus, step (4.5) reduces to

Zk+1 = proxµ‖·‖1

(
proxλ‖·‖∗

(
Rk+1 +

1

ρ
Lk
))

. (4.14)
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To preserve the sparsity of Z, it is recommended that the composition be performed

in this order. Furthermore, while Z converges to R, computationally in practice it is

often better to return Z to preserve zero-value entries.

The last step (4.6) is an update of the Lagrange dual variable L. These three steps

are repeated until the variables Z and R converge. A simple test for convergence is if

∥∥Zk+1 − Zk
∥∥ / ∥∥Zk+1

∥∥ < εtol and
∥∥Rk+1 −Rk

∥∥ / ∥∥Rk+1
∥∥ < εtol (4.15)

for some small tolerance like εtol = 10−4. Alternately, convergence of the primal resid-

ual
∥∥Rk+1 − Zk+1

∥∥ and the dual residual
∥∥ρ(Zk+1 − Zk)

∥∥ can be used for stopping

criteria. See section 3.3.1 of [11] for greater detail.

The sparse LRA algorithm differs from the standard LRA algorithm only in the

reconstruction step. Algorithm 4 details this step. The runtime of this algorithm is

dominated by the singular value decomposition in the SVT step, which is cubic time.

Note that the most outer loop can be easily parallelized between CPUs or computers.

In practice, ADMM typically converges quickly to a good solution. To decrease

the computational burden of solving equation 4.4 in each iteration, the (symmetric,

positive semi-definite) term X>X + ρI may be decomposed into triangular matrices

using the Cholesky decomposition. Performing this operation once before gradient

descent makes all subsequent calculations of Rk+1 more efficient. Instead of iterating

through the subsets X(i) sequentially, the gradient descent calculations of R(i) can

be naturally parallelized into k current processes. For extremely high-dimensional

data with thousands of features or more, it may be computationally advantageous to

distribute the problem across features. This is detailed in section 8.3 of [11].

4.2 Robust LRA

The last section introduced a version of LRA that reduces noisy short-circuit con-

nections in the reconstruction matrix, which works well at reducing noise in manifold
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Algorithm 4: Sparse LRA Reconstruction Step

Input : X = diag
(
{X(i) : i ∈ (1, . . . , k)}

)
, the block diagonal data matrix,

µ, weight of the sparsity norm,
λ, weight of the low-rank norm, default 1.

Output: R, a k block diagonal reconstruction matrix.
begin

for X(i) ∈ X do
Initialize R(i), Z,L ← 0, ρ← 1e−5.
while not converged do

R(i) ←
(
X(i)>X(i) + ρI

)−1 (
X(i)>X(i) + ρZk − Lk

)
U,Σ, V > ← SVT

(
R(i) + L/ρ

)
Z ← U diag (max (0,Σ− λ)) V >

Z ← sign(Z) ·max (0, |Z| − µ)
L ← L+ ρ

(
R(i) − Z

)
end

end

R← diag
(
{R(i) : i ∈ (1, . . . , k)}

)
end

intersection areas. However, this does not directly address the case where the data

are corrupted by outliers or sampled noisily from their underlying manifolds. In this

section, a robust version of LRA is presented that corrects this problem by directly

modeling the error term. Modeling the error removes it from the reconstruction prob-

lem and may also provides insight to the researcher about the nature of their data

collection techniques.

To dissect the noise from the data, in step 1 of LRA, for each data set Xi for

i = 1, . . . , k, equation 3.1 is replaced with

arg min
Ri

‖Xi − (RiXi + Ei)‖2F + α ‖Ri‖∗ + β
∥∥E>i ∥∥2,1 , (4.16)

where Ei ∈ RNi×Di is an error term modeling the noise. For an arbitrary matrix

A ∈ Rr×p, its l2,1-norm is the defined as
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‖A‖2,1 =
r∑
i=1

√√√√ p∑
j=1

A2
ij. (4.17)

This is simply the sum of the Euclidean norm of the columns of A, and the penalty

enforces column-wise smoothness and sparsity.

To better understand the effects of the l2,1 norm penalty, a synthetic example

is shown in Figure 4.2. Let A ∈ R20×20 be a matrix whose first sixteen columns

[a1a2 · · · a16] are drawn i.i.d. and last four columns [a17 · · · a20] are outliers. To opti-

mize equation 4.16 and enforce the penalty, the proximal operator proxl2,1 (A) will be

used, where

proxl2,1 (A) = min
Z
α||Z||2,1 +

1

2
||Z − A||2F . (4.18)

The optimal solution Z is defined column-wise such that the i-th column is

Z (:, i) =


‖ai‖−α
‖ai‖ ai, if α < ‖ai‖

0, otherwise.
(4.19)

After applying the proximal operator to A, its last four outlier columns were driven

to zero, and the values between rows were smoothed and made less saturated by high

value peaks.
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Figure 4.2: On the left is a matrix A where the first 16 columns are drawn i.i.d and
the last 4 columns are outliers. On the right is the matrix proxl2,1 (A) after applying
the l2,1 proximal operator. Notice that the outliers have been eliminated and between
the rows have been smoothed.

An extended version of ADMM can be used to optimize 4.16 that simultaneously

solves for both the reconstruction term R and the error term E. The extension

requires two different Lagrange multipliers, a new multiplier L1 that enforces the

constraint E = X − RX, and the usual multiplier L1 that enforces the constraint

R = Z. As was done in equation 4.3, the augmented Lagrangian is formulated as

L(Z,R,E,L1,L2) = λ ‖Z‖∗ + µ
∥∥E>∥∥

2,1

+ 〈L1, X −RX − E〉+
ρ

2
‖X −RX − E‖2F

+ 〈L2, R− Z〉+
ρ

2
‖R− Z‖2F . (4.20)

To minimize L using ADMM, each of the variables being solved R,Z,E,L1,L2

must must be updated in each iteration. The Z-update step is derived in a similar

way as equation 4.9; however, in the second line, g is the operator g(Z) = ‖Z‖∗

defined in equation 4.12. Define singular-value thresholding as
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SVTµ(X) = U max (0,Σ− µ)V > for U,Σ, V > = SVD (X) . (4.21)

Then the Zk+1 update step is defined as

Zk+1 = arg min
Z

λ ‖Z‖∗ + 〈L2, R− Z〉+
ρ

2
‖R− Z‖2F

= arg min
Z

λ ‖Z‖∗ +
ρ

2
tr

(
ZZ> − 2RZ> − 2

ρ
L2Z

>
)

= arg min
Z

λ ‖Z‖∗ +
ρ

2

∥∥∥∥Z −R− 1

ρ
L2

∥∥∥∥2
F

= prox 1
ρ
‖·‖∗

(
R +

1

ρ
L2

)
= SVTρ−1

(
R +

1

ρ
L2

)
. (4.22)

The update step Ek+1 is calculated, and it too will result in a proximal operator

update. Collecting the applicable terms from equation 4.20 results in

Ek+1 = arg min
E

µ
∥∥E>∥∥

2,1
+ 〈L1, X −RX − E〉+

ρ

2
‖X −RX − E‖2F

= arg min
E

µ
∥∥E>∥∥

2,1
+
ρ

2
tr

(
E>E + 2X>R>E − 2X>E − 2

ρ
L>1 E

)
= arg min

E

µ

ρ

∥∥E>∥∥
2,1

+
1

2

∥∥∥∥E> −X> +X>R> − 1

ρ
L>1
∥∥∥∥2
F

= proxµ
ρ
‖·‖2,1

(
X> −X>R> +

1

ρ
L>1
)
. (4.23)

In equation 4.19, the ‖·‖2,1 proximal operator is defined.

