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ABSTRACT

PROBING LOCAL VACANCY-DRIVEN RESISTIVE
SWITCHING IN METAL OXIDE NANOSTRUCTURES

SEPTEMBER 2018

JIAYING WANG

B.E., BEIJING UNIVERSITY OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Stephen S. Nonnenmann

Novel nonvolatile memory technologies garner intense research interest as conven-

tional flash devices approach their physical limit. Memristors, often comprising an

insulating thin film between two metal electrodes to constitute a class of two-terminal

devices, enable a variety of important large data storage and data-driven computing

applications. In addition to nonvolatile behavior, other features such as high scala-

bility, low power consumption, and sub-nanosecond response times make memristors

among the most attractive candidate systems. Their strength in electronic storage

relies on the unique properties of the tunable variations in resistance induced from

the accumulation of charged defects based on the applied bias history.

Metal oxides serve as the most common “storage” materials, demonstrating advan-

tages including simple fabrication, high reliability, and fast operation speeds. While

the basic working concepts and the underlying conduction mechanisms have been

established through combined experimental and simulation studies, the role of metal-

insulator interface, which acts as the crux of coupled electronic-ionic interactions,
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has not been fully understood. Continuous scaling, for the purpose of high density

memories, also requires a detailed understanding of the switching behavior and trans-

port mechanism. Other technical challenges include the development of innovative,

low-cost fabrication methods that effectively enable high-performance structures as

an alternative to complicated process modules. Stable retention and endurance of

the switching characteristics, as well as uniformity of the switching parameters to

ensure a valid program/read operation also represent significant challenges. Studies

in device and materials optimization remain in the formative stages, and thus moti-

vate this work to drive progress in the most attractive areas, including size dependent

behavior and switching performance of memristors.

This collection of work aims to correlate resistive switching within metal oxide

based memristors with the fundamental physical mechanisms and material properties

on a highly localized scale. Chapter 3 relates the device size and the resulting perfor-

mance matrix of memory cells in the first step towards fully understanding the scaling

projection and reliability issues that affect nanoscale architectures. Chapter 4 demon-

strates a convective self-assembly, transferable approach that enables the fabrication

of highly-controlled nanoribbon comprising solution-processed nanocrystals, provid-

ing multiple degrees of freedom for understanding the interfacial memristive behavior

of functional oxide nanostructures. As a powerful tool in the study of resistive switch-

ing, conductive AFM probes the homogeneity of the charge transport properties, thus

offering electrical information by locally applied bias when it is placed in direct contact

with desired regime. Finally we also focus on the improving the cycle-to-cycle uni-

formity by embedding nanostructure into conventional metal-insulator-metal (MIM)

geometry in Chapter 5. This improvement is attributed to the concentration of elec-

tric field when metal nanoislands are inserted into the oxide film matrix. The details

of this work will highlight the tunable and optimizable template-driven method that
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can be applied on any memristive systems, yielding a superior uniformity of operating

voltage and resistance states.

In summary, this thesis promotes the development of novel, high-performance

metal oxide based memristors enabled by the availability of new, nanostructured ma-

terials and innovations in device structure engineering. The switching performance,

underlying mechanisms, area/defect concentration effects, development of solution-

processed nanocrystals assemblies and chemistries, and highly enhanced uniformity

in memristors are addressed by combining systematic deposition approaches with the

advanced nanoscopic observation of the conducting filament, leading to the strongest

competitor among future nonvolatile memory solution.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Fundamental of Resistive Switching

As Moore’s law faces its physical limit, resistive switching memories (RRAM) have

emerged as a promising next generation non-volatile memory device. While resistive

switches, or memristors, were first discovered as a missing circuit element in 1971

by Leon Chua,[1] their use in a wide range of applications including storage devices,

analog devices and neuromorphic computing have renewed interest and attention over

the past decade. After the initial demonstrations of high performance, high density

platforms, RRAM devices are now entering the industrial development stage. In the

near future, RRAM is expected to replace NAND Flash and embedded memories

allowing faster computing with large capacities due to the high speed and remarkable

scalability. [2] [3]

RRAM cells typically comprise an insulating metal oxide film between two metal

electrodes (metal-insulator-metal; MIM), constituting a class of two-terminal devices

that exhibit tunable variations in resistance based on the history of the applied

bias.[4][5] The physical effect in the RRAM device is based on the resistive switching

