
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1987

A study of item response theory equating with an
anchor test design.
George A. Johanson
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Johanson, George A., "A study of item response theory equating with an anchor test design." (1987). Doctoral Dissertations 1896 -
February 2014. 4281.
https://scholarworks.umass.edu/dissertations_1/4281

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/4281?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu




A STUDY OF ITEM RESPONSE THEORY EQUATING 

WITH AN ANCHOR TEST DESIGN 

A Dissertation Presented 

By 

GEORGE A. JOHANSON 

Submitted to the Graduate School of the 
University of Massachusetts in partial fulfillment 

of the requirements for the degree of 

DOCTOR OF EDUCATION 

September 1987 

Education 



© 
George A. Johanson 

1987 
All Rights Reserved 

i i 



A STUDY OF ITEM RESPONSE THEORY EQUATING 

WITH AN ANCHOR TEST DESIGN 

A Dissertation Presented 

By 

GEORGE A. JOHANSON 

Approved as to style and content by: 

fawned/* i (S'V'U 

Hariharan Swaminathan, Chairperson 

Ronald K. Hambleton, Member 

George Uftrh, Acting Dean 
School of Education 

iii 



For my father, 

Arthur B. Johanson 

IV 



ACKNOWLEDGMENTS 

First, I would like to sincerely thank the members of my 

committee who have each, in their own way, made my efforts successful. 

My chairperson. Dr. H. Swaminathan, has been exceptionally flexible 

and patient in working with me under the sometimes inconvenient 

constraints of time and travel. I am especially grateful to him for 

freely giving of his time in the form of unscheduled, but much needed, 

tutorials. Both is classes and less formal teachings have led me to a 

way of working and thinking that I most appreciate. Dr. R. K. 

Hambleton seemed to know just the right time for giving a bit of 

encouragement or a spur-to-action. His classes were decidedly some of 

the most informative and pleasant that I have had the pleasure of 

taking. Finally, his efforts and flexibility to work within my 

occasionally choked schedule must also be acknowledged. The third 

member of my committee. Dr. J. Gifford, was freely giving of her time 

and energies as well. She was reassuring in a most timely fashion 

and, most importantly, I sincerely appreciate her attitude and 

concern. In addition. Dr. Gifford gave me the much needed, but often 

unheralded, "where-is-the-switch" beginnings. 

v 



Second, I feel I must confess that without the help of B. 

McDonald this dissertation would perhaps never have come to pass and, 

most certainly, not on schedule. I am most grateful to her for both 

the typing and for attending to details that, from a distance, would 

be most worrisome. 

Last, but farthest from least, is my family. My wife, Susan, has 

perhaps contributed more than anyone towards the completion of this 

project. She has seemed to thrive upon strange schedules, child¬ 

raising, and an occasionally moody spouse. She has been my nourish¬ 

ment and I love her dearly. From my children, Jim and Katie, I have 

taken the one thing that will be hardest to replace, my time, but I 

will try. 

vi 



ABSTRACT 

A STUDY OF ITEM RESPONSE THEORY EQUATING 

WITH AN .ANCHOR TEST DESIGN 

September 1987 

George A. Johanson, B.S., Trenton State College 

Ed.M., Rutgers University, M.S., Rutgers University 

Ed.D., University of Massachusetts 

Directed by: Professor H. Swaminathan 

In the vertical equating of test scores, procedures based on item 

response theory used with an anchor test design have received wide 

acceptance. An issue of primary concern, however, is the length of 

the anchor test needed to provide an accurate equating of scores. 

While recent work has shown that very short anchor tests may give 

acceptable results, there is little information available concerning 

anchor test length. A further concern is the effect that differences 

in ability distributions have on the equating. Ability distributions 

may have an impact on both the choice of equating procedure and the 

length of the anchor test. In this study, the effects of such factors 

as length of anchor tests, of group ability differences, and equating 

methods on the accuracy of equating were investigated. 

The data for this study were generated using the three-parameter 

logistic model. Parameters for three populations, each consisting of 

vi i 



two groups of examinees, were estimated using the L0GI5T program. Four 

anchor test lengths were studied with each combination of population 

and equating method. The design included an anchor test which spanned 

the difficulty range of the combined tests. The anchor tests were 

nested and the anchor item difficulties were uniformly distributed. 

The equating procedures studied were concurrent or simultaneous 

estimation, characteristic curve, mean and sigma, orthogonal least 

squares, and ordinary least squares. 

The results indicated that the characteristic curve equating 

method was the most accurate of the equating methods studied using a 

criterion based upon the true item difficulties and the true equating 

constants. The characteristic curve method was the only method 

studied to give acceptable results with as few as four anchor test 

items. With longer anchor tests and smaller mean differences in 

ability between groups, all of the equating methods studied gave an 

acceptably accurate equating. When the mean ability differences were 

very large, the item parameters were poorly estimated and, as a 

result, the criterion was predictably affected by the increased 

variation in these parameters. The conclusion was that these 

parameter estimation errors would make it difficult to accurately 

equate tests that differ greatly in difficulty if the anchor test used 

was relatively short and a miniature of the combined tests. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

The first step required in the equating of test scores is the 

selection of an equating design." The design of this study is the 

anchor-test design and a major concern of those using this design is 

the length of the anchor test required for an accurate equating of 

r 

scores. Second, an equating method must be selected from either the 

classical or item response frameworks. Any equating method should 

meet certain conditions if the equating is to be both fair and 

accurate.' The theoretical conditions for test equating are quite 

severe but test equating is often a necessity and, in many cases, the 

criteria for an accurate equating are more empirical than theoretical. 

As mentioned previously, an open question in equating with an anchor- 

test design is the length of the anchor test. While it is desireable 

to have as few anchor items as possible, the accuracy of the equating 

must not be compromised. An additonal factor in test equating is the 

degree to which the ability levels within the tested groups differ. 

1 
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Equating scores between groups of differing mean abilities is referred 

to as vertical, as opposed to horizontal, test equating. The purpose 

of this study is to investigate the interactions of equating method, 

anchor test length, and mean ability differences in groups of 

examinees. 

1.2 Equating Designs 

There are only three designs that allow for test equating. Note 

that, in general, "two different tests administered to two different 

groups of examinees cannot be equated." (Hambleton & Swaminathan, 

1985, p. 198). The three designs are (Cook & Eignor, 1983, p. 180; 

Hambleton & Swaminathan, 1985, p. 198): 

1. Single-group design 

2. Equivalent (or random) group design 

3. Anchor-test design 

In the single-group design, the same examinees take both tests to 

be equated and, thus, the relationship between abilities or scores may 

be determined without confronting the issue of group ability verses 

test difficulty. That is, any differences in difficulty level between 

the tests may be accounted for without adjusting for group ability 

differences. One difficulty with this design is the problem of 

finding a group of examinees willing to take several tests or test 

forms. Another difficulty is the sometimes conflicting effect of both 

practice and fatigue upon the examinees. 

The equivalent-group design attempts to overcome the difficulties 

of the single-group design by using random samples of examinees. 
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owever, it is very difficult to obtain populations with nearly 

identical ability distributions. In' both designs, conventional or 

classical methods of test equating yield good results if the 

difficulty levels of the two tests are somewhat similar (Cook & 

Eignor, 1983, p. 180). 

The third design is perhaps the most popular since it may be used 

with different (non-random) groups. The anchor-test design requires 

that a common subset of items (the anchor test) be administered to 

both groups. Using item responses theory, it is then possible to use 

the relationship between the common item parameters in the different 

groups of examinees to find the relationship between both the item 

parameters for the two tests and the abilities for the two groups of 

examinees. 

1.3 Conditions for an Equating 

In all of the following, x (or Xj) will represent an observed 

score on test X and y (or yj) an observed score on test Y. Further, 

y*=x(y) is a y score transformed to the scale of test X. Lord (1980, 

p. 199) gives the following three requirements for the equating of 

test scores. 

1. Equity; For every 0, the conditional frequency distribution 

of x(y) given 0 must be the same as the conditional frequency 

distribution of x. 

2. Invariance across groups: x(y) must be the same regardless 

of the population from which it is derived. 
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3. Symmetry: The equating must be the same no matter which test 

is labeled X and which is Y. 

A critical observation is that all conventional approaches are 

group dependent and hence violate the invariance requirement. In 

addition, the simple regression approach is non-symmetric. However, 

conventional methods do give reasonable results in horizontal 

equatings (Harris & Kolen, 1986). In a vertical equating situation, 

these classical methods are unsatisfactory (Hambleton, Swaminathan, 

Cook, Eignor & Gifford, 1978, p. 499). 

The equity requirement can be conceptualized as follows: 

If an equating of tests x and y is to be equitable to each 
applicant, it must be a matter of indifference to applicants 
at every given ability level e whether they are to take test 
x or test y (Lord, 1980, p. 195). 

Certainly, the tests must have equal variance at every ability level 

or the more capable examinee would choose the test with the smaller 

variance at his or her ability level. The less able individual would 

possibly prefer the less accurate measure. Actually, the restrictions 

imposed by the equity requirement are so severe as to prohibit 

practical test equating altogether: 

Theorem 13.3.1 

Under realistic regularity conditions, scores x and y on two 
tests cannot be equated unless either (1) both scores are 
perfectly reliable or (2) the two tests are strictly 
parallel (in which case x(y)Ey) (Lord, 1980, p. 198). 

In practice, however, fallible tests must frequently be equated. 

The only reasonable solution seems to be empirical. That is, we must 

have a good fit between our data and our mathematical model and thus 

try to minimize the inherent inequities. 
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1*4 Equating Methods 

Test scores may be equated either within a classical or item 

response frame of reference. In both cases, there are many equating 

methods possible. For this study, five IRT methods were selected to 

cover as wide a range as possible from the more common or more 

promising to the less common or easily dismissed. Among the most 

common are the simultaneous estimation procedure and the mean and 

sigma method. One of the most promising is the characteristic curve 

method. A less common approach to test equating is the method of 

orthogonal least squares. Perhaps the most easily dismissed method of 

test equating is ordinary least squares due to its obvious lack of 

symmetry and, hence, failure to meet the equity requirement. 

With real data, a true equating is unknowable. With simulated 

data, however, the true equating is known and a criterion based upon 

the true values of the item parameters and the true equating may be 

developed. Such a criterion was employed in this study to identify 

the more accurate equating methods. 

1.5 Statement of the Problem 

Test equating is a procedure that attempts to make scores from 

different tests comparable. Traditional or classical test theory is 

not well-suited to equating scores between groups of examinees who 

differ substantially in their abilities or to equating test scores for 

examinees on two tests that differ substantially in difficulty. 

.Equating in the above situations is referred to as vertical equating. 

Procedures based upon item response theory are more suitable for 
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vertical test equating (Hambleton & Swaminathan, 1985). A frequently 

Chosen design for the vertical equating • f test scores is the anchor- 

test design. The item response theory model recommended is the three- 

parameter logistic model (Cook 8 Eignor, 1983). The problem of 

equating scores is complicated by the scaling or method of reporting 

scores. A simplifying assumption is that ability scores are 

acceptable. 

A criterion was developed to determine the accuracy of an 

equating based upon the true parameter values. This measure is also 

able to judge the accuracy of the equating that results from a 

simultaneous estimation procedure. 

The minimum length of an anchor test that allows an acceptably 

accurate equating has been the subject of two recent papers (Wingersky 

& Lord, 1984; Vale, 1986). Under certain circumstances, it appears 

that much shorter anchor tests than previoulsy thought may be 

acceptable. One facet of this study is to attempt to answer the 

following question: 

1. Given a reasonable criterion, what length anchor test is 

required to produce an acceptably accurate equating of test 

scores? 

Different equating methods will yield different criterion 

measures. A second aspect of this study is the following: 

2. Given a reasonable criterion, which of a selected group of 

equating procedures results in the most accurate equating of 

test scores? 
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A third point of interest is the pffpr* nf f. 
eTTect or the ability 

distributions of the groups of examinees on the equating. If the 

tests are at a difficulty level suitable for the abilities of the 

examinees, then as the difference between mean abilities becomes that 

is larger, an accurate equating may become more difficult to achieve. 

That is, differing ability distributions may have an adverse effect on 

the parameter estimates and thus could affect the accuracy of the 

equating. The third question to be answered is thus: 

3. Given a reasonable criterion, how do different mean ability 

differences affect the accuracy of an equating of test 

scores? 

4. The final concern of this study is the interaction of these 

three components. 

1.6 Purposes 

The purposes of this study were to attempt to address the 

previously stated problems in a very structured, but necessarily 

limited, fashion. The decision was made to use generated or 

artificial data in which it would be possible to know the true 

equating constants. A criterion was developed using these true 

constants as the basis for all comparisons. Given this criterion, the 

purposes were to attempt to answer the following questions: 

1. Using anchor tests ranging in length from 25 items (standard) 

to 4 items (very short), which anchor test length will 

produce equatings that are acceptably accurate? 
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2. Using five equating techniques ranging from the most popular 

to those that are seldom used, which methods will result in 

acceptably accurate equatings? 

3. Using three populations each of which contains two groups of 

examinees that differ in abilities such that the equatings 

range from vertical to extremely vertical, which populations 

will permit acceptably accurate equatings? 

4. Which combinations of the above factors produce acceptably 

accurate equatings? 

1.7 Significance of the Study 

Since test equating with an anchor-test design is rather common, 

a very practical concern of test developers is the number of items 

required in the anchor test. While it is true that, in general, 

longer anchor tests yield a more accurate equating of test scores, for 

reasons of efficiency and test security, it is advisable to use as few 

anchor items as possible. In addition, the length of the anchor test 

may very well be affected by both the choice of equating method and 

the mean ability differences of the groups being tested. 

Another practical concern of test developers and users is the 

choice of equating method. Certain methods are easily implemented 

while others are quite complex. The use of different evaluative 

measures in the research literature makes the choice even more 

difficult. Clearly, some of the most common and easily used equating 

procedures may be more or less accurate at some anchor lengths and 

with some mean ability differences. 
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A final concern must be the interaction of these components of an 

equating. If particular combinations of ant..or test length, equating 

method, and mean ability difference prove to be exceptional in either 

direction, there would be obvious practical implications. 

1.8 Organization of the Dissertation 

This dissertation contains five chapters and two appendices. The 

first chapter is an introduction to IRT and a statement of the problem 

and purposes of the study. Chapter II introduces test equating and 

reviews the literature on equating. Chapter III contains the 

methodology and the review of the literature concerning methods of 

evaluation of an equating. Chapter IV presents the results of the 

study. The final Chapter, V, contains the conclusions of the study. 

The first appendix consists of scattergrams of the anchor item 

difficulties with the equating lines while the second appendix has the 

computer programs for data generation and the characteristic curve 

equating procedure. 



CHAPTER II 

REVIEW OF THE LITERATURE 

2.1 Introduction 

Since it is frequently necessary to administer several forms of a 

test, the horizontal equating of test scores is necessary if it is 

desirable to compare individual scores across test forms. On the 

other hand, if it is necessary to measure growth in some content 

domain, then it is necessary to equate test scores vertically across, 

say, grade levels. Clearly, such situations occur often and, 

therefore, either horizontal or vertical test equating is required in 

many testing circumstances. However, we have seen that there are 

theoretical requirements for an equating that are difficult or 

sometimes even impossible to meet. In short, test equating is a 

necessity and there is no theoretically clear path to a solution. To 

minimize the inequities and inaccuracies, careful attention must be 

paid to model fit, equating design, and equating method. The first 

decision to be made concerning the equating method is whether to use a 

classical or IRT approach. 

10 
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2.2 Classical Equating 

Ti. ■ problem: If we have two tests purporting to measure the same 

ability and, if these are administered to two different groups of 

individuals, may we compare or equate their scores? 

If the tests are at similar levels of difficulty and the groups 

have nearly the same ability distributions, then we have a problem of 

horizontal equating. If both tests and groups are at different levels 

of difficulty and ability, respectively, then vertical equating is the 

result. 

