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ABSTRACT 

The Effect of Range Restriction on Invariance 

in Item Response Models 

(September, 1987) 

Richard Francis Mooney, B.A. Oxford University 

M.A. Oxford University, Ed.D. University of Massachusetts 

Directed by: Professor Hariharan Swaminathan 

Item parameter invariance is a key property of IRT models, and it 

is a property that sets IRT apart from classical test theory models. 

Item parameter invariance is important for a number of testing issues, 

but one of the most direct and straightforward examples of the use of 

this property arises in the study of item bias. Here, the estimates 

from different groups are obtained and then compared to determine if 

individual items behave differently for different groups. 

A question that naturally arises in this application is the 

degree to which parameter invariance holds for different subgroups 

with different sample sizes and different ability distributions when 

bias does not exist. 

To answer this question, simulated data for three levels of 

ability and three levels of sample size were generated to yield nine 

testing situations. Thirty random samples of data from each testing 

situation were fitted to the three parameter item response model using 

v 



sampling with replacement. The difficulty parameter estimates were 

compared for stability and accuracy of estimation. 

The results of the study show that while stability was obtained, 

accuracy for extreme itens was influenced by restriction in the range 

of ability of the group of examinees. Further, it was shown that the 

three parameter model appeared to obtain a better fit when a 

positively skewed distribution of ability was used. Overall, the 

model generally performed well with items that have difficulty 

parameters in the middle range of difficulty. Increases in sample 

size did not generally improve the quality of estimation, although the 

influence of restriction of ability range persisted and maintained 

similar patterns even for the largest sample size (n=1,200). 

The sampling with replacement technique was seen to be a useful 

method for examining the sampling error of item parameter estimates. 

This method may prove useful in the context of determining model data 

fit or other item response theory applications that depend on the 

property of parameter invariance. 
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chapter I 

INTRODUCTION 

Item response theory (IRT) is a measurement theory based on the 

assumption that examinee test performance for a given item can be 

explained as a function of underlying examinee traits as well as the 

particular characteristics of the item. By making assumptions about 

the form of this relationship and about the dimensionality of the 

latent space (the number of traits necessary for describing the 

response of an examinee) inferences can be made about the unobservable 

traits based on observable test scores. 

The relationship between observed scores and unobservable traits 

is specified through a monotonically increasing mathematical function 

known as an item characteristic function. In cases where the latent 

space measures a single underlying trait, the item characteristic 

function is known as an item characteristic curve (ICC). Currently, 

only unidimensional models are available for practical application, 

although a broad range of models both unidimensional and 

multidimensional, linear and non-linear, are feasible (McDonald, 

1982). Typically, the item characteristic curve is taken as the 

logistic curve, although the less mathematically tractable normal 

ogive may also be used. 

1 
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Model-Data Fir. 

To completely specify the relationship between the probability of 

a correct response and underlying ability, an item response model that 

relates the probability to the parameters that characterize an item is 

needed, if the model does not fit the data then advantages of IRT may 

not be realized. Three uni dimensional item response models are 

currently available to practitioners working with dichotomously scored 

items. All three of these models assume that the examinee's response 

to a given item is completely described as a single or uni dimensional 

ability factor. These uni dimensional models are the one-parameter or 

Rasch model, the two-parameter model, and the three-parameter model. 

The one-parameter model assumes that items are characterized by one 

parameter, item difficulty, while the two parameter model assumes that 

the items are characterized by two parameters, item difficulty and 

item discrimination. The three-parameter model, the most general of 

the uni dimensional IRT models currently in wide use, assumes that the 

items are characterized by a guessing parameter as well as item 

difficulty and item discrimination (Hambleton & Swaminathan, 1985). 

Advantages of IRT 

The item response function is essentially the regression of item 

score on ability. Regression functions remain the same in spite of 

changes in a frequency distribution of the predictor variable. This 

implies that the parameters that characterize the regression function 

are invariant. Since the item parameter in IRT describe the 
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regression function, 

distributions. 

they are therefore invariant across ability 

Advantages of IRT include examinee ability parameters that are 

independent of the particular set of items administered, and item 

parameters that are invariant across subgroups of examinees. These 

features offer potential for solving several important testing 

problems that were not solvable using classical testing models based 

on linear characterizations of human testing behavior. 

Among the testing problems that may be solved using IRT are: item 

banking, tailored/adaptive testing, equating test scores and 

identification of item bias. These applications depend upon the 

property of invarance of item parameters. 

Applications of the Property of Invariance in IRT 

Four important areas in which the property of invariance plays a 

central role are item banking, tailored/adaptive testing, test 

equating and the study of item bias. These applications are briefly 

reviewed in the following section. 

Item Banking. An item bank is a large pool of pilot tested items 

that are categorized by objectives or skills. These banks may then be 

used to build a test to meet particular needs quickly and efficiently. 

Item banks constructed using classical item parameters are not 

optimal in that classical item parameters such as item difficulty and 

item discrimination are sample dependent. IRT, however, offers a 

potentially useful theoretical framework for developing items for item 

banks because of the expected feature of invariant item parameters. 
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Such invariant item parameters greatly simplify the task of build! 

and using item banks. 
ng 

lajlored/Adaptive Testing. Tailored testing is another important 

application of item response theory. The invariance of item and 

ability parameters permits the "tailoring" of tests to fit particular 

needs. In the context of norm referenced tests, test builders 

typically choose items that have a classical item difficulty index of 

a .50 probability of answering the average item correctly. This also 

means that examinees of extreme ability obtain more poorly estimated 

scores as compared to examinees in the middle range of ability. 

An ideal solution to this problem is to administer items that 

correspond to the ability level of an examinee so that the ability of 

each examinee can be estimated accurately. Using IRT, it is possible 

to accomplish this goal. The ability of each examinee can be 

determined from items that are "tailored" to an examinee. Moreover, 

the invariance property permits the comparison of examinees. 

Adaptive testing is a dynamic form of tailored testing. Here, 

the examinee has an interactive relationship with an item bank, and 

items are selected for presentation based on the performance of the 

examinee. Such a strategy offers promise for obtaining high quality 

estimates of examinee ability, particularly for examinees in the 

extreme ranges of ability. It has been demonstrated that by using an 

adaptive testing strategy, test taking time can be considerably 

reduced. 

Test Equating. Test equating is important for comparisons of 

examinee's performance on non-identical tests. Equating tests at the 
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same ability level is known as horizontal equating, while equating 

tests over different levels of ability is known as vertical equating. 

Vertical equating may be used, for example, in comparing children 

across different school grades. In both cases, the items have to be 

placed on a single scale. Once again, the invariant item parameters 

of IRT provide a useful framework for this challenging testing 

problem. 

Kern Bias. Item bias exists when groups of examinees of equal 

ability have an unequal probability of getting correct responses to an 

item. One way to approach the item bias problem is to compare the 

item difficulty parameters of a given item across the groups of 

interest. Lord (1980) has argued that classical item difficulty 

statistics are not appropriate for the study of item bias because such 

item statistics are sample dependent. Item response theory, however, 

offers a better mechanism for testing bias because of the property of 

invariant item parameters. According to Ironson (1983) "...IRT is 

less likely (than methods based on classical item statistics) to 

artificially label an item as biased. Classical measures confound 

ability differences with differences in discrimination, difficulty and 

guessing" (p. 55). 

Statement of the Problem 

The invariance of item parameters is important in the field of 

testing. Through the expected feature of item parameter invariance, 

IRT provides a sound theoretical basis for exploring the issue of item 

bias detection. Although different sub-groups may have different 
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ability distributions they should nevertheless demonstrate equal item 

parameter estimates when sampling fluctuations are taken into account. 

When parameter estimates differ, one interpretation would be that the 

items are behaving differently for the two groups. This, in turn, 

implies that the item is biased. 

One concern, however, is that the expected feature of invariance 

may be confounded with such estimation issues as sampling error and 

range restriction. Sampling error describes the differences among 

parameter estimates with randomly equivalent samples of examinees. 

Differences between the estimates would be expected to decrease as 

sample size increases. 

Range restriction refers to constriction in the distribution of 

ability in a particular sample of examinees used to estimate the 

parameters. For example, a given sample of examinees may be 

homogenious and have a relatively narrow range of ability. When this 

happens, the regression function has to be estimated from a set of 

points that cluster tightly. This results in the regression function 

being estimated poorly. Small changes in the placement of points may 

result in dramatically different regression functions and consequently 

in parameters that are unstable. 

The expected property of invariance of item parameters plays a 

major role in detecting item bias. The comparison of parameter 

estimates obtained from sub-groups of interest using IRT models has 

been advocated as a method of detecting item bias. One issue with 

this approach is that although it is known that range restriction may 

influence parameter estimation, it is not known precisely what the 



7 

impact would be in thp racp nf . 
cne case of comparing extreme groups for the 

purpose of item bias examination. 

The purpose of this dissertation is to study the effects of the 

above mentioned factors on the invariance of item parameter estimates 

Where groups are known to have similar characteristics. Questions of 

interest in this study are: 

1) How does range of ability affect the invariance 
of the estimates of the difficulty parameters in 
the three parameter IRT model? 

2) What is the influence of sample size in the in¬ 
variance of the estimates of the difficulty parameter? 

3) What is the consequence of interaction of range of 
ability with sample size? 

This study assesses the variability of the item difficulty or b 

parameter estimates of the three parameter IRT model by obtaining 

parameter estimates for the same items over repeated samples with very 

similar characteristics. The strategy for this dissertation was to 

evaluate the extent to which repeated estimates obtained from samples 

with differing ability distributions and sample sizes would recover 

the true values for these parameters. 

To investigate these questions, three levels of range restriction 

and three levels of sample size were generated to yield nine testing 

situations. Thirty random samples from each testing situation were 

fitted to the three-parameter item response model and compared. If 

the invariance property holds, parameter estimates should be 

consistantly homogenious across the full range of items and 

conditions. The hypothesis was that estimation would not be 
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influenced by changes in the ability distribution because of the 

invariance property. 

Simulated data were used for this study primarily because 

population parameters could be known. A second advantage of simulated 

data is as a control for model-data fit and also for bias. Although 

model-data fit or lack of item bias cannot be established even with 

simulated data, this approach provides a reasonable intuitive basis 

for this. 

One way to obtain repeated samples is to artificially generate 

responses for each examinee. This approach was taken by Gifford and 

Swaminathan (in press). While this is a useful approach for 

understanding the properties of the estimates, it is not a feasible 

approach in a practical testing situation. In this approach, samples 

are drawn, with replacement; for each sample, the item and ability 

parameters are estimated; and the sampling distribution of these 

estimates established empirically. The method of resampling from the 

same set of data has some clear advantages since we do not know 

theoretically the sampling error of the estimates. These include 

avoiding the need for collecting more data, while allowing for the 

possiblity of studying the sampling properties of the estimates. 

One contribution of this dissertation is that it provides an 

empirical understanding of the nature of sampling error in IRT. In 

particular, the effects of range restriction and sample size on 

parameter invariance can be investigated. 

A further contribution may be in providing a method for determing 

the standard error of estimate in IRT. Currently, the theoretically 
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derived standard error of estimate is used to understand the sampling 

fluctuations of the estimates. These standard errors may not be 

accurate enough for the sample sizes used in practical applications. 

The resampling method used in this dissertation provides another 

method of assessing the standard error. 

Another contribution is in the assessment of item bias. One 

method of assessing item bias is to first obtain parameter estimates 

for groups where bias may be a concern. The parameter estimates, 

typically the b s, may then be compared using scatterplots. For 

example, in an examination of possible sex bias, each sex group may be 

randomly divided into two groups. Parameter estimates may then be 

obtained for all four groups. If bias does not exist, it would be 

expected that within group scatterplots would demonstrate about the 

same degree of scatter as between group scatterplots. This method is 

advocated by Hambleton and Murray (1983), and will be discussed in 

Chapter III. The repeated sampling method proposed in this study may 

provide a clearer picture of bias than would be possible with only two 

replications for each group. 



CHAPTER II 

REVIEW OF THE LITERATURE 

Introduction 

IRT is best understood in terms of its historical relationship to 

classical test theory. Classical test theory predates IRT and is a 

useful, relatively simple and flexible model that has application for 

a wide range of testing needs. However, due to a number of 

limitations of the classical test theory model for solving 

sophisticated testing issues, and also because of the availability of 

modern high speed computers, IRT has come to be the test theory model 

of choice. 

This chapter will begin with a review of classical test theory, 

including a discussion of shortcomings of this model that have led to 

the use of IRT. Next, IRT will be considered, particularly in 

relation to the key property of parameter invariance. The method of 

detecting item bias using IRT estimates obtained from extreme groups 

will be considered in terms of its potential for investigating item 

parameter invariance. Finally, a preliminary study of item parameter 

invariance using repeated samplings will be reviewed. 

10 
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Review of Classical Test Theory Assumptions 

The classical model defines two unobservable scores called true 

score and error score. This concept is based on the theoretical idea 

Of infinitely replicated testings. For a given examinee, true score 

Is the expected value of the observed scores, while error score is the 

expected difference between true score and observed score. This model 

may be written: 

x = T + e 

where: x = observed score 

T = True score 

e = error score 

Assumptions for this model are (1) the mean of the error term is 

zero, (2) the correlation between true score and error score is zero 

and (3) error terms are uncorrelated over repeated testings on 

parallel forms. These assumptions describe the conceptual 

partitioning of the inconsistent performance modeled in the error term 

from elements that describe consistent performance called true score. 

Although several important and useful formulas are derived from 

the classical test model including the Spearman-Brown formula and 

others, there are also important limitations to the model. The chief 

limitation is that classical item parameters measuring item difficulty 

(p value or proportion correct) and item discrimination (item total 

correlations) are influenced by examinee characteristics. Lord 

(1980) says "Proportion of correct answer in a group of examinees is 
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not really a measure of item difficulty. This proportion describes 

not only the test item, but also the group tested... item test 

correlations vary from group to group also. Like other correlations, 

item-test correlations tend to be high in groups that have a wide 

range of talent, low in groups that are homogeneous." (P35) Sample 

dependent item statistics limit the generalizabilTty of test validity 

to examinee samples that are nearly identical to the sample that is 

used for item calibration (Hambleton & Swaminathan, 1985). 

A related problem is that choice of item is confounded with test 

reliability. Reliability is enhanced by test variance. One important 

implication from this is that tests are constructed to maximize 

observed score variance. The contribution of each item to the test 

variance cannot be determined precisely. Hence it may not be 

possible, using classical test theory, to choose items that maximize 

reliability of the test. 

The issue of group dependent item parameters also has 

implications for the development of parallel forms. Although the 

notion of the parallel form test is a cornerstone of classical test 

theory, the parallel form is difficult to realize in practice 

(Hambleton & Swaminathan, 1985). However, parallel forms are 

necessary for comparisons of true scores across examinees. 

Item Response Theory Assumptions 

IRT is based on strong assumptions, while classical test theory 

is based on weak assumptions. The classical model is flexible because 

of these weak assumptions and it is very likely to fit nearly all 
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mental measurement test data sets, 

theory, however, is that there are 

applications. 

One problem with classical test 

inherent limitations with its 

IRT models may be less flexible than the classical model as well 

as more mathematically complex, but when the IRT model fits the data, 

considerable benefits are realized, while classical test theory 

models are limited to the first and second moments, item response 

theory sustains models that support linear and non-linear regression 

and normal and non-normal frequency distributions (Lord, 1980). 

The incorporation of non-linear relationships or equivalently 

that of higher order moments in item response theory is the key to the 

added theoretical advantages of IRT over classical test theory. The 

price to be paid for these advantages include increased stringency of 

model assumptions, particularly those of local independence and 

unidimensionality. 

Local Independence 

Item response theory specifies a probabilistic relationship 

between examinee test performance and a set of unknown latent 

traits. A basic assumption in IRT is that the underlying latent space 

is complete. 

When the complete latent space of dimension n is specified, then 

all the traits Tj_, T£, T3*...Tn have been taken into account in 

defining the relationship between examinee response and the individual 

item characteristics for a given item. This implies that the 
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examinees' responses to items i and j are statistically independent 

when T1# T2,...Tn are given, i.e., 

f(yi,yj!T1,T2,...Tn) = f(yi!T1,T2,...Tn) f(yj!T1,T2,...Tn) 

Local independence is a strong assumption in IRT, and one that is 

easily violated (Goldstein, 1980). Another way to state the 

assumption of local independence is that the error terms of the item 

response models for individual respondents at given levels of T1, 

T2»••*Tn» should be independent. Violations of local independence 

would be anticipated in circumstances where a response to one item 

would influence the examinee's response to another item. This 

situation may occur in a reading test, for example, when several 

questions are asked about a single passage. 

Uni dimensionality 

A common assumption in the application of item response theory is 

that the complete latent space is unidimensional. McDonald (1982) 

argues that the concept of uni dimensionality should flow directly from 

the concept of local independence. 

When unidimensionality does not exist for a given data set, then 

it is a tautology that a uni dimensional model will not provide the 

best fit. Furthermore, the extent of model robustness is not known, 

so it cannot be determined to what degree expected features may or may 

not be obtained given some degree of model data misfit. 

The issue of dimensionality is a difficult matter. It opens the 

possibility of a number of potential explanations of model data fit 

problems, as well as concerns about the confounding of model data fit 
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problems with other issues such as sampling error, or item bias and so 

on. Dimensionality is a haunting problem for IRT, precisely because 

it is elusive and at the same time, central to the expected features 

that make IRT attractive to measurement specialists. 

Mathematical Form of IRT Models 

It should be noted that item response models (IRM) are part of a 

large family of models, including both multidimensional and 

unidimensional models as well as models that are fully or partly 

linear or non-linear (McDonald, 1982). Non-linear models are 

convenient to work with because the eliminate the problem of a 

probability scale that is not bounded by 0 and 1. Multidimensional 

models are too complex for practical application at this time. 

One parameter model. In the one parameter model, the probability 

of a correct response may be written: 

plj (Ti> = exP D(Ti * bj)/C1 + exp D (Ti - bj)] 

where the correct response for individual i with ability Ti for item j 

is denoted Pj (T^) and the item difficulty parameter is denoted bj. 

The bj parameter is a location parameter on the ability scale that 

corresponds to a probability of .5 correctly responding to the item. 

As items increase in difficulty the curve moves to the right on the 

ability scale. The scaling factor, D, set at 1.7, is used to maximize 

correspondence between the normal ogive and the logistic function. 
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Iwo_parameter model. The two parameter model is appropriate when 

items vary in difficulty and discrimination. For the two parameter 

model, the probability of a correct response is given by: 

p2j (Ti> ' e*P Daj (T1-bj)/[l + exp Daj (Tj-bj)] 

where aj is the item discrimination parameter and is the only addition 

to the previously shown 1-parameter model. This "a" parameter is 

proportional to the slope at the inflection point (Lord, 1980). 