The update step Rk+1 is derived using traditional calculus methods. First, the

terms containing R are collected from equation 4.20 and expanded,

Rk+1 = arg min
R
〈L1, X −RX − E〉+

1

2
‖X −RX − E‖2F + 〈L2, R− Z〉+

ρ

2
‖R− Z‖2F

= arg min
R

tr
(
L2R− L1 +

ρ

2

(
RXX>R> − 2XX>R> + 2EX>R> +RR> − ZR>

))
.
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Next, the critical points are found by taking the derivative, resulting in

ρR
(
XX> + I

)
+ L2 − L1X

> + ρ (E −X)X> + ρZ = 0. (4.24)

And so the update step Rk+1 is defined as

Rk+1 =

(
1

ρ

(
L1X

> − L2

)
+ Z + (X − E)X>

)(
XX> + I

)−1
. (4.25)

The two Lagrange multipliers L1,L2 are dual variables, and they monotonically

accumulate in their update step. The update steps enforce the two constraints on the

and so are

Lk+1
1 = Lk1 + ρ (X −RX − E) (4.26)

Lk+1
2 = Lk2 + ρ (R− Z) . (4.27)

Algorithm 5 describes the robust LRA algorithm step-by-step. Its complexity is

dominated by the singular-value thresholding in the Z update step. In this case,

since R is a square n× n matrix, the runtime is O(n3); however, since the algorithm

processes each data set X(i) individually, the running time is dependent on the cardi-

nality of the largest data set max{|X(1)|, . . . , |X(k)|}. Moreover, the running time of

the algorithm can be greatly shortened by parallelizing the computation. The outer

for -loop X(i) ∈ X can be mapped across systems and processed concurrently. The R

update step can also be made faster by first calculating the Cholesky decomposition

of the inverse term
(
XX> + I

)
. To use the Cholesky decomposition, the matrix must

be symmetric and positive definite. Because of the quadratic term XX> the matrix

is necessarily symmetric and positive semi-definite. The addition of the identity term

ensures all the singular values are greater than or equal to one, and so the matrix is

also positive definite. The complexity of taking the decomposition is O(n3), but the

least squares problem that must be solved each iteration can be much faster.
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Algorithm 5: Robust LRA Reconstruction Step

Input : X = diag
(
{X(i) : i ∈ (1, . . . , k)}

)
, the block diagonal data matrix,

µ, weight of the l2,1 norm,
λ, weight of the low-rank norm, default 1.

Output: R, the k block diagonal reconstruction matrix, E, the error matrix.
begin

for X(i) ∈ X do
Initialize R(i), Z,L1,L2 ← 0, ρ← 1e−5.
while not converged do

U,Σ, V > ← SVT
(
R(i) + ρ−1L

)
Z ← U diag (max (0,Σ− λ)) V >

R(i) ←
(
ρ−1

(
L1X

(i)> − L2

)
+ Z + (X − E)X(i)>) (X(i)X(i)> + I

)−1
E ← X(i)> −X(i)>R(i)> + ρ−1L>1
for j ∈ 1, . . . , Nk do

ξ ←
∥∥X(i)[·, j]

∥∥
if ξ > µ then

E[:, j]← ((ξ − µ)/ξ)E[:, j]
end
else

E[:, j]← 0
end

end

L1 ← L1 + ρ
(
X(i) −R(i)X(i) − E

)
L2 ← L2 + ρ

(
R(i) − Z

)
end

end

R← diag
(
{R(i) : i ∈ (1, . . . , k)}

)
end
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4.3 Experimental Results

4.3.1 Synthetic Reconstruction Noise

To show the effectiveness of adding the sparsity term to LRA for a simple syn-

thetic mixture of two manifolds X (a), the reconstruction matrix R(X) calculated by

(b) locally linear embedding (LLE), (c) LRA, and (d) sparse LRA are compared in

Figure 4.3. The samples (rows) of the data matrix X are ordered according to their

manifold, where the blue horizontal manifold is listed first from left to right and the

orange vertical manifold is listed second from top to bottom. The two manifolds are

parameterized sine curves y = (0.2) sin (kx) with varying periods k = 2, 20.

To construct R(X), LLE first calculates the nearest neighbors for each sample, in

this experiment, five neighbors were used, then each sample is reconstructed from

its neighbors in a barycentric manner by solving a system of linear equations. At

the intersection of the two manifolds, LLE creates a number of strong short-circuits

incorrectly fusing the manifolds together.

Rather than selecting exclusively neighboring points, the reconstruction matrix

calculated by LRA is dense. The reconstruction values with high magnitudes are

on the block diagonals, while only small magnitude noise values populate the off

diagonal blocks. The block diagonal entries are correctly high, but to ideally separate

the manifolds, the off diagonals entries should be zero.

Like LLE, the reconstruction matrix SLRA produces is sparse, but more impor-

tantly, its sparsity is primarily on the off diagonal blocks. This means that SLRA is

correctly eliminating the noisy connections between the manifolds in its reconstruc-

tion.
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(a) Samples X drawn from a mixture of two mani-
folds.

(b) R(X) generated by locally linear embedding (LLE)
with 5 neighbors.

(c) R(X) generated by low rank embedding (LRA). (d) R(X) generated by sparse low rank embedding
(SLRA).

Figure 4.3: A mixture of manifolds X (a) and the associated reconstruction matrix
R(X) from LLE, LRA, and SLRA. The samples (rows) in R(X) are ordered according
to the manifolds, with the blue points listed first from left to right, followed by the
orange points listed from bottom to top. Ideally, the off-diagonal entries are zero,
indicating there are no short-circuits between the two manifolds. LLE mixes together
the manifolds at their junction, LRA has small noisy values in the off-diagonals, and
SLRA does the best at differentiating the manifolds; however, it does not define the
manifolds with neighborhoods like LLE.
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4.3.2 Aligning Noisy News

To show the effectiveness of robust LRA on real-world data, the multi-lingual

categorical Reuters data set from section 3.6.3 was used again. The data are news

documents collected from Reuters from six popular categories in five languages: En-

glish, French, German, Italian, and Spanish [2]. The data were represented as a

TF-IDF transformed bag of words model using the top 11-35K words were used for

each language.

Two sets of experiments were performed. In each set, English language news ar-

ticles were aligned with French, German, Italian, and Spanish articles, individually,

making for four different alignment tests. In the first set of four experiments, the data

were moderately corrupted with mean zero additive Gaussian noise, and in the second

set, data were highly corrupted with a higher variance noise. For each experiment,

400 documents from English were aligned with the same documents in one of four

foreign languages. For each alignment, 20% of the documents were randomly selected

and provided to the algorithm as correspondences. After aligning and embedding the

documents, a k-means algorithm was applied to make cluster predictions. Two met-

rics were used to evaluate the performance: adjusted mutual information (AMI) score

and adjusted rand index (ARI) score. These metrics are described in section 3.6.3.

