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ABSTRACT 

The Effects of Learning Logo on the Ability of Concrete 
Operational Students to Learn Abstract Concepts 

(May, 1987) 

Arnold Glim, B.S., City University of New York 

M.S. ED., City University of New York 

Ed.D., University of Massachusetts 

Directed by: Professor Robert L. Sinclair 

This study examines the effects of learning the computer language 

Logo on concrete operational students. It sought to determine if a sam¬ 

ple of such students were taught to program in a Logo, they would then 

be able to learn abstract concepts rather than a similar sample of stu¬ 

dents who were not taught Logo. 

To do this study, a sample of 33 eighth grade students who were 

tested as concrete operational were divided into control and treatment 

groups. Each group was pre-tested on their knowledge of abstract physics 

concepts which were to be taught as part of a self-contained physics unit. 

The treatment group then received 14 weeks of instruction in Logo, 

as part of a specially-designed Logo learning environment. Following 

this, both groups were taught a three-week long physics unit. This 

unit was designed to teach a variety of abstract physics concepts, some 

strongly related to the Logo taught to the treatment group, and the rest 

either unrelated or weakly related to the Logo taught. 

Both groups were then post-tested on their knowledge of the physics 

taught. A t-test analysis of the physics pre- and post-test results was 

vi 



done to see if the treatment group made significantly greater improve¬ 

ment in test scores than the control group. A further analysis was done 

with respect to individual test items to see if the treatment group made 

significantly greater improvement on test items which were judged 

strongly related to Logo. 

The results of these analyses indicated that there was no evidence 

that concrete operational students who are trained in Logo do any better 

at learning abstract physics concepts than students who were not trained 

in Logo. This was true even when the abstract concepts involved were 

strongly related to the Logo concepts taught. 

To conclude, this study does not support the hypothesis that Logo 

can help concrete operational students think abstractly and learn 

abstract science concepts any better than traditionally taught students. 

Considering this, it would seem unwise to take time from teaching these 

students traditional science, in order to teach them Logo. 

v i i 
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CHAPTER I 

INTRODUCTION 

The teaching and learning of science has, in recent decades, become 

a matter of national concern. Our nation's fear of losing its techno¬ 

logical edge in defense and industry, due to lack of proper science 

training, has been the focus of many educational reports and studies. 

In fact, those in the science education field were, and still are, 

greatly influenced by the U.S.S.R.'s launching of the first space satel¬ 

lite, which spurred on the development of many national-level science 

curricula. 

Programs, such as Physical Science Study Committee (PSSC) physics. 

Biological Science Curriculum Study (BSCS) biology, Earth Science 

Curriculum Project (ESCP) earth science, Chem Studies, Introductory 

Physical Science (IPS), etc., were initiated in the late 1950s and early 

1960s as a direct reaction to the perceived need to do something about 

science education in this country. Whether or not faulty science educa¬ 

tion was the actual reason for our falling behind the Russians in space 

exploration and missile development, our reaction was forthright. Teach¬ 

ers, university professors, and scientists put together new science cur¬ 

ricula which were designed to bring science education into the "space 

age" by emphasizing science process, problem solving and scientific rea¬ 

soning. That these programs influenced practically every aspect of 

science teaching cannot be denied. Even today, though many science 

teachers have stepped back from these original programs, their influence 

can be seen in terms of content and method. 

1 
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Students reacted to our nation's need for scientists and engineers 

with enthusiasm, but after an initial surge, science enrollment began a 

steady decline. Many students perceived the new science programs as too 

difficult to learn and understand, and were frustrated in their efforts. 

These frustrations, in fact, increased steadily as students progressed 

through their academic careers. In a recent study of schools, Goodlad 

cites statistics that show that while most elementary school students 

found science easy or "just right" and generally liked the subject, 

senior high students found it their most difficult subject and liked it 

only a shade better than foreign language which was their least liked 

subjectJ 

Why many students find learning science so difficult is a question 

well worth asking, and it has been asked by a number of educational 

researchers. Some of these researchers have attempted to relate the 

inability of many students to learn science to Piaget's theory of intel¬ 

lectual development, which suggests that children undergo a transition 

through intellectual stages as they mature. According to Piaget, chil¬ 

dren, as they go through these stages, think not only less efficiently 

2 
than adults, but think qualitatively differently. Research into 

Piagetian development seems to indicate that most secondary school chil¬ 

dren cannot handle abstract concepts effectively, and, in fact, an early 

synthesis of relevant data in this area by E. L. Chiappetta indicates 

that 77-83.4 percent of junior high school students, and 22-85.85 percent 

of high school students cannot be considered as formal reasoners, i.e., 

could not be expected to reason abstractly. Furthermore, it is sug¬ 

gested that these students who cannot reason abstractly cannot learn 
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abstract concepts except by rote or in a mechanical way. Clearly, if 

it is abstract process they must deal with, they will be at a 

loss. 

Most of these non-abstract thinkers would be characterized by 

Piaget as being at the concrete operational stage of their development. 

During this stage, a student can solve complex problems, but needs 

reference to familiar actions and objects. Unfortunately, most high 

school science courses are presented on an abstract level, and deal with 

very abstract concepts. In fact, most science curricula today, includ¬ 

ing those at the middle school level, assume the level of operations 

that Piaget describes as formal.^ Even those programs which are 

designed for slower students with low reading levels contain highly 

abstract concepts. 

Teaching abstract concepts in the study of science is probably 

unavoidable. This presents no great problem to students who have 

reached Piaget's stage of formal operations; even those students who are 

at a transitional stage between concrete and formal operations can be 

eased into formal thought patterns, especially if concrete examples are 

used to aid this transition. However, Piaget points out that students 

who are fully concrete operational thinkers cannot be indefinitely 

accelerated into formal patterns of reasoning by means of stimulus- 

response type learning, or any other traditional technique.5 Research 

suggests that the ability to think abstractly "develops" in a Piagetian 

sense rather than being acquired as a consequence of direct or short- 

0 
term teaching. 
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Purpose of the Study 

The field of science is by nature conceptually abstract, and is 

becoming increasingly more so at an ever-accelerating pace. Science 

students are now being challenged with such abstract concepts as atomic 

and nuclear theory, unseen forces, curved space and relativistic time, 

biochemical interactions, genetic engineering, and so on. It has taken 

thousands of years for man to discover and try to fathom these concepts, 

yet we ask our children to understand and assimilate them in a rela¬ 

tively brief span of time. 

It is understandable, then, that one of the major challenges facing 

curriculum decision making is to create conditions where students are 

not frustrated in their attempts to learn, understand and apply these 

concepts. This is especially true when one considers that many, if not 

most, of these students are not developmentally able to effectively deal 

with abstractions. 

Considering, then, the abstract nature of most secondary school 

science and the concrete operational ability of most secondary school 

students, can a way be found to teach science to these students effec¬ 

tively? 

A growing number of educational researchers believe that it is the 

computer which will provide the flexibility needed to bridge the gap 

between concrete and formal learning patterns.^ Computer software, for 

example, has been developed that will simulate specific learning environ¬ 

ments which allow students to more fully interact with what they must 

learn. Learning situations could be developed which would be difficult, 
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if not impossible, to develop without the use of the computer. 

But perhaps the most promising method of using the computer to 

learn abstract concepts involves student writing of computer programs. 

Seymour Papert and his associates at the Massachusetts Institute of 

Technology feel that this is, in fact, the best way of bridging the 

gap between concrete and abstract learning operations.8 

Papert points out that computer languages, including the most com¬ 

monly used language, BASIC, are themselves highly abstract. To learn 

to program in these languages, in any but the most surface fashion, 

calls for formal reasoning ability. In response to this problem, 

Papert and his associates developed Logo, an advanced computer language 

designed specifically as a "learning language." Logo, Papert has 

stated, allows even young children to program in such a way that 

insight into the programming process is gained. 

Papert's ideas are based, in part, on the Piagetian theory of 

intellectual development. Piaget pointed out that all of us, including 

highly abstract reasoners, revert to concrete mental operations to 

understand new and unfamiliar ideas. One tends to use mental models 

which have been "concretized" by our own experiences, and absorb new 

ideas in terms of these mental models. 

In general, the concrete thinker does not have sufficiently 

developed mental models to use in this process. Piaget believed that 

until the concrete thinker has developed these mental "structures, he 

will not be able to absorb abstract ideas. 

According to Piaget, Logo allows students to develop and con¬ 

cretize mental models which will hasten a student s transition fnom the 
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concrete to abstract stages of development. For example, through the 

use of Logo Physics, students who would normally view Newton's laws of 

motion as highly abstract ideas will now be able to understand them 

because they have developed concrete mental models which form the basis 

of understanding the concepts involved. 

The purpose of this study, then, was to determine whether or not 

Papert is essentially correct, and that the learning of Logo does in 

fact aid the concrete operational learner to learn abstract concepts 

better than similar learners who have not learned to program in Logo. 

That is, the researcher wished to see if concrete operational students, 

who have been taught to use the computer language Logo as part of an 

educational program designed to give these students a variety of mental 

models for "concretizing" abstract ideas, learn new abstract materials 

more effectively than similar students who have not been taught to use 

Logo. 

Furthermore, the researcher wished to examine whether or not it 

makes a significant difference for the abstract material being learned 

to be directly related to the Logo educational program as compared to 

material which is unrelated to the Logo educational program. 

Two hypotheses will guide this research: 

Hypothesis 1: Concrete operational students who have 

learned to program in Logo will not make significantly 

greater progress towards learning selected abstract con¬ 

cepts in physics than similar students who have not been 

taught to program in Logo. 
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Hypothesis 2: Concrete operational students who have 

learned to program in Logo will not make significantly 

greater progress towards learning selected abstract con¬ 

cepts in physics which are directly related to the Logo 

concepts learned, than similar students who have not been 

taught to program in Logo. 

Definition of Terms 

This section defines the key technical terms referred to in this 

study. The purpose of these definitions is to provide a common under¬ 

standing of the terms which are essential to the understanding of the 

study. 

Abstract Concepts: Concepts, often abstruse, which are 

disassociated from any particular state or thing. 

Selected Abstract Concepts in Physics: Concepts taken 

from the study of physics, which are by nature 

abstract and thought to require the level of mental 

development known as formal operational, in order 

that they be well understood by the learner; or con¬ 

cepts which relate to abstract content area, and 

are, therefore, considered abstract. For example, 

to understand the concept of "density," the learner 

must understand proportional reasoning, which is 

intrinsic to the understanding of this concept. As 

proportional reasoning is considered a formal opera¬ 

tion, the concept of density, according to this 
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definition, must be considered abstract. As a 

second example, consider the concept of projectile 

motion, such as a bullet fired through the air. To 

completely understand this concept, the learner must 

understand the concept of inertia. Since the con¬ 

cept of inertia is disassociated from any particular 

state or thing, and is quite difficult to understand, 

it is considered abstract. As the content of projec¬ 

tile motion relates to an abstraction, projectile 

motion will be considered an abstract concept. 

Concrete Concepts: Concepts which are characterized by 

or belonging to immediate experience of actual things 

or events. 

Developmental Stages: Refers to periods of time through 

which a child's intellectual development evolves as 

the child matures. Each stage is characterized by 

different psychological structures which help the 

child to adapt to his or her environment. Piaget 

theorized four major stages of development, each 

representing a major step in the hierarchy of mental 

development. 

Concrete Operational Learner: Refers to the third major 

stage in a child's development. During this stage of 

operation, the learner has difficulty dealing with 

abstract concepts and needs reference to familiar 

actions and objects. 
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This level of operation ranges for the average 

child, between 7 and 11 years of age. However, 

many researchers feel that this level of operation 

may go well beyond age 11, in fact, many adults 

have been tested as concrete operational learners. 

Formal Reasoner: Refers to what Piaget believed to be 

the fourth and last major stage of human intellectual 

development. Beginning at about 11 years of age or 

older, the formal reasoner has the ability to reason 

abstractly. That is, he or she: can deal with com¬ 

plex problems in a logical way; can imagine many 

possibilities inherent in a situation; can deal with 

hypothetical propositions, theories and idealized 

models. Furthermore, the formal reasoner can compen¬ 

sate mentally for transformations in reality, where 

the concrete reasoner would have to actually manipu¬ 

late the objects of the situation. 

Mental Operations: These are internalized actions which 

modify the object of knowledge and are reversible in 

their application. That is, the child performs this 

action mentally, and is able to perform fts opposite 

action which leaves him or her where he or she 

started. For example, if the learner has developed 

the mental operation of "conservation," he or she 

understands that a pint of water completely poured 

from a tall, narrow container into a short, wide 
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container has not lost any substance, and that if 

it is poured back again, it will all be there. This 

particular operation is well developed for the com¬ 

pletely concrete operational child so that it is 

obvious that the water in our example is conserved. 

On the other hand, this would not be at all obvious 

to the child who is not yet concrete operational, so 

that he or she would expect that water poured from 

the tall container would be lost when it is put in 

the short container (or gained, depending on the 

individual child's perception at the time). 

Logo: The computer language developed at the Artificial 

Intelligence Laboratory at the Massachusetts 

Institute of Technology. It is the language used 

to communicate with the "turtle" (originally a 

remote controlled robotic device which moved along 

the floor trailing an ink marker in response to pro- 

9 
grammed commands, and now described by Papert as 

computer-controlled cybernetic animals that live on 

computer screens). Watt^ describes it this way: 

"Logo isn't just something you learn. It's some¬ 

thing you learn with." 

Significance of the Study 

A good deal of money, time and effort has already been invested in 

computer education. According to a 1980 survey by the National Center 
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for Educational Statistics (NCES) of the U. S. Department of Education, 

about one-half of the nation's school districts provide students with 

access to at least one microcomputer or to a terminal attached to a 

large computer. Furthermore, every indicator points to even increased 

acquisition of computers and computer related materials. 

It is generally recognized that while the technology is here, 

methods are still in question. C. Evans, in his book The Micro 

Mi 1lenniurn, points out "... that to develop a technology capable of 

providing interactive personal teaching is far less difficult than to 

determine the best methods for doing so and to ascertain just how effec¬ 

tive these methods will be when put into practice."^1 

What is needed is basic research into the educational process as 

it relates to the development of powerful and effective teaching pro¬ 

grams. 

The study which is being done here is important because it will 

assess an important theory of epistemology with the development of 

computer language and an educational program based on this theory. If 

it is true that Papert and his MIT Logo group has developed a computer 

method for teaching abstract concepts to the concrete operational stu¬ 

dent, progress will have been made toward the understanding of ideas 

associated with Piaget's theory of intellectual development and impor¬ 

tant progress will have been made toward more effective teaching. 

Recent research indicates that more students and adults in 

general think on a concrete operational level than was previously sus¬ 

pected. Kohlberg and Gillison have found evidence of widespread con- 

crete thought in persons from 10 to 50 years of age. Renner and 
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McKinnon have shown that 50 percent of Oklahoma's entering freshmen and 

66 percent of its high school seniors still occupy the concrete opera¬ 

tional stage of intellectual development.13 

The author's own research in this field indicates that only 47 per¬ 

cent of students studying physics and chemistry at Brattleboro High 

School, Brattleboro, Vermont, are fully formal reasoners. Eight percent 

of these students have been tested to be at the concrete operational 

level. These students by and large represent Brattleboro's best stu¬ 

dents, and it is most probable that an even larger percentage of 

Brattleboro's remaining students are operating on a concrete or less 

than formal level. Reaching these concrete operational and transitional 

students is an important part of the educational process. Helping them 

to develop a heuristic approach to problem solving so that they are capa¬ 

ble of dealing with a world which is becoming increasingly complex, can¬ 

not help but be beneficial to them and to the society in which they live. 

Delimitations of the Study 

Robert Taylor, the editor of The Computer in the School: Tutor, 

Tool, Tutee, points out that there are three modes of using computing in 

Education.14 First, as a tutor, the computer is programmed to present 

subject material to a student. To develop programs effectively requires 

many hours of expert work for relatively few hours of good tutoring. 

However, these programs may be designed to accommodate individual dif¬ 

ferences to an extent which seldom occurs in the normal classroom situa¬ 

tion. 
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Second, as a tool, the computer is used to aid in calculations, 

store and process information, analyze experimental data, and so forth. 

Time and intellectual energy may be saved for more rewarding use. 

The third mode of computer use involves the programming of the 

computer, which is in effect the "teaching" of the computer. Taylor 

suggests that there are several important benefits to doing this. These 

benefits include a greater understanding of the subject being "taught" 

to the computer, since you cannot teach what you do not understand. In 

addition, learners gain new insights into their own thinking through 

learning to program, and teachers have their understanding of education 

enriched as they observe the educational processes involved. 

It is this third mode which differs most from traditional educa¬ 

tional methods, and, in my opinion, offers the greatest opportunity for 

educational progress. This study will, therefore, be restricted to that 

mode of computer education which involves students learning a computer 

language and writing their own programs. 

Choosing a computer language out of the several which are available 

involves some difficult choices. The most commonly used computer 

language for educational purposes is BASIC. 

BASIC is an easy to use language in that it has relatively few com¬ 

mands and it is good at computational type problems. Unfortunately, 

because it has relatively few commands, the writing of an even mildly 

complex program usually involves a clumsy manipulation of these commands 

that are difficult to design and even more difficult to follow. To use 

a rough analogy, it is like trying to write a well thought out essay 

while being restricted to fifty or so words. Furthermore, since BASIC 



14 

is algebraic in nature, it does not lend itself well to using words, 

making it a rather abstract language to learn and fully understand. 

Since this study was primarily aimed at the concrete operational 

student, BASIC would be a poor choice, as it is doubtful that these stu¬ 

dents could handle the intrinsically abstract nature of the BASIC 

language. 

Other languages which might have been considered include: 

(1) PILOT, which is a dialogue-oriented computer language 

that, as J. W. Dean describes in an article adapted 

for the Journal of the National Education Association, 

15 
deals nicely with words and text. 

(2) PASCAL, another high-level computer language, is 

described as designed to lead to more efficienty pro¬ 

gramming, fewer errors, and easier revision. While 

PASCAL is described as not difficult to understand, 

to become proficient in using it takes considerable 

time and effort. 

Though these languages offer excellent possibilities for further 

study, it is the language developed the the MIT Artificial Intelligence 

Laboratory called Logo which is most directly related to Piaget s theory 

of intellectual development. The developers of Logo describe it as a 

"user-friendly," easy-to-learn language which they hope will teach stu¬ 

dents to deal with highly abstract concepts. 

It is for these reasons that Logo was chosen for use in this study. 

Although there are many methods of using the computer for educational 

purposes, it is the use of Logo in the "tutor" mode which offers, it is 



felt, the best chance of getting the concrete operational reasoner to 

learn abstract materials. 

15 

Design of the Study 

This study is designed to test whether the researcher may accept or 

reject the following two hypotheses: 

Hypothesis 1: Concrete operational students who have 

learned to program in Logo will not make signifi¬ 

cantly greater progress towards learning selected 

abstract concepts in physics than similar students 

who have not been taught to program in Logo. 

Hypothesis 2: Concrete operational students who have 

learned to program in Logo will not make signifi¬ 

cantly greater progress towards learning selected 

abstract concepts in physics which are directly 

related to Logo the concepts learned, than similar 

students who have not been taught to program in 

Logo. 

To do this study, eighth grade students who were enrolled in a 

general science course at Brattleboro Union High School were tested with 

respect to their level of reasoning. A modified form of the Lawson 

Classroom Test of Formal Reasoning was used to determine each student's 

reasoning level. As these students had been described by their science 

teacher as average, it was expected that there would be a range of cog¬ 

nitive levels among them, but most of these students were found to be 

at the concrete operational level of reasoning. The achievement of 
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those students who were found to be reasoning at a higher than "concrete 

operational" level served as a standard of the level of achievement that 

could be reasonably expected. The reasoning level test was not scored 

until the completion of the teaching parts of this study to preclude its 

influencing the researcher who was both tester and teacher of these stu¬ 

dents. 

The students that took part in this study were scheduled into two 

classes of 20 and 23 students respectively, by a computer which is pro¬ 

grammed to consider time and space availability only. As these students 

had not been tracked into ability groups, it was unlikely that there 

were other than random differences between groups. 

One group, chosen arbitrarily on the basis of available computer 

laboratory space, was used as a control, while the other was used as the 

"treatment" group. Both groups were pre-tested as to their knowledge 

and understanding of fairly abstract areas of physics. While this mate¬ 

rial is considered abstract, it is not overly mathematical in nature. 

That is, most of these eighth grade students should have been able to 

understand and apply the mathematics involved. The control group then 

followed their traditional course of study, which included demonstra¬ 

tions, class recitation, laboratory activities, audio-visual material, 

etc.; and the treatment group was taught to program in Logo. 

After a period of fourteen weeks, when the Logo group had completed 

the Logo course of study, both groups were taught a three-week "self 

contained" physics unit which dealt with the abstract concepts which 

had been pre-tested. Some of the material taught was directly related 

to concepts developed through the Logo course of study, and some was 
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unrelated. Furthermore, much of the material studied in this unit was 

different from other material studied in the general science course. 

After this unit had been taught, both groups were post-tested. 

To test the first hypothesis, the researcher determined the statis¬ 

tical means of percentage points difference in the pre- and post-physics 

tests for the control and treatment groups. A t-test was then used to 

determine if these means were significantly different. If this hypothe¬ 

sis was to be accepted, it must be shown that no significant differences 

existed at the .05 level between means for these groups. 

If a significant difference was found in the means of percentage 

points difference in test scores between control and treatment groups, 

the first hypothesis must be rejected. A rejection of this hypothesis 

would imply that if the treatment group's mean scores were higher than 

the control group's, learning Logo does help concrete operational stu¬ 

dents learn abstract concepts in general. 

To test the second hypothesis, it was necessary to first identify 

those questions in the physics test which test concepts that are 

strongly related to Logo concepts included as part of the Logo curricu¬ 

lum, and those questions which are only weakly related or unrelated. 

The researcher then scored each category (Logo related and unrelated) 

of questions separately. After which, the statistical means of the 

percentage points difference in scores for each category were subjected 

to a t-test for significant differences between control and treatment 

groups. 

To accept the second hypothesis, it must be shown that no signifi¬ 

cant differences exist at the .05 level in the means of percentage 
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points difference in scores for those questions on the pre- and post¬ 

physics test which were judged to be strongly related to concepts 

learned in the Logo educational program, as compared to those questions 

which were judged weakly related or unrelated to the concepts learned 

as part of a Logo educational program, between the control and treat¬ 

ment groups. 

If a significant difference were found in the means of percentage 

points difference in scores between treatment and control groups for 

those questions which test concepts that were judged strongly related 

to concepts learned as part of the Logo educational program, but not 

found for those questions that were judged weakly related or unrelated 

to Logo concepts, it would be necessary to reject the second hypothe¬ 

sis. A rejection of the second hypothesis would imply that if treat¬ 

ment group students scored higher than control group students on Logo 

related questions, the learning of Logo helps concrete operational 

students learn abstract concepts which are related to Logo concepts. 

If only the second hypothesis were rejected, the implication would 

be that while the learning of Logo does not help in the learning of 

abstraction physics concepts in general, it may have helped in the 

learning of Logo related abstract concepts. 

Curriculurn 

The curricula used for this study is made up of two parts. The 

first part is the Logo curriculum, and the strategy used to teach this 

curriculum. 
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The second part is the selected abstract concepts in physics cur¬ 

riculum, and the strategy used to teach this curriculum. 

Logo Curriculum--Objectives 
and Teaching Strategy 

The question of whether or not the Logo content and teaching proce¬ 

dures used here reflects the philosophical and pedagogical essence of 

Logo is a weighty one. If it does not, can one make any justifiable 

claims concerning the results of the experimental research done here? 

Certainly, one could expect criticism on these groups at the very 

least. 

The problem, then, is to make certain that the Logo used represents 

what is generally thought of as appropriate for what must be done here. 

But as the development of Logo is relatively new and is still in the 

process of evolving, one finds differing opinions on how Logo should 

be taught. Papert, in his persuasive book Mindstorms, speaks of chil¬ 

dren "learning without being taught" or "Piagetian learning." He 

believes the classroom is ". . . an artificial and inefficient learning 

environment," and that the computer should be used to modify the learn¬ 

ing environment so that the child will learn "painlessly," just as he 

or she learns to talk. Logo, then, should not be taught as simply 

another computer language, a "Logo environment," where students explore 

and discover new intellectual structures to help them interact with the 

world. Logo, he feels, should provide a medium for children to think 

about thinking, an environment for "epistemological reflection." 

While Papert feels that Logo could be used to help teach a traditional 

curriculum, he sees it as a vehicle for Piagetian learning, which to 
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him is learning without a curriculum; but, that teaching without a cur¬ 

riculum does not mean spontaneous, free-form classrooms or simply leav¬ 

ing the child alone. It means supporting children as they build their 

own intellectual structures with material drawn from the surrounding 

culture. 

Others, however, are not so sure. According to Stanley Pogrow, 

Associate Professor of Educational Administration at the University of 

Arizona and a Logo consultant, as cited in an article by C. Euchner,16 

"programming in Logo for Logo's sake" does not teach problem solving 

to any but the brightest pupils. Most students, he said, need to be 

shown how Logo principles apply to other subjects. And Dan Watt, author 

of the book Learning With Logo and a contributing editor of Popular 

Computing magazine, quoted in the same article, cautions that the use of 

Logo and research on problem solving are in the very early stages. 

"Logo," states Watt, "is not magic. It takes a lot of planning and 

good educators to make it work." 

Considering the problems involved in developing a good Logo unit, 

it was decided that borrowing heavily from the well-established written 

works of recognized experts in the field, such as Watt's Learning With 

Logo,17 Abel son's Apple Logo,18 and Abelson and diSessa's Turtle 

Geometry,19 and others, would be appropriate. Furthermore, considering 

the age and abilities of the student subjects, it was felt that the 

"graphics" aspects of Logo would be the primary vehicle of instruction, 

as the more sophisticated aspects of Logo might be too abstract. 

In addition, the researcher was aided in the development, and 

advised on the teachability of this unit by several Logo experts, 
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including a number of elementary and secondary school teachers of Logo. 

The version of Logo used here was the first edition of Apple Logo. 

Trying to take a middle ground between lack of structure and too 

much structure, a number of goals and objectives were developed along 

with a brief outline of procedures and student projects. Students were 

allowed a great deal of latitude to explore various avenues of interest 

within a guided framework. 

Achievement of student objectives was evaluated on the basis of 

successful completion of assigned projects, including some which were 

graded in terms of knowledge of Logo concepts, sophistication of tech¬ 

nique, and creativeness of approach. In addition, written examinations 

were given periodically to determine the student's ability to write 

simple Logo programs, correct program errors and interpret programs. 

The purpose of this evaluation was to determine the extent of each 

student's knowledge of Logo at the completion of this unit. This infor¬ 

mation was considered, along with student developmental level and 

ability to learn selected abstract concepts in physics in the analysis 

section (Chapter IV) of this study. 

As part of this Logo curriculum, concepts, such as vector addition 

and dynaturtle physics, were purposely included to provide material 

related to the selected abstract concepts in physics to be taught after 

the completion of this unit. This was done in order to help test the 

second hypothesis of this study. 

It may be noted that the Logo curriculum developed for this study 

is divided into seventeen lessons. It was not meant that these lessons 

be taught in equal periods of time. The time spent on any one lesson 
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depended on the complexity of the lesson and the time needed for stu¬ 

dents to achieve the objectives of that lesson. 

The following is a list of the student objectives hoped to be 

achieved by the completion of the Logo curriculum used. (See Appendix B 

for a complete listing of the Logo curriculum and lesson procedures used 

in this study.) 

Logo Objectives. The student will be able: 

1. To start up and load the Logo program. 

2. To use the following commands: 

PRINT (PR) HIDETURTLE (HT) 
FORWARD (FD) SHOWTURTLE (ST) 
RIGHT (RT) CLEARSCREEN (CS) 
BACK (BK) PENERASE (PE) 
LEFT (LT) PENUP (PU) 

PENDOWN (PD) 

3. To use these commands to draw simple geometric 
figures. 

4. To understand how angles are used in constructing 
these figures. 

5. To understand how side length and angle size 
determine shape of simple figures. 

6. To define a Logo procedure using TO and END. 

7. To correct mistakes using: 

<- delete character to left of cursor. 
-> moves cursor to right without deleting 

characters. 
[A] moves cursor to beginning of line. 
[B] moves cursor to left without deleting 

characters. 
FULLSCREEN or [L] to give full graphic 

screen. 
TEXTSCREEN or [T] to give full text screen. 
SPLITSCREEN or [S] to give mixed screen. 

8. To use the REPEAT command to draw simple geometric 
figures (e.g., REPEAT 4 [FD 50 RT 90]). 
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9. To use [G] to stop a Logo execution. 

10. To go into edit mode and edit a Logo procedure 
using: 

EDIT "NAME. 
[C] exits editor with text processed. 
[G] exits editor with text unprocessed. 
-> at end of line to move to next line. 

[A] moves cursor to beginning of line 
without deleting. 

[B] moves cursor back without deleting, 
and at beginning of line to move to 
end of previous line. 

<- at end of line to combine line with 
next line. 

[N] to move down to Next line. 
[O] to Open new line at cursor position. 
[P] to move cursor up to Previous line. 
[V] to scroll forward one screenful. 
[ESC] to scroll back one screenful. 
[L] to scroll cursor line to center of 

screen. 

11. To define more than one procedure at a time. 

12. To save a procedure to disk using SAVE "NAME. 

13. To catalog disk using CATALOG command. 

14. To load saved procedures using LOAD "NAME. 

15. To print hard copy using .PRINTER # 

16. To manage workspace using: 

P0 "NAME (prints out definition of 
NAME) 

P0 [NAME OTHERNAME] 
POALL (prints names and 

procedures) 
ERASE (ER) "NAME (erases file called "NAME) 

17. To use commands learned so far to draw a more compli¬ 
cated picture. 

18. To use the following screen commands: 

HOME to clear screen and move turtle to 
center position. 
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CLEAN to clear graphic screen without movinq 
turtle. 

19. To set pen colors using: 

SETPC # (0-black, 1-white, 2-green, 
3-violet, 4-orange, 5-blue) 

20. To set background using: 

SETBG # 

21. To reverse pen colors using: 

PENREVERSE (PX). 

22. To understand what is meant by a variable. 

23. To use Logo variables and inputs in Logo proce¬ 
dures (e.g., TO SQUARE :S —> SQUARE 100). 

24. To perform arithmetical operations on variables 
(e.g., using 2 * S in SQUARE :S procedure). 

25. To understand what is meant by recursion. 

26. To use recursion in procedures. 

27. To use recursion and variables to draw designs. 

28. To understand the infinite nature of recursive 
procedures. 

29. To use the following predicates with the follow¬ 
ing conditional expressions: 

>, <, =• 

30. To control recursion with conditional expressions. 

Example: IF :X > :Y [STOP] 

31. To define a regular sided shape. 

32. To write a procedure which draws regular sided 

shapes. 

33. To understand that only certain angles will 
produce regular sided shapes. 
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34. To apply knowledge of polygons to construct 
circles. 

35. To understand angular relationships with circles 
and other polygons. 

36. To understand nature of infinity and approximations 
of infinity. 

37. To use HEADING to control poly program. 

38. To use the MAKE command in a procedure. For 
example: 

MAKE "APPLE 50 
PRINT :APPLE 
50 

39. To understand that a conditional stop command must 
be inserted in the logically correct place in a 
procedure to work properly. 

40. To construct circles using the radius of a circle. 

41. To construct arcs of various sizes. 

42. To include procedures for arcs and circles in 
designs. 

43. To understand what a "frame of reference" is. 

44. To define Cartesian frame of reference. 

45. To move the turtle by specifying x,y Cartesian 
coordinates using the SETPOS command, 
e.g., SETPOS [30 40]. 

46. To move the turtle horizontally by using the 
SETX command. 

47. To move the turtle vertically by using the SETY 
command. 

48. To set the direction of the turtle using the 
SETHEADING, (SETH) command. Rotates turtle clock¬ 
wise with zero directed straight up, e.g., SETH 180. 

49. To understand what a random number is and use 
RANDOM # in a procedure. 

50. To define what a vector is. 
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51. To use Logo commands to construct vectors. 

52. To add and subtract vectors. 

53. To resolve vectors into components. 

54. To understand force as a vector quantity. 

55. To understand motion in terms of vector quantities. 

56. To understand the dynamics of motion using the 
dynaturtle program. 

57. To understand the dynamics of circular motion. 

Selected Abstract Concepts in Physics Curriculum-- 
Objectives and Teaching Strategy 

The abstract material chosen for this study comes from the disci¬ 

pline of physics. That much of this discipline is abstract and diffi¬ 

cult to learn has long been recognized by physics teachers and their 

students. John Renner, Professor of Science Education at the University 

of Oklahoma, points out an assumption often made is that as students 

accumulated information about physics, intellectual development would 

occur, and that the only indication that the general topic of intellec¬ 

tual status was ever considered is that it is generally taught to 

20 
twelfth grade students. 

The physics covered in this unit is quite abstract, especially if 

the student is expected to go beyond rote manipulation of formulas. An 

analysis of the subject matter and methodology shows that while some of 

it could be understood by the concrete operational student, most of it 

is either based on concepts which are considered formal operational, 

such as proportional or propositional reasoning, or deal with abstract 

content area, such as "unseen forces. 
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Because the students used in this study are eighth graders and are 

expected to be concrete operational, the material will be presented in 

as qualitative a way as possible. Nevertheless, it is very likely that 

these students will have difficulty understanding or applying the con¬ 

cepts they will be studying. 

During the process of developing this unit, a variety of literature 

dealing with physics, abstract reasoning, problem solving, and Piaget 

21 
was reviewed. In addition, several university professors with exper¬ 

tise in this area of study were consulted. (See proposed curriculum 

in Appendix B.) 

The following is a list of student objectives for the selected 

abstract concepts in a physics unit which is expected to be achieved. 

Selected Abstract Concepts in Physics Objectives. The student 

will: 

1. Know the definition of a force. 

2. Know the definition of a vector. 

3. Know that forces have vector properties. 

4. Understand how to add vectors. 

5. Know that unbalanced forces will cause objects to 
speed up, slow down, or change direction. 

6. Know that friction is an "invisible" force which 
can act on a moving or standing object. 

7. Understand the relationship between unbalanced 
forces and motion. 

8. Know that motion is a change in position over an 
interval of time, the rate of which is called 

speed. 

9. Know that velocity is an object's speed in a given 

direction. 
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10. Understand and apply the formula for velocity as 
it relates to distance and time. 

11. Understand what is meant by instantaneous velocity. 

12. Understand the meaning of accelerated motion. 

13. Understand how unbalanced forces produce accelerated 
motion. 

14. Know what is meant by a frame of reference. 

15. Understand why position is given with respect to a 
frame of reference. 

16. Understand relative motion. 

17. Understand the concept of inertial motion. 

18. Understand the effects of force on moving objects. 

19. Understand the effect of gravity on an object's 
motion. 

20. Understand how applying a force to an object may 
lead to curved or circular motion. 

21. Understand the centripetal nature of the force 
causing an object to move in a circle with constant 
speed. 

22. Know that there are forces such as the gravitational 
or electromagnetic forces that do not seem to push 
or pull by direct contact. 

23. Know that these forces may act through the exchange 
of "invisibly" small particles, called respectively 
gravitons and photons. 

24. Understand that these "unseen" forces influence the 
space surrounding them. 

25. Understand the "field" nature of this space in terms 
of these forces. 

26. Understand some of the properties of field in space 
such as the inverse proportional nature of the force 
emanating from a point. 

27. Apply these properties to explain observed phe¬ 

nomena . 
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Instrumentation 

Two instruments will be used in this study. The first instrument 

was designed to measure the Piagetian development stage of each of the 

participants of this study. The instrument used here has been well 

described in the literature, and is considered to be valid and reliable 

for the situation in which it will be used. 

The second instrument is basically an achievement test which was 

specifically designed to test the knowledge and understanding of some 

selected abstract concepts taken from the discipline of physics. As 

this instrument is new and specific to this study, it is hoped that con¬ 

tent validity and reliability can be demonstrated. 

Reasoning Level Test 

The modified Lawson Classroom Test of Formal Reasoning will be 

used in this study to determine the reasoning levels of the students 

involved. 

This test was used in place of "classical" Piagetian tasks, as 

these tasks were very time consuming and call for a level of expertise 

beyond the experience of most teachers. 

The Lawson test uses a demonstration format combined with a test 

booklet of instructions and questions. Fifteen demonstrations based on 

classical Piagetian tasks include: conservation of weight and displaced 

volume, proportional reasoning, controlling of variables, combinational 

reasoning and probability. 