Classical or conventional equating methods include the following 

(Angoff, 1971; Hambleton & Swaminathan, 1985). 

Equipercentile equating, in which scores from two tests are 

equated when they have the same percentile rank in their 

respective groups. 

2. Linear methods, where a linear equating of scores X and Y by 

y=Ax+B can be determined from the equations av=Aoy and 

Uy=A yx+B (Hambleton & Swaminathan, 1985, p. 201). 

3. Regression methods, in which either x or y may be predicted 

from the other by OLS regression or via some external 

criterion (Lord, 1980). 

As mentioned in section 1.2, classical methods perform well in 

horizontal equating situations but, there is still the group- 

dependency issue to contend with. 

In the classical test theory model, the parameters that 

characterize an item depend on the group of examinees to whom the test 

is administered. For example, the proportion of examinees who answer 
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an item correctly, the item difficulty, is clearly group-specific and, 

as such, not only characterizes the item but, also the ‘ interaction 

between the item and the group of examinees (Hambleton & van der 

Linden, 1982). Hence, the item statistics would have to be 

recalculated for a group different than the norming group. In 

addition, an individual's test score will depend not only on the 

particular subset of items that he or she is confronted with but, also 

on his or her group membership. Thus, two examinees who take 

different tests cannot be compared directly. The classical route 

around these difficulties is the parallel test and an all-inclusive 

norming group. Unfortunately, parallel tests are difficult to 

construct and precision of measurement suffers when an individual 

takes a test of a difficulty level that is not matched to his or her 

ability level. 

2.3 Item Response Theory Equating 

In direct contrast to the group-dependence of the item parameters 

in classical test theory is the independence of the item parameters 

over groups in item response theory (IRT). To achieve this group- 

independence or, more accurately, to make the item parameters 

independent of the sample of examinees, it is necessary to estimate 

the item parameter values from the entire population of interest. 

Large and representative samples are required and estimation 

procedures are complex. However, once these parameters are 

- determined, it is possible to compare the scores of any two or more 

individuals on any sub-collection of test items. 
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At the very heart of IRT is the item characteristic curve or item 

response function. The independent variab-e for this function is a 

single or unidimensional ability or trait measure. The dependent 

variable is the probability of success on a particular test item. 

This single-valued item-ability relationship allows the prediction of 

the probability of a correct response for an individual whose 

underlying ability in a particular content domain is given. The 

reverse, which has a more practical consequence, is also true: given 

the response to an item and the mathematical relationship, we may 

infer the examinee's latent ability in this content domain. 

Currently, there are two functional forms in use for the item 

characterisitc curve. 

The (three-parameter) normal ogive is given by: 

ai|?rk!„-t2/2. P.(ei) = ^ + (l-Ci)/ 1 (1^ 
J t = -°° 

-dt [1.2.1] 

The (three-parameter) logistic function is given by: 

P-j (©j) = c.j +_ _ 

1 + e"1,7ai(ej'bi) 

In both functions, 0j is the ability of the jth examinee, j=l,...,N. 

Ability is usually standardized or scaled to mean zero, standard 

deviation one. The item parameters are subscripted over items, 

i=l,...,n. ai is the discriminating power, it is proportional to the 

maximum slope of the item response function. The item difficulty, bif 

is the value of at which ^ is achieved. That is, P^) = Mi* 
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where Ki = -1.7(c1-1)/4. A typical item characteristic curve is 

illustrated below. Note that the point of inflection occurs at bi and 

that P-j(b,) is midway between Ci and 1.0. Ci is referred to as the 

guessing parameter or pseudo-chance level. 

pi (6i) 

Figure 1.2.1. An item characteristic curve. 

For many purposes, the choice of model (normal ogive or logistic) 

is less than critical since "the two models give very similar results 

for most practical work" (Lord, 1980, p. 14). The constant -1.7 is 

chosen to maximize the agreement between the models. 

The three-parameter model may be modified by assigning fixed 

values to item parameters c^ or a^ and c^. In particular, if c^=0 the 

resulting function is referred to as the two-parameter model and 

assumes that guessing is not a factor. If c^=0 and a^ = l, the 

resulting function is the one-parameter or Rasch model. The items are 

- assumed to be of equal discriminating power in the one-parameter model. 
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The three-parameter logistic model appears to be the most 

flexible: "the -esults at present do seem to suggest, however, that 

the three-parameter logistic model offers a more viable alternative 

for the vertical equating of approximately unidimensional tests" (Cook 

& Eignor, 1983, p. 188). For this reason it is the model of choice 

for this study. 

In classical test theory, the test and item parameters or 

statistics are always group-specific. In addition, examinee scores 

are test-specific and the accuracy or variability of these scores is 

assumed to be uniform over scores. Item response theory attempts to 

overcome these limitations by directly relating an underlying ability 

to the probability of success on an individual item. If the chosen 

model fits the data and the ability, e , is unidimensional, then the 

item parameters will remain invariant across groups. If this were not 

the case, we could use these parameter differences to distinguish 

subgroups and, thus, would be measuring another dimension or ability 

contrary to our unidimensional assumption. The assumption of 

unidimensional ability is equivalent to the assumption that the 

responses of an individual to different test items are independent of 

one another if the items measure the same ability. 

The invariance of an individual's ability measure across tests 

composed of subcollections of items from a pool of items measuring the 

same unidimensional ability is one of the key features of IRT. To 

cite but one example, it allows for tailored testing in which each of 

two individuals or groups of differing ability is tested at the 

appropriate difficulty level and, under certain circumstances, the 
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ability scores are comparable. The "certain" circumstances require 

that the item and ability parameters be on the same scale. Recall 

that ability was standardized within each group. Putting these scores 

on the same scale is called test equating and is the subject of this 

study. 

Suppose that two tests are constructed from a unidimensional item 

pool in which the IRT item parameters are known for all groups of 

interest. Further, if ability scores are reported, an equating is 

not even necessary since the exact same ability will result for an 

individual regardless of the test taken or group membership. The 

reality, however, is that item parameters are never known exactly in 

practice and must be estimated from the test data. If the estimates 

are made separately for each test/group, there is the additional 

problem that standard procedures arbitrarily set the mean and variance 

of 9 at zero and one, respectively, for each group. When an anchor- 

test design is used, the result is that e has been standardized or 

scaled differently for each group of examinees on the common items. 

The solution to the equating problem becomes one of finding the 

relationship between the ability scales on the anchor items across 

groups and using this same relationship for all items. Recall that in 

classical linear test equating we assumed that the relationship 

between observed scores was linear. According to IRT, if the same 

group of examinees takes both tests X and Y, then the difference 

between a particular individual's ability scores on the tests will be 

due solely to the scales of measurement and measurement error. 
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Therefore, the standardized ability scores will be identical. The 

relationship is necessarily linear: 

‘V ue)/aex = (0yd - Me^ )/o0j for each j=l.n [2.2.1] 

°r’ % = 8yj = °‘9*j + 6 f0r dU j [2.2.2] 

(Hambleton & Swaminathan, 1985, p. 204). 

Since they are on the same scale, we could have just as well have 

used the relationship between item difficulties as abilities. In 

fact, ...item difficulty estimates are typically used because they 

are the most stable of any of the IRT parameter estimates" (Cook & 

Eignor, 1983, p. 182). Omitting the subscripts for individuals, we 

find that if ey = aex + e , then by = abx + e and ay = ax/a while 

Cy = cx = c for each item, i=l,...,n (subscripts omitted). If we use 

the three-parameter logistic model, it is easy to see that Pi(ey) = 

pi(8x*) = pi (ex) for a11 i- Consequently, 5 = S i* = l Pi (ey ) = 
j J J 

3M0x.) = € y. for j where the sums are taken over the anchor 

items. More simply, the true scores on the common items will be 

identical. 

Simultaneous Estimation of Parameters 

Using the L06IST program (Wood, Wingersky, & Lord, 1976), it is 

possible to simultaneously estimate all item and ability parameters by 

simply coding the unique items on each test as "not reached" by the 

examinees who took the other test. The coding will be discussed more 

.fully in a later section, but the result is that all parameter 
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estimates for both groups are automatically on the same seal 

is clearly a very attractive procedure if it is reasonable to 

e. This 

apply. 

Separate Estimations of Parameters 

If the item and ability parameters are estimated with two 

separate LOGIST runs, then it is necessary to find the relationship 

between these sets of parameters. It was previously shown that the 

desired function is linear or, equivalently, that the only difference 

between the ability or difficulty estimates is the metric or scale of 

measurement and choice of origin. These will differ since the groups 

are different and LOGIST assigns u0 = e, o0 = l within groups. If 

we consider the two ability estimates for each person from the anchor- 

test items, the plot should be a perfectly straight line, 0 = a0 

^ XJ 
+ 6 for all j. Of course, the usual errors of measurement will 

instead give us a scatter about a line. Our task is to estimate the 

best fitting line. Ordinary least squares (OLS) regression is not 

suitable since, as previousTy mentioned, it is not symmetric and hence 

would violate the equity requirement of an equating. An orthogonal 

least squares approach, which involves determining the major or 

principal axis (Ironson, 1983), while symmetric, "...is not suitably 

invariant under a change of scale" (Stocking & Lord, 1983, p. 202), 

since the eigenvalues and eigenvectors of a matrix are not invariant 

under linear transformations. For example, if the 0X values are all 

halved, the resulting (or new) a should be twice the original a and 

this is not necessarily the case with orthogonal least squares. 
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abx. + 6 . it follows that b4, 
J j y 

.J ‘Sbj • Therefore, « = (sb /s„ ) and 8 . 'b . a^. 

Another approach to finding the best fitting line is the 

mean and sigma mr,hod. Since b, 

abx + 6 and s^ = 

This method is symmetric, but "poorly estimated item difficulties may 

have a serious impact on the computation of sample moments..." 

(Stocking & Lord, 1983, p. 203). 

More robust procedures have been developed (Stocking & Lord, 

1983) to compensate for the effect of outliers and the varying 

standard errors of the estimates of the item difficulties. However, 

"a drawback to all of these 'mean and sigma' transformation procedures 

is that they are typically applied only to the estimated item 

difficulties" (Stocking 8 Lord, 1983, p. 203). That is, not all of 

the available information is being used. 

The above approaches determine the line of best fit using only 

the item difficulty parameters. A group of procedures that attempts 

to use more than just the difficulty estimates is the characteristic 

curve methods. Since P-j(ey ) = P^.) for all i and each j, we may 

compare the item response functions and compute parameter estimates 

that minimize some aspect of their difference (Haebara, 1980; Divigi, 

1980). Stocking and Lord (1983) propose that the mean of the squared 

differences in estimated and equated true scores over examinees be 

minimized. They compared this method with their robust mean and sigma 

method and concluded that "the robust mean and sigma method never 

provided a better fit to the estimated item difficulties and 

,discriminations; in some cases it provided a worse fit" (Stocking & 

Lord, 1983, p. 206). Further, they claim that the characteristic 
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curve method is "logically superior” to the robust mean and sigma 

method in that it makes use of all of the available information in t.B 

form of the item response function. 

There may be situations where true scores must be equated. That 

is, instances in which it is inappropriate to report on the ability 

scale. Unfortunately, "the graph of Sx against will be non¬ 

linear" (Hambleton & Swaminathan, 1985, p. 213). To retain the 

advantage of a linear relationship, Hambleton and Swaminathan 

recommend equating abilities and then graphically determining the 

corresponding, but non-linear, relationship between true scores using 

a plot of ability verses true scores. An alternative procedure is to 

use raw scores to equate the tests. 

Since the expected value of an observed or raw score, r, is a 

true score, it may seem reasonable to use the true score procedure 

described above to equate raw scores. But, recall that = YP-;(0v) 

~ 1 (c-j + ...)» or £x bounded below by £ c^ while corresponding 

raw scores are bounded below only by zero. Raw scores and true scores 

are not simply interchangeable. Be that as it may, "...most IRT users 

presently equate their tests using estimated true scores and then 

proceed to use their equated scores table with observed test scores 

(Hambleton & Swaminathan, 1985, p. 218). A more appropriate procedure 

is to generate the theoretical observed score distributions and from 

these obtain the marginal observed score distributions. These are 

then equated using an equipercentile procedure. This approach to the 

equating problem seems to yield results very similar to the true-score 

procedure (Lord & Wingersky, 1983). 



CHAPTER III 

THE METHOD OF THE STUDY 

3.1 Introduction 

The objective of this study was to investigate the results of 

vertical IRT equatings using an anchor test design, generated data, 

and subject to the following conditions: 

Anchor Size: The lengths of the anchor tests will be 25, 13, 

7, and 4 items. The individual tests will each have 60 

items. 

Group Ability Distributions: Each group to be equated will 

consist of 500 examinees with normally distributed abilities. 

Three populations, of two groups each, with ability overlaps 

of 10%, 30%, and 50% will be equated. 

3. Equating Methods: The methods selected were a concurrent 

L0GIST, characteristic curve, mean and sigma, orthogonal 

least squares, and ordinary least squares. 

Since artificial data permits the true equating constants to be 

known, it was possible to develop a criterion for comparisons based 

upon these true values. 

21 
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3*2 Data Generation 

While there are many criteria available for evaluating an 

equating (see Section 3.4), the only certain way to judge the accuracy 

of a particular equating is to know the true equating and this 

information is only available when data are generated. Monte Carlo 

studies also offer such benefits as perfect fit to the mathematical 

model and content independence. When real data are used, these 

factors become confounding issues in determining the accuracy of an 

equating. Precisely defined and relatively narrow questions would 

seem to lend themselves to constructed data sets because some 

confounding issues may then be contained. Of course, results from 

Monte Carlo studies cannot be casually extended to real data sets. 

A data generation program was written in PASCAL using the three- 

parameter logistic model. The probability of success of person j on 

item i, P-j(0j), was calculated for each combination of ability and 

item. A random number between zero and one was then generated 

(RANDOM, a pseudo-random number generator used in PASCAL 6000, 

University of Minnesota, 1978) for each such combination. Whenever 

P-,*(0 j) was greater than or equal the corresponding random number the 

item was said to have been answered correctly by that person. If 

P-j ( Qj) was less than the random number, the item was coded as 

incorrect. In this way, dichotomous data was created for each group 

on the appropriate test. Each group had 500 examinees and each test 

had 60 items exclusive of the anchor items. 

In all, three data sets were created each with 85,000 dichotomous 

responses (2 testsX500 examineesX(60+25) items). These sizes 
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represent a compromise between accuracy and practicality. The data 

were generated under the following assumptions or conditions: 

1. The abilities, 8j, were normally distributed within each 

group with mean-ability differences of 3.30, 2.08, and 1.34 

for each of the three sets of data. Standard deviations were 

all 1.0. 

2. The mean item difficulty for each of the six tests was set at 

the corresponding group mean ability. All difficulties were 

uniformly distributed with a span of 1.5 units. 

3. The mean item discriminations ranged from 0.8 to 1.0 and had 

spans from 0.8 to ^,.2. The test assignments were random and 

the distributions peaked in the sense that the less 

discriminating items were those with the more extreme 

difficulties. 

4. The mean pseudo-chance level for each item was set at 0.2 for 

all tests. The distribution was uniform with range 0.15 to 

0.25 for all tests. 

5. Anchor items were duplicates of selected items on particular 

tests. Anchor lengths of 25, 13, 7, and 4 were used. 