Each experiment was repeated 20 times, with randomly selected correspondences in

each iteration.

Results of all the noisy Reuters experiments are listed detailed in Table 4.1. In

each test, RLRA outperformed or matched the performance of traditional LRA. As

expected, the difference between the methods using the moderately corrupted data

was smaller than their difference using the highly corrupted data. This suggests that

there is a practical trade-off in using RLRA or LRA, between robustness to noise and

an increased computation time required by the iterative algorithm.
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Highly Corrupted Data
Adjusted Mutual Information Score

French German Italian Spanish
LRA 0.130± 0.015 0.184± 0.020 0.128± 0.015 0.128± 0.019
R-LRA 0.173± 0.016 0.227± 0.009 0.166± 0.020 0.168± 0.017

Adjusted Rand Index Score
French German Italian Spanish

LRA 0.141± 0.016 0.197± 0.025 0.137± 0.014 0.110± 0.022
R-LRA 0.184± 0.018 0.243± 0.014 0.177± 0.012 0.152± 0.011

Moderately Corrupted Data
Adjusted Mutual Information Score

French German Italian Spanish
LRA 0.284± 0.021 0.360± 0.018 0.308± 0.025 0.312± 0.012
R-LRA 0.334± 0.016 0.374± 0.014 0.336± 0.019 0.346± 0.014

Adjusted Rand Index Score
French German Italian Spanish

LRA 0.290± 0.017 0.345± 0.017 0.300∓ 0.018 0.306± 0.008
R-LRA 0.336± 0.013 0.359± 0.015 0.329± 0.015 0.335± 0.009

Table 4.1: Results from clustering a corrupted version of the Reuters cross-lingual
document corpus, comparing low rank alignment (LRA) against robust LRA (RLRA).
For both metrics, higher is better.
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4.3.3 Calibration Transfer for Noisy Raman

To demonstrate the robustness of RLRA to sample-specific additive noise, the

kind seen in Figure 4.1 (c) and (d), in this experiment, Raman spectra from multiple

instrument recorded under varying conditions are aligned. This is another example

of the task calibration transfer, first described in section 3.6; however, Raman spec-

troscopy is very different from the laser-induced breakdown spectroscopy (LIBS) of

that experiment. Raman spectroscopy non-destructively analyzes matter by observ-

ing low-frequency light scatter interacting with the analyte. Because the technology

can be made into a rugged portable unit, Raman instruments are used in situ for

tasks as remote as mineral identification on the Martian surface [13,66], and because

of its gentle nature, it can be even used on live human tissue [14,70].

The data set used was a suite of 96 pure mineral powders analyzed on 11 dif-

ferent Raman instruments using an array of geometries and laser energies [24]. The

example spectra in Figure 4.4 show that differences in peak presence/absence, posi-

tion, and relative intensity are evident in existing data sets. These differences can be

the result of sample factors (e.g. grain size, transparency, crystallographic orienta-

tion, grain surface), instrument factors (e.g. laser wavelength, power, and spot size,

spectrometer resolution and sensitivity), experimental factors (e.g. angle of incidence

and takeoff and the use/absence of polarizers) and data gathering factors (e.g. inte-

gration time, averaging, method/frequency of calibration). The data were processed

using standard protocols at each institution. These typically include white light,

CCD dark-field, substrate and fluorescence corrections, and subtraction of cosmic ray

events. The spectra were not baseline corrected, so they are guaranteed to contain

additive baseline noise.
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Figure 4.4: Raman spectra of two samples, Forsterite and Spodumene, from the from
the Dyar96 data set. Each spectra is colored according to the instrument it was
recorded on. The great different between instruments is clearly visible in both sam-
ples. Noise is also present in both samples, but it occurs to varying degree depending
on instrument and sample.

72



In this experiment two instruments were selected, the Bruker NewBRAVO 758,852

and the Hawaii 532 (which is actually a Meade ETX-125 housed at the University

of Hawaii). These two instruments were selected because the spectra they produce

both have a large and distinct baseline continuum. The continuum is an unwanted

signal, variously referred to as baseline, background, or simply noise by different

communities depending on choice of the spectroscopic methods and the underlying

causal physical processes. The baseline is typically additive noise that can effect each

sample distinctly, based upon the composition of the sample [32,33]. Additionally, one

instrument was used at two stand-off distances from the target, Hawaii 3m 532 and

Hawaii 5m 532 at 3m and 5m respectively. In total, the data set consisted of three

copies of the same 96 samples, but the features between instruments varied, where the

Bruker instrument recorded on 1451 channels from 300 to 3200 wavenumber (1/cm)

and the Hawaii instrument recorded on 1396 from 84 to 2583 wavenumber (1/cm).

Three experiments were conducted: (1) aligning the spectra from the two Hawaii

instrument configurations, (2) aligning the spectra from the two instruments Hawaii

3m 532 and the Bruker, and (3) aligning the spectra from Hawaii 5m 532 and the

Bruker. To compare the performance of RLRA on these tasks, it was again com-

pared to manifold alignment, affine matching alignment, and Procrustes alignment.

The alignments were limited to two instruments per experiment to allow for more

competing methods, but it is worth noting that RLRA and manifold alignment are

the only methods capable of simultaneously aligning more than two set. For each

experiment, 10-fold cross validation was performed, where the algorithms were given

the training data as correspondences. After embedding the training and testing sam-

ples, the embedded neighborhood of each held-out test sample was analyzed to see

if it included its corresponding test sample from the other data set, i.e., are corre-

sponding test samples x1 and y1 k-nearest neighbors. If all test sample embedding

k-neighborhoods contain their corresponding sample, then the accuracy is 1, and if
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none of the neighborhoods contain their corresponding samples, then the accuracy is

0.

The results of the experiments are listed in Table 4.2. Based upon the experimental

setup, aligning the two Hawaii data sets should be an easier task because both data

sets were recorded on the same instrument. This holds true in the results as well,

where the neighborhood accuracy is approximately twice as high for each method

compared to the other two experiments. In all three experiments, RLRA outperforms

all of the competing methods, especially so when aligning the two stand-off distance

Hawaii sets. This is likely due to smooth baseline error present in these two data

sets. The baseline in the Bruker data set is noisier and less smooth than that found

in either of the Hawaii data sets.

Setting k = 10 is a more lenient metric than k = 5, so the methods uniformly

perform better. However, the superior performance of RLRA is more clearly indicated

by its accuracy at k = 5. While the other methods evaluated had approximately a

40% drop in performance from k = 5 to 10, RLRA only performed about 18% worse

with the stricter metric. This further validates that the embedding produced by

RLRA very accurately aligns the disparate data sets.
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Hawaii 5m 532 ↔ Hawaii 3m 532
Neighborhood Accuracy

k = 10 k = 5
Affine 0.52± .014 0.36± .016
Manifold 0.44± .014 0.28± .008
LRA 0.83± .012 0.75± .010
Procrustes 0.52± .011 0.34± .012

Hawaii 5m 532 ↔ Bruker NewBRAVO 758,852
Neighborhood Accuracy

k = 10 k = 5
Affine 0.24± 0.014 0.16± .014
Manifold 0.23± 0.016 0.14± .012
LRA 0.39± 0.014 0.25± .014
Procrustes 0.22± 0.006 0.18± .010

Hawaii 3m 532 ↔ Bruker NewBRAVO 758,852
Neighborhood Accuracy

k = 10 k = 5
Affine 0.28± 0.009 0.18± .009
Manifold 0.17± 0.009 0.13± .011
LRA 0.37± 0.014 0.31± .016
Procrustes 0.34± 0.007 0.18± .012

Table 4.2: Cross validation results for the Dyar96 Raman spectra alignment experi-
ment. The neighborhood accuracy ranges from 0-1, worst to best, and is calculated
based upon the number of test samples that contained their corresponding sample (in
the other data set) within its k-nearest embedded neighbors.