Lawson estimated the reliability of the test, using the Kuder- 

Richardson 20 formula, to be 0.78. He felt that this represented an 
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adequate degree of Reliability.22 

The test was also found to have face validity as judged by a panel 

of six experts in Piagetian theory. In addition, it was found to have 

convergent validity as judged by the high correlation (r = 0.76) between 

the Lawson test results and results obtained by administering two 

Piagetian tasks using the classical interviewing method. A third mea¬ 

sure of validity, factorial validity, was found through an analysis of 

elements of the Lawson test as correlated to similar elements of a four- 

23 
task interview test. 

The author's own modification of this test consisted of videotaping 

the demonstrations to maintain a higher degree of consistency in giving 

the test. During a trial run of this test (1981), one-half of 

Brattleboro Junior High School's seventh grade was given the Lawson test 

and the other half was given the modified version. No significant dif¬ 

ference was found between the means of scores of the Lawson and the 

modified Lawson tests. 

Results of Lawson's test indicated that three identifiable psycho¬ 

logical parametrics were being measured. Lawson interpreted these three 

factors as: (1) formal reasoning, (2) concrete reasoning, and (3) early 

formal or transitional-formal reasoning. Students were scored 12 or 

better on their 15-question test could be considered formal reasoners, 

while those who scored 5 or less were considered concrete reasoners. 

Students whose scores ranged from 6 to 11 were considered to be transi¬ 

tional. (The questions asked as part of this test may be found in 

Appendix C.) 
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Concepts in Physics 
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The pre/post-test consists of a variety of questions which range 

in type from fairly concrete to very abstract. 

To assess the validity of the test for the purposes of this study, 

evidence was sought to demonstrate that the test's questions evaluate 

the objectives of this unit, and that many of these objectives are 

abstract in nature. Furthermore, evidence was sought to demonstrate 

that some of the objectives to be evaluated are directly related to con¬ 

cepts learned in the process of mastering the Logo unit, while others 

are unrelated. In other words, evidence of the content validity of this 

test was sought. 

To provide the evidence needed, a careful analysis of the test 

questions was made with respect to the stated physics objectives to see 

if they, in fact, test these objectives. Furthermore, an analysis of 

the physics objectives was done to see whether or not they met the cri¬ 

teria for being abstract. And, finally, an analysis was made to show 

the relationship between physics objectives Logo concepts taught. 

After this analysis was completed, a number of University of 

Massachusetts professors, with expertise in this area, were asked to 

judge the content and face validity of this instrument. These pro¬ 

fessors agreed that this instrument was valid to that extent. 

The reliability of this test was assessed by use of the split-half 

method of reliability determination. To do this, the test was divided 

into two equal half-tests made up of 15 even and 15 odd numbered ques¬ 

tions. It was expected that this method of selecting questions made it 
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likely that each half-test contained questions which are equally 

abstract and varied in content. 

The half-tests were then graded for each student in our sample, so 

that a coefficient of reliability could be determined. To determine the 

reliability coefficient, the Kuder-Richardson 20 formula Correlation 

was found, and then modified by means of the Spearman-Brown formula. 

As the same questions asked on the pre-test was used on the post¬ 

test after a period of approximately 17 weeks, the question of whether 

or not the pre-test will affect post-test results should be considered. 

To begin with, due to the nature of the material to be tested, it is 

very likely to be completely unfamiliar, and more than likely was for¬ 

gotten within a very short period of time. In any case, as all students 

will be exposed to the same material, any effect should be averaged out 

for our sample. (The test of selective abstract physics concepts may 

be found in Appendix D.) 
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CHAPTER II 

REVIEW OF THE LITERATURE 

The purpose of this review is to lay the theoretical and empirical 

foundation of this study. It will examine a theory of intellectual 

development and a learning model based on this theory. The review will 

establish the relationship between the intellectual development model 

and the philosophy of education for which the learning model is based 

upon. In doing so, it will establish the basis for testing an important 

aspect of this learning model. 

This review will be divided into four basic parts which will con¬ 

sist of: 

• Literature which describes the Theory of Intellectual 

Development as proposed by Piaget and others associated 

with this theory. Emphasis will be placed on those 

aspects of the Piagetian theory which discuss the 

developmental transition through intellectual stages. 

Research which supports or contradicts this theory will 

be considered with respect to the aspects of the 

Piagetian theory for which this study is based. 

• Literature which deals with an analysis of the under¬ 

lying abstract nature of concepts needed to learn 

physics, with respect to the Piagetian theory of formal 

reasoning. 

• Literature dealing with the philosophy, development and 

use of the computer language Logo as an aid to the 

35 
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educational process. Emphasis will be placed on 

research which measures the effectiveness of this lan¬ 

guage in helping students in the learning of abstract 

concepts. 

• Literature which describes the educational philosophy 

of the "Logo environment" as it relates to the develop¬ 

ment of a Logo curriculum. 

Piaget's Theory of Intellectual Development 

Description of Piagetian Model 
of Intellectual Development 

The Piagetian model of intellectual development is, in an important 

sense, based on a theory of evolution. In this evolutionary scheme, it 

is the mind that is evolving as the individual develops. Piaget hypothe¬ 

sized the existence of mental structures whose function was to organize 

the environment so that an organism can function effectively.As basic 

biological and intellectual structures develop, they serve as a guide 

to an organism behavior as long as its interactions with the environ¬ 

ment are successful. Environmental contradictions to these mental 

structures produce a need for the organism to change and adapt to new 

conditions, so that its mental structures evolve into a more sophisti¬ 

cated form. 

Piaget referred to himself as an epistemologist. His interest in 

epistemology, i.e., the study of knowledge, and his training as a 

biologist formed the basis of his interest in intellectual develop¬ 

ment. 
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Piaget integrated his biological and epistemological interests by 

first pursuing the psychology of human intelligence in terms of an 

organism's adaptation to its environment; and, secondly, by focusing on 

the process of intellectual growth in the individual. He believed that 

a full understanding of human knowledge could be gained only through 

the study of its formation and evolution in childhood.2 

This study of the formation and evolution of knowledge in the child 

led to the development of a model of intellectual development which sug¬ 

gests that children undergo a transition through intellectual stages as 

they mature; and although the time needed to attain a specific stage 

varies significantly from one child to the next, the basic sequencing 

of the stages is invariant. Research suggests that ability "develops" 

in this Piagetian sense rather than is acquired as a consequence of 

direct and short-term teaching. 

A significant development of Piaget's work was the recognition that 

children were not merely miniature replicas of adults who thought less 

efficiently, but thought differently as well. Intellectual development 

had to be conceived in terms of evolution through these qualitatively 

4 
different stages of thought. 

To begin with, Piaget defined intelligence as a particular instance 

of biological adaptation, which allows the individual to interact effec¬ 

tively with the environment at a psychological level. Piaget, borrowing 

the concept of equilibrium in physics, uses it to describe the direction 

which successive adaptations and exchanges between the organism and its 

environment take. In this case, equilibrium refers to a balance between 

an individual's cognitive structures and his environment. Piaget 
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explains that while the balance may be disturbed, the individual can 

perform actions to restore this balance. The types of actions the child 

is capable of using changes as the child develops, and this changes the 

resulting equilibrium as well.5 

Furthermore, the difference between high IQ children and those 

with lower IQs is the rate at which these children move through a par¬ 

ticular stage. A high IQ child might master in several months a level 

of cognition for which an average child might take two years. However, 

even the high IQ child cannot be pushed into the next stage before being 

biologically ready.^ 

Research, most notably done and reported by H. T. Epstein, in 

neuroscience suggests that there is a neurological basis for this 

development in terms of brain growth spurts. This research indicates 

that 85 to 90 percent of all youngsters of average and above-average 

ability experience brain growth spurts at some point during the ages of 

2-4, 6-8, 10-12, and 14-16+, with growth patterns in-between.'7 Although 
g 

some of this research has been criticized as poorly done, others point 

out that though there were inconsistencies with Epstein's data and 
9 

problems with his interpretation, his predictions generally hold. 

Data showing electroencephlograph measurement of brain waves and cogni¬ 

tive activities, for example, show systematic development with age. 

This data, derived from several studies of brain-wave development, indi¬ 

cated "spurts" did occur at approximately the same ages found for brain 

growth spurts.^ 

Piaget, whose clinical observations do not depend on neurological 

research for validation, postulates that all species inherit two basic 
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tendencies: organization and adaptation. 

g^an1zation refers t0 the tendency for all species to systematize 

their processes into coherent systems. For example, fish have gills, a 

particular circulatory system, and temperature mechanisms which allow 

them to live in water. 

At the psychological level, Piaget suggests there are mental struc¬ 

tures present which are systematized by the organism. For example, the 

very young infant has available the separate behavioral structures of 

either looking at objects or of grasping them. He or she does not ini¬ 

tially combine the two, but after a period of development, he or she 

organizes these two separate structures into a higher-order structure 

which enables him or her to grasp something while holding it. Organiza¬ 

tion, then, is the tendency to integrate structures into higher order 

systems or structures.11 

Adaptation refers to an organism's tendency to adapt to the environ¬ 

ment by the processes described by Piaget as accommodation, which is an 

individual's tendency to change in response to environmental demands; 

and assimilation, the process by which the individual deals with an 

environmental event in terms of his or her own current mental structures. 

As the individual tends to organize his or her behavior and thought, 

he or she develops, according to Piaget, a number of psychological 

structures which take different forms at different ages. Piaget 

describes four major stages of intellectual growth: The Sensorimotor 

Stage, which begins at birth; the Preoperational Stage, which begins at 

about two years; the Concrete Stage, which begins at about seven years; 

and the Formal Stage, which begins at about eleven. Some researchers 
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believe that there is a fifth (and last) stage which begins at about 

age fifteen years.^ 

The stated ages are only approximate and different aspects of 

how stages proceed at different rates, and what remains invariant is the 

sequence of these stages. That is, in order to proceed to a new stage, 

the child would have had to develop certain structures which are part 

of the former stage. Even then, the development of a structure to deal 

with a certain task at one age may not work for a different, but simi¬ 

lar, task. In fact, while one child may be able to accomplish some task 

before another similar task, a second child may reverse the order. This 

ability lag between similar tasks within a developmental period was 

called horizontal decalage by PiagetJ3 

As an example of horizontal decalage, a child may develop the 

ability to conserve the number of discontinuous quantities, such as 

marbles, at the age of six or seven, but cannot conserve the concept of 

weight until age nine or ten, and volume until age eleven or twelve. 

Leone Pascual and his co-workers have been critical of Piaget's 

attempt to explain horizontal decalage through "resistance" to assimila¬ 

tion, presumably related to content of the task. 

The effect of content on the ability of a subject to do a specific 

task is another source of criticism of Piaget's work. Marcia Linn, for 

example, maintains that while Piaget was concerned with "content-free" 

structures for his developmental-based mechanisms and structural models 

of reasoning, in the real world of practice (especially in the science 

classroom), many factors are not addressed by Piagetian theory. These 

include factual knowledge, uniqueness of formal reasoning, field 
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dependence/independence, individual attitudes, diagnosis of specific 

errors, sex differences, and instructional intervention, to name a few. 

She suggests that these factors do play a role in influencing per¬ 

formance and that they deserve more careful scrutiny.^ 

In fact, Leone Pascual and R. Case have put forth neo-Piagetian 

theories which take into account the role of factual knowledge. Both 

models include the role of working memory as a factor in reasoning. 

Leone Pascual has worked out a transition rule for Piaget's develop¬ 

mental stages which correspond to a regular bi-yearly increase in the 

capacity of working memoryJ6 

Description of Piagetian Stages 

During the sensorimotor stage of development, as described by 

Piaget, the child is unable to "think," but performs overt actions which 

show organized behavior. The child then develops into the preopera- 

tional stage in which problems are solved by "thinking them out." 

(Piaget defines "operation" as internalized actions which modify the 

object of knowledge.) Then follows the concrete operational stage in 

which the child can solve complex problems, but needs reference to 

familiar actions and objects. And then we have the formal operations 

stage in which operations are carried out on verbal propositions rather 

than directly on objects and their representations. Also, formal 

thought is hypothetico-deductive and proceeds from what is possible to 

what is real, through the application of a mental structure, which 

Piaget calls a "combinational system," that makes possible the listing 

of propositions systematically in all possible ways. It is this 
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combinational system that provides the basic set of operations that 

allow subjects to examine data to verify hypotheses.17 

At the secondary school level, we are primarily concerned with the 

latter two stages of Piagetian development. Piaget18 and his associates 

describe some of the characteristics of concrete and formal operational 

students as follows: 

1. For students who have attained the concrete stage of develop¬ 

ment, we should expect a "decentration" of thought. That is, the child 

should be able to focus on more than one action at a time when the 

action involves objects. Concrete operational students often cannot do 

this in the absence of concrete objects. Furthermore, the child 

should be able to visualize the transformation from the beginning of an 

event to its end result, and then be able to reverse the process. 

We should also expect the concrete operational child to be able to 

apply conservation reasoning, e.g., understand that a liquid completely 

poured from a tall, narrow container into a short, wide container has 

not lost any substance. Conservation reasoning should not only apply 

to substance, as in the preceding example, but number, length, and 

weight as well. (Conserving displaced volume gives the concrete opera¬ 

tional child difficulty, and volume may not be completely conserved 

until formal operations.) 

In grasping these concepts, he or she will be able to use the 

argument of "identity," i.e., if you take nothing away, you must keep 

the same amount; the argument of "negation," i.e., if you return the 

substance, you still have the same amount; and arguments of "compensa¬ 

tion," i.e., the loss of one characteristic is compensated by the gain 
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of another. 

He or she should be able to grasp ordinal relationships so that he 

or she would be able to establish one-to-one correspondences and arrange 

data in increasing or decreasing serial sequence. He or she can arrange 

objects using "vicariant" order, and can construct numerically equiva¬ 

lent sets. 

He or she would still have difficulty if the A implies B and B 

implies C and therefore A implies C variety (twice removed implications). 

This problem stems from an inability to think simultaneously about 

several aspects of a situation in the abstract. This explains why con¬ 

crete operational students have so much trouble with ratios.19 

Classification is a mental process with roots in the sensorimotor 

period of development. It continues to develop and be refined through 

the period of formal operations. The progression of classification 

skills is both sequential and hierarchical. As children become 

involved in higher-level classification tasks, they become involved with 

20 
higher-level thinking. 

Classification is the ability to sort or group a collection of 

objects according to a specified rule, or in a systematic way. To be 

able to classify fully one must know more than just the name of the 

object; one must also know its properties and characteristics. 

Classification involves the separation of a set of subsets. These 

activities fall into two general categories--simple and multiple classi¬ 

fication : 

t Simple classification involves subsets that disjoint, 

with no common elements, and is often accompanied by 
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negation, e.g., red and not red. 

t Multiple classification involves non-disjoint or over¬ 

lapping sets which have elements in common. 

This is often a source of confusion and needs a higher level of 

thinking. The child must be able to perceive an object in two dif¬ 

ferent ways simultaneously.21 

We could expect the concrete operational student to be able to make 

simple classifications and successfully relate systems to subsystems and 

classes to subclasses, and to be able to produce a hierarchical arrange¬ 

ment of classes when working with concrete objects. Classification of 

abstract concepts, on the other hand, would give the concrete opera¬ 

tional child difficulty. 

The concrete operational student, while quite capable of experi¬ 

mentation on a surface level, would be limited to empirical results. 

Typically, he or she would much rather see the actual outcome of an 

experiment than have to consider the abstract possibilities. He or she 

uses little planning or foresight, does not consider all possibilities, 

and fails to make consistent use of variable control. While he or she 

is capable of observing results accurately, he or she often draws incor¬ 

rect conclusions from observations. (Chances for drawing successful 

conclusions improves with greater familiarity with subject.) When con¬ 

fronted with several factors which might influence the results of an 

experiment, he or she usually tests each alone, but fails to consider 

all of them in combination. 

2. Students who have attained the formal stages of operations have 

reached a high degree of equilibrium. Their thought is effective and is 
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characterized by flexibility. They can deal with complex problems in a 

logical way, which imagines many possibilities inherent in a given situa¬ 

tion. They can deal with hypothetical propositions, theories, idealized 

models, and compensate mentally for transformations in reality. 

We should expect them to understand concepts defined in terms of 

other concepts or through abstract relationships, such as mathematical 

limits; imagine all possible combinations of conditions even though not 

all may be realized in nature; use theories or idealized models; and be 

able to recognize and apply functional relationships, such as direct 

or inverse proportion. 

His or her ability to classify extends to abstract concepts, and 

he or she has no difficulty conserving displaced volume. Furthermore, 

when experimenting, he or she is able to systematically isolate varia¬ 

bles, can make distinction between necessary and sufficient cause, and 

can consider the hypothetical outcomes and possibilities of the experi¬ 

ment. 

He or she uses operations to solve problems and is unlikely to be 

confused by unexpected results because he or she has perceived before¬ 

hand nearly all of the possibilities. Furthermore, he or she under¬ 

stands the nature of probability and recognizes its implications for 

experimental design and data analysis. 

In contrasting experimentation ability of the concrete and formal 

reasoning student, Piaget explains that the concrete operational subject, 

when dealing with complex explanations, appears limited to proceeding in 

a step-by-step fashion without relating each partial link to the others. 

The formal operational subject, on the other hand, appears to view an 
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experiment from the start in terms of a total set of possibilities and 

in terms of necessary relations between propositions. In reasoning, 

each partial link in an explanation is grouped in relation to the 

explanation as a whole. Therefore, reasoning moves continuously as a 

function of a "structured whole."22 

Piaget's Model as It Relates 
to Learning 

Learning, in the narrow sense, according to Piaget,23 involves the 

acquisition over time of new responses and is restricted to specific 

situations. Mental growth, however, involves not only learning, but 

intellectual development as well. By intellectual development, Piaget 

meant the acquisition of new structures of mental operations as a reac¬ 

tion to four ongoing processes. These processes are: 

1. Maturation. This involves physical brain growth and 

maturation, which, as previously pointed out, has been 

found by some researchers to spurt and plateau during 

periods roughly correlated to Piagetian stages. 

2. Logical-Mathematical. This involves experiences 

which are directly experienced by the learner. This 

is not merely a physical experience, but one in which 

the learner acts to order, count, etc. 

3. Social Transmission. This involves the transmission 

of information and experiences through social interac¬ 

tion; that is, attending school, having a parent 

explain something or being read to, etc. It should 

be pointed out that Piaget believes that social 
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transmission can only be effective if the child is 

prepared (has the mental structures) to understand 

the conveyed information. 

4. Equilibration (Self Regulation). This involves the 

integration of the other three factors and refers to 

the self-regulatory process which controls the 

exchanges between an open system and its surroundings. 

Equilibration is an intellectual system that deals 

with these surroundings in terms of the present 

structures of the organism, i.e., it allows for 

assimilation. It can also result in self-modification 

that allows the organism to deal with environmental 

demands through the process of accommodation. The 

tendency to equilibrium between organism and environ¬ 

ment is the result of this process. That is, dis¬ 

equilibrium is succeeded by greater equilibrium. For 

example, incomplete understanding or confusion is 

replaced by greater understanding. 

Piaget describes this intellectual progression in terms of strate¬ 

gies and the probability of adopting a particular strategy. As an exam¬ 

ple, consider the child who conserves the quantity of a liquid in terms 

of its height in a container. He or she may decide to change his or 

her strategy and consider width to be the most important consideration. 

This may occur because he or she sees it in a new container, short and 

wide instead of tall and narrow. Or he or she may be dissatisfied with 

always using the same old solution without being certain of its 
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correctness. He or she may then jump between one solution and the 

other, until he or she begins to consider the two factors (height and 

width) simultaneously. It is only then that true conservation of sub- 

stance can develop. 

It is unlikely that the child will come up with the last strategy 

without going through the earlier stages first. That is, it is likely 

that the child will go through the sequential probability of develop¬ 

ment, which is unlikely to happen before the child has the necessary 

mental equipment to make use of the new experience. Only then, feels 

Piaget, can learning occur. If the child is not ready, he or she will 

either change the experience into a form that he or she can assimilate, 

or he or she will weakly respond to a specific situation which he or 

she does not have the ability to generalize. 

The learning process, then, involves four phases through which the 

child progresses. In the first phase, the child can keep to modes of 

reasoning without perceiving any conflict between modes. The child then 

becomes aware of the conflict during the second phase, and undergoes dis¬ 

equilibrium as a result. He or she tries to reconcile the conflict in 

some way, usually coming up with a "compromise solution" which uses some 

illegitimate method to resolve the conflict. This third phase shows the 

child mentally developing an accommodating structure which indicates 

equilibration is going on. Finally, in the fourth phase, the child 

develops a legitimate means of coordinating the two schemes—an act 

which involves a certain amount of compensating. 

It is felt, then, that the child will only profit from training 

when the initial developmental level of the child is high enough to 
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allow it. That is, the child has to be ready, or at least near-ready 

to learn. Those children who are in a transitional stage of development 

can have their progress considerably accelerated by being put into dis¬ 

equilibrium situations. 

In considering Piaget's model as it relates to the learner, one 

sees the difficulty in teaching abstract ideas to students who, as a 

result of their developmental level, are not capable of learning. The 

subject of physics is based, for the most part, on abstract concepts. 

Teaching students who operate on a formal level is no great problem. 

However, many high school physics students are not fully formal opera¬ 

tional, and may even be concrete operational. Many of these students 

fall by the wayside if they are held strictly accountable for learning 

these abstract concepts. The challenge then is to find a method of mov¬ 

ing these students to a higher level of thinking and learning. In the 

next section of this review, the abstract nature of physics concepts 

will be examined to see how they relate to formal and concrete 

learners. 

The Abstract Nature of Physics 

Can students grasp physics? This question was asked by researchers 

J. W. Renner and R. M. Grant in an article by that name. It was asked 

with respect to the abstract nature of physics concepts and the knowl¬ 

edge that many students, including students of physics, are not fully 

abstract reasoners. They refer to Piaget's theory that non-abstract 

thinkers operate on "objects" and not yet on verbally expressed 

hypotheses.25 Such thinkers, they point out, would insist, for example, 
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that a model built on an assumption is wrong or impossible if the truth 

of the assumption is not known. On the other hand, an abstract reasoner 

is one who thinks beyond the present and forms theories about everything, 

delighting especially in consideration of that which is not.^6 

Using Piaget's concrete and formal thought model, Anton Lawson 

describes concrete concepts as those whose meaning can be developed from 

firsthand experience with objects or events. And formal concepts are 

those whose meanings are derived through position within a postulatory- 

deductive system.27 These definitions shall be used as part of an 

evaluation of the physic concepts to be taught as part of the author's 

study. 

To evaluate whether or not a particular concept is concrete or 

formal, Renner provides some examples of type of concept as commonly 

28 
found in physics textbooks. The following are concrete: 

• Light beams bounce back evenly off mirrors; 

• Steel balls bounce back evenly off steel plates; 

• Real images are formed by concave mirrors; 

t Light beams come to a point after reflection from a 
curved mirror. 

In each of the preceding examples, real objects or events were 

referred to. 

The following are examples of formal concepts: 

• The energy states of hydrogen can be described by the 
combined picture of waves and particles; 

• It is the smallness of the atom that makes atoms so 
difficult to detect with the unaided senses. On the 
other hand, it is the smallness of size and almost 
unlimited number which enable us to explain all the 
wonders of matter. 
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In each of these examples, the concept is defined in terms of a 

postulatory-deductive theory-the quantum theory in the first case and 

atomic theory in the second. 

Renner found that in six secondary school textbooks examined there 

were 130 major concepts which could be classified as formal, while the 

concrete concepts found were always minor. Even many of the minor con¬ 

cepts developed were formal. This clearly indicates that the typical 

physics curriculum is highly abstract in nature, and it is likely, then, 

that only formal thinkers have a reasonably good chance at learning the 

subject. 

A number of studies over the past decade have looked into the ques¬ 

tion of how students learn physics. Some of these studies in the field 

of mechanics were summarized in an article by Lillian C. McDermott, 

titled "Research on the Conceptual Understanding in Mechanics."29 

McDermott points out that while some researchers used physics for examin¬ 

ing cognitive processes, and others investigated conceptual understand¬ 

ing in particular areas of physics, the results indicate that similar 

difficulties occur among students of different ages and ability, and 

that the persistence of these difficulties suggests that they are not 

easily overcome. 

The studies looked at were organized by topics in mechanics and 

include: "passive" forces, gravitational force, velocity and accelera¬ 

tion, and force and motion. These topics are particularly interesting 

to the author of this study, as many of these topics were included as 

part of the "abstract concepts in physics" used here. 
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Passive Forces 

These are forces, such as tension in a string, which respond to 

an applied force by adjusting its own magnitude or strength. Many stu¬ 

dents, apparently, do not recognize the existence of these forces. 

In a study conducted by Svein Sjoberg and Svein Lie30 in Norway, 

over one-thousand students, including secondary school students, future 

teachers, university students and physics graduate students, were asked 

a number of questions regarding passive forces, including one in which 

they had to indicate the forces acting on a stationary and a swinging 

pendulum. For the stationary pendulum, about 50 percent of the secon¬ 

dary students who had had one year of physics omitted the tension in the 

string. About 40 percent of the future teachers omitted the force as 

well. Even about 10 percent of the graduate students failed to indi¬ 

cate the force due to the string. For the swinging pendulum, quite a 

few students had the common misconception that a force existed in the 

direction of motion. 

Other studies, done in the United States, point out that miscon¬ 

ceptions concerning "normal" forces, that is, the upwards force exerted 

by such things as a chair in response to the weight of someone sitting 

in it, for example, are quite common at all levels. Part of a class 

discussion on this topic by junior high school students was recorded by 

Rosalind Driver,31 as part of one of the first descriptive studies of 

student conceptual understanding in physics, indicated a common miscon¬ 

ception with the following statement made by a student: 

That chair does not push up. If it did, when you got off, 
it would go 'whoop.' [Indicates upward motion with hand.] 
. . . These things [tables, chairs] are offering resistance. 
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... They are not pushing up. . . . Those things, the 
chair, can t do anything. They are not alive. 

Grativational Force 

A study conducted by Audrey Champagne, Leopold Klopfer, and their 

32 
collaborators, involving twelve academically-talented seventh- and 

eight-grade students, gives us some insight into student ideas about 

gravity, which generally confirmed findings from other studies. The 

results of this study indicated that while students realize that the 

speed of a freely falling object increases, they also thought that speed 

was roughly proportional to gravitational force. It was apparent that 

many students confused the concepts of mass and weight and velocity and 

acceleration. 

In another study, using older students, Richard Gunstone and 

33 
Richard White, at Monash University in Australia, found that when col¬ 

lege physics students were shown a bucket of sand attached to a rope 

supporting a block of wood on the other side of a pulley with the bucket 

being placed markedly higher than the block, and asked to compare the 

weights of the two objects, about 30 percent of the 400 students asked 

had failed to state that the weights were equal. 

Many of the incorrect responses implied that the block was heavier 

because it was nearer the floor. This is a common response found in a 

number of other studies, including those with younger students. 

Velocity and Acceleration 

34 • 
In a study probing student understanding of motion, it was found 

that many students: 
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• Could not distinguish clearly between the concepts of 
speed and position with a particular instant; 

• Did not discriminate between velocity and change in 
velocity; 

• Neglected to consider the time intervals during which 
changes in velocity took place. 

In a number of studies concerning relative motion,35 vector con- 

cepts of motion, and projectile motion, 7 it was found that many stu¬ 

dents: 

• Thought that velocity was an intrinsic property of an 
object, independent of reference frame; 

• Did not recognize that the propulsion system of a boat 
is independent of the speed of a current in a river; 

• Believed that when the horizontal force is removed from 
a projectile, the horizontal velocity ceases abruptly 
and the object falls vertically. 

Force and Motion 

The relationship between force and motion is widely recognized as 

misunderstood by those untrained in physics. The idea that a force is 

always necessary to sustain motion, even at steady speed, is an example 

of a common misconception. McDermott, in her review, points out that 

researchers have found that this and similar ideas are not readily aban¬ 

doned, but are retained together with the accepted scientific view. 

Many of the difficulties arise from the difference in meaning 

ascribed to many technical terms by the physicist and the layman. Words 

such as "force" and "acceleration" are often used indiscriminately by 

the layman, who often interchange such words as "force" and "momentum." 

In a study involving curvilinear motion and trajectories by 

38 
M. McCloskey, A. Caramazza, and B. Green at John Hopkins University, 
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about 50 undergraduates were asked to trace the path a pendulum bob 

would follow if the string were cut at each of four different positions 

along its path. They found that only one-fourth of the students gave an 

essentially correct response for all four situations. In many cases, 

the students ignored the velocity of the bob at the instant the string 

was cut, indicating the bob would move in a direction the researchers 

believed constituted a model of motion reminiscent of the medieval 

theory of impetus, i.e., the object will continue moving in its original 

manner until the initial "force" that set it in motion is "used up." 

John Clement, at the University of Massachusetts, examined how 

pre-engineering students perceived the relationship between force and 

motion by administering a written examination early in the course and 

at the end. The same written tasks were also presented to a smaller 

number of students during individual interviews that were videotaped. 

One task involved drawing a force diagram for a coin just after it had 

been tossed in the air. A typical response indicated that "force from 

your hand gradually dies away as it pushes on the coin." 

Clement listed a number of characteristics, which he grouped 

together and labeled the "motion implies a force" misconception. This 

model includes the concept that all motion, even at constant velocity, 

implies a force in the direction of motion that is greater than any 

opposing force, and that changes in motion can be accounted for by 

forces that "die out" or "build up." 

L. Viennot,40 at the University of Paris, tested about 2,000 

French, British, and Belgian students from the university and secondary 

school levels with respect to their understanding of the relationship 
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between force and motion. From their responses, Viennot constructed 

a model for how students think about force. According to this model, 

students hold both Newtonian and non-Newtonian conceptions of force. 

If the motion is not directly accessible, either through direct observa¬ 

tion or from a diagram, students use the correct Newtonian force in 

solving the problem. If, however, the motion is obvious, it depends on 

whether or not the motion is in the same sense as the force acting on 

it for the student to use the correct Newtonian explanation. If the 

student believes there is a conflict between the motion and the direc¬ 

tion of acting force (as in the case of a force acting in a direction 

opposite to the velocity), he or she will attempt to account for the 

motion by introducing a non-Newtonian force. This new force: is in 

the direction of the motion; is proportional to the velocity instead of 

the acceleration; and is not well localized in time and space. 

In another study, the computer was used to investigate student con¬ 

ceptual difficulties concerning the force-motion relationship. Andrea 

41 
diSessa and Barbara White, at the Massachusetts Institute of 

Technology, designed tasks in which students used keyboard commands to 

move a simulated object on a screen. 

DiSessa developed a series of games to explore student understand¬ 

ing of force and motion which were used by students of different ages. 

The games featured a "dynaturtle" that moved according to Newtonian laws 

of dynamics, and the students were asked to make the dynaturtle move 

with different speeds and directions in response to the application of 

suitable "kicks." 
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White designed computer games to address conceptual problems she 

had previously identified through written pre-tests administered to high 

school students taking PSSC physics. Students maneuvered a simulated 

spaceship through a frictionless, idealized environment which provided 

experience and immediate feedback. She found significant improvement on 

written post-tests followed the playing of these games. 

These and other studies described by McDermott point out that many 

students emerge from their study of physics without a functional under¬ 

standing of some elementary but fundamental concepts, and the difficul¬ 

ties these students have are related to the abstract nature of these 

concepts, as well as the intuitive preconceptions the students may have. 

Many of the difficulties students have learning physics concepts 

are based on the same reasons that they have difficulty learning chemis- 

try. J. Dudley Herron, of Purdue University, notes that: "Over the 

years, I have observed that any concept which involves a ratio is 

extremely difficult for many students; density, velocity, acceleration, 

molarity, and reaction rate are names for a few of those concepts." 

He indicated that while students are able to memorize an algorithm for 

making numerical calculations of these qualities but appear to have such 

poor comprehension of the idea, they are unable to apply the concept to 

any problem different from those analyzed and discussed in class. Herron 

cites, as an example, students who have learned how to calculate density 

from mass and volume data are frequently unable to answer simple ques¬ 

tions such as, "Water has a density less than that of sulfuric acid. 

Which would have the greater volume, 100 g of water or 100 g of sulfuric 

acid?" 
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Testing the theory that students who were formal reasoners would do 

better in Herron's chemistry course than concrete operational students, 

he selected a random sample of 20 students. Seventeen of the sample who 

were available for testing were given a battery of Piagetian tasks admin¬ 

istered by three science students in science education. Scores on this 

battery of tests were then correlated with the total points earned in 

the course using the Pearson product-moment correlation. The best esti¬ 

mate of the correlation obtained was 0.8.43 

Herron was not certain as to what extent this relationship would 

hold for other chemistry courses, but he thought it would be high. 

Thirty-three students from a number of freshman courses were given this 

same battery of Piagetian tasks. Scores on this battery were correlated 

with scores on a chemistry placement test. Although these students were 

not representative of the students in the chemistry classes since a 

large proportion of them were among the better students which would 

result in an estimate of correlation lower than what actually exists, 

the correlation was still a substantial 0.7.^ 

While Herron believes that formal concepts are not really accessi¬ 

ble to students who are not formal in their thought, he feels that it 

would be impossible to make chemistry any less abstract than it is with¬ 

out returning to ". . .a course based on blind memorization of a 

catalog of descriptive chemical facts is as repugnant to me as the con¬ 

tinuation of courses based on the blind memorization of inscrutable 

theory." 

If chemistry is considered a highly abstract subject, certainly 

physics, which is filled with abstract models and concepts, must be 
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considered abstract as well. However, in a study done by H. D. Cohen, 

D. F. Hillman, and R. M. Agne, only a weak correlation was found between 

the level of physics course taken and final course grade.45 In this 

study, 195 undergraduate students at the University of Vermont were ran¬ 

domly chosen to participate in the study. Students were drawn from four 

introductory physics courses, each course representing an increased 

level of sophistication. 

All the students took a battery of tests which included at least 

one Piagetian task at the very beginning of their respective courses. 

One hundred eighteen students participated during the first round of 

testing and were given three Piagetian tasks (Floating, Pendulum, and 

Shadows) to accomplish. The remaining 77 students participated in a 

second round of testing and were given one Piagetian task (Chemicals). 

After the first round of testing, it was concluded that two of the 

Piagetian tasks were inappropriate (Floating and Pendulum) for the sub¬ 

jects involved, as a large number of the subjects had been exposed to 

the precise content of these tasks during high school science courses. 

The researchers found that the correlation between course level and 

Piagetian level was "just significant" and that the correlation between 

student grades, averaged over a two-year period with two different 

instructors, of 53 students from the lowest level course was also just 

significant. Additionally, the researchers found that when Piagetian 

level was compared with course grade, which was also found by averaging 

over a two-year period with two different instructors, for the top level 

course no correlation existed. Their conclusion was that their data 

showed little correlation between course grade and Piagetian level. 
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This, they felt, was most true for the most advanced courses which were 

likely to be the most formal. 

It is interesting to note that a careful reading of Cohen and his 

associates' paper indicates that the researchers used only one Piagetian 

task to test each student's Piagetian level. As the individual task used 

could only test one aspect of the student's formal reasoning ability, it 

would seem unlikely to be a reliable measure. When you then consider 

that in testing a population of college physics students, especially in 

a higher-level class, you would not expect to find much of a range in 

reasoning ability. Expecting to find strong correlations then would 

seem not very likely. 

W. T. Griffith,^6 of Pacific University, also investigated the rela¬ 

tionship between Piagetian cognitive level and performance in introduc¬ 

tory physics courses. In this study, Griffith uses a test of formal 

reasoning developed by Griffith and Weiner which they call the Science 

Logic Test (SLT). 

The SLT is a penci 1-and-paper test of some of the logical opera¬ 

tions identified by Piaget as components of formal thinking. The 

12-item test includes two or three items from each of five subscales: 

proportional reasoning, probalistic reasoning, combinatorial reasoning, 

hypothetical reasoning, and control of variables. The selection cri¬ 

teria for these items included difficulty level, correlations with test 

total, item-item correlation, and correlations with performance on 

interview-style Piagetian tasks. An important feature of the test, 

Griffith points out, is that it covers a wide range of formal opera¬ 

tions. He cautions that any test involving just three or four items 
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usually would not cover a wide enough range to be a reliable predic¬ 

tor. 

Course grade was based primarily on examinations given throughout 

the term. By prior agreement, 25 to 30 percent of the questions asked 

were qualitative and conceptual in nature. These conceptual questions 

took a variety of forms, including explanations of physical concepts, 

interpretation of graphical information, and prediction of physical 

effects in qualitative terms. 

The results of the study indicated that the SLT was an important 

predictor of performance in their introductory physics courses and that 

it was an even better predictor of performance if only qualitative or 

conceptual items were considered as the basis of determining student 

performance. 

In another study dealing with physics concepts, this time with 10 

to 13 year-olds, M. Shayer and H. Wylam indicate that: "It has been 

possible not only to show a unitary relationship between estimates of 

Piagetian stages of development and levels of understanding in a wide 

variety of Heat concepts, but also to report the findings in the form 

of an addition to the body of cognitive development findings already 

published by Piaget. 