Three parameter model. The probability of a correct response 

for the three parameter model is given by: 

P3j (V = cj + U-Cj){exp DaJ-(TrbJ.)/ 

[1 + exp Daj(Tj-bj)]} 

where Cj is the guessing parameter. The C parameter corresponds to 

the lower asymptote. This parameter represents the probability of a 

randomly selected examinee responding correctly by guessing. This 

probability is zero for the one- and the two-parameter models. 

The guessing parameter is often called the pseudo-guessing 

parameter or pseudo-chance parameter at the suggestion of Lord (1974) 

because the estimated chance level is typically below the expected 

probability for guessing for field data estimates. Lord attributes 

this to the skill of item writers at providing answer stems that are 

attractive to examinees who lack sufficient knowledge or technique to 

answer the question appropriately. 
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Invariance in Item Response Models 

Two key properties of item response models are item and ability 

parameter invariance. These features are a direct consequence of the 

assumption that an examinees' ability and the probability of a 

correct response to an item is related by the item response function. 

Lord (1980, pp. 34) describes the invariance property as follows: 

"...an item response function can also be viewed as the 
regression of item score on ability. In many statistical 
contexts, regression functions remain unchanged. In the 
present context this should be quite clear: The probability 

k• •?• correc\ answer to item i from examinees at a given 
ability level Tq depends only on Tg, not on the number of 
people at Tq, not on the number of people at other ability 
levels Tj, T2»***^jv Since the regression is invariant, its 
ower asymptote, its point of inflexion, and the slope at 

this point all stay the same regardless of the distribution 
of ability in the group tested. Thus a.-, b.-, and q are 
invariant item parameters. According to the model, they 
remain the same regardless of the group tested." 

The Identification Problem 

Although item parameters and thetas are invariant from one 

examinee group to another, they may not appear to be invariant because 

the scale of the estimates is arbitrary and a linear transformation is 

required to put the estimates from different groups on the same 

footing. The arbitrariness or indeterminancy of the scale is formally 

known as the identification problem (Hambleton & Swaminathan, 1985). 

To resolve this identification problem it is necessary to fix the 

scale of estimates that are to be compared across groups. 

The three parameter model may be transformed where T becomes T*, 

an- becomes a.,*, b,* becomes b.,* and c^ becomes c.,*, such that: 
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T* = m (T) + n 

&i* = m (b1) + n 

ai* = ai/m 

ci* = ci 

SO that an invariant item response function results: 

Pi(T*lai*’ bi*’ ci*) = pilT'ai. bj, c1) 

(Hambleton & Swaminathan, 1985). One approach to this problem is to 

fix the scale of theta to have mean zero and standard deviation one by 

choosing j and k appropriately. 

Factors Influencing Parameter Estimation 

Invariance of item parameters and ability estimates is not unlike 

the concept of invariance of the functional relationship obtained in 

linear regression (Hambleton & Swaminathan, 1985). A linear 

regression line is theoretically invariant regardless of the 

distribution of the independent variable. However, although a true or 

population regression line exists, proper estimation of the line may 

be affected by sample size and restriction of range. 

The problem of range restriction may be further exacerbated 

by the non-linearity of the ICC (Hambleton & Swaminathan, 1985). The 

difficulty is that the non-linear form of the logistic function 

requires that the curves in the more complex function also be 

estimated and sufficient data points must be available to achieve 

proper estimates of these curves. 
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Although IRT provides a sound theoretical basis for item 

parameter invariance, an important issue is that the stability of 

estimates obtained from extreme ability groups is not known. In light 

of the discussion above, it is clear that range restriction could be 

an important influence on parameter estimates when extreme groups are 

used for the detection of item bias. Because range restriction may be 

an issue in the detection of item bias, the next section will explore 

the literature on the technique of using estimates based on extreme 

groups to detect item bias. 

I tern Bias Detection Methods and Parameter Invariance 

Bias arise when groups of examinees (e.g.. Males and Females) who 

are equal in ability, differ in item performance (Hambleton & 

Swaminathan, 1985). Pine (1977) defined an unbiased item as an item 

for which different subgroups of equal ability have the same 

probability of getting the item correct. Given this orientation, IRT 

provides a natural framework for studying item bias. 

Three methods of detecting item bias using IRT models are 

documented by Hambleton and Swaminathan (1985). Method one is the 

"area" method, in which differences between the item characteristic 

curves are compared across subgroups of interest. A second and 

logically equivalent method is to compare item parameters across 

subgroups. If invariance is not obtained for a particular item, one 

potential explanation is that the item is biased. Another way to view 

this might be to consider such an item multidimensional. 
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A third approach is to investigate model data fit. If the model 

fits the data, then the expected feature of item parameter invariance 

is assured and item bias can be ruled out. These methods should yield 

equivalent results. 

Comparing ICC1s and comparing item parameters across subgroups 

should be identical because the ICC's are defined by the item 

parameters. However, it has been argued that ICC's may show very 

little difference while item parameter estimates may seem to be quite 

different (Linn, Levine, Hastings & Wardrop, 1981). While this 

implies that ICC's may be more appropriate for the study of item bias, 

it has also been argued that ICC's may disguise "true" bias (Hambleton 

& Swaminathan, 1985). 

The most sensitive and direct method of checking for item 

parameter invariance is a method that would compare the item 

parameters across different groups. According to Lord (1980) "The 

invariance of item parameters across groups is one of the most 

important characteristics of item response theory." 

Hambleton and Murray (1983) used a technique for comparing item 

parameters, along with other methods, to explore goodness of fit. The 

method of assessing model data fit relates to the detection of item 

bias through a tautology. It is known that model data fit implies 

obtaining the expected features, and therefore, demonstrating either 

one should be sufficient to guarantee the other. 

The technique, based on an idea by Angoff (1982), was intended to 

detect bias using classical item statistics, but was adapted by 

Hambleton and Murray for use with IRT models. Hambleton and Murray 
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adapted Angoff's approach, which is descriptive in nature, because 

statistical methods of detecting invariance may be inadequate.' 

Because of the large sample sites required for estimation of 

parameters when using IRT models, statistical approaches are hampered 

by their extreme sensitivity to differences that may not be 

significant in practical terms. 

Hambleton and Hurray's approach was to split a parent sample of 

examinees into subgroups according to background variables, such as 

males and females or blacks and whites, where differences in ability 

might have been expected. Item difficulty or b estimates are obtained 

for blacks and whites. If the b estimates were invariant, Hambleton 

and Murray (1983) argued that scatterplots of the estimates should 

fall on a straight line, with positive slope. However, because of 

sampling errors, this may not be realized in practice. To address 

this problem, Hambleton and Murray (1983) obtained a baseline for 

comparison. 

To obtain a basis for comparison, each examinee subgroup is 

divided randomly into two groups, parameter estimates obtained, and 

scatterplots generated for the four groups. Hambleton and Murray 

(1983) reasoned that scatterplots based on estimates of random samples 

within each subgroup could be used to demonstrate sampling error. The 

degree of scatter from the random within groups could then be used as 

a baseline of comparison for cross subgroup scatterplots. Scatter 

that exceeds the envelope of scatter established by the random-within 

plots might be attributed to bias. 
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Hambleton and Murray (1983) found more scatter for between groups 

than for random within groups. This implied either the model did not 

fit the data, (hence Invariance was not obtained), or that Item bias 

was pertinent. Another possibility proposed was that parameter 

invariance may not have been observed because extreme groups were 

leading to poor estimates due to range restriction. 

Another potential influence may have been the effect of sample 

size on the precision of the estimates. Hambleton t. Murray (1983) 

worked with samples of 165 examinees. These samples may have been too 

small for obtaining proper estimates. 

Preliminary Study of the Invariance Property 

Mooney and Swaminathan (1986) sought to establish a better 

understanding of the problem of sampling error and its effect on the 

technique used by Hambleton and Murray (1983). Mooney and Swaminathan 

(1986) obtained thirty estimates for each item difficulty using random 

samples of 600 subjects drawn with replacement from a single parent 

sample of 1,200 subjects. Test items were from National Assessment of 

Educational Progress (NAEP) field data. They obtained distributions 

of b parameter estimates based on these samples. They reasoned that 

the distributions based on the random samples would offer a good 

baseline of comparison for estimates obtained from subgroups from the 

same population. Comparison groups that differed in educational 

background were used, where low education included formal education up 

to and including High School, while high education included all 

subjects who reported education beyond High School. 
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Using plus or mjnus two standard devjat1ons Qn th# SM)p,ing 

distribution of the randomly sampled examinee groups as criteria, 

Mooney and Swaminathan (1986) found that parameter invariance wa! 

found to a higher degree in the low education group than in the high 

education group. They found that 8 out of the 34 items (24%) were 

misfitting for the low educational background group, while 20 out of 

the 34 (59%) were misfitting for the high educational background 

group. 

Because the test was not difficult, Mooney and Swaminathan (1986) 

reasoned that range restriction may have influenced the estimates more 

for the high educational background group than for the low educational 

background group. In other words, for the high education group there 

were some items that nearly everyone got correct, thereby introducing 

restriction of range. This phenomena is sometimes termed a "ceiling 

effect" by psychometricians. For the low education group, on the 

other hand, the general difficulty of the test demonstrated better 

balance in relation to the group's ability. 

Mooney and Swaminathan (1986) repeated the analysis for samples 

of size 300 subjects. They split the two educational background 

groups randomly (designated LI and L2 for the low education group and 

HI and H2 for the high education group), re-estimated the b 

parameters, and compared them to a baseline of b estimates based on 

random samples of the same size. 

Fit appeared better in this case but was interpreted to have due 

to the fact that the randomly obtained estimates had about twice the 

sampling error. (The average standard deviation for the random 
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samples of 600 examines was about .10, while the average standard 

deviation for the 300 group was about .20.) Looking at Figure 1, each 

of the two low educational background groups (LI and L2) had only 4 

misfitting items (11%), while the high educational background groups 

(HI and H2) had 10 and 11 (29% and 32%), respectively. 

In comparing misfitting items for like groups in the 300 sample, 

Mooney and Swaminathan (1986) found much higher agreement among the 

low educational background examinee's estimates (82%) than for the 

high educational background examinee's (50%). (Agreement was 

calculated by the sum of the diagonal cells of Figure 1 divided by the 

total number of items.) This finding further supported the idea that 

differences resulted from range restriction. 

One problem with this conclusion, however, was that Mooney and 

Swaminathan (1986) obtained some out-of-bounds estimates for the high 

educational background group that required adjustment before the 

estimates could be compared. Because no established best method 

exists for determining how to rescale in these circumstances, three 

methods were compared: no adjustment, missing values, and recoding 

out-of-bounds estimates to +3.00. The recoding method was chosen 

because it demonstrated the best average fit. 

Out-of-bounds estimates for the high educational background group 

may indeed be a sufficient indicator that range restriction is related 

to the stability of the estimates although this may be confounded with 

factors such as item bias and model data fit. It could be, for 

example, that differences would not have been found, or that they 

would have been minimized, had the three parameter model been used. 
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Conclusion 

we know that range restriction has an effect on parameter 

estimation and consequently on the invariance of item parameter 

estimates. The study by Mooney and Swaminathan (1986) illustrates the 

heed for further investigation into this issue. It is known from the 

above studies that range restriction of ability may result in extreme 

out-of-bounds estimates and that this may have serious effect on our 

ability to study item bias. Although in previous work Mooney and 

Swaminathan (1986) have confirmed this, they worked with only the two 

parameter model and the effect of range restriction of ability with 

the three parameter model needs to be examined. Furthermore, the 

question of model-data fit could not be assured using field data. 

Needed is a study using repeated samplings that would rule out 

the question of model-data fit as well as item bias while controlling 

for the two factors of interest: sample size and range restriction of 

theta. 



CHAPTER III 

DESIGN OF THE STUDY 

Introduction 

The purpose of this study is to address the issues outlined in 

the introduction: 

1. How does range of ability affect the invariance 
of the estimates of the difficulty parameters in 
the three parameter IRT model? 

2. What is the influence of sample size in the in¬ 
variance of the estimates of the difficulty 
parameter? 

3. What is the consequence of interaction of 
range of ability with sample size? 

To investigate the above questions three sample sizes (n=600, 

n=900, and n=1200) were completely crossed with three levels of 

ability range. This yielded a 3 by 3 design with 9 testing 

situations. Within each of these testing situations, 30 sets of test 

data were generated using a resampling technique and parameters were 

estimated using L0GIST4 (Wingersky, M. $., Barton, M. S., & Lord, F. 

M., 1982). The estimates of the b parameters obtained from L0GIST4 

were then compared for comparison across the various testing 

situations. 

27 
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Since previous research by Mo0ney and Swaminathan (1986) ha5 

raised issues about the influence of range restriction in a field data 

study, three levels of range restriction were chosen: 1) a symetric 

distribution of examinee ability. 2) a moderately positively stewed 

distribution of examinee ability, and 3) a highly positively stewed 

distribution of ability. The most extreme level of stewness was 

determined using empirical methods, and the middle level of stewness 

was selected as an Intermediate position between the most extreme 

level of skewness and the normal distribution. 

Positively skewed distributions were used in this study to 

facilitate the estimation of the lower asymptote of the three 

parameter model. The purpose of this study was to explore the 

relationship between the skewness of the ability distribution and the 

expected feature of b parameter invariance. Accordingly, either a 

positively or negatively skewed distribution of ability would be 

appropriate for this investigation. However, a belief expressed by 

(Hambleton & Swaminathan, 1985) is that the lower asymptote can be 

estimated well only when sufficient examinees are available at the 

lower levels of ability. To avoid confounding poor estimation of the 

lower asymptote with the quality of estimation of the b parameter in 

this study, positive skewness of ability was chosen. 

Although the influence of range restriction on parameter 

estimates was the focus of this dissertation, an important factor that 

may also influence parameter estimation is sample size. Although Lord 

(1980) recommends samples of approximately 1,000 subjects when using 

the three parameter model, previous research by Swaminathan and 
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Gifford (In press) suggests that sample sizes as small as 600 may be 

reasonable. Accordingly, three sample sizes were chosen for this 

dissertation, 600, 900 and 1200. 

Description of the 

DATAGEN. For this study, data were generated using the DATAGEN 

program (Hambleton X Rovinelli, 1973). m order to adequately study 

item bias detection using extreme groups, the influence of range 

restriction on parameter estimation of item response models must be 

studied. This requires knowledge of the true values of the 

parameters. Simulated data are also an important means of controlling 

for the influence of model-data misfit. 

DATAGEN allows specification of population parameters for the 

item parameters aj, bj, Cj (j = 1, 2, ..., n) and for ability 

parameters T-j, (i - 1, 2,..., n). A uniform or normal distribution 

may be specified and the true parameter values are then randomly drawn 

from the distribution. 

DATAGEN generates dichotomous examinee responses based on the 

item response model and the parameter values. (An individual 

examinee, a, for response, Pag, is then generated based on the given 

probabilistic item response model for a given item, g.) A random 

number drawn between the interval (0,1) is then compared to the 

estimated probability Pag. A score of 1 is given when Pag is greater 

than the number drawn, otherwise, the examinee obtains a score of 0. 
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An entire matrix of examinee resnnncpc < 
acrorH< responses is generated by DATAGEN 

cording to a specified number of examinpp ^ • 
e*a""nees and items. This matrix 

on available for analysis using L0GIST4. 

One concern with analyzina , 
y 9 data simulated by DATAGEN is that 

DATAGEN will qeneratp tnt^i 
generate total exam,nee responses with perfect and zero 

scores. Maximum likelihood 
. eStlmate corresponding to these cannot be 

obtained. To solve this problem I nncTa 
V ’ L0GIST4 removes all cases of perfect 

and zero scores before the analysis nno 
ysis. One concern with this approach 

in the context of this study is that 
y» that these removed cases would 

influence sample size. To avoid these slinht h- 
nese slight discrepancies, a version 

of DATAGEN modified by Dr Janirp r-ip^ a 
oy or. Janice Gifford was used so that no examinee 

will have perfect or zero scores. 

Mvlew_of Specific Steven for Data Genp.at^ 

in order to obtain the data for this analysis, the following 

steps were taken: 

Step 1: Using the modified version of DATAGEN, a sample of theta 

values and their associated response vectors were randomly generated 

to simulate a uniform distribution for 6,000 examinees over 60 items 

with known item parameters. In generating the values of the item 

parameters, the a parameters were uniformly distributed over the 

interval (.60, 1.90), the b parameters over the interval (-1.73, 1.73) 

and the c parameters over the interval (.15, .25). The theta 

estimates were also uniformly distributed, and the interval (-1.73, 

1.73) was used so that thetas would not be generated that would be 

beyond the range of the b's. 
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step 2: The 1st generation data set was partitioned into 20 equal 

intervals of theta. Distributions were then obtained by randomly 

sampling from each of the twenty intervals of ability. Table 1 

displays the intervals of theta and the percentages sampled from each 

of the intervals for each of the three distributions of ability. 

Step 3: Three ranges of theta were chosen, level 1, level 2 and 

level 3. The level 1 distribution centered the majority of the 

population parameters for ability toward the middle of a symmetric 

distribution (see Figure 2). The level 2 distribution has a positive 

skew of ability, with 5% of the population ability parameters in the 

last five intervals (see Figure 3). The level 3 distribution is more 

highly positively skewed than the level 2 distribution. The level 3 

distribution has 10% of the population parameters for ability in the 

last 10 intervals. This is displayed in Figure 4. 

The arrangement of 3 levels of sample size by three levels of 

skewness, produces 9 different testing situations. These 9 testing 

situations are depicted in Figure 5. 