75



4.4 Remarks

This chapter presented two robust reformulations of LRA, one designed for sup-

pressing short-circuits between mixed manifolds and one designed for outliers and

general noise. Unlike traditional LRA that has a closed form solution in the first

step for the calculation of the reconstruction matrix, both of these algorithms are

iteratively solved using the alternating direction method of multipliers. To prevent

low-value short-circuits from joining entangled manifolds, an l1 penalty is added to

the reconstruction step. For general additive noise and outliers, the error term is di-

rectly model with an l2,1 penalty, to allow for variation in error on a sample-by-sample

basis. Although both of these additions increase the running time of the algorithm,

they are experimentally shown to outperform traditional LRA in noisy settings.
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CHAPTER 5

MIXED MANIFOLD DOMAIN ADAPTATION

This dissertation has so far described algorithms for aligning multiple data sets,

where the data from each set lie on a mixture of lower-dimensional manifolds. The

manifold alignment algorithm calculates an embedding for each of the heterogeneous

data sets to a shared space. A few common usages for manifold alignment include

visualizing high-dimensional data, finding similar samples and relationships between

heterogeneous representations, and cluster analysis. However, these are all unsuper-

vised tasks that do not incorporate label information. When the subsequent task

post-alignment is supervised, like classification or regression, then the data are likely

partially-labeled, and the alignment algorithm should ideally leverage these labels. If

the data sets are assumed to share a label space, then this information can be used in

conjunction with correspondences to better align the disparate data sets. While this

may seem like a niche problem setting, this type of data is the norm rather than the

exception in a majority of space science applications. In the case of ChemCam, there

are data sets of LIBS spectra of rocks recorded in simulated Martian conditions from

labs at Los Alamos National Laboratory, Mount Holyoke College, and CNES France

that all share the same response surface, which is chemical composition in weight %

oxide. In this chapter, a supervised version of LRA is presented that maximizes the

correlation of the embedded samples with their label information while preserving the

geometry within each data set and the relationships between sets.
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5.1 Background

The number of large data sets available to machine learning practitioners is pro-

liferating, and algorithms capable of using these big data sets have been shown to

vastly outperform models trained with fewer examples. Unfortunately, the field of

transfer learning has shown that it is difficult to improve the performance of a model

by incorporating multiple disparate data sets unless careful preprocessing is applied

to mitigate inter-set differences. Despite this obstacle, learning concurrently from

many data sets provides the potential to improve accuracy and increase robustness.

Domain adaptation (DA) is a sub-field of transfer learning that seeks to use one or

more source data sets to assist in predicting a target data set that has been drawn

from a different but related distribution. Heterogeneous domain adaptation is a more

general case of DA, where the source and target sets are not required to share the

same feature representation or dimensionality.

Unsupervised domain adaptation is the subfield of DA that seeks to solve problems

where no label information is known for the target data set. These methods are widely

studied in the literature [28,38,59,74] and perform well when label information is not

available. Unsupervised DA methods are often agnostic to the subsequent task (e.g.,

classification, regression). While this results in wide applicability, unsupervised DA

cannot benefit from label information in cases where it is available.

Supervised and semi-supervised DA are subfields that seek to solve the problems

where label information is present, if only partially, in the source and target domains.

These methods are also widely studied [20, 83]; however, prior work has largely as-

sumed that the label information is categorical and the final task is classification.

In a regression setting with continuous labels, label preprocessing techniques, like

binning or clustering, may be used to discretize the label information. These tech-

niques enable the use of existing DA methods, but this work demonstrates that such

label manipulation is an imperfect stopgap. Supervised methods that natively handle
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continuous labels have been proposed [19, 29], but the label information is not used

during adaptation time but rather during the task time.

Some previous work on DA for regression has been done, but most focuses on cal-

culating sample weights for the regression algorithm. An SDP-based DA algorithm

for learning sample weights for regression is presented in [16,17], including pointwise

learning guarantees. However, it is assumed that the source and target distributions

be homogeneous and “reasonably close”. Source and target set bias correction with

continuous labels is discussed in [94] using a modified version of [19] followed by

sample weight calculations, but this too requires a homogeneous feature space repre-

sentation across data sets. Lastly, a correlation based approach to domain adaptation

is presented in [8], but instead of maximizing the correlation between feature and label

spaces, they focus on finding correlated features between source and target.

The problem setup of continuous label information where the label features are

matching across data sets was inspired by our work with the science team of the

ChemCam instrument aboard the Mars rover Curiosity, which analyzes rocks and

soils using a laser-induced breakdown spectrometer (LIBS). Although the rover itself

has ten calibration samples of known composition on board, the breadth of compo-

sitional diversity on the Martian surface requires a far broader calibration suite to

interpret chemical compositions from instrument data. To this end, data from ter-

restrial laboratories are being used to build prediction models that can subsequently

be applied to Mars data. Although surface pressures and temperatures on Mars can

be simulated in the laboratory, and the flight model sent to Mars was used to build a

small calibration suite of 69 samples before launch [91], the calibration suites in cur-

rent use suffer from two major shortcomings. The first is their small size relative to the

target data,and the second stems from a wide variety of collection parameters, with

samples recorded by different instruments under many operating conditions, including

variations in laser power, distance from target, and gravitational field strength. More-
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over, multiple laboratories, including the Mineral Spectroscopy Laboratory at Mount

Holyoke College, are collecting compositional data on standard geological samples.

Thus, the challenge is to align the data sets from these disparate terrestrial instru-

ments, in combination with the small amount of data on the ten calibration targets

on Mars, and use the resulting composite suite to interpret data on the unknown rock

and soil targets from Mars. Each data set in this spectroscopy setting has the same

continuous label information, namely the weight percent of oxides like SiO2, which

means that the task of interest for composition prediction is regression.

This motivates a DA method that maximizes correlation within each data set and

between data sets, while maintaining the geometry intrinsic to each data set, for the

subsequent task of regression. Correlation analysis for domain adaptation (CADA)

solves this problem simply and quickly by mapping the sets to a lower-dimensional

joint space. CADA formulations are presented here for linear and non-linear maps,

for both the primal and dual problems. CADA is especially well-suited to data from

many types of scientific instrumentation, where it is often necessary to correct for

differences arising from variable experimental geometries (close-up vs. long distance

measurements), environmental conditions (e.g., deep sea vs. ambient lab conditions

vs. the Martian surface), and analytical parameters such as laser wavelength, power

density, and beam size.