In summary, the preponderance of evidence seems to indicate that 

much of what is studied in physics is abstract in nature and difficult 

to learn. Furthermore, there is a correlation between performance in 

physics, especially when performance is based on ability to understand 

the conceptual aspects of the subject, and Piagetian developmental 

level. 
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Use of the Computer Language Logo 

Learning the abstract concepts of physics, as indicated in the 

preceding section, is generally a challenge. For those of us who do not 

reason in the formal sense, as defined by Piaget, learning these abstrac¬ 

tions may be beyond reach. Certainly there are a large number of 

researchers who feel that the ability to learn abstract concepts is 

directly related to one's stage of intellectual development. 

A number of researchers and educators have tried to design educa¬ 

tional programs based on Piagetian theory. An example of one such pro¬ 

gram was developed by R. Karplus, A. Lawson, W. Wollman, et al., to aid 

educators to understand the large differences in the abilities of stu¬ 

dents to learn science concepts, and to aid teachers to respond effec¬ 

tively to the learning problems associated with these differences.48 

While the methods described are interesting, they do not appear that 

different from methods presently used by many good science teachers, 

which have met with varying degrees of success. Their approach empha¬ 

sizes extended exploration of a phenomenon before the introduction of 

formal concepts related to the phenomenon, and then followed by a period 

of concept application. 

But in the last ten years or so, there has been a virtual explosion 

of computer use for educational and personal purposes. With the 

increased availability of the computer, educators and researchers have 

had the opportunity to examine a number of novel approaches to education 

which uses the computer as its main point of focus. 
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While there are a number of promising computer techniques and 

computer languages available, the language called Logo has apparently 

captured the imagination and interest of an increasingly large number 

of educators and school systems. A few years ago, only a handful of 

teachers ever heard of the language, and now there are very few teach¬ 

ers, especially in the elementary schools, who have not. 

Toby Tentenbaum and Thomas Mulkeen, in an article titled "Logo 

and the Teaching of Problem Solving: A Call for a Moratorium,"49 

point out that during the year 1982 alone, the use of Logo in schools 

jumped from less than a dozen sites to hundreds; and it is expected to 

involve thousands of classrooms with tens of thousands of students 

within the following year. They believe that: "Logo's appeal lies 

not as much in its programming capabilities as in the claim that it is 

a language for learning how to think. Its proponents believe that along 

with its introducing the concepts for programming, Logo promotes meta- 

cognitive skills, like planning and problem solving." Tentenbaum and 

Mulkeen believe that the excitement Logo has generated comes not so 

much from a perceived value to program per se, but from a belief that 

through learning to program in Logo, children's cognitive capacities 

will be greatly expanded and they will develop higher-level cognitive 

skill which will generalize or transfer to other content areas. 

In what way, then, is Logo considered to be different? To begin 

with, as Harold Abelson,50 one of Logo's developers, points out, those 

who designed Logo do not look at it so much as a programming language, 

but ". . . rather as a computer-based learning environment, where 

activities are just as integral as the programming tools used." The 
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best kind of Logo activity, says Abelson, is a . . synthesis of 

programming, mathematics, aesthetics, and, above all, the opportunity 

to explore." 

But perhaps the most outspoken advocate of Logo is another of its 

developers, Seymour Papert. Papert, an MIT mathematician who trained 

with Piaget in Geneva, believes Logo is an educational innovation that 

could make a vast difference in the way children learn. His reasons 

for believing this is expressed in his book Mindstorms.51 

Papert writes that there are two fundamental ideas that run through 

his book. The first is that it is possible to design computers so that 

learning to communicate with them can be a natural process, more like 

learning French by living in France than like trying to learn through 

the unnatural process of American foreign-language instruction in class¬ 

rooms. Second, learning to communicate with a computer may change the 

way other learning takes place.52 

The type of learning that Papert is referring to he calls 

"Piagetian learning," learning without being taught--the vast quantity 

of knowledge children gain long before going to school; and he wonders 

why some learning takes place so early and spontaneously while some is 

delayed many years or does not happen at all without deliberately 

imposed formal instruction. Papert agrees with Piaget that the child 

builds mental structures as he or she learns, but is at variance with 

him or her as to the role the surrounding culture plays at supplying 

the materials for building these structures. 

"In some cases, the culture supplies them in abundance, thus 

facilitating constructive Piagetian learning," says Papert. ". . . But 
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in many cases where Piaget would explain slower development of a par¬ 

ticular concept by its greater complexity or formality, I see the criti¬ 

cal factor as the relative poverty of the culture in those materials 

that would make the concept simple and concrete."53 

In an article called "Computer as Mudpie,"54 Papert clarifies his 

view by explaining that Piaget believed that specific kinds of learning 

only happened after the age of 10 or 11 years. The learning that begins 

at this time is called "formal learning." Things learned at the "formal" 

stage are not rooted in real life, that is, in the social, affective, 

natural life and cultural environment of the child. According to Piaget, 

the child has to learn such things by formal instruction. 

On the other hand, Papert believes Piaget was wrong in his ideas 

that particular skills and pieces of knowledge must be learned formally 

while others must be learned naturally. Instead, he believes that what 

is learned during the natural stage and what is learned during the formal 

stage depend upon the world in which we live. "The fundamental question 

is: How can we create a culture, an environment for the child, that is 

rich in natural learning?" 

He indicates that to many in the teaching profession, "education" 

means "teaching," particularly classroom teaching, and the goal of edu¬ 

cational research is finding out how to improve classroom teaching. The 

model of successful learning is the way a child learns to talk. This 

process, says Papert, takes place without deliberate and organized teach¬ 

ing. 

Papert believes the classroom is an artificial and inefficient 

learning environment that society has been forced to invent because its 
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informal environment fails in certain learning domains, such as writing 

or grammar or school math. His interest is in developing "object-to- 

think-with," objects which serve as an intersection of cultural presence, 

embedded knowledge, and the possibility for personal invention. The 

Logo "Turtle," he believes, serves no other purpose than to be good to 

program with, and good to think with. 

The Logo environment, explains Papert, teaches children to think by 

having them teach a computer how to think. ". . . Thinking about think¬ 

ing turns the child into an epistemologist, an experience not even 

shared by most adults." The computer can "concretize" and personalize 

the formal, and is unique in its ability in providing the means for 

addressing what Piaget and others see as the obstacle which is overcome 

in the passage from child to adult thinking. 

The computer, says Papert, "by providing a very concrete down-to- 

earth model of a particular style of thinking . . . can make it easier 

to understand that there is such a thing as 1style-of-thinking.1" Giv¬ 

ing children the opportunity to choose one style of thinking or another 

gives children the opportunity to develop the skills necessary to choose 

between styles; and that learning to program in Logo provides the basis 

for this new way of learning. Programs are constructed to become build¬ 

ing blocks that enable a child to create hierarchies of knowledge, and 

powerful intellectual skills are developed in the process. 

In order to learn something, you have got to make sense out of 

it. This type of learning is what Piaget referred to as "syntonic 

learning"--the acquisition of acceptable ideas. Turtle geometry is an 

example of syntonic learning. It allows the student to develop 
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strategies for problem solving by subdividing the problems into simpler 

problems by turning the abstract elements of the problems into concrete 

procedures. 

Papert refers to mathetics, which is the guiding principle that 

governs learning, as being to learning as heuristics is to problem solv¬ 

ing. Logo learning is based on two important principles of mathetics 

which state: 

1* Relate what is new and to be learned to something 
you already know. 

2. Take what is new and make it your own. 

These ideas are reflected in Piaget's study of spontaneous learn¬ 

ing, in which Piaget found that the child absorbs the new into the old 

in a process he calls "assimilation," and the child constructs his or 

her knowledge in the course of actively working with it. 

But Papert points out that there are roadblocks in this process. 

New knowledge contradicts old, and effective learning requires strate¬ 

gies to deal with such conflict. Sometimes the conflicting pieces of 

knowledge can be reconciled, sometimes one or the other must be aban¬ 

doned, and sometimes the two can be safely maintained in separate mental 

compartments. These learning strategies are evident when formal theory 

of physics enters into sharp conflict with common sense, intuitive 

ideas about physics. 

One of the simplest of such conflicts, Papert points out, is 

raised by the fundamental tenet of Newton's physics: A body of motion 

will, if left alone, continue to move forever at a constant speed and in 

a straight line. This principle of "perpetual motion" contradicts 
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common experience and, indeed, older theories of physics, such as 

Aristotle's. 

People who want to learn Newtonian physics may not be able to apply 

mathetic principles. They may not possess any knowledge to which the 

physics can be effectively related. Also, one may not be able to apply 

the Newtonian physics easily.56 

However, by using the Logo "dynaturtle," which has the property of 

momentum, as the building block for learning formal physics, the 

Newtonian principle can be made concrete. As the child works with the 

dynaturtle, he or she assimilates its properties and can develop the 

means of applying the concepts assimilated; and this can all be done 

without the prerequisites normally needed to learn them. 

In the absence of direct and physical experience of Newtonian 

motion, teachers are forced to give students indirect and highly mathe¬ 

matical experiences of Newtonian objects. There movement is learned by 

manipulating equations rather than manipulating the objects themselves. 

The experience, lacking immediacy, is slow to change the students' 

intuitions. 

"Dynaturtle, instead of making students wait for equations, can 

motivate and facilitate the acquisition of equational skills by provid¬ 

ing an intuitively wel1-understood context for their use." In this way, 

57 
students use Newtonian turtles to make Newton their own. 

As far as dealing with the counterintuitive aspects of Newtonian 

physics is concerned, Papert goes on to say that: "Everyone knows the 

unpleasant feeling evoked by running into a counterintuitive phenomenon 

where we are forced, by observation or by reason, to acknowledge that 
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reality does not fit our expectations." 

Papert feels that when our intuition cannot be trusted, we have to 

improve our intuition; but the pressure is on us is to abandon our intui¬ 

tion and rely on equations instead. When the student tells his or her 

teacher that he or she cannot "believe" the phenomenon he or she may 

have just seen, the teacher responds by writing the equations which 

prove it is so. But equations are not what the student needs. He or 

she already knows that it is true, but his or her knowledge conflicts 

with his or her intuition. What he or she needs, says Papert, is a bet¬ 

ter understanding of himself or herself, and not the phenonemon. He or 

she needs to know how to work on his or her intuitions in order to 

change them.^ 

The computer can help the student understand counterintuitive ideas 

in two ways. First, the computer allows, or obliges, the child to 

externalize intuitive expectations. Papert believes that when the intui¬ 

tion is translated into a program, it becomes more obtrusive, and more 

accessible to reflection. Second, computational ideas can be taken up 

as materials for the work of remodeling intuitive knowledge. 

While Papert's ideas are much influenced by Piaget, he is not con¬ 

cerned with Piagetian stages; what children at certain ages can and 

cannot do. Instead, he is concerned with Piaget, the epistemologist, 

as his ideas relate to the knowledge-based theory of learning that 

Papert describes. This theory of learning does not "divorce the study 

59 of mathematics learned from the study of mathematics itself." 

The epistemological aspects of Piaget's thoughts have been under¬ 

played until now because they offered no possibilities for action in the 
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world of traditional education. This will not be the case, says 

Papert, in a computer-rich educational environment. Piaget's stage 

theory tends to emphasize what children cannot do, says Papert, and he 

strives to uncover the Piaget whose epistemological ideas might expand 

the known bounds of the human mind. These Piagetian ideas will be 

placed in a theoretical framework drawn from a side of the computer 

world artificial intelligence, or AI.60 

AI is concerned with getting a machine to perform "intelligently." 

Part of this process is to design "learning" capacity into the machine. 

To do this, it is necessary to probe deeply into the nature of learning 

which moves AI research from the realm of advanced engineering to the 

cognitive science area—to epistemology. AI theories and methodology, 

says Papert, especially those drawing heavily on theories of computa¬ 

tion, are being used to reinterpret Piaget. It is giving concrete form 

to ideas about thinking that previously might have seemed abstract, 

even metaphysical. 

Papert believes that Piaget, the epistemologist, is really talk¬ 

ing about the development of knowledge when he talks about the develop¬ 

ing child. And while the psychologist studies the laws that govern 

the learner rather than on what is being learned, Piaget believes it 

is a mistake to separate the learning process from what is being 

learned.^ 

Piaget, says Papert, stressed the theoretical aspects of the 

internal events within the learner's mind as it interacted with the 

external world, while his perspective is more interventionist. His 

goals relate to education, not just understanding. He places an 
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emphasis on two dimensions which are implicit, but not elaborated in 

Piaget's own work: an interest in intellectual structures that could 

develop as opposed to those that, at present, actually do develop in 

the child; and the design of learning environments that are resonant 

with them.62 

The claims made by Papert and his associates concerning Logo's 

ability to revolutionize educational thought have had some glowing 

testimonials. For example, an article by W. Higgins, of Queen's 

University, describes some early observations Higgins and the Education 

department faculty at Queen's University made on the use of Logo, 

titled Leading Fish to Water: Early Observations on the Use of 

Logo."6^ These observations, which are rather qualitative in nature, 

describe the interaction of faculty members and others with small 

groups of children (in some cases their own) who were being taught to 

use Logo. 

They found that Logo appeared to touch something quite fundamental 

in children's learning procedures irrespective of the "school ability" 

of the child, and that the speed at which the group of self-confident 

10 year-olds in an afternoon enrichment class grasped ideas was quite 

impressive. 

"The unforced way in which powerful ideas emerge from the turtle 

geometry microworld," says Higgins, "is in stark contrast to the strug¬ 

gles of traditional teaching. The old riposte 'you can lead a horse to 

Euclid but you can't make him think' did not seem to apply." Higgins 

felt that the naturalness of the children's responses to questions that 

emerged from Logo situations made him feel that he was bringing fish. 
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not horses, to an educational pond. 

But as research on Logo increased, some doubt, and a certain amount 

of equivocation, concerning the widespread adoption of Logo began to 

surface. 

Tentenbaum and Mulkeen, for instance, in a previously-mentioned 

article ("Logo and the Teaching of Problem Solving"),6^ remind us that 

the idea of Logo expanding cognitive skills which are transferable to 

other content areas was believed of the study of Latin by earlier 

generations. Unfortunately, evidence from Thorndike65 suggested that 

the study of Latin did not further this goal, and subsequent research 

failed to find appreciable transfer from training on one task to suc¬ 

cess on another. 

Examination of existing research and study of the use and benefits 

of Logo indicates some widely different opinions and findings. Dan 

Watt, in an article titled "Logo in the Schools," gives a description 

of some of this research, including one of the earliest studies of Logo 

in a school situation, which took place in Brookline, Massachusetts.6^ 

The Brookline Project was a collaboration between the Brookline 

school system and the MIT Logo Group and was sponsored by the National 

Science Foundation (NSF). The emphasis of the research was the observa¬ 

tion and documentation of what a group of sixth graders actually learned 

during their study of Logo, rather than assess whether or not they 

achieved pre-planned objectives. 

Fifty sixth-grade students were given the opportunity to learn Logo 

in a computer laboratory. The work of 16 of these students, represent¬ 

ing a full range of academic ability and interests, were selected for 
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study. This included monitoring, analyzing, and documenting what these 

students learned, what learning styles they used, and what types of 

choices they made. 

While introductory turtle geometry projects were stressed at the 

beginning of the project, students could then choose a variety of 

activities, such as math and word games, computer conversations, anima¬ 

tions, tic-tac-toe, and dynamic action games. Students were expected to 

make their own choices while teachers helped them to accomplish their 

goals. 

The results of the project indicated that the Logo learning 

environment was suitable for a wide range of students, with both gifted 

and "poor" students being successful in their Logo class. 

The Brookline Project was not very successful in obtaining 

"objective" data about the learning gains made by the students. 

Standardized tests were rejected as irrelevant to the goals of the proj¬ 

ect, as such things as the ability to do turtle geometry are not mea¬ 

sured by sixth-grade math tests. The problem-solving tests and mathe¬ 

matical tests devised and administered by the project staff had incon¬ 

clusive results. The problem of developing objective tests in such 

areas as problem solving or procedural thinking is still an open ques¬ 

tion for educational researchers. The project was also limited by the 

need for extremely sensitive and knowledgeable teachers, with a great 

deal of time to consider the needs of each student. 

A second project undertaken by the MIT Logo Group was done in 

68 
collaboration with the Lamplighter School, a private school in Dallas, 

Texas, and the Texas Instrument Company, which supplied the necessary 
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computers for the project. In this project, 400 students between three 

and nine years of age were put in a setting in which student access to 

computers would not be a limiting factor. A goal of the project was to 

see what students could accomplish under these circumstances. 

The project was responsible for training teachers, providing com¬ 

puters, and developing a Logo environment. But with a few minor excep¬ 

tions, the research studies that were expected to be part of the project 

did not materialize, and some of the anticipated results of the project 

never happened. For example, the students have not used computers for 

creative writing, and Logo had not been integrated into the school's 

curriculum as had been planned. 

Another project at the Lamplighter School, which is described by 

Henry Gorman of the University of Texas Psychology Department in an 

article titled "The Lamplighter Project,"69 was to determine if Logo 

could be used by students to learn better thinking, problem-solving, and 

learning skills. 

Gorman points out that it is quite complicated to measure thinking, 

problem solving, and learning skills; as no one test, and no single 

study, can do more than explore these skills and the change in them as 

a result of students using Logo. To perform the experiment, students in 

the third grade at Lamplighter School were randomly assigned to one of 

three homerooms which had two computers each. Five more computers were 

located in a shared space between the two rooms. 

After homeroom, students went to classes with each of the third- 

grade teachers. Two of the third-grade homeroom teachers elected to 

insure that each pupil received one-half hour of Logo a week and the 
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other teacher set a one-hour-a-week minimum for her students. This dif¬ 

ference existed from the start of the school year through the last week 

in April when students from all three classes were given the task of 

learning the "condition rule" taken from the cognitive psychology test 

called the Rule Learning. In this test, students are shown a series of 

pictures, usually with one of several shapes in several colors, with 

size of the shape shown either small, medium, or large; and with one, 

two, three exact replicas of the shape present. In rule learning, stu¬ 

dents are told which feature to pay attention to and are required to 

learn what combination of relevant features satisfies the binary rule 

chosen by the experimenter. To solve a rule-learning task, students 

have to be able to symbolically manipulate the features, ignore irrele¬ 

vant features, process information, and combine that information with 

their memories from previous pictures. For third graders, the conjunc¬ 

tive and disjunctive rules are fairly simple, but the conditional rule 

is much more difficult for them, and the biconditional rule harder 

still. 

It was found that the students from the one-hour Logo homeroom 

performed significantly better than the two other groups, and Gorman 

believes that "what is most important about these results is that chil¬ 

dren were not taught to the test; rather, their extra Logo sessions 

improved a more general problem-solving skill." 

In another project described by Watt, this one in Edinburgh, 

Scotland,^ the objective of the project was to discover whether stu¬ 

dents' ability to do mathematics and talk about their mathematics was 

changed by exploring mathematical problems through Logo programming. 
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The project lasted two years, during which the students attended a 

Logo laboratory at the University. For the first year, students taken 

from the lowest math level group worked through graded worksheets to 

learn the basic elements of Logo. For the second year, they did special 

Logo exercises designed to teach topics selected from their regular 

mathematics curriculum. The project was highly structured in several 

respects. The students' learning experiences were structured by means 

of assigned worksheets that they worked through in order, at their own 

rate. During the second year of the project, Logo activities were drawn 

from such mathematical topics as areas of rectangles, factors and multi¬ 

ples, positive and negative numbers, and plotting coordinates on graphs. 

Students were given standardized tests in mathematics before and 

after the project. Their progress was compared with that of a control 

group drawn from boys in the second lowest level group. Both groups 

of boys, as well as their teachers, were given a series of question¬ 

naires designed to measure their attitudes toward mathematics. 

The results of the project on student achievement were not very 

dramatic. Over the two-year period, the experimental group improved 

a bit more than the control group on a "basic math" test, but the 

reverse was true on a "math attainment" test. The most interesting 

finding had to do with the teachers' perception of the students in both 

groups. Teachers found that students who had taken part in the Logo 

classes were more willing to "argue sensibly about mathematical 

issues." This may have depended as much on the teaching approach used 

by the Logo teachers--and on the individual assistance the Logo stu¬ 

dents received--as it did on the Logo activities themselves. 
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While the results of the Edinburgh Project was not convincing, at 

least one point seems clear: The highly-structured methods of teaching 

Logo used here do not follow the discovery-learning pedagogy advocated 

by the developers of Logo. 

In another research project, this was undertaken by Roy D. Pea 

and his associates at the Bank Street College of Education in New 

York. In this study, the discovery-learning approach to the teaching 

of Logo was used. 

The purpose of this study was to test "this idea-that programming 

will provide exercise for the highest mental faculties, and that the 

cognitive development thus assured for programming will generalize or 

transfer to other content areas." That is, is the claim that program¬ 

ming is the "Wheaties of the mind" true?72 

Pea points out that much of the evaluation of the empirical 

validity of the claims made by Papert and his colleagues are based on 

qualitative studies. While these studies were interesting, they did not 

directly address the "... widely touted claims for the development of 

thinking skills that transcend the programming context, for which case- 

study methods are inappropriate." 

The research done by Pea and his colleagues was designed to test 

student ability to understand Logo commands, write Logo programs, and 

find errors in pre-written programs with two classes of 25 children. 

One class consisted of 8 and 9 year-olds, and the other was made up of 

11 and 12 year-olds. 

The results of this study indicated that the older children under¬ 

stood Logo commands significantly better than the younger group. Pea 
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found that the performance on the command comprehension task was reveal¬ 

ing. out of 100 possible points, the mean score for commands understood 

in terms of this measure was 34, with a large deviation of 25, and only 

three out of the 50 students scored between 75 and 95. 

In a second study, it was found that even the best programmers 

often displayed production without comprehension. 

A third study involved a longitudinal pre-post investigation of 

groups of children who were provided with extensive opportunity to pro¬ 

gram in the Logo language over a school year. Matched with non¬ 

programming students, they showed no differences in planning strategy 

or plan "debugging" a classroom chore-scheduling task. Pea found that 

this study did not demonstrate that learning Logo helped students to 

develop strategies for solving dissimilar problems. 

Pea also found that while entry level Logo did not present con¬ 

ceptual problems for the school-aged child, its procedurality which 

allows one to define new procedures and use them as building blocks in 

increasingly complex programs, its control structures that allow very 

brief recursive programs that can solve quite difficult problems, 

present deeply challenging conceptual problems to children. "Logo," 

says Pea, "is cognitively complex beyond its early steps, and quite 

difficult to learn without instructional guidance, even if students are 
70 

intellectually engaged with that learning." 

Pea and his colleagues conclude that with thoughtful instruction, 

which will require developmental research for its design, they expect 

that Logo may provide a good window for the child into important compu¬ 

tational concepts. "With accompanying instruction in thinking skills, 
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perhaps using Logo or other programming languages as a vehicle for dis¬ 

cussing heuristics and problem-solving methods, developments in planning 

skill may in fact be achieved." 

As one can readily see, most of the qualitative studies reviewed 

here seem to view Logo learning in quite favorable light, while the 

more quantitative, objective studies are rather less than favorable. 

Clearly, objective studies dealing with cognitive concepts are difficult 

to design and difficult to carry out; and there really has not been a 

sufficient number of them to come to any decisive conclusions. 

The Logo Environment 

The learning environment in which a child finds himself or herself 

is almost certainly an important factor in just how much that child is 

going to learn. The environment for learning Logo is no exception. 

In fact, according to the developers of Logo, it is a critical fac¬ 

tor. 

In an article titled "Creating a Logo Environment," Tim Riordan 

examines the elements of what he believes is an appropriate Logo environ¬ 

ment. He begins by indicating that while it is necessary that the 

teacher must be trained in the Logo language, the training is not suffi¬ 

cient. He states: "Most teachers need not only to learn the language 

but also how to implement Logo--how to create a Logo environment in the 

classroom. 

A Logo environment, he says, needs more than computer stations; 

it needs psychological and physical space as well. It must take into 

account the interaction between students and adults. 
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For example, the teacher must watch the students work, and seeing 

a student encounter an unexpected result, may ask whether the student 

has a theory about what caused that result; and perhaps share this 

interaction with the entire class. Students not only interact with the 

teacher, but among themselves. Some students may become "experts" on 

some aspect of Logo. Students who are having problems should be able to 

seek the help of these experts. 

Invariably, students will discover different ways of accomplishing 

a task. The teacher does not try to coerce the student into adopting 

another method, as each procedure is valued. The teacher is sensitive 

to accepting different intellectual styles. 

In general, Riordan indicates a number of qualities which he feels 

are important for a teacher of Logo to have, so that the appropriate 

Logo environment can exist. These include: 

• Being sensitive to whether or not students are headed 
for frustration. 

• Having in mind a sequence of Logo concepts and a large 
repertoire of Logo project ideas. 

• Often considering the teaching role not as a repository 
of answers but as a midwife helping students to discover 
answers by theorizing about problems and unexpected 
results. 

A Logo environment, says Riordan, has many of the attributes of a 

democratic classroom. Authority is distributed; sharing and cooperation 

are promoted; students look to their classmates as legitimate sources of 

information; because students make project choices, variety rather than 

uniformity is the norm; rewards are intrinsic; differences in working 

styles are valued; and, there is a sense of shared learning. 
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In answering the question of why such an environment should be set 

up in the classroom, Riordan refers to Seymour Papert's belief that 

children can learn many important things without formal instruction. 

Just as children learn their own language from a language-rich environ¬ 

ment, Riordan points out that "a Logo environment must be a 

mathematics-rich environment, a context including not only a computer, 

walls and floors with project ideas, but also how students and the 

teacher interact with each other in an environment where mathematics 

objects and ideas are joyfully shared, played with, discussed and 

encouraged, mathematical intuitions and language will be learned with¬ 

out excessive formal instruction. What lies behind this is a Piagetian 

view of children who learn because they naturally make and revise 

theories about things they are interested in."75 

Riordan points out that the question of scope and sequencing is 

problematic, and that the inventors of Logo "... fear that publica¬ 

tion of a scope and sequence will invite the belief that students 

should be accountable for learning Logo concepts. This will inevitably 

lead to evaluation of student learning. This will lead to Logo being a 

joyless, unnatural learning activity. Logo was not meant to be taught, 

and the kind of learning that occurs was not meant to be evaluated like 

other school learning!" 

Having said that, Riordan presents the following scope and 

sequence: 

• Moving the turtle around the screen and the REPEAT 
command 

• Saving pictures on disks 
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• Creating procedures — TO command 

• Saving procedures on disks 

• editor9 pr0Cedures " movin9 the cursor around the 

• talit~S°^Vlr*9 strategy " take it:» walk it, turtle 

• Placing designs on screen -- RANDOM and SETXY primi¬ 
tives K 

• Using variables 

• Doing and printing arithmetic 

• Using procedures in other procedures 

• Analyzing designs repeated but slightly chanqinq 
patterns 

• Dynaturtle 

• Making a "hot" keyboard (individual keys make things 
happen) 

• Music procedures 

• Printing numbers, words, and lists — WORD, SENTENCE 
primitives 

• Superprocedures and subprocedures 

• Planning a game 

• List processing commands -- FIRST, BUTFIRST, LAST, 
BUTLAST primitives 

Dan and Molly Watt, in an unpublished grant proposal summary 

titled "Collaborating With Teachers to Evaluate Critical Aspects of 

Logo Learning," indicate some concern with respect to many educators' 

interpretation of Papert's emphasis on "natural learning." They believe 

that these educators take Papert to mean Logo can be learned by chil¬ 

dren simply interacting with the computer, with a minimal amount of 
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instruction. They believe that Papert's goal of putting the child in 

control of the computer has been taken by some teachers to mean that the 

teacher should just stand back and let the student discover the powerful 

ideas embedded in Logo entirely on their own. 

However, they say that they found the opposite to be true. They 

envision Papert's Logo as an open-ended learning environment in which 

learners (adults as well as children) can take a large share of the 

responsibility for their own learning. It requires a teacher with a 

deep understanding of critical aspects of Logo learning, a large collec¬ 

tion of ideas for supporting student projects, and probing student 

understanding. 

Commenting on this question, Alan Altman, in an article titled 

"Pulling in the Reins on Freewheeling Logo,"77 felt that he needed to 

have some control over students' free exploration. As a result, he 

developed certain restriction strategies which, in combination with free 

exploration time, he felt would lead to a rich and balanced Logo experi¬ 

ence. The purpose of using these restriction strategies was to focus 

student attention on aspects of Logo which would be useful to them 

during their free exploration time. 

During the activities, the students could only work on assigned 

tasks, for which new Logo primitive structures were introduced. Stu¬ 

dents were then encouraged to incorporate these ideas into their free 

exploration. 

These strategies include: 

• Pattern Search Strategy: The goal of this strategy was 
to get students to organize their data and think about 
possible mathematic relationships. 
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• Group Project Strategy: The purpose of this strategy 
was to get students to focus their energy on a specific 
programming problem. specinc 

• Modules Modification Strategy: In this strategy, stu¬ 
dents are given a secure starting point for their activi¬ 
ty by outlining a simple framework for the type of pro- 
cedure they were to work on. The class then modified 
and elaborated on this framework. 

• Practice Game Strategy: In this strategy, games are 
used to focus the student's attention on a specific 
task, and to give them practice in accomplishing this 
Lab K • 

• Classroom Management Strategy: The goal of this 
strategy is to maximize student access to the computer. 

Reining in the perceived notion of a freewheeling, completely 

spontaneous Logo teaching situation is a matter which Papert refers to 

himself. He discusses the problems associated with a Logo curriculum 

in Mindstorms when he refers to the "Piagetian curriculum or Piagetian 

teaching methods, and indicates that he sees these phrases as a contra¬ 

diction in terms. He states, "I see Piaget as the theorist of learning 

without curricula and the theorist of the kind of learning that happens 

without deliberate teaching. To turn him into the theorist of a new 

78 
curriculum is to stand him on his head." 

But, he says, that teaching without curricula does not mean 

spontaneous free-form classrooms or simply leaving the child alone. It 

means supporting children as they build their own intellectual struc¬ 

tures with materials drawn from the surrounding culture. In this model, 

educational intervention means changing the culture, planting new con¬ 

struction elements, and eliminating noxious ones. 

"The Logo teacher will answer questions, provide help if asked, 

and sometimes sit down next to a student and say: 'Let me show you 
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something.1 But what is shown is not dictated by a set syllabus."79 

The instructor in a Logo environment does not provide an answer 

for the child who demands: How can I make the Turtle draw a circle? 

but rather introduces the child to a method for solving not only this 

problem but a large class of others as well. 

Molly Watt, in an article titled "What Is Logo?" states that the 

role of a Logo teacher will include being a demonstrator, teacher/ 

lecturer, teller, time structurer, problem setter, management solver, 

arbitrator, decision maker, challenger, helper, collaborator, process 

sharer, question asker, idea extender, observer, documenter, admirer, 

enjoyer, time provider, technician, and model learner.80 

Furthermore, his or her students are required to keep a journal 

of process notes, questions, and descriptions of problems encountered. 

He or she reads these and. responds to them regularly. 

During the time his or her students are at the computer, he or she 

takes the time to "wander, watch, listen, and answer." He or she feels 

that the words he or she uses are important. Instead of solving a 

problem for a youngster by telling or showing the solution immediately, 

he or she usually asks the student to describe the problem, or tell him 

or her what happens, or asks the student to try it and show him or her. 

Some Logo teachers, she says, asks the student to teach them what they 

did. 

Watt indicates that this type of response is important because 

giving a description is a matter-of-fact task which can diminish emotion 

and allow the describer to see what actually happens clearly. If after 

the student describes the problem and neither of them knows how to solve 
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it, they write a plan together in "plain English words." 

Invariably, errors will be made in writing computer procedures. 

Papert believes that "school teaches that errors are bad; the last 

thing one wants to do is to pour over them, or think about them." But 

in the Logo environment, the children learn that these errors are part 

of the learning process, and that everyone can learn from their mis¬ 

takes.8^ 

In a Logo environment, these errors are not looked upon as "mis¬ 

takes, but rather as a natural part of writing computer programs. 

These errors are known in computer parlance as "bugs," for historical 

reasons going back to the pioneering work in the computer field. 

A "bug" occurs, according to Robert Lawler, when the result of a 

procedure turns out to be different from what was expected. "But some¬ 

times the surprising result is a better one than what you first intended. 

That's a 'new discovery' bug." He believes it to be one of the best 

kind. "Any bug," says Lawler, ". . . which makes your procedure do the 

unexpected--if you bother to figure it out--leads to an increase in 

knowledge. Although a bug may hinder your objective, the bugs in your 

procedures will offer the best guidance on what to learn in order to 
op 

master the Logo programming environment." 

Clearly, it is believed that in a Logo environment errors are not 

only not bad but they may be good. Therefore, a very important part of 

writing a computer program is the process of "de-bugging" it, and Logo's 

emphasis on debugging allows it to become part of a learner's cognitive 

style. It helps students to develop and articulate language which 

focuses on their problem, so they know just how to ask for help when it 
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is needed. 

Molly Watt, in an article titled "De-Bug Collection," points out 

that "debugging is a programming skill rather than a nuisance to be 

avoided. She goes on to explain that the debugging tools provided 

within Logo are designed to teach how to correct errors. "There is no 

shame involved in having a bug," she says. Examining what does not 

work and figuring out how to correct it could be considered a most 

important and transferable skill.83 

Part of being a Logo teacher is understanding one's own problem¬ 

solving strategies and being able to talk about them. It means 

being with students when they do not know what is wrong, and support¬ 

ing them in the process of them finding and correcting their own 

errors. 

Another important part of the Logo environment is the computer- 

based microworld. In an article titled "Designing Computer-Based 

84 
Microworlds," R. W. Lawler describes the microworld as a "task domain" 

or "problem space" designed for virtual, streamlined experience where 

objects and processes can be understood. Microworlds do not focus on 

problems, but rather on "neat phenomena"--phenomena that are inherently 

interesting to observe and interact with. 

A wel1-designed computer microworld embodies the simplest model 

which represents an entry point to a richer knowledge. But if a micro¬ 

world lacks "neat phenomena," it will not justify a child's involvement. 

Microworld design shifts the accountability from students, who are often 

criticized for not liking what they must learn, to teachers, who believe 

their ideas and values are worth perpetuating. 
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These microworlds should be constructed around a powerful idea 

which is worth the teacher's time to develop and the student's time to 

explore. The teacher must decide which ideas are "powerful" and worth 

developing, and the student, by accepting or rejecting these ideas, will 

determine their worth. Lawler cites Papert for guidance in selecting 

powerful ideas: They should be simple, general, useful, and "syntonic." 

Reality, says Lawler, dictates the candidates for powerful ideas. 

Society also declares what ideas are important. But it is one's own 

mind, insights and experiences which allow the formulation of these 

ideas. An idea is powerful if it gives form to one's understanding of 

life. It follows," states Lawler, "that you cannot inspire others with 

an idea unless it has first inspired you." 

As an example of a microworld, Lawler uses the three-line Logo 

procedure called POLYSPI (from "polyspiral"). POLYSPI generates 

polyspiral designs by changing any of the three variables: DISTANCE, 

ANGLE, and CHANGE (in distance). The procedure draws designs by going 

forward a specified distance, turning at the specified angle, then 

increasing the distance by the specified change, going forward for the 

incremented distance at the specified angle, and so on. By stepping 

up each or any of these variables, strikingly different designs may be 

generated. 

Some of the designs are pretty, mainly because of the surprising 

spiral patterns which emerge under certain conditions. The variability 

of POLYSPI procedure sometimes permits even a beginner to surprise more 

expert users (as well as himself or herself) with the discovery of 

beautiful designs. 
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The procedures for POLYSPI and Us designs comprise a microworld. 

The objects of the microworld are all the designs that the procedure 

can generate, which defines the domain for exploration. But more 

important, says Lawler, the designs are a class of "neat phenomena" 

whose generation can be made comprehensible with the following ideas. 

First, the POLYSPI procedure provides a crisp model of variable separa¬ 

tion in which each of the three variables are each used once, and used 

differently, in a simple procedure text. Second, the difference in 

relative potency of the variables is obvious and striking. 

"The POLYSPI microworld," says Lawler, "reveals the stepping of 

variables as a powerful idea." By stepping variables, he means chang¬ 

ing one variable at a time and examining the results while holding the 

other variables constant. In short, this microworld provides a clear 

model of variation of dimensions and their effects. 

Variable stepping, says Lawler, is a powerful idea because it is 

universally useful, and crucial to the process of scientific investiga- 

tion--an idea, judged by Piaget, to be an essential component of formal 

operational thought. 