Each of the three data sets consisted of two groups of examinees 

and two anchored tests. The group of lesser ability is referred to as 

group A, the more able group is B. The corresponding tests are X and 

Y. The populations or abilities were normally distributed. However, 

within each data set, the combined ability distribution is bimodal due 

to the rather large mean ability differences. These differences of 

3.30, 2.08, and 1.34 resulted in populations with overlapping 
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abilities. The percentages of overlap were 10. 30. and 50. 

respectively. These ability differences were sufficiently large U 

enable all equatings to be considered genuinely vertical. Mean item 

difficulty was set at the group mean ability to make each test most 

suited to the abilities of the population being tested. Originally, a 

span of difficulties larger than 1.5 units was employed, but due to 

the large mean differences in ability, it became very difficult to 

generate data in which the easiest and most difficult anchor items had 

realistic parameter estimates. While a larger span might be more 

usual (Hambleton & Swaminathan, 1985, p. 36), it was not possible with 

these large mean ability differences. A uniform distribution of 

difficulties seemed reasonable and is common in the literature, for 

example. Vale (1986), Skaggs & Lissitz (1986), or Hambleton & 

Rovinelli (1986). It is equally common to have the discrimination 

distribution uniform. However, in an effort to construct a good test, 

it seemed justifable to slightly favor the items with difficulties 

near the mean ability by assigning to them a better or larger 

discrimination. The peaked discrimination distribution does precisely 

this. Discrimination means and spans were consistent with the current 

literature. The pseudo-chance parameter values were randomly 

assigned. 

Petersen, Marco, and Stewart (1982, p. 134) concluded from their 

study that "An anchor test constructed to be a miniature of the total 

tests gives the best equating results." Table 3.2.1 shows the 

selection rule for the anchor items for each of the three data sets. 
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Table 3.2.1. The Composition of the Anchor Tests • 

Anchor Item 
Number 

Test Item 
Number 

Identical to Item 
Number/Test 

1 
o 

61 1/X c 
o 

62 41/X 
0 
yl 

63 21/Y 
H 
C 

64 60/Y 
0 
c 65 21 /X 0 
"7 66 1/Y / 
O 67 41/ Y 8 
n 68 11/X y 69 31/X 10 70 51/X 11 71 11/Y 

12 72 31/Y 
13 73 51/Y 
14 74 6/X 
15 75 16/ X 
16 76 26/X 
17 77 36/X 
18 78 46/X 
19 79 56/X 
20 80 6/Y 
21 81 16/ Y 
22 82 26/Y 
23 83 36/Y 
24 84 46/ Y 
25 85 56/Y 
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The four length anchor consists of anchor items one through four, the 

seven length anchor of items one through seven, the • hirteen length 

anchor of items one through thirteen, and the twenty-five length 

anchor of items one through twenty-five. Thus, the four anchor tests 

are nested. Since the twenty-five anchor items were arranged in order 

of difficulty, the shorter anchors could be obtained by deleting every 

other item starting with the second item at each stage. 

Within each of the six tests, the items are in increasing order 

of difficulty. Therefore, within each of the three data sets, the 

first item on test X was the easiest of the combined 120 items and the 

last item on test Y was the most difficult. Each anchor test contains 

both of these items and thus spans the difficulty range of the 

combined tests for each data set. Skaggs and Lissitz (1986) used an 

anchor in which the difficulties only spanned the overlap in 

difficulties of the two tests being equated. However, they concluded 

that "better results might have been achieved with a wider range of 

difficulty on the anchor test items" (p. 315). The remaining anchor 

items in each anchor test were chosen in such a way that the item 

difficulties within each anchor test were nearly uniformly 

distributed. Each anchor test was thus constructed to resemble the 

combined tests as closely as possible. 

For reasons of time and economy as well as security, it is 

frequently desirable to use as small an anchor test as possible. The 

'rule of thumb' is the larger of twenty items or twenty percent of the 

. total number of test items (Budescu, 1985, p. 15). Using this rule, 

all but the longest of the anchor tests in this study are too short. 
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However, more recent studies by Wingersky and Lord (1984) and Vale 

(1986) suggest that anchor tests of as few as two good items may 

permit adequate linking of test scores. Tables 3.2.2 and 3.2.3 show 

the minimum, maximum, and mean values for both the item and ability 

parameters. 

As a partial verification of the accuracy of the data generation 

program, checks were run on the ability distribution. Means, standard 

deviations and normalcy were as desired. The means and standard 

deviations of the raw and true scores were calculated to verify model 

fit. These results are summarized in table 3.2.4. Raw scores and 

true scores within each group were, as desired, nearly identical. 

For each combination of anchor length (25, 13, 7, 4) and data set 

or ability overlap (10%, 30%, 50%), item and ability parameters had to 

be estimated from the dichotomous data. These estimations were 

carried out for group A on test X and group B on test Y. In addition, 

the combined group of examinees, AB, in each data set, was treated as 

if they had taken all of the items from both tests A and B plus the 

anchor items. This new, combined test, XY, is discussed more 

completely in the next section. All parameter estimations were done 

using LOGIST (Wood, Wingersky, and Lord, 1976). A total of 36 LOGIST 

runs were required (4X3X3) to estimate all of the combinations of 

anchor length, population, and group. The maximum number of stages 

for convergence was set at 40 and the other options were set to the 

default values. In both groups A and B, the number of subjects was 

500. In the combined group, AB, the number was 1000. The total test 



28 

Table 3.2.2. 
ingroup A/Te’^X.0" Pardmeters Used for Data Generation 

Minimum a/Maximum a 

Mean a 

Minimum b/Maximum b 

Mean b 

Minimum c/Maximum c 

Mean c 

Mean e 

10% 

Ability Overlap 

30% 50% 

0.5/1.5 0.5/1.3 0.2/1.4 

1.0 0.9 0.8 

“2.5/-1.0 -2.0/-0.5 -1.74/-0.24 

-1.75 -1.25 -0.99 

0.15/0.25 0.15/0.25 0.15/0.25 

0.2 0.2 0.2 

-1.75 -1.25 -0.99 

1.0 1.0 1.0 Standard Deviation 6 
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Table 3.2.3. Item^and Population Parameters Used for Data Generatm 

Minimum a/Maximum a 

Mean a 

Minimum b/Maximum b 

Mean b 

Minimum c/Maximum c 

Mean c 

Mean 0 

Ability Overlap 

10% 30% 50% 

0.4/1.2 0.5/1.5 0.4/1.4 

0.8 1.0 0.9 

0.8/2.3 0.08/1.58 -0.4/1.1 

1.55 0.83 0.35 

0.15/0.25 0.15/0.25 0.15/0.25 

0.2 0.2 0.2 

1.55 0.83 0.35 

1.0 1.0 1.0 Standard Deviation e 
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Tdole 3.2.4. The Means and Standard Deviations of Raw and True Scores 
in Groups and Within Populations. scores 

Raw Scores yrue $cores 

Population Mean 
Standard 
Deviation Mean 

Standard 
Deviation 

10% 

Group A 43.3540 17.1421 43.5665 16.6771 

Group B 53.5180 15.7783 53.4743 15.2927 

30% 

Group A 47.1780 16.3286 47.1257 16.0229 

Group B 55.0080 16.7355 55.0091 16.3546 

50% 

Group A 48.3220 15.7537 48.2148 15.3218 

Group B 53.9120 16.4395 53.7949 16.0494 
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lengths ranged from 64 with the shortest anchor (4) to 85 with the 

longest anchor (25). The combined test. XY, had from 124 to 145 

items. 

While the total number of test items was reasonable for the 

purposes of parameter estimation, the number of examinees required for 

the three-parameter logistic model was barely sufficient to provide 

good estimates of the parameters (Hulin, Lissak, and Drasgow, 1982). 

In those combinations where convergence was not possible with a 40 

stage maximum, the pseudo-chance level, Ci, and occasionally the 

discrimination, ai, were not estimated completely. In particular, the 

iterative procedure did not converge because the sample size was too 

small. Tables 3.2.5 to 3.2.7 show the stages to convergence. In all 

cases, however, the item difficulties, b^, had at least stabilized. 

Difficulty estimates may be adversely affected by poorly estimated 

discrimination and pseudo-chance parameters (Thissen & Wainer, 1982), 

but only the characteristic curve equatings will be directly affected 

by the discrimination and pseudo-chance parameter estimates. 

It was necessary to try various seeds for the random number 

generator before a data set could be had without either an item being 

answered correctly by all of the examinees in a group or missed by all 

of the examinees in a group. Recall that the groups are quite diverse 

and the anchor test, in particular, spans the entire range of 

difficulties. That is, there were instances of some very able 

individuals answering some very easy questions and vice-versa. There 

_were two instances in which difficulty parameters were estimated very 

poorly (outliers) for no apparent reason. The items were not 



Table 3.2.5. Stages Required i or LOGIST Convergence, Group A. 

Anchor 
Length 10% 

Ability Overlap 

30% 50% 

25 26 19 22 

13 30 20 21 

7 40* 23 22 

4 19 22 22 

*Maximum Stages Allowed/Terminated 
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Table 3.2.6. Stages Required for LOGIST Convergence. Group B 

Anchor 
Length 10% 

Ability Overlap 

30% 50% 

25 20 25 20 
13 18 19 20 

7 19 21 19 

4 18 22 21 
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Table* 3.2.7. Stages Required for 
Groups (Concurrent). LOGIST Convergence with Combined 

Anchor 
Length 10% 

Ability Overlap 

30% 50% 

25 40* 37 33 
13 40* 39 39 

7 40* 40* 40* 

4 40* 40* 40* 

*Maximum Stages Allowed/Terminated 
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exceptional in any noticeable way and were estimated without 

difficulty in other groups. Skaggs and Lissitz (1986) report an 

almost identical situation under very similar circumstances. In this 

study, equating was done both with and without the outliers. Results 

with the outliers removed were similar to what might be expected. 

Leaving such extreme outliers in the data set completely distorted the 

equatings. See the chapter on Results for a further discussion of 

outliers., 

3.3 Equating Methods 

Five equating methods were selected for this study: 

1. a simultaneous estimation method 

2. a characteristic curve method 

3. mean and sigma method 

4. orthogonal least squares method 

5. ordinary least squares method. 

This selection includes some of the more common methods of 

equating and some uncommon methods. The rationale for these choices 

is included in the following discussion. 

Simultaneous Estimation Method 

A very popular and relatively easy method of vertical equating 

with an anchor test design is to use a single L06IST run on a combined 

data collection that is cleverly coded. That is, X and Y are the 

tests to be equated on groups A and B, respectively. Let W be the 

anchor test. Consider the total population (A+B) as having taken the 
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test composed of all items (X+Y+W). For the examinees in group A, 

code the items in test Y as unreached and the examinees in group 0 a! 

having not reached the items in test X. The resulting LOGIST run will 

place all of the ability and item parameters on a cormion scale. If «e 

are content to report scores on the ability metric, then the equating 

is complete. Note that if N examinees answer the items in test X and 

M respond to test Y, then N+M will have scores on the anchor test, W. 

The anchor items, therefore, play a major role in the parameter 

estimation procedure. In many studies concerning true or raw score 

equating, the underlying equating is done with this concurrent or 

simultaneous LOGIST process. 

Characteristic Curve Method 

Recall the intuitive appeal of these methods in that they use all 

of the available information from the imposed IRT structure (Hambleton 

& Swaminathan, 1985, p. 210). The approach of Stocking and Lord 

(1983) is to minimize the mean squared differences of true scores. 

More precisely. 

F = ? ( e j s*)2 [3.3.1] 

is minimized with respect to a and 6 where 0* 
A 

number of examinees, and 5* is the transformed 

examinee on the common items. 

To minimize F with respect to a and 

= a6 x + 6, N is the 

true score of the jth 

3, set the partial 

derivatives to zero: 
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9F/ 9a 

9F/96 

= -2N"1 
N 

l 
j = l 

= -2N"1 
N 

l 
j=l 

( r-r Cj) ( uCj/9a)=0 

( S j" ^]) ( ^*/9B)=0 

[3.3.2] 

[3.3.3] 

Note that by - by + 3. That is, by is the transformed i^ item 
i i i 

difficulty from test Y to the scale of test X. ay = a /a . Also, 
* * * Ti yi 

“ ^i(ej) where, P-j (0j) = P-j(Qj> ai» b.j, c^) and the sum is over i. 

Therefore, 

3? j /9a 

* 

35 j/ 3a 

n 3Pi(9i) 
l (»y.-1 

i=l 

n 

i 9b Y. 
l 

o 3 P i (© -j) 
dYi « * ~) 

9 3y 
i 

l 3Pi(9i)/3 byi 
i = l J 

[3.3.4] 

[3.3.5] 

The partial derivatives of P*(0j) from the three-parameter 

logistic model are substitued into equations 3.3.4 and 3.3.5 which are 

then substituted into 3.3.2 and 3.3.3. This system is then solved 

iteratively for a and 3. A PASCAL program was written using the 

Fletcher, Powell (1963) method of solution suggested by Stocking and 

Lord (1983). 

Haebara (1980) and Divigi (1980) have suggested minimizing other 

functions, but the approach of Stocking and Lord has been shown (1983) 

to be at least as accurate as their robust mean and sigma method. 

Divigi (1985) has recently proposed a mathematically simpler method 

that minimizes a chi-square statistic for item bias. It has the 

- intuitive appeal of the Stocking and Lord approach but the function 

being minimized is quadratic and thus the derivative is linear and may 
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be solved directly without rather complicated iterative procedures. 

Preliminary results show that this is a comparable method to the 

characteristic curve procedure. Vale (1986) states, "To date, there 

has been little evidence that any of the complex procedures are 

superior to simple mean and standard deviation transformations." The 

complex procedures to which Vale refers are the characteristic curve 

method of Stocking and Lord and Divigi's chi-square. 

Mean and Sigma Method 

A mean and standard deviation approach to test equating using IRT 

is very similar to the classical linear equating approach in which 

standardized raw scores are equated. In the IRT framework, 

standardized abilities are equated. "While the similarity is clear, 

the linear relationship that exists between ex and ey is a consequence 

of the theory, whereas in the linear equating procedure, this 

relationship is assumed" (Hambleton & Swaminathan, 1985, p. 204). Of 

course, all standardization takes place on the common items. 

Since the item difficulties, bi's, are on the same scale as the 

abilities, ej's, it is possible to use the common item difficulties 

rather than the abilities. The mean and sigma method of vertical 

equating has been extended to more robust procedures as previously 

discussed. Both robust and non-robust methods are popular since they 

are well-known and easy to apply. 

For the purposes of this study, the non-robust method was chosen. 

In particular. 
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where Sby and Sb>( represent the standard deviations of the corwnon item 

difficulties in test Y and X, respectively. 6y and 6X are the means 

of the common item difficulties in tests Y and X, respectively. 

A non-robust procedure was chosen for the following reasons: 

1. simplicity 

2. stocking and Lord found their robust procedure yielded 

results very similar to their characteristic curve method 

3. popularity, for example, CTB/McGraw-Hi11 (1982, p. 95). 

Ordinary Least Squares Method 

The method of ordinary least squares is a simple method for 

determining a line of best fit and is most commonly used outside of 

test equating. However, as pointed out earlier, it is not symmetric 

with respect to the tests. It is soley included as a bench-mark for 

the symmetric methods. 

Orthogonal Least Squares Method 

When the ordinary least squares is dismissed due to an obvious 

lack of symmetry, the solution that seems unassailable is an 

orthogonal least squares or first principal component or major axis 

approach. The theoretical flaw in this approach has been previously 

discussed, but it is clear that any approach to equating imperfect 

tests will fail the test of theory. The test of interest then, is the 

more empirical one. Little interest seems to have been paid to this 
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rather straight-forward method and so it is included in this study, 

theoretical warts and all. 