5.2 Correlation Analysis for HDA

The algorithm presented here calculates a low-dimensional mapping that maxi-

mizes the inter-set correlations while preserving the intra-set geometries. So, it is

necessarily related to canonical correlation analysis (CCA). However, unlike CCA,

this algorithm is designed to solve the problem of domain adaptation of multiple data

sets of differing samples. Furthermore, the method aligns the data sets while main-

taining their individual mixed manifold geometries. A linear version of the algorithm
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Figure 5.1: Laser-induced breakdown spectroscopy (LIBS) instrumentation used to
record the spectra in the Mineral Spectroscopy Laboratory at Mount Holyoke College.
The LIBS laser pulses the mineral sample in a nearly evacuated chamber under a CO2

atmosphere to create a plasma. Using mirrors, the light emitted from the plasma is
passed through a diffraction grating to separate the beam into three frequency ranges.
The three sub-beams are directed to three charge-coupled devices (CCD), which are
sensitive to different frequencies. The number of photons that strike the surface of
each CCD is recorded to produce a spectrum.

is presented first, followed by a kernelized version that allows for the calculation of

non-linear maps. In the case of scientific instrument data, it is typical to have the

number of features greatly outnumber the number of samples, so it is often more

efficient to use the latter kernel dual formulation.

Problem Description

Given k data sets consisting of heterogeneous feature matrices X1, . . . , Xk where

Xi ∈ Rni×pi and corresponding homogeneous response matrices Y1, . . . , Yk where

Yi ∈ Rni×q, the purpose of the algorithm is to find functions f1, . . . , fk that map the

disparate data sets into a joint space fi : Rpi 7→ Rd such that d ≤ pi for i = 1, . . . , k.

The goals of the mappings are to preserve the feature space geometry of each data

set while using the response information to preserve the response surface geometry

between data sets. No correspondences between the data sets are given, but all of

the response values Y1, . . . , Yk are assumed to be measurements of the same attribute.
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No assumptions are made about the similarity of the feature matrices. When d ≤ 3,

this algorithm may be used for data visualization, but this chapter will instead focus

on the task of domain adaptation [20].

Without loss of generality, denote (X1, Y1) as the target data set and the remaining

(X2, Y2), . . . , (Xk, Yk) as source data sets. In this task, the goal of the algorithm is to

map the source and target sets to a joint space so that a regression model predicting

the target set can be trained using all of the source sets as well.

Linear formulation

The CADA algorithm treats each input data set as a mixture of manifolds. It

calculates the joint space maps f1, . . . , fk by maximizing the correlation between the

varying data source representations X1, . . . , Xk and their shared response surface

Y1, . . . , Yk while preserving the geometry of each data set.

To begin the algorithm, define the joint data, response, and mapping matrices

X ∈ RN×P , Y ∈ RN×q, and f ∈ RP×k(d), respectively, as

X =


X1 0

. . .

0 Xk

 , Y =


Y1
...

Yk

 , f =


f1
...

fk


where N =

∑k
i=1 ni and P =

∑k
i=1 pi. By stacking the individual response matrices

Yi, the algorithm will be able to reason across data sets. To simplify the algorithm’s

description, it is assumed that the response matrix Y has been mean-centered.

The CADA algorithm optimizes the following objective function

maximize
f

1

2
‖Corr(Xf, Y )‖2 + αGeo(Xf,R) s.t. ‖CXf‖2 = 1 (5.1)

where Corr(·) is the sample correlation penalty term, Geo(·) is the geometric penalty

term, α is a non-negative mixing parameter controlling the trade-off between maxi-

82



mizing correlation and preserving geometry, and R is the reconstruction matrix de-

scribed later. The geometric penalty term preserves the mixed manifold structure of

the individual data sets, while the correlation penalty reasons between data sets by

finding a mapping that best prepares the data for the subsequent task of regression.

These terms are now described in more detail.

Geometric penalty

The geometric penalty term preserves individual data set geometries by modeling

each as a mixture of manifolds during domain alignment [9]. To calculate the mixture

of manifolds representation for each data set, a low-rank reconstruction matrixR(Xi) ∈

Rni×ni must be calculated for each data set as

minimize
R(Xi)

1

2

∥∥Xi −R(Xi)Xi

∥∥2
F

+
∥∥R(Xi)

∥∥
∗ ,

where ‖·‖∗ is the nuclear norm. This can be solved in closed form using singular value

decomposition (SVD) [27]. First, Xi is decomposed using SVD, Xi = USV >. Next,

the columns of V and S are partitioned into V = [V1V2] and S = [S1S2] according to

the sets

I1 = {i : si > 1 ∀si ∈ S} and I2 = {i : si ≤ 1 ∀si ∈ S}.

Then the reconstruction matrix R(Xi) is calculated as

R(Xi) = V1(I − S−21 )V >1 . (5.2)

Afterward calculating the reconstruction matrices, the block diagonal matrix R ∈

RN×N is constructed similarly to X by stacking the matrices R(X1), . . . , R(Xk).
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The geometric penalty term can now be defined as

Geo(Xf,R) = −1

2
‖Xf −RXf‖2 . (5.3)

Intuitively, the term can be understood as preserving the reconstruction matrix from

the original space in the low-dimensional joint space. The penalty is negative because

the CADA objective function, equation 5.1, is maximized in the optimization.

Correlation penalty

To maximize the correlation between the mapped data Xf and the centered re-

sponse data Y , the sample covariance is calculated as

Cov(Xf, Y ) =
k∑
a=1

1

na

na∑
i=1

(xiafa − x
j
afa)

>(yia),

where xjafa is the sample mean. To simplify this equation, the expectation can be

eliminated by mean-centering the mapped data,

Cov(Xf, Y ) =
1

N

k∑
a=1

na∑
i=1

(Cax
i
afa)

>(yia)

=
1

N
f>X>CY,

where Ca ∈ Rna×na is the centering matrix Ca = I − (1/na)11> and C ∈ RN×N is

the block diagonal matrix composed of centering matrices.

To calculate the correlation, the covariance must be scaled by the standard devi-

ation, yielding the joint space sample correlation

Corr(Xf, Y ) =
f>X>CY

‖CXf‖ ‖Y ‖
. (5.4)
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Analysis of the Algorithm

It is shown here that the CADA objective function can be solved in closed form

using as a single generalized eigenvalue problem. Afterward, the complexity of the

algorithm is discussed.

Theorem 2. The function f that minimizes the CADA objective function in equa-

tion 5.1 is given by the eigenvectors corresponding to the largest eigenvalues of the

generalized eigenvalue problem

1

‖Y ‖2
X>

(
CY Y >C − α ‖Y ‖2M

)
Xf = X>CXf,

where M = (I −R)>(I −R) for the identity matrix I.

Proof. The correlation term in equation 5.1 is first discussed. From equation 5.4, it

follows that

‖Corr(Xf, Y )‖2 =

∥∥f>X>CY ∥∥2
‖CXf‖2 ‖Y ‖2

=
Tr
(
f>X>CY Y >CXf

)
‖Y ‖2 Tr (f>X>CXf)

.

To optimize this equation, the constraint ‖CXf‖2 = 1 is enforced using the La-

grange multiplier λ,

1

‖Y ‖2
Tr
(
f>X>CY Y >CXf

)
− λTr

(
f>X>CXf

)
.