Another example of a Logo microworld was previously mentioned in 

an earlier context. This is the Newtonian physics microworld which 

features the Dynaturtle. This microworld is described by Andrew 

diSessa and Barbara White in an article titled "Learning Physics From 

a Dynaturtle."®5 

DiSessa developed the dynamic turtle as a microworld in which 

children could experience physics painlessly while pursuing personally- 

satisfying activities. The dynamic turtle, which is called a 
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dynaturtle, obeys Newton's laws of inertia and momentum. It remains at 

rest or travels in a straight line except when it is acted upon by an 

unbalanced force. These forces are little pushes or kicks which are 

specified by the student via the keyboard. Depending on the direction 

of these kicks, the dynaturtle may be sped up or slowed down, or have 

its direction changed. 

Experience with elementary students, they say, proved that even 

simple activities were both motivating and instructive. For example, 

the deep-seated misconception that the students had that an object 

moves in the direction it is pushed is challenged by the behavior of 

the dynaturtle. When they translated this belief into hitting a tar¬ 

get, they would inevitably miss it. 

Students were able to see that pushing the dynaturtle only adds 

to its existing momentum so that it is typically only deflected. With 

practice and feedback, they gain a better understanding of how forces 

affect the motion of an object. 

By developing games and posing the appropriate problems, students 

could explore a physics microworld which its developers felt was 

"strikingly successful" at eliminating basic misconceptions and improv¬ 

ing overall understanding of the physics of motion. Clearly, this 

microworld fulfills the criteria of containing powerful ideas and "neat 

phenomena." 

The Logo environment, with its powerful ideas, microworlds, and 

learning strategies, represents crucial aspects of the teaching of Logo. 

It is evident that the developers of the language do not see it as just 

another computer language, but rather a vehicle for "natural learning." 
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Simply teaching children the elements of Logo procedures will not do. 

Logo, then, seems more of an educational philosophy than a computer 

language-an important point to consider when designing an evaluation 

of Logo's effectiveness. 
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chapter III 

RESEARCH PROCEDURES 

Chapter III describes the research methods used in this study. The 

purpose of this chapter is to describe the procedures and processes 

involved in the selection of the sample; the development of the research 

instruments; an analysis of these instruments; the development of the 

learning and teaching environment of the experiment; and the collection, 

reporting, and analysis of the data. Information concerning the relia¬ 

bility and validity of the research instruments used will also be 

reported in this chapter. The data base of this study includes the test 

scores on a battery of tests taken by 43 eighth-grade students involved 

in a controlled experiment performed at a Vermont junior high school. 

Sample Selection 

The procedure used in obtaining the study sample involved the choos¬ 

ing of two eighth-grade science classes which consisted of 43 students 

drawn from the 181 eighth-grade student population at a small town 

Vermont junior high school. The students in these classes were computer 

scheduled on a random basis into their respective classes as it fit their 

schedules. 

The classes used in this study were chosen primarily on the basis 

of when they were scheduled with respect to availability of the school's 

computer laboratory and that they were scheduled with the same science 

teacher. 

98 
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While science students are not ability tracked at this school, 

students are ability tracked in their mathematics classes. This 

inevitably leads to a less than random distribution of ability levels in 

classes. The effect of this, in this case, was to cream off some of 

the more able students in both of the classes used in this experiment. 

Nevertheless, both classes used were judged fairly comparable on 

the basis of the science teacher's judgment. (Students had been study- 

ing science with this teacher for a semester before this study began.) 

Furthermore, each student was tested with respect to their developmental 

reasoning level, with only those students who were judged to be concrete 

operational chosen as subjects for this study. This procedure effec¬ 

tively matched populations, and, in fact, the creaming off of more able 

students from both classes left a larger sample of concrete operational 

students to work with. 

Description of Sample 

The students used in this study were a rather homogeneous group 

which fairly well represented the social, racial and ethnic makeup of 

the community. They were all Caucasian, except for one Black student 

who was the adopted child of a Caucasian family. 

Within the classes, there was a range of ability and school 

achievement which seemed fairly normal. Some of the students, in each 

of the classes, were considered good students, while others were not so 

good. Some were well behaved, while others were not so well behaved. 

Two of the students, both in the treatment class, had serious social 

problems--one tended to be violent, and the other was on medication to 
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help control his behavior. 

None of these students had volunteered to be in this study, and 

only two of them had any computer exposure to speak of-and that was not 

much. Most, if not all, of the students seemed eager to take part in 

the study, especially the group that was told they were going to learn 

how to program. The parents of the control group, since their children 

were to have their normal science class routine interrupted for a period 

of several months, were informed that their children would take part in 

a field testing" of a computer curriculum which would be integrated 

with the study of science. They were given the opportunity to withdraw 

their children from the study. None chose to do so. Many indicated 

they were pleased that their children would be working with computers. 

Development of the Research Instruments 

There were two instruments used in this study. They are the 

Modified Lawson Classroom Test of Formal Reasoning, which was used to 

determine the Piagetian stage of development for each student in the 

study; and the Physics Evaluation Instrument, which was used as a pre/ 

post test. In addition, three Logo evaluation tests were given as part 

of the process of evaluating student knowledge of Logo concepts. 

The Modified Lawson Test 
of Formal Reasoning 

Testing for the Piagetian developmental level of a child has, in 

the past, been somewhat difficult to do. Piaget and his associates used 

a clinical approach to accomplish this testing, but it required indi¬ 

vidual interviews and careful training of the interviewer. The child 
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was asked to do a number of Piagetian tasks which required special 

materials and equipment and generally proved too time consuming for 

practical classroom use. 

A number of attempts were made to develop group-administered tests 

with a variety of formats, which are described by A. Lawson in an 

article titled "The Development and Validation of a Classroom Test of 

Formal Reasoning."1 The objective of these tests was to keep as many 

of the positive aspects of the clinical view as possible yet allow one 

test to be administered to an entire group of students. Furthermore, 

it would be advantageous with respect to ease of administering the test 

to eliminate the need for special materials. Decreasing the skill 

required to administer and interpret this test would also prove advan¬ 

tageous . 

While a variety of paper-and-penci1 type tests had been developed, 

which eliminated the need for special materials, their drawbacks 

included loss of motivating aspects which arise from the reality of 

physical materials and equipment. Also, paper-and-penci1 tests increase 

the reading and writing skills which are not directly related to 

Piagetian operations. 

A number of researchers developed testing formats for which all 

students were provided with a set of materials and a test booklet of 

instructions and questions, but this method required large amounts of 

equipment and proved quite time consuming. To get around this problem, 

a class demonstration format was tried, where students could see the 

physical materials and hear the teacher's questions, but would still 

record their answers in individual test booklets. 
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Lawson improved upon these methods by adding to the number and 

variety of demonstrations and formal-level questions asked. His present 

format includes 15 demonstrations which include a range of developmental 

levels. Each item involved a demonstration using some physical mate¬ 

rials and/or apparatus. For each item, the demonstration was used to 

pose a question or call for a prediction. The booklets contained a num¬ 

ber of possible questions with a number of possible answers. Students 

were instructed to choose the best possible answer and explain why they 

chose that answer. To be scored correct, the student had to choose the 

right answer and give an adequate explanation for the answer chosen. A 

brief description of the 15 items follows: 

Item 1: The Conservation of Weight. This item involves two 

balls of clay of identical size, shape, and weight. 

The students are shown that the clay ball weighs the 

same by placing them on opposite ends of a balance beam. 

One of the balls is flattened into a "pancake" shape 

and the students are asked about the relative weights 

of the pieces. 

Item 2: Displaced Volume. Using two solid cylinders of 

equal size but different density, the students are 

shown the level of water displaced by the lighter 

cylinder and asked to predict the level of the water 

displaced by the heavier cylinder. 

Item 3: Proportional Reasoning-1. Using two plastic 

cylindrical containers of equal height but with dif¬ 

ferent diameters, the students are shown that a given 



quantity of water 4 units in the wide container and 

rises a corresponding 6 units when poured into the 

narrow container. They are then asked to predict how 

high a given quantity of water that rises 6 units in 

a wide container would rise if poured into the narrow 

container. 

-Item —Proportional Reasoning-2. Using the same plastic 

containers, 11 units of water are poured into the nar¬ 

row container and the students are asked to predict 

how high the water would rise if poured into the wide 

container. 

Item 5:_Proportional Reasoninq-3. Given a balance beam 

and hanging weights, the students are asked to predict 

where a 5-unit weight should be hung to balance a 

10-unit weight which is hung 7 units in length from 

the fulcrum. 

Item 6: Proportional Reasoning-4. Using the same balance 

beam, the students are asked to predict where a 

10-unit weight should be hung to balance a 15-unit 

weight which is hung 4 units of length from the 

fulcrum. 

Item 7: Controlling Variables-!. Using three pendulums 

(two of equal length but with bobs of 50-grams and 

100-grams, the third longer with a 50-gram bob), the 

students are asked to predict which of the pendulums 

should be used in an experiment to find out if the 



variable of length effects the period of the pen- 

dulum. 

Item 8: ControllingJariables-2. Using the same three 

pendulums, the students are asked to select which 

pendulums should be used to find out if the weight 

of the bobs effects the period of the pendulum. 

Hem 9: Controlling Variables-3. Using the ramp and 

three metal spheres, the students are shown a light 

sphere rolling down the ramp from a low position, 

striking and then displacing a target sphere which 

has been placed at the bottom of the ramp. The stu¬ 

dents are then asked to select the correct sphere 

(light or heavy) to release from a high position to 

find out if the variable of release position effects 

how far the target sphere will travel after it has 

been struck. 

Item 10: Controlling Variables-4. Using a ramp and three 

metal spheres, the students are shown an experiment 

in which two metal spheres (A and B) roll down the 

ramp from the same starting position and strike two 

target spheres of different densities. They are then 

asked to decide whether or not the experiment consti¬ 

tutes proof that metal A can displace a target fur¬ 

ther than metal B. 

Item 11: Combinational Reasoning-1. Given a metal box 

with four color-coded switches and a light, the 
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students are shown that the light can be turned on 

by flipping a certain combination of the switches. 

They are then asked to list all the possible combi¬ 

nations of the four switches that they would have 

to try to discover which combination or combinations 

will turn on the light. 

Item 12: Combinatorial Reasoning-2 "Permutations". 

Using four objects which represent four stores (a 

barber shop, a discount store, a grocery store, and 

a coffee shop), the students are told that the stores 

are going to be arranged side by side on the ground 

floor of a new shopping center. The students are 

asked to list all of the possible ways in which the 

stores could be arranged side by side. 

Item 13: Probability-1. Three yellow squares are placed 

in a sack. The students are asked to predict the 

chances of drawing out a red square on the first 

draw. 

Item 14: Probability-2. Three red squares, four yellow 

squares, and five blue squares are placed ,into a 

sack. Four red diamond-shaped pieces, two yellow 

"diamonds," and three blue "diamonds" are also 

placed into the sack. The students are asked to 

predict the chances of drawing out a red piece on 

the first draw. 
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Hem 15: Probabilit.y-3. Using the same wooden pieces as 

in Item 14, the students are asked to predict the 

chances of drawing a red or blue "diamond" on the 

first draw. 

In order to determine the validity of the group test (i.e., assure 

that the group test measures the same psychological parameter(s) as an 

individually administered battery of four Piagetian tasks), a subsample 

of the group tested by Lawson were randomly selected and individually 

administered a battery of four Piagetian tasks by three trained inter- 

viewers. Lawson found that an analysis of correlations factorially 

validated the classroom test. 

Lawson sought three types of evidence to assess the validity of 

the classroom test as a measure of formal reasoning. The first type 

concerned face validity. A panel of six judges, who were considered 

experts due to their involvement of Piagetian research, responded with 

100 percent agreement that the test items appeared to require concrete 

and/or formal reasoning. It was concluded that the test has face 

validity. 

The second type of evidence concerned the relationship between the 

classroom test total score and the level of subject response for the 

individually administered Piagetian tasks. Pearson product-moment 

correlations between the classroom test scores and level of responses 

on these tasks were 0.76 (p < .001). This high correlation between the 

measures indicates that the classroom test has convergent validity. 

As a third type of evidence of the classroom test's validity, the 

classroom test and the Piagetian tasks were submitted to a principal 
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components analysis, with the results showing that the test measures 

aspects of formal reasoning as well as some aspects of concrete reason¬ 

ing and reasoning that could be considered intermediate. This supports 

the hypothesis that the classroom test does, in fact, measure these 

aspects, and could therefore be said to have factorial validity. 

Reliability estimates of the Piagetian tasks were found to be high. 

Test-retest correlation coefficients ranged between 0.48 and 0.78. 

Cronbach s Alpha coefficient, a modification of the KR-20 formula for 

scalable items, was 0.86. 

An analysis of test scores indicated there were three levels of 

intellectual development which could be classified by score. Those who 

received a score of 0 - 5 were classified as concrete reasoners, while 

those whose score was 12 or better were considered formal reasoners. 

Those who received scores between 6 and 11 were considered at a transi¬ 

tional stage between concrete and formal reasoning. 

The modified version of the Lawson test used in this present study 

consisted of showing a videotape of the demonstration rather than live 

demonstrations, as it was felt that there would be a greater consistency 

from one administration of the test to another. In an earlier unpub¬ 

lished study made by the author and his associates, 187 seventh-grade 

students were randomly divided into two groups. One group was tested 

using live demonstrations, while the other watched a videotape of the 

demonstrations. Students watching the videotape could view a rerun 

of any particular demonstration if it was needed for clarification. 

Students were also permitted to ask questions concerning the demonstra¬ 

tions for clarification, just as they were for the live demonstrations. 
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The results of this experiment indicated that there 

differences between scores (p < .005). 

were no significant 

The Physics Evaluation Instrument 

This test was developed by the author of this present study to 

evaluate achievement of the major objectives of the physics unit taught. 

Questions were designed to evaluate specific objectives, while keeping 

the level of mathematics within appropriate limits. A number of these 

questions are relatively concrete in nature, however most are abstract. 

Some of the questions are directly related to the Logo unit taught, 

while others are either weakly related or unrelated to this unit. The 

following is an analysis of these questions with respect to the level 

of operations needed to fully understand the question's concepts, and 

the degree of relatedness to Logo concepts taught as part of the Logo 

unit. 

Question 1: Which of the following statements are examples 
of force being applied? 

(a) A girl tries to lift a heavy weight, 
but can't budge it. 

(b) A boy spends five minutes thinking 
about solving a math problem. 

(c) A girl pedals her bicycle. 

Answer: 

(1) A and B 

(2) B and C 

(3) A and C 

(4) C only 
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This question tests knowledge of the definition of a force as a 

push or a pull. To get this question right, the student has to under¬ 

stand that the application of a force requires a physical action, but 

that it does not necessarily result in movement. 

Because of the familiarity with the concept of what it means to 

push or pull, concrete operational students should be able to answer 

this question. 

While the use of a force was part of the Logo dynaturtle micro¬ 

world, the concept was not strongly related to the Logo unit. 

Question 2: Which two words best belong in the blanks? 

To describe a force, we must know its 
_and __. 

Answer: 

(1) speed, power 

(2) type, direction 

(3) magnitude, direction 

(4) cause, start 

This question calls for the knowledge that a force is a vector 

quantity, and that vectors are described in terms of magnitude and direc¬ 

tion. Although the answer choices for this question use terms often 

used incorrectly by students describing force, it can still be under¬ 

stood on a concrete operational level. 

An important part of the Logo curriculum used here dealt with the 

concept of a vector; therefore, this question is related to the Logo 

curriculurn. 
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Question 3: Four forces act on a point, as shown in 
Figure 3. 

Is 
(Figure 3) 

The resultant of the four forces is: 

(1) 0 

(2) 5 

(3) 14 

(4) 20 

This question requires that a student understand the meaning of a 

force resultant, and the method of vector addition. 

Because the vector addition required to be able to answer this 

question calls for a fair understanding of what vectors are, and that 

vectors are inherently abstract representations of the physical world, 

this question should be considered abstract in nature. 

Vector addition was an important part of the Logo curriculum, and, 

therefore, this question should be considered Logo related. 

Question 4: Two forces of 10 and 20 pounds act on a point 
at some angle other than 0° or 180° between 
them. Which one of the following forces, 
when applied to this point at some angle, 
might be able to balance these two forces? 

(1) 10 pounds 

(2) 28 pounds 

(3) 30 pounds 

(4) 35 pounds 
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To answer this question, the student would have to have an excel¬ 

lent understanding of vectors and vector addition. As a result, for 

the reasons given in the explanation in Question 3, this question should 

be considered abstract in nature. 

For the same reasons as given in Question 3, this question should 

be considered Logo related. 

Question 5: A man pushes a book along a table from point 
A to point B with a force of 5 pounds. The 
force of friction acting on the book is also 
5 pounds. Which statement best describes the 
book's motion? 

(1) It comes to a sudden stop. 

(2) It moves along with constant speed. 

(3) It speeds up. 

(4) It slows down. 

Question 6: The man in problem five suddenly stops push¬ 
ing the book. Which statement best describes 
the book's motion? 

(1) It stops immediately. 

(2) It slows down. 

(3) It keeps going. 

(4) It speeds up. 

Question 7: The man now pushes the book with 10 pounds of 
force, while the force of friction remains at 
5 pounds. Which statement best describes the 
book's motion? 

(1) It stops immediately. 

(2) It moves with constant speed. 

(3) It slows down. 

(4) It speeds up. 
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Questions 5-7 relate to two highly abstract concepts, namely, the 

force of friction and the concept of inertial motion; and should, there- 

fore, be considered abstract in nature. 

The concept of friction is unrelated to the Logo curriculum, but 

the concept of inertia is related to the dynaturtle microworld; however, 

in the context of these questions, the relationship is weak. 

Question 8: A marble rolls along a straight line from 
point A to point B, as shown in Figure 8. 
Which picture best describes how the marble 
moves after it was hit directly on center 
by a similar marble at point B? 

ABC 
O-* O 

O 
* 

i 
i 
i 

o 
(Figure 8) 
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To answer this question, the student must have a good grasp of 

inertial motion, and is therefore an abstract in nature. Since an 

important part of the Logo curriculum dealt directly with the properties 

of inertial motion, this question should be Logo related. 

Question 9: To find a pirate's treasure on the map in 
Figure 9, you must start digging at a 
point 10 feet north of the tree and 20 
feet east of the tree. Describe the loca¬ 
tion of this treasure using the rock as a 
starting point instead of the tree. 

(1) 10 feet north and 20 feet east 

(2) 10 feet west and 20 feet north 

(3) 10 feet south 

(4) 20 feet north and 10 feet east 

To be able to describe the location of the treasure from a new 

reference point, the student must understand how a coordinate system 

works well enough to make the mathematical translation. This task is 

abstract in nature, as we are dealing with what is fundamentally a mathe¬ 

matical abstraction, and then asking that the abstraction be manipulated 

mentally. 

Plotting points in a coordinate system was an important part of 

the Logo curriculum and, therefore, this question is Logo related. 
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Question 10: A train moves north along a straight track 
at 50 m.p.h. A bug walks south along the 
floor of the train at a speed of 2 m.p.h. 
How fast is the bug moving with respect to 
the train tracks? 

(1) 2 m.p.h. 

(2) 48 m.p.h. 

(3) 50 m.p.h. 

(4) 52 m.p.h. 

Question 11: How fast is the bug in Question 10 moving 
with respect to one of the train's seats? 

(1) 2 m.p.h. 

(2) 48 m.p.h. 

(3) 50 m.p.h. 

(4) 52 m.p.h. 

Question 12: How fast is the bug moving with respect to 
a boy on the train who is walking 2 m.p.h. 
south? 

(1) 0 m.p.h. 

(2) 50 m.p.h. 

(3) 48 m.p.h. 

(4) 54 m.p.h. 

Questions 10-12 dealt with relative motion. The concepts involved 

relate to making mathematical translations with respect to motion calcu¬ 

lations. These concepts, especially as they relate to the manipulation 

of hypothetical situations, are abstract in nature. 

Relative motion was not part of the Logo curriculum used here. 

While knowledge of coordinate systems gained through the study of Logo 

might have been helpful, it would have, at best, been a very indirect 
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aid; therefore these questions are not strongly Logo related. 

Question 13: A bicycle rider travels 20 miles down a 
stretch of road. How fast is the rider 
moving if it takes 45 minutes to travel 
that far? 

(1) 10 m.p.h. 

(2) 20 m.p.h. 

(3) 26.66 m.p.h. 

(4) 32 m.p.h. 

To answer this question, the student need only to have memorized 

the algorithm for doing speed-time problems of this sort, and be able to 

recognize that 45 minutes is three-fourths hour. This question could 

have easily been answered by a concrete operational student, and is, 

therefore, concrete in nature. 

Problems of this kind were not covered as part of the Logo cur¬ 

riculum; therefore, this is not a Logo-related question. 

Question 14: A pendulum is swung from point A through 
point B at the bottom of its swing to point 
C and back again to point A, as shown in 
Figure 14. At the exact instant the pendu¬ 
lum is passing point B it: 

/N 

(Figure 14) 
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Question 15: 

(1) is not moving. 

(2) is speeding up. 

(3) is moving at maximum speed. 

(4) is slowing down. 

As the pendulum in problem 14 moves through 
point B, the only forces acting on the pendu¬ 
lum (ignore friction or air resistance) are 
the upward pull of the string and the down¬ 
ward pull of gravity. The resultant of these 
forces: 

(1) acts downward. 

(2) is zero. 

(3) acts upward. 

(4) acts towards point C. 

Question 16: At the exact instant the pendulum in problem 
14 reaches point C, the pendulum is: 

(1) moving with constant speed. 

(2) moving with non-constant speed. 

(3) slowing down. 

(4) not moving. 

Questions 14-16 relate to knowledge of instantaneous speeds, 

accelerations, and dynamic equilibrium, which are all rather abstract 

concepts. These questions, then, are abstract in nature. 

Although knowledge of infinitesimal steps and forces in equilibrium 

was gained through the study of Logo, this knowledge is not directly 

useful in the context of these questions. These questions could not, 

therefore, be considered strongly Logo related. 
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Question 17: A coin is thrown directly up into the air. 
While the coin is moving up, the only 
orce(s) acting on the coin (ignorinq air 

resistance): 

(1) is the pull of gravity. 

(2) is the upward projecting force. 

(3) are the upward projecting force and 
the pull of gravity. 

(4) is the internal force of the coin. 

This question relates to inertial motion and the "unseen" force of 

gravity. Both of these concepts are abstract in nature and, therefore, 

this is an abstract question. 

While inertial motion was studied as part of the Logo unit, the 

application of knowledge of inertia would be only slightly helpful, if 

at all, in this context. Furthermore, gravity was not at all part of 

the Logo unit, and, therefore, this question is not strongly Logo 

related. 

Question 18: The resultant of the forces acting on the 
coin in problem 17: 

(1) acts sideways. 

(2) is zero. 

(3) acts upwards. 

(4) acts downward. 

This question deals with the same abstract concepts mentioned with 

respect to Question 17 and adds the concept of force resolution as well. 

It should, therefore, be considered abstract in nature. 

The concept of vector resolution was studied in the context of 

learning Logo, but the other factors involved in the answering of this 
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question renders this knowledge of little use. This question, then, 

for reasons similar to ones given for Question 17, is not strongly Logo 

related. 

Question 19: A rocket is moving along sideways in deep 
space with its engine off from point A to 
point B, as shown in Figure 19. 

A b C 

u.u. 
(Figure 19) 

It is not near any planets and there are no 
other forces acting on it. If the engine 
is fired for an instant (an instant being 
as brief a period of time as you can imagine) 
at point B, which of the following paths will 
it take? 
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Question 20: If 
is 
the 

the engine of the rocket 
fired for 10 seconds at 
following paths will it 

in problem 19 
point B, which of 
take? 

Question 21: A fast rolling ball enters a curved guide on 
a table top at point A and leaves at the 
other end, point B, as shown in Figure 21. 
Which of the following paths will it take? 
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Questions 19-21 all relate to inertial motion and Newtonian 

mechanics. As these concepts are highly abstract, these questions 

should be considered abstract as well. 

These questions relate to the dynaturtle microworld which was part 

of the Logo curriculum used here, and as such are strongly Logo related. 

Question 22: A car travels 10 miles north, then 3 miles 
east, then 2 miles north, and then another 
2 miles east. How far has the car been 
displaced from its starting point? 

(1) 0 miles 

(2) 10 miles 

(3) 13 miles 

(4) 17 miles 

Question 23: A car travels 20 miles east, then 10 miles 
north, then 5 miles west, then 10 miles 
north, then 15 miles west, and then another 
20 miles south. How far has the car been 
displaced from its starting point? 

(1) 0 miles 

(2) 25 miles 

(3) 50 miles 

(4) 70 miles 

Questions 22 and 23, though somewhat complex in terms of written 

instructions, are well within the grasp of the concrete operational stu¬ 

dents who are quite capable of following straightforward instructions. 

Therefore, these questions should be considered concrete. 

Part of the Logo curriculum consisted of having work with displace¬ 

ments of varying length and direction, which are similar to what stu¬ 

dents would be required to do to answer these questions. Therefore, 
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these questions should be considered strongly Logo related. 

Question 24: A racing car travels around a circular track 
at a constant speed of 120 m.p.h. The force 
needed to keep the car moving in a circle 
i s: 

(1) constant in magnitude but changinq in 
direction. 

(2) constant in both magnitude and direc¬ 
tion. 

(3) changing in magnitude but constant in 
direction. 

(4) changing in both magnitude and direc¬ 
tion. 

Question 25: A rock attached to a hand-held string is 
twirled overhead so that it moves as shown 
in Figure 25. Which path will be taken by 
the rock if the string is released at point 
P? (paths viewed from above) 

To understand circular motion, the student would have to have a 

clear grasp of inertial and non-inertia! motion, and that an object does 

not necessarily move in the direction of the force applied to it. As 

these are abstract concepts, questions based on these concepts are 

abstract as well. It might be argued, however, that students could 
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memorize the correct responses to these questions without having much 

understanding of them. While this is certainly correct, it has been 

found that students have a great deal of difficulty remembering informa- 

tion they do not understand. 

Circular motion and dynamic motion were studied in some detail as 

part of the Logo curriculum. These questions, then, should be con- 

sidered strongly Logo related. 

Question 26: The distance separating the earth and a 
rocket heading for the moon is twice as 
great as it had been. The earth's gravi¬ 
tational force on the rocket during this 
time: 

(1) remains the same. 

(2) doubles. 

(3) becomes half as great. 

(4) becomes one-fourth as great. 

This question deals with gravitation, an abstract "unseen" force; 

and the inverse square proportional relationship. As both of these con 

cepts are abstract in nature, this question should be considered 

abstract as wel1. 

The Logo curriculum did not touch on gravitational forces or inverse 

square relationships. This question, therefore, should be considered 

non-Logo related. 

Question 27: Two bar magnets with their north poles facing 
each other are separated by a short distance. 
Which diagram best represents the magnetic 
lines of force around the magnets? 
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Question 27 relates to magnetic forces which act through distance 

and are rather abstract in nature. While it is true, the teaching of 

this concept is made more concrete by demonstrating the magnetic effects 

on iron filings, for example, as was done in this study. Nevertheless, 

the nature of the pattern and the directions of the force lines are suf¬ 

ficiently abstract to consider this an abstract question. 

Magnetism or force fields were not covered as part of the Logo 

unit. This question should, therefore, be considered non-Logo related. 

Question 28: As the electric charge on the surface of a 
hollow ball increases, the electric field 
inside the bal1: 

(1) increases. 

(2) decreases. 

(3) remains the same. 

This question deals with the abstract concept of the electric field, 

and the equally abstract concept of the inverse square law of electric 

force. As it deals with abstract concepts, it should be considered an 

abstract question. 
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This question dealt with concepts which were not covered in the 

Logo curriculum, and should be considered non-Logo related. 

Question 29: A heavy cannon ball and a marble are 
dropped from the same height at the same 
time. Which of the following statements 
is true? 

(1) The cannon ball will land much 
before the marble. 

(2) The marble will land much before 
the cannon bal1. 

(3) The cannon ball will land a 
short while before the marble. 

(4) They will both land about the same 
time. 

This question deals with a highly abstract concept; namely, the 

concept of gravitational mass and its relationship to gravitational 

force; and the compensating effect of inertial mass. In addition, the 

student must overcome some highly ingrained misconstrued ideas about 

the physics of falling bodies. While it may again be argued that the 

student will simply remember that objects of different weights fall 

at the same rate, one should consider the difficulties non-abstract 

reasoners have learning even recall-type information about abstract 

concepts. 

The concepts involved here were not taught as part of the Logo cur¬ 

riculum and, therefore, this question should be considered non-Logo 

related. 

Question 30: The subatomic particle which takes part in 
the electromagnetic interaction is the: 

(1) meson. 

(2) graviton 
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(3) neutron. 

(4) photon. 

This question relates to a highly abstract theory of matter and 

as such should be considered abstract in nature. 

The subject matter of this question was not part of the Logo cur¬ 

riculum; therefore, the question should be considered non-Logo related. 

The results of the preceding analysis are summarized with respect 

to whether or not a question is abstract and/or Logo related in the 

following table. In addition, the last column of the table indicates 

which of the listed physics concepts taught (see Physics Curriculum) 

are evaluated by the question. 

The curricular validity of the physics evaluation instrument is 

determined by the observable relationship between the test and the 

instructional objectives of the physics curriculum. To determine the 

curricular validity, then, the test must closely evaluate the stated 

objectives of the physics unit. To this end, an analysis of each ques¬ 

tion asked was made with respect to the stated learning objectives. 

This analysis indicates that each physics learning objective is tested 

at least once, and usually more than once, by the questions asked. Fur¬ 

thermore, the analysis indicates that many of these questions fit this 

studies criteria for being abstract, and a number of the questions are 

strongly related to the Logo unit taught. (See Table 1.) This indi¬ 

cates that the test does measure what is being taught, and that it is, 

therefore, a valid instrument. 

Further evidence of the test's validity is based on the judgments 

of two people who, on the basis of their research and publications in 
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TABLE 1 

ANALYSIS OF PHYSICS TEST QUESTIONS 

Question Number Abstract Logo Related C°nTSaluatedr(S) 

1. 
2. 
3. 
4. 
5. 

No 
No 
Yes 
Yes 
Yes 

No 
Yes 
Yes 
Yes 
No 

1 
2.3 

~Ta 
3.4 
4-6 

6. Yes No 4-6 
7. Yes No 4-6,13 
8. Yes Yes 17,18 
9. Yes Yes 14,15 

10. Yes No 9,10,14-16 
11. Yes No 9,10,14-16 
12. Yes No 9,10,14-16 
13. No No 10 
14. Yes No 7,11 ,12,19 
15. Yes No 7,11,12,19 
16. Yes No 7,11,12,19 
17. Yes No 19,22 
18. Yes No 3,4,7,17 
19. Yes Yes 17,18 
20. Yes Yes 17,20 
21. Yes Yes 17,20,21 
22. No Yes 4 
23. No Yes 4 
24. Yes No 8,20-21 
25. Yes No 17,20,21 
26. Yes No 19,22,25-27 
27. Yes No 25-27 
28. Yes No 25-27 
29. Yes No 19 
30. Yes No 23-25,27 
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the fields of physics, developmental psychology and Logo, are considered 

experts in these areas. Each agreed that the test basically measures 

what it was trying to measure and is, therefore, valid to that extent. 

Reliability estimates for this instrument are relatively high. 

Using the Spearman-Brown formula to correct an odd-even split half cor¬ 

relation for the combined control and treatment groups physics pre-test 

scores, the reliability coefficient was found to be 0.6 (see appendix 

for test scores). The Kuder-Richardson 20 formula was also used to 

determine the reliability coefficient of the instrument. This turned 

out to be a slightly lower 0.5, which is understandable considering 

that the physics pre-test was not highly homogeneous. 

The Logo Evaluation Instruments 

The other instruments used in this study consist of three Logo 

tests which were developed on an ad hoc basis to evaluate student 

progress in learning Logo. (The Logo tests used in this study may be 

seen in Appendix E.) Students were asked to write short Logo programs, 

interpret Logo instructions, and correct "bugged" Logo programs. As 

these tests were specifically designed to evaluate student progress, 

and were based on Logo concepts studied, they should be valid indicators 

of student progress. 

The Logo tests were not used directly as part of this study, but 

rather as an indicator of student learning of Logo (along with evalua¬ 

tion of student projects). It was felt that student participation in a 

Logo environment was not sufficient reason to assume learning had gone 

on. To this end, the Logo tests were developed to see which students 

learned Logo and to what degree the Logo was learned. 
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The Learning Environment 

This section describes the learning environments for the control 

and treatment groups. Only the treatment group was taught Logo, but 

both groups were taught physics. 

The Logo Learning Environment 

Developing a "Logo environment" in a public school setting can be 

a difficult task. One cannot set off in an entirely new direction with¬ 

out the cooperation of the school and community. This cooperation is 

generally limited by a variety of constraints. For example, in this 

study, the Logo and physics units had to be "integrated" into a normal 

eighth grade science class. As a grade in science is mandatory, it was 

necessary to grade students on their achievement in these units--which 

does not necessarily fit the "Logo philosophy." Time pressure proved to 

be another constraint, in that a certain amount of rushing was necessary 

to address the stated objectives. 

Nevertheless, within this context a fairly viable Logo environment 

was developed for this study. To begin with, an 18-station computer 

laboratory was made available to the students for 45 minutes per day 

five days per week, for a period of 14 weeks. This meant that no more 

than two students need share a computer, and most could work at a com¬ 

puter independently when they wished. 

The author of this study did most of the teaching and was ably 

assisted by the students' regular eighth grade science teacher. This 

meant there was a less than 12 to 1 student-teacher ratio. 
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Teacher preparation for teaching Logo included formal study of Logo, 

wide reading in this field, and extensive subject preparation and plan- ’ 

mng. Actual Logo teaching experience was limited to tutoring individual 

children along with the observation of experienced Logo teachers. Other 

teaching experience includes 20 years of teaching science and mathe- 

matics to junior and senior high school students. The assisting 

teacher, though he had limited computer training, taught junior high 

school science for more than 20 years. Lack of Logo teaching experi¬ 

ence did not prove to be a problem, as it was countered by careful 

preparation and general teaching experience. 

While every attempt was made to provide an open environment for 

students where they could explore and discover "neat phenomena" for 

themselves, it was felt that a certain degree of structure and guidance 

was necessary. To this end, a curriculum guideline was developed to 

provide direction. Within this general structure, students were given 

the latitude to move in any direction which interested them. 

A typical lesson began with a brief introduction of some Logo con¬ 

cepts which were usually demonstrated. Students were then given a short 

and usually simple project to complete which allowed them to apply the 

concepts which had been introduced. After a number of these concept 

introductions and projects, students were asked to develop a more compli¬ 

cated project of their own choosing, which allowed them to apply what 

they had learned. 

While students worked on their respective projects, the teachers 

went about the room working with individual students. This included 

answering questions in ways that allowed students to make their own 
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discoveries, making suggestions, giving ideas, discussing problems, 

and generally encouraging students to extend their ability and 

curiosity. Students were not given direct answers and solutions to 

their questions and problems; instead, problem solving was encouraged. 

Students were free to work with other students and seek their 

help when it was needed. Student cooperation did, in fact, occur to a 

great extent. Quite often, when an individual student came up with a 

good idea, or made an interesting discovery, he or she would share it 

with the class. These good ideas, and a few not so good ideas, would 

quickly spread throughout the room. 

As it invariably happens, students would find bugs in their pro¬ 

grams. When this occurred, they were encouraged to work their problems 

out. They did this by trial and error, deductive and inductive reason¬ 

ing, and very often by simply "stepping" their Logo program instructions 

out on the floor. They were made to feel that debugging a program was 

very much a part of writing programs, and that bugs should not be 

looked upon as "mistakes" to be ashamed of. 

Student projects led them into "microworlds" that they were free 

to explore. Logo games were also used to motivate as well as provide 

learning opportunities. Through these microworlds and games, they could 

explore such concepts as the geometry of polygons, variables, vectors 

and Newtonian motion. 

The students worked at their own pace within a structured time- 

frame. What this meant was that students had to more or less master 

certain concepts and skills within a certain period of time. But as 

each child moved in his or her own direction, some accelerated in new 
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directions while others caught up to where they had to be. Some chil¬ 

dren were able to master problems quickly enough so that they had time 

to explore their interests in depth, and then could go on to more complex 

problems. Others were slower and could only handle relatively simple 

problems and projects. These students also explored and made discover¬ 

ies. but usually at a simpler level. However, they were all brought to 

a point where they were ready to investigate new Logo commands and con- 

cepts. 

As the class reached a given stage of their progress, an evaluative 

paper-and-penci1 test was given. While the inventors of Logo have 

reservations concerning tests and grades, it was felt that these tests 

could provide important insights into what students understood and what 

they did not understand. An attempt was made to present these tests 

more as projects than as a means of arriving at a student's grade; and 

after the test was over, the student could work out the solutions to the 

test at his or her computer. In fact, achievement on tests was not 

directly used to determine student grades, but were given for the pur¬ 

poses of this study. 