The major or principal axis of the set of anchor test 

difficulties is determined by the eigenvector corresponding to the 

largest eigenvalue of the (real, symmetric) variance-covariance matrix 

of these difficulties: 

l - 
ax 

xy 

Lx2_ 

xy 
2 
y_ [3.3.8] 

The eigenvector x = 

solutions to the equation: 

or, equivalently. 

and the corresponding eigenvalue, A , are 

1 — = A_x 

l XI x = 0 

[3.3.9] 

[3.3.10] 

This system of equations has a non-trivial solution if, and only if: 

I « 
ax x TV 

xy 

Therefore, 

xy 

a ^ -x. 
y -J 

= o 

A2 A ( ax ■ uy 2 + °y) + < °x A - ox?) = 0 xy ■ 

[3.3.11] 

[3.3.12] 

are the larger eigenvalue is given by: 

A = 1/2 [ a* + o y + ([ + a 2]2 - 4[ a2 a2 - cr x2])172] 
xy- 

[3.3.13] 

Substituting this numerical value back into [3.3.9] permits the 

calculation of 
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xy 
777^ [3.3.14] 

y 

[3.3.15] 

3.4 Method of Evaluation 

In an anchor test design, the common item difficulties are 

theoretically identical except for the mean and unit of measure. That 

is, the standardized common item difficulties are the same for test A 

and test B. However, the ability distributions overlap by 10%, 30%, 

and 50%. The resulting mean differences in ability and difficulty are 

3.30, 2.08, and 1.34, respectively. Since the standard deviations are 

1.0, the true equating constants are known to be: 

a = 
X - a ^ 

xy 
while, 

6 - 5y - a 6, 

a = 1.0, 3 = 3.30 for the 10% overlap in abilities 

a - 1.0, 3 = 2.08 for the 30% overlap in abilities 

a = 1.0, 3 = 1.34 for the 50% overlap in abilities 

The difference between the estimated equating constants and these 

true values is one criterion for judging the accuracy of one equating 

method/anchor length/ability overlap combination as compared to 

another such combination. Of course, such direct comparisons are not 

without problems. For example, it often is the case that the slope 

estimate for one combination is more accurate than for another 

combination while, at the same time, the intercept estimate is less 

accurate. In addition, one of the more popular equating procedures, 

the simultaneous estimation method, does not result in equating 
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constants and, thus, could not be compared with the other methods of 

equating using this criterion. To overcome these limitations, another 

method of comparison was developed. 

Let bix and biy represent the true 

and Y, respectively, for i = l to 60. 

constants, define 

item difficulties on tests X 

Using the true equating 

biX ' abiY + 6 [3.4.1] 

Similarly, let bix and biY be the estimated item difficulties on test 

X and Y, respectively, for i = l to 60. Using the estimated equating 

constants from one of the equating methods, define 

bix = a biY + 6 [3.4.2] 

Now, the composite sets of difficulties {bj} = {biX, b*x] and 

{bj} = {b.jX, b.jX} for j = l to 120 are each on a common scale. However, 

the scales will not be the same. To evaluate the equating method, it 

is reasonable to measure the strength of this unknown linear 

relationship. A correlation coefficient, Y , is suitably symmetric, 

but a linear transform of the correlation is more intuitive. In 

particular, if {zj} and {zj} represent the standardized {bj} and {bj}, 

respectively, then define 

MSE = mean squared error = E((Zj-Zj)2) [3.4.3] 

where E is the expectation. Now, E( (Zj-Zj)2) = E(z2 + z2 - 2zjzj) = 1 

+ 1 - 2Y = 2(1-y ). As the strength of the linear relationship 
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increases, the correlation will 

will decrease. To summarize 

increase and the corresponding MSE 

MSE = 2(1-y) and y =l-(MSE/2) [3.4.4] 

Since MSE is a measure of a difference in z-scores, it is 

possible to have some feeling for its magnitude. Certainly MSE is 

bounded above by 2 and below by 0. [3.4.2] would indicate that MSE is 

composed of both parameter estimation errors and the error in 

estimated equating constants. If, however, the true equating 

constants are used with both the true difficulties and with the 

estimated difficulties, then the MSE would reflect the parameter 

estimation errors alone. That is, let [3.4.2] be replaced by 

biX = abiY + 6 [3.4.5] 

and denote the corresponding MSE by PEE, parameter estimat ion error. 

While there is not a strictly additive relationship, PEE will provide 

a baseline measure for comparable MSEs. That is, a MSE that is nearly 

the same as the corresponding PEE will indicate that the estimated 

equating constants are performing nearly as well as the true equating 

constants. In short, MSE, as defined, yields both an absolute and 

relative measure of the accuracy of estimated equating constants based 

upon the true values of these constants. 

Perhaps the primary reason for using MSE is that it will permit 

the comparison of a simultaneous estimation procedure with both the 

true equating on the true difficulties and with the separate 

estimation procedures that result in estimated equating constants. In 
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particular, a simultaneous estimation procedure such as the concurrent 

LOGl'l method used in this study will have all of the estimated item 

difficulties on a common, but undetermined, scale. This is a 

comparable situation to the equated difficulty estimates in [3.4.2], 

Standardizing within this set of difficulty estimates will yield a 

comparable set of 120 estimated z-scores which may then be compared to 

the standardized true difficulties equated with the true equating 

constants. 

Somewhat similar, but more complex, MSE measures were used by 

Marco (1983), Vale (1986), Petersen, Cook, and Stocking (1983), Skaggs 

and Lissitz (1986), and Lord (1982). In the Skaggs and Lissitz study, 

the equating coefficient estimates were not available since the 

concurrent LOGIST method of equating was used. The MSE was on the 

actual and equated raw scores. In the Vale study, a RMSE was used on 

the actual and equated difficulties. Again, a concurrent equating 

method was employed and, thus, the equating coefficients were 

unavailable. Vale notes that: 

RMSE is an index often used in evaluations of calibration 
and linking. It is useful, however, only if the scale onto 
which the parameters are linked is the same as the true 
scale. In simultaneous calibrations, the scale is defined 
to have a mean of 0 and a variance of 1, the parameters of 
the true distributions used in the simulations. In 
separate calibrations, the scale of one administration is 
typically expressed on the scale of the other. This makes 
RMSE comparisons with true parameters meaningless. RMSE was 
thus not computed for the separate calibration cells (p. 
340). 

The method used in this study avoids this problem by measuring 

correlation. That is, the error is not between estimated and true 
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difficulties. Rather, the error is of the theoretically linear 

relationship between estimated and true difficulties. 

The Petersen, Cook and Stocking study used a weighted MSE on raw 

scores. In this study, the equating coefficients were available from 

a characteristic curve and other equatings, but the data was from the 

Scholastic Aptitude Test (SAT) and, therefore, the true equating 

coefficients were not known. 

Lord (1982) derives a formula for the standard error of a true- 

score equating. He uses this as a criterion in comparing several 

equating methods using real (SAT) data. 

Stocking and Lord (1983) and Divigi (1985) use scatterplots of 

discriminations and difficulties from the separate calibrations or 

estimations and then insert the equating line. Better equatings will 

nearly bisect the point set. See Appendix A for similar scatterplots 

of difficulties. 

Kolen (1984) creates a cross-validation statistic for evaluating 

and equating. He selects a sample of examinees and performs the 

equatings, then he selects a second distinct cross-validation sample 

and constructs a "mean-squared error in the proportion-correct score 

metric" (p. 33). 

With real data, especially, it has been common to see equatings 

evaluated by comparing the equating to that of a well-established 

procedure, e.g. equipercentile in the horizontal case or concurrent 

LOGIST in the vertical case. Scale drift is another technique used 

with real data. An equating is judged to have drifted little if the 

direct equating of test A to B is similar to the results of equating A 
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to Tj and Tj to T2 and so on until Tn is equated with test B. That 

is, if the chain of equatings•gives a result like the direct equating 

then there is little scale drift and the equating is judged accurate 

in this sense. 

As a final measure with real data, a test may be equated with 

itself. An acceptable equating method should produce the identity 

transform when random sample of examinees is equated to another random 

sample of examinees all having taken the same test. Since equating is 

a lengthy and costly process, there is usually only one replication in 

this and other approaches to finding a suitable criterion. ' Phillips 

(1985) has shown that single-replication error estimates may provide 

misleading assessments of the errors associated with equating a test 

to itself" (p. 59). 

Since all equatings are theoretically flawed, empirical results 

must be the deciding factor. Or, as Divigi states, "There are not 

theoretical criteria for choosing among different methods, or for 

evaluating the quality of a particular method" (1985, p. 415). 

Many studies use either real data or a concurrent equating method 

or both. Therefore, it is usually the case that both the true 

equating constants and the estimated equating constants are not 

available for comparison. It is also rather common to not report 

scores on the ability metric and thus to require some sort of true- 

score or raw-score equating. By using the MSE statistic described, 

this study permits the concurrent equating method to be compared to 

other methods that are in turn comparable to the true constants. 



CHAPTER IV 

RESULTS 

4.1 Introduction 

The criterion used in this study to judge the accuracy of an 

equating was defined by equation 3.4.3: 

MSE = E((Zj-Zj)2) 

Recall that the Zj were the standard scores for the set of true item 

difficulties from both tests X and Y put onto a common scale using the 

true equating and the Zj were the standard scores for the set of 

estimated item difficulties from both tests X and Y put onto a common 

scale using the estimated equating from one of the equating methods 

investigated. The Zj could also be the standard scores for the set of 

estimated item difficulties from the simultaneous estimation 

procedure. It was shown that MSE is a linear transformation of the 

correlation, Y , and is given by equation 3.4.4: 

MSE = 2(1-Y) or Y = 1-(MSE/2) 

Still another way to conceptualize MSE is to note that the set of 

estimated and equated item difficulties, {Bj}, will be on a common 

scale and so will the set of true and equated item difficulties, {bj}. 

Except for measurement error, these equated sets of estimated and true 

47 
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item difficulties will differ only in origin and unit of 

Therefore, the linear relationship between the sets may be may be found by 

measure. 

equating standard scores: 

or b.: = abi + b 

where, a =ab -/ab . and b=b • - ab^. 
J J J J 

The MSE may thus be thought of as a lack-of-fit measure to this line. 

The parameter estimation error, PEE, was the same MSE measure as 

above with one exception: the estimated equating used with the 

estimated item difficulties was replaced by the true equating. The 

result is a somewhat better measure of the error component due to 

parameter estimation procedures since PEE does not contain the 

equating error component. Equating methods that produce MSE criterion 

measures nearer the corresponding PEE will be judged more accurate in 

an absolute sense as opposed to being simply more accurate than 

another equating method. 

Section 4.2 includes comparisons of equating methods for a fixed 

anchor test length within a particular overlap of ability and 

comparisons of anchor test length for a fixed equating method within a 

particular overlap of ability. The former comparisons are reasonable 

since MSE allows separate and simultaneous equating procedures an 

equal opportunity to match the true equating. The latter comparisons 
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are reasonable because the anchor test items are nested, uniformly 

distributed, and all span the item difficulties of the combined tests. 

Section 4.3 includes comparisons of anchor test length for a 

fixed overlap of ability within a particular equating method and 

comparisons of ability overlap for a fixed anchor test length within a 

particular equating method. Section 4.4 includes comparisons of 

equating methods for a fixed overlap of ability within a particular 

anchor test length and comparisons of ability overlap for a fixed 

equating method within a particular anchor test length. Both sections 

4.3 and 4.4 present a problem not encountered in section 4.2 where all 

comparisons were done within a single ability overlap. The problem is 

due to the increased variability of the parameter estimates in 

instances where the differences in mean ability (or difficulty) are 

large. The greater variability of difficulty estimates, in 

particular, is attributable to both the minimal number of examinees 

and the full difficulty span of the anchor tests which require, in the 

most extreme cases, examinees with a mean ability of F to respond to 

items with difficulties of 0 + 4.05. Such extreme mismatches of 

ability and item difficulty will cause the least appropriate items to 

have difficulty estimates that approach outlier status. The increased 

variability of the item difficulty estimates impacts in turn upon the 

correlation of estimated and true item difficulties and, thus, upon 

the MSE. 

There are many possible solutions to the problem of poorly 

- estimated item parameters. The fallible items may be rewritten, or 
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replaced, the sample of examinees may be increased or broadened, new 

items may be added, or any combination of adjustments made. If, 

however, the test is beyond the development stage and the final data 

collected, then the only choices are to either remove or not remove 

the offending items. In this study, item number 67 on test Y in the 

10% ability overlap with anchor test lengths of 13 and 25 was judged 

to have been extreme and removed from further computations. In 

addition, item number 82 on test Y in the 10% ability overlap with 

anchor test length 25 was also removed. These two items, 67 and 82, 

were anchor items and hence identical to items whose parameters were 

more accurately estimated within the more appropriate group. Also, 

rather surprisingly, item number 67 in the 10% ability overlap on test 

Y was reasonably estimated in the anchor test with 7 items. As 

previously mentioned, Skaggs and Lissitz (1986) reported a very 

similar situation in which seemingly innocent items achieved outlier 

status. 

Since the difficulties of the extreme items discussed above were 

estimated to be more than 100, there was no thought of retaining the 

estimates for further calculations. In general, however, the decision 

to omit anchor items with less extreme parameter estimates is not 

easy. To be more specific: 

1. In an equating situation with a short anchor test, each data 

point has proportionally greater importance than it might 

have were there more anchor items. 
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2. With as few as 4 anchor items, it is not always clear which 

item is the outlier. ‘Figure A.4 illustrates this point. 

3. The process of judging outlier status is arbitrary by its 

very nature if there is sampling or measurement error 

present. 

4. As reported, the outlier status of an item may change when 

only the number of items in the anchor test is altered. 

For these reasons, anchor test items whose parameter estimates were 

only moderately outlying were retained. 

Returning to the discussion of MSE, recall that the increased 

variability of the estimated anchor item difficulties will affect the 

correlation and MSE. However, a decrease in correlation, or 

attenuation due to restriction of range (Allen & Yen, 1979, p. 34) may 

be compensated for by using the appropriate attenuation formula and 

then the corrected correlation may be used to compute the MSE that 

might be expected were the variability unchanged. In particular, the 

corrected correlation may be obtained from: 

pu = prk2/(1+ prk2_ pr) [4.1.1] 

where p u is the correlation with the unrestricted variable, p r is 

the correlation with the restricted variable, and k is the ratio of 

unrestricted standard deviation of the variable to the restricted 

standard deviation (Hopkins, et al., 1987, p. 86). 

It is possible to shorten the MSE correction process described 

above by combining Equations 3.4.4 and 4.1.1: 
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or. 

(l-MSEu/2)2 = 

1+MSE2/4-MSEu 

(l-MSEr/2)2k2 

l*(l-MSEr/2)2(k2-l) 

k2(l+MSE2/4 - MSEr) 

l+(l+WSE2/4-MSEr){k2-1) 

If the relatively small second-order MSEr terms are dropped, the 

result is 

k2(l-MSE_) MSE 
MSEU i 1 - r = r 

l+(l-MSEr)(k2-l) k2+MSEf(l-k2) 

But, the second term of the denominator is also very small when 

compared to the first term and, thus, 

MSEr 

MSEu i k2 [4.1.2] 

This approximation has proven accurate for numbers in the range of 

this study and will be used in sections 4.3 and 4.4. 

To complete the MSE or correlation correction, it is only 

necessary to observe that the ratio of standard deviations will be 

equal to the ratio of spans if a variable is uniformly distributed. 

This will, again, be an approximation in the case of estimated item 

difficulty parameters since the estimated distribution is only 

approximately uniform. 
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4.2 ArLC.hor Length by Equating Mpthnri 

f-2-1 Ten Percent Overlap in Ability 

Table 4.2.1 shows the mean squared error, MSE, and the parameter 

estimation error, PEE, for the population or groups of examinees with 

a 10% overlap in ability distributions. Note that two outliers (items 

number 67 and 82) were removed in the 25 item anchor test and one 

outlier (item number 67) removed in the 13 item anchor test. Table 

4.2.2 contains the anchor item difficulty estimates within the 10% 

overlap in abilities. First, results will be discussed for a fixed 

anchor test length. 

With the 25 item anchor test, the MSEs for all of the separate 

equating methods were acceptably accurate in the sense that the MSEs 

were very close to the corresponding PEE. That is, the largest of the 

MSEs for the separate equating procedures was .0076 while the PEE at 

this level was .0067. This represents an increase of approximately 

13% of the PEE for the MSE of the mean and sigma equating method. The 

MSE of the simultaneous estimation procedure, however, was .0100 which 

represents a 49% increase over the PEE. Arbitrarily, increases larger 

than 25% were judged unacceptable. 