The constraint here does not affect the correlation, but rather regularizes the map-

pings f .
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Next, the geometric penalty is considered. From equation 5.3, it follows

Geo(Xf,R) = −1

2
Tr((Xf −RXf)>(Xf −RXf))

= −1

2
Tr(f>X>(I −R)>(I −R)Xf)

= −1

2
Tr(f>X>MXf)

Combining the correlation and geometric penalties forms the equation,

1

‖Y ‖2
Tr
(
f>X>

(
CY Y >C − α ‖Y ‖2M

)
Xf
)
− λTr

(
f>X>CXf

)
. (5.5)

Using standard methods from calculus, the optimal value of equation 5.5 is given

by the generalized eigenvalue problem,

1

‖Y ‖2
X>

(
CY Y >C − α ‖Y ‖2M

)
Xf = λX>CXf. (5.6)

The eigenvectors are the d columns of f and so the mapping f1, for example, is the

first p1 rows of f . Therefore, equation 5.1 is maximized by using the eigenvectors

associated with the d largest eigenvalues.

The CADA algorithm is written out in algorithm 6. In step 1, the calculation of

the individual reconstruction matrix R(X1), . . . , R(Xk) can be easily parallelized across

the k data sets. The dominating factor for the runtime cost of the algorithm is the

final N×N generalized eigenvalue problem. However, this can be calculated efficiently

because all of the matrices involved are symmetric and sparse.

To make α easier to tune, it can be beneficial to first scale terms such that∥∥CY Y >C∥∥ = 1 and ‖M‖ = 1.

In addition to mapping data to low-dimensional space, CADA can also be used

to transfer data from one data set representation to another by using the joint space
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Algorithm 6: Correlation Analysis for Domain Adaptation (CADA)

Input: block diagonal data matrix X,
centered block stack label matrix Y ,
dimension d, and weight µ.

Output: mapping matrix f .
Step 1: Compute the geometric reconstruction matrix R by calculating the
matrices R(X1), . . . , R(Xk) according to equation 5.2.

Step 2: Set f equal to the d eigenvectors associated with the largest
eigenvalues in equation 5.6.

as a intermediary. For example, to view X1 in the X2 representation one would use

the mapping f1f
†
2 where f †2 is the pseudo-inverse. CADA may also be used as a

preprocessing step before other domain adaptation methods.

5.3 Kernel Formulation

For some problems, a linear mapping will not suffice to align the disparate data sets

well. The CADA algorithm can be modified in the style of Laplacian eigenmaps [5]

to provide non-linear embeddings of the given data sets, but this does not provide

a natural out-of-sample extension, which is critical to the ultimate regression task.

Instead, a kernelized version of CADA is described here that yields non-linear maps

with an appropriate choice of kernel functions.

To begin to kernelize equation 5.6, all data sets Xi must first be replaced with their

kernel mapping φi(Xi), where φi is a map to a possibly infinite-dimensional Hilbert

space. Let Φ be the block diagonal matrix composed of entries φ(X1), . . . , φ(Xk).

After mapping the feature vectors to Hilbert spaces, the corresponding eigenvectors

f must also be updated, yielding

Φ>
(
CY Y >C − αM

)
Φg = ‖Y ‖2 Φ>CΦg,

where g are possibly infinite-dimensional eigenvectors. According to the Riesz repre-

sentation theorem, the eigenvectors g can be represented as a linear combination of
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mapped samples. Using the substitution g = Φ>h and left multiplying by Φ yields

ΦΦ>
(
CY Y >C − αM

)
ΦΦ>h = ‖Y ‖2 ΦΦ>CΦΦ>h.

The quadratic form ΦΦ> can then be replaced with the kernel matrix K,

K
(
CY Y >C − αM

)
Kh = ‖Y ‖2KCKh,

where h is now an N × d matrix and the block diagonal kernel matrix K is N ×N .

In addition to providing a non-linear mapping, a linear kernel k(Xi) = XiX
>
i may

be used to convert linear CADA from its usual primal form to its dual form.

Scientific instrument data often have many more features P than samples N , i.e.,

P � N . In this situation, Kernelized CADA is better conditioned than linear CADA;

however, with very large P , the norm of the joint maps ‖f‖ tends to get large. To

remedy potential over-fitting, a ridge penalty can be incorporated into the eigenvalue

problem,

K
(
CY Y >C − αM

)
Kh =

(
‖Y ‖2KCK + βI

)
h,

where the scalar β is the non-negative ridge penalty parameter. In practice, reasonable

values for β are from 1e−5 to around 1, where larger values will shrink the size of ‖f‖

more.

5.4 Experimental Results

To evaluate the performance of CADA, its performance was compared against

the following competing DA methods: canonical correlation analysis (CCA) [44],

partial least squares (PLS) [80], subspace alignment (SA) [28], heterogeneous domain

adaptation (HDA) [83], domain adaptation for regression (DAR) [17], and domain

adaptation for structured regression (DASR) [94].

88



CCA was used in two different configurations, CCA-Multi and CCA-Joint. In

CCA-Multi, a different CCA model was fit on each of the data sets Xi, Yi, where

each model used the same d number of components. In CCA-Joint, a single CCA

model was fit on the target set Xt, Yt and then all other data sets were mapped

to the same space using the model. CCA-Joint is only applicable when the source

and target data sets share the same features.In final experiment, CCA failed to yield

viable components, so similarly defined PLS-Multi and PLS-Joint were used instead.

The method most related to CADA is HDA, but a direct comparison is impossible

because it assumes categorical labeled data. For the purpose of comparison, the

continuous response values in each experiment are binned or clustered to produce a

discrete set of labels to use with HDA.

A complete Python implementation of CADA is available for download from the

author’s web site, including demonstration code 1.

5.4.1 Oblate Spheroid Alignment

As a proof of concept, consider applying domain adaptation to a pair of oblate

spheroid shells,

x := σ cos(u) sin(v)

y := σ sin(u) sin(v)

z := cos(v)

for parameters u ∈ [0, 2π), v ∈ [0, π], and a parameter σ that adjusts how “squashed”

the sphere appears. In this first experiment, two spheroid shells were generated with

σ = 1, 3 and uniform random sampling each u, v pair. The more oblate sphere was

also tilted π/4 radians about the x-axis.

1https://github.com/all-umass/cada
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To each spheroid, a simulated heat source is applied to a point on the surface,

resulting in smooth diffusion of heat around the entire shell. The three-dimensional

coordinates of each spheroid shell form data sets Xs and Xt, and the corresponding

one-dimensional heat values are used as response matrices Ys and Yt. The resulting

spheroid shells and their associated temperatures are shown in Figure 5.2.

All methods map the data to a 2-dimensional representation first, except for the

methods DAR and DASR that do not reduce the dimensionality of the data. Figure

5.3 demonstrates the excellent performance of the proposed method, CADA. Tradi-

tional subspace alignment techniques do not take advantage of the available tempera-

ture information, and fail to produce an embedding conducive to the regression task.