The presentation of concepts and projects was designed to be 

increasingly difficult and complex. At the beginning of the study, stu¬ 

dents shot through their projects at break-neck speed, but as the com¬ 

plexity of the subject matter increased, the students slowed down con¬ 

siderably. Nevertheless, most seemed to feel that each day they 

accomplished more; and while some of the students looked to discover 

more and more, others were satisfied with simple accomplishments. It 

was hoped that students would feel that they were not part of the usual 
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academic competition, but rather that they Were a sharing situation 

where they were encouraged to help and be helped by one another. 

The Physics Environment 

Developing a physics environment for eighth graders can be as chal¬ 

lenging as developing a Logo environment. So many physics concepts are 

counterintuitive, highly abstract, and most easily dealt with by intro¬ 

ducing mathematical equations. This, the introduction of mathematical 

equations, was not feasible as the students had not yet learned algebra, 

and many had with simple arithmetic. 

Furthermore, it was important that the physics concepts being 

introduced were concepts which most, if not all, the students had not 

been exposed to before. This, actually, was not a big problem as these 

students had studied life science in the seventh grade, and did not, 

in general, have a strong science background. 

The problem, then, was to develop an environment where students 

could be introduced to not highly mathematical, yet abstract concepts 

of physics. Furthermore, it was felt that the abstract concepts of 

this unit had to be presented in as concrete a manner as possible so 

that they could be assimilated by these mostly concrete operational 

students. 

To provide such an environment, it was felt that a "hands-on" 

atmosphere was needed. Students would be asked to do experiments where 

they could explore phenomena, make guided discoveries, and apply intro¬ 

duced concepts to a variety of situations. Demonstrations and audio¬ 

visual aids were often used to introduce new concepts, as well as to 
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provide examples and applications of introduced concepts. 

A typical lesson (not necessarily given in one teaching period) 

began with a hands-on experiment where students could explore a given 

situation. Then a concept was introduced which was closely related to 

their explorations, usually with a concomitant demonstration to illus¬ 

trate the concept. Students then further explored and extended this 

concept to a point where they were ready to be introduced to still 

another concept. In other words, exploration was followed by concept 

introduction, which was followed by application and further application, 

which led to new concept introduction and so on. 

This method, known as a learning cycle, is described by Karplus, 

Lawson, et al., in a workshop on Science Teaching and the Development 

of Reasoning publication (1980, section 9:2). It was developed to make 

the introduction of abstract ideas as concrete as possible. 

The author of this study, again, did most of the teaching, and 

was again ably assisted by the students' eighth grade science teacher. 

During periods of laboratory activities, both teachers would assist 

students with their work. The emphasis was on problem solving and com¬ 

prehension of concepts. The introduction of new concepts and class 

demonstrations were done by the author. This was true for both the 

control and treatment classes. 

Collecting, Reporting, and Analyzing 
the Data 

The final section of this chapter summarizes the research proce¬ 

dures for collecting, reporting, and analyzing the data generated in 



134 

this study. The data collected here represents the scores achieved by 

43 eighth grade science students, out of a population of 181, on the 

Modified Lawson Classroom Test of Formal Reasoning, a physics pre- and 

post-test, and 23 students who took one, two, or three Logo knowledge 

evaluation tests. 

Collecting the Data 

The Modified Lawson Classroom Test of Formal Reasoning was adminis¬ 

tered over a period of three days to 43 eighth grade students in two 

science classes. These tests were given at the beginning of the spring 

semester to establish the developmental reasoning level of each student. 

Following this, each of the students were given a 45 minute, 30 item 

physics pre-test to establish their physics knowledge-base level. 

Two weeks later, 23 of these students began a 14-week study of 

Logo. During this period of time, three 45-minute Logo tests were 

administered at approximately equal intervals to evaluate student 

progress in their study. Twenty-three students took the first test, 

22 took the second, and 21 took the third. Both groups then began a 

three-week study of physics. Following this, each of the 43 students 

took a physics post-test which was identical to the pre-test. 

To insure that teachers would not be influenced by test results, 

the reasoning test and the physics pre-test were not scored until the 

completion of the study. The Logo tests were scored during the teach¬ 

ing of the Logo unit, and results were used to evaluate and correct 

specific learning problems. All tests were administered by the 

investigator himself. 
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Reporting the Data 

The Modified Lawson Classroom Test of Formal Reasoning has a 

0 to 15 range of scores. Those who score from 0 to 5 are listed as con¬ 

crete operational, and are the primary focus of this study. Those who 

scored from 6 to 11 were at a transitional stage of reasoning develop¬ 

ment; while those who scored between 12 to 15 are considered formal 

reasoners. Transitional and formal reasoning students will be con¬ 

sidered in terms of how they learn physics and/or Logo as compared to 

concrete operational students. 

The physics pre/post-test consists of a 30-item multiple choice 

test which will be scored in terms of percentage of items answered 

correctly. Improvement of post-test as compared to pre-test will be 

recorded in terms of plus or minus percentage point difference between 

pre- and post-tests. 

Logo test scores will be recorded on the basis of percentage cor¬ 

rect. The average of test scores will be used as an indication of Logo 

achievement. Students with a Logo test score average of 50 percent or 

better based on all three Logo tests will be considered Logo knowledge¬ 

able. 

Analyzing the Data 

The results of this study were related to the stated hypotheses by 

the following analysis. 

Hypothesis 1: Concrete operational students who have learned 
to program in Logo will not make significantly 
greater progress towards learning selected 
abstract concepts in physics than similar stu¬ 
dents who have not been taught to program in 
Logo. 
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(a) Analysis of developmental reasoninq 
scores to determine concrete 
tional reasoners among the 
treatment groups. 

opera- 
control and 

(b) Analysis of physics pre/post-test 
scores with respect to abstractness of 
questions. 

(c) Analysis of Logo test scores to screen 
for Logo knowledge. 

(d) Significance testing of differences 
between means of percentage point dif¬ 
ference of the physics tests of con¬ 
crete operational students for control 
and treatment groups using t-test 
analysis. 

(e) Significance testing of differences 
between means of percentage points dif¬ 
ference of the physics tests of con¬ 
crete operational students for control 
group and Logo test screened treatment 
group using t-test analysis. 

(f) Significance testing of differences 
between means of percentage point dif¬ 
ference on abstract questions of the 
physics tests of concrete operational 
students for control and treatment 
groups using t-test analysis. 

(g) Significance testing of differences 
between means of percentage point dif¬ 
ference on abstract questions of the 
physics tests of concrete operational 
students for control group and Logo 
test screened treatment group using 
t-test analysis. 

Hypothesis 2: Concrete operational students who have 
learned to program in Logo will not make 
significantly greater progress towards 
learning selected abstract concepts in 
physics which are directly related to the 
Logo concepts learned than similar students 
who have not been taught to program in 
Logo. 



137 

(a) Analysis of physics pre/post-test 
scores with respect to Logo-related 
questions. 

(b) Significance testing of differences 
between means of percentage point 
difference of Logo-related questions 
on the physics tests of concrete 
operational students for control 
and treatment groups using t-test 
analysis. 

(c) Significance testing of differences 
between means of percentage points 
difference of Logo-related questions 
on the physics tests of concrete 
operational students for control 
group and Logo test screened treat¬ 
ment group using t-test analysis. 

(d) Significance testing of differences 
between means of percentage point 
difference of Logo-related abstract 
questions on the physics tests of 
concrete operational students for 
control and treatment groups using 
t-test analysis. 

(e) Significance testing of differences 
between means of percentage point 
difference of Logo-related abstract 
questions on the physics tests of 
concrete operational students for 
control group and Logo test screened 
treatment group using t-test analy¬ 
sis. 

The analysis and interpretation of the statistical results of this 

study is the subject of the next chapter. 
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chapter iv 

ANALYSIS AND INTERPRETATION 

This chapter reports, analyzes and interprets the data collected 

as a result of testing a sample of eighth grade students. The tests 

administered were the Modified Lawson Classroom Test of Formal Reasoning 

and the physics pre- and post-test evaluation instrument to all stu¬ 

dents in our sample, and three tests of Logo achievement to the Logo 

treatment group. Particular attention was paid to whether or not learn¬ 

ing to program in Logo helped concrete operational students learn 

abstract physics concepts, especially if these concepts are directly 

related to the Logo learned. Specifically, these research findings 

were related to the two hypotheses which directed this study. The fol¬ 

lowing two hypotheses will be considered in this chapter in turn. 

Hypothesis 1: Concrete operational students who have 
learned to program in Logo will not make 
significantly greater progress towards 
learning selected abstract concepts in 
physics than similar students who have 
not been taught to program in Logo. 

Hypothesis 2: Concrete operational students who have 
learned to program in Logo will not make 
significantly greater progress towards 
learning selected abstract concepts in 
physics which are directly related to 
the Logo concepts learned than similar 
students who have not been taught to 
program in Logo. 

Before presenting the results of this study, it is important to 

note that this was basically a pilot study and exploratory in nature. 

The study was performed in a public school setting where experimental 
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controls were constrained by student, community, and administrative 

needs and desires, along with the normal organizational structures which 

generally exist in public schools. Furthermore, little research has 

been done which is related to this present study, and even less 

research, if any, has been done that is directly related. As a result, 

research instruments, curricula and teaching strategies had to be 

specifically developed. 

Among the purposes of exploratory studies are the generation of 

topics and questions which should be considered in future investigations; 

and the development of valid and reliable research instruments. In this 

respect, the present study succeeds in beginning this important process. 

However, a great deal more must be done before we can reach any but the 

most tenuous of conclusions. Nevertheless, this study does add to the 

growing body of information on the development and use of the computer 

language Logo as a means of helping children to deal with abstract con¬ 

cepts and problems. 

Hypothesis 1 

To test Hypothesis 1, it is necessary to first determine which stu¬ 

dents in our sample are concrete operational. This was done by adminis¬ 

tering the Modified Lawson Classroom Test of Formal Reasoning to both 

control and treatment groups alike. The results of this test are listed 

as logic scores in Table 2 for the control group and Table 3 for the 

treatment group. 
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TABLE 2 

CONTROL GROUP TEST SCORES FOR LOGIC TEST 

Student Number Logic Score 

1. 1 
2. 1 
3. 6 
4. 3 
5. 6 
6. 3 
7. 2 
8. 1 
9. 3 

10. 4 
11. 3 
12. 0 
13. 0 
14. 1 
15. 0 
16. 4 
17. 1 
18. 0 
19. 4 
20. 3 
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TABLE 3 

TREATMENT GROUP TEST SCORES FOR LOGIC TEST 

Student Number Logic Score 

21. 9 
22. 3 
23. 2 
24. 1 
25. 7 
26. 2 
27. 3 
28. 1 
29. 2 
30. 1 
31. 3 
32. 1 
33. 5 
34. 1 
35. 9 
36. 5 
37. 3 
38. 6 
39. 6 
40. 4 
41. 8 

C
\J 2 

43. 2 
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fri.a|.ys1s °f Developmental Reasoning Scores 

-—Determine Concrete Reasoners Amona thp 
Control and Treatment Groups - 

The mean of the logic scores for all 43 subjects is 3.07 with a 

standard deviation of 2.40. This mean is somewhat low as compared to 

the mean score of 4.93 (standard deviation = 3.27) for the entire eighth 

grade population of 165 students tested at this school in 1981. The 

4.93 mean score is more typical for eighth grade students as found by 

other researchers. This lower score probably reflects the "creaming 

off" effect on general scheduling, including non-grouped science classes 

as a result of ability grouping of mathematics sections. 

The logical score mean for the control group was found to be 2.30 

with a standard deviation of 1.89, while the treatment group had a mean 

of 3.74 with a standard deviation of 2.63. As the focus of this study 

is the concrete operational student, the scores of all students with a 

logic score greater than five were ignored, as were the scores of the 

two students who did not take the physics pre-test. Recalculation of 

logic scores for control and treatment groups gives a mean of 1.81 with 

a standard deviation of 1.47 for the control group, and a mean of 2.41 

with a standard deviation of 1.32 for the treatment group. These scores 

are not significantly different at the p = .05 level of confidence. 

Analysis of Physics Pre/Post-Test Scores 

Tables 4a and 4b indicate the scores achieved on the physics 

pre-test for the control group students for each of the thirty questions. 

A "1" indicates a correct response, while a "0" indicates an incorrect 

response. Tables 5a and 5b do the same for the treatment group, 
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TABLE 4a 

PHYSICS PRE-TEST SCORES: CONTROL CLASS 
(QUESTIONS 1-15) 

Studer 
No. 

1. 

1 > 
it : 

i i 
i i 

Question 
No. 

: i 

: l 

! 2 

SO 

1 T 1 sJ 

SO 

! 4 

so 

5 

1 

6 

0 

7 

1 

: 8 

so 

! 9 

! 0 

S10i11 

SI so 

12 

0 

13 

0 

14 S 15 

0 so 
Z • :o SO so so 0 0 0 so so so : i 1 0 1 ! 0 o . : l : o so : o 0 0 0 so so so so 1 0 1 : o 4. ! 0 : l so so 1 0 0 so so so so 0 0 3 so 5. ; l ! 1 so so 1 0 1 so : o so so 0 0 0 : o 
6. : i : i so so 1 0 1 so so so so 0 1 0 so 
7. so so so so 0 0 1 so so ! 1 so 0 0 1 so 
8. ! 1 : o so so 0 0 0 so so : i so 1 0 3 so 
9. : l ; o so so 1 0 1 so ! 1 : i i 1 1 0 0 so 

10. so so so so 1 0 1 ! 1 so so ! 1 0 0 0 so 
11. : l so so i 0 0 0 1 so ; o so so 0 0 0 so 
12. so so so so 1 0 1 so ! 1 : i : i 0 1 1 : o 
13. so : o so so 1 0 0 : o : i so : l 0 0 1 so 
14. : ! : i • 1 1 1 till 1 1 
15. : l so so ! 0 1 0 1 so so ! 1 ! 1 1 1 1 so 
16. : ! ! ! 1 1 1 1 1 1 1 1 1 1 
17. ! 1 so so so 0 0 o S 0 so so so 0 0 0 so 
18. SO so so ! 0 1 0 0 so ! 0 so so 0 0 1 so 
19. SO so so : o 0 0 1 S 0 so so so 0 0 0 : o 
20. : o ! 1 so so 0 0 1 so ! 0 so so 0 0 0 ; i 
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TABLE 4b 

PHYSICS PRE-TEST SCORES: CONTROL CLASS 
(QUESTIONS 16-30) 

Student 
No. 

Question 
No. 

II II II || 
1 

II II II II II 

16 

0 

17 

1 

18 

1 

19 

0 

20 : 21 

o : i 

22 

0 0 

! 24 

10 

125 

:o 

126 

! 1 

27 

0 

28 

1 

29 

1 

30 

0 2. 0 0 0 0 1 : i 0 0 :o : o :o 1 l 0 o 3. 0 1 1 1 0 : i 0 0 ! 0 10 :o 0 0 1 0 
4. 0 0 1 0 0 i 1 1 0 :o :o :o 1 1 0 o 
5. 1 0 0 0 0 : i 0 0 :o : l 10 0 0 0 0 
6. 0 0 0 0 0 : l 0 0 :o ! 0 :o 1 0 0 0 
7. 0 0 0 0 0 ! 1 0 0 0 ! 1 :o 1 0 1 0 
S. 0 0 0 0 0 : l 0 0 ! 0 ! 0 :o 0 0 0 1 
9. 0 1 0 1 0 : i 0 0 ! 0 : i :o 1 0 0 1 

10. o 0 1 1 0 : i 0 0 10 :o :o 0 0 1 0 
11. 0 0 0 0 0 : l 0 0 ! 0 0 :o 1 0 0 0 
12. 0 1 1 0 0 : l 1 0 i 1 : o : i 0 0 0 0 
13 . 0 0 0 1 1 : o 0 0 !0 ! 1 i 0 0 0 0 0 
14. 1 1 1 1 1 1 1 1 
15. 0 0 0 0 1 : i 0 0 :o : l : i 0 0 1 1 
16. 1 1 1 1 1 1 1 
17. 0 0 1 0 0 :o 0 0 :o 1 0 :o 0 0 0 0 
18. 0 0 0 0 1 ! 0 0 1 :o :o :o 0 0 0 1 
19. 0 0 0 1 0 : l 0 0 :o S 1 ! 0 1 1 1 0 
20. 0 0 0 1 0 : i 0 0 ! 0 :o : l 1 0 0 0 
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TABLE 5a 

PHYSICS PRE-TEST SCORES: TREATMENT CLASS 
(QUESTIONS 1-15) 

1 1 

! Student 

i i 
i Question 

! No. 
1 1 

i i 
i i 

No. 

1 ! 1 ! 2 o : 4 5 6 7 8 9 10 11 12 13 14 15 II II II II II II II II II } — ~ l — — === J == ==r == == == == == == == —= == 
: i. : l ! 1 1 JO 0 0 1 0 0 0 0 0 0 0 1 
! 2. :o JO 0 JO 0 0 1 1 0 1 0 1 0 1 0 

3. JO ! 1 0 so 0 0 0 0 0 0 0 1 0 0 0 
! 4. JO JO 0 : o 0 0 0 1 1 1 0 1 0 1 0 

< 5. : l JO 0 JO 1 0 1 0 1 0 0 0 0 0 0 
I 6. ! 1 JO 0 JO 0 0 0 0 0 1 1 1 0 0 1 
! 7. JO ! 1 o ! 0 1 0 0 0 0 0 0 0 0 0 0 
! 8. JO JO 0 10 0 0 0 0 1 0 1 1 0 0 0 
! 9. JO JO 0 JO 1 0 0 0 0 0 0 0 1 0 0 
1 10. JO JO 0 JO 1 0 0 1 0 0 0 0 0 0 0 
J 11. JO JO 0 JO 0 0 0 0 0 0 0 0 1 0 1 
1 12. : i J 1 1 JO 0 0 0 0 1 1 0 1 0 1 0 
! 13. ! 1 JO 0 JO 0 0 1 0 0 0 1 1 0 0 0 
! 14. JO JO 0 JO 0 0 0 1 0 1 0 0 0 0 0 
i 15. J 1 J 1 1 JO 0 0 1 0 1 0 0 0 0 0 1 
; 16. JO JO 0 JO 0 0 0 0 0 0 0 1 0 0 0 
: 17. J 1 JO 0 JO 0 0 1 0 1 0 1 1 0 0 0 
! 18. ! 1 JO 0 JO 1 0 1 0 0 1 1 1 1 0 1 
! 19. JO J 1 0 JO 0 0 1 1 0 0 1 1 0 0 0 
: 20. ! 1 J 1 0 JO 1 0 0 0 0 0 1 1 1 0 0 
: 21. JO JO 0 JO 0 0 0 0 0 1 0 0 0 0 0 
i nn ■ Zil • JO JO 0 : o 1 0 0 1 0 1 0 0 0 0 1 
i i Z. O. JO JO 0 JO 0 0 0 0 0 0 0 1 0 1 0 
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TABLE 5b 

PHYSICS PRE-TEST SCORES: TREATMENT CLASS 
(QUESTIONS 16-30) 

! Student 
! No. 

Question 
No. 

! 1. 

16 

1 

17 

0 

18 

0 

19 

1 

20 

1 

21 

1 

2 r> 

0 

*“} ~r 

1 

24 

1 

25 

0 

26 

0 

27 

1 

28 

0 

29 

0 

30 

0 i n > XL m 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 
1 3. 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
! 4. 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 
! 5. 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
1 6. 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 
! 7. 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 
! 8. 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 
! 9. 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
: 10. 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
! 11. 0 1 1 o 0 1 0 1 0 0 0 1 0 1 0 
: 12. 0 1 0 o 0 0 0 0 1 0 0 0 0 0 1 
i 13. 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 
: 14. 0 0 0 o 0 0 1 0 0 o 0 0 0 0 0 
! 15. 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 
: 16. 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
: 17. 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 
: is. 0 0 o 0 1 1 0 1 1 1 0 0 0 0 0 
! 19. 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 
: 20. 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 
: 21. 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
: 22. 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 
• 23 • 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
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while Tables 6a and 6b, and Tables 7a and 7b report control and treat- 

ment scores respectively on the physics post-test. 

Physics pre- and post-test scores, percentage points improved, and 

the percentage points difference of physics test scores are listed in 

Table 8 and Table 9 for control and treatment groups respectively. 

These tables list scores for only those students found to be concrete 

operational and who have taken both the pre- and post-physics tests. 

Question 28 was not used for calculating the physics post-test scores, 

as the concept tested by that question was inadvertently not taught. 

The percentage points difference in the physics test scores were found 

by subtracting the percentage correct score on the physics pre-test from 

the percentage points correct on the physics post-test. 

Table 10 lists the means and standard deviations of the scores 

listed in Table 8 and Table 9. 

The mean of the physics pre-test scores for both the control and 

treatment groups are fairly close to what would be expected from ran¬ 

domly choosing answers. Furthermore, there are no significant dif¬ 

ferences in these scores (p = .05). This is a good indication that the 

concrete operational students are fairly well matched, and have had 

minimal exposure to the physics concepts which were later taught to 

them. 

Post-test scores for both control and treatment groups made very 

significant improvement in their test scores (p = .001), with the treat¬ 

ment group having a somewhat lower post-test mean score. However, the 

difference between post-test scores for control and treatment groups is 

tenuous at best, even at the p = .1 level of confidence. Also, while 
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TABLE 6a 

PHYSICS POST-TEST SCORES: CONTROL CLASS 
(QUESTIONS 1-15) 

Student 
No. 

1. 

1 1 
l 1 
1 1 
1 
l 

Question 
No. 

1 1 

! 1 

'.2 

10 

I 3 

:o 

4 

1 

i 5 

10 

S 6 

! 1 

17 

:o 

1 8 

: l 

: 9 

: o 

10 

0 

11 

1 

12 

0 

! 13 

so 

14 

0 

: 15 

: l 
o :o ! 1 ;o 0 ! 1 : l ! 1 : o so 0 0 1 i 1 0 1 -* 1 JL 

\j ■ : i :o ‘,0 0 ! 1 : i :o :o : i 1 0 0 so 0 SO 
4. ! 0 ! 1 :o 0 S 1 : l ! 0 ! 0 s i 1 0 1 so 1 SO 
cr 
v_J • ! 1 : l : l 0 : i :o :o ! 1 : o 0 0 1 so 1 ! 1 
6. 1 1 ! 1 i l 0 ! 0 :o :o : i ! 1 0 0 1 so 1 SO 
7. ! 0 ! 0 : l 0 : l : l ! 1 : l ! 1 1 0 0 : i 1 : l 
8. : i ! 1 ! 0 0 : l :o 10 so SO 0 0 0 : i 0 ! 1 
9. : l ! 0 SO 0 !0 ;o :o ! 1 : i 1 0 1 so 1 SO 

10. ! 1 10 ! 1 0 : i ! 0 ! 1 SO so 0 0 1 so 0 SO 
11. O :o ! 0 0 11 ! 0 :o SO ! 1 0 o 0 : o 0 ! 1 
12. ! 1 : i : i 1 : i :o 10 ! 1 SO 1 1 1 : i 0 SO 
13. ! 1 ! 1 10 0 ■. l !1 5 1 ! 1 SO 0 0 1 so 1 SO 
14. ! 1 ! 1 ! 0 0 10 ;o 1 0 : i SO 1 0 1 so 0 SO 
15. ! 1 : i : l 0 : i :o ! 1 i 1 SO 0 0 1 so 1 i 0 
16. : i :o so 0 ! 0 iO i 1 so SO 0 0 1 : l 0 i 1 
17. ! 1 :o ! 1 0 :o : l ! 1 ! 1 so 1 0 1 so 0 ! 1 
18. : i ! 1 10 1 ! 1 iO 10 SO so 0 0 1 so 0 SO 
19. : i ! 1 ! 1 0 :o ! 0 S 1 SO : i 1 0 1 ! 1 1 ! 1 
20. : l : l : l 0 : i :o : i so so 0 1 1 : i 1 SO 
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TABLE 6b 

PHYSICS POST-TEST SCORES: CONTROL CLASS 
(QUESTIONS 16-30) 

Studen 
No. 

1. 

• < 
t ! 

I 
• 1 

Question 
No. 

: 16 

: i 

:17:is:19 

:o :o :o 

120 

: l 

: 21 

: o 

! 22 

: i 

i 23 
i == 
: o 

!24125126 

:o :o :o 

: 27 

: l 

128 

: o 

: 29 

:o 

30 

:o n xl . :o : o : i :o :o : i :o : i : o :o :o : l :o so :o 
3. ! 0 : o :o :o :o : i :o :o : l :o :o :o :o : i : t 
4. ! 1 :o :o :o :o : l :o : l : l : i :o :o : o : i : l 
tj . : l : l 10 : l : l : i 10 : i :o : l : l :o :o :o : l 
6. ! 0 : l : l :o :o : l : i : l :o : l :o : l 10 : i :o 
7. 10 :o :o : l : i : i :o :o : i :o :o : l :o ! 1 : l 
a. ! O : i : l :o : i :o :o : o : i :o :o :o : l :o : i 
9. ; l : i :o :o :o : l :o :o : i : l :o :o 10 : i :o 

10. ! 1 :o : l :o :o : l :o I 0 :o :o : i :o :o : i :o 
11. :o :o :o : l : o : l :o :o : i 10 !0 : l :o :o :o 
12. 10 : i :o : l : l : i :o : i : l : i :o :o :o 1 0 :o 
13. :o :o 10 :o : l : i :o : l :o : l :o : i : o :o :o 
14. :o : l : l :o :o : l :o : l : l :o : i : l :o : o : l 
15. :o :o :o : i :o : l :o : l :o : i :o :o : o : l ! 1 
16. :o : l : l : o : i : o :o : o :o :o :o :o :o :o :o 
17. : l :o :o :o : l :o :o :o 10 :o :o :o :o 10 : l CD 

tH :o : l : l :o :o :o : i :o : l :o :o :o :o 10 : o 
19. : l ;o : i :o 10 : i :o : i : l :o :i : l : i : i :o 
20. :o :o :o :o :o : i 10 : o : l :o :o : i : i :o : l 
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TABLE 7a 

PHYSICS POST-TEST SCORES: TREATMENT CLASS 
(QUESTIONS 1-15) 

1 I 

! Student 

i • 
i i Question 

! No. 
1 f i 

No. 

1 i 1 ! 2 3 4 5 6 7 8 9 10 11 12 » 13 14 15 

! 1. ! 1 ! 1 i 0 0 1 0 1 0 1 0 1 JO 0 1 
i 2. ! 1 : i i 0 1 0 0 1 1 1 1 0 JO 0 0 
! 6 • JO i 1 0 0 1 0 1 1 0 0 0 1 11 1 1 
! 4. i 1 ! 1 0 0 1 1 1 0 0 0 0 0 JO 1 0 
! 5 . ; i : i 1 0 0 1 1 0 1 0 0 1 : i 1 0 

6. ; i JO 0 0 0 0 0 0 0 1 0 1 : i 0 0 
: 7. ; l ! 1 0 0 0 0 1 1 1 0 0 1 JO 0 0 
: s. so : l 0 0 1 0 0 0 0 0 0 1 : i 0 0 
! 9. JO JO 0 0 0 1 0 0 1 0 0 1 JO 0 0 

o
 

■ ! 1 JO 0 0 1 0 0 1 0 1 0 0 ! 1 1 0 
: n. ! 1 ! 1 0 0 0 0 0 1 0 0 0 0 : i 0 1 
I 12. i 1 : l 0 0 0 0 1 1 0 0 0 0 JO 0 0 
! 13. JO ! 1 0 0 0 0 1 0 0 0 0 1 JO 1 0 
i 14. i 1 j i 0 0 1 0 1 1 0 0 0 0 JO 1 0 
: 15. ! 1 JO 1 0 0 0 0 0 1 1 o 1 ! 1 0 0 
: 16. JO : l 0 0 1 0 1 0 0 1 0 1 10 0 0 
! 17. : l ! 0 0 0 1 1 1 0 1 1 0 1 JO 0 0 
; is. JO : l 1 0 1 0 1 1 1 1 0 1 : i 1 1 
! 19. : l JO 0 0 0 1 1 1 1 1 0 1 JO 0 0 
! 20. : l j i 1 0 1 0 0 0 1 0 o 1 JO 0 0 
i 21. i ■* 1 -L : l 0 0 0 1 1 1 1 0 0 1 JO 0 0 
i nn i Zx. m JO JO 0 0 1 1 0 0 0 0 0 0 ! 1 0 0 
i • ■ JO : i 0 0 1 0 1 1 0 1 0 0 JO 1 0 



152 

TABLE 7b 

PHYSICS POST-TEST SCORES: TREATMENT CLASS 
(QUESTIONS 16-30) 

' Studer 
! No. 

! 1. 

1 • 
it : 

i 
i 

i 

Question 
No. 

i 16 

:o 

17 

0 

:18!19120121 

11 51 10 11 

22 

1 

97 

1 

124 

11 

25 

1 

126 

11 

127 

11 

128 

10 

29 

0 

30 

1 
1 JL m :o 0 10 10 10 1 0 0 1 10 0 11 11 10 0 1 
; 6 . i i 0 1 1 10 10 11 0 1 10 0 11 11 10 1 0 
: 4. :o 1 1 1 10 10 11 0 0 10 1 10 11 11 0 1 
i cr 
1 wJ . 11 0 10 10 10 11 0 1 10 0 11 11 10 1 0 
; 6. :o 1 10 10 11 11 0 1 11 1 10 11 11 1 1 
: 7. ! 0 1 11 10 10 11 0 0 10 0 10 11 10 0 t 

! 8. :o 1 11 10 10 11 0 0 10 0 11 11 10 1 0 
: 9. ! 0 0 11 10 11 11 0 0 1 0 0 10 11 11 1 0 
! 10. 1 0 0 10 10 10 11 0 0 11 0 10 10 11 1 1 
: n. 10 0 10 11 10 11 0 1 11 1 10 10 10 0 0 
: 12. :o 0 11 10 10 10 0 1 11 1 10 11 11 0 1 
*. 13. : o 1 11 so 10 so 0 0 10 1 10 10 10 0 1 
: 14. : o 0 10 11 11 11 0 0 10 0 11 10 so 1 1 
: 15. :o 0 10 10 10 11 1 0 11 1 1 0 11 11 1 0 
! 16. ; o 0 1 0 10 10 11 0 0 11 0 10 11 10 1 0 
: 17. : i 1 11 10 10 11 0 0 10 0 10 11 so 0 1 
! 18. :o 0 10 10 10 11 0 1 11 1 10 10 10 0 0 
! 19. : l 1 10 10 11 11 0 0 10 0 10 11 10 0 1 
! 20. ! 1 0 10 10 11 11 0 1 11 1 10 11 10 0 1 
: 21. :o 0 11 10 10 11 0 0 10 1 so 10 10 1 1 
: 22. ! 1 0 11 10 10 10 0 0 1 0 1 10 10 10 0 0 
i 23. :o 0 10 11 10 10 0 0 10 1 10 10 10 0 1 
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TABLE 8 

PHVSIpOINTs"[)TFFFR™rp0cLT^T SC0RES AND PERCENTAGE POINTS DIFFERENCE FOR CONCRETE OPERATIONAL 
CONTROL GROUP STUDENTS 

Student Number 
Physics Pre-Test 
Percent Correct 

m . Percentage 
Physics Post-Test Points 
Percent Correct Difference 

1. 
2. 
4. 
6. 
7. 
8. 

33.3 
30.0 
26.7 
23.3 
23.3 
90 0 

34.5 
37.9 
48.3 
51.7 
58.6 

1.1 
7.9 

21.6 
28.4 
35.3 

9. 
c\j. U 

43.3 
34.5 
41.4 

14.5 
-2.0 

10. 26.7 34.5 7.8 11. 13.3 24.1 10.8 12. 43.3 58.6 15.3 
13. 23.3 44.8 21.5 
15. 46.7 48.3 1 .6 
17. 10.0 37.9 27.9 
18. 13.3 31.0 17.7 
19. 23.3 62.1 38.7 
20. 23.3 44.8 21.5 
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TABLE 9 

PHYSICS PRE-TEST AND POST-TEST SCORES AND PERCENTAGE 
POINTS DIFFERENCE FOR CONCRETE OPERATIONAL 

treatment group students 

Student Number 
Physics Pre-Test 
Percent Correct 

Physics Post-Test 
Percent Correct 

Percentage 
Points 

Difference 

22. 30.0 41.4 11.4 
23. 16.7 51.7 35.1 
24. 30.0 41.4 11.4 
26. 30.0 44.8 14.8 
27. 20.0 37.9 17.9 
28. 26.7 34.5 7.8 
29. 20.0 27.6 7.6 
30. 16.7 34.5 17.8 
31. 26.7 34.5 7.8 
32. 33.3 34.5 1.1 
33. 13.3 27.6 14.3 
34. 10.0 41.4 31.4 
36. 10.0 31.0 21.0 
37. 36.7 44.8 8.2 
40. 40.0 48.3 8.3 
42. 30.0 20.7 -9.3 
43. 10.0 31.0 21.0 
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TABLE 10 

MEANS AND STANDARD 
POST-TESTS, AND 

OF 

DEVIATIONS OF PHYSICS PRE- AND 
PERCENTAGE POINTS DIFFERENCE 
PRE-TEST SCORES 

Control Group Treatment Group 

Mean 
of Pre-Test Scores 26.4 23.5 

Standard Deviation 
of Pre-Test Scores 10.8 9.7 

Mean 
of Post-Test Scores 43.3 36.9 

Standard Deviation 
of Post-Test Scores 10.8 8.2 

Mean 
of Percentage Points 
Difference 

16.9 13.4 

Standard Deviation 
of Percentage Points 12.1 10.5 
Difference 
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improvement was significant for both groups, neither group's mean score 

was greater than 50 percent. 

The mean of percentage points difference score was slightly higher 

for the control group than for the treatment group. However, there is 

no significant difference between these scores at the 95 percent confi- 

dence level. 

These results relate to the physics tests taken as a whole. The 

same analyses were then done with respect to only those test items con¬ 

sidered strongly abstract in nature. 

Analysis of Physics Pre- and Post-Test 
Scores with Respect to Test Questions 
Considered Highly Abstract in Nature 

The analysis of the physics pre-test and post-test done in Chapter 

III, and reported in Table 1, indicates that Questions 3-12, 14-21, and 

24-30 may be considered abstract as based on the criteria used in this 

study. Question 28 was not used here for previously-mentioned reasons. 

Physics pre- and post-tests, and percentage points difference of the 

physics test abstract question scores are listed in Table 11 and Table 12 

for control and treatment groups respectively. 

Table 13 lists the means and standard deviations for scores on the 

abstract questions of the pre- and post-physics tests, along with the 

mean and standard deviation of the percentage points difference of the 

physics test scores. 

Again, pre-test scores are little better than what would be 

obtained from random guessing of answers, and there is no significant 

difference between control and treatment groups for pre-test, post-test, 
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TABLE 11 

PHYSICSPRE-TEST AND POST-TEST ABSTRACT QUESTION SCORES 
and percentage points difference of abstract 

QUESTION SCORES FOR CONCRETE OPERATIONAL 
CONTROL GROUP STUDENTS 

Student Number 
Physics Pre-Test 
Percent Correct 

Physics Post-Test 
Percent Correct 

Percentage 
Points 

Difference 

1. 33.3 33.3 0.0 
2. 29.2 33.3 4.2 
4. 20.8 50.0 29.2 
6. 16.7 45.8 29.2 
7. 29.2 66.7 37.5 
8. 20.8 29.2 8.3 
9. 50.0 45.8 -4.2 

10. 33.3 37.5 4.2 
11. 12.5 29.2 16.7 
12. 45.8 54.2 8.3 
13. 29.2 41.7 12.5 
15. 50.0 45.8 -4.2 
17. 8.3 41.7 33.3 
18. 16.7 25.0 8.3 
19. 20.8 58.3 37.5 
20. 25.0 41.7 16.7 
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TABLE 12 

PHYSI«LPRE"TEST AND P0ST"TEST ABSTRACT QUESTION SCORES 
AND PERCENTAGE POINTS DIFFERENCE OF ABSTRACT 

QUESTION SCORES FOR CONCRETE OPERATIONAL 
TREATMENT GROUP STUDENTS 

Student Number 
Physics Pre-Test 

Percent 
Physics Post-Test 

Percent 

Percentage 
Points 

Difference 

22. 33.3 37.5 4.2 
23. 12.5 50.0 37.5 
24. 33.3 41.7 8.3 
26. 33.3 41.7 8.3 
27. 16.7 37.5 20.8 
28. 33.3 33.3 0.0 
29. 20.8 33.3 12.5 
30. 20.8 33.3 12.5 
31. 25.0 25.0 0.0 
32. 33.3 29.2 -4.2 
33. 12.5 29.2 16.7 
34. 8.3 41.7 33.3 
36. 12.5 33.3 20.8 
37. 37.5 50.0 12.5 
40. 33.3 45.8 12.5 
42. 37.5 20.8 -16.7 
43. 12.5 33.3 20.8 



159 

TABLE 13 

MEANS AND STANDARD DEVIATIONS OF PHYSICS PRE- AND 
POST-TESTS, AND PERCENTAGE POINTS DIFFERENCE 

OF SCORES ON ABSTRACT QUESTIONS 

Control Group Treatment Group 

Mean 
of Pre-Test Scores 27.6 24.5 

Standard Deviation 
of Pre-Test Scores 12.6 10.4 

Mean 
of Post-Test Scores 42.4 36.3 

Standard Deviation 
of Post-Test Scores 11.3 8.2 

Mean 
of Percentage Points 
Di f fere nee 

14.8 11.8 

Standard Deviation 
of Percentage Points 
Difference 

14.4 13.3 
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or percentage points difference at the p = .05 level of confidence. 