In order to construct the distribution at the appropriate ability 

levels corresponding to the appropriate ability level and sample size 

in Figure 5, the following steps were taken: 

a: From Table 1, the percentage of examinees at a given 
interval of theta were determined. For example, if 
interval under consideration was -0.186 to -0.004, 
4.0 percent or 36 theta values were selected uni- 
formally in the interval. 

b: Thirty samples of item responses were obtained 
randomly with replacement from the distributions 
constructed in "a." For convenience, the total data 
set for the 9 cells were obtained simultaneously. 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Table 1 

Distributions of Theta 
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Range of Interval 
(n = 6,000) 

Level 1 
% 

Level 2 
% 

Level 3 
% 

-1.730 to -1.542 1.00 1.90 4.00 -1.540 to -1.381 1.00 2.90 8.00 
-1.386 to -1.205 1.80 3.90 9.00 
-1.202 to -1.043 2.80 4.90 1.10 
-1.041 to -0.863 4.00 6.70 1 30 
-0.861 to -0.709 4.80 8.60 1.30 
-0.706 to -0.538 6.70 1.21 1.10 
-0.521 to -0.359 8.00 1.30 9.00 
-0.355 to -0.182 9.00 1.21 8.00 
-0.186 to -0.004 1.10 8.60 4.00 
-0.007 to 0.154 1.10 6.70 1.00 
0.150 to 0.323 9.00 4.90 1.00 
0.321 to 0.495 8.00 3.90 1.00 
0.491 to 0.655 6.70 2.90 1.00 
0.652 to 0.833 4.80 1.90 1.00 
0.836 to 1.004 4.00 1.00 1.00 
1.009 to 1.185 2.80 1.00 1.00 
1.188 to 1.376 1.80 1.00 1.00 
1.373 to 1.550 1.00 1.00 1.00 
1.559 to 1.728 1.00 1.00 1.00 
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Figure 5. Structure of the Experiment 
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Within 

samples ra 

each cell, parameter estimates were derived from 

ndomly obtained with replacement from the 

repeated 

parent 

distributions. For each of the 9 testing situations, 30 sets of test 

data were generated for 60 Items. The b estimates for each of the 

testing situations were subtracted from the known true values. The 

sum of the squares of these values were then compared by ranking the 

items by true score difficulty and displayed as histograms. To 

improve the interpretability of the results, items were grouped in 

sets of five. Distributions of bias and variability are also 

displayed. 

Estimation of Parameters 

L0GIST4 (Wingersky & Lord, 1976) was used exclusively for 

parameter estimation in this study. Item parameters estimates were 

scaled to mean zero and unit variance. This was done to remove the 

indeterminancy of the item difficulty scale so that item difficulty 

scale would be comparable across groups. The number of answer choices 

was five, so that the probability of guessing was 1.0/5. The maximum 

number of iterations was set at 40, with 6 interations per stage and 

an overall maximum of 600 seconds for the run. The default settings 

were chosen for any remaining selections. 

Thirty samples were randomly obtained with replacement from each 

of the three levels of theta distributions. This resampling technique 

is modeled on the bootstrap method of resampling proposed by Efron 

(1982). 
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After obtaining 30 sets of responses cloned from each of the 

appropriate 2nd generation data sets. L0GIST4 estimates of the item 

parameters were obtained for each of the cells. In each case, 

standardized estimates of the item parameters are then subtracted from 

the standardized true values of the item parameters. 

Assessment of Parameter Invariance 

In order to address the issue of invariance, two different 

methods of assessing the invariance property will be used. One method 

assessed the accuracy of the estimates, and a seperate method assessed 

the stability of the estimates. 

Accuracy: accuracy refers to the degree to which estimates 

recover the known population value. 

In order to assess the accuracy of estimation, the mean squared 

difference is computed as below: 

30 
MSD = SUM (t.j - True)^ , 

i=l 

Here, tj is the estimate obtained from an individual replication and 

True is the true value for a given b. For each item the mean squared 

difference between the estimates and the true value was calculated. 

The accuracy estimates for each level of range restriction are 

graphically depicted within each level of sample size, while items are 

ranked according to true value difficulty. Graphs of variance and 

bias are also provided. By comparing the three levels of range 

restriction within sample size, the influence of levels of ability on 

extreme items may be readily interpreted across these three indices. 
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Accuracy represents the degree to which estimates recover the 

known population value. Accuracy alone, however, is not enough to 

answer the question of invariance. The mean squared difference given 

above can be partitioned into two additive components, variance and 

bias, i.e. 

MSD = V (t) + B (T) 

Gifford and Swaminathan (in press). 

Variance: The variance V (t) is given as: 

30 
V (t) = SUM (t.- - t.)2 

i=l 

where t. is the mean of the estimates obtained over the 30 

replications. 

Bias: For each B estimate, bias was calculated as: 

B (t) = (t. - T)2 

While MSD is an index of the accuracy of the estimate, it does not 

provide an explanation of the differences between the estimate and the 

True value. Partitioning MSD into sampling error and systematic bias 

provides this explanation. For example, two estimates that obtain the 

same accuracy may differ with respect to variance and bias. It could 

be, that estimates are not accurate, but that they are consistent and 

therefore invariant. 

Item Stability: In order to assess invariance, accuracy and 

variability of the estimates must be assessed under separate 
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conditions. Therefore, stability will be assessed by investigating 

the nature of the distribution of the estimates by providing an 

arbitrary benchmark. Following the estimation of item parameters for 

each cell, the estimates for each item are grouped and rescaled to 

mean zero, standard deviation one. If the majority of the rescaled 

estimates (95*) fall within two standard deviations, the estimates 

will be considered invariant. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Item parameter invariance is a key property of IRT models, 

and it is a property that sets IRT apart from classical test theory 

models. Item parameter invariance is important for a number of 

testing issues, but one of the most direct and straight-forward 

examples of the use of this property arises in the study of item bias. 

Here, the estimates from different groups are obtained independently 

and then compared to determine if individual items are behaving 

differently for different groups. 

A question that naturally arises from this application is the 

matter of the degree to which parameter invariance holds for different 

samples. Although parameter invariance is not being questioned, there 

may exist issues with the quality of parameter estimation that could 

frustrate the application of the invariance property in practical 

settings. Hence, the purpose of this dissertation was to answer the 

following research questions: 

1. How does range of ability affect the invariance 
of the estimates of the difficulty parameters 
in the three parameter IRT model? 

2. What is the influence of sample size in the 
invariance of the estimates of the difficulty 
parameter? 

41 
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3. What is the consequence of interaction 
range of ability with sample size? 

of 

These questions will be considered in terms 

the parameter estimates, as well as in terms of the accuracy, bias and 

variance of the estimates as described in Chapter III. To obtain data 

for this analysis, a sample of simulated responses for 6,000 examinees 

for 60 items was generated for the three parameter IRT model. 

Thirty samples for each of nine testing situations were then 

constructed from the population of 6,000, varying across three level 

of sample size and ability distribution. Repeated samples were then 

obtained from each of the testing situations in order to better 

understand the behavior of the estimates. The b estimates for each of 

the 60 items from each situation were then compared in order to 

establish what, if any, differences exist among the testing 

situations. 

Descriptive Statistics 

The population item parameters obtained from DATAGEN are reported 

in Table 2. These population parameters were then rescaled to mean 

zero and unit variance. Each item is ranked in order of item 

difficulty. The purpose of ranking items is to provide a better 

understanding of item difficulty as it relates to the ability 

distributor. For example, if the distribution of ability in 

positively skewed, difficult items may be less estimated with greater 

variability over replications than would be the case for an item whose 

difficulty level falls near the mode of the ability distribution. 
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True Item Parameters 
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item rank b a c P 

4 
55 

1 
2 

-1.497 
-1.345 

1.864 
1.446 

.167 

.238 
.917 
.890 44 

40 
3 
4 

-1.342 
-1.339 

.941 
1.386 

.152 

.190 
.838 
.876 22 5 -1.303 .737 .170 .821 35 6 -1.245 1.392 .189 .865 12 7 -1.123 .722 .168 .787 29 8 -1.118 .912 .176 .801 7 9 -1.107 .983 .217 .815 8 10 -1.096 1.676 .198 .840 56 11 -.910 .992 .158 .770 9 12 -.892 1.166 .238 .796 48 13 -.872 .912 .215 .776 16 14 -.863 1.210 .173 .774 

47 15 -.781 1.135 .196 .760 
3 16 -.718 1.252 .212 .749 

59 17 -.713 .701 .185 .717 
36 18 -.626 .785 .226 .721 
31 19 -.624 .780 .191 .712 
45 20 -.592 1.841 .224 .738 
26 21 -.579 1.556 .221 .749 
27 22 -.553 1.638 .190 .725 
14 23 -.541 1.111 .224 .721 
21 24 -.494 1.027 .170 .694 
41 25 -.471 1.513 .162 .685 
15 26 -.394 .679 .169 .655 
50 27 -.393 1.815 .235 .698 
28 28 -.370 .641 .207 .670 
39 29 -.331 1.778 .227 .680 
23 30 -.319 1.189 .161 .649 
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Table 2 (continued) 

i tem rank b a c P 

11 31 -.302 1.382 .194 .664 57 32 -.253 1.817 .228 .675 19 33 -.114 .863 .165 .617 43 34 -.059 1.294 .191 .610 18 35 -.053 1.773 .239 .636 34 36 .035 1.306 .186 .578 60 37 .089 .832 .216 .591 2 38 .127 .697 .153 .542 10 39 .168 1.007 .173 .550 20 40 .266 1.207 .217 .541 6 41 .281 .839 .201 .541 37 42 .384 1.157 .237 .539 13 43 .521 1.710 .182 .455 5 44 .538 1.526 .234 .498 
32 45 .579 1.061 .239 .500 
25 46 .656 1.619 .168 .423 
46 47 .679 1.001 .162 .432 
49 48 .717 1.794 .190 .431 
58 49 .855 1.057 .224 .437 
42 50 .907 1.786 .212 .400 

1 51 .925 .670 .198 .431 
54 52 .973 1.181 .228 .429 
38 53 1.327 1.787 .237 .339 
30 54 1.381 .805 .163 .329 
24 55 1.400 .939 .237 .366 
17 56 1.446 1.628 .204 .296 
53 57 1.541 1.556 .192 .275 
52 58 1.562 1.773 .187 .256 
51 59 1.589 .797 .222 .356 
33 60 1.728 1.649 .249 .300 
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Under ideal conditions, all items would have low and constant 

variability, with no influence due to item difficulty. The rescaled b 

parameter population values are reported in Table 3. 

Item difficulty parameters show a good range from -1.497 for the 

least difficult item to 1.728 for the most difficult item. This full 

range of difficulty is also reflected in the p-values, which range 

from .917 for the easiest item to .300 for the most difficult item. 

To introduce maximum stress to the design, a high degree of range 

restriction was employed. The patterns of the distributions of the 

three levels of range restriction are shown in Figures 2, 3 and 4. 

One concern with employing a high degree of range restriction, 

however, is the influence that the range restriction may have on the 

behavior of the estimates, particularly for item discrimination. 

Data sets that obtained poor estimation of the discrimination 

parameters were not included in the study. Figure 6, below, shows the 

number of runs that had poor estimation of the a parameter. Figure 6 

shows the count and percentage of discarded estimation samples for 

each of the nine testing situations. It can be seen from Figure 6 

that 27 (90%) of the runs for the distribution with the most extreme 

degree of positive skew for sample size 600 included poor estimates 

for the a parameters. This suggests that this combination of sample 

size and skewness results in a breakdown of the estimation procedure. 



Table 3 

Rescaled B Estimates 
(n = 6,000) 

item rank b true 
(rescaled) 

p-value 

2 -1.410 
44 3 -1.407 
40 4 -1.403 
22 5 -1.363 
35 6 -1.299 
12 7 -1.163 
29 8 -1.157 

7 9 -1.145 
8 10 -1.133 

56 11 -0.926 
9 12 -0.906 

48 13 -0.883 
16 14 -0.873 
47 15 -0.782 

3 16 -0.712 
59 17 -0.706 
36 18 -0.610 
31 19 -0.607 
45 20 -0.572 
26 21 -0.557 
27 22 -0.528 
14 23 -0.515 
21 24 -0.463 
41 25 -0.437 
15 26 -0.351 
50 27 -0.350 
28 28 -0.325 
39 29 -0.281 
23 30 -0.268 
11 31 -0.249 
57 32 -0.194 

.917 

.890 

.838 

.876 

.821 

.865 

.787 

.801 

.815 

.840 

.770 

.796 

.776 

.774 

.760 

.749 

.717 

.721 

.712 

.738 

.749 

.725 

.721 

.694 

.685 

.655 

.698 

.670 

.680 

.649 

.664 

.675 



Table 3 (continued) 

i tem 

15 
43 
18 
34 
60 

2 
10 
20 

6 
37 
13 

5 
32 
25 
46 
49 
58 
42 
51 
54 
38 
30 
24 
17 
53 
52 
51 
33 

rank b true 
(rescaled) 

~1T~ 
-0.040 ' 

34 0.022 
35 0.028 
36 0.126 
37 0.186 
38 0.229 
39 0.274 
40 0.384 
41 0.400 
42 0.459 
43 0.667 
44 0.686 
45 0.732 
46 0.818 
47 0.843 
48 0.886 
49 1.039 
50 1.097 

1 1.117 
52 1.171 
53 1.565 
54 1.625 
55 1.646 
56 1.697 
57 1.803 
58 1.826 
59 1.856 
60 2.011 

p-value 

7517 
.610 
.636 
.578 
.591 
.542 
.550 
.541 
.541 
.539 
.455 
.498 
.500 
.423 
.432 
.431 
.437 
.400 
.431 
.429 
.339 
.329 
.366 
.296 
.275 
.256 
.356 
.300 



Number of Examinees 

0 n = 900 n = 1200 

1 
Distri- 
bution 

3 

10% 

7 

23% 

1 1 
1 ! 

i 

3% i 
1 

of 
2 

8 1 
1 1 

7 J 
i 

Abi1ity 27% 3% 23% J 
1 | 

3 
27 6 

i i 
6 ! 

i 
90% 20% 20% i 

1 1 

Figure 6. Unsuccessful LOGIST RUNS. 



49 

Data Analytic 

The 30 sets of b estimates obtained from each of the nine testing 

situations were rescaled to mean zero and unit variance. The 

population parameter values were then subtracted from each of the 

estimates, and the results are reported in Appendix A. The purpose of 

looking at this average variance i<; tn . 
y ce is to better characterize the overall 

influence of sample size and restriction of range of the variability 

of the estimates. The average variance of each of the testing 

situations over 30 samples is reported in Figure 7. 

Reading Figure 7 from left to right, for ability level 1 (the 

normal distribution of ability), variance for the 600 sample was .161, 

while variance for the 1200 sample is .127 - a difference of .034. 

The level 1 distribution of ability produces decreasing variance of 

estimates as sample size increases. 

For ability level 2 and 3, the pattern of decreasing variance 

with increased sample size does not hold. For ability level 3, for 

example, the variance of the estimates for the 600 sample is .020 

lower than the estimates for the 1200 sample. These small differences 

do not appear to demonstrate any clear and constant effects due to 

sample size. 

The picture reading down Figure 7 is somewhat different. Here 

the pattern of difference among the variance of the estimates seems to 

show a consistant decrease in variance as positive skews increased 

from the normal distribution to the more positively skewed 

distribution. For the 600 sample, for example, ability level 1 
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Number of Examinees 

n = 600 n = 900 n = 1200 
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i i 

.132 i 
i i 
i i 

3 .105 

i — i 
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! .113 
1 1 
1 1 

i i 
i 

.125 ! 
i i 
i i 

Figure 7. Average Variance of B Estimates Over Thirty Samples 
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variance is .161, which decreases to .126 for ability level 2, and 

to .105 for ability level 3. 

Although there is an indication of decreases in the variability of 

the estimates with Increased skewness of the ability distribution, 

differences among the meah variance estimates do not appear to 

demonstrate any dramatic and consistent changes over the two factors 

of the design. This would seem to imply that the variation among the 

estimates is not influenced by changes in sample size, ability 

distribution differences, or by the interaction of the two. 

Stability Assessment 

An analysis of the stability of parameter estimates is displayed 

in Figure 8. Stability is defined as the variability of the estimates 

based on repeated samplings. This analysis provides an empirical 

investigation of model-data fit. Here each of the rescaled estimates, 

standardized to mean zero and unit variance, are presented in terms of 

the percentage of estimates within one and two standard deviations. 

Each cell includes 60 items by 30 replications. For normally 

distributed estimates, it would be anticipated that about 68% of the 

estimates would fall within one standard deviation of the mean and 95% 

would fall within two standard deviations of the mean. Stable 

estimates could be anticipated to behave as approximately normal 

deviates. It is clear from Figure 8 that the estimates are within the 

expected cut points. 
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Taking the symetric distribution (ability level 1) and the 

smaller sample size (N400). As an example. Figure 8 shows that 71.1* 

of the estimates fall within one standard deviation and 95.4% fall 

Within two standard deviations. The greatest expected contrast from 

the ability level 1, N=600 cell would be ability level 3, N=1200 cell 

in the lower right hand corner. Here, the ability distribution is at 

the maximum positive skew and sample size has been doubled. However, 

for the ability level 3, N=1200 cell, the picture is much the same as 

was the picture for the level 1, N=600 cell. 67.9% of the ability 

level 3, N=1200 cell estimates fell within one standard deviation, and 

96.0% fell within two standard deviation. 

The differences among the nine testing situations appear to be 

modest. In terms of the three research questions it appears that the 

range of ability does not influence the invariance of item parameters 

over sample size or distribution of ability, nor does it appear that 

these two factors interact. 

Figure 8 provides evidence to demonstrate that the model fits the 

data for all combinations of the two factors. A more detailed 

inspection of the behavior of the individual items is available in 

Appendix B. Here, items are ranked by difficulty and compared in 

terms of the percentage of estimates falling within one, two, three 

and four standard deviations from the mean. At this more detailed 

level of inspection, model-data fit appears to hold with a high degree 

of consistency. 
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Analysis of Accuracyr Bias and Variance 

As described in Chapter III, accuracy can be partitioned into two 

additive components, variance and bias. Accuracy was interpreted as 

the degree to which the sample estimates are close to one another, and 

bias was indicated by the degree to which the means of the estimates 

differ from the population value. Recall that accuracy, MSD(b), for 

item difficulty can be partitioned into variance, V(b), and Bias, 

B(b), i.e., MSD(b) = V(b) + B(b). The mean and standard deviation of 

MSD(b), V(b), B(b) in each item grouping are compared across the 

various testing situations. This analysis investigates quality of 

estimation on the item level and is therefore more highly focussed 

than the previous anlaysis. Items have been ranked by the population 

b parameters, and grouped in sets of five to simplify the task of 

observing change across the 9 testing situations. These items range 

from 1-12 where 1 indicates the easiest set of items and 12 indicates 

the most difficult set of items. (Variance bias and accuracy for 

individual items is presented in Appendix C.) 

Table 4 provides the means and standard deviations of V(b) for 

each of the three ability distributions for sample size of 600. 

The effect of changing ability distributions on the item difficulty 

estimates are reflected in the higher V(b) scores. The higher mean 

scores indicate a large variability of estimates over replications. 

Ability Level 1, for example, shows lower variability consistency at 

the extreme ranges of item difficulty. 
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Table 4 

Means and Standard Deviation of V(b) 
(n=600) 

for Item Groups 

_ Ability Level 1 
Item 
Group mean s.d. 