The CCA-based methods capture the connection between coordinates and tempera-

ture, but are limited by their omission of inter-data set similarity information. The

binned HDA method produces reasonable results, but incurs the additional complex-

ity of computing a fixed number of temperature bins. In the general case, this binning

strategy is further limited by the dimensionality of Yi: as dimension increases, the

representative power of discrete bins falls dramatically. In addition to bin size, HDA

has three tuning parameters, whereas all the other tested methods only have one

parameter to tune. Only the CADA method fully exploits the relationships between

and within data sets as well as the real-valued nature of the temperature regression

targets, resulting in the most accurate regression performance among all tested meth-

ods. The DAR and DASR methods produce comparable results to CADA, achieving

an MSE of 57.237 and 57.109 respectively. These two methods do not reduce the

dimensionality of the data, which is likely to account for their strong performance

since the data inherently lie in three-dimensional space.
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(a) Source spheroid samples

(b) Target spheroid samples

Figure 5.2: Uniform random sampling of 50 and 40 points from the source and target
spheroids, respectively. The points are colored according to their simulated temper-
ature, where red is hotter and blue colder.
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Figure 5.3: Comparison of 1-dimensional embedding from six competing DA meth-
ods: MultiCCA, JointCCA, a binned version of heterogeneous domain adaptation
(BinnedHDA), correlation analysis for domain adaptation (CADA), and subspace
alignment (SA). The blue circles are samples from the source set and the green di-
amonds are samples from the target set. The x-axis is the 1-D embedding and the
y-axis is the temperature. A linear regression model was fit on temperature and is
annotated as a dashed line. The mean squared error (MSE) for each model is reported
at the top of each sub-figure. Temperature is generated by a univariate equation and
so should naturally reduce to a 1-D representation; however, the generating function
is non-linear, so these linear DA methods are unable to fully fit the curve.
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5.4.2 WiFi Localization

To demonstrate the effectiveness of the proposed method in a real-world setting,

we apply domain adaptation to data sets generated for the 2007 IEEE ICDM Data

Mining contest [95]. The contest consisted of two tasks, each with a distinct set

of WiFi signal strength readings and associated spatial coordinates. Each reading

is a sparse vector of integer values that correspond to the signal strength (RSS)

observed when connecting to the same number of wireless access points in unknown

locations. The target set was 101-dimensional and the source set was sampled at

half the rate, yielding a 50-dimensional representation. These readings are labeled

with two-dimensional coordinates based on the position of the wireless receiver as it

moved throughout the hallways of a building. The data for each task were collected

in different time periods, so domain adaptation is suitable for transferring localization

information over time.

For this experiment, the readings and coordinates of the competition’s test sets are

used to produces two supervised data sets for domain adaptation, with 2,137 entries

for X1 and 3,128 entries for X2, each with an associated Yi with the same number

of rows. Several domain adaptation methods are tested by learning embeddings that

map each Xi to a two-dimensional joint space, then evaluate the new representation’s

localization accuracy using linear regression.

The source and target sets do not share the same dimensionality, so only the het-

erogeneous DA methods were testable: BinnedHDA, MultiCCA, CADA, and Kernel-

CADA. Results of this experiment, shown in Figure 5.4, demonstrate the effectiveness

of the proposed method in both the linear and kernelized variants over a large range

of joint space dimensionalities. BinnedHDA nearly matched the performance of linear

CADA, but was much more sensitive to the joint space dimension and required a bin-

ning preprocessing step beforehand, where the k-means clustering algorithm was used

to produce 20 spatially-grouped classes. Most notably, the kernelized CADA method
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Figure 5.4: Comparison of regression error from four competing heterogeneous DA
methods: MultiCCA, a binned version of heterogeneous domain adaptation (Binned-
HDA), and two variants of correlation analysis for domain adaptation (CADA). The
x-axis is the dimension of the joint space. The y-axis is the mean squared error (MSE)
for a linear regression fit on each model’s joint space representation to predict the
2-D spatial coordinate labels.

94



performed exceptionally well using a cosine similarity kernel.These additional param-

eters make kernel CADA slightly more complicated to tune, but result in appreciable

gains in the subsequent regression task.

5.4.3 Calibration Transfer for Laser-Induced

Breakdown Spectroscopy

In all spectroscopic applications, there is a need to ensure that differences in

instrument, environment, and experimental conditions are mitigated. A calibration

curve is the regression model used by an instrument to predict a response, often

chemical composition, for a given spectrum. Calibration transfer (CT) is a technique

for transferring a calibration curve from one instrument to another using a calculated

transfer function, without the need to re-sample the calibration samples [30]. CT

can also be used to transfer the calibration curve of an instrument from one set of

environmental conditions to a differing set of conditions. CT provides an excellent

solution to the task of reconciling data for inter- and intra-lab comparisons on Earth

and in extraterrestrial applications.

From a machine learning perspective, CT is just another form of domain adapta-

tion. By mapping all intra-instrument spectra to a joint space, a calibration curve

can be fit using all available data. In this experiment, two data sets were recorded on

two different laser induced breakdown spectroscopy (LIBS) instruments in support

of NASA’s Mars Science Laboratory team. The first set, LANL, was composed of

400 rock spectra recorded on 6144 wavelength channels under Mars-like conditions

at Los Alamos National Laboratory using an instrument simulating the ChemCam

instrument on the Curiosity rover. The second set, MHC, was composed of 280

rock spectra recorded on 6144 channels under similar conditions at Mount Holyoke

College on a LIBS instrument manufactured by a different vendor and containing a

different type of laser. Examples of the spectra are given in Figure 5.5. Over 300,000
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Figure 5.5: Mean LIBS spectra of mineral samples recorded at Los Alamos National
Laboratory (LANL) and Mount Holyoke College (MHC). Instrumentation differences
and varying experimental conditions induce discrepancies between the two sets of
spectra, like the channel offset evident in the zoomed insert.
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spectra have been recorded by the ChemCam instrument on Mars, but the chemical

composition of those targets are currently predicted using only terrestrial laboratory

calibration data. The spectra are used to measure the weight % oxide of various

chemical components, including silica (SiO2).

Spectra of the two data sets were first row-normalized by spectrometer following

the preprocessing procedure described by [91]. After this step, the following cross

validation procedure was repeated 25 times (with random shuffling of folds) for each

of the DA methods compared: (1) the DA method was trained with an SiO2 labeled

training subset of the MHC and LANL spectra, (2) the DA method was then used to

map the training set to the joint space, (3) a partial least squares (PLS) regression

model was trained on the joint space training set, (4) the DA method was then used

to map the testing set to joint space, (5) and lastly a PLS regression model was used

to predict the testing SiO2 concentration.

For each of the DA methods, the dimension of the subspace was tuned by searching

d ∈ [1, 200] over the training set. For RBF-CADA, the kernel width γ was set to

the inverse of the median pairwise distance between training samples, and the ridge

parameter β was tuned by searching over orders of magnitude from 1e−5 to 1.

Results of the experiment are listed in Table 5.1. RBF-CADA outperformed

all other evaluated methods, better predicting the LANL set, the MHC set, and,

consequently, the union of the two sets. The linear version of CADA was the second

best performing method predicting the LANL set and the union, but the MHC target

model proved to be more effective at predicting natively. Because of the poor problem

conditioning, CCA-based methods and BinnedHDA provided no viable solution to

this problem.
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LANL MSE MHC MSE All MSE
Source 255.9 868.7 NA
Target 39.9 27.9 NA
PLS-Multi 25.5 54.8 37.5
PLS-Joint 57.0 32.4 46.7
SA 43.0 48.1 45.3
DAR 43.1 43.0 NA
DASR 43.0 37.2 40.4
CADA 22.5 30.8 26.1
RBF-CADA 22.0 27.5 24.4

Table 5.1: Mean squared error (MSE) of prediction of SiO2 for cross validation for
each method evaluated over the Los Alamos National Laboratory (LANL) test set,
Mount Holyoke College (MHC) test set, and both test sets combined.