(See Table 17 for t-test values.) 

These results would seem to indicate that concrete operational 

students exposed to a Logo environment do not seem to learn abstract 

physics any better than a similar group of students that have not been 

exposed to a Logo environment. 

Analysis of Physics Test Score Differences 
for Concrete Operational Students Screened 
for Their Knowledge of Logo- 

Teaching students to program in a Logo environment does not insure 

that these students have actually learned Logo. To screen for student 

knowledge of Logo, a series of Logo tests, described in Chapter III 

(see Appendix E), were administered to the Logo group. The criteria 

used to indicate sufficient Logo knowledge was that students had to take 

all three Logo tests and obtain an average of 50 percent or greater on 

these tests. 

The Logo scores for the concrete operational students used here 

are listed in Table 14. As seen in Table 14, Students 22, 23, 26, 

28, 33, 36, and 40, meet the criteria of being concrete operational, 

having taken all three Logo tests, and having a Logo average of 50 per¬ 

cent or better. Table 15 lists the percentage points difference in 

physics scores for these students for all questions (except Number 28), 

and for abstract questions. 

The means and standard deviations in percentage points difference 

scores for these students were compared with the control group students. 

These results are listed in Table 16. 
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TABLE 14 

LOGO SCORES FOR CONCRETE OPERATIONAL STUDENTS 
(TREATMENT GROUP) 

Student Number 

22. 

23. 

Logic 
Score 

Logo 
Test 1 

Logo 
Test 2 

Logo 
Test 3 

75 
90 

80 
65 

30 
35 

Logo 
Average 

61.7 
63.3 

24. 
26, 
27, 

60 
80 

50 
80 

10 
70 

40.0 
76.7 

28, 
29, 

60 
60 

65 
75 

20 
25 

48.3 
53.3 

55 50 
30. 1 70 —   
31. 3 60 45 10 38.3 
32. 1 50 60 35 48.3 
33. 5 65 60 25 50.0 
34. 1 40 25 5 23.3 
36. 5 80 85 45 70.0 
37. 3 60 50 20 43.3 
40. 4 65 85 25 58.3 
42. 2 70 20 10 33.3 
43. 2 40 70 30 46.7 
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TABLE 15 

PERCENTAGE POINTS DIFFERENCE IN PHYSICS SCORES FOR 
CONCRETE OPERATIONAL STUDENTS WHO HAVE BEEN 

SCREENED FOR LOGO KNOWLEDGE 

Student Number 
Percentage Points 

Di f fere nee 

Percentage Points 
Difference for 

Abstract Questions 

22. 11.4 4.2 
23. 35.1 37.5 
26. 14.8 8.3 
28. 7.8 0.0 
33. 14.3 16.7 
36. 21.0 20.8 
40. 8.3 12.5 
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TABLE 16 

MEANS AND STANDARD DEVIATION ON PHYSICS PERCENTAGE POINTS 
DIFFERENCE SCORES FOR LOGO KNOWLEDGE SCREENED 

STUDENTS AND CONTROL GROUP STUDENTS 

Control Group 
Logo Screened 
Treatment Group 

Mean 
of Percentage Points 
Difference Scores 

16.9 16.1 

Standard Deviation 
of Percentage Points 
Difference 

12.1 9.5 

Mean 
of Percentage Points 
Difference of 
Abstract Scores 

14.8 14.3 

Standard Deviation 
of Percentage Points 
Difference of 
Abstract Scores 

14.4 12.5 
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Again, the means of percentage points difference scores indicate 

very little difference for each of these categories, and, in fact, no 

significant differences in scores were found at the 90 percent level of 

confidence. It would seem, then, that concrete operational students who 

have demonstrated a fair knowledge of Logo still do not learn physics 

any better than a group of similar students who have not learned any 

Logo. 

Table 17 presents the results of a t-test analysis for concrete 

operational students who have taken the pre- and post-physics tests 

given in this study. 

Summary of T-Test Analysis 
Results for Hypothesis 1 

Analysis of t-test results, in general, supports Hypothesis 1. 

That is, concrete operational students who have been taught to program 

in Logo, in a Logo learning environment, are not any better at learning 

abstract physics concepts than similar concrete operational students 

who have not been taught to program in Logo. These results indicate 

that at the p = .05 level of confidence, there is no significant dif¬ 

ference in improvement on pre-test results for physics concepts con¬ 

sidered abstract, and physics concepts in general. Furthermore, even 

those students who had been screened for their knowledge of Logo do not 

do significantly better at learning these concepts. 

Hypothesis 2 

To test Hypothesis 2, many of the statistical tests done to test 

Hypothesis 1 were repeated. This time, however, only those test items 
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TABLE 17 

T-TEST ANALYSIS OF VARIABLE DIFFERENCES BETWEEN 
CONTROL AND TREATMENT GROUP CONCRETE STUDENTS 

Variable 
Number of Standard T-Probability 

(P = .05) ' Students Mean Deviation T-Value 

Logic Score 
Control: 16 1.81 1.5 1.23 2.042 
Treatment: 17 2.41 1.3 

Pre-Test 
Control: 16 26.4 10.8 1.51 2.042 
Treatment: 17 23.5 9.7 

Post-Test 
Control: 16 43.3 10.8 1.92 2.042 
Treatment: 17 36.9 8.2 

Control 
Pre-Test: 16 26.4 10.8 4.41 2.042 
Post-Test: 16 43.3 10.8 

Treatment 
Pre-Test: 17 23.5 9.7 4.36 2.042 
Post-Test: 17 36.9 8.2 

Points 
Difference 

Control: 16 16.9 12.1 .88 2.042 
Treatment: 17 13.4 10.5 

Abstract 
Pre-Test 

Control: 16 27.6 12.6 .77 2.042 
Treatment: 17 24.5 10.4 

Abstract 
Post-Test 

2.042 Control: 16 42.4 11.3 1.80 

Treatment: 17 36.3 8.2 
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TABLE 17--Continued 

Variable 
Number of 
Students Mean 

Standard 
Deviation T-Value 

T-Probability 
(p = .05) 

Abstract 
Points 
Difference 

Control: 16 14.8 14.4 .64 2 04? 
Treatment: 17 11.8 13.3 

Points 
Difference 

Control: 16 16.9 12.1 .15 2.082 
Treatment: 7 16.1 9.5 

(Logo 
Screened) 

Abstract 
Points 
Difference 

Control: 16 14.8 14.4 .09 2.082 
Treatment: 

(Logo 
Screened) 

7 14.3 12.5 
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considered to be strongly related to Logo were scored for both the pre- 

and post-tests. 

Analysis of Physics Pre- and Post-Test 
Scores with Respect to Test Questions 
Strongly Related to Loqo ConceDts 
Taught 

The analysis of the physics pre/post-test done in Chapter III, and 

reported in Table 1, indicates that Questions 2, 3, 4, 8, 9, 19, 20, 21, 

22, and 23 are strongly related to the Logo concepts taught to the 

treatment group. The pre-test, post-test, and the percentage points 

difference scores for these questions are presented in Table 18 and 

Table 19 for control and treatment groups respectively. All test scores 

are reported in terms of percentage of questions correct. The means and 

standard deviations for these scores with respect to pre-test, post¬ 

tests, and percentage points difference are presented in Table 20, 

along with t-test values for control and treatment students on these 

questions. 

To reject Hypothesis 2, it would be necessary to show that there 

was a significant difference in improvement of physics test scores for 

Logo-related questions. An examination of the scores and means listed 

in Tables 18, 19, and 20 indicate that while there is only a 1.2 point 

difference in pre-test score means between groups, there is an 11.3 

point difference between means on post-test scores and a 12.2 point 

difference in the means of percentage points difference scores. 

The results of the t-test analysis for these variables presented 

in Table 20 indicate that for the Logo-related items on this test, 

there was significant improvement on the physics test for both control 



168 

TABLE 18 

POST-TEST, AND PERCENTAGE POINTS DIFFERENCE 
SCORES FOR CONCRETE OPERATIONAL CONTROL GROUP 

STUDENTS ON LOGO-RELATED QUESTIONS 

Student 
Number 

1 

Logo Related 
Pre-Test Scores 

Logo Related 
Post-Test Scores 

10.0 
20.0 
30.0 

Logo Related 
Percentage Points 
Difference Scores 

40.0 
30.0 

30.0 
10.0 

6. 20.0 70.0 
IU.U 

50.0 
— 

7. 10.0 60.0 50.0 
8. 10.0 20.0 10.0 
9. 30.0 30.0 0.0 

10. 30.0 20.0 -10.0 
11. 10.0 30.0 20.0 
12. 30.0 80.0 50.0 
13. 30.0 50.0 20.0 
15. 20.0 60.0 40.0 
17. 20.0 30.0 10.0 
18. 0.0 30.0 30.0 
19. 20.0 50.0 30.0 
20. 30.0 30.0 0.0 
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TABLE 19 

PRE-TEST, POST-TEST, AND PERCENTAGE POINTS DIFFERENCE 
SCORES FOR CONCRETE OPERATIONAL TREATMENT GROUP 

STUDENTS ON LOGO-RELATED QUESTIONS 

Student 
Number 

Logo Related 
Pre-Test Scores 

Logo Related 
Post-Test Scores 

Logo Related 
Percentage Points 
Difference Scores 

22. 30.0 50.0 20.0 
23. 20.0 40.0 20.0 
24. 30.0 20.0 -10.0 
26. 0.0 30.0 30.0 
27. 20.0 40.0 20.0 
28. 30.0 20.0 -10.0 
29. 20.0 30.0 10.0 
30. 30.0 20.0 -10.0 
31. 20.0 50.0 30.0 
32. 30.0 30.0 0.0 
33. 0.0 10.0 10.0 
34. 20.0 50.0 30.0 
36. 10.0 20.0 10.0 
37. 30.0 20.0 -10.0 
40. 40.0 60.0 20.0 
42. 20.0 0.0 -20.0 
43. 10.0 30.0 20.0 
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TABLE 20 

T TEST ANALYSIS OF VARIABLE DIFFERENCES BETWEEN CONTROL 
AND TREATMENT GROUP CONCRETE STUDENTS FOR 

LOGO-RELATED TEST ITEMS 

Variable 
Number of 
Students Mean 

Standard 
Deviation T-Value 

T-Probability 
(P - .05) " 

Pre-Test 
Logo Related 

Control: 
Treatment: 

16 
17 

20.0 
21.2 

9.7 
11.1 

.32 2.042 

Post-Test 
Logo Related 

Control: 
Treatment: 

16 
17 

41.9 
30.6 

18.0 
16.0 

1.91 2.042 

Points 
Difference 
Logo Related 

Control: 
Treatment: 

Control 
Logo Related 

Pre-Test: 
Post-Test: 

Treatment 
Logo Related 

Pre-Test: 
Post-Test: 

16 21.9 19.1 
17 9.4 16.4 

16 20.0 9.7 
16 41.9 18.0 

17 21.2 11.1 
17 30.6 16.0 

2.02 2.042 

4.29 2.042 

1.99 2.042 
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and treatment groups. This is especially true for the control group. 

However, there were no other significant differences in all other scores 

at the p = .05 level. 

Analysis of Physics Pre- and Post-Test 
Scores with Respect to lest Question 
Considered Both Abstract and Strongly" 
Related to Logo Concepts Taught 

A further t-test analysis was done for these variables, but this 

time for physics test items which met the criteria of being both 

abstract and strongly Logo related. The analysis of test questions done 

in Chapter III and listed in Table 1 indicates that Questions 3, 4, 8, 

9, 19, 20, and 21 meet these criteria. 

Table 21 and Table 22 list the pre-test, post-test, and percentage 

points difference scores for abstract Logo related questions for control 

and treatment groups respectively. 

Table 23 presents the means and standard deviations and t-test 

analysis for these scores. 

Examination of Table 23 shows the means of scores for Logo related 

and Logo related abstract questions to be higher for the control group 

than the treatment group with respect to the physics post-test and the 

percentage points difference in scores. The t-test results seem rather 

inconsistent and somewhat inconclusive. No significant differences at 

the p = .05 level were found for abstract, logo related pre-test scores. 

Furthermore, at this level of confidence, the difference between post¬ 

test scores and percentage points difference scores for control and 

treatment groups were not significantly different. Also, for these 

questions, the pre- and post-test scores for the control group showed a 
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TABLE 21 

PRE-TEST, POST-TEST, AND PERCENTAGE POINTS DIFFERENCE 
SCORES FOR CONCRETE OPERATIONAL CONTROL GROUP 

STUDENTS ON LOGO RELATED ABSTRACT QUESTIONS 

Student 
Number 

Abstract 
Logo Related 

Pre-Test Scores 

Abstract 
Logo Related 

Post-Test Scores 

Abstract 
Logo Related 

Percentage Points 
Difference Scores 

1. 14.3 42.9 28.6 
2. 28.6 14.3 -14.3 
4. 14.3 28.6 14.3 
6. 14.3 57.1 42.9 
7. 14.3 85.7 71.4 
8. 14.3 14.3 0.0 
9. 42.9 42.9 0.0 

10. 42.9 28.6 -14.3 
11. 14.3 42.9 28.6 
12. 28.6 85.7 57.1 
13. 42.9 42.9 0.0 
15. 28.6 57.1 28.6 
17. 28.6 42.9 14.3 
18. 0.0 14.3 14.3 
19. 14.3 42.9 28.6 
20. 28.6 28.6 0.0 
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TABLE 22 

PRE-TEST, POST-TEST, AND PERCENTAGE POINTS DIFFERENCE 
SCORES FOR CONCRETE OPERATIONAL TREATMENT GROUP 

STUDENTS ON LOGO RELATED ABSTRACT QUESTIONS 

Student 
Number 

Abstract 
Logo Related 

Pre-Test Scores 

Abstract 
Logo Related 

Post-Test Scores 

Abstract 
Logo Related 

Percentage Points 
Difference Scores 

22. 42.9 42.9 0.0 
23. 0.0 28.6 28.6 
24. 28.6 14.3 -14.3 
26. 0.0 28.6 28.6 
27. 14.3 42.9 28.6 
28. 42.9 14.3 -28.6 
29. 28.6 42.9 14.3 
30. 42.9 28.6 -14.3 
31. 14.3 42.9 28.6 
32. 28.6 14.3 -14.3 
33. 0.0 0.0 0.0 
34. 14.3 57.1 42.9 
36. 14.3 14.3 0.0 
37. 42.9 28.6 -14.3 
40. 42.9 57.1 14.3 
42. 28.6 0.0 -28.6 
43. 14.3 28.6 14.3 
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TABLE 23 

T-TEST ANALYSIS OF VARIABLE DIFFERENCES BETWEEN CONTROL 
AND TREATMENT GROUP CONCRETE STUDENTS FOR LOGO RELATED 

AND ABSTRACT LOGO RELATED TEST ITEMS 

Variable 
Number of 
Students Mean 

Standard 
Deviation T-Value 

T-Probability 
(P = .05) 

Pre-Test 
Abstract 
Logo Related 

Control: 
Treatment: 

16 
17 

23.2 
24.1 

12.7 
16.3 

.06 2.042 

Post-Test 
Abstract 
Logo Related 

Control: 
Treatment: 

16 
17 

42.0 
28.6 

21.8 
17.5 

1.48 2.042 

Points 
Difference 
Abstract 
Logo Related 

Control: 
Treatment: 

16 
17 

18.8 
5.0 

24.3 
22.0 

1.70 2.042 

Control 
Abstract 
Logo Related 

Pre-Test: 
Post-Test: 

16 
16 

23.2 
42.0 

12.7 
21.8 

2.98 2.042 

Treatment 
Abstract 
Logo Related 

Pre-Test: 17 24.1 16.3 .88 2.042 

Post-Test: 17 28.6 17.5 
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significant improvement, while the improvement was not significant at 

p = .05 for the treatment group. 

To determine if tested knowledge of Logo affected physics test 

results, the t-test was again done for the students listed in Table 14 

who met the criteria of being concrete operational, have taken all three 

Logo tests, and have obtained a Logo grade average of 50 percent or 

better. 

Analysis of Physics Pre- and Post-Test Scores 
with Respect to Test Questions Considered 
Strongly Related to Logo, and Questions 
Considered Both Abstract and Related to 
Logo for Concrete Operational Students 
Who Have Been Screened for Their 
Knowledge of Logo 

Table 24 lists the scores for percentage points difference on Logo 

Related and Abstract Logo Related test questions for concrete opera¬ 

tional students screened for their knowledge of Logo, and Table 25 lists 

means, standard deviations for these scores. Also included in Table 25 

are the t-values for Logo screened students with respect to control 

student scores on Logo related and abstract Logo related ques¬ 

tions. 

The results of the t-test analyses for Logo screened students on 

Logo related test items does not show any significant difference in per¬ 

centage points difference physics pre-test and post-test scores at the 

p = .05 level of confidence for Logo related and abstract Logo related 

test items. This would seem to indicate that for Logo screened students, 

Hypothesis 2 cannot be rejected. 
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TABLE 24 

PERCENTAGE POINTS DIFFERENCE SCORES ON LOGO RELATED AND 
ABSTRACT LOGO RELATED QUESTIONS FOR CONCRETE 

OPERATIONAL TREATMENT GROUP STUDENTS WHO 
HAVE BEEN SCREENED FOR KNOWLEDGE OF LOGO 

Student Number 

Logo Related 
Percentage Points 
Difference Scores 

Abstract 
Logo Related 

Percentage Points 
Difference Scores 

22. 20.0 0.0 
23. 20.0 28.6 
26. 30.0 28.6 
28. -10.0 -28.6 
33. 10.0 0.0 
36. 10.0 0.0 
40. 20.0 14.3 
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TABLE 25 

T“TamI ™LYSIS 0F VARIABLE DIFFERENCES BETWEEN CONTROL 
AND LOGO SCREENED TREATMENT GROUP CONCRETE STUDENTS 

FOR LOGO RELATED AND ABSTRACT LOGO 
RELATED TEST ITEMS 

Variable 
Number of Standard T-Probabi1ity 

(P - -05) ' Students Mean Deviation T-Value 

Points 
Difference 
Logo Related 

Control: 16 21.9 19.1 .96 2.080 
Treatment: 

(Logo 
Screened) 

7 14.3 12.7 

Points 
Difference 
Abstract 
Logo Related 

Control: 16 18.8 24.3 1.20 2.080 
Treatment: 

(Logo 
Screened) 

7 6.1 19.9 
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Summary of T-Test Analysis 
Results for Hypothesis 2 

Analysis of t-test results, in general, supports Hypothesis 2. 

That is, concrete operational students who have been taught to program 

in Logo, in a Logo learning environment, are not any better at learning 

abstract physics concepts than similar concrete operational students who 

have not been taught to program in Logo, even when the abstract con¬ 

cepts involved are directly related to concepts taught as part of the 

Logo curriculum. 

In fact, if we had used the p = .1 level of confidence, a signifi¬ 

cant difference in scores on abstract Logo related items would exist 

between control and treatment groups which favors the control group. 

However, the significance of this difference disappears when only those 

students in the treatment group who have been screened for their knowl¬ 

edge of Logo are used. It may well be that any of the tenuous dif¬ 

ferences found in scores for Logo related and abstract Logo related 

questions are due more to the diminished reliability of the respectively 

ten and seven item test as compared to the reliability of the complete 

test. 

Further Investigations 

There were only a few students in both classes who had developmen¬ 

tal reasoning scores greater than 5, and none were greater than 12. 

This indicates that only a few students were in a transitional stage 

between concrete and formal reasoning and none were formal reasoners. 

The scarcity of non-concrete reasoners in this sample of students 
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makes statistical studies involving them difficult. Nevertheless, 

analysis of these students' test results may give us some further 

insights into student learning of abstract concepts. 

There were 6 students in the treatment class whose developmental 

reasoning scores were higher than 5. Of these. Student Number 35 had 

to be eliminated from the sample due to insufficient class attendance. 

Logic scores, and percentage points difference scores on the physics 

test for the rest of the students are presented in Table 26. Scores 

for abstract questions, Logo related questions, abstract Logo related 

questions are listed as well. A t-test analysis of the scores with 

respect to the concrete operational students of the control group, along 

with the means and standard deviations of the scores, are listed in 

Table 27. 

The means of these scores, except for the percentage points dif¬ 

ference for Logo related test items, indicate somewhat higher scores for 

the transitional level treatment students as compared to the concrete 

control group. This is especially true when abstract questions are con¬ 

sidered. However, there is no statistically significant difference in 

these scores. Considering the size of the sample, there would have to 

be a fairly large difference in scores for the difference to be sta¬ 

tistically significant. Nevertheless, when one considers the reversal 

in score trends as when concrete control students were compared to con¬ 

crete treatment students, one sees an indication that students who 

scored higher on the reasoning test tend to do better at learning 

abstract physics. Unfortunately, there was not a sufficiently large 

spread in reasoning level scores to do a meaningful estimate of 



180 

TABLE 26 

LOGIC AND PERCENTAGE POINTS DIFFERENCE SCORES FOR 
PHYSICS TEST, INCLUDING: ABSTRACT QUESTIONS, 

LOGO RELATED QUESTIONS, AND ABSTRACT 
LOGO RELATED QUESTIONS 

Student 
Number 

Logic 
Scores 

Percentage 
Points 

Differenee 

Abstract 
Percentage 

Points 
Difference 

Logo Related 
Percentage 

Points 
Difference 

Abstract 
Logo Related 

Points 
Difference 

21. 9 22.1 20.8 10.0 0.0 
25. 7 14.8 29.2 30.0 14.3 
38. 6 14.3 8.3 30.0 28.6 
39. 6 8.3 20.8 0.0 28.6 
41. 8 31.4 33.3 20.0 28.6 
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TABLE 27 

T IrSI anaLYSIS OF TRANSITIONAL TREATMENT GROUP STIIDFNT crnorc 
AS COMPARED TO CONCRETE OPERATIONAL CONTROL GRMP SCOOTS 

FOR PERCENTAGE POINTS IMPROVEMENT ON PHYSICS TEST 
INCLUDING: ABSTRACT QUESTIONS, LOGO RELATED ’ 
QUESTIONS AND LOGO RELATED ABSTRACT QUESTIONS 

Variable 
Number of Standard 
Students Mean Deviation 

T-Probability 
T-Value (p = .05) 

Percentage 
Points 
Differenee 

Control: 
Treatment: 

(Logic > 5) 

16 
5 

16.9 
22.4 

12.1 
11.1 

.91 2.093 

Abstract 
Percentage 
Points 
Difference 

Control: 
Treatment: 

(Logic > 5) 

16 
5 

14.8 
22.5 

14.4 
9.6 

1.10 2.093 

Points 
Difference 
Logo Related 

Control: 
Treatment: 

(Logic > 5) 

16 
5 

21.9 
18.0 

19.1 
13.0 

.42 2.093 

Points 
Difference 
Abstract 
Logo Related 

Control: 
Treatment: 

16 
5 

18.8 
20.0 

24.3 
12.8 

.11 2.093 

(Logic > 5) 



correlation between reasoning level and physics test score dif 

ferences. 



CHAPTER V 

SUMMARY, IMPLICATIONS OF RESEARCH FINDINGS, 
RECOMMENDATIONS FOR FURTHER RESEARCH, 

AND CONCLUSION 

Chapter V summarizes the findings of the research done in this 

present study, and discusses the practical and theoretical implications 

of teaching Logo as an aid to helping concrete operational students 

learn abstract physics concepts, and abstract concepts in general. In 

addition, important modifications and extensions of the present study 

were generated for future research. 

Summary 

Briefly stated, this is an exploratory study which examines the 

effects of learning the computer language Logo on students tested to be, 

in a Piagetian sense, at a concrete operational stage of their develop¬ 

ment. The study sought to determine if a sample of such students were 

taught to program in Logo, and, in general, were educated in a Logo 

learning environment, would they then be able to learn abstract concepts 

better than a similar sample of students who were not taught Logo. 

Piagetian theory indicates that concrete operational students would 

have great difficulty understanding and applying abstract concepts. As 

much of the science content widely found in science curricula today is 

clearly abstract in nature, it is no surprise that these students are 

having difficulty learning science. To see whether or not learning Logo 

helped these students to learn science was the primary goal of this 

study. 
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To do this study, a sample of students who were studying eighth- 

grade science, most of whom were concrete operational reasoners, were 

divided into a control group and a treatment group. Each group was pre¬ 

tested as to their knowledge of abstract physics concepts which were to 

be taught as part of a self-contained physics unit designed for these 

students. 

The treatment group then received 14 weeks of instruction in Logo 

Turtle graphics, as part of a specially-designed Logo learning environ¬ 

ment. During this period of time, the control group continued to be 

taught science as part of their normal science program. Following this 

period of time, both groups were taught a three-week physics unit. This 

unit was designed to provide an exposure to a variety of abstract con¬ 

cepts, some of which were strongly related in the Logo that had been 

taught to the treatment group, and the rest either unrelated or weakly 

related to the Logo. 

Both groups were then post-tested as to their knowledge of the 

physics taught. A statistical analysis of the results on the physics 

pre- and post-tests was done to see if the treatment group made signifi¬ 

cantly greater improvement in test scores than the control group. A 

further analysis was done with respect to individual test items to see 

if the treatment group made significantly greater improvement on test 

items which were judged strongly related to the Logo that had been 

taught, than the control group. 

The sample used for this study consisted of 43 students taken from 

a population of eighth-grade students from a small town, Vermont junior 

high school. These students had been randomly programmed by computer 
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into heterogeneous science classes. The two science classes chosen were 

picked on the basis of their being taught by the same science teacher, 

and that one of the classes met at a time when it was possible for them 

to use the school's eighteen-station computer laboratory. These stu¬ 

dents were all tested to determine their developmental reasoning level 

and their pre-knowledge of the physics concepts they were to be taught. 

No significant differences were found in either the developmental 

reasoning level scores or physics pre-test scores between these groups, 

which indicated that the groups were suitably matched. Furthermore, 

physics pre-test results indicated that these students had little or no 

pre-knowledge of the physics to be taught them, as the means of their 

scores were about what they would be if the students randomly picked 

their answers. It was found, however, that both of these groups had 

developmental reasoning level scores which were considerably lower than 

scores made by the entire eighth-grade population of this school when 

it had been tested during a previous year. Furthermore, these scores 

were considerably lower than the mean scores of eighth-grade students 

reported by other schools around the nation. It was concluded that 

these lower scores were due to a "creaming off" effect caused by ability 

tracking students for their mathematics courses. While science students 

were not ability tracked, per se, tracking in mathematics apparently 

affected how students would be grouped in other subjects, including 

science. 

This creaming off of developmentally higher-level students did 

not, it is felt, detrimentally effect the study, since both groups were 

apparently affected in the same way. This is clear from the lack of 
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significant difference in developmental reasoning scores between groups, 

and the judgment of the science teacher, familiar with each group's 

work, who felt these groups had about equal ability. 

Of the 43 student sample used in this study, 20 students made up 

the control group and 23 students made up the treatment group. Of the 

20 students that made up the control group, 18 were tested to be concrete 

operational, and two of these missed taking the physics pre-test. This 

left 16 students in the control group. Of the 23 students who made up 

the treatment group, 17 were tested as concrete operational and were 

left in the treatment group. 

The instrument used to determine developmental reasoning level was 

a modified version of the Lawson Classroom Test of Formal Reasoning. 

This test was developed so as to keep as many of the positive aspects of 

the Piagetian clinical methods as possible, but still allow one test to 

be administered to an entire group of students. This test was shown to 

have face, convergent, and factorial validity, and was found highly 

reliable as well. The modification made to this test by the author of 

the present study consisted of using videotaped demonstrations in place 

of live demonstrations. The modified version of this test was found 

to be valid in a previous study done by the researcher, and had the 

advantage of being more consistent in its presentation. 

The second instrument used in this study was developed by the author 

since there had been no previous research on learning abstract physics 

in this context. The instrument was designed to directly test the objec¬ 

tives of the physics unit taught. The questions had to be mostly 

abstract in nature, yet still be presented on an eighth-grade level, 
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both verbally and mathematically. In addition, some of the questions 

had to be shown strongly related to the concepts taught as part of the 

Logo unit, while others had to be unrelated. 

An analysis of each question was done to insure curricular 

validity. In addition, the test was judged by two experts in the field, 

who agreed that the test basically measures what it was trying to mea¬ 

sure and is, therefore, valid to that extent. Furthermore, the test was 

found to be reasonably reliable, having a Spearman-Brown corrected KR-20 

split half correlation of 0.6. 

The other instruments used in this study consist of three Logo 

tests developed on an ad hoc basis to evaluate student progress in learn¬ 

ing Logo. As these tests were specifically designed to evaluate stu¬ 

dent progress, and were based on Logo concepts studied, they should be 

valid indicators of student progress. 

The data collected through the use of these instruments during this 

study were guided by two hypotheses: 

Hypothesis 1: Concrete operational students who have 

learned to program in Logo will not make signifi¬ 

cantly greater progress towards learning selected 

abstract concepts in physics than similar students 

who have not been taught to program in Logo. 

Hypothesis 2: Concrete operational students who have 

learned to program in Logo will not make signifi¬ 

cantly greater progress towards learning selected 

abstract concepts in physics which are directly 

related to the Logo concepts learned, than similar 



students who have not been taught to program in 

Logo. 
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The first hypothesis was concerned with the question of whether or 

not concrete operational students who were taught to program in Logo, in 

what is considered a Logo learning environment, would learn abstract 

physics concepts better than similar students who were not taught Logo, 

but attended their normally-scheduled science class instead. To test 

this hypothesis, a sample of concrete operational eight-grade students 

was divided into a control and a treatment group and were pre-tested 

in physics. The treatment group was then taught to program in Logo 

during a fourteen-week period of time in what was considered to be an 

appropriate Logo learning environment. Student progress in Logo was 

monitored along the way by use of a series of Logo evaluation tests. 

These tests were used in addition to the evaluation of student projects 

and class work. 

After this period of time, both groups were taught a self-contained 

three-week physics unit designed to be highly abstract in terms of con¬ 

cepts, but on grade level with respect to the mathematics and verbal 

skills needed. Following the teaching of this unit, both groups were 

post-tested as to their knowledge of the physics taught them. 

An analysis of pre- and post-test scores was done to determine if 

the Logo-trained students made significantly greater improvement in their 

test scores than the control group. By using a t-test analysis, it was 

found that improvement in pre-test scores did not differ significantly 

(p = .05) for the test taken as a whole, or for only those questions 

considered to be abstract. These results were also true for students 
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who were screened for their knowledge of Logo as based on their taking 

all three Logo tests, and achieving a 50 percent or better average for 

the three tests. 

It is evident from these results that Hypothesis 1 cannot be 

rejected, as there is no evidence that Logo-trained concrete operational 

students learned selected abstract physics concepts any better than stu¬ 

dents who were not trained in Logo. 

The second hypothesis was concerned with whether or not learning 

Logo helped students learn abstract physics concepts which were strongly 

related to the Logo learned. To test this hypothesis, only those test 

items judged to be strongly related to the Logo taught were used. 

A t-test analysis of pre-test and post-test scores was again per¬ 

formed, but this time only for Logo-related test items. The results of 

this analysis indicated that there was no significant difference 

(p = .05) in improvement of test scores for control and treatment groups 

with respect to Logo-related test items, even for students who were 

screened for their knowledge of Logo. 

The results of this analysis indicate that Hypothesis 2 cannot be 

rejected, as there is no evidence that concrete operational students who 

are trained in Logo do any better at learning abstract physics concepts 

than students who were not trained in Logo, even when the abstract 

concepts to be learned are related to the Logo. 

A further investigation indicated that when students who are transi¬ 

tional in their developmental level are compared to concrete operational 

students, they tend to do better at learning abstract physics concepts. 

However, the number of students who were at the transitional stage of 
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their development was too small to show that their scores were signifi- 

cantly different than control group scores. 

Implication of the Research Findings 

There is no doubt that many, if not most, children when introduced 

to Logo for the first time find the computer language fascinating. This 

is especially true for the Turtle graphics aspect of the language. In 

this study, the eighth graders who became part of the Logo treatment 

group did not volunteer to take part in the study. Furthermore, the 

group as a whole was somewhat below the average in ability, and were not 

particularly well behaved. In fact, several of the children were con¬ 

stantly in trouble, and one was twice suspended from school while the 

study was in progress. To add to these difficulties, the class was 

scheduled as the last class of the day, which did not make teaching 

these "itchy" eighth graders any easier. 

Nevertheless, the students were pleased to become part of this 

study, and looked forward to working with the computer enthusiastically. 

In fact, even the most difficult of these students were extremely 

excited about learning to program, and their misbehavior faded as their 

attention was riveted to the screen. Indeed, the computer environment 

they were becoming part of seemed to be a most appropriate setting for 

Piagetian learning--learning without being taught. 

It is easy to see how the teacher of Logo would be impressed with 

what the children could do and learn. It is easy to understand the 

glowing testimonials based on qualitative observations. Students were 

surely learning, and the learning seemed natural and unforced. But the 
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lingering questions of just what was being learned, how well was it 

being learned, and what effect would this learning have on other, per¬ 

haps more traditional, learning could not be swept aside by glowing 

testimonials. 

It seems clear that the many advocates of Logo believe that the 

Logo environment is a mathematics-rich environment where children 

learned to think mathematically as a French child learns to speak French. 

In this environment, they would learn how to think logically and solve 

problems. Were this the case, surely it would be a pedagogical break¬ 

through of some sort. 

That Logo can be used to teach mathematics or physics certainly 

cannot be denied. DiSessa's Turtle Geometry^ presents some higher mathe¬ 

matics concepts in a new and fascinating way, and some recent books 

using Logo to teach physics give us a rather novel approach to under¬ 

standing this subject. But still we must ask if these approaches are 

any more useful than more traditional approaches for teaching these sub¬ 

jects. And, furthermore, we should ask if the Logo approach to teaching 

and learning these abstract concepts are more effective than the tradi¬ 

tional methods, with the student that has traditionally found learning 

abstractions difficult--the concrete operational thinker. 

Papert, one of the developers of Logo, and his associates tell us 

that traditional methods may be best for teaching traditional subjects, 

but that these traditional subjects are antiquated. He points out that 

the many hours spent learning long division, for example, are unneces¬ 

sary in this day of the hand-held calculator. Mathematics is so much 

deeper than the mechanical routines slavishly practiced by fifth graders 
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everywhere. These routines, he says, will not teach children to under- 

stand mathematics, but learning Logo will. 

It is hard to deny the logic of Papert's arguments; much of what 

he says rings true. Yet, this study seems to indicate that the concrete 

operational student, who is most in need of help in learning to think 

abstractly, has not been helped by learning Logo. 

As pointed out, the Logo treatment class got off to an enthusiastic 

start. The beginning concepts were quite easy to learn, and the begin¬ 

ning projects were fairly easy to achieve. Students who had a history 

of doing nothing in class, or worse, were hard at work on their projects. 

Students were encouraged to share ideas, and could be seen helping one 

another as they discovered new and interesting techniques. However, as 

the Logo concepts needed in order to continue to make progress grew 

increasingly sophisticated, the rate of learning slowed drastically. 

This slow down was not universal; those students who, as it turns 

out, had the highest developmental reasoning scores continued to make 

good progress, while those with the lowest scores made little progress. 

The first problems arose with the developing of procedures and 

superprocedures. An indication that things were not going to go 

smoothly was seen in the methods used to choose names for procedures. 

The slower students seemed to have difficulty understanding that proce¬ 

dures should be "named" in such a way as to help them put together 

superprocedures. Instead, names were chosen in a fairly random or 

illogical way. Very often procedures were given proper names, such as 

Mary or Sue. One student went through all the names of his girlfriends 

before completing his first project. 
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Another problem developed with the use of variables within proce¬ 

dures. Slower students, though they often used variables within their 

procedures, never seemed to understand the powerful concept of the 

variable. Still another source of problems concerned the orderly con¬ 

trol of variables in discovering the properties of regular polygons. 

While students were shown how to start a table which tested the use of 

angles or side lengths in the drawing of polygons, they failed to see 

the developing pattern, often choosing to try angles or lengths which 

did not fit into a logical trial sequence. These are just a few exam¬ 

ples of the many problems these students had in grasping some of the 

more complex aspects of what they were doing. In fact, it would seem 

that the very students who might be expected to have difficulty learn¬ 

ing the abstract concepts of physics were having difficulty learning the 

abstract concepts of Logo. This was in spite of the fact that they 

could use as much trial-and-error and exploration as they pleased. 