Ability Level 2 

mean s.d. 

Ability Level 3 

mean s.d. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

3.0784 4.3264 
.6857 .3823 
.5643 .3276 
.3412 .2514 
.1626 .0360 
.2579 .2884 
.1741 .2034 
.2111 .0660 
.4319 .2994 
.4047 .2694 

2.9828 1.0368 
6.0240 5.6314 

1.1473 .3775 
.4099 .2106 
.3338 .1962 
.3788 .3444 
.0936 .0508 
.1770 .1604 
.1391 .0703 
.3944 .2879 
.6096 .5289 
.5520 .2633 

5.1462 7.4245 
5.7674 5.8057 

.4903 .2011 

.2202 .0877 

.1813 .0544 

.1873 .1051 

.1366 .0901 

.2645 .3262 

.1803 .0868 

.4132 .1788 

.6451 .2718 
1.0443 .2973 
5.2976 3.8564 
8.4046 7.2634 

TOTAL 1.2766 2.5745 1.2624 3.1213 1.4555 3.3172 
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In Table 5. which presents the means and standard deviations o, 

the variance of the b's for the sample of 900, the trend is similar, 

although estimates show improvement with larger sample size. Figurl 

10 provides a graph of the means for the sample size 900. Similarly, 

Table 6. which presents the means and standard deviations of the 

vanance of the b's for the sample of 1200 simulated responses, also 

expresses the trend shown for the two smaller sample sizes. Figure 11 

is a graph of the results for the 1200 sample. 

The overall pattern of Figures 9, 10, and 11, ignoring levels, 

shows that the middle difficulty items have the lowest variability. 

Variability gradually increases symmetrically as item difficulty 

increases or decreases. 

Looking at Figure 9 little distinction can be made among the three 

levels of ability distribution for the middle difficulty items (item 

groups 5 to 7). This suggests that differences in ability 

distribution have little influence on the variation of estimates of 

these middle range items. 

Differences among levels of ability distribution are more apparent 

with items that have either low or high difficulty values. Item 

groups 2, 3 and 4, for example, appear to mirror item groups 8, 9 and 

10. Although the general pattern of increasing variability is about 

the same for these two groups, a subtle difference due to ability 

distribution may be detected. 

For low difficulty items, the following pattern exists: level 3 

has less variability than level 2, and level 2 less than level 1. For 

high difficulty items, the opposite pattern occurs. For item groups 
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Table 5 

Means and Standard Deviations of V(b) for Item Groups 
(n=900) 

Ability Level 1 
Item 
Group mean s.d. 

Ability Level 2 Ability Level 3 

mean s.d. mean s.d. 

1 .8547 .4144 
2 .5555 .1693 
3 .2729 .0810 
4 .2029 .0896 
5 .1374 .0578 
6 .1602 .1504 
1 .0866 .0158 
8 .2900 .1072 
9 .2709 .1679 

10 .3332 .0934 
11 1.4571 .9035 
12 5.1282 8.1630 

.4125 .1394 #3696 

.3535 .2748 .2051 

.1610 .0673 .1479 
•1357 .0784 .1314 
.0965 .0577 .0893 
. 1464 .1471 .2516 
.1060 .0659 .1344 
•2397 .1512 .3021 
•3443 .1878 .6968 
.6222 .3434 .8482 

1.7837 1.0775 1.7271 
1.5997 1.2294 6.9539 

.1068 

.0904 

.0322 

.0803 

.0275 

.2528 

.0805 

.1305 

.1879 

.4968 
1.1474 
9.6047 

TOTAL .8125 2.5406 .5001 .7173 .9881 3.1407 



Item 
Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TOTAL 

58 

Table 6 

Means and Standard Deviations of V(b) 
(n=1200) 

for Item Groups 

Ability Level 1 Ability Level 2 
Ability Level 3 

mean 

.5515 

.5834 

.1649 

.2188 

.0750 

.1523 

.1335 

.1679 

.1902 

.3159 

.4175 
3.1379 

.5051 

s.d. 

.1761 

.5782 

.0445 

.1838 

.0326 

.1448 

.1249 

.0703 

.1128 

.1320 

.1610 
3.4065 

1.2188 

mean 

.4592 

.2293 

.1315 

.1096 

.0544 

.1088 

.0938 

.1988 

.2365 

.3314 
1.5481 
4.7931 

.6912 

s.d. 

.1105 

.0711 

.0402 

.0556 

.0277 

.0893 

.0541 

.1251 

.0928 

.1698 

.8163 
5.0666 

1.8708 

mean 

.2981 

.1756 

.0930 

.0914 

.0643 

.1498 

.1234 

.3862 

.4562 

.5995 
1.5232 
6.6331 

.8828 

s.d. 

.0510 

.0784 

.0874 

.0390 

.0191 

.1109 

.0335 

.1293 

.1441 

.2389 

.5466 
7.1019 

2.5800 
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8. 9 and 10. ,e»e, 3 has the most variability, level 2 less than level 

3 and level 1 less than level 2. This pmern am)ng t„e ,eveU ^ 

persists for the remaining items for i-hp ovt i * / 
y ror the extreme left (item group 1) 

and to the extreme right (item groups 11 and 12). 

This shift in variability of the estimates is interpreted to mean 

that variability among the estimate increases as a function of 

decreasing distributional density. That is. as the number of 

examinees decreases at the high range of ability, estimates for the 

extremely difficult items become more variable. For level 1. the 

normal distribution of ability, variance is low through the middle 

ranges, and gradually increases uni formally in both directions as the 

trails of the distribution thin out in both directions. 

For ability level 2, the distribution is positively skewed. This 

yields low variance for item difficulty estimates that are in the 

middle range. Variance among the easier items is somewhat reduced as 

compared to the level 1 variability for the same items. For more 

difficult items, however, variability for level 2 is higher than 

variability for level 1. 

For ability level 3 this pattern continues. Low difficulty items 

show decreased variability as the distributions move from level 1 to 

level 3. Higher difficulty items, to the right of the middle 

difficulty items, show a commensurate increase in variability as the 

distributions move from level 2 to level 3. 

The general pattern described above is thought to be due to the 

relative density of the ability distributions. Where density is low 
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(i.e., sample size is 

obtained from samples. 
small), there is more variance over estimates 

Where density is high (i.e., sample size is 

large), variance is reduced. 

These results appear to support earlier work by Mooney and 

Swaminathan (1986) which explored the quality of b parameter 

estimation for restricted ability ranges. It is evident from this 

study that accuracy was not as good for restricted ability ranges. As 

the ability distribution becomes positively skewed (level 2 and Level 

3). more difficult items are less well estimated. The means of Table 

3 are also presented in graph form in Figure 9. 

The patterns described for variance also holds true for accuracy 

and bias. Accuracy is presented in Tables 7, 8 and 9 and appear in 

graph form in Figures 12, 13 and 14. Although the pattern of movement 

across the axis of the three distributional levels is somewhat less 

clear than was the pattern for item variance, it is nevertheless still 

apparent. 

The pattern for item bias is the least clear, particularly for 

the smallest sample size. This information is given in Tables 10, 11 

and 12, and is repeated in graph form in Figures 15, 16 and 17. 

Similarly the pattern of accuracy MSD(b) and item bias B(b) indicates 

that they are both influenced by the distribution of ability in a 

manner that echoes the pattern established in the analysis of 

accuracy. This result is important because it demonstrates that 

estimates for extreme items are not only more variable, but biased as 

wel 1. 
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Table 7 

Means and Standard Deviations of MSD(b) for Item Groups 
(n = 600) 

Level 1 
i tem 
group mean s.d. 

Level 2 Level 3 

mean s.d. mean s.d. 

1 5.7343 
2 .9987 
3 .8736 
4 .4738 
5 .5046 
6 .8173 
7 .2301 
8 .3146 
9 .7985 

10 .9379 
11 3.6411 
12 9.0330 

8.6887 
.3715 
.6087 
.2708 
.2067 

1.2817 
.1800 
.0892 
.3055 
.2086 

1.3306 
7.1301 

1.2227 .4120 
.9992 .7526 
.8504 .2322 
.4884 .4578 
.2167 .1883 
.2214 .1500 
.1885 .0470 
.4708 .2489 
.8525 .5775 

1.1311 .5802 
8.3742 8.7456 
6.6257 4.7866 

.8293 .4753 

.7283 .6068 

.4093 .3457 

.3405 .1641 

.3811 .2110 

.5773 .7636 

.3930 .2220 
1.3246 .4981 
1.5091 1.4752 
1.2481 .4394 
7.2441 4.0847 

14.0488 10.5489 

TOT: 2.0298 3.9842 1.8035 3.7025 2.4195 4.9824 
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Table 8 

Means and Standard Deviations^ MSD(b) for Item Groups 

Level 1 
i tem 
group mean s.d. 

Level 2 

mean s.d. 

1 2.2343 2.0641 .4461 .1300 2 .7226 .2538 .6255 .4747 3 .6424 .4067 .2653 .1226 4 .5887 .3428 .1757 .1183 5 .3502 .3729 .1728 .1097 6 .3073 .2293 .3437 .2976 7 .1721 .0499 .1267 .0681 8 .4901 .1531 .6542 .7200 9 .3814 .1851 .6289 .3823 10 .4215 .0655 1.2603 .8666 11 1.9756 .7338 2.6378 1.4935 12 7.6694 9.7059 5.7245 5.3239 

TOT: 1.3296 3.2971 1.0885 2.1525 

Level 3 

mean s.d. 

.7307 .5373 

.4698 .1579 

.3139 .1079 

.3234 .2412 

.5194 .6860 

.9650 1.6432 

.5272 .3335 

.8177 .4475 
1.2802 .6183 
1.4476 .6609 
3.2079 1.6015 

16.3373 25.2613 

2.2450 7.9400 
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Table 9 

Means and Standard 

DeV1(r°ni20°J)MSD(b) f°r Item GrouPs 

Level 1 
item Level 2 Level 3 

group mean s.d. mean s.d. mean s.d. 

1 1.0573 
2 1.4054 
3 .3233 
4 .5921 
5 .1570 
6 .2669 
7 .2058 
8 .4818 
9 .4204 

10 .4513 
11 1.6137 
12 6.5821 

.3808 
1.6062 

.1930 

.5662 

.0726 

.2221 

.1392 

.4636 

.2051 

.1717 
1.2756 

10.7605 

.9531 

.6243 

.2379 

.1960 

.1838 

.3424 

.1623 

.4457 

.3131 

.8273 
2.4459 
8.4969 

.6728 

.4617 

.0909 

.0871 

.1333 

.4730 

.0763 

.4879 

.1407 

.3677 

.7699 
10.4122 

.5514 

.4959 

.3167 

.1509 

.2496 

.4516 

.1778 

.5942 

.6599 
1.7580 
3.5079 

11.5667 

.2540 

.2079 

.1368 

.0616 

.1939 

.5440 

.0628 

.2346 

.1580 

.5978 
1.6427 

15.6564 

TOTAL 1.1298 3.3395 1.2691 3.5614 1.7067 5.1665 
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Item 
Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TOTAL 

70 

Table 10 

Means and Standard Deviations of B(b> for Item Groups 
(n=600) 

Level 1 

mean s.d. 

Level 2 

mean s.d. 

Level 3 

mean s.d. 

2.6559 4.5145 
.3130 .2419 
.3093 .3223 
.1326 .0891 
.3420 .2050 
.5595 1.2344 
.0559 ,0459 
.1035 .1035 
.3666 .4228 
.5332 .3671 
.6543 .6091 

4.2090 4.5760 

.8532 2.1102 

.0754 .0625 

.5892 .8819 

.5166 .3719 

.1095 .1318 

.1232 .1834 

.0444 .0619 

.0494 .0560 

.0764 .0595 

.2428 .2900 

.5791 .6064 
3.4280 2.7562 
2.0583 3.8868 

.6577 1.6250 

.3389 .4675 

.5081 .6040 

.2279 .3622 

.1532 .1222 

.2445 .2364 

.3127 .4710 

.2127 .2441 

.9114 .5544 

.8639 1.5173 

.2035 .2222 
1.9465 2.0976 
5.6442 4.1757 

.9640 2.0003 
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Table 11 

Means and Standard Deviations of B(b) for Item Groups 
(n=900) 

Item 
Group 

Level 

mean 

1 

s.d. 

Level 

mean 

2 

s.d. 

Level 3 

mean s.d. 

1 1.3796 1.6772 .0336 .0394 .3611 .5913 2 .1671 .3238 .2720 .2361 .3611 .5413 3 .3696 .3789 .1042 .1330 .1660 .1176 4 .3858 .2900 .0400 .0649 .1920 .1769 5 .2128 .3632 .0763 .1038 .4301 .6724 
6 .1470 .1708 .1973 .2897 .7313 1.4392 
7 .0855 .0493 .0208 .0168 .3928 .3392 
8 .2001 .0732 .4146 .6100 .5156 .4243 
9 .1105 .1028 .6381 .7034 .6014 .5658 

10 .0883 .1028 .6381 .7034 .6014 .5658 
11 .5185 .7164 .8541 1.0060 1.4808 1.7990 
12 2.5392 3.2420 4.1247 5.7249 9.3834 16.0596 

TOTAL .5170 1.2124 .5884 1.8940 1.2585 4.9181 



Item 
Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TOTAL 

72 

Table 12 

Means and Standard Deviations of B(b) for Item Groups 
(n=1200) 

Level 1 

mean s.d. 

.5624 .3625 

.8221 1.0654 

.1584 .2092 

.3734 .4574 

.0820 .0589 

.1146 .1886 

.0723 .0995 

.3139 .4013 

.2302 .1610 

.1986 .1698 
1.1962 1.2356 
3.4442 7.4494 

.6246 2.1969 

Level 2 

mean s.d. 

.4939 .6901 

.3950 .4159 

.1064 .0751 

.0864 .0711 

.1294 .1293 

.2336 .4075 

.0685 .0860 

.2469 .3756 

.0767 .0926 

.4959 .3903 

.8978 1.0342 
3.7045 5.4521 

.5779 1.7680 

Level 3 

mean s.d. 

.2534 .2933 

.3203 .2018 

.2237 .1741 

.0595 .0470 

.1854 .1862 

.3018 .5066 

.0544 .0455 

.2080 .1730 

.2038 .0941 
1.1584 .8008 
1.9847 1.5448 
4.9337 8.7747 

.8239 2.7047 
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Overall Fit from the Prospective of Item Accuracy 

Figure 18 looks at the means and standard deviations of the 

accuracy index, MSD(b) for the 9 cells. Mean and standard deviation 

of accuracy averaged on the 12 difficulty levels of MSD(b) are taken 

here to indicate a global measure of fit. As in the case of the 

previous analysis of accuracy, a lower accuracy score means that 

estimates are close to one another over replications. 

One interesting finding is that overall fit appears to be best 

for level 2, rather than for level 1. One possible explanation for 

this is that the somewhat skewed distribution of ability provides 

better fit for the three parameter model because there are more 

subjects of lower ability in the skewed distribution that may provide 

better c parameter estimates. This same phenomenon can be observed in 

the graphs of item accuracy. Across all three sample sizes, it can be 

seen that ability level 2 estimates are nearly always consistently 

best for the middle ranges of item difficulty. 

The above observation raises the question of why ability level 3 

does not show a commensurate increase in accuracy over level 2. Level 

3 may provide somewhat better accuracy over the easier items as 

compared to level 2, but may provide a disproportionate decrease in 

accuracy for the more difficult items. The improved accuracy obtained 

with the easier items is probably not sufficient to outweigh the 

decrease in accuracy obtained with the more difficult items. 

This effect may be explained by the differences among the ability 

distributions. Figures 2, 3 and 4 show the differences among the 

ability distributions. 
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Number of Examinees 

n - 600 n = 900 n = 1200 

1 

1 i 
! U = 2.0298 
i | U = 1.3296 

~T- 

! U = 1.1298 I 

Distri¬ 
bution 

1SD = 3.9842 
i i 

j SD = 3.2971 !SD = 3.3395 
i i 

1 i 

of 2 
! U = 1.8035 
i i 

! U = 1.0885 ! U = 1.2691 
i 

Ability 
!SD = 3.7025 
i i 

|SD = 2.1525 !SD = 3.5614 
i i 

3 
! U = 2.4195 
i i 

! U = 2.2450 

i - 

! U = 1.7067 
1 
| 

!SD = 4.9824 
i i 

!SD = 7.9400 ! SD = 5.1665 
i i 

Figure 18. Means and Standard Deviations of Accuracy, MSD (b). 
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As skewness increases positively the items become more and more 

difficult for the group. For the ability level 1 distribution of 

ability, 50% of the distribution falls to the right of interval 10. 

For the level 2 distribution, 37% of the distribution falls to the 

right of interval 10. For the level 3 distribution only 10% of the 

distribution falls to the right of interval 10. The consequence of 

this is that variability of the estimates for the difficult items 

increases disproportionately from level 1 to level 3. 

One important implication is that b parameter estimates are 

influenced by the skewness of the ability distribution. Usually poor 

estimation of the c parameter may be expected to have an influence on 

the b parameter estimates. However, in this case, positively skewed 

distributions of ability were chosen so as to obtain good estimates of 

the c parameter. The poor estimates of the b parameter must therefore 

be the result of the influence of skewness of the ability distribution 

itself. 

In addition, it is also notable that occasionally a middle range 

item or two becomes unstable (see Appendix C). This problem may be 

attributable to artifacts of estimation using L0GIST4. 

Conclusions 

The results of this study demonstrate that the accuracy of 

estimation of extremely easy or extremely difficult items is 

influenced by restrictions in the range of ability. Invariance, 

based on the test of stability, appears to hold. One concern with 

this method of assessment, however, is that it may not be sufficiently 
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sensitive to detect lack of invariance. In addition, it was shown 

that the three parameter IRT model appeared to obtain relatively 

better overall accuracy when a somewhat positively skewed distribution 

was used. This result was attributed to better quality estimation of 

the guessing parameter. 

In general, the three parameter IRT model generally performed 

well through the middle item difficulty ranges. However, within each 

of the 9 testing situations, one or two of the middle range items 

demonstrated some degree of inaccuracy. This was attributed to be the 

result of artifacts of estimation using L0GIST4. 



CHAPTER v 

CONCLUSIONS AND IMPLICATIONS 

Review 

The chief advantage of IRT over classical test theory is that the 

item parameters are invariant. The purpose of this dissertation is to 

explore the quality of the estimation of these item difficulty 

parameters and its effect on the detection of the property of 

invariance. 