With the 13 item anchor test, the results were similar. The 

largest of the MSEs for the separate equating procedures was .0068 

which represents an increase of only 5% over the PEE of .0065. The 

MSE of the simultaneous estimation procedure was .0155 and this was 

138% increase over the corresponding PEE. Certainly, the separate 

.procedures performed better than the simultaneous estimation method 
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Table 4. .2.1. Mean Squared Error for Equating •• >thod Versus Anchor 
Length in Populations with a 10% Ability Overlap 

Anchor 
Length 

Con¬ 
current 

Charac¬ 
teristic 
Curve 

Mean 
and 
Sigma 

Orthogonal Ordinary 
Least Least 
Squares Squares 

Parameter 
Estimation 
Error 

25(23) .0100 .0062 .0076 .0071 .0064 .0067 

13(12) .0155 .0068 .0057 .0062 .0067 .0065 
7 .0193 .0061 .0090 .0102 .0105 .0065 

4 .0256 .0066 .0122 .0113 .0166 .0066 
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for this most vertical equating situation when the anchor tests were 

of a somewhat traditional length. 

With the 7 item anchor test, only the characteristic curve 

equating could be judged accurate. The mean and sigma method was 

next best but had a MSE of .0090 which represents an increase of 38% 

over the corresponding PEE of .0065. The simultaneous estimation 

procedure was the least accurate of all methods being off by 197% of 

the PEE. 

With the 4 item anchor test, again, only the characteristic curve 

equating could be judged accurate. The method of orthogonal least 

squares was next with an increase of 71% over the PEE and the 

simultaneous estimation procedure was again least accurate with a MSE 

of .0256 or an increase of 288% of the PEE. 

With the shorter anchor tests, the only acceptably accurate 

method of test equating was the characteristic curve method. The 

least accurate method in this extremely vertical equating process was 

the simultaneous estimation procedure. Furthermore, the percentage 

increase in error over the PEE was larger with the shorter anchor 

tests while the most accurate equating method, the characteristic 

curve method, had uniformly small MSEs over all anchor test lengths. 

Tables 4.2.3-4.2.6 contain the estimated equating constants for 

the four separate equating methods. It is interesting to note that 

the characteristic curve method consistently underestimated both of 

the equating constants for all anchor test lengths. 
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Table 4.2.3. 
Equating Constants in the lot Ability Overlap 

with a 25 Item Anchor Test, « = 1.0, 3 = 3.30 M 

Equating Method 

Constant 
Characteristic 

Curve 
Mean and 

Sigma 

Orthogonal 
Least 

Squares 

Ordinary 
Least 

Squares 

a 0.8708 1.2624 0.7269 0.9149 

a - a 0.1292 -0.2624 0.2731 0.0851 

6 3.1708 4.7699 3.5780 3.9965 

3 - 3 0.1292 -1.4699 -0.2780 -0.6965 
3 - 6 



58 

Table 4.2.4 

Constant 

a - a 

B 

Estimated Equating Constants 
with a 13 Item Anchor Test, 

in the 10% Ability Overlap 
a = 1.0, 6= 3.30 

Characteristic 
Curve 

Equating 

Mean and 
Sigma 

Method 
Orthogonal 

Least 
Squares 

Ordinary 
Least 

Squares 

0.7162 0.9276 1.1030 0.7110 

0.2838 0.0724 -1.1030 0.2890 

3.0162 3.6639 4.0660 3.1675 

0.2838 -0.3639 -0.7660 0.1325 B - B 
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Table 4.2.5. Estimated Equating Constants 
with a 7 Item Anchor Test, a 

in the 10% Ability OverlaD 
= 1.0, 6 = 3.30 

Constant 

a 

a - a 

3 

Characterise c 
Curve 

Equating 

Mean and 
Sigma 

Method 
Orthogonal 

Least 
Squares 

Ordinary 
Least 

Squares 

0.8179 0.7424 1.3903 0.6690 

0.1821 0.2576 -0.3903 0.3310 

3.1179 2.6303 3.8705 2.4897 

0.1821 0.6697 -0.5705 0.8103 
3 - 3 
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Table 4.2.6. Estimated Equating Constants 
with a 4 Item Anchor Test, 

in the 10% Ability Overlao 
a = 1.0, 0 = 3.30 

Characteristic 
Constant Curve 

0.7414 

0.2586 

3.0414 

0.2586 

Equating Method 

Mean and 
Sigma 

Orthogonal 
Least 

Squares 

Ordinary 
Least 

Squares 

0.6992 1.5225 0.5904 

0.3008 -0.5225 0.4096 

2.3813 4.1514 2.1474 

0.9187 -0.8514 1.1526 
8 - 0 
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Note also, that the parameter estimation error, PEE, in Table 4.2.1 is 

nearly uniform across anchor test lengths. PEE is simply the MSE 

calculation using the true equating constants and is a measure of the 

parameter estimation error. In each of the three populations, 10%, 

30%, and 50%, the anchor tests were nested and had identical spans and 

distributions. The purpose of this structure was to attempt to 

control these estimation errors within populations. The uniformity of 

the PEEs confirms the success of the design and allows the comparisons 

within each population or ability distribution overlap. 

As a final observation, note the apparent reversal of MSEs with 

the mean and sigma equating method for the 25 and 13 item anchor 

tests. This pattern is unexpected since the errors should tend to get 

smaller with the larger anchor test lengths. The pattern with the 

simultanious estimation procedure and ordinary least squares method 

was as expected. The method of orthogonal least squares also seems to 

have the same reversal as the mean and sigma method. A possible 

explanation for this behavior can be had from Appendix A, Figures A.l, 

A.2, A.3, and A.5. Notice that the first item with a potential for 

outlier status is item number 72 in Table 4.2.2. This item has an 

estimated difficulty of nearly 7 in the anchor test of length 13 

(actually, 12). Notice further, that the difficulty estimate of item 

72 increases to more than 11 when estimated in the anchor test of 

length 25 (actually, 23). It appears to be the case that the mean and 

sigma and orthogonal least squares methods are rather sensitive to the 

presence of outliers. By way of contrast, the characteristic curve 
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equating method would seem rather robust against such outlying values 

and the simultaneous estimation method perhaps the least ini luenced by 

outliers. 

Now, consider the results for each equating method across anchor 

test length. The simultaneous estimation or concurrent procedure was 

inaccurate at all anchor test lengths but, least accurate with the 

shortest anchors. The characteristic curve method was acceptably 

accurate at all anchor test lengths and the errors were relatively 

constant. The mean and sigma method performed in a very similar 

manner to the orthogonal least squares and ordinary least squares 

methods in that the errors were acceptably small for the two longer 

anchor test lengths but, the errors were too large to be judged 

acceptable for the two shorter anchor test lengths. 

4-2-2 Thirty Percent Overlap in Abilities 

Table 4.2.7 contains the MSEs and PEEs for the population or 

examinee groups with a 30% ability overlap. No outliers were removed 

from this data set. Table 4.2.8 contains the anchor item difficulty 

estimates for this population. Results will be first discussed for a 

fixed anchor test length. 

With the 25 item anchor test, the MSE was smallest for the 

characteristic curve method, but acceptabley small for the method of 

ordinary least squares as well. The MSE for the simultaneous 
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Table 4.2.7. Mean Squared Error for Equating h thod Versus Anchor 
Length in Populations with a 30% Ability Overlap 

Anchor 
Length 

Con¬ 
current 

Charac¬ 
teristic 
Curve 

Mean 
and 
Sigma 

Orthogonal 
Least 
Squares 

Ordinary 
Least 
Squares 

Parameter 
Estimation 
Error 

25 .0159 .0118 .0181 .0178 .0130 .0120 

13 .0176 .0122 .0214 .0230 .0144 .0118 

7 .0232 .0162 .0363 .0399 .0241 .0117 

4 .0367 .0145 .0239 .0174 .0222 .0119 
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estimation precede was the next best, but judged unacceptable 

5 °W1"9 d 33% ,nCrea$e 0Ver the corresPonding PEE. The methods of 
orthogonal least snn^roc 

squares and mean and sigma were both in the 50% 
increase range. 

With the 13 item anchor test, the results were similar The 

Characteristic curve equating method was the most accurate but. the 

ordinary least squares procedure was also judged acceptable with an 

increase in error over the corresponding PEE of 22%. None of the 

remaining three equating procedures was acceptably accurate. 

With the 7 item anchor test, all the methods were unacceptable. 

The best method was the characteristic curve method, once again. 

However, this time the MSE of .0162 represented an increase of 37% 

over the PEE of .0117. The largest errors were with the mean and 

sigma and orthogonal least squares methods. In both of these cases 

the percentage of increase in MSE over PEE was in excess of 200%. To 

explore this more fully, graphs with the true equating line and each 

of the estimated equating lines were constructed for the anchor test 

of length seven in the 30% ability overlap. These appear as Figures 

4.2.1-4.2.4. The slopes and intercepts are from Table 4.2.9. The 

simultaneous estimation or concurrent procedure could not be included 

since it does not result in estimated equating constants. In Figure 

4.2.1, the characteristic curve equating line is seen to have 

responded to the presence of the outlier, item number 72 (Table 

4.2.8). In Figure 4.2.2, the mean and sigma equating line is seen to 

have been pulled far from the true equating line. In Figure 4.2.3, 
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Table 4.2.9. Estimated Equating Constants 
with a 25 Item Anchor Test, 

in the 30% Ability 0»-rlap 
«= 1.0, 6= 2.08 

Equating Method 

Constant 
Characterise c 

Curve 
Mean and 

Sigma 

Orthogonal 
Least 

Squares 

Ordinary 
Least 

Squares 

a 0.9670 1.4815 0.6055 1.1422 
A 

a - a 0.0330 -0.4815 0.3945 -0.1422 

6 2.0470 3.0017 2.0030 2.6149 
A 

6 - 6 0.0330 -0.9217 0.0770 -0.5349 6 - 8 
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the major axis or equating line from the method of orthogonal least 

squares is seen to have been pushed from the true equating line in an 

effort to minimize the sum of perpendicular or orthogonal distances 

from the outlier. In Figure 4.2.4, the OLS equating line has 

attempted to minimize the sum of vertical distances to the outlier. 

It is in a position that would be between the characteristic curve 

equating line and the mean and sigma equating line. Clearly, the mean 

and sigma equating was more affected by the presence of item number 72 

than the OLS or characteristic curve equatings. As for the concurrent 

estimation procedure, it is unique in that it is the only one of the 

equatings studied in which the MSE does not decrease in going from the 

7 item anchor test to the 4 item anchor test. That is, the presence 

of the outlier is not noticable from the MSEs for the simultaneous 

estimation procedure. In addition, none of the MSEs for the 

simultaneous estimation method are at an acceptable level when 

compared with the corresponding PEEs. This was also the case in the 

10% ability overlap. 

With the 4 item anchor test, only the characteristic curve 

equating method provided an acceptably accurate equating of test 

scores with a MSE of .0145 which was a 22% increase over the PEE 

of .0119. 

In summary, only the characteristic curve equating method and the 

method of ordinary least squares provided acceptably accurate 

equatings with the longer anchor tests of 25 and 13 items. The best 

'equating procedure with the shorter anchor tests (7 and 4 items) was 
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the characteristic curve method. However, this was only judged 

acceptable with the 4 item anchor test due to the presence of an 

exceptional value in the 7 item anchor test. 

Tables 4.2.9-4.2.12 contain the estimated equating constants for 

the four separate equating methods. It is interesting to note that 

the characteristic curve equating method overestimated both of the 

equating constants for all but the 25 item anchor test. Again, the 

PEE in Table 4.2.7 is nearly uniform across anchor test lengths as 

desired. Finally, note that the outlier in this data set affects the 

equating methods in the same manner that the outlier did in the 

previous data set and, hence, tends to confirm the conjectures 

concerning the impact of outlying values on the various equating 

methods. 

Considering the results for each equating procedure across anchor 

test length, the simultaneous estimation method was, again, 

unacceptably accurate at all anchor test lengths and least accurate 

with the shortest anchors. The characteristic curve method was 

acceptable at all anchor test lengths except 7 where, even though the 

most accurate of the methods studied, the presence of the outlying 

value was sufficient to produce a MSE that was 38% more than the 

corresponding PEE. The mean and sigma and orthogonal least squares 

methods were similar in that neither produced an acceptably accurate 

equating at any anchor length and the outlier with the 7 item anchor 

test caused a reversal of the MSEs for the 4 and 7 item anchor tests. 
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luule 4.2.10. Estimated Equating Constants in the 30% Ability Overlap 
with a 13 Item Anchor Test, a = 1.0, B= 2.08 

Constant 
Characteristic 

Curve 

Equating 

Mean and 
Sigma 

Method 
Orthogonal 

Least 
Squares 

Ordinary 
Least 

Squares 

a 1.0569 1.6701 0.5225 1.2859 

a - a -0.0569 -0.6701 0.4775 -0.2859 

& 2.1369 3.0946 1.9294 2.7045 

e - 6 -0.0569 -1.0146 0.1506 -0.6245 
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Table 4.2.11. Estimated Equating Constants in the 30% Ability Overlap 
with a 7 Item Anchor Test, a = l.o, 3 = 3.30 

Constant 

a - a 

iaracteristic 
Curve 

Equating 

Mean and 
Sigma 

Method 
Orthogonal 

Least 
Squares 

Ordinary 
Least 

Squares 

1.3511 2.4178 0.3391 1.8565 

-0.3511 -1.4178 0.6609 -0.8565 

2.4311 3.9096 0.0412 -1.3244 

-0.3511 -1.8296 0.0412 -1.3244 6 - 6 
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Table 4.2.12. Estimated Equating Constants 
with a 4 Item Anchor Test, 

in the 30% Ability Overlap 
a = 1.0, $ = 2.08 

Constant 
Characteristic 

Curve 

Equating 

Mean and 
Sigma 

Method 
Orthogonal 

Least 
Squares 

Ordinary 
Least 

Squares 

a 1.2024 1.3992 0.7050 1.3425 
A 

ot - a -0.2024 -0.3992 0.2950 -0.3425 

e 2.2824 2.2150 1.5728 2.1625 
A 

6 - 8 -0.2024 -0.1350 0.5072 -0.0825 6 - 8 
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The OLS equating method was acceptably accurate with the two longer 

anchors only and suffered the same reversal in response to the 

presence of the outlier as the mean and sigma and orthogonal least 

squares methods of equating test scores. 

4.2.3 Fifty Percent Overlap in Abilities 

Table 4.2.13 shows the MSEs and PEEs for the 50% overlap in 

abilities. No outliers were removed from this data set. Table 4.2.14 

contains the anchor item difficulty estimates for this population. 

Results will again first be discussed for the fixed anchor test length. 

With the 25 item anchor test, all of the equating methods studied 

were acceptably accurate. 

With the 13 item anchor test, all of the equating methods were 

again acceptably accurate. It would appear that in this least 

vertical situation and with reasonably long anchor tests, the choice 

of equating method is less than critical. 

With the 7 item anchor test, the only acceptably accurate 

equating methods were the simultaneous estimation and characteristic 

curve procedures. Since the concurrent or simultaneous method faired 

so poorly at all anchor test lengths in the more vertical populations, 

it must be the case that this method is rather sensitive to the mean 

ability differences in the groups under investigation. The 

characteristic curve method of test equating did not show this 

tendency at all. 
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Table 4.2.13. Mean Squared Error for Equating Method Versus Anchor 
Length in Populations with a 50% Ability Overlap 

Anchor 
Length 

Con¬ 
current 

Charac¬ 
teristic 
Curve 

Mean 
and 
Sigma 

Orthogonal 
Least 
Squares 

Ordinary 
Least 
Squares 

Parameter 
Estimatio 
Error 

25 .0378 .0372 .0345 .0346 .0367 .0368 

13 .0372 .0394 .0353 .0355 .0361 .0398 

7 .0381 .0388 .0516 .0656 .0478 .0387 

4 .0601 .0389 .0738 .1186 .0730 .0394 
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With the 4 item anchor test, the only acceptably accurate 

equating procedure was the characteristic curve approach. With t!,e 

simultaneous estimation method, the MSE was 53% larger than the 

corresponding PEE. Since the MSEs did consistently increase with 

decreasing anchor test length for the simultaneous estimation method, 

it must be the case that this method is also affected by the number of 

items on the anchor test. Again, the characteristic curve equating 

method did not show this tendency. 