The slowest of the students did not seem to learn from their 

trial-and-error techniques, and their exploration often ended in frus¬ 

tration. This was often the case, even though they had two teachers 

and a number of helpful classmates to guide them along; or, when all 

else failed, give them the solutions to their problems. In one case, 

an eighth-grade girl grew furious with her computer, insisting that 

what she did was correct, but the computer refused to do what it was 

supposed to. It were as though the computer had a mind of its own and 

was vengefully wronging this young lady. No amount of explaining that 

these machines did what we instructed them to do--no more, no less-¬ 

seemed to help. 
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This lack of understanding of important Logo concepts becomes evi¬ 

dent when one examines the results of the three Logo tests taken by the 

students during the fourteen weeks that they were studying Logo. For 

many of the students, these tests indicated that they failed to under- 

stand many of the most fundamental concepts of Logo. 

The tests, which were presented as projects to be done during a 

timed period rather than a means of grade evaluation-grades, which were 

required by school officials, were determined for the most part by com¬ 

pletion of projects which consisted of number of straight-forward Logo 

tasks and problems. Students, for example, had to follow the directions 

given in a short Logo procedure in order to graph a shape such as a 

rectangle, or write a simple Logo procedure to perform a task, or modify 

a given procedure so as to incorporate a variable, or find a "bug" in a 

procedure and correct it. (See Appendix B for a listing of the Logo 

procedures used in this study.) Though credit was given liberally, Logo 

test grades for concrete operational students tended to be rather low. 

(See Table 18 for a listing of Logo grades.) 

In spite of the bleak picture described, the class appeared to be 

going well. Students worked at their computers alone or in small groups. 

They were constantly asking and answering questions, or playing Logo 

games and working puzzles. Students were helping each other with 

projects and discovering this or that. In fact, it was only towards the 

end of the fourteen-week period that some of the students truly began to 

lose patience. However, a number of the slowest students stopped making 

progress early in the project. They occupied their time producing 

involved pictures without benefit of procedures or superprocedures, or 
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variables, or anything else which demonstrated a degree of sophistica¬ 

tion. The rest of the time was spent playing various dynamic Logo 

games, without apparently making any cognitive breakthroughs. 

Had these activities led to a clear indication that students were 

better prepared to organize their thoughts, solve problems logically, 

and learn abstract concepts any better than they did before learning 

Logo, the value of Logo would be clear. But, although the Logo computer 

language undoubtedly has many intrinsic values, such as being a good 

first exposure to structured programming techniques or having many 

practical applications, its value as a language for learning how to 

understand abstract concepts, at least in the case of concrete opera¬ 

tional students, has in no way been proven by the results of this 

study. 

The implication of this study's findings for the teaching of Logo 

is that Logo does not help concrete operational students learn abstract 

physics concepts, even if these concepts are related to the Logo taught. 

And, furthermore, much of Logo is, in fact, abstract itself and not 

learned very well by the concrete operational student. While it may 

be that Logo is worth teaching for a variety of reasons based on its own 

intrinsic value as a computer language, using it as an indirect method 

for helping students learn science is of questionable worth. 

Recommendations for Further Research 

The present study was exploratory in nature, and some of its 

results tenuous. The instruments and research processes used represent 

an initial attempt to determine the effect of teaching Logo on learning 
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abstract concepts; however, the tenuous nature of some of the results 

indicate a need for replicating and extending this investigation. 

To begin with, a large, more varied sample of students would help 

insure the statistical validity of the study. However, if the sample 

becomes too large to be effectively handled by one teacher, it would be 

necessary to develop a study design which would allow for possible 

differences in teaching methods and skills. Furthermore, the time 

needed to teach the Logo should be increased as it was found that many 

important concepts could be barely touched upon in the time allotted 

for doing the study. Many of the slower students would have benefitted 

from having more time to let the concepts "sink in," while the more 

able students could have delved deeper into the subject material. 

Also, the number and variety of questions asked on the physics 

test needs to be modified, so that there are many more Logo-related 

physics questions asked. This could be accomplished by doubling the 

number of questions asked while making certain that at least half the 

questions are Logo related, with the remaining questions unrelated. 

This should improve the reliability of the test, especially with 

respect to Logo-related questions. 

This present study investigated the effect of Logo on eighth-grade 

science students who were tested to be concrete operational. Extending 

this study to include many more students whose developmental reasoning 

level goes beyond this stage could be useful. We could, for example, 

see if a strong correlation between developmental level and learning 

Logo exists. Perhaps, if there is a high correlation between develop¬ 

mental level and the ability to learn Logo, higher-level students who 
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learned Logo would be better learners of abstract physics concepts than 

similar students who have not learned Logo. We could then replicate 

this investigation for students at a higher stage of reasoning develop¬ 

ment to see if this is, in fact, the case. 

To be able to generalize any of the results of this study, it would 

be necessary to expand the study beyond this one school. We would have 

to study a fair-sized number of schools at a variety of locations. How¬ 

ever, considering the time needed to teach the Logo effectively, the 

cost of equipment, the number of students and teachers that would have 

to be involved, it would not be a practical undertaking to have schools 

teach Logo just for research purposes. However, during the period of 

time from when this study was first conceived to the present day, Logo 

has proliferated around the country. Furthermore, many schools now have 

computers in sufficient numbers to develop ideal Logo learning environ¬ 

ments. 

Considering these circumstances, there is certainly no shortage of 

students who are presently being taught Logo. And certainly we could 

find equal numbers of students who have not been taught Logo. Then, 

perhaps, instead of performing a controlled teaching experiment as was 

done here, we could match students with and without Logo training, and 

do a statistical comparison of the science grades, for example, of stu¬ 

dents who have studied Logo and the students who have not studied Logo. 

There would, undoubtedly, be serious design and logistical problems to 

undertaking such a statistical study, and it would not take developmen¬ 

tal level into account; but it could give us an indication as to Logo's 

ability to help students to learn abstract concepts. 
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Cone!usion 

The purpose of this study was to determine if a method could be 

found to help non-abstract reasoning students learn the abstract con¬ 

cepts of science. It was hoped that this study would show that learning 

the computer language Logo would help concrete operational students to 

learn the abstract concepts of science. Certainly the developers of 

Logo, and the many advocates of its study, expressed the belief that it 

can. However, none of the admittedly few, objective studies reported 

here has found clear evidence, if any evidence, that this is the case. 

Neither does this present study support the hypothesis that Logo 

can help students think abstractly and learn abstract concepts. Cer¬ 

tainly it may be argued that this experiment was flawed, and undoubtedly 

conditions were less than ideal. Certainly it may be argued that the 

Logo was not taught as it should have been taught, and perhaps it was 

not. Yet, considering the difficulties involved in setting up an ideal 

experiment in a "real world" situation, the researcher went to great 

lengths to approach that ideal. 

One would have hoped that even if statistical significance could 

not be established, there would at least have been an indication that 

Logo helped a little. There was no such indication. And considering 

the reported proliferation of the study of Logo, one has to wonder what 

is not being taught when Logo is. 

Logo‘is an aesthetically pleasing computer language. It is a 

powerful tool, and can be used in a practically unlimited variety of 

ways. Certainly, there are many good reasons for students to learn at 
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least some Logo; but is it the "learning" language that some think it 

is? There would seem to be more evidence, at this time, that it is not 

rather than is. 

Considering the evidence that does exist, it would seem unwise to 

cut into the time needed to teach concrete operational students tradi¬ 

tional science in order to teach them Logo. Perhaps our efforts to 

teach such students effectively would be better directed in developing 

science curricula which more properly fit the developmental level of 

the student. The computer and computer languages, such as Logo, cer¬ 

tainly have a role in shaping the future education of our students; and 

they may well be shown to be an effective means of teaching students to 

think and learn abstractly. However, given a finite amount of time and 

funds, schools should consider the results of this and other studies of 

Logo before making a large commitment to its teaching. 



NOTES 

H. Abel son and A. diSessa, Turtle Geometry (Cambridge, 
Massachusetts: The MIT Press, 1981). 
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NAME: _ 

SCIENCE TEACHER: 

DATE: 

AGE: 

1. Has the weight of clay ball #1 
of clay ball #2? 

changed as compared to the weight 

Answer: 

Reason: 

2. How will the level of the water in the container change when the 
heavy-weight is placed in it, as compared to when the light-weight 
is placed in it? 

Answer: 

Reason: 
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3. How high would a given amount of water, that rises 6 units in 

tainer?6 Container’ nse lf u were Poured into the narrow con- 

Answer: 

Reason: 

4. How high would 11 units of water in the narrow container be in 
the wide container? 

Answer: 

Reason: 
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5. Where on the bal 
balance a 10-uni 
point? 

ance beam should a 5-unit weight be hung to 
t weight hung 7 units of length from the balance 

Answer: 

Reason: 

6. Where on the balance beam should a 10-unit weight be hung to 
balance a 15-unit weight which is hung 4 units of length from the 
balance point? 

Answer: 

Reason: 
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7. Which pendulum should be used in an experiment to find out if 
changing the length of the string affects the time it takes a 
pendulum to swing back and forth? 

Answer: 

Reason: 

8. Which pendulum should be used in an experiment to find out if the 
weight of the pendulum affects the time it takes the pendulum to 
swing back and forth? 

Answer: 

Reason: 
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9. Should we use the heavy-weight 
find out whether or not a ball 
the ramp will cause the tarqet 
is hit? 

Answer: 

ball or the light-weight ball to 
placed at a higher position on 
ball to travel farther after it 

Reason: 

10. Does this experiment prove that ball #1 will move a target ball 
farther than ball #2? 

Answer: 

Reason: 
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11. How many ways of flipping the switches would you have to flin 
be sure to find the one way to light the bulb? (There is iniv 
one arrangement of the four switches that will lighfthi bSlb ) 

Answer: 

Reason: 

12. How many different ways can these four blocks be arranged side- 
by-side along a straight line? 

Answer: 

Reason: 
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13' pick?are the Chances 0f choosin9 a red square on the first 

Answer: 

Reason: 

14. What are the chances of choosing a red object on the first 
pick? 

Answer: 

Reason: 
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15. What^are the chances of choosing a red diamond on the first 

Answer: 

Reason: 
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LOGO GOALS 

The student, by learning to program in Logo, will: 

1. Learn powerful ideas from physics or mathematics or 
mguistics which are embedded into the Logo lanquaae 

in a natural fashion. y y 

2. Explore methods of thinking and solving problems by 
self-analysis of one's thinking process. 

3. Gain knowledge previously accessible only through 
formal processes in a concrete manner with the help 
of the computer. 

4. Develop a logical way of solving abstract problems by 
being provided with concrete down-to-earth models of 
thinking. 

5. Understand that solving problems may involve making 
errors and working those errors out or "debugging." 

6. Develop powerful strategies for "debugging" problems. 

7. Gain confidence in his or her problem solving ability, 
and thus be willing to tackle difficult problems, 
while enjoying the process. 



LESSON NUMBER 1 

The student will be able: 

1. To start up and load the Logo program. 

2. To use the following commands: 

PRINT (PR) HIDETURTLE (HT) 
FORWARD (FD) SHOWTURTLE (ST) 
RIGHT (RT) CLEARSCREEN (CS 
BACK (BK) PENERASE (PE) 

PENUP (PU) 
PENDOWN (PD) 

Questions and Activities: 

1. Move turtle around screen using: FD, BK, RT, and LT with dif¬ 
ferent input numbers. 

2. Move turtle through provided mazes. 

3. Clear screen and draw various shapes. Example: Squares, 
rectangles, triangles, etc. 

4. LOAD "MAZE8 and "MAZE9. Move turtle through each maze in turn 

5. Experiment with small and large inputs (angles, distances). 

6. Use HT, ST and CS commands to see what happens. Use PU and PD 
and PE commands in addition to FD, RT, LT and BK to draw three 
shapes at three different parts of the screen with no lines 
joining shapes. (PD cancels PE command.) 

7. Use PRINT command with +,-,*,/ to do arithmetical calculations 
Example: PR 3 + 2; PR 5 - 1; PR 6 * 4; PR 8 / 2 
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LESSON NUMBER 2 

The student will be able: 

3. To use these commands to draw simple geometric 
figures. 

4. To understand how angles are used in constructing 
these figures. 

5. To understand how side length and angle size deter¬ 
mines shape of simple figures. 

Questions and Activities: 

1. Draw and square using FD 50 RT 90. 

2. What are the angles of the square's corners? 

3. Draw different sized squares. 

4. Draw a rectangle. 

5. Draw a square within a square (with no connecting line). 

6. Draw a square which is tilting to the right or left. 

7. Use squares to produce a design or picture. 

8. Draw your initials. 

9. Draw a triangle on paper and measure the angles of the 
triangle. Then use this information to draw a triangle 
on the screen. 

10. Draw a triangle with three equal angles. 

11. Draw triangles with different shapes. 
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LESSON NUMBER 3 

The student will be able: 

6. To define a Logo procedure using TO and END. 

7. To correct mistakes while defining procedures using 

<- delete character to left of cursor. 
-> moves cursor to right without deleting 

characters. 
[A] moves cursor to beginning of line. 
[B] moves cursor to left without deleting. 
FULLSCREEN or [L] to give full graphic 

screen. 
TEXTSCREEN or [T] to give full text screen. 
SPLITSCREEN or [S] to give mixed screen. 

8. To use the REPEAT command to draw simple geometric 
figures (e.g., REPEAT 4 [FD 50 RT 90]). 

9. To use [G] to stop a Logo execution. 

Questions and Activities: 

1. Write a procedure for drawing a square, rectangle, and 
equilateral triangle. 

2. Use the REPEAT command to draw these shapes. 

3. Change your procedures using the above commands. 

4. Use the control G command to stop the computer from completing 
your instructions. 



LESSON NUMBER 4 

The student will be able: 

10. To go into EDIT mode and edit a Logo procedure using: 

EDIT "NAME. 
[C] exits editor with text processed. 
[G] exits editor with text unprocessed. 
-> at end of line to move to next line. 
[A] moves cursor to beginning of line without 

deleting. 
[B] moves cursor back without deleting and at 

beginning of line to move to end of 
previous line. 

<- at beginning of line to combine line with 
previous line. 

[D] at end of line to combine line with next 
line. 

[N] to move down to Next line. 
[O] to Open new line at cursor position. 
[P] to move cursor up to Previous line. 
[V] to scroll forward one screenful. 
[ESC] to scroll back one screenful. 
[L] to scroll cursor line to center of screen. 

11. To define more than one procedure at a time. 

12. To save a procedure to disk using SAVE "NAME. 

13. To catalog disk using CATALOG command. 

14. To load saved procedures using LOAD "NAME. 

Questions and Activities: 

1. Go into EDIT mode and define a procedure for drawing a geometri 
figure. 

2. Use control C to leave EDIT mode and save procedure to disk. 

3. Write several more procedures and save them. (Use ERALL to 
clear workspace before beginning.) 

4. Use defined procedures, such as SQUARE and TRIANGLE to draw a 
house, and save using the name HOUSE. 
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5. Use editing commands to change a procedure. 

6. Use procedures to edit the procedure named "SLOPPY which 
can be loaded from your disk and has deliberately misspelled 
words in it. H 

7. CATALOG procedures on disk. 

8. Turn off computer, then re-boot and load saved procedures. 



LESSON NUMBER 5 

The student will be able: 

15. To print hard copy using .PRINTER # 

16. To manage workspace using: 

PO "NAME: (prints out definition of NAME) 

PO [NAME OTHERNAME 

POALL: (prints names and procedures) 

ERASE (ER) "NAME: (erases file called "NAME) 

Questions and Activities: 

1. Catalog procedures, load one, and make a "hard copy" print. 

2. Print out all definitions in workspace. 

3. Erase some procedures from the workspace. 
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LESSON NUMBER 6 

The student will be able: 

17. To use commands learned so far to draw a more compli¬ 
cated picture using defined procedures. 

Questions and Activities: 

1. Draw a scene with houses, mountains, trees, etc., or something 
else which interests you. Define and name parts of the proce¬ 
dure and use in a "superprocedure.11 



LESSON NUMBER 7 

The student will be able: 

18. To use the following screen commands: 

HOME to clear screen and move turtle to cen¬ 
ter position. 

CLEAN to clear graphic screen without moving 
turtle. 

19. To set pen colors using: 

SETPC # (0-black, 1-white, 2-green, 
3-violet, 4-orange, 5-blue) 

20 To set background using: 

SETBG # 

To reverse pen colors using: 

PENREVERSE (PX). 

Questions and Activities: 

21 

1. Use color commands (if color monitor is available) to change 
colors in a procedure or to add color to a procedure. 
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LESSON NUMBER 8 

The student will be able: 

22. To understand what is meant by a variable. 

23. To use Logo variables and inputs in Logo procedures, 
e.g., TO SQUARE :S 

REPEAT 4 [FD :S RT 90] 
END 

SQUARE 100 

24. To perform arithmetical operations on variables 
(e.g., using 2 * S in SQUARE :S procedure). 

Questions and Activities: 

1. Write a procedure for a square with a variable side. Use 
arithmetical operators on variable. 

2. Starting from HOME position, draw a series of squares by 
varying the size of the square so that each new square is 
larger than the next. Save this procedure as "GROWSQUARE. 
(See Figure 8.) 

3. Do the same for a triangle. 

4. Write a procedure for a rectangle using variables for length 
and width. (For example: TO RECTANGLE :LENGTH :WIDTH) 

Figure 8 
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LESSON NUMBER 9 

The student will be able: 

25. To understand what is meant by recursion. 

26. To use recursion in procedures. 

27. To use recursion and variables to draw designs. 

Questions and Activities: 

1. Examine procedures which take an angle as a variable and then 
calls on itself. 

Procedure Defined Procedure Used 

Example 1: 

TO SPINSQUARES :ANGLE SPINSQUARE 45 
SQUARE 50 
RT :ANGLE 
SPINSQUARES :ANGLE 
END (use control G to stop) 

Example 2: 

TO STARS :ANGLE STARS 30 
SQUARE 50 
RIGHT :ANGLE 
SPINSQUARES :ANGLE 
END 

2. Write procedures for your own spinning designs. 

3. Use your square procedure to draw a square. 

4. Modify procedures so that it draws squares twice as large. 

5. Write a procedure which draws a series of houses, one next to 
the other, but slightly larger. 

Example: 

(Hint: Use recursion and control G to stop) 
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LESSON NUMBER 10 

The student will be able: 

28. To understand the infinite nature of recursive 
procedures. 

29. To use the following predicates with the following 
conditional expressions: 

>, <, =. 

30. To control recursion with conditional expressions. 

Example: IF :X > :Y [STOP] 

Questions and Activities: 

1. Call up GROWSQUARES program. Modify procedure so that program 
stops if side size is greater than 100. 

Example: IF :SIZE > 100 [STOP] 

2. Modify SPINSQUARE program to include variable sides and angles. 
Save as SPINSQUARE1. 

3. Modify SPINSQUARE1 to include a conditional stop command. 
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LESSON NUMBER 11 

The student will be able: 

31. To define a regular sided shape. 

32. To write a procedure which draws regular sided 
shapes. 

33. To understand that only certain angles will pro¬ 
duce regular shapes. 

Questions and Activities: 

1. Write a procedure which moves the turtle forward 50 and then 
turns right 150 a number of times. 

2. Modify the procedure using the REPEAT command. 

3. Try this procedure with a number of different angles. 

4. Determine the angle needed and the number of times repeated to 
draw a square. 

5. Which angles produce regular shapes? What do the other angles 
produce? 

6. Use procedure to draw multiple sided regular shapes starting 
with three and going to many sides. (Use hide turtle to help 
see what you are drawing.) 

7. What type of figure do you get as the sides become many? 
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LESSON NUMBER 12 

The student will be able: 

34. To apply knowledge of polygons to construct cir¬ 
cles. 

35. To understand angular relationships with circles 
and other polygons. 

36. To understand nature of infinity and approximations 
of infinity. 

37. To use HEADING to control poly program. 

Questions and Activities: 

1. Examine the recursive procedure called POLY which includes size 
and angle variables. Call procedure POLY. (Use control G to 
stop.) 

TO POLY :SIZE :ANGLE 
FD :SIZE RT :ANGLE 
POLY :SIZE :ANGLE] 

2. Input various sides and angles to draw geometric shapes. These 
shapes may look like stars or polygons which are closed figures 
such as a square. 

3. Keep track of shapes made using the following chart: 

SIZE ANGLE TYPE OF SHAPE 
NUMBER OF 

SIDES 
DOES IT WRAP 
AROUND SCREEN 

30 30 Polygon 12 No 
60 30 Polygon 12 Yes 
30 60 Polygon 6 No 
30 80 Star 9 No 

4. Do chart again, but control variables by changing only one varia¬ 
ble at a time, while keeping other variables constant. (Example: 
Keep size constant, but vary angle.) 
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5. Keeping size the same, find the angles needed to draw the 
following shapes: square (4 sides), triangle (3 sides), 
hexagon (6 sides), octagon (8 sides), nonagon (9 sides) 
pentagon (5 sides), heptagon (7 sides). 

6. Keeping size constant, find the angles to draw stars with 
5, 8, 9 points, etc. 

7. Now keep angles constant while changing sides. 

8. Use different combinations of size and angle; include very 
large or very small inputs to see what happens. 

9. Answer the following questions: 

How many sides for each of these angles: 30, 60, 90, 120, 
180? 

What is the rule for connecting the number of sides with 
angles? 

How about these: 80, 150, 160, 200? 

Can you find a rule for these angles? 

(Hint: The rule involves the number 360 -- Why?) 

10. Draw a circle using POLY. How are the angles needed related 
to 360? 
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LESSON NUMBER 13 

The student will be able: 

38. To use the MAKE command in a procedure. For example: 

MAKE "APPLE 50 
PRINT :APPLE 
50 

39. To understand that a conditional stop command must 
be inserted in the logically correct place in a 
procedure to work properly. 

Questions and Activities: 

1. HEADING is a Logo command that tells which way the turtle is 
pointing at any time. After a HOME command, the turtle has a 
heading of zero. HOME the turtle, then modify the POLY proce¬ 
dure to stop POLY when the heading is zero. Call this P0LY1. 
(Use IF HEADING = 0 [STOP]) 
If this does not stop execution of procedure, try placing the 
stop statement at a different position in the procedure. Why 
should it work in one position, but not at another? 

2. If heading does not begin at zero, but at some other heading 
which we will call START. The computer must be told that START 
is the starting heading. This can be done by using the Logo 
command MAKE to make START the starting heading. 
(For example: MAKE "START HEADING) 
When MAKE is used, the first input is always a name and needs 
a quotation mark. 

3. Write a POLY procedure which uses the MAKE "START HEADING. 
Call it P0LY2. Clear screen and turn the turtle so that it 
is no longer at zero; then use your P0LY2 procedure. 

4. Use: 

TO POLYSPI :SIZE :ANGLE 
FD :SIZE 
RT :ANGLE 
POLYSPI (:SIZE + 1) :ANGLE 
END 

What happens? Why? 
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5' smaller!^ Pr0Cedure t0 raake the shaPe 9row smaller and 

6. Here are some more examples of how STOP commands are used 

IF :SIZE > 100 [STOP] 
IF :SIZE < 1 [STOP] 

7. Write some procedures using these or similar commands. 
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LESSON NUMBER 14 

The student will be able: 

40. To construct circles using the radius of circle. 

41. To construct arcs of various sizes. 

42. To include procedures for arcs and circles in 
designs. 

Questions and Activities: 

1. The distance from the center of a circle to the circle is 
called the radius of a circle. Can you write a procedure to 
draw circles around particular points with a given radius? 

a) To do this, begin with a procedure for drawing circles, 
such as: 

TO CIRCLE 
REPEAT 360 [FD 1 RT 1] 
END 

b) Now write this procedure using a variable for the 
forward step. Call this CIRCLE2. 

c) Print out a number of circles of different radii. Using 
a ruler and string, measure the circumference of the 
circle and compare its length to the length of the 
radius. What number do you get when you divide the 
radius into the circumference? This number times the 
radius or half this number times the diameter will 
always give us the circumference of a circle. This num¬ 
ber is so important we give the number a special name. 
Actually, it is half the number which we give the name, 
and that name is the Greek letter pi. The value of pi 
is approximately 3.14. 

d) To draw a circle with a particular radius, we can use 
our CIRCLE2 procedure and let: 

size = radius X pi/180 = 0.0174. 

e) Write a procedure called CIRCLE which takes an input 
RADIUS and uses CIRCLE2 with an input of RADIUS * 0.0174. 
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2. An arc (a continuous part of a circle) mav be drawn 

procedure which uses the step-turn part of the circle proqram 

in the Lc FoarSexa^!e:e St6PS 35 there are ’ 

TO RIGHTARC :RADIUS :DEGREES 
RIGHTARC1 :RADIUS * 0.0174 :DEGREES 
END 

TO RIGHTARC1 :SIZE :DEGREES 
REPEAT :DEGREES [FD :SIZE RT :ll 
END 

3. Write a procedure to arc left. 

4. Use arc and circle procedures to make designs or draw pictures. 
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LESSON NUMBER 15 

The student will be able: 

43. To understand what a "frame of reference" is. 

44. To define Cartesian frame of reference. 

45. To move the turtle by specifying x,y Cartesian 
coordinates using the SETPOS command, e.g., 
SETPOS [30 40]. y * 

46. To move the turtle horizontally by using the SETX 
command. 

47. To move the turtle vertically by using the SETY 
command. 

48. To set the direction of the turtle using the 
SETHEADING, (SETH) command. Rotates turtle clock¬ 
wise with zero directed straight up, e.g., SETH 180. 

49. To understand what a random number is and use 
RANDOM # in a procedure. 

Questions and Activities: 

1. Move turtle to various parts of the screen using SETX and SETY 
commands. Negative values must have a parentheses around them. 
(For example: SETX (-10)) 

2. Clear screen, then draw an object at some X,Y point. Use 
SETH to aim turtle at object. Move turtle in that direction 
to see if you hit the object. 

3. Give the computer the following instructions: 

TO GOODBYE 
CLEARTEXT 
PRINT [WELCOME TO LOGO] 
ERALL 
END 

then GOODBYE 
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4. Define the following procedures; 

TO STARTDATA 
MAKE "SHOTNUMBER 0 
MAKE "XTARGET (90 - 10 * RANDOM 19) 
MAKE "YTARGET (90 - 10 * RANDOM 6) 
MAKE "XSTART (90 - 10 * RANDOM 19) 
MAKE "YSTART (-10 * RANDOM 3) 
MAKE "HSTART (10 * RANDOM 36) 
END 

TO STARTGAME 
CS 
SETBG 6 
HT 
DRAWTARGET :XTARGET :YTARGET 
STARTTURTLE :XSTART :YSTART :HSTART 

TO DRAWTARGET :XTARGET -.YTARGET 
PU 
SETX :XTARGET 
SETY :YTARGET 
PD 
CIRCLER 10 
END 

TO STARTTURTLE ;XSTART :YSTART :HSTART 
PU 
SETX :XSTART 
SETY :YSTART 
SETHEADING :HSTART 
END 

TO START 
STARTDATA 
STARTGAME 
END 

TO SHOOT 
MAKE "SHOTNUMBER :SHOTNUMBER + 1 
PRINT [HOW FAR?] 
MAKE "SHOT READNUMBER 
PD FD :SHOT 
TEST DISTANCE :XTARGET :YTARGET < 10 
IFTRUE HIT 
IFFALSE MISS 
END 
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TO HIT 

PRINT [CONGRATULATIONS! YOU HIT THE TARGETi 
PRINT (SENTENCE [IT TOOK YOU ONLY] 
:SHOTNUMBER [SHOTS]) J 
END 

TO MISS 

•sJotnumbIr^ [MIS5ED! SH0T number] 
WAIT 200 
STARTTURTLE :XSTART :YSTART :HSTART 
END 

TO DISTANCE :X1 :Y1 
OUTPUT SQRT (( XCOR - :X1) * 
+ (YCOR - :Y1) * (YCOR - :Y1) 
END ' 

(XCOR - :X1) 

TO READNUMBER 
OUTPUT FIRST READLIST 
END 

6. Play shoot game. 

7. Change game-make target bigger or smaller, new messages, etc. 

8. Then add: 

TO EXPLODE :SIZE 
HT 
REPEAT 18[FD :SIZE BACK :SIZE RT 20] 
END 

(Use IFTRUE HIT EXPLODE 20 in "HIT procedure) 



LESSON NUMBER 16 

The student will be able: 

50. To define what a vector is. 

51. To use Logo commands to construct vectors. 

52. To add and subtract vectors. 

53. To resolve vectors into components. 

Questions and Activities: 

1. Coordinate systems are important; we want to describe the turtl 
(or some other object's) "absolute" position or motion with 
respect to a frame of reference. If, on the other hand, we are 
only interested in the absolute direction of the turtle 
(HEADING), so that its position is "relative," we can describe 
this "displacement" using "vectors." 

A displacement is a movement through some distance in a certain 
direction. The direction is "absolute," but we may not be 
interested in its starting position. 

A vector can be thought of as an arrow of definite length and 
direction, but starting from some "arbitrary" starting posi¬ 
tion, pointing from the beginning to the end of a displace¬ 
ment. 

2. The following procedure may be used to describe a vector: 

TO VECTOR DIRECTION :LENGTH 
SETHEADING :DIRECTION 
FORWARD : LENGTH 
END 

3. Use vectors to draw a square, rectangle, or other geometric 
figure. 

4. Vectors may be added by drawing each vector to be added to the 
arrow head of the preceding vector. The order in which these 
vectors are added are not important. The sum of the vectors, 
called the "resultant," will have a value equal to the length 
of the arrow which connects the tail of the starting vector 
with the head of the last vector added. The direction of this 
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resultant vector is pointing from the tail of the first 

HEmNGVihe^ctSJ)?"6 ^ added (thl‘S iS the 

If we start our vector addition from center screen, a HOME 
command will connect the final vector head with the initial 
itCtZ The resultant may be found by measuring the 
length of the vector and its heading directly from the 
screen, but be sure your units are the same as the units 
used on the Logo drawing. (A HIDETURTLE command will make 
it easier to see what you are doing.) 

5. Vectors are subtracted by reversing the direction of the 
vector you are going to subtract by 180 degrees, and then 
adding. 

If VI = 40 100 and V2 = 70 100, first add 
VI and V2 and then subtract VI from V2. 

6. Vectors may be described by heading and direction. Add the 
following vectors by using the VECTOR procedure (start 
from HOME) for each vector in turn. Then give the HOME 
command and measure the resultant length and direction from 
the screen. Try adding the vectors in a different order and 
see if you get the same result. 

a) VI = 45 30, V2 = 90 20, V3 = -90 50, V4 = 290 20 

b) V2 = 0 50, V2 = 180 50, V3 = 180 50, V4 = 270 50 

7. Use vectors as part of a procedure? 

8. If the vectors represent forces acting on an object, which way 
would the object move? 

9. Using the principles of geometry, it is possible to define a 
procedure to find the resultant of a vector addition. Use the 
following procedure to find the resultants of the previously 
given vectors (XI and Y1 represent the starting position of 
the addition--they are 0 0 if started from HOME): 
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TO RESULTANT :X1 :Y1 

MAKE "R SQRT ((XCOR - :X1) * 
(YCOR - :Y1) * (YCOR - Y1)) 

(XCOR - :X1) + 

MAKE "D ARCTAN (YCOR - :Y1) / (XCOR - XI) 

MAKE "E (90 - :D) 

MAKE "F SQRT (:E * :E) 

IF :R = 0 [MAKE "F "UNDEFINED] 

(PRINT [THE MAGNITUDE OF THE RESULTANT IS] :R 

[WITH A HEADING OF] :F "DEGREES) 

END 

10. Show that there are many ways to add vectors so that they pro 
duce equal resultants. Vectors which make up a vector resul¬ 
tant are components of that vector. 
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LESSON NUMBER 17 

The student will be able: 

54. To understand force as a vector quantity. 

55. To understand motion in terms of vector quanti¬ 
ties. 

56. To understand the dynamics of motion using the 
dynaturtle program. 

57. To understand the dynamics of circular motion. 

Questions and Activities: 

1. Forces are sometimes defined as a "push" or a "pull." They 
may vary in strength (magnitude) and direction. Since forces 
have both magnitude and direction, they may be treated as 
vectors. 

2. If more than one force acts on an object at the same time, 
they will balance if their resultant is zero. This condition 
is known as "equilibrium." Add or subtract a number of made- 
up vectors to produce equilibrium. If we are working with 
three or more vectors, for example, must the magnitude of one 
of the vectors equal the sum of the magnitudes of the other 
two vectors? Illustrate your answer. 

3. If an "unbalanced" vector or resultant of vectors acts on an 
object, the object will change its motion. Call up the 
Dynaturtle procedure to see how this happens. 

4. To move the dynaturtle, you must apply a force or "kick" it. 
This kick will be in the direction that the turtle is point¬ 
ing, and the magnitude of the kick may be varied. Use this 
procedure to move the turtle around the screen. Describe how 
the turtle moves in response to kicks in various directions 
with various magnitudes. 

5. Does the turtle stop moving when you no longer kick it? What 
does this tell you about the motion? Can you apply this to 
objects moving in the "real" world? 

6. Apply reverse kicks to the turtle. What happens? What does 
this tell us about the forces acting on the turtle? 
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LESSON NUMBER 1 

The student will: 

1. Know the definition of a force. 

2. Know the definition of a vector. 

3. Know that forces have vector properties. 

4. Understand how to add vectors. 

Lesson procedure: 

1. Students will be asked to define a force. Examples of forces 
will be demonstrated with the help of the class. 

2. The concept of force having magnitude and direction will be 
elicited from the students. 

3. The concept of the vector will then be introduced, and force 
will be defined in terms of its vector properties. 

4. Scales used to measure forces will be introduced. These will 
then be used to show that forces do not add as ordinary numbers 
do. 

5. The vector properties of forces and velocities will then be 
elicited from class. 

6. Graphical representation of vectors will be introduced. 

7. Force table experiment will be done. 

8. Graphical methods for adding vectors will be introduced. 

9. Graphical analysis for force table experiment results will be 
made. 



LESSON NUMBER 2 

The student will: 

5. Know that an unbalanced force 
speed up, slow down, or change 

will cause objects to 
direction. 

6. Know that friction is an "invisible" force which 
act on a moving or standing object 

7. Understand the relationship between unbalanced forces 
and motion. 

Lesson procedure: 

1* The concept of equilibrium will be introduced and explained 
in terms of balanced forces. 

2. The concepts of static and dynamic equilibrium will be intro¬ 
duced. Air track demonstration will be done to reinforce the 
concept. 

3. The concept of friction will be introduced and discussed with 
respect to dynamic equilibrium. 

4. The concept of unbalanced forces causing motion will be 
introduced. 

5. Accelerometer will be used as an indicator of different types 
of motion. 
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LESSON NUMBER 3 

The student will: 

8. Know that motion is a change in position over an 
interval of time, the rate of which is called 
speed. 

9. Know that velocity is an object's speed in a qiven 
direction. a 

10. Understand and apply the formula for velocity as 
it relates to distance and time. 

11. Understand what is meant by instantaneous velocity. 

12. Understand the meaning of accelerated motion. 

13. Understand how unbalanced forces produce acceler¬ 
ated motion. 

Lesson procedure: 

1. Analysis of ticker tape experiment tape will be used to intro¬ 
duce the concept of average and instantaneous velocity. 

2. Further analysis of tape will be used to discuss constant 
velocity and accelerated motion. 

3. Definition of accelerated motion in terms of changing velocity 
will be elicited from class after analysis of ticker tape. 

4. Pendulum will be demonstrated and discussed with respect to 
force and acceleration. 



LESSON NUMBER 4 

The student will: 

14. Know what is meant by a frame of reference. 

15. Understand why position is given with respect to 
a frame of reference. 

16. Understand relative motion. 

Lesson procedure: 

1. The need for a frame of reference to describe motion will be 
elicited from the class. 

2. The concept of position as a set of coordinates with respect 
to a frame of reference will be discussed with the class. 

3. The concept of relative motion will be introduced to the 
class. 



lesson NUMBER 5 

The student will: 

17. Understand the concept of inertial motion. 

18. Understand the effects of force on moving objects. 

19’ motiontand ^ effect of gravity on on object's 

Lesson procedure: 

1. 

2. 

3. 

The first part of the film "Frame of Reference" will be showi 
to the class and discussed. De snowi 

The law of inertia will be introduced with respect to con¬ 
cepts illustrated in the film. 

The effect of unbalanced forces 
cussed. 

on moving objects will be dis 

4. The effect of a force acting perpendicular to an object's 
motion will be demonstrated with respect to projectile motion 
Independence of horizontal motion to gravitationally accel¬ 
erated vertical motion will be demonstrated. 