One of the most direct ways of assessing the invariance property 

is to compare the item difficulty estimates for different groups. For 

example, in item bias studies the technique often used is to evaluate 

the scatterplots of the item difficulty estimates. When some item 

estimates fall beyond the degree of scatter displayed by the majority 

of the estimates then those items are flagged as not invariant across 

groups and studied for possible bias. It may be that sampling error 

varies widely from one item to another, such that an item that appears 

to be not invariant may simply be an item with greater sampling error. 

Therefore this method that does not take sampling error into account 

may not be adequate. 

In addition to the sampling error issue model-data fit poises 

another problem. To date, no sure method of assessing model-data fit 

80 
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exists. It is not known to what degree expected features such as 

invariant Item parameters may be obtained in circumstances where 

model data fit is not perfect. Finally, range restriction of ability 

and fluctuations in sample size may be expected to Influence the 

quality of parameter estimation and hence the property of invariance. 

Because range restriction, sample size, and model-data fit concerns 

-Xist in every IRT application and may well be confounded with one 

another, it is difficult to assess the influence of each of these 

factors individually. 

In order to investigate sampling error and its effect on 

invariance in greater detail, thirty samples were taken for each of 

the nine testing situations that vary over range restriction and 

sample size. Item sets could then be compared over each of the nine 

testing situations for stability and for accuracy of estimates. If 

range restriction were not an issue, it would be expected that 

variance among parameter estimates would not change over ability 

distributions. 

Simulated data were used for this dissertation primarily because 

population parameters could be known. A second advantage of simulated 

data is as a control for model-data fit and also for bias. Although 

model-data fit or lack of item bias cannot be established even with 

simulated data, this approach provides a reasonable intuitive basis 

for this. 

The strategy for this dissertation was to evaluate the extent to 

which repeated estimates obtained from samples with differing ability 

distributions and sample sizes would recover the true values for these 
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parameters. The hypothesi 

influenced by changes in the 

invariance property. 

s was that estimation would not be 

ability distribution because of the 

The research questions for this study were 

1. How does range 
estimates of the 
IRT model? 

Hf*cdbi Vty affect the invariance of the 
difficulty parameters in the three parameter 

2‘ size the Invariance of the 
estimates of the difficulty parameters? 

3' *?,?* iS lhe consequence of interaction of range of ability 
with sample size? y 

To evaluate these questions three different levels of ability and 

three different sample sizes were completely crossed for a total of 

nine testing situations. For each testing situation, response 

patterns were sampled to fit the required specifications for range 

restriction and sample size. The data for each of these nine testing 

situations were then replicated thirty times using sampling with 

replacement and estimates of the item difficulty parameters were 

obtained. The degree to which parameters obtained stability and the 

accuracy of estimation were studied. 

Conclusions 

The main conclusion of this dissertation is that the ability to 

establish invariance depends upon the quality of estimation of 

parameters. Through sampling with replacement it was shown that 

sampling error was a function of the ability distribution. Estimates 

for extremely difficult or extremely easy items that were obtained 

with relatively few subjects of extreme ability levels showed greater 
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variability than estimates obtained where there were more subjects at 

the appropriate ability level for a given item.' This conclusion was 

confirmed by studying the accuracy of the estimation. Estimates of 

item difficulty parameters for easy and for difficult items showed 

more sampling fluctuation and were clearly affected by the 

distributions of ability. 

It was also shown that overall model data fit for a given test 

was improved when sufficient low ability subjects were available. 

This was attributed to better model-data fit for the three-parameter 

IRT model, where a guessing parameter is estimated. 

In applications of IRT much has been made of the importance of 

large sample size. This study has shown that large sample size alone 

is not sufficient to ensure proper estimation of parameters. There 

must be enough subjects at each ability level in order to be sure of 

proper estimation of parameters. In turn, when the item parameters 

are estimated properly important features such as invariance can be 

assertained. 

Imp!ications 

An important conclusion from this study is that extreme range 

restriction influences accuracy of estimation. This would be an issue 

when IRM's are applied to cases where ability distributions are apt to 

be skewed, as in the case of Criterion Referenced Testing (CRT), and 

would be further exacerbated when CRT examinee samples are not large. 

Problems may be anticipated in all IRT applications where the 

expected feature of parameter invariance is applied without taking 
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into account the accuracy of euimat^r, * 
y ur estimation for the extreme items. 

Problems may arise in item banking, for exa^>le, because items at the 

extreme ranges of difficulty may not be well estimated. In the case 

of building a test to determine the best candidates for a scholarship, 

for example, a high proportion of difficult items would be chosen for 

such a test from the item bank. However, this study has deTOnstrated 

that the parameter estimates for such items may not possess the high 

degree of accuracy that might be available from items selected from 

more moderate ranges of difficulty. 

In the case of traditional item bias studies where only two 

groups are compared, estimates may look different and therefore 

flagged as biased, when, in fact, the estimates may be within the 

range of the sampling error. One possible solution to this problem is 

to be sure, when estimating the item parameters for items, that 

candidates in the appropriate ability range for the level of item 

difficulty are well represented. 

Another issue noted is that some items in the middle range of 

ability appear to go out-of-bounds. This could be an artifact of 

estimation using L0GIST4. One obvious concern here is the possiblity 

that such an item or items may be interpreted as biased. 

Finally, there is the question of model choice. Results from 

this study indicate better fit for the three parameter model when a 

positively skewed distribution is used. This is interpreted to 

reflect the applicability of the three parameter model to cases where 

sufficient low ability examinees are available. In cases where 

sufficient low ability examinees are not available, the 
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appropriateness of the three parameter mode! .ay be In question. This 

finding supports the Idea that range restriction .ay have i.pact on 

parameter estimation for IRT models. 

This study demonstrates that the rp^mniinn m ^ . tne resampling method is useful for 

providing empirical evidencp nf 
eviaence of the consistency of parameter 

estimates. An important drawback of this method, however, is that it 

is expensive and time consuming. Therefore, this method would seem 

applicable only in those cases where these issues are critical. Item 

parameter invariance does work for most items, however items that 

behave very badly could be investigated using this method. 

Another potential application for this method of resampling is in 

model-data fit. Using two standard deviations from the mean of the b 

parameter estimates as a benchmark, LOGISTA estimates were well 

behaved using data generated from OATAGEN. This finding may have 

utility for the examination of field data, where no known method of 

establishing model data fit exists. 

The techniques demonstrated in this dissertation could be used to 

establish model data fit and also for item bias detection. To 

establish model data fit, repeated random samplings of the total 

sample of examinees could be fit to the chosen item response model. 

B parameter estimates should be transformed to mean zero and unit 

variance. B parameter estimates could then be grouped by item and 

transferred to mean zero and unit variance once again. When the model 

fits the data, transformed estimates should fall within the expected 

range of normal deviates (i.e., 6Q% of estimates within one standard 

deviation and 95^ within two standard deviations). 
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Item bias may be investigated by comparing the accuracy of 

repeated random samplings of b parameter estimates from the group for 

Whom bias may be considered a possible concern, to estimates obtained 

from random samplings from a similar ability group sample. 

The accuracy of the standardized estimates from both groups may 

be compared for each item. If the accuracy of each group's estimates 

for a given item are about the same then bias is probably not a 

serious concern. If the accuracy is not about the same, then perhaps 

the item should be carefully investigated for possible bias. However, 

if other items appearing to show bias are from the extremes of the 

difficulty scale they should be looked at carefully. These estimates 

may be relatively unstable because of range restriction alone, and not 

necessarily because of bias. 

One concern about the approach described above is that the 

ability distributions of the two groups should be compared using raw 

scores to see that they are reasonably comparable. If these 

distributions are grossly unalike, this will probably also influence 

parameter estimation. 

In summary, a useful method of examing the stability of item 

parameters has been demonstrated, and this method may prove useful in 

the context of item bias investigations. It was also shown that 

different levels of ability distributions influenced the estimation of 

extremely difficult or extremely easy items. Further work is 

necessary, however, to characterize these issues in more detail. One 

possibility might be to investigate the accuracy of the difficulty 

estimates of extreme items using a uniform distribution. The accuracy 
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of estimates from the uniform distribution could then be compared to 

accuracy estimates derived from ability distributions with different 

levels of tail thicknesses. 

In terms of conventional item bias studies using IRT models, 

items showing bias when the items are either extremely easy or 

extremely difficult ought to be investigated with care. It could be 

that such items are influenced by small sample size and this may 

account for the apparent invariance in the difficulty estimates. 

Further work also needs to be done with the two parameter model, 

especially in cases where few low ability examinees exist in the 

sample. It may be, for example, that the two parameter model would 

provide more accurate fit in cases where the ability distribution is 

approximately normal, whereas the three parameter model may provide 

better fit in cases where the ability distribution is positively 

skewed. 
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Table 13 

Mean Scores and Standardisations of B Value Differences 

Level 1 Level 2 Level 3 
item rank mean s.d. mean s.d. mean s.d. 

4 
55 
44 
40 
22 
35 
12 
29 
7 

1 
2 
3 
4 
5 
6 
7 
8 

-.593 
.283 
.067 
.012 
.082 
.076 
.094 
.132 

.606 

.097 

.218 

.140 

.294 

.133 

.205 

.166 

.004 
-.055 

.038 

.049 
,075 

-.044 
-.052 

.263 

.164 

.238 

.210 

.161 

.211 

.144 

.151 

.087 

-.041 
.106 
.195 

-.029 
.067 
.038 
.147 
.224 

.139 

.170 

.231 

.134 

.167 

.164 

.138 

.149 / 
o 

9 -.020 .159 .155 .085 .084 .110 O 

56 
n 

10 
11 

.140 
-.068 

.078 

.147 
.016 
.157 

.112 

.082 
.067 
.058 

.123 

.097 9 
a n 

12 -.160 .195 -.098 .107 -.049 .113 48 
16 
M -7 

13 
14 

.132 
-.028 

.121 

.117 
.110 
.187 

.141 

.058 
-.020 

.171 
.099 
.100 47 15 .055 .097 .069 .127 .053 .071 3 

59 
16 
17 

.052 

.064 
.095 
.164 

-.011 

-.081 
.064 
.171 

.092 

.096 
.107 
.077 

36 18 .093 .088 -.005 .094 .078 .087 
31 19 .076 .102 -.099 .146 -.016 .085 
45 20 .029 .070 .041 .039 .038 .053 
26 21 -.038 .075 -.032 .040 -.109 .075 
27 22 .110 .062 .025 .046 .011 .053 
14 23 .095 .085 -.055 .078 .023 .084 
21 24 .141 .079 .031 .060 .137 .075 
41 25 .120 .072 .122 .052 .098 .050 
15 26 .304 .100 .008 .125 .194 .117 
50 27 -.002 .062 -.025 .056 -.063 .043 
28 28 -.030 .155 .041 .077 -.014 .087 
39 29 .004 .062 -.007 .050 -.020 .039 
23 30 -.008 .052 .071 .056 -.100 .053 
11 31 .053 .045 .056 .048 -.096 .055 
57 32 .025 .055 -.064 .060 .070 .059 
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Table 13 (continued) 

Level 1 Level 2 Level 3 

item rank mean s.d. mean s.d. mean s.d. 

19 
43 
18 
34 
60 
o 

33 
34 
35 
36 
37 

.015 

.062 
-.042 
-.012 
-.074 

.136 

.059 

.054 

.089 

.085 

.007 

.008 
-.030 
-.062 
-.011 

.092 

.078 

.060 

.061 

.174 

-.142 
-.007 
-.034 

.134 
-.227 

.057 

.055 

.046 

.070 

.115 c 
10 
20 
c 

38 
39 
40 

.046 

.092 
-.033 

.103 

.069 

.077 

.072 
-.043 
-.041 

.105 

.113 

.101 

-.201 
-.074 
-.191 

.091 

.098 

.118 0 41 .026 .143 -.157 .102 .059 .078 37 42 -.077 .092 -.068 .114 -.048 .065 13 43 -.182 .089 -.007 .125 .097 .085 5 44 -.142 .084 -.057 .112 -.099 .100 32 45 -.034 .175 .089 .231 -.345 .138 25 46 -.129 .084 -.028 .093 -.022 .102 46 47 -.158 .103 -.189 .136 -.032 .123 49 48 -.185 .083 .112 .153 -.068 .082 
58 49 -.050 .171 -.046 .178 -.097 .115 
42 50 -.104 .126 -.213 .113 .136 .108 
1 51 -.112 .227 -.167 .287 -.001 .175 
54 52 .164 .299 .042 .211 -.270 .159 
38 53 .022 .371 .405 .796 -.146 .248 
30 54 -.125 .316 .442 .291 .225 .184 
24 55 -.233 .368 -.427 .204 -.424 .316 
17 56 -.131 .237 .162 .482 .563 .277 
53 57 -.272 .312 -.009 .285 -.484 .244 
52 58 .280 .611 .010 .190 -.051 .226 
51 59 .452 .679 -.547 .209 .551 .134 
33 60 -.358 .227 -.131 .628 -.289 .824 
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M o Tat)1e 14 
Mean Scores and Standard Deviations 

(n = 900) 
of B Value Differences 

item rank 

Level 1 

mean s.d. 

Level 2 

mean s.d. 

Level 3 

mean s.d. 

4 
55 
44 
40 
22 
35 
12 
29 
7 
8 
56 
9 
48 
16 
47 
3 
59 
36 
31 
45 
26 
27 
14 
21 
41 
15 
50 
28 
39 
23 
11 
57 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

.010 .139 .003 .110 -.024 .132 
- .125 .170 .018 .128 .107 .090 
- .363 .231 -.013 .133 .215 .101 

.096 .134 .052 .082 .039 .114 

.270 .167 -.049 .135 .017 .123 
-.043 .164 -.147 .167 .048 .079 

.029 .138 .057 .113 .098 .088 
-.012 .149 .051 .101 .130 .078 

.158 .110 .107 .078 .043 .109 
-.012 .123 .079 .063 .116 .059 

.069 .097 .106 .061 .094 .064 
-.078 .113 -.048 .093 .007 .069 

.123 .099 -.026 .086 -.054 .082 

.182 .100 .043 .061 .095 .065 

.049 .071 .034 .065 .083 .076 
-.134 .107 -.007 .060 .045 .049 

.162 .077 -.035 .094 .097 .093 

.102 .087 .071 .074 -.066 .063 

.097 .085 -.005 .061 .124 .075 

.021 .053 .017 .041 .032 .043 
-.168 .075 -.093 .051 -.062 .055 

.007 .053 .039 .032 .048 .045 
-.021 .084 .013 .063 -.086 .047 

.009 .075 .026 .052 .062 .064 

.082 .050 .042 .080 .233 .063 
-.068 .117 -.002 .056 .332 .154 
-.013 .043 -.088 .042 .001 .055 
-.062 .087 -.027 .118 -.052 .096 
-.036 .039 .038 .045 -.017 .052 

.121 .053 .151 .066 .094 .071 

.064 .055 .017 .055 .070 .097 
-.016 .059 -.024 .040 .010 .047 



19 
43 
18 
34 
60 
2 
10 
20 
6 
37 
13 
5 
32 
25 
46 
49 
58 
42 
1 
54 
38 
30 
24 
17 
53 
52 
51 
33 

92 

Table 14 (continued) 

Level 1 Level 2 Level 3 

rank mean s.d. mean s.d. mean s.d. 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

-.059 
.064 

-.047 
.078 
.105 
.075 
.070 
.075 

-.083 
-.032 

.039 
-.082 

.049 

.040 
-.019 
-.092 
-.061 
-.020 

.048 
-.236 

.055 
-.159 

.000 

.008 
-.115 
-.111 
-.488 

.400 

.057 .027 

.055 .040 

.046 -.015 

.070 .012 

.115 -.027 

.091 .215 

.098 -.020 

.118 -.147 

.078 -.066 

.065 -.063 

.085 .071 

.100 .071 

.138 -.170 

.102 .068 

.123 .232 

.082 -.092 

.115 -.196 

.108 .032 

.175 .087 

.159 -.259 

.248 -.022 

.184 .251 

.316 -.065 

.277 .059 

.244 .247 

.226 .279 

.134 -.689 

.824 -.264 

087 -.135 .056 
053 -.170 .064 
057 -.116 .066 
067 .029 .093 
101 -.086 .113 
128 .170 .130 
079 -.121 .090 
062 -.185 .075 
095 -.151 .133 
090 -.136 .141 
085 -.054 .147 
152 -.228 .164 
109 .032 .184 
159 -.222 .153 
186 -.168 .152 
,070 -.104 .128 
120 .102 .244 

,168 -.044 .155 
239 -.217 .166 
,111 -.168 .157 
,231 -.131 .313 
,340 -.391 .202 
,263 .043 .326 
,165 -.159 .253 
,351 .072 .444 
.259 .073 .212 
.134 -.530 .266 
.199 1.117 .907 
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M „ Table 15 
Mean Scores and Standard Deviations of B Value Differences 

(n = 1200) 

Level 1 1 Level 2 Level 3 

tem rank mean s.d. mean s.d. mean s.d. 

4 
55 
44 
40 
22 
35 
1 O 

1 

2 
3 
4 
5 
6 

.125 

.153 

.064 

.180 

.122 

.113 

.112 

.104 

.134 

.153 

.154 

.101 

-.085 
.044 
.129 

-.237 
-.019 

.086 

.147 

.118 

.107 

.122 

.132 

.080 

.069 
-.022 

.154 

.028 

.112 
-.111 

.099 

.103 

.091 

.114 

.099 

.102 
1C 
on 

7 -.299 .233 .128 .108 .083 .086 8 - .036 .143 .190 .095 .144 .066 / 
8 
56 
9 

9 
10 
11 
12 

.149 

.105 

.118 

.019 

.098 

.076 

.076 

.077 

.055 

.056 

.081 

.021 

.078 

.080 

.075 

.057 

.051 

.105 

.126 

.019 

.074 

.051 

.042 

.071 48 13 -.017 .090 .040 .077 .068 .070 16 
47 

14 
15 

.109 
-.004 

.063 

.069 
.065 
.070 

.070 

.053 
.083 
.098 

.049 

.045 
3 16 -.061 .084 .077 .059 .065 .045 
59 17 -.019 .095 .052 .079 .051 .063 
36 18 -.178 .132 -.022 .072 .037 .068 
31 19 .162 .050 .067 .051 .040 .061 
45 20 .015 .040 -.027 .038 -.008 .038 
26 21 -.066 .045 -.105 .042 -.066 .036 
27 22 .040 .034 -.020 .034 .061 .043 
14 23 .029 .061 .051 .059 -.025 .052 
21 24 .073 .061 .038 .035 .072 .050 
41 25 .040 .048 .078 .041 .130 .053 
15 26 .004 .069 .179 .088 .084 .107 
50 27 -.122 .055 -.040 .031 .000 .048 
28 28 -.051 .118 .020 .079 -.200 .076 
39 29 -.031 .046 -.031 .048 -.017 .047 
23 30 .025 .049 .063 .037 .056 .064 
11 31 -.040 .059 .017 .042 -.008 .059 
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Table 15 (continued) * 

item rank 

Level 1 Level 2 

mean s.d. mean s.d. 