Tables 4.2.15-4.2.18 contain the estimated equating constants for 

the four separate equating methods. In this population, the 

characteristic curve estimated equating constants behaved precisely as 

in the 30% overlap in ability population. That is, the estimates of 

both constants were consistently greater than the true values for all 

but the 25 item anchor test. 

Considering the results for each equating method across anchor 

test length, the simultaneous estimation procedure was acceptably 

accurate for all but the 4 item anchor test. The characteristic curve 

equating method was acceptably accurate at all anchor test lengths. 

The mean and sigma and orthogonal least squares were again similar in 

that the equatings were acceptably accurate for the two longer anchor 

tests and inaccurate for the shorter test lengths. The method of 

ordinary least squares was nearly the same as the mean and sigma and 

orthogonal least squares but, the MSE for the 7 item anchor test was 

marginally (24% increase over the PEE) acceptable. 
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Table 4.2.15. Estimated Equating Constants in the 50% Ability Overlap 
with a 25 Item Anchor Test, a= l.o, 3 = 1.34 P 

Equating Method 

Constant 
Characteristic 

Curve 
Mean and 

Sigma 

Orthogonal 
Least 

Squares 

Ordinary 
Least 

Squares 

a 0.9598 0.9734 1.0317 0.8405 

a - a 0.0402 0.0266 -0.0317 0.1595 

6 1.2998 1.3768 1.4277 1.2609 
A 

6 - 3 0.0402 -0.0368 -0.0877 0.0791 6 - 3 
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Table 4.2.16. Estimated Equating Constants 
with a 13 Item Anchor Test, 

in the 50% 
a = 1.0, 6 

Ability Overlap 
= 1.34 

Constant 
Characteristic 

Curve 

Equating 

Mean and 
Sigma 

i Method 
Orthogonal 

Least 
Squares 

Ordinary 
Least 

Squares 

a 1.0595 1.0528 0.9416 0.9001 

a - a -0.0595 -0.0528 0.0584 0.0999 

B 1.3995 1.5245 1.4236 1.3860 

e - e -0.0595 -0.1845 -0.0836 -0.0460 
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Table 4.2.17. Estimated Equating Constants in the 50% Ability Overlap 
with a 7 Item Anchor Test, a= 1.0, 6= 1.34 

Equating Method 

Constant 
Characteristic 

Curve 
Mean and 

Sigma 

Orthogonal 
Least 

Squares 

Ordinary 
Least 

Squares 

a 1.2059 1.5540 0.6233 1.4424 

a - a -0.2059 -0.5540 0.3767 -0.4424 

e 1.5459 1.7619 0.9774 1.6678 

6 - B -0.2059 -0.4219 0.3626 -0.3278 
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Table 4.2.18. Estimated Equating Constants in the 50% Ability Overlao 
with a 4 Item Anchor Test, a= 1.0, q= 1.34 

Equating Method 

Constant 
Characteristic 

Curve 
Mean and 

Sigma 

Orthogonal 
Least 

Squares 

Ordinary 
Least 

Squares 

a 1.0622 1.3957 0.7045 1.3260 

a - a -0.0622 -0.3957 0.2955 -0.3260 

6 1.4022 1.3212 0.7165 1.2603 

B - B -0.0622 0.0188 0.6235 0.0797 B - 6 
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4.3 Anchor Length by Ability Overlap 

4.3.1 Concurrent 

Table 4.3.1 contains the MSEs for the concurrent or simultaneous 

estimation equating method. At first glance, the pattern seems 

reversed in that larger errors might well be expected with the more 

vertical equating situation at 10% ability overlap than with either of 

the less vertical, 30% or 50%, ability overlaps. However, recall that 

in Section 4.1 it was pointed out that in order to compare MSEs across 

differing ability overlaps it will be necessary to correct for 

attenuation since the MSE is simply a linear transformation of the 

correlation between the entire set of equated true anchor item 

difficulties and the entire set of estimated equated anchor item 

difficulties. Equation 4.1.2 supplies the approximation of the 
MSEr 

corrected or predicted MSE, MSEU ; . Recall that k may, in 

k^ 
turn, be approximated by the ratio of spans. The subscripts u 

and r indicate unrestricted (larger) and restricted (smaller) 

variances, respectively. 

To illustrate, calculate the estimated anchor item difficulty 

spans in the case of 25 item anchor test. 

10% ability overlap: 11 .2970-(-7.6860)=18.9830 

30% ability overlap: 6.8180-(-3.5960)=10.4140 

50% ability overlap: 2.1160-(-3.6180)- 5.7340 
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Table 4.3.1. Mean Squared Error for Anchor Length Verses Ability 
Overlap with a Concurrent Equating 

Anchor Length 10% 

25 .0100 

13 .0155 

0193 

0256 

Ability Overlap 
30% 50% 

0159 .0378 

0176 .0372 

0232 .0381 

0367 .0601 4 
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Use the true equating constants to adjust the spans for the PEE 

correction: 

10% ability overlap: 18.9830-3.30=15.683 

30% ability overlap: 10.4140-2.08= 8.334 

50% ability overlap: 5.7340-1.34= 4.394 

The ratios of these spans approximate k: 

15.683/8.334 = 1.8818 to predict MSE at 10% from 30% ability overlap 

8.334/4.394 = 1.8967 to predict MSE at 30% from 50% ability overlap 

Therefore, the predicted MSEs are: 

MSE30% .0120 
predicted MSE10% = - = _ = .0034 

k2 1.88182 

MSE50% = -0368 = .0102 
predicted MSE3q<£ = - - 

k2 1.89672 

While the predicted MSE of .0102 compares rather favorably to the 

actual MSE of .0120 at this level, the .0034 prediction is rather far 

from the actual MSE of .0067. To account for this imprecision, notice 

that the estimated difficulty of item 72 in test Y for the 10% ability 

overlap population is 11.2970. The decision was made to retain such 

items but, if the calculations were done with this one item removed, 

the result would be a span of 14.1930 - 3.30 = 10.893 for a k of 

10.893/8.334 = 1.3071. The resulting prediction would be: 

predicted MSE^ = — = .0070 

1.30712 

This predicted .0070 compares favorably with the actual .0067. 
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Very similar results may be obtained with other combinations of 

equating constants and anchor lengths. The results with the true 

constants and the 13 item anchor test, for example, predict a MSE 

of .0068 at the 10% ability overlap while the actual MSE is .0065 and 

a predicted MSE of .0120 at the 30% ability overlap compared to an 

actual MSE of .0118. 

While it is certainly the case that the shorter anchor tests and 

less accurate equating methods do not yield such close predictions, it 

is nontheless rather clear that, once corrected for, MSEs at 

different ability overlaps are reasonably uniform. This is really not 

too surprising since the difficulty involved with the most vertical 

equating is parameter estimation. The correction to the MSE brings 

these estimates to a more uniform variability. Therefore, with the 

correction for attenuation in place, there will be little or no 

difference in PEEs due to mean ability differences. It is, however, 

the case that different equating procedures are affected in different 

ways by these mean ability differences. 

Returning to the concurrent or simultaneous estimation procedure. 

Table 4.3.1 indicates that this method of equating has increasing MSEs 

for decreasing numbers of anchor test items and, thus, simultaneous 

estimation will not be as accurate with the shortest anchor test 

lengths. In addition, the actual MSEs were greater than the predicted 

MSEs when corrected for attenuation. This would indicate that the 

method of simultaneous estimation does not equate scores as accurately 

as desired when there are large differences in the mean ability levels 



88 

of the groups. For example, the predicted MSEs at the 10% and 30% 

ability overlaps with an anchor test of length 25 are .0045 and .0105, 

respectively. The actual corresponding MSEs are .0100 and .0159. For 

the 13 item anchor test, the predicted MSEs are .0101 and .0112 for 

the 10% and 30% ability overlaps, respectively, while the correspond¬ 

ing actual MSEs are .0155 and .0176. 

The method of concurrent or simultaneous estimation gave 

acceptably accurate equatings only in the population with a 50% 

overlap in abilities and, even there, not with the 4 item anchor test. 

Note that L0GIST only converged in the less vertical situations and 

with the longer anchor tests (Table 3.2.7) and required a minimum of 

33 stages overall. In the separate parameter estimates, L0GIST only 

failed to converge once and never required more than 30 stages when it 

did converge (Tables 3.2.5 and 3.2.6). 

The concurrent estimation procedure was relatively immune to the 

influence of outlying values in the sense that the MSEs showed a 

consistent (albeit inaccurate) pattern whether an outlier was present 

or not. 

4.3.2 Characteristic Curve 

Table 4.3.2 contains the MSEs for the characteristic curve 

equating procedure. With one exception, the equatings were all 

acceptably accurate and predictable when corrected for attenuation. 
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Table 4.3.2. Mean SqUared Err°r for Anchor Length verses 
AtnlUy Overlap with a Characteristic Curve Equating 

Anchor 
Length 

Ability Overlap 
10% 30% 5o% 

25 •0062 .0118 .0372 

13 .0068 .0122 .0394 

7 

4 

•0061 .0162 .0388 

.0066 .0145 .0389 4 
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The exception was in the case of the 7 item anchor test in the 30% 

ability overlap population. The outlying value did have an impact on 

this procedure in this case but. it was less of an inpact than with 

the remaining separate equating procedures. The predicability would 

indicate that this approach to test equating is relatively robust to 

differences in mean ability and may be a preferred method in the most 

vertical equating situations. 

In addition, the MSEs were relatively uniform over the different 

lengths of anchor test. In every other equating procedure studied, 

the expected pattern was seen: an increase in MSE as the number of 

anchor items decreased. The characteristic curve method was the only 

method of those studied that could be considered for use with 

exceptionally short anchor tests. 

4.3.3 Mean and Sigma 

Table 4.3.3 contains the MSEs for the mean and sigma equating 

method. Were it not for the 30% ability overlap population, the 

results would be clear: with longer anchor tests (25 and 13 items) 

the mean and sigma method was accurate but, with the shorter anchor 

tests (7 and 4 items) the method was not accurate. The 30% overlap in 

abilities was unique, however, in that it retained a relatively 

extreme outlier. As previously discussed, the mean and sigma method 

is sensitive to these outlying values and this is no doubt the reason 

for the exception. 
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Table 4.3.3. Mean Squared Error for Anchor Length verses 
Ability Overlap with a Mean and Sigma Equating 

Anchor 
Length 10% 

Ability Overlap 
30% 50% 

25 .0076 .0181 .0345 

13 .0057 .0214 .0353 

7 .0090 .0363 .0516 

4 .0122 .0239 .0738 
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When the MSEs were predicted using the formula to correct for 

attenuation, the results were mixed but, the actual MSEs we. for the 

most part larger than the corresponding predicted MSEs. That is, the 

method of mean and sigma test equating does seem to be affected by 

differing mean ability differences, but not to the extent of the 

simultaneous estimation procedures. This method is perhaps most 

affected by the presence or absence of outliers and the length of the 

anchor test. 

4.3.4. Orthogonal Least Squares 

Table 4.3.4 contains the MSEs for the orthogonal least squares 

equating method. The results for this relatively unused approach to 

test equating are nearly identical to the results for the mean and 

sigma method, one of the most popular equating methods. Both methods 

are sensitive to outliers, even though they tend to react or 

compensate differently. Both methods were acceptably accurate with 

the longer anchor tests and inaccurate with the shorter anchor tests 

when outliers were not present. Again, the major axis approach had 

MSEs that were only somewhat predictable after correction for 

attenuation and thus was also a bit sensitive to differences in mean 

ability. 
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Table 4.3.4. Mean Squared Error for Anchor Length Verses jility 
Overlap with an Orthogonal Least Squares Equating 

Anchor 
Length 10% 

Ability Overlap 
30% 50% 

25 .0071 .0178 .0346 

13 .0062 .0230 .0355 

7 .0102 .0399 .0656 

4 .0113 .0174 .01186 



94 

4.3.5 Ordinary Least Squares 

Table 4.3.5 contains the MSEs for the OLS equating method. The 

results for this procedure are clear: with the two longer anchor 

tests, the equatings were acceptably accurate and with the two shorter 

anchor tests, the equatings were not acceptably accurate. Recall 

that OLS was less affected by the presence of the outlier in the 7 

item anchor, 30% ability overlap equating situation and this no doubt 

accounted for the acceptably accurate MSEs as compared with the 

unacceptably accurate MSEs from the mean and sigma and orthogonal 

least squares methods. 

As with the previous two equating methods, the predictability of 

the MSEs was mixed. Of course, the lack of symmetry and, hence, 

equity would preclude the actual use of OLS in a real test equating 

situation. As a benchmark, however, it does tend to put into 

perspective the other methods of test equating. 

4.4 Equating Method by Ability Overlap 

4.4.1 25 Item Anchor Test 

Table 4.4.1 contains the MSEs for the 25 item anchor test. In 

the least vertical, 50% ability overlap, population, all of the 

equating methods produced acceptably accurate equatings. In the most 

vertical, 10% ability overlap, population, all but the simultaneous 

estimation procedures produced acceptably accurate equatings. Due to 
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Table 4.3.5. 

Anchor 
Length 

25 

13 

7 

Mean Squared Error for Anchor Length Verses Abilitv 
Overlap with an Ordinary Least Squares Equating 

10% 
Ability Overlap 

30% 50% 

.0064 .0130 .0367 

.0067 .0144 .0361 

.0105 .0241 .0478 

.0166 .0222 .0730 
4 
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Table 4.4.1. Mean Squared Error for Equating Method versus 
Ability Overlap with an Anchor length of 25 

Equating Method 

Abil ity 
Overl ap 

Con¬ 
current 

* 

Charac¬ 
teristic 
Curve 

Mean 
and 
Si gma 

Orthogonal 
Least 
Squares 

Ordinary 
least 
Squares 

Parameter 
Estimation 
Error 

10% .0100 .0062 .0076 .0071 .0064 .0067 

30% .0159 .0118 .0181 .0178 .0130 .0120 

50% .0378 .0372 .0345 .0346 .0367 .0368 
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the presence of a moderate outlier in the 30% ability overlap 

population, only the characteristic curve and OLS equating methods' 

were acceptably accurate. Note that simultaneous estimation method 

was more affected by mean ability differences and that the mean and 

sigma and orthogonal least squares methods were more affected by the 

presence of a moderate outlier. Both the characteristic curve and OLS 

methods were predictably and acceptably accurate at all levels of mean 

ability difference for the 25 item anchor test. 

4.4.2 13 Item Anchor Test 

Table 4.4.2 contains the MSEs for the 13 item anchor test. 

Precisely the same results hold for this anchor test length as held 

for the 25 item anchor test. 

4.4.3 7 Item Anchor Test 

Table 4.4.3 contains the MSEs for the 7 item anchor test. In the 

least vertical, 50% ability overlap, population, all but two of the 

equating methods were acceptably accurate. The two inaccurate methods 

of test equating were mean and sigma and orthogonal least squares. 