5.5 Remarks

This chapter presented an algorithm for aligning mixtures of manifolds in the

presence of label data, a supervised version of LRA customized for the downstream

task of classification or regression. The data sets are assumed to share a label space,

and this information is used in conjunction with correspondences to better align

the disparate data sets. This was shown to be effective at transferring information

from large labeled data sets to aid in the regression of smaller data sets. Unlike

traditional LRA that cannot inherently embed out-of-sample data, the algorithm in

this chapter directly calculates a mapping for out-of-sample extensions. Both a linear

and a kernelized non-linear version of the algorithm were described.
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CHAPTER 6

CONCLUSION

As manifold learning techniques are applied to more complex tasks, the prob-

lem of mixtures of manifolds has become increasingly apparent. In this dissertation,

a new class of transfer learning algorithms is introduced for high-dimensional data

sets that intrinsically lie on multiple low-dimensional manifolds. The proposed Low

Rank Alignment framework is the first such alignment method to gracefully handle

arbitrary mixtures of manifolds, a benefit that is reflected in the task performance

comparisons. Two transfer learning problems are the primary focus within this dis-

sertation, manifold alignment and heterogeneous domain adaptation.

First, the general LRA framework for aligning and embedding data sets is in-

troduced. It uses a low-rank approximation instead of a nearest-neighbor graph for

sample reconstruction, which is shown to be effective at avoiding short-circuits be-

tween entangled manifolds. Versions for both linear and non-linear manifolds are

presented. Additionally, a small modification is introduced to improve its ability to

perform clustering in the embedding space. Lastly, a method for actively selecting

the most beneficially correspondences is described.

The next contribution of this dissertation is a robust extension of the LRA frame-

work. Two versions of the algorithm are detailed, one that prevents low-value short-

circuits from joining entangled manifolds, and one designed to deal with outliers and

general additive noise by directly modeling the error. This addition forces the algo-

rithm to be solved iteratively, but it is shown to outperform traditional LRA in noisy

settings.
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The final set of algorithms presented is a supervised framework for LRA for the

transfer learning task of domain adaptation. The label data provide another means,

additional to correspondence information, for reasoning between data sets. Versions

are described for both continuous and categorical labels. Unlike traditional LRA that

only calculates an embedding for each data set, this algorithm directly calculates

a linear or non-linear map for out-of-sample extensions. To note, this non-linear

extension can also be used with other existing manifold learning algorithms, like

traditional manifold alignment.

The last contribution of the dissertation is a new machine learning problem do-

main, spectroscopic data analysis. Within this domain, the task of instrument cal-

ibration transfer is introduced. This problem is universal to spectroscopy and of

unique importance to space exploration. These data present a new set of challenges

to the machine learning community because of their unique characteristics described

in this dissertation. The LRA family of algorithms is shown to be effective in this

new domain, solving problems in and out of this world.

6.1 Future Work

This problem space has large room for future work, whether adapting existing

algorithms for mixtures of manifolds or creating novel mixture-friendly methods.

However, for brevity, this section is limited to work directly related to the meth-

ods described in this dissertation. Extensions and open problems for the two primary

tasks dealt with in this dissertation, alignment and domain adaptation, are offered.

Manifold alignment methods have historically had difficulty scaling to large data

sets. Unfortunately, this is true of LRA-based methods as well. When the data sets

used are larger than tens of thousands of examples, the block diagonal construction

of the matrices causes the eigendecomposition problem, in the algorithm’s second

step, to become too difficult to solve on a personal computer. This stacking has
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been necessary to preserve the intra-set correspondences for reasoning across data

sets, while maintaining a closed-form solution. A large number of mid-sized data sets

would incur the same difficulty. One possible remedy to the scaling problem could be

approximately solving the eigendecomposition (equation 3.13). Approximate spectral

decomposition is a well studied problem [49, 56, 75]. One of the most investigated

approaches is the Nyström approximation method [22,34,50,92].

Using an approximation technique will likely aid LRA in scaling, but the systemic

problem of diagonally stacking data matrices would remain. Fixing this requires a

larger design change to the algorithm. Instead of minimizing the loss function in

equation 2.2, a new objective would be necessary. For example, the correspondence

information could be incorporated into the objective function using a series of soft

constraints, which could be solved iteratively.

In the domain adaptation task, it would be advantageous to be able to incorporate

importance weights for each data set. In the current description of CADA, when the

target data set is significantly smaller than the source sets, the target information

may be overwhelmed in the model.

A more ambitious problem in heterogeneous domain adaptation is intra-space

transformation. For many real-world tasks, it would be beneficial to be able to trans-

fer samples from one representation to another, using the joint space as an intermedi-

ary. This has been described without demonstration in previous manifold alignment

literature. For example, to view X1 in the X2 representation one would use the map-

ping f1f
†
2 , where f †2 is the pseudo-inverse. This inverse is not well-defined and does

not yield a bijection. In practice, this method does not work to transform spectra

from one instrument representation to another.

Two potential solutions to this problem are: (1) instead of using a pseudo-inverse

of the latent space map, explicitly learn a new smooth map (a second set of weights)

from each latent space back to the original feature space, or (2) when calculating the
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original latent space mapping function, include a regularizing term that penalizes the

smoothness of the inverse maps,

arg min f>x>Lxf +
1

2

∥∥x− xff †∥∥2 .
Deep learning approaches may provide a solution to both the scaling problem and

the intra-space transformation problem. In computer vision, a new area of research

has developed using deep networks to translate images between representations. For

example, given a series of paintings and photographs, or paintings from two stylisti-

cally different artists, a deep learning model is used to learn a translation between

the representations, with the ability to then generate a painting from a photograph

or a painting in another style. Methods have been described that assume the data are

in correspondence [45], referred to as paired training, as well as methods that do not

assume paired data [52,98]. Many of these techniques are based upon the generative

adversarial network framework [37]. While these techniques were first presented for

image data sets, many of their underlying concepts extend to arbitrary data types.

However, these methods may fail when the data representations are less comparable.

Using these methods to incorporate correspondence information, a deep low rank

alignment algorithm could be designed that would provide smooth transformations

between data representations. A deep architecture would also alleviate the issue of

scaling through process distribution [1, 21].

In addition to fixing some of the shortcomings of LRA, deep learning may pro-

vide a better solution to heterogeneous domain adaptation. A non-linear extension

of canonical correlation analysis (CCA), called deep CCA (DCCA), has been shown

to find better representations than linear CCA or non-linear kernel CCA [4]. Like

traditional CCA, DCCA only addressed the two data set. Building upon DCCA and

multi-modal deep learning [58], the work was extended to the multi-data set case [46].

Using deep semi-supervised embedding as a base [90], the low rank representation and
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correspondence information could be incorporated into a deep architecture. Combin-

ing this with a multi-view deep network for cross-view classification [46] could provide

a deep solution to heterogeneous domain adaptation.
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