Level 3 

mean s.d. 

19 
43 
18 
34 
60 
2 
10 
20 
6 
37 
13 
5 
32 
25 
46 
49 
58 
42 
1 
54 
38 
30 
24 
17 
53 
52 
51 
33 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

-.031 
.006 

-.091 
.037 

-.156 
.161 
.011 

-.025 
-.038 
-.118 
-.099 
-.052 
-.102 

.005 

.053 
-.087 
-.101 
-.060 

.004 
-.247 

.003 
-.310 
-.205 
-.052 

.098 
-.050 

.012 

.748 

111 .012 .075 -.046 .075 
049 -.051 .069 -.065 .064 
051 -.036 .051 -.036 .072 
051 .023 .085 .031 .118 
093 -.072 .072 -.113 .100 
088 .174 .118 .105 .144 
075 -.057 .047 .024 .103 
067 -.042 .076 -.096 .106 
075 -.033 .096 .056 .134 
056 -.085 .103 -.101 .117 
074 -.063 .067 -.085 .090 
072 .003 .071 .064 .134 
115 -.020 .106 -.097 .144 
108 .013 .086 -.256 .129 
126 -.071 .143 -.010 .185 
059 -.168 .076 -.224 .114 
118 -.163 .099 -.234 .133 
088 -.151 .116 -.151 .147 
134 -.285 .151 -.120 .240 
088 -.086 .190 -.174 .211 
094 .087 .307 -.282 .160 
136 -.225 .214 -.383 .243 
137 -.056 .261 -.245 .276 
123 -.117 .192 .045 .300 
305 .271 .439 -.021 .175 
187 -.191 .174 -.026 .261 
298 -.218 .334 .378 .592 
556 .668 .674 .822 .777 
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appendix b 
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Table 16 

Percentages Within 1, 2, 3 and 4 Standard Deviation Units 
of B Values 

Ability Level 1 
(n = 600) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

4 1 66.7 92.4 100.0 55 2 60.0 100.0 
44 3 63.3 96.6 100.0 40 4 73.3 96.9 100.0 
22 5 83.3 96.6 96.6 100.0 35 6 66.7 96.7 100.0 
12 7 70.0 93.3 100.0 
29 8 73.3 96.6 100.0 
7 9 66.7 96.7 100.0 
8 10 70.0 96.7 100.0 
55 11 70.0 96.7 100.0 
9 12 70.0 93.3 100.0 
48 13 66.7 96.7 100.0 
16 14 60.0 96.7 100.0 
47 15 60.0 100.0 
3 16 70.0 93.3 100.0 
59 17 70.0 93.3 100.0 >L 
36 18 76.7 96.7 100.0 _ 

31 19 66.7 93.4 100.0 
45 20 73.3 96.6 100.0 
26 21 66.7 96.7 100.0 
27 22 83.3 96.6 96.6 100.0 
14 23 60.0 93.3 100.0 
21 24 66.7 96.7 100.0 * 

41 25 70.0 86.7 100.0 - 

15 26 70.0 93.3 100.0 - 

50 27 70.0 93.3 100.0 - 

28 28 80.0 93.3 100.0 - 

39 29 66.7 96.7 96.7 100.0 
23 30 56.7 93.4 100.0 - 

11 31 76.7 96.7 100.0 - 

57 32 73.3 96.6 96.6 100.0 
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Table 16 (continued) 

i tern rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

19 33 73.3 93.3 100.0 43 
18 
34 

34 
35 
36 

73.3 
76.7 
63.3 

96.6 
96.7 

100.0 

100.0 
100.0 

- 

60 37 73.3 96.6 100.0 
2 38 70.0 96.7 100.0 
10 
20 

39 
40 

66.7 
80.0 

96.7 
90.0 

100.0 
100.0 

- 

6 41 66.7 92.4 100.0 
37 42 80.0 93.3 100.0 
13 43 63.3 96.6 100.0 
5 44 66.7 100.0 
32 45 66.7 96.7 100.0 
25 46 66.7 96.7 100.0 _ 

46 47 63.3 100.0 
49 48 76.7 93.4 100.0 
58 49 76.7 96.7 96.7 100.0 
42 50 70.0 96.7 100.0 
1 51 80.0 96.7 96.7 100.0 
54 52 73.3 93.3 100.0 
38 53 90.0 93.3 96.6 100.0 
30 54 80.0 93.3 100.0 
24 55 86.7 96.7 96.7 100.0 
17 56 66.7 93.4 100.0 
53 57 80.0 96.7 96.7 - 

52 58 70.0 93.3 100.0 
51 59 70.0 93.3 100.0 - 

33 60 80.0 93.3 96.6 100.0 
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Percentages Within 1 
Table 17 

. 2,3 and 4 Standard Deviation 
°f B Values 

Uni ts 

Ability level 2 
(n = 600) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

4 
55 
44 
40 

1 
2 
3 
4 

60.0 
70.0 
63.3 
63.3 

96.7 
96.7 
96.6 

100.0 

100.0 
100.0 
100.0 

- 

22 
35 
12 
29 

5 
6 
7 
8 

60.0 
63.3 
70.0 
70.0 

96.7 
96.6 
93.3 
96.7 

100.0 
100.0 
100.0 
100.0 

- 

/ 9 63.3 100.0 
8 
56 
9 
48 
16 
47 
3 

10 
11 
12 
13 
14 
15 
16 

66.7 
73.3 
66.7 
66.7 
73.3 
66.7 
73.3 

96.7 
93.3 
93.4 
96.7 
93.3 
93.4 
93.3 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

- 

59 
36 
31 

17 
18 
19 

76.7 
63.3 
76.7 

93.4 
96.6 
93.4 

100.0 
100.0 
96.7 100.0 45 20 63.3 96.6 100.0 

26 21 56.7 96.7 100.0 
27 22 70.0 93.3 100.0 
14 23 70.0 96.7 100.0 
21 24 63.3 100.0 
41 25 66.7 96.7 100.0 
15 26 66.7 96.7 100.0 
50 27 56.7 96.7 100.0 
28 28 66.7 96.7 100.0 
39 29 63.3 100.0 
23 30 66.7 96.7 100.0 
11 31 60.0 96.7 100.0 
57 32 66.7 100.0 
19 33 66.7 93.4 100.0 - 



43 
18 
34 
60 
2 
10 
20 
6 
37 
13 
5 
32 
25 
46 
49 
58 
42 
1 
54 
38 
30 
24 
17 
53 
52 
51 

Table 17 (continued) 

rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. 

34 70.0 96.7 100.0 
35 70.0 93.3 100.0 
36 66.7 100.0 
37 66.7 100.0 
38 70.0 96.7 100.0 
39 66.7 93.4 100.0 
40 66.7 96.7 100.0 
41 63.3 96.6 100.0 
42 70.0 93.3 100.0 
43 63.3 100.0 
44 56.7 100.0 
45 56.7 100.0 _ 

46 56.7 96.7 100.0 
47 70.0 93.3 100.0 _ 

48 73.3 96.6 96.7 100.0 
49 66.7 100.0 
50 66.7 96.7 100.0 
51 76.7 96.7 96.7 100.0 
52 63.3 96.3 100.0 
53 80.0 96.7 100.0 
54 66.7 96.7 100.0 
55 63.3 100.0 
56 73.3 93.3 100.0 
57 66.7 96.7 100.0 
58 66.7 96.7 100.0 
59 66.7 96.7 100.0 
60 93.3 93.3 96.6 100.0 

% 
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n . . Table 18 
ercentages Within 1, 2, 3 and 4 Standard Deviation Units 

of B Values 

Skewness Level 3 
(n=600) 

item rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

4 1 60.0 96.7 
55 2 70.0 96.7 
44 3 63.3 96.6 
40 4 63.3 100.0 
22 5 60.0 96.7 
35 6 63.3 96.6 
12 7 70.0 93.3 
29 8 70.0 96.7 
7 9 63.3 100.0 
8 10 66.7 96.7 
56 11 73.3 93.3 
9 12 66.7 93.4 
48 13 66.7 96.7 
16 14 73.3 93.3 
47 15 66.7 93.4 
3 16 73.3 93.3 
59 17 76.7 93.4 
36 18 63.3 96.6 
31 19 76.7 93.4 
45 20 63.3 96.6 
26 21 56.7 96.7 
27 22 70.0 93.3 
14 23 70.0 96.7 
21 24 63.3 100.0 
41 25 66.7 96.7 
15 26 66.7 96.7 
50 27 56.7 96.7 
28 28 66.7 96.7 
39 29 63.3 100.0 
23 30 66.7 96.7 
11 31 60.0 96.7 
57 32 66.7 100.0 
19 33 66.7 93.4 

100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
96.7 100.0 

100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 

100.0 
100.0 

100.0 
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Table 18 (continued) 

’tern rank i s.d. * 2 s.d. * 3 s.d. * 4 5-d. % 

43 34 70.0 96.7 100.0 18 
34 
60 

35 
36 
37 

70.0 
66.7 
66.7 

93.3 
100.0 
100.0 

100.0 - 

2 
10 
20 

38 
39 
40 

70.0 
66.7 
66.7 

96.7 
93.4 
96.7 

100.0 
100.0 
100.0 

- 

6 
37 
13 

41 
42 
43 

63.3 
70.0 
63.3 

96.6 
93.3 

100.0 

100.0 
100.0 - 

5 44 56.7 100.0 
32 45 56.7 100.0 
25 46 56.7 96.7 100.0 
46 47 70.0 93.3 100.0 
49 48 73.3 93.3 100.0 
58 49 66.7 100.0 
42 50 66.7 96.7 100.0 
1 51 76.7 96.7 96.7 100.0 
54 52 63.3 93.3 100.0 
38 53 80.0 96.7 100.0 
30 54 66.7 96.7 100.0 
24 55 63.3 100.0 _ 

17 56 73.3 93.3 100.0 
53 57 66.7 96.7 100.0 
52 58 66.7 96.7 100.0 
51 59 66.7 96.7 100.0 
33 60 93.3 96.6 100.0 - 



i tem 

4 
55 
44 
40 
22 
35 
12 
29 
7 
8 
56 
9 
48 
16 
47 
3 
59 
36 
31 
45 
26 
27 
14 
21 
41 
15 
50 
28 
39 
23 
11 
57 
19 
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n Table 19 
Percentages Within 1, 2 3 and 4 Standard Deviation Units 

°< B Values 

Ability Level 1 
(n = 900) 

rank 1 s.d. % 2 s.d. % 3 s.d. ' 

1 
2 

66.7 
76.7 

96.7 
93.4 

100.0 
93.4 3 

4 
5 

66.7 
63.3 
66.7 

93.4 
96.6 
96.7 

100.0 
100.0 
100.0 6 63.3 100.0 

7 56.7 96.7 100.0 
8 56.7 100.0 
9 66.7 100.0 
10 76.7 96.7 100.0 
11 63.3 96.6 100.0 
12 76.7 93.4 100.0 
13 73.3 96.6 100.0 
14 66.7 96.7 100.0 
15 70.0 96.7 100.0 
16 56.7 96.7 100.0 
17 63.3 100.0 
18 73.3 93.3 100.0 
19 70.0 96.7 100.0 
20 50.0 100.0 
21 70.0 96.7 100.0 
22 80.0 96.7 100.0 
23 73.3 93.3 100.0 
24 70.0 93.3 100.0 
25 70.0 96.7 100.0 
26 73.3 93.3 100.0 
27 70.0 100.0 
28 66.7 96.7 100.0 
29 73.3 96.6 100.0 
30 70.0 96.7 100.0 
31 76.7 86.7 100.0 
32 73.3 93.6 100.0 
33 70.0 96.7 100.0 

4 s.d. % 

100.0 
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Table 19 (continued) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

43 34 70.0 96.7 100.0 18 35 76.7 96.7 100.0 34 
60 

36 
37 

73.3 
66.7 

96.6 
96.7 

100.0 
100.0 

- 

2 
10 

38 
39 

73.3 
70.0 

93.3 
100.0 

100.0 - 

20 40 63.3 96.6 100.0 6 
37 

41 
42 

56.7 
60.0 

96.7 
93.3 

100.0 
100.0 

- 

13 43 66.7 93.4 100.0 
5 44 73.3 93.3 100.0 
32 45 56.7 100.0 
25 46 73.3 96.6 100.0 
46 47 66.7 96.7 100.0 
49 48 80.0 96.7 100.0 
58 49 60.0 100.0 
42 50 70.0 96.7 100.0 
1 51 70.0 96.7 100.0 
54 52 66.7 96.7 100.0 
38 53 90.0 93.0 96.0 100.0 
30 54 76.7 93.4 100.0 
24 55 70.0 96.7 100.0 
17 56 83.3 96.6 100.0 
53 57 76.7 93.4 100.0 * 

52 58 80.0 93.3 93.3 100.0 
51 59 73.3 93.3 100.0 
33 60 73.3 96.6 100.0 - 



i tem 

4 
55 
44 
40 
22 
35 
12 
29 
7 
8 
56 
9 
48 
16 
47 
3 
59 
36 
31 
45 
26 
27 
14 
21 
41 
15 
50 
28 
39 
23 
11 
57 
19 
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Percentages Witb-in 1 
Table 20 

.2,3 and 4 Standard Deviation Units 
of B Values 

Ability Level 2 
(n = 900) 

rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

1 
2 

63.3 
70.0 

96.6 
96.7 

100.0 
100.0 

- 

3 76.7 93.4 100.0 
4 63.3 100.0 
5 56.7 93.4 100.0 
6 80.0 93.3 93.3 100.0 7 /6.7 93.4 100.0 
8 73.3 93.3 100.0 
9 66.7 96.7 100.0 
10 66.7 96.7 100.0 
11 56.7 96.7 100.0 
12 60.0 96.7 100.0 
13 63.3 96.6 100.0 
14 66.7 93.4 100.0 rs 76.7 96.7 100.0 
16 56.7 100.0 
17 73.3 96.6 100.0 _ 

18 76.7 96.7 100.0 _ 

19 63.3 93.3 100.0 
20 66.7 100.0 _ 

21 63.3 100.0 
22 66.7 96.7 100.0 
23 56.7 96.7 100.0 
24 66.7 93.4 100.0 
25 80.0 93.3 100.0 
26 70.0 96.7 100.0 — 

27 66.7 96.7 100.0 
28 70.0 96.7 100.0 - 

29 70.0 93.3 100.0 - 

30 70.0 96.7 100.0 - 

31 63.3 100.0 - - 

32 63.3 93.3 100.0 - 

33 63.3 96.69 100.0 - 



105 

Table 20 (continued) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. 

43 
18 
34 
60 
2 
10 
20 

34 
35 
36 
37 
38 
39 
40 

70.0 
66.7 
70.0 
63.3 
63.3 
70.0 
63.3 

96.7 
96.7 
93.3 
93.3 
93.3 
96.7 
96.6 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 6 41 60.0 100.0 

37 42 63.3 96.6 100.0 13 43 73.3 96.6 100.0 5 
32 

44 
45 

63.3 
56.7 

96.6 
100.0 

100.0 

25 
46 

46 
47 

63.3 
56.7 

93.3 
100.0 

100.0 

49 
58 
42 

48 
49 
50 

63.3 
56.7 
73.3 

96.6 
96.7 
93.3 

100.0 
100.0 
100.0 1 51 66.7 100.0 

54 52 70.0 96.7 100.0 
38 53 80.0 96.7 96.7 
30 54 80.0 96.7 96.7 
24 55 73.3 93.3 100.0 
17 56 66.7 96.7 100.0 
53 57 70.0 93.3 93.3 
52 58 76.7 96.7 100.0 
51 59 73.3 96.6 100.0 
33 60 70.0 96.7 100.0 

4 s.d. % 

100.0 
100.0 

100.0 
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Percentages Within 1, 
Table 21 

2,3 and 4 Standard Deviation Units 
of B Values 

Ability Level 3 
(n = 900) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

4 
55 
44 
40 
22 

1 
2 
3 
4 
5 

73.3 
80.0 
63.3 
70.0 
66.7 

96.6 
90.0 
96.6 
93.3 
96.7 

100.0 
100.0 
100.0 
100.0 
100.0 

- 

35 6 66.7 96.7 100.0 12 7 70.0 96.7 100.0 29 8 70.0 96.7 100.0 7 9 66.7 96.7 100.0 8 
56 

10 
11 

73.3 
76.7 

96.6 
96.7 

100.0 
100.0 

- 

9 
48 
16 

12 
13 
14 

76.7 
70.0 
66.7 

93.4 
96.7 
96.7 

100.0 
100.0 
100.0 

- 

47 15 73.3 96.6 100.0 
3 16 66.7 93.4 100.0 
59 17 63.3 93.3 100.0 
36 18 70.0 96.7 100.0 
31 19 70.0 93.3 100.0 
45 20 73.3 93.3 100.0 
26 21 76.7 93.4 100.0 _ 

27 22 63.3 96.6 100.0 
14 23 70.0 96.7 100.0 rL 
21 24 63.3 96.6 100.0 
41 25 76.7 93.4 100.0 
15 26 73.3 93.3 100.0 
50 27 70.0 96.7 100.0 
28 28 73.3 93.3 100.0 
39 29 76.7 96.7 100.0 - 

23 30 66.7 96.7 100.0 - 

11 31 63.3 96.6 100.0 - 

57 32 63.3 96.6 100.0 - 

19 33 66.7 100.0 - - 
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Table 21 (continued) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

43 34 76.7 90.0 100.0 18 
34 
60 

35 
36 
37 

70.0 
73.3 
73.3 

93.3 
93.3 
93.3 

100.0 
100.0 
100.0 

- 

2 
10 

38 
39 

70.0 
73.3 

96.7 
93.3 

100.0 
100.0 

- 

20 40 60.0 96.7 100.0 
6 41 66.7 96.7 100.0 
37 42 73.3 90.0 100.0 
13 43 70.0 96.7 100.0 
5 44 73.3 93.3 100.0 
32 45 73.3 93.3 100.0 
25 46 70.0 96.7 100.0 
46 47 70.0 93.3 100.0 
49 48 63.3 96.6 100.0 
58 49 76.7 96.7 96.7 100.0 
42 50 60.0 93.3 100.0 
1 51 66.7 93.4 100.0 ^, 