OLS was barely acceptable. Clearly, these methods are more affected 

by the length of the anchor test than the other methods. In the most 

vertical, 10% ability overlap, population, only the characteristic 

curve equating method was able to overcome the combination of large 

mean ability differences and relatively short anchor test. The 
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Table 4.4.2. Mean Squared Error for Equating Method verses 
Ability Overlap with an Anchor Length of 13 

Ability 
Overlap 

Con¬ 
current 

Charac¬ 
teristic 
Curve 

Equating Method 
Mean Orthogonal Ordinary 
and Least Least 
Sigma Squares Squares 

Parameter 
Estimation 
Error 

10% .0155 .0068 .0057 .0062 .0067 .0065 

30% .0176 .0122 .0214 .0230 .0144 .0118 

50% .0372 .0394 .0353 .0355 .0361 .0398 
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Table 4.4.3. Mean Squared Error for Equating Method verses 
Ability Overlap with an Anchor Length of 7 

Equating Method 
Charac- Mean Orthogonal Ordinary Parameter 

Ability Con- teristic and Least Least Estimation 
Overlap current Curve Sigma Squares Squares Error 

10% .0193 .0061 .0090 .0102 .0105 .0065 

30% .0232 .0162 .0363 .0399 .0241 .0117 

50% .0381 .0388 .0516 .0656 .0478 .0387 
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outlier in the 30% ability overlap was most pronounced in the 7 item 

anchor test. The presence of this outstanding value was sufficient to 

make every single equating unacceptably accurate. 

4.4.4 4 Item Anchor Test 

Table 4.4.4 contains the MSEs for the 4 item anchor test. The 

characteristic curve equating method was acceptably accurate at all 

ability overlaps and it was the only acceptably accurate equating 

method at any ability overlap. 

To briefly summarize the results: 

1. The characteristic curve equating method was the most 

accurate of all the procedures studied, being inaccurate in 

only one instance where a sufficiently large outlier skewed 

all of the equatings. 

2. The simultaneous estimation procedure was not able to 

accurately deal with the combination of small sample sizes, 

short anchor tests, and diverse abilities. 

3. With the smaller mean differences in ability and the longer 

anchor tests, all methods of equating were reasonably 

accurate, although some were more sensitive to outlying 

values than others. 

4. The correction for attentuation helped explain some facets 

of the data for this study. It was necessary because the 

criterion, MSE, was tied so closely to a correlation. The 

MSE may not be the most reeasonable criterion for evaluating 
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Table 4.4.4. Mean Squared Error for Equating Method verses 
Ability Overlap with an Anchor Length of 4 

Abi1ity 
Overlap 

Con¬ 
current 

Charac¬ 
teristic 
Curve 

Equating Method 
Mean Orthogonal Ordinary 
and Least Least 
Sigma Squares Squares 

Parameter 
Estimation 
Error 

10% .0256 .0066 .0122 .0113 .0166 .0066 

30% .0367 .0145 .0239 .0174 .0222 .0119 

50% .0601 .0389 .0738 .1186 .0730 .0394 
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the accuracy of equatings across mean ability differences. 

That is, a major problem in extreme vertical equating is* 

getting good parameter estimates. The MSE criterion is such 

that poorly estimated difficulties may increase the 

difficulty span which may in turn increase the correlation 

and, hence, decrease the error. The most extreme parameter 

estimations may thus yield the smallest MSEs. This seems 

unreasonable. 

5. MSE does seem to be a reasonable criterion to use for 

comparing anchor test length and equating methods. It is a 

criterion based upon the true equating and one which is able 

to compare the simultaneous estimation procedure with 

separate equating methods. 

6. Table 4.4.5 contains all of the PEEs. The uniformity 

within ability overlaps confirms the nested, full span, 

uniformly distributed anchor test design. That is, 

differences in MSEs at different anchor test lengths within 

the same ability overlap may be attributed solely to the 

length of the anchor test, as desired. The seemingly 

reversed pattern of MSEs and PEEs across ability overlaps 

was adequately explained by correcting the error measures 

for attenuation due to restriction of range. 
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Table 4.4.5. 

Anchor 
Length 

25 

13 

7 

Parameter Estimation Error (PEE) for Anchor 
Length verses Population Ability Overlap 

10% 
Ability Overlap 

30% 50% 

.0067 .0120 .0368 

.0065 .0118 .0398 

.0065 .0117 .0387 

.0066 .0119 .0394 4 



CHAPTER V 

CONCLUSIONS 

Briefly, the purposes of this study were to investigate the 

effects of the following on the accuracy of an equating of test 

scores: 

1. length of the anchor test 

2. equating method 

3. group mean ability differences 

In particular, it was the intent of this study to determine which 

combinations of the above factors would produce an acceptably accurate 

equating and, more generally, how the various factors interact. 

Concerning the length of the anchor test, the results make the 

following conclusion inescapable: 

Acceptably accurate equatings are more likely to result when 

longer anchor tests are used. However, under particular 

combinations of method and mean ability difference, even the 

shortest anchor test was able to produce an acceptably 

accurate equating of test scores. 

As for the equating method, the conclusions must be carefully 

conditioned: 

104 
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This study involved relatively small sample sizes and 

relatively large group mea;. ability differences. Test 

equating under these circumstances is difficult. The 

simultaneous estimation procedure was most affected in that 

the method was sensitive to both large group mean ability 

differences and short anchor tests. That is, convergence of 

the maximum likelihood parameter estimation procedure was 

less likely under these conditions. The simultaneous 

estimation procedure was relatively unaffected by the 

presence of moderate outliers. 

The characteristic curve method of test equating was able to 

accurately equate scores under even the most extreme 

combinations of anchor test length and mean ability 

difference. It was clearly the method of choice for such 

difficult equating. 

The mean and sigma, orthogonal least squares, and ordinary 

least squares methods were somewhat comparable. With the 

longer anchor test lengths and less diverse abilities, these 

methods would all produce acceptably accurate equatings of 

test scores. They did not perform well with the shortest 

anchor tests and they were affected adversely by the 

presence of moderate outliers. 

Differences in the mean ability between groups were large and 

resulted in the following conclusions: 



106 

The simultaneous estimation procedure was most affected. In 

direct contrasr, the characteristic curve method was 

unaffected when the MSEs were corrected for attenuation. 

The other methods were somewhat affected. 

As might have been expected, certain combinations of factors 

performed at very different levels of acceptability: 

The simultaneous estimation procedure gave acceptable results 

only in the least vertical situation and never with the shortest 

anchor test. The characteristic curve method was unacceptable 

only in the presence of a most extreme outlier. All other 

methods failed here as well. With anchor tests of a more 

traditional length and in less vertical situations, any of the 

methods studied should give reasonable results. 

These conclusions lead to the following recommendations which 

must also be conditioned by the limitations of the study: 

1. Use as long as anchor test as possible but, be aware that as 

few as 4 anchor test items will suffice under certain 

circumstances. 

2. The characteristic curve method or an equivalent is to be 

preferred for short anchor and highly vertical test 

equating. 

3. While both commonly and easily used, mean and sigma and 

simultaneous estimation procedures are not recommended for 

short anchor and highly vertical test equating. 

4. Anchor test items whose parameter estimates are outlying 

should be removed. If it is determined to leave moderate 
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.outliers in the data set, then equating methods least 

affected by outliers should be used, namely, simultaneous 

estimation if possible or the characteristic curve method. 

5. As large a range of difficulty as possible should be used 

for the anchor items but, parameter estimation will then 

become more difficult and outliers will appear. 

The equating of test scores using an anchor test design would 

seem to require further study. In particular, it would be informative 

to increase the sample size to see if this is the major cause of the 

difficulty with the simultaneous estimation procedure. The use of 

ability overlaps in the 70% to 80% range might also impact upon a 

number of the conclusions of this study. A robust mean and sigma 

method would be a natural choice to compete with the characteristic 

curve approach. Anchor tests with a fixed span of difficulties would 

prohibit certain comparisons, but enhance others. Even shorter anchor 

tests could be investigated. 
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CONST 

A = 25; ( 
B = 2; ( 

N = 60; ( 

R = 3; ( 
NA = 85; ( 

PI = 3-14159; 
M = 500; 

("ANCHOR*) 
(•TEST/GROUP*) 
(•ITEMS W/0 ANCHOR*) 
(•ITEM PARAMETERS*) 
(•ITEMS PLUS ANCHOR*) 

TYPE 

IDXN = 1..N; 
IDXR = 1..R; 
IDXB = 1..B; 
IDXM = 1..M; 
IDXNA = 1..NA; 

TESTPARAM = ARRAY[IDXN] OF REAL; 
THETAS = ARRAY[IDXM] OF REAL; 

XTHETAS = ARRAY[IDXM,IDXB] OF REAL; 
MATRIX = ARRAY[IDXN,IDXR] OF REAL; 
XMATRIX = ARRAY[IDXN,IDXR,IDXB] OF REAL; 
AMATRIX = ARRAY[IDXNA,IDXR] OF REAL; 
XAMATRIX = ARRAY[IDXNA,IDXR,IDXB] OF REAL; 
PARAM = ARRAY[IDXB] OF REAL; 

VAR 

E: IDXB; 
Is IDXN; 
K: IDXM; 
J: IDXR; 
IA: IDXNA; 

SEED1, SEED2: INTEGER; 

MINA,MAXA,MINB,MAXB,MINC,MAXC.MTHETA,SDTHETA: REAL; 
XMINA,XMAXA,XMINB,XMAXB: PARAM; 
XMINC,XMAXC,XMTHETA,XSDTHETA: PARAM; 

AI, BI, CIS TESTPARAM; 
T: THETAS; 
XT: XTHETAS; 
Q: MATRIX; 
QA: AMATRIX; 
XQ: XMATRIX; 
XQA: XAMATRIX; 

SC0RE5,THETA5,RAW5,TRUE5,PARAM5: TEXT; 
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PROCEDURE CHEATEP(MIN,MAX: REAL; 
VAR P:TESTPARAM); 

VAR 

■PAN, DELTA: REAL; 
• DX: IDXN; 

BEGIN 

WRITELN('•* MAX/MIN',MAX,MIN); 
SPAN := MAX - MIN; 
DELTA := SPAN/(N-1); 
FOR IDX: = 1 TO N DO 

PtIDX] := (IDX -1)*DELTA ♦ MIN; 
END; 

PROCEDURE DOITEMS1(VAR PA,PB,PC:TESTPARAM; 
VAR XQUES:XMATRIX); 

VAR 
S: IDXN; 
T: IDXR; 
U: REAL; 
SU: 1..N; 

BEGIN 

FOR S:=1 TO N DO 
FOR T:=1 TO R DO 

BEGIN 
IF T= 1 

THEN 
BEGIN 

IF S<31 
THEN 

XQUES[S,T,1] := PA[2*S - 1] 
ELSE 

XQUES[S,T,1] := PA[122 - (2«S)]; 
END; 

IF T=2 
THEN 

XQUES[S,T,1] := PB[S]; 
IF T=3 

THEN 
BEGIN 

U := RANDOM; 
SU := TRUNC(U*60.0) +1; 
XQUES[S,T,1] := PC[SU]; 

END; 
END; 

END; 
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PROCEDURE DOITEMS2(VAR PA,PB,PC:TESTPARAM; 

VAR XQUES:XMATRIX); 

VAR 

S: IDXN; 
T: IDXR; 
U: REAL; 
SU: 1..N; 

BEGIN 

END; 

FOR S:=1 TO N DO 
FOR T:=1 TO R DO 

BEGIN 
IF T= 1 

THEN 
BEGIN 

IF S<31 

THEN 

XQUES[S,T,2] := PA[2«S - 1] 
ELSE 

XQUES[S,T,2] := PA[122 - (2*S)]; 
END; 

IF Tr2 
THEN 

XQUES[S,T,2] := PB[S]; 
IF T=3 

THEN 
BEGIN 

U := RANDOM; 

SU := TRUNC(U*60.0) + 1; 
XQUES[S,T,2] := PC[SU]; 

END; 
END; 
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PROCEDURE ANCHOR(VAR XOUES: XMATRIX; 

VAR XQUESA: XAMATRIX); 

VAR 

S: IDXN; 
T: IDXR; 
F: IDXB; 
SA: IDXNA; 
W,Z: INTEGER; 

BEGIN 
FOR F:=1 TO B DO 

BEGIN 

FOR S:=1 TO N DO 
BEGIN 

FOR T:=1 TO R DO 
BEGIN 

SA := S; 

XQUESA[SA,T,F] := XQUES[S,T,F]; 
END; 

END; 
SA := N; 
FOR Z:=1 TO A DO 

BEGIN 
SA := SA + 1; 
IF Z<5 

THEN 
W := 8*Z - 7 

ELSE 
IF Z<8 

THEN 
W := 8*Z -35 

ELSE 
IF Z<14 

THEN 
W := 4»Z - 29 

ELSE 
W := 2*Z - 26; 

IF W<13 
THEN 

FOR T:=1 TO R DO 

XQUESA[SA,T,F] := XQUES[5»W-4,T, 1 ] 
ELSE 

BEGIN 
FOR T:= 1 TO R DO 

BEGIN 
IF W<25 

THEN 
XQUESA[SA,T,F] := XQUES[5*W-64,T,2] 

ELSE 
XQUESA[SA,T,F] := XQUES[60,T,2]; 

END; 
END; 

END; 

END; 
END; 
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PROCEDURE PRINTPARAMS(VAR XOUESA: XAMATRIX); 

VAR 

SA: IDXNA; 

T: IDXR; 

F: IDXB; 

BEGIN 

FOR F: = 1 TO B DO 

FOR SA:=1 TO NA DO 

FOR T: = 1 TO R DO 

BEGIN 

WRITELN(’TEST',F:2,'ITEM':12,SA:3,• 

'EQUALS':m,XQUESA[SA,T,F)) 

writeln(param5,f,sa,t,xquesa[sa,t,f 

PROCEDURE DOTHETA5(VAR MT,SDT:REAL; 

VAR XPTlXTHETAS); 

VAR 

Q: IDXM; 
X, Z: THETAS; 
H: 1..50; 
SD,SUM,MEAN,S,U,V: REAL; 

BEGIN 
FOR Q:=1 TO M DO 

BEGIN 
V := 0; 
FOR H: = 1 TO 50 DO 

BEGIN 
U := RANDOM; 
V := V+U; 

END; 
X[Q] := V/50; 

END; 
BEGIN 

S := 0; 
FOR Q: = 1 TO M DO 

S := S «■ X[Q]; 
END; 

BEGIN 
SUM := 0; 
MEAN := S/M; 
FOR Q:= 1 TO M DO 

SUM := SUM + SQR(X[Q] - MEAN); 
END; 
BEGIN 

SD := SQRT(SUM/M); 
FOR Q:=1 TO M DO 

Z[Q] := (X[Q] - MEAN)/SD; 
END; 
BEGIN 

FOR Q:=1 TO M DO 
XPT[Q,1] := Z[Q]*SDT + MT; 

PARAMETER':16,T:2, 

’]); 
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PROCEDURE DOTHETA2C VAR MT,SDT:REAL; 

VAR XPT:XTHETAS); 

VAR 

Q: IDXM; 
H: 1..50; 
X, Z: THETAS; 

SD,SUM,MEAN,S,U,V: REAL; 

BEGIN 
FOR Q:=i TO M DO 

BEGIN 
V := 0; 
FOR H:=1 TO 50 DO 

BEGIN 
U := RANDOM; 
V := V+U; 

END; 
X[Q] := V/50; 

END; 
BEGIN 

S := 0; 
FOR Q:=1 TO M DO 

S := S ♦ X[Q]; 
END; 

BEGIN 
SUM := 0; 
MEAN := S/M; 
FOR Q:= 1 TO M DO 

SUM := SUM + SQR(X[Q] - MEAN); 
END; 
BEGIN 

SD := SQRT(SUM/M); 
FOR Q:=1 TO M DO 

Z[Q] := (X[Q] - MEAN)/SD; 
END; 
BEGIN 

FOR Q: = 1 TO M DO 

XPT[Q,2] := Z[Q]*SDT + MT; 
END; 

END; 



PROCEDURE PRINTTHETAS( VAR XPT: XTHFTAS) • 
VAR ’ 

Q: IDXM; 
IDX.K: INTEGER; 
ADC: I' !.; 

F: ID'/ *. 