5. The effect of gravity on a projectile's motion will be dis¬ 
cussed with respect to concepts illustrated in the film. 
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LESSON NUMBER 6 

The student will: 

20. Understand how applying a force to an object may 
lead to curved or circular motion. 

21. Understand the centripetal nature of the force 
causing an object to move in a circle with constant 
speed. 

Lesson procedure: 

1. Examples of centrifugal forces will be elicited from the 
class. 

2. Relationship between centrifugal and centripetal forces will 
be explained. 

3. Accelerometer will be used to illustrate the centripetal direc¬ 
tion of the force acting on object moving in a circle. 

4. Demonstration of centripetal force, using overhead swinging 
rubber stopper, will be made and discussed. 

5. Last part of "Frames of Reference" film will be shown. 
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LESSON NUMBER 7 

The student will: 

22. Know that there are forces such as the 
or electromagnetic force that does not 
or pull by direct contact. 

grati vational 
seem to push 

23. Know that these forces may act through the exchange 
o invisibly small particles, called respectively 
gravitons and photons. 

24. Understand that these "unseen" forces influence the 
space surrounding them. 

25. Understand the "field" nature of this space in terms 
of these forces. 

Lesson procedure: 

1. The centripetal force demonstration will be used to show how 
weight or gravitational force can provide the centripetal force 
needed for circular motion. 

2. The relationship between the Earth's gravitational force on the 
moon and the moon's circular orbit will be discussed. 

3. The concept of unseen forces acting through great distances 
will be discussed with respect to the gravitational attraction 
between heavenly bodies. 

4. The concept of the gravitational field will be introduced. 

5. Magnetic forces will be introduced and demonstrated. 

6. Similarities and differences between the way gravitational and 
magnetic forces act will be elicited from the class. 

7. Experiments will be performed to illustrate the nature of the 
magnetic field. 

8. The concept of force fields being due to the possible exchange 
of invisibly small particles will be introduced and discussed. 

9. Students will toss medicine ball back and forth while seated 
on moveable carts to illustrate phenomena. 
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LESSON NUMBER 8 

The student will: 

26. Understand some of the properties of field in space 
such as the inverse proportional nature of the force 
emanating from a point. 

27. Apply these properties to explain observed phenomena. 

Lesson procedure: 

1. 

2. 

3. 

4. 

5. 

6. 

Introduce concept of inverse relationship. 

Describe the "inverse square" geometry of space formed by 
straight lines emanating from a point. 

Show geometric model of inverse square spread. 

Describe inverse square properties using "butter gun" analogy. 

Introduce and demonstrate electrostatic force effects. 

Elicit force field aspects of electrostatic effects. 

7. Explain how the inverse square nature of forces due to point 
electrostatic charges predicts the lack of charge effects 
within a charged hollow conductor. 

8. Demonstrate this phenomenon. 

9. Generalize this effect to the gravitational field within a 
hollow earth. 

10. Elicit predictions from the class. 

11. Sum up nature of force as a possible part of a grand unifica¬ 
tion of "force interactions." 

12. The Nova videotape "What Einstein Didn't Know" will be shown 
and discussed. 
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PHYSICS EVALUATION 

1 ’ applied? the followin9 statements are examples of force be 

(a) A girl tries to lift a heavy weight, but can't 
budge it. 

(b) A boy spends five minutes thinking about solving a 
math problem. 

(c) A girl pedals her bicycle. 

Answer: 

(1) A and B 

(2) B and C 

(3) A and C 

(4) C only 

2. Which two words best belong in the blanks? 

To describe a force, we must know its 
and _. 

Answer: 

(1) speed, power 

(2) type, direction 

(3) magnitude, direction 

(4) cause, start 
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3. Four forces act on a point as shown in Figure 3. 

Is 

(Figure 3) 

The resultant of the four forces is: 

(1) 0 

(2) 5 

(3) 14 

(4) 20 

4. Two forces of 10 and 20 pounds act on a point at some angle other 
than 0° or 180° between them. Which one of the following forces, 
when applied to this point at some angle, might be able to 
balance these two forces? 

(1) 10 pounds 

(2) 28 pounds 

(3) 30 pounds 

(4) 35 pounds 

5. A man pushes a book along a table from point A to point B with a 
force of 5 pounds. The force of friction acting on the book is 
also 5 pounds. Which statement best describes the book's motion? 

(1) It comes to a sudden stop. 

(2) It moves along with constant speed. 

(3) It speeds up. 

(4) It slows down. 
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(1) It stops immediately. 

(2) It slows down. 

(3) It keeps going. 

(4) It speeds up. 

Which 

7. 
w!anfT-Pi!-heS the.b00k with 10 pounds of force, while the 

SSSiSLflKtJSSkTS;Jo5l5 pounds' Which ^ 

(1) It stops immediately. 

(2) It moves with constant speed. 

(3) It slows down. 

(4) It speeds up. 

8. A marble rolls along a straight line from point A to point B, 
as shown in Figure 8. Which picture best describes how the 
marble moves after it was hit directly on center by a similar 
marble at point B? 

A B c 
O--» O 

o 
* 

o 
(Figure 8) 
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9. To find a pirate's treasure on the map in Figure 9, you must start 
digging at a point 10 feet north of the tree and 20 feet east of 
the tree. Describe the location of this treasure using the rock 
as a starting point instead of the tree? 

N 
4 

w 
i 
i 

V 

tr ea 1 | | | till 1 
\^40.- 

1 - ! 
-1 

1 

s 
20 

1 1 

1 - 1 
-l-l-l-l- 

l 
-1 rock 
-1 

0. -l-l 
0. 20. 

-l-l-l-l- 
40. 60. 

-1 
80. 

(Figure 9) 

(1) 10 feet north and 20 feet east 

(2) 10 feet west and 20 feet north 

(3) 10 feet south 

(4) 20 feet north and 10 feet east 
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10. 

wal^oX^^he^or 50 m-p-h-A 
How fast is the gug .ovI^h^s^X 
(1) 2 m.p.h. 

(2) 48 m.p.h. 

(3) 50 m.p.h. 

(4) 52 m.p.h. 

11. 
the Gain's [[at[?9 " Quest1on 10 movin9 w1th aspect to one of 

(1) 2 m.p.h. 

(2) 48 m.p.h. 

(3) 50 m.p.h. 

(4) 52 m.p.h. 

12. How fast is the bug moving with respect to a boy on the train 
who is walking 2 m.p.h. south? 

(1) 0 m.p.h. 

(2) 50 m.p.h. 

(3) 48 m.p.h. 

(4) 54 m.p.h. 

13. A bicycle rider travels 20 miles down a stretch of road. How 
fast is the rider moving if it takes 45 minutes to travel that 
far? 

(1) 10 m.p.h. 

(2) 20 m.p.h. 

(3) 26.66 m.p.h. 

(4) 32 m.p.h. 
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14. 

sirs issriurani*,:,;; s.rsr,.';,, ** »• •“» »i sas 
the 
A, as 
is 

/N 

(1) is not moving. 

(2) is speeding up. 

(3) is moving at maximum speed. 

(4) is slowing down. 

15. As the pendulum in Problem 14 
forces acting on the pendulum 
tance) are the upward pull of 
of gravity. The resultant of 

(1) acts downward. 

(2) is zero. 

(3) acts upward. 

(4) acts toward point C. 

moves through point B, the only 
(ignore friction or air resis- 
the string and the downward pull 
these forces: 



pointc!The tdult: the Pe"dulum in proble" " caches 

(1) moving with constant speed. 

(2) moving with non-constant speed. 

(3) slowing down. 

(4) not moving. 

A coin is thrown directly up 
moving up, the only force(s) 
resistance): 

into the air. While the coin is 
acting on the coin (ignoring air 

(1) is the pull of gravity. 

(2) is the upward projecting force. 

(3) are the upward projecting force and the pull of 
gravity. 

(4) is the internal force of the coin. 

The resultant of the forces acting on the coin in problem 17: 

(1) acts sideways. 

(2) is zero. 

(3) acts upward. 

(4) acts downward. 

A rocket is moving along sideways in deep space with its engine 
off from point A to point B, as shown in Figure 19. 

ABC 

(Figure 19) 
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“ "VthI any planets and there are no other forces acting 

i Hr" S3 WST S3 

20. If the engine of the rocket in problem 19 is fired for 10 
seconds at point B, which of the following paths will it take? 

(1) (2) 

ABC ABC 
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(3) 
(4) 

21 A fast rolling ball enters a curved guide on a table top at 
point A and leaves at the other end, point B, as shown in 
Figure 21. Which of the following paths will it take? 
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22. A car travels 10 miles north, then 3 miles east th o 
north, and then another 2 miles east How fa^h th?U 2 ™ 
displaced from its starting point? " haS the Car been 

(1) 0 miles 

(2) 10 miles 

(3) 13 miles 

(4) 17 miles 

23. car travels 20 miles east, then 10 miles north, then 5 miles 
west, then 10 miles north, then 15 miles west, and then another 
20 miles north. How far has the car been displaced from its 
starting point? 

(1) 0 miles 

(2) 25 miles 

(3) 50 miles 

(4) 70 miles 

24. A racing car travels around a circular track at a constant speed 
of 120 m.p.h. The force needed to keep the car moving in a 
circle is: 

(1) constant in magnitude but changing in direction. 

(2) constant in both magnitude and direction. 

(3) changing in magnitude but constant in direction. 

(4) changing in both magnitude and direction. 
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25. A rock attached to a hand-held strinn ic t.nvonA 

that it moves as shown in Figure ov®rhead so 

5U53 32 1$ «*«"*&*« SiRV1,^ 

26. The distance separating the earth and a rocket heading for the 
moon is twice as great at it had been. The earth's gravitational 
force on the rocket during this time: 

(1) remains the same. 

(2) doubles. 

(3) becomes half as great. 

(4) becomes one-forth as great. 
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27 Two bar magnets with their north Doles farinn 
separated by a short distance wK? ^ 
the magnetic lines of force around the magnets? represents 

(1) 
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1 t \ \ 

A ii y—*~ 
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28. As the electric charge on the surface of a hollow metal ball 
increases, the electric field inside the ball: 

(1) increases. 

(2) decreases. 

(3) remains the same 

29. A heavy cannon ball and a marble are dropped from the same 
height at the same time. Which one of the following statements 
is true? 

(1) The cannon ball will land much before the marble. 

(2) The marble will land much before the cannon ball. 

(3) The cannon ball will land a short while before the 
marble. 

(4) They will both land at about the same time. 
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30. The subatomic particle which takes part 
interaction is the: 

(1) meson. 

(2) graviton. 

(3) neutron. 

(4) photon. 

in the electromagnetic 
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NAME: 

1 • Write a 

drawCthePfigure* (cal 1 hit'sQUARES*)Vshown^n ^ PaPer’ Whl’Ch Wil1 

TO SQUARES 

2. The program given below was meant to draw the "House" as shown, 
but was incorrectly written. In the space provided, write a 
corrected program. 

TO SQUARE 
REPEAT 4[FD 50 RT 90] 
END 

TO TRIANGLE 
REPEAT 3[RT 120 FD 120] 
END 

TO HOUSE 
SQUARE 
FD 50 
RT 30 
TRIANGLE 
END 



263 

NAME: 

with9each small" aHH^f represents the screen of your computer, 
each small grid line representing five turtle steDs ikinn 

tion° follow thd ?tr‘n9ht.ed9e> and starting at the HOME'posi- 
10W the instructions below to draw the "town" that 

would be drawn by the computer. (Use a pencil with an eraser.) 

TO TOWN 
CS 
PU 

RT 180 FD 65 
RT 90 FD 100 
RT 90 
PD 

HOUSE 
MOVE 
HOUSE 
MOVE 
HOUSE 
END 

TO MOVE 
PU 

RT 90] 

FD 25 LT 90 FD 30 LT 90 
PD 

TO BOX 

REPEAT 4[FD 10 LT 90] 
END 

TO SQUARE 

REPEAT 4[FD 50 RT 90] 
END 

TO HOUSE 
SQUARE 
FD 50 RT 30 
TRIANGLE 
PU 

RT 60 FD 10 
RT 90 FD 5 
PD 
BOX 
PU 

FD 10 LT 90 
FD 20 
PD 
BOX 
PU 

RT 90 FD 10 
PD 
DOOR 
END 

TO DOOR 

REPEAT 2[FD 25 RT 90 FD 10 

END 

TO TRIANGLE 
REPEAT 3[FD 50 RT 120] 
END 
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NAME: 

la. The following program draws a shape: 

TO SHAPE 
REPEAT 2 [FD 30 RT 90 FD 50 RT 901 
END J 

Draw this shape to scale in the space provided below (Each 
grid mark is five turtle steps.) ^ 

lb. Rewrite the above procedure so that variables may be used to 
change the size of the shape. (Use the space provided below.) 
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NAME: 

2a. 
The following program will draw triangles which arnw in ci 
The command GROWTRIANGLES 10 is oiv^ ^ " 9[0^ 1n Slze- 
be drawn before the procedure stops? ™ ^ tnangleS wil1 

TO GROWTRIANGLES :SIDE 
IF :SIDE > 95 [STOP] 
REPEAT 3 [FD :SIDE RT 
GROWTRIANGLES :SIDE + 
END 

120] 
20 

Number of triangles 

2b. Rewrite this procedure so that the triangles grow smaller bv 20 
each time instead of bigger (call it SHRINKTRIANGLES), and will 

SHRINK?rUgLES91oO ?fg"en!°PPln9 ^ the C0™“nd 
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NAME: 

3. 
The following procedure is supposed to stop after three sauarps 
are drawn when the command GROWSQUARES 20 is given but it 

works"0*” WOrk' In the SpaCe "ext t0 rewrite6?t so ttat It 

TO GROWSQUARES :SIDE 
REPEAT 4 [FD :SIDE RT 90] 
GROWSQUARES :SIDE + 20 
IF :SIDE > 60 [STOP] 
END 

4. The following procedure draws a shape. Sketch this shape in the 
space provided. (Each grid mark is ten turtle steps.) 

TO SHAPE2 
FD 50 RT 90 
SHAPE2 
END 
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NAME: 

Using the coordinate system provided below (each grid line 

represents five turtle-steps), draw the shape thafwould result 
if you called the following procedure: 

TO SHAPE 
PU 

SETPOS [ 25 -50] 
PD 

SETPOS [-25 -50 ] 
SETPOS [-25 0 ] 
SETPOS [ 0 25 ] 
SETPOS [ 25 0 ] 
SETPOS [ 25 -50 ] 
SETPOS [-25 0 ] 
SETPOS [ 25 0 ] 
SETPOS [-25 -50] 
END 
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NAME: 

2a. Using the following 
a six-sided polygon 

procedure, write the 
with each side being 

command needed to draw 
50 turtle-steps long. 

TO POLY :LENGTH :ANGLE 
FD :LENGTH RT :ANGLE 
POLY :LENGTH :ANGLE 
END 

Command: 

2b. What type of geometrical shape will be drawn as a result of 
using the following procedure? 

TO SHAPE Answer: 
FD 1 RT 1 —-- 
IF HEADING = 0 [STOP] 
SHAPE 
END 

Sketch the shape in the space below. 

3. Using the following procedure: 

TO VECTOR :ANGLE :LENGTH 
SETH :ANGLE 
FD :LENGTH 
END 

Write the commands needed to draw a rectangle with a 100 
turtle-step length and a 50 turtle-step width. 
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NAME: 

4. 
Using the following POLYSPI procedure and command POLYSPI 5 90 
do a rough sketch of the resulting figure in the space below 

TO POLYSPI :SIZE :ANGLE 
IF :SIZE > 150 [STOP] 
FD :SIZE RT :ANGLE 
POLYSPI (:SIZE + 5) :ANGLE 
END 

5. The dynaturtle is moving along the dotted line towards point 
C, as shown. It is given a "kick" as it passes point P in the 
direction that the turtle is pointing. To which of the points, 
A, B, C, D or E, will the turtle most likely move towards after 
this kick? 

A 

B 

P 
C 

D 

E 



BIBLIOGRAPHY 

Abelson’ H* ^1e L°g°- New York: McGraw-Hill Book Company, 1982. 

-__-i2"A Beginner's Guide to Logo." BYJE 7, No. 8 (August 1982): 

Abelson, H.^ and diSessa, A. Turtle Geometry 
The MIT Press, 1981. " JL Cambridge, Massachusetts: 

Adel son, J. "The Growth of Thought in Adolescence " 
Horizon 61 (Summer 1981): 156-166. 

Educational 

Altman, A. E. "Pulling in the Reins on Freewheeling Logo." Classroom 
Computer Learning 6, No. 1 (September 1985): 61-66. -- 

Arlin, P. "Cognitive Development in Adulthood: A Fifth Stage9" 
Developmental Psychology 2. No. 5 (1975): 602-606. 

Arons^ A. B. "Student Patterns of Thinking and Reasoning." Physics 
Teacher 21, No. 9 (December 1983): 576-581. 

Athley, I. J., and Rubadeau, D. D., eds. Educational Implications of 
Piaget's Theory. Waltham, Massachusetts: Ginn-Blaisdel 1 , 1970. 

Ausubel, D. P. Educational Psychology: A Cognitive View. New York: 
Holt, Rinehart and Winston, 1968. 

Barger, R. N. "The Computer as a Humanizing Influence in Education." 
T.H.E. Journal, (May 1982): 95-105. 

Bender, D. S., and Milakofsky, L. "College Chemistry and Piaget: The 
Relationship of Aptitude and Achievement Measures." Journal of 
Research in Science Teaching 19 (March 1982). 

Berringer, B., and Nous, A. "Investigating Physics Problem Solving 
Using Piaget's Paradigm of Logical Operations and Schema." 
Unpublished preliminary data and findings, University of Pittsburgh. 

Bork, A. "Computers in Education Today and Some Possible Future Uses." 
Phi Delta Kappan 66 (December 1984): 239-243. 

Brady, H., and Levine, M. "Is Computer Education Off Track? An 
Interview with Judah Schwartz." Classroom Computer Learning 5, 
No. 6 (February 1985): 20-24. 

Bruner, J. S. Toward a Theory of Instruction. New York: W. W. Norton 
and Company, Inc., 1966. 

270 



271 

Champagne, A.; Klopfer, I 
Report. Pittsburgh 
1980. 

lence 

Clements, D. H., and Gallo. G. "Effects of Computer Learning on 
Young Children's Cognition." Journal of Educational Psychology 76, 
1051-1058. 

Cohen, H.; Hillman, D.; and Agne, R. "Cognitive Level and College 
Physics Achievement." American Journal of Physics 46. No 10 
(October 1978): 1026-10291 - 

Cramer, J. "The Latest Research on Brain Growth Might Spark More 
Learning in Your Schools." The American School Board Journal. 
(August 1981). 

Dean, J. W. "What's Holding Up the Show?" The Journal of the National 
Education Association 71, No 2 (1978). 

Dilling, R. Unpublished paper presented at Purdue University, Department 
of Chemistry, May 1978. 

DiSessa, A. Cognitive Science 6, No. 37 (1982). 

DiSessa, A., and White, B. "Learning Physics from a Dynaturtle." 
Cambridge, Massachusetts: The Division for Study and Research in 
Education, Massachusetts Institute of Technology. 

Driver, R. Unpublished Ph.D. dissertation, University of Illinois 
at Urbana-Champaign, 1973. 

Egan, K. "What Does Piaget's Theory Describe?" 84 (December 1982): 
453-476. 



272 

\A 
Eklund, N. J. "Turtle Geometry for Problem Solvina » n«n-a v 

Gamma Bulletin 5D (Spring 1984): 35-37 —ta KaPPa 

Elkund, D. "Teenage Thinkinq and thp furr-imi nm 11 ^ . • 
61 (Summer 1983): 163-168 ^culum. Educational Horizon 

EPSteEducaiionaiaMicvr"S B?1n °TTPment: plications for nJ Policy. _ In Education and the Brain, the 77th Yparhnnt 

J Thai atlSnfl M°C1fty f0r the study of Education. Edited by 
J.^hall and A. M,rsky. Chicago: University of Chicago Press, 

n980):E629-6311OPmental Sta9eS'" Developmental Psychology. 

-5-7—' Gr°wth and Cognitive Development: A Response to 
Richard McQueen. Educational Leadership 41, No. 5 (February 1984): 

Epstein, H., and Toepfer, C. 
Middle School Education. 
656-660. 

A Neuroscience Basis for Reorganizing 
Educational Leadership 36 (May 1978): 

Erickson^G^ and^Aguirre, J. Journal of Research in Science Teaching 

^ Euchner, C. "Debate Grows on Logo's Effect on Thinking Skills." 
Education Week, 23 November 1983. 

Evans, C. The Micro Millennium. New York: Viking Press, 1979. 

^Evans, H. R. "Some Effects of Logo Programming Instruction with Fourth 
Grade Children." Unpublished doctoral dissertation, University of 
Virginia, 1984. 

Fisher, K. W., and Lazerson, A. "Research: Brain Spurts and Piagetian 
Periods" (excerpts from Human Development). Educational Leadership 
42 (November 1984): 70. 

Flavell, J. L. The Development of Psychology of Jean Piaget. New York: 
D. Van Nostrand Company, 1963. 

Furth, H. G. Piaget for Teachers. Englewood Cliffs, New Jersey: 
Prentice-Hall, Inc., 1970. 

Gagne, R. M. The Condition of Learning. New York: Holt, Rinehart and 
Winston, 1970. 

Ginsberg, H., and Opper, S. Piaget's Theory of Intellectual Development: 
An Introduction. Englewood Cliffs, New Jersey: Prentice-Hall, 
Inc., 1969. 



273 

Vsvcholoav6''*111^0^^^ ^sfructi°n Based on Developmental 
ychology. Educational Leadership 21 (July 1981): 6-13. 

Goodlad, J. I. A Place Called School• ProsDects fnr tho c + 
New York: McGraw-Hill Book Company, 1984.-~ Ure* 

Gorman^H. "The Lamplighter Project." BYTE 7, No. 8 (August 1982): 

GreenCompu^na'.'B?/- SMnner'S Techn0l09y of Teaching." Creative 

GnfTt['’ “• „"Fftors Affecting Performance in Introductory Physics 
Courses- Mncan Journal of Physics 53. No. 9 (Septembe^ 1985). 

Gunstone, R., and White, R. Science Education 65 (1981): 291. 

Hacker, R. G. "A Hierarchy of Intellectual Development in Science " 
Journal of Educational Psychology 54 (June 1984): 151. 

Haglund, E. "Closer Look at the Brain as Related to Teachers and 
Learners. Peabody Journal of Education 58 (July 1981): 
2 2 5 ~ 2 34• 

Hale, J. P. "Problem Solving Analysis: A Piagetian Study." Journal 
of Research in Science Teaching 20 (January 1983): 77-85. 

Hammond, K. "The Relationship Between a Piagetian Measure of 
Developmental Stages and Scores in an Introductory Chemistry 
Course." Unpublished paper prepared at Purdue University, 
Department of Chemistry, May 1974. 

Haney, W. "Testing Reasoning and Reasoning About Testing." Review of 
Education Resources 54 (Winter 1984): 554-597. 

Harvy, W. "Which Programming Language Is Right for You?" Classroom 
Computer Learning 4, No. 9 (April/May 1984). 

Herron, J. "Piaget for Chemists: Explaining What Good Students Cannot 
Understand." Journal of Chemical Education 52, No. 3 (March 1975): 
146-150. 

Higgins, W. "Leading Fish to Water--Early Observations on the Use of 
Logo." BYTE 7, No. 8 (August 1982): 328-329. 

Huber, L. N. "Computer Learning Through Piaget's Eyes." Classroom 
Computer Learning 6, No. 2 (October 1985): 39-42. 

Inhelder, B., and Piaget, J. The Psychology of the Child. London: 
Routledge and Kagan Paul, 1969. 



274 

Isenberg, J. P., and Jacobs, J. E. 
About." Childhood Education c-7 "C].aSSrfl/Cation: Something to Think 

57, No. 5 (May/June 1981): 284-288. 

Israel, C. J. "A Recapitulation Theory of 
Journal of Creative Behavior 17, No. 

Intellectual Development. 
2 (1983): 115-124. 

II 

Karplus, R.; Lawson, A.; and Wollman, W. 
Development of Reasoning. Berkeley, 
California, 1977. 

Science Teaching and the 
California: University of 

Kemeny, John. "Personal Computers Invade the Classroom." 
Computing 10, No. 11 (November 1984): 173-175. 

Creative 

Kingma, J ., and Koops, W. "Piagetian Tasks, Traditional Intelligence, 
and Achievement Tests." Journal of Educational Psvcholoav 53 
(November 1983): 278-290. - 

Koetke, W. "Computers, Children and Learning: One Complete 
Interaction. Creative Computing 10, No. 12 (November 1984): 
163-170. 

Kohl berg, L., andGillison, C. Daedelus 100, No. 105 (1971 ). 

Labouvie-Vief, G., and Lawrence, R. "Objective Knowledge, Personal 
Knowledge, and the Process of Equilibrium ..." Human 
Development, (January/February 1985): 25-39. 

Lawler, R. "Hooray for Bugs." Creative Computing 8, No. 7 (July 1982): 

v _. "Designing Computer-Based Microworlds." BYTE Publications 
“TAugiist 1982): 138-160. 

Lawson, A. "A Study of the Piagetian Model as Directly Applied to 
Science Subject Matter." In Research Teaching Learning with the 
Piagetian Model, pp. 140-173. Edited by J. W. Renner, et al. 
Norman, Oklahoma: University of Oklahoma Press, 1976. 

_. "The Development and Validation of a Classroom Test of 
Formal Reasoning." Journal of Research in Science Teaching 15, 
No. 1 (1978): 11-24. 

_. "Developing Formal Thought Through Biology Teaching." The 
American Biology Teacher 37, No. 7 (October 1979). 

_. "Formal Reasoning, Achievement and Intelligence: An Issue 
of Importance." Science Education 66 (January 1982): 77-83. 

_. "The Relative Responsiveness of Concrete Operational Seventh 
Grade and College Students to Science Instruction." Journal of 
Research in Science Education 19 (July 1982): 63-77. 



275 

-Oournal^of R?aS°^n9 and Science Instruction." 
—— Research in Science Teachinq 19 (nprpmhpr iqqo\. 

/43-760; 21 (November 1984): 859-861. 

-Adolescence^CCIThpiRn?" ^ Operational Schemata During 
-in Irilt.; ™e R Ie ?f the ^lc°ndi tional." Journal of Research 
in Science Teachinq 20 (April 1983): 347-356.--- 

L.aws°n, A. E., Karpl us, R.; and Adi, H. "The Acquisition of 
Rropositional Logic and Formal Operational Schemata Durinq the 
Secondary School Years." Journal of Research in ScienrP Whinn 
15, No. 6 (November 1978) :~T65-478.-~ lienee leachinq 

Lawson, A. E., and Wollman, W. "Physics Problems and the Process of 
Self-Regulation. The Physics Teacher. (November 1978). 

Leadbeater, B. J , andDionne, J. P. "Alternative to Piagetian 

16^(Spring 1981J?1111-121d Mathematics “nation." Adolescence 

Lee, S. S. "Children's Acquisition of Conditional Logic Structure: 
Teachable? Contemporary Educational Psychology 10 (Spring 1981): 

Linn, M. C. "Theoretical and Practical Significance of Formal 
Reasoning." Journal of Research in Science Teaching 19 (December 
1982): 727-742^ ~~ - 

Linn, M. C., and Others. "Correlate of Formal Reasoning: Content and 
Problem Effects." Journal of Research in Science Teachinq 18 
(September 1981): 435-447. 

Linn, M. C., and Others. "Is It Formal If It's Not Physics? (The 
Influence of Formal Reasoning . . .)." Journal of Research in 
Science Teachinq 20 (November 1983): 755-770. 

Lough, T. "Logo and Physics." The Physics Teacher 24, No. 1 (January 
1986): 13-19. 

Lovell, K. The Growth of Basic Mathematical and Scientific Concepts in 
Children. London: University of London Press, 1971. 

_. "Intellectual Growth and Understanding Science." Studies in 
Science Education 1, No. 1 (1974): 1-19. 

Masai ski, W. J. Run With Logo: An Introduction to Logo Graphics. 
Baltimore, Maryland: Media Materials, 1984. 

May, R. G. "Adult Cognitive Development a la Piaget." Clearmont 
Reading Conference Yearbook 45 (1981): 118-124. 



276 

McClosky, M.; Caramazza, A.; and Green, B. Science 210 (1930): 1139. 

MCDeThysics'lQdavSe?.ln?v0?op°'Ce^U^ Understanding in Mechanics." 

McQueen, R. "Spurts and Plateaus in Brain Growth: A Critique of the 

66-69S °f Herman Epstein‘" Educational Leadership 41 (Fall 1984): 

MlnSt^1,Du* ."Explainin9 the 'At Rest' Condition of an Object 11 
The Physics Teacher, (January 1982): 10-14. 

* Newsom-Odom, Marsha Lynn. "The Effects of Learning the Computer 
Programming Language Logo on Fifth and Sixth Grade Students' 
Skills of Analysis, Synthesis, and Evaluation." Unpublished 
doctoral dissertation, University of Arkansas, 1984. 

Osborne, R. "Children's Dynamics." Physics Teacher 22. No 8 
(November 1984): 504. 

Padilla, M.J. "Formal Operations and Middle/Junior High School Science 
Education. The Middle/Junior High Science Bulletin. 5 (1981): 

Papert, S. Mindstorms: Children, Computers and Powerful Ideas. 
New York: Basic Books, Inc., 1980. 

_• "Computer as Mudpie." Classroom Computer Learning 4, No. 6 
(January 1984): 37-40. 

_• "Misconceptions About Logo." Creative Computing 10, No. 11 
(November 1984): 223-232. 

_• "New Theories for New Learning." School Psychology Review 
13 (Fall 1984): 422-428. 

Pascual, Leone, and Others. "Piagetian Theory and Neo-Piagetian 
Analysis as Psychological Guides in Education." In Knowledge and 
Development, Vol. 2. Edited by J. Gallagher and J. Easley. New 
York: Plenum, 1978. 

Pascual, Leone, and Case, R. "Intellectual Development and Instruction: 
A Neo-Piagetian View." In The Psychology of Teaching for Thinking 
and Creativity. Edited by A. Lawson. Columbus, Ohio: ERIC, 
1979. 

Pea, R. D. "Logo Programming and Problem Solving." Technical Report 
No. 12. New York: Center for Children and Technology, Bank Street 
College of Education, 1983. 

Piaget, J. Psychology of Intelligence. Totowa, New Jersey: 
Littlefield, Adams and Company, 1963. 



277 

"Learning?""1 JournalVof°Research *"d 
176-186. Science Teaching. (1964) 

-. Development and Learning " 
leaching 2, No. 3 (1964): 176-186. 

Journal of Research in Science 

_• Science of Education 
London: Longman, 1970. 

and the Psychology of the Child. 

--p—-n J.n ^.rmichael 1 s Manual of Child Psychology. Edited by 
P. H. Munsen. New York: John Wiley and Sons, Inc., 1971. 

Pla9erhiiHh a^+In^1?er’ B> The G^owth of Logical Thinking from 
Chjldhood to Adolescence. New York:Basic Books, Inc?, 1958. 

Piaget, J., and Inhelder, B. The Psychology of the Child. Npw York- 
Basic Books, Inc., 1969. - 

Renner, J. W. "Significant Physics Content and Intellectual 
Development-Cognitive Development as a Result of Interacting with 
Physics Content." American Journal of Physics 44 (1978): 219. 

Renner, J. W., and Grant, R. "Can Students Grasp Physics Concepts’" 
The Science Teacher, (October 1978): 30-33. 

Renner, J. W., and Lawson, A. E. "Piagetian Theory and Instruction in 
Physics." The Physics Teacher 11, No. 3 (March 1973): 165-169. 

Richmond, P. G. An Introduction to Piaget. London: Routledge and 
Kegan Paul, 1970. 

Riordan, T. "Creating a Logo Environment." The Computing Teacher, 
(November 1982): 46-49. 

_. "Helping Students with Recursion: Teaching Strategies." 
The Computing Teacher, (December/January 1983-84): 38-42; 
(February 1984): 59-64; (March 1984): 64-69. 

Saltiel, E., and Malgrange, J. European Journal of Physics 1, No. 73 
(1980). 

Selman, R. L., and Others. "Concrete Operational Thought and the 
Emergence and Unseen Forces of Electro/Magnetism and Gravity." 
Science Education 66 (April 1982): 181-194. 

J Shaw, Donna. "The Effects of Learning to Program a Computer in BASIC 
or Logo on the Problem Solving Abilities of Fifth Grade Students." 
Unpublished doctoral dissertation, North Texas State University, 
1984. 



278 

Shayer, M. "Conceptual Demands in the Nuffield 0-Level Physics 

1972):'26-3Tto° Sc1ence Review (London) 54, No. 186 (September 

Shayery M and Wylam, H "Development of the Concepts of Heat in 10 to 

1981 >* 419-434 —' °f Research in Science Teaching 18 (Summer 

Sj0bei981S” and L’e’ S' Technica1 ReP°rt 81-11. University of Oslo, 

Slesnick, T. "Computer Myths We can Live With." Classroom Computer 
Learning 5, No. 6 (February 1985): 31-33. y 

Sprout, R. H. "Use of Piagetian Theory in the Development of Middle 

166°67CUmCUlUm’" Contemporary Education 52 (Spring 1981): 

Staver, J. R. Research on Formal Reasoning Patterns in Science 
Education: Some Messages for Science Teachers." School Science 
and Mathematics 84 (November 1984): 169-173; 573-569^ 

Staver, J. R., and Gabel, D. L. "Development and Construct Validation 
of a Group-Administered Test of Formal Thought." Journal of 
Research in Science Teaching 61, No. 19 (November 1979): 535-544; 
(January 1982): 91-92. 

Staver, J. R., and Ha 1 sted, D. A. "The Effects of Reasoning, Use of 
Models, Sex Type ..." Journal of Research in Science Teachinq 
22 (May 1985): 437-447. 

Staver, J. R., and Pascarella, E. T. "The Effect of Method and Format 
on the Responses of . . ." Journal of Research in Science 
Teachinq 21 (March 1984): 589-597. 

Sternberg, R. J. "How to Teach Intelligence." Educational Digest 50 
(April 1984): 21-25. 

Sternberg, R. J., and Downing, C. J. "Development of Higher Order 
Reasoning in Adolescence." Child Development 53 (February 1982): 
209-221. 

Taburrini, J., ed. "Piaget: Current Perspectives." Early Child 
Development Care 21, No. 1 (1983): 1-81. 

Taylor, R. P., ed. The Computer in the School: Tutor, Tool, Tutee. 
New York: Teachers College Press, 1980. 

Tentenbaum, T. J., and Mulkeen, T. A. "Logo and the Teaching of 
Problem Solving: A Call for a Moratorium." Educational 
Technology 24 (November 1984): 16-19. 



279 

Thorndike, E. L. "Mental Di 
Educational Psychology, 

scipline in the High Schools " 
(1924): 88-93. 

Journal of 

Tobias, J. "From Classroom to the Laboratory." 
Public Schools of Brookline (Massachusetts) 

Panalist Papers, 
, pp. 93-96. 

Trowbridge, D., and McDermott, L. American Journal of Physics 48 (l980): 

Trowbndge, D., and McDermott, L. American Journal of Physics 49 (1981 ): 

Vlennphic'nQ7Q\ntrne0US Re^sonin9 Elementary Dynamics," Hermann, 
European Journal in Science Education 1 (1979): 

t.V J • 

Watt, D. "Logo in the Schools." BYTE 7, No. 8 (August 1982). 

-1~983) • "^06-166^hat Mak6S U Exciting?" Popular Computing. (August 

_• "The IBM Connection." Popular Computing, (December 1983): 

_• Learning With Logo. New York: McGraw-Hill Book Company, 
1983. 

Watt, M. "What Is Logo?" Creative Computing, (October 1982): 112-125. 

_. "De-Bug Collection." Incider, (February 1984): 78-84. 

Watt, M., and Watt, D. "Collaborating with Teachers to Evaluate 
Critical Aspects of Logo Learning." Antrim, New Hampshire, 1986. 

Webb, N. M. "Microcomputer Learning in Small Groups: Cognitive 
Requirements and Group ..." Journal of Educational Psychology 
76 (December 1984): 1076-1088. 

Whitaker, J. American Journal of Physics 51 (1983): 352. 

Wollman, W. T., and Lawson, A. E. "Influence of Instruction on 
Proportional Reasoning in Seventh Graders." Journal of Research in 
Science Teaching 15, No. 18 (May 1978): 227-232; (July 1981): 
385-386. 

Yager, R. E. "Science Education." Casco Curriculum Update. 
Association for Supervision and Curriculum Development, 
September 1981. 




	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1-1-1987

	The effects of learning Logo on the ability of concrete operational students to learn abstract concepts.
	Arnold Glim
	Recommended Citation


	The effects of learning Logo on the ability of concrete operational students to learn abstract concepts