54 52 66.7 96.7 100.0 
38 53 83.3 96.6 96.6 100.0 
30 54 70.0 93.3 100.0 
24 55 56.7 100.0 
17 56 46.7 100.0 
53 57 86.7 93.4 96.7 100.0 
52 58 73.3 93.3 100.0 • 

51 59 70.0 93.3 100.0 
33 60 66.7 96.7 100.0 - 
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D Table 22 
Percentages Within 1, 2, 3 and 4 Standard 

of B Values 
Deviation Units 

Ability Level 1 
(n = 1200) 

item rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

4 
55 

1 
2 

80.0 
73.3 

96.7 
93.3 

96.7 
100.0 

100.0 

44 3 70.0 93.3 100.0 40 4 70.0 96.7 100.0 22 5 73.3 93.3 100.0 35 6 66.7 93.4 100.0 12 7 73.3 93.3 100.0 29 8 63.3 96.6 100.0 
7 9 63.3 100.0 
8 10 73.3 93.3 

c
 

o
 

o
 

56 11 63.3 100.0 
9 12 66.7 96.7 100.0 
48 13 66.7 100.0 
16 14 70.0 96.7 100.0 
47 15 63.3 100.0 
3 16 73.3 96.6 100.0 
59 17 66.7 100.0 
36 18 70.0 93.3 100.0 
31 19 66.7 96.7 100.0 
45 20 70.0 96.7 100.0 
26 21 66.7 96.7 100.0 
27 22 63.3 96.6 100.0 
14 23 63.3 100.0 
21 24 73.3 96.6 100.0 
41 25 73.3 96.6 100.0 
15 26 56.7 96.7 100.0 
50 27 70.0 93.3 100.0 
28 28 73.3 96.6 96.6 100.0 
39 29 66.7 96.7 100.0 — 

23 30 66.7 96.7 100.0 
11 31 66.7 100.0 - — 

57 32 73.3 93.3 100.0 - 

19 33 70.0 90.0 100.0 - 
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Table 22 (continued) 

item rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

43 34 63.3 
18 35 70.0 
34 36 66.7 
60 37 80.0 
2 38 76.7 
10 39 66.7 
20 40 70.0 
6 41 70.0 
37 42 60.0 
13 43 73.3 
5 44 70.0 
32 45 80.0 
25 46 73.3 
46 47 70.0 
49 48 56.7 
58 49 70.0 
42 50 70.0 
1 51 50.0 
54 52 63.3 
38 53 70.0 
30 54 66.7 
24 55 73.3 
17 56 73.3 
53 57 56.7 
52 58 63.3 
51 59 80.0 
33 60 73.3 

100.0 
96.7 
96.7 
96.7 
96.7 
96.7 
93.3 
96.7 

100.0 
100.0 
96.7 
96.7 
93.3 
96.7 

100.0 
93.3 
96.7 

100.0 
96.6 
93.3 
96.7 
96.6 
93.3 
96.7 
96.6 
96.7 
96.6 

100.0 
100.0 
96.7 
96.7 

100.0 
100.0 
100.0 

100.0 
100.0 

100.0 
100.0 
100.0 
100.0 

100.0 
100.0 

100.0 
100.0 
100.0 
96.6 100.0 

100.0 
100.0 
100.0 
96.7 100.0 

100.0 



no 

Percentages Within 1 
Table 23 

* 23 and 4 Standard Deviation Units 
of B Values 

Ability Level 2 
(n = 1200) 

item rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. 

4 
55 
44 
40 
22 
35 

1 
2 
3 
4 
5 
6 

66.7 
66.7 
73.3 
66.7 
70.0 
63.3 

96.7 
96.7 
96.6 
96.7 
93.3 
96.6 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

- 

12 7 66.7 96.7 100.0 29 8 66.7 96.7 100.0 7 9 70.0 96.7 100.0 8 10 63.3 96.6 100.0 56 11 73.3 93.3 100.0 9 
48 
16 
47 

12 
13 
14 
15 

70.0 
76.7 
73.3 
76.7 

93.3 
93.4 
96.6 
93.4 

100.0 
100.0 
100.0 
100.0 

- 

3 16 83.3 96.6 96.6 100.0 59 17 56.7 96.7 100.0 
36 18 70.0 96.7 100.0 
31 19 63.3 100.0 
45 20 63.3 96.6 100.0 
26 21 66.7 96.7 100.0 
27 22 60.0 100.0 
14 23 70.0 93.3 100.0 _ 

21 24 66.7 96.7 100.0 —, 
41 25 80.0 93.3 96.6 100.0 
15 26 73.3 96.6 100.0 
50 27 53.3 100.0 
28 28 76.7 93.4 96.7 100.0 
39 29 73.3 96.6 96.6 100.0 
23 30 63.3 96.6 100.0 
11 31 70.0 96.7 100.0 
57 32 73.3 96.6 100.0 - 

19 33 80.0 93.3 96.3 100.0 



Ill 

Table 23 (continued) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. 

43 
18 
34 
60 

34 
35 
36 
37 

76.7 
63.3 
73.3 
73.3 

90.0 
96.6 
90.0 
96.6 

100.0 
100.0 
100.0 
100.0 2 38 70.0 96.7 100.0 10 

20 
39 
40 

73.3 
50.0 

93.3 
100.0 

100.0 

6 
37 
13 

41 
42 
43 

70.0 
60.0 
63.3 

96.7 
96.7 

100.0 

100.0 
100.0 

5 
32 
25 
46 
49 

44 
45 
46 
47 
48 

56.7 
63.3 
66.7 
80.0 
66.7 

96.7 
93.3 
93.4 
90.0 

100.0 

100.0 
100.0 
100.0 
100.0 

58 49 70.0 93.3 100.0 
42 50 63.3 100.0 
1 51 66.7 96.7 100.0 
54 52 73.3 93.3 100.0 
38 53 86.7 93.4 96.7 
30 54 76.7 96.7 96.7 
24 55 70.0 96.7 100.0 
17 56 83.3 93.3 96.6 
53 57 93.3 96.6 96.6 
52 58 80.0 93.3 96.6 
51 59 73.3 93.3 100.0 
33 60 70.0 96.7 100.0 

s.d. % 

100.0 
100.0 

100.0 
100.0 
100.0 
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Percentages Within 1 
Table 24 

’ 23 and 4 Standard Deviation Units 
of B Values 

Ability Level 3 
(n = 1200) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

4 
55 
44 
40 
22 
35 
12 
29 

1 
2 
3 
4 
5 
6 
7 
8 

70.0 
76.7 
66.7 
66.7 
66.7 
70.0 
66.7 
66.7 

93.3 
90.0 
93.4 
96.7 
96.7 
96.7 
96.7 
93.4 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

- 

7 9 70.0 96.7 100.0 8 
56 

10 
11 

73.3 
63.3 

93.3 
100.0 

100.0 - 

9 
48 

12 
13 

70.0 
60.0 

96.7 
100.0 

100.0 - 

16 14 56.7 100.0 
47 15 63.3 96.6 100.0 
3 16 60.0 100.0 
59 17 63.3 36.7 100.0 
36 18 73.3 96.6 100.0 
31 19 70.0 96.7 100.0 
45 20 70.0 93.3 100.0 
26 21 63.3 100.0 
27 22 70.0 93.3 100.0 
14 23 66.7 93.4 100.0 _ 

21 24 70.0 90.0 100.0 
41 25 73.3 93.3 100.0 
15 26 56.7 100.0 
50 27 7.3 96.6 100.0 
28 28 63.3 100.0 - 

39 29 70.0 90.0 100.0 
23 30 70.0 96.7 100.0 
11 31 66.7 96.7 100.0 - 

57 32 70.0 93.3 100.0 - 

19 33 70.0 96.7 100.0 - 
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Table 24 (continued) 

i tem rank 1 s.d. % 2 s.d. % 3 s.d. % 4 s.d. % 

43 
18 

34 
35 

73.3 
70.0 

93.3 
96.7 

100.0 
100.0 

- 

34 36 70.0 96.7 100.0 60 37 73.3 96.6 100.0 2 38 66.7 100.0 
10 
20 

39 
40 

66.7 
66.7 

96.7 
96.7 

100.0 
100.0 

- 

6 
37 
13 

41 
42 
43 

63.3 
73.3 
70.0 

96.6 
96.6 
93.3 

100.0 
100.0 
100.0 

- 

5 44 63.3 100.0 
32 45 63.3 96.6 100.0 
25 46 70.0 96.7 100.0 
46 47 53.3 96.6 100.0 
49 48 63.3 96.6 100.0 
58 49 76.7 90.0 100.0 
42 50 66.7 96.7 100.0 
1 51 66.7 96.7 100.0 
54 52 73.3 93.3 100.0 _ 

38 53 63.3 96.6 100.0 _ 

30 54 80.0 93.3 100.0 _ 

24 55 66.7 96.7 100.0 
17 56 76.7 96.7 96.7 100.0 
53 57 70.0 96.7 100.0 
52 58 63.3 93.3 100.0 
51 59 70.0 96.7 100.0 
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APPENDIX C 
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Table 25 
Ability Level 1 b Estimates 

(n = 600) 

rank group variance bias accuracy 

1 1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
7 
7 
7 

10.66171 
.27389 

1.38364 
.56867 

2.50416 
.50977 

1.21606 
.79602 
.72920 
.17735 
.62546 

1.10518 
.42163 
.39361 
.27554 
.26005 
.77878 
.22508 
.29947 
.14260 
.16295 
.11069 
.20992 
.18024 
.14931 
.29123 
.11282 
.69532 
.11126 
.07863 
.05989 
.08712 
.53706 

10.53406 
2.40154 

.13561 

.00466 

.20369 

.17480 

.26320 

.52378 

.01192 

.59136 

.13926 

.76768 

.52589 

.02420 

.08965 

.08206 

.12250 

.25910 

.17358 

.02587 

.04226 

.36520 

.27265 

.59587 

.43392 
2.76762 

.00008 

.02748 

.00053 

.00172 

.08491 

.01820 

.00642 

21.19577 
2.67542 
1.51925 

.57333 
2.70785 

.68457 
1.47926 
1.31980 

.74112 

.76871 

.76473 
1.87286 

.94752 

.41781 

.36519 

.34211 

.90128 

.48417 

.47306 

.16847 

.20521 

.47589 

.48258 

.77611 

.58323 
3.05885 

.11289 

.72280 

.11179 

.08035 

.14480 

.10532 

.54349 



i t 

43 
18 
34 
60 

2 
10 
20 

6 
37 
13 

5 
32 
25 
46 
49 
58 
42 

1 
54 
38 
30 
24 
17 
53 
52 
51 
33 

Table 25 (continued) 

rank group variance bias accuracy 

34 7 .10128 
35 7 .08532 
36 8 .22785 
37 8 .21061 
38 8 .31057 
39 8 .13611 
40 8 .17046 
41 9 .58947 
42 9 .24473 
43 9 .23219 
44 9 .20545 
45 9 .88757 
46 10 .20250 
47 10 .31006 
48 10 .20096 
49 10 .84677 
50 10 .46336 
51 11 1.49138 
52 11 2.59902 
53 11 3.99248 
54 11 2.89870 
55 11 3.93254 
56 12 1.62505 
57 12 2.82058 
58 12 10.81724 
59 12 13.35797 
60 12 1.49914 

.11669 .21797 

.05343 .13875 

.00406 .23191 

.16295 .37356 

.06247 .37304 

.25466 .39077 

.03333 .20380 

.01997 .60944 

.17849 .42322 

.99190 1.22409 

.60805 .81349 

.03468 .92225 

.49897 .70147 

.74482 1.05488 
1.02268 1.22364 

.07530 .92207 

.32406 .78742 

.37408 1.86547 

.80721 3.40623 

.01443 4.00691 

.47226 3.37095 
1.62355 5.55608 

.51667 2.14171 
2.21789 5.03847 
2.35480 13.17204 

12.12008 19.47805 
3.83562 5.33475 



Table 26 
Ability Level 2 B Estimates 

(n = 600) 

item rank group variance bias accuracy 

4 1 
55 2 
44 3 
40 4 
22 5 
35 6 
12 7 
29 8 

7 9 
8 10 

56 11 
9 12 

48 13 
16 14 
47 15 

3 16 
59 17 
36 18 
31 19 
45 20 
26 21 
27 22 
14 23 
21 24 
41 25 
15 26 
50 27 
28 28 
39 29 
23 30 
11 31 
57 32 
19 33 

1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
7 
7 
7 

.77670 
1.64005 
1.27832 

.75566 
1.28582 

.59914 

.66027 

.21888 

.20945 

.36198 

.19283 

.33004 

.57891 

.09778 

.46925 

.11974 

.85188 

.25887 

.61895 

.04473 

.04738 

.06133 

.17557 

.10600 

.07749 

.45532 

.09205 

.17378 

.07160 

.09244 

.06745 

.10337 

.24366 

.00053 

.09219 

.04439 

.07086 

.16905 

.05755 

.07967 
2.07665 

.72447 

.00774 

.74230 

.28714 

.36124 
1.05057 

.14173 

.00335 

.19732 

.00069 

.29681 

.04953 

.03046 

.01930 

.08933 

.02920 

.44750 

.00172 

.01910 

.04994 

.00164 

.14939 

.09263 

.12442 

.00141 

.77723 
1.73223 
1.32271 

.82652 
1.45487 

.65670 

.73994 
2.29553 

.93393 

.36972 

.93512 

.61718 

.94015 
1.14834 

.61098 

.12309 
1.04920 

.25956 

.91575 

.09426 

.07784 

.08063 

.26489 

.13521 

.52499 

.45704 

.11116 

.22372 

.07324 

.24183 

.16008 

.22779 

.24508 



i t 

43 
18 
34 
60 

2 
10 
20 

6 
37 
13 

5 
32 
25 
46 
49 
58 
42 

1 
54 
38 
30 
24 
17 
53 
52 
51 
33 

118 

Table 26 (continued) 

rank group variance bias accuracy 

34 7 .17540 
35 7 .10561 
36 8 .10728 
37 8 .87763 
38 8 .32247 
39 8 .36913 
40 8 .29531 
41 9 .30443 
42 9 .37979 
43 9 .45172 
44 9 .36120 
45 9 1.55097 
46 10 .25204 
47 10 .53854 
48 10 .68055 
49 10 .92144 
50 10 .36720 
51 11 2.39531 
52 11 1.29053 
53 11 18.38563 
54 11 2.45553 
55 11 1.20424 
56 12 12.72539 
57 12 2.36159 
58 12 1.04445 
59 12 1.26273 
60 12 11.44289 

.00200 .17740 

.02664 .13226 

.11544 .22273 

.00379 .88141 

.15581 .47827 

.05581 .42495 

.05109 .34640 

.73916 1.04359 

.14077 .52055 

.00137 .45309 

.09724 .45844 

.23568 1.78665 

.02274 .27478 
1.07050 1.60904 

.37565 1.05620 

.06450 .98594 
1.36235 1.72955 

.84135 3.23667 

.05250 1.34303 
4.91508 23.30071 
5.86357 8.31910 
5.46731 5.67155 

.78279 7.50818 

.00258 2.36417 

.00273 1.04717 
8.98502 10.24775 

.51824 11.96114 



Table 27 
Ability Level 3 .0 Estimates 

(n = 600) 

item rank group variance bias accuracy 

4 1 1 
55 2 1 
44 3 1 
40 4 1 
22 5 1 
35 6 2 
12 7 2 
29 8 2 

7 9 2 
8 10 2 

56 11 3 
9 12 3 

48 13 3 
16 14 3 
47 15 3 

3 16 4 
59 17 4 
36 18 4 
31 19 4 
45 20 4 
26 21 5 
27 22 5 
14 23 5 
21 24 5 
41 25 5 
15 26 6 
50 27 6 
28 28 6 
39 29 6 
23 30 6 
11 31 7 
57 32 7 
19 33 7 

.40705 

.31744 

.44727 

.44213 

.83779 

.29864 

.17143 

.23467 

.29196 

.10416 

.17260 

.11337 

.24564 

.14927 

.22573 

.07675 

.27441 

.24482 

.27143 

.06914 

.07318 

.08609 

.29457 

.11351 

.11585 

.79616 

.05306 

.36364 

.05483 

.05493 

.03944 

.17997 

.18177 

.04986 

.33793 
1.14583 

.02558 

.13548 

.04309 

.64621 
1.50618 

.21017 

.13507 

.09965 

.07183 

.01196 

.87313 

.08311 

.25447 

.27821 

.18127 

.00758 

.04431 

.35360 

.00350 

.01629 

.56006 

.28910 
1.12830 

.11945 

.00569 

.01228 

.29800 

.27399 

.14756 

.60549 

.45690 

.65537 
1.59310 

.46771 

.97327 

.34174 

.81765 
1.74084 

.50213 

.23923 

.27225 

.18520 

.25761 
1.02240 

.30884 

.33122 

.55262 

.42609 

.27902 

.11346 

.42678 

.08959 

.31086 

.67357 

.40495 
1.92446 

.17251 

.36932 

.06711 

.35293 

.31343 

.32753 

.78726 



Table 27 (continued) 

item rank group variance bias accuracy 

43 34 
18 35 
34 36 
60 37 

2 38 
10 39 
20 40 

6 41 
37 42 
13 43 

5 44 
32 45 
25 46 
46 47 
49 48 
58 49 
42 50 

1 51 
54 52 
38 53 
30 54 
24 55 
17 56 
53 57 
52 58 
51 59 
33 60 

7 
7 
8 
8 
8 
8 
8 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 

.26663 

.23351 

.21548 

.29990 

.48019 

.67970 

.39078 

.99233 

.46274 

.36825 

.87246 

.52985 

.68563 
1.36671 

.78421 
1.12440 
1.26069 
4.14777 

.83352 
5.73723 

11.39596 
4.37376 

18.28393 
1.52761 
1.37240 

12.48871 
8.35050 

.00151 

.03509 

.53841 
1.54950 
1.20681 

.16266 
1.09978 

.10396 

.06999 

.28053 

.29304 
3.57213 

.01417 

.03030 

.13858 

.28324 

.55135 

.00007 
2.18106 

.64094 
1.51875 
5.39158 
9.50569 
7.02187 

.07783 
9.11685 
2.49870 

.26815 

.26860 

.75390 
1.84941 
1.68700 

.84235 
1.49056 
1.09629 

.53273 

.64877 
1.16550 
4.10198 

.69980 
1.39801 

.92280 
1.40764 
1.81204 
4.14783 
3.01458 
6.37817 

12.91471 
9.76534 

27.78962 
8.54948 
1.45023 

21.60556 
10.84920 



Table 28 
Ability Level 1 B Estimates 

(n = 900) 

item rank group variance bias accuracy 

4 1 
55 2 
44 3 
40 4 
22 5 
35 6 
12 7 
29 8 

7 9 
8 10 

56 11 
9 12 

48 13 
16 14 
47 15 

3 16 
59 17 
36 18 
31 19 
45 20 
26 21 
27 22 
14 23 
21 24 
41 25 
15 26 
50 27 
28 28 
39 29 
23 30 
11 31 
57 32 
19 33 