BEGIN 

FOR F::1 TO B DO 
BEGIN 

WRITELN; 

WRITELN('THE ABILITY DISTRIBUTION FOR GROUP' F)- 
FOR Q:=1 TO M DO 

WRITELN(THETA5,XPT[Q,F]); 
FOR IDX: = 0 TO N DO 

BEGIN 

K := 0; 
FOR Q:=1 TO M DO 

BEGIN 

ABC := 3—(0.1*IDX); 
IF XPT[Q,F]>ABC 

THEN 
K := K+1; 

END; 

(G',F,') HAVE THETAS GREATER THAN',ABC) 

END; 
END; 

PROCEDURE LOGPROB(VAR XQUESA:XAMATRIX; 
VAR XPT:XTHETAS); 

VAR 
SA: IDXNA; 
Q: IDXM; 
T: IDXR; 
D,P1,TS,U: REAL; 
F: IDXB; 
K: 0..1; 
RS: INTEGER; 

BEGIN 
FOR F:=1 TO B DO 

FOR Q:=1 TO M DO 
BEGIN 

TS 
RS 

:= 0; 
:= 0; 

FOR SA:=1 TO NA DO 
BEGIN 

D := 1«-EXP(-1.7*XQUESA[SA,1 ,F]«(XPT[Q,F]-XQUESA[SA,2,F])) 
PI := (1-XQUESA[SA,3»F])/D+XQUESA[SA,3,F]; 
U := RANDOM; 
IF P1>=U 

THEN 
K := 1 

ELSE 
K := 0; 

RS := RS+K; 
TS := TS+P1; 
WRTTELNfSCORES,K: ?): 



131 

BEGIN (“MAIN PROGRAM*) 

REWRITE(THETA5); 

REWRITE(TRUE5); 

REWRITE(RAW5); 

REWRITE(SCORE5); 

REWRITE(PARAM5); 

WRITELN('SEE DOCUMENTATION BEFORE USING IRTDATA'); 
WRITELN; * 

WRITELN('ENTER THE TWO INTEGRAL SEEDS’)- 
WRITELN; ’ 

READLN; 

READ(SEED1,SEED2); 

SETRANDOM(SEEDl,SEED2); 
FOR E:=1 TO B DO 

BEGIN 

WRITELN; 
WRITELN; 

WRITELN('ENTER THE PARAMETER CONSTRAINTS FOR ') 
WRITELN('GROUP/TEST',E,'IN THE FOLLOWING ORDER: 

WRITELN('MINA,MAXA,MINB,MAXB,MINC,MAXC,MT,SDT.' 
READLN; 

READ(XMINA[E],XMAXA[E],XMINB[E],XMAXB[E], 
XMINC[E],XMAXC[E],XMTHETA[E],XSDTHETA[E1)• 

END; J/’ 
MINA := XMINA[1]; 
MAXA := XMAXA[1]; 

CREATEP(MINA,MAXA,AI); 
MINB := XMINB[1]; 
MAXB := XMAXB[1]; 

CREATEP(MINB,MAXB,BI); 
MINC := XMINC[1]; 
MAXC := XMAXC[1]; 

CREATEP(MINC,MAXC,CI); 
DOITEMS1(AI,BI,CI,XQ); 
MINA :r XMINA[2]; 
MAXA := XMAXA[2]; 
CREATEP(MINA,MAXA,AI); 
MINB := XMINB[2]; 
MAXB := XMAXB[2]; 
CREATEP(MINB,MAXB,BI); 
MINC := XMINC[2]; 
MAXC := XMAXC[2]; 
CREATEP(MINC,MAXC, Cl); 
DOITEMS2(AI,BI,CI,XQ); 
ANCHOR(XQ.XQA); 
PRINTPARAMS(XQA); 
MTHETA := XMTHETA[ 1 ]; 
SDTHETA := XSDTHETA[1]; 

DOTHETA5(MTHETA,SDTHETA,XT); 
MTHETA := XMTHETA[2]; 
SDTHETA := XSDTHETA[2]; 

DOTHETA2(MTHETA,SDTHETA,XT); 
PRINTTHETAS(XT); 
LOGP ROB(XQA,XT); 

END. 



PROGRAM CCEQUAT(INPUT/,OUTPUT,LTH5013,U5013A,LA5013B); 

CONST 

NUMQ = 500; 
NUMN r 13; 
NUMM = 200; 
NUML = 20; 
NUMT = 2; 

TYPE 

IDXQ = 1..NUMQ; 
IDXN = 1..NUMN; 
IDXM = 1..NUMM; 
IDXL = 1..NUML; 
IDXT = 1..NUMT; 

QTHETAS = ARRAY[IDXQ] OF REAL; 
THETAS = ARRAY[IDXM] OF REAL; 
PARAM = ARRAY[IDXN] OF REAL; 
MAT = ARRAY[IDXT,IDXT] OF REAL; 
VEC = ARRAY[IDXT] OF REAL; 
PARTS = ARRAY[IDXN,IDXM] OF REAL; 

VAR 

I : IDXN; (•INDEXES ITEMS*) 
J : IDXM; (•INDEXES PERSONS*) 
Q : IDXQ; (•INDEXES ORIGINAL THETAS*) 
L : IDXL; (•INDEXES ITERATIONS*) 

ALPHA,BETA : REAL; (•INITIAL ESTIMATE*) 
A1,B1,C1 : PARAM; (•ITEM PARAMETERS, GROUP 1*) 
A2,B2,C2 : PARAM; (•ITEM PARAMETERS, GROUP 2») 

H, OUTH : MAT; 
T : THETAS; 
TA, TB : QTHETAS; 

DF : VEC; (‘PARTIAL DERIVATIVES OF F AT ALPHA, BETA*) 

X, S : VEC; 

AMAX,AMIN,BMAX,BMIN.SPAN,DELTA,MAX,MIN: REAL; 
A,B,F : REAL; 

LTH5013, LA5013A, LA5013B : TEXT; 



PROCEDURE GRAD(PA, PB : REAL; 

VAR PDF : VEC; 

VAR FP : REAL); 

VAR 

PI : IDXN; 

PJ : IDXM; 

SUM, ASUM, BSUM, PFA, PFB : REAL; 

T1, TS, SUMA, SUMB, PTA, PTB : THETAS; 
PSF : VEC; 

PAS, PBS, PC : PARAM; 

XI, X2S, PI, PS, PPA, PPB, PT : PARTS; 

BEGIN 

FOR PI :r 1 TO NUMN DO 
BEGIN 

PAS[PI] := A2[PI]/PA; 
PBS[PI] := B2[PI]*PA + PB; 
PC[PI] := C2[PI]; 

END; 

FOR PI := 1 TO NUMN DO 
FOR PJ := 1 TO NUftl DO 

BEGIN 

X1[PI,PJ] : = (—1.7)*A1[PI]*(T[PJ] - B1[PI]); 
X2S[PI,PJ] := (-1.7)*PAS[PI]*(T[PJ] - PBS[PI]); 
P1[PI,PJ] := ClCPI] ((1-C1[PI])/(1+EXP(X1[PI,PJ]))); 
PS[PI,PJ] := C2[PI] + ((1 —C2[PI])/(1+EXP(X2S[PI,PJ]))) 

END; 

FOR PJ := 1 TO NUMM DO 
BEGIN 

SUM := 0; 

FOR PI :r 1 TO NUMN DO 
SUM := SUM + P1[PI,PJ]; 

T1 [PJ] := SUM; 
END; 

FOR PJ := 1 TO NUMM DO 
BEGIN 

SUM := 0; 
FOR PI := 1 TO NUMN DO 

SUM := SUM + PS[PI,PJ]; 
TS[PJ] := SUM; 

END; 
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SUM := 0; 

FOR PJ :: 1 TO NUMM DO 

SUM :r SUM + SQR(T1[PJ] - TS[PJ]); 

FP := (1/NUMM)"SUM; 
WRITELN; 

WRITELNCTHE FUNCTION F (TO BE MINIMIZED) FP); 

FOR PI 1 TO NUMN DO 
FOR PJ := 1 TO NUMM DO 

BEGIN 

PPAtPI.PJ] : = n.7)«(T[PJ]-PBS[PI]).(1-PS[Pifpj]).(PS[PIipJ]_C2[pi]) 

PPB[ PI := (-1.7)«(PAS[,PI]).(1-PS[PI,Pj]).(PS[PIiPJ]_C2[pi])/(1_ 

END-TtPI’PJ] ^ B2[PI]#PPB[PI*PJ^ ' A2[PI]*PPA[PIfPJ]/SQR(PA); 

FOR PJ := 1 TO NUMM DO 
BEGIN 

SUMA[PJ] := 0; 
SUMB[PJ] := 0; 
FOR PI := 1 TO NUMN DO 

BEGIN 

SUMA[PJ] := SUMA[PJ] ♦ PT[PI,PJ]; 
SUMB[PJ] := SUMB[PJ] ♦ PPB[PI,PJl; 

END; 
PTA[PJ] := SUMA[PJ]; 
PTB[PJ] := SUMB[PJ]; 

END; 

ASUM := 0; 
BSUM := 0; 

FOR PJ := 1 TO NUMM DO 
BEGIN 

ASUM := ASUM + (T1[PJ]-TS[PJ])*PTA[PJ]; 
BSUM := BSUM + (T1[PJ]-TS[PJ])*PTB[PJ]; 

END; 

PDF(1] := (-2/NUMM)•ASUM; 
PDF[2] := (-2/NUMM)*BSUM; 
WRITELN; 

WRITELNCTHE PARTIAL DERIVATIVES OF F ARE', PDF[1], PDF[2]); 
END j 



PROCEDURE NEXTXH(PA,PB : REAL; 

VAR PS : VEC; 
VAR INH : MAT; 
VAR PX : VEC; 
VAR OUTH : MAT; 
VAR PDF2 : VEC); 

VAR 

Y,PY,PSIG.PDY.PDF : VEC; 
BP, AP , BNUM : MAT; 

SPYS,SPXS,PETA,ETA,FP,PAL 
FY,BD,FP2,BD1,BD2,ADENOM, 

,PW,PZ: REAL 
R1,R2,R3,R4: REAL; 

BEGIN 

GRAD(PA,PB,PDF,FP); 
SPXS := PDF[1]*PS[1] ♦ 
PETA := (~2)*FP/SPXS; 
IF PETA < 1 

THEN 

PDF[2]*PS[2]; 

ETA := PETA 
ELSE 

ETA := 1; 

PY[1] := PA + ETA*PS[1]; 
PY[2] := PB + ETA*PS[2]; 

GRAD(PY[1],PY[2],PDY,FY); 

SPYS 
PZ :: 
PW 
PAL 

= PDY[1]*PS[1] + PDY[2]#PS[2]; 
(3/ETA)»(FP-FY) + SPXS + SPYS; 
SQRT(SQR(PZ) - (SPXS*SPYS)); 

ETA»(1-((SPYS+PW-PZ)/(SPYS-SPXS+(2.0)»PW) ); 
PSIGtl] := PAL*PS[1]; 

PSIG[2] ;= PAL#PS[2]; 

PXtl] := PA + PSIG[1]; 
PX[2] :r PB + PSIG[2]; 

GRAD(PX[1],PX[2],PDF2,FP2); 



136 1] := PDF2[1 ]-PDF[1]; 
Y[2] : = PDF2[2]-PDF[2]; 
ADENOM PSIG[1J*Y[1] ♦ PSIG[2 ]•Y[2 ]; 

AP[1,1] 
AP[1,2] 
AP[2,1] 
AP[2,2] 

« SQR(PSIG[l])/ADENOM; 
= PSIG[1]*PSIG[2]/ADENOM; 
= AP[1,2]; 

= SQR(PSIG[2])/ADENOM; 

R1 
R2 

R3 
RU 

INH[1,1]«Y[1] ♦ 
INH[1,1]*Y[1] + 
INH[1,2 ]*Y[1 ] + 
INH[2,1]*Y[1] ♦ 

INH[1,2]«y[2] 
INH[2,1]•Y[2] 
INH[2,2]»Y[2] 
INH[2,2]»Y[2] 

BNUM[1,1] := (_i)«R1»R2 

BNUM[1,2] := (-1 )«R1«R3 
BNUM[2,1] := (-1)*R4*R2 
BNUM[2,2] := (-1)«R4"R3 

*= *L1J*(XNH[1,1]*Y[1D^XNHC2,1D«Y[2])• 
BD2 := Y[2]*(INH[1,2]*Y[1]+INH[2,2]*Y[2])• 

BD := BDl + BD2; 

BP[1,1] := BNUM[1,i]/bD 
BP[1,2] := BNUM[1,2]/BD 
BP[2,1] := BNUM[2f1]/BD 
BP[2,2] := BNUM[2,2]/BD 

OUTH[1,1] 
OUTH[1,2] 
OUTH[2,1] 
0UTH[2,2] 

INH[1,1] + AP[1,1 ] + BP[1,1] 

INHC1,2] + AP[1,2] + BP[1 ,2] 
INH[2,1] + AP[2,1 ] + BP[2,1 ] 
INH[2,2] + AP[2,2] + BP[2,2] 

END; 
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BEGIN ("LORD*) 

RESET(LTH5013); 
RESET(LA5013A); 
RESET(LA5013B); 
WRITELN; 

™E fi«st of ,lph« ,»d .e,,,,. 
READLN; 

READ(ALPHA,BETA); 

FOR I := 1 TO NUMN DO 
BEGIN 

READLN(LA5013A,A1[I]); 

READLN(LA5013A,B1 [ I]); 
READLN(LA5013A,C1 [ I]); 
READLN(LA5013B,A2[I]); 
READLN(LA5013B,B2[ I]); 
READLN(LA5013B,C2[I]); 

END; 

FOR Q := 1 TO NUMQ DO 

READLN(LTH5013,TA[Q]); 
FOR Q := 1 TO NUMQ DO 

READLN(LTH5013,TB[Q]); 

AMAX := 0; 
AMIN := 0; 
BMAX := 0; 
BMIN := 0; 

FOR Q := 1 TO NUMQ DO 
BEGIN 

IF TA[Q] > AMAX 
THEN 

AMAX := TA[Q]; 
IF TA[Q] < AMIN 

THEN 
AMIN := TA[Q]; 

IF TB[Q] > BMAX 
THEN 

BMAX := TB[Q]; 
IF TB[Q] < BMIN 

THEN 
BMIN := TB[Q]; 

END; 



138 

IF AMAX>BMAX 
THEN 

MAX := AMAX 
ELSE 

MAX := BMAX; 

IF AMIN<BMIN 

THEN 

MIN := AMIN 
ELSE 

MIN := BMIN; 

SPAN := MAX - MIN; 

DELTA := SPAN/(NUMM - 1); 

FOR J := 1 TO NUMM DO 

T[J] := MIN + (J - 1)»DELTA; 

WRITELN('MIN/MAX THETA IS',T[1], T[NUMM])• 
WRITEI.Nt J ’ 

A := ALPHA; 
B := BETA; 

H[ 1,1 ] := 1; 
H[1,2] := 1; 
H[2,1] := 1; 
H[2,2] := 1; 

GRAD(A,B,DF,F); 

FOR L := 1 TO NUML DO 
BEGIN 

S[1] := (—1)•(H[1,1]*DF[1]+H[1,2]*DF[2]); 
S[2] := (-1)*(H[2,1]*DF[1]+H[2,2]*DF[2]); 

NEXTXH(A,B,S,H,X,OUTH,DF); 

WRITELN; 

WRITELN('ITERATION L); 
WRITELN; 
WRITELN(. f X[;]fX[2] ...). 
WRITELN; 

A := X[1]; 
B := X[2]; 
H[1,1] := OUTH[1,1]; 

H[1,2] := OUTH[1,2]; 
H[2,1 ] := 0UTH[2,1]; 
H[2,2] := OUTH[2,2]; 

END; 
END. 
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