1 .55689 .00306 .55995 
1 .83790 .47201 1.30991 
1 1.55105 3.96324 5.51429 
1 .52204 .27763 .79968 
1 .80571 2.18214 2.98785 
2 .78430 .05607 .84037 
2 .55395 .02575 .57970 
2 .64562 .00406 .64968 
2 .35307 .74513 1.09821 
2 .44051 .00456 .44508 
3 .27495 .14394 .41888 
3 .36931 .18127 .55059 
3 .28706 .45362 .74068 
3 .28862 .99627 1.28489 
3 .14434 .07272 .21705 
4 .33140 .53681 .86821 
4 .17351 .78408 .95759 
4 .21839 .31314 .53153 
4 .20857 .28169 .49026 
4 .08267 .01319 .09586 
5 .16097 .84437 1.00534 
5 .08238 .00146 .08384 
5 .20621 .01319 .21940 
5 .16527 .00248 .16775 
5 .07202 .20271 .27473 
6 .39728 .13940 .53668 
6 .05466 .00469 .05935 
6 .22200 .11694 .33894 
6 .04464 .03795 .08258 
6 .08262 .43609 .51871 
7 .08759 .12455 .21214 
7 .10151 .00768 .10919 
7 .09490 .10597 .20087 



i tem 

43 
18 
34 
60 

2 
10 
20 

6 
37 
13 

5 
32 
25 
46 
49 
58 
42 

1 
54 
38 
30 
24 
17 
53 
52 
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Table 28 (continued) 

rank group variance bias accuracy 

34 7 .08882 
35 7 .06018 
36 8 .14191 
37 8 .38347 
38 8 .24222 
39 8 .27893 
40 8 .40339 
41 9 .17820 
42 9 .12365 
43 9 .21065 
44 9 .29121 
45 9 .55086 
46 10 .30368 
47 10 .44160 
48 10 .19390 
49 10 .38590 
50 10 .34075 
51 11 .88763 
52 11 .73574 
53 11 1.78342 
54 11 .97777 
55 11 2.90085 
56 12 2.22356 
57 12 1.73052 
58 12 1.47991 
59 12 .51859 
60 12 19.68835 

.12237 .21119 

.06674 .12692 

.18299 .32489 

.32907 .71254 

.17025 .41247 

.14812 .42705 

.17025 .57365 

.20634 .38454 

.03085 .15449 

.04493 .25558 

.19992 .49113 

.07057 .62142 

.04905 .35273 

.01121 .45281 

.25669 .45059 

.11249 .49838 

.01208 .35283 

.06950 .95714 
1.67749 2.41324 

.09031 1.87373 

.75525 1.73303 

.00000 2.90085 

.00215 2.22571 

.39354 2.12405 

.36896 1.84887 
7.15115 7.66974 
4.78040 24.47875 



Table 29 
Ability Level 2 B Estimates 

(n = 900) 

i tern rank group variance bi as accuracy 

4 1 1 .35404 .00020 .35424 
55 2 1 .47452 .00994 .48446 
44 3 1 .51258 .00502 .51760 
40 4 1 .19467 .08050 .27517 
22 5 1 .52652 .07242 .59894 
35 6 2 .81238 .64945 1.46183 
12 7 2 .36714 .09588 .46302 
29 8 2 .29684 .07926 .37610 

7 9 2 .17460 .34626 .52086 
8 10 2 .11653 .18897 .30551 

56 11 3 .10922 .33984 .44906 
9 12 3 .25201 .07037 .32238 

48 13 3 .21378 .02086 .23464 
16 14 3 .10621 .05453 .16074 
47 15 3 .12392 .03564 .15955 

3 16 4 .10519 .00141 .10661 
59 17 4 .25755 .03633 .29388 
36 18 4 .15963 .15308 .31271 
31 19 4 .10662 .00067 .10729 
45 20 4 .04974 .00850 .05824 
26 21 5 .07569 .25891 .33460 
27 22 5 .02905 .04532 .07437 
14 23 5 .11564 .00486 .12051 
21 24 5 .07798 .02033 .09831 
41 25 5 .18394 .05208 .23603 
15 26 6 .09079 .00014 .09092 
50 27 6 .05227 .23214 .28441 
28 28 6 .40409 .02117 .42526 
39 29 6 .05826 .04447 .10273 
23 30 6 .12640 .68857 .81497 

11 31 7 .08745 .00891 .09636 

57 32 7 .04715 .01786 .06501 

19 33 7 .21933 .02182 .24115 



34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
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Table 29 (continued) 

group variance bias 

7 .08211 .04872 
7 .09372 .00654 
8 .13105 .00454 
8 .29667 .02149 
8 .47735 1.38976 
8 .18307 .01224 
8 .11025 .64475 
9 .26022 .13002 
9 .23729 .11869 
9 .21034 .15151 
9 .66762 .15237 
9 .34618 .87040 

10 .73030 .14036 
10 1.00306 1.61658 
10 .14026 .25539 
10 .41539 1.14700 
10 .82192 .03117 
11 1.66314 .22568 
11 .35543 2.00881 
11 1.54081 .01408 
11 3.35974 1.89556 
11 1.99957 .12636 
12 .79186 .10538 
12 3.57837 1.83620 
12 1.95044 2.34249 
12 .52441 14.24439 
12 1.15364 2.09511 

accuracy 

.13083 

.10026 

.13559 

.31816 
1.86711 

.19532 

.75499 

.39024 

.35598 

.36186 

.81999 
1.21659 

.87065 
2.61963 

.39565 
1.56239 

.85309 
1.88882 
2.36423 
1.55489 
5.25530 
2.12593 

.89724 
5.41457 
4.29293 

14.76879 
3.24875 



Table 30 
Ability Level 3 B Estimates 

(n = 900) 

item rank group variance bias accuracy 

4 1 1 
55 2 1 
44 3 1 
40 4 1 
22 5 1 
35 6 2 
12 7 2 
29 8 2 

7 9 2 
8 10 2 

56 11 3 
9 12 3 

48 13 3 
16 14 3 
47 15 3 

3 16 4 
59 17 4 
36 18 4 
31 19 4 
45 20 4 
26 21 5 
27 22 5 
14 23 5 
21 24 5 
41 25 5 
15 26 6 
50 27 6 
28 28 6 
39 29 6 
23 30 6 
11 31 7 
57 32 7 
19 33 7 

.50155 

.23525 

.29652 

.37605 

.43871 

.17988 

.22451 

.17458 

.34587 

.10061 

.12021 

.13648 

.19415 

.12115 

.16753 

.06901 

.25264 

.11668 

.16420 

.05460 

.08927 

.05897 

.06499 

.11983 

.11348 

.68373 

.08766 

.26508 

.07706 

.14472 

.27155 

.06404 

.09161 

.01704 

.34497 
1.38890 

.04602 

.00840 

.06941 

.28832 

.50363 

.05677 

.40531 

.26489 

.00131 

.08835 

.27037 

.20501 

.06120 

.27995 

.12949 

.45781 

.03130 

.11532 

.06855 

.22309 

.11507 
1.62867 
3.29876 

.00001 

.08164 

.00898 

.26734 

.14714 

.00308 

.54648 

.51859 

.58021 
1.68542 

.42207 

.44711 

.24928 

.51282 

.67820 

.40263 

.50591 

.38510 

.13779 

.28250 

.39152 

.37255 

.13021 

.53259 

.24617 

.62201 

.08590 

.20459 

.12752 

.28808 

.23490 
1.74215 
3.89248 

.08767 

.34672 

.08604 

.41206 

.41869 

.06712 

.63809 



it 

43 
18 
34 
60 

2 
10 
20 

6 
37 
13 

5 
32 
25 
46 
49 
58 
42 

1 
54 
38 
30 
24 
17 
53 
52 
51 
33 
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Table 30 (continued) 

rank group variance bias accuracy 

34 7 .11818 
35 7 .12638 
36 8 .25112 
37 8 .37007 
38 8 .49365 
39 8 .23279 
40 8 .16281 
41 9 .51664 
42 9 .57478 
43 9 .63055 
44 9 .77740 
45 9 .98478 
46 10 .67760 
47 10 .67229 
48 10 .47237 
49 10 1.72168 
50 10 .69689 
51 11 .79800 
52 11 .71882 
53 11 2.84198 
54 11 1.18846 
55 11 3.08838 
56 12 1.85486 
57 12 5.70499 
58 12 1.30022 
59 12 2.05853 
60 12 23.85095 

.86632 .98450 

.40113 .52751 

.02460 .27572 

.21948 .58955 

.86768 1.36133 

.43899 .67178 
1.02712 1.18993 

.68312 1.19976 

.55788 1.13265 

.08619 .71674 
1.55815 2.33555 

.03130 1.01608 
1.47541 2.15301 

.84202 1.50431 

.32282 .79519 

.30927 2.03095 

.05773 .75462 
1.41093 2.20894 

.84538 1.56419 

.51562 3.35760 
4.57549 5.76394 

.05659 3.14497 

.75557 2.61043 

.15380 5.85879 

.15914 1.45936 
8.42912 10.48765 

37.41950 61.27045 



Table 31 
Ability Level 1 B Estimates 

(n = 1200) 

i tern rank group variance bias accuracy 

4 1 1 .36343 .46725 .83069 
55 2 1 .31296 .70564 1.01860 
44 3 1 .52436 .12224 .64660 
40 4 1 .67871 .97164 1.65035 
22 5 1 .69012 .45019 1.14031 
35 6 2 .29820 .38194 .68014 
12 7 2 1.57859 2.68562 4.26421 
29 8 2 .59382 .03982 .63364 

7 9 2 .27655 .66961 .94616 
8 10 2 .16961 .33349 .50309 

56 11 3 .16621 .41772 .58393 
9 12 3 .17177 .01030 .18207 

48 13 3 .23291 .00867 .24158 
16 14 3 .11358 .35469 .46827 
47 15 3 .13997 .00043 .14041 

3 16 4 .20497 .11187 .31684 
59 17 4 .26370 .01129 .27499 
36 18 4 .50527 .95016 1.45543 
31 19 4 .07297 .78635 .85932 
45 20 4 .04698 .00718 .05416 
26 21 5 .05861 .12949 .18810 
27 22 5 .03361 .04864 .08226 
14 23 5 .10873 .02471 .13344 
21 24 5 .10751 .15958 .26709 
41 25 5 .06668 .04744 .11412 
15 26 6 .13903 .00055 .13959 
50 27 6 .08619 .44823 .53442 
28 28 6 .40553 .07661 .48213 
39 29 6 .06084 .02920 .09004 
23 30 6 .06969 .01850 .08820 
11 31 7 .10029 .04689 .14718 
57 32 7 .06800 .03710 .10510 

19 33 7 .35581 .02846 .38427 



Table 31 (continued) 

item rank group variance bias accuracy 

43 34 
18 35 
34 36 
60 37 

2 38 
10 39 
20 40 

6 41 
37 42 
13 43 

5 44 
32 45 
25 46 
46 47 
49 48 
58 49 
42 50 

1 51 
54 52 
38 53 
30 54 
24 55 
17 56 
53 57 
52 58 
51 59 
33 60 

7 .06879 .00117 .06995 
7 .07486 .24770 .32256 
8 .07527 .04174 .11701 
8 .24946 .72541 .97487 
8 .22343 .78021 1.00364 
8 .16106 .00394 .16501 
8 .13029 .01835 .14864 
9 .16401 .04317 .20718 
9 .09231 .41866 .51097 
9 .15883 .29304 .45187 
9 .15070 .08143 .23214 
9 .38533 .31457 .69990 

10 .33963 .00072 .34036 
10 .46110 .08438 .54548 
10 .09960 .22585 .32545 
10 .40671 .30401 .71072 
10 .22517 .10944 .33462 
11 .52423 .00053 .52476 
11 .22512 1.83620 2.06132 
11 .25833 .00026 .25859 
11 .53671 2.87928 3.41599 
11 .54296 1.26485 1.80782 
12 .43866 .08206 .52072 
12 2.69304 .28989 2.98292 
12 1.00997 .07610 1.08608 
12 2.57186 .00437 2.57623 
12 8.97604 16.76867 25.74471 
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Table 32 
Ability Level 2 B Estimates 

(n = 1200) 

129 

rank group variance bias accuracy 

1 .62460 .21879 .84339 
1 .40073 .05914 .45987 
1 .33424 .50104 .83528 
1 .43420 1.67986 2.11406 
1 .50213 .01068 .51280 
2 .18413 .22429 .40843 
2 .33998 .48845 .82843 
2 .26200 1.07996 1.34196 
2 .17645 .08933 .26578 
2 .18385 .09285 .27670 
3 .16325 .19797 .36122 
3 .09588 .01353 .10941 
3 .17240 .04736 .21977 
3 .14324 .12571 .26895 
3 .08262 .14756 .23018 
4 .10164 .17818 .27982 
4 .18108 .08258 .26367 
4 .14831 .01461 .16292 
4 .07460 .13521 .20980 
4 .04261 .02133 .06395 
5 .05097 .33054 .38151 
5 .03389 .01212 .04602 
5 .10212 .07834 .18046 
5 .03594 .04401 .07995 
5 .04910 .18221 .23131 
6 .22556 .95873 1.18429 
6 .02829 .04752 .07581 
6 .18226 .01244 .19470 
6 .06758 .02871 .09629 
6 .04041 .12071 .16112 
7 .05229 .00919 .06147 
7 .03927 .21336 .25263 

7 .16324 .00444 .16768 
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Table 32 (continued) 

item rank group variance bias accuracy 

43 34 7 • 
18 35 7 • 
34 36 8 • 
60 37 8 • 

2 38 8 • 
10 39 8 • 
20 40 8 • 

6 41 9 • 
37 42 9 • 
13 43 9 • 

5 44 9 • 
32 45 9 • 
25 46 10 • 
46 47 10 • 
49 48 10 • 
58 49 10 • 
42 50 10 • 

1 51 11 • 
54 52 11 1. 
38 53 11 2. 
30 54 11 1. 
24 55 11 1. 
17 56 12 1. 
53 57 12 5. 
52 58 12 • 
51 59 12 3. 
33 60 12 13. 

13758 .07681 .21439 
°7681 .03852 .11533 
20996 .01610 .22606 
15063 .15408 .30471 
40135 .91246 1.31381 
06413 .09884 .16297 
16772 .05300 .22072 
26861 .03188 .30049 
30942 .21931 .52873 
12967 .12021 .24988 
14598 .00030 .14629 
32862 .01156 .34019 
21332 .00474 .21806 
59454 .14925 .74379 
16908 .84739 1.01648 
28703 .79446 1.08149 
39312 .68373 1.07685 
66445 2.42991 3.09436 
04297 .22447 1.26743 
73072 .22724 2.95796 
32722 1.51425 2.84147 
97507 .09296 2.06803 
06373 .40973 1.47346 
59203 2.19944 7.79146 
88275 1.10017 1.98292 
24117 1.42354 4.66471 
18563 13.38939 26.57202 



item rank 

4 1 
55 2 
44 3 
40 4 
22 5 
35 6 
12 7 
29 8 

7 9 
8 10 

56 11 
9 12 

48 13 
16 14 
47 15 

3 16 
59 17 
36 18 
31 19 
45 20 
26 21 
27 22 
14 23 
21 24 
41 25 
15 26 
50 27 
28 28 
39 29 
23 30 
11 31 
57 32 
19 33 

Table 33 
Ability Level 3 B Estimates 

(n = 1200) 

group variance 

1 .28238 
1 .30939 
1 .23763 
1 .37667 
1 .28427 
2 .30307 
2 .21572 
2 .12488 
2 .15780 
2 .07652 
3 .05102 
3 .14454 
3 .14069 
3 .06881 
3 .05971 
4 .05927 
4 .11483 
4 .13418 
4 .10679 
4 .04214 
5 .03673 
5 .05279 
5 .07916 
5 .07122 
5 .08141 
6 .33358 
6 .06698 
6 .16533 
6 .06375 
6 .11941 
7 .10228 
7 .08183 
7 .16404 

bias accuracy 

.14269 .42507 

.01461 .32400 

.70748 .94511 

.02330 .39997 

.37879 .66306 

.36675 .66982 

.20833 .42406 

.61978 .74466 

.07864 .23644 

.32823 .40475 

.47754 .52856 

.01091 .15545 

.13818 .27887 

.20634 .27515 

.28577 .34549 

.12805 .18732 

.07854 .19337 

.04159 .17576 

.04736 .15415 

.00184 .04399 

.13227 .16899 

.11322 .16601 

.01915 .09831 

.15696 .22818 

.50518 .58659 

.21218 .54576 

.00000 .06698 
1.19520 1.36054 

.00908 .07283 

.09263 .21204 

.00198 .10426 

.04048 .12231 

.06487 .22890 



it 

43 
18 
34 
60 

2 
10 
20 

6 
37 
13 

5 
32 
25 
46 
49 
58 
42 

1 
54 
38 
30 
24 
17 
53 
52 
51 

Table 33 (continued) 

rank group variance bias accuracy 

34 7 .12018 
35 7 .14881 
36 8 .40525 
37 8 .28804 
38 8 .60338 
39 8 .30951 
40 8 .32461 
41 9 .51980 
42 9 .39860 
43 9 .23445 
44 9 .52385 
45 9 .60420 
46 10 .48409 
47 10 .99556 
48 10 .37611 
49 10 .51370 
50 10 .62807 
51 11 1.67280 
52 11 1.28772 
53 11 .73909 
54 11 1.70937 
55 11 2.20704 
56 12 2.61727 
57 12 .88624 
58 12 1.97265 
59 12 10.17946 
60 12 17.50968 

.12507 .24524 

.03953 .18834 

.02908 .43433 

.38420 .67224 

.33264 .93602 

.01723 .32675 

.27686 .60148 

.09274 .61254 

.30401 .70261 

.21607 .45052 

.12275 .64660 

.28324 .88744 
1.97018 2.45426 

.00331 .99886 
1.49946 1.87557 
1.63707 2.15077 

.68222 1.31029 

.43320 2.10600 

.91072 2.19843 
2.38798 3.12707 
4.39072 6.10009 
1.80075 4.00779 

.05985 2.67712 

.01306 .89931 

.02107 1.99372 
4.29560 14.47506 

20.27874 37.78842 
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