(RS) effect, a reversible change in resistance between a high resistance state (HRS)

and a low resistance state (LRS) by applying an electric field to the electrode. The

“set” operation is defined by the transition from the LRS to the HRS; the opposite

switching event (HRS to LRS) defines the “reset” operation. A virgin cell, which dis-

plays a high resistance due to defects generated during thin film processing, usually

requires a high voltage electroforming process leading to the dielectric soft breakdown
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process in order to enable subsequent set/reset operation. As the “1” step shown in

Figure 1.1 a-c, a low compliance current is applied to avoid the permanent damage

of the device or to tune different switching characters during electroforming. This

process induces redox/electrochemical reactions at the metal-oxide interface that pro-

duce oxygen ions which migrate under electric field to ultimately form a conductive

path connecting the top and bottom electrode (Fig 1.1 c). Conversely, the oppo-

site electric field reverses oxygen ion migration towards the other electrode interface

and thus ruptures the conductive channel, resulting in the recovery of the high re-

sistance state as shown in Fig 1.1 d. The operating voltage at which the set and

reset event occurs is denoted as Vset and Vreset, respectively. The resistance val-

ues at different states can be determined using a small read voltage and their ratio

is defined as RHRS/RLRS (or ROFF/RON). Numerous materials exhibit RS, includ-

ing transition metal oxides, nitrides, and complex metal oxides such as perovskites.

Transition metal oxides such as TiO2,[6][7] HfO2 [8] and Ta2O5 [9] have experienced

particularly intense research and development interest due to complementary metal-

oxide-semiconductor (CMOS) compatibility and demonstrated advantages such as

scalability, fast switching speed, and low power consumption. Resistive switching in

binary transition metal oxides have been reported in various nanostructures such as

nanoparticles (0D),[10][11]nanowires/nanotubes (1D),[12][13][14] and thin films (2D).

[6] [15]

1.2 Classification of RRAM

RRAM devices are classified into three categorizations, based on the polarity de-

pendency: unipolar resistive switching (URS), bipolar resistive switching (BRS), and

complementary resistive switching (CRS). URS is observed when switching between

HRS and LRS occurs in each polarity of applied voltage, which has been found in

many transition oxides such as NiO,[16] [17] TiO2,[7] [18] and Nb2O5. [19] In BRS,
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Figure 1.1. a. Typical bipolar resistive switching I-V curves including forming, set
and reset process. b. the schematic illustration of the corresponding processes in a
that 1 forming, 2 set and 3 reset.

switching is directional that one polarity induces LRS while the other polarity recovers

to HRS. This type of switching has been reported in Ta2O5, HfO2 and many complex

perovskite oxides.[20] [21] The CRS has been usually measured in those structures

where two BRS cells are merged in an antiserial manner,[9] [22] remaining at high

resistance at low bias voltages then can be subsequently switched to the LRS with

larger voltages. By further increasing the applied voltage, however, the resistance

changes back to the LRS. In recent studies,[23] this behavior has also been reported

for a single cell where the switching layer was modulated into different defect concen-

trations or using different operation conditions. This highly nonlinear behavior has

received considerable attention due to the potential of overcoming the current path

issues that occurs in the passive crossbar RRAM arrays.

RRAM are also classified into two types with respect to the switching mechanism

as anion-type and cation-type. Anion-type memristor, or valence change memory

(VCM), is dominated by oxygen ions induced from the preparation process or formed

during forming/set process. VCM cells are typically fabricated into MIM structures

with one high work function electrode and an Ohmic counter electrode, which cre-

3



ates a Schottky-like interface that tunes the subsequent resistive switching process

by modifying the interface under applied electrical field. VCM cells can exhibit fil-

amentary type switching, as described in Figs. 1.1b-e. Among the possible metal

oxides, Ta2O5 displays the most promise for application due to its large ON/OFF

ratio, good reliability, low operation energy, and additional CRS behavior. VCM also

exhibit an area-dependent interfacial type switching mode in which the switching pro-

cess takes place at the interface between electrode and the oxide, involving in various

perovskite oxides such as SrTiO3.[24] [25] Another crucial category that has been de-

veloping rapidly is anion-type electrochemical metallization memory (ECM), where

the switching behavior is dominated by the formation and dissolution of a metal

filament. Here stacks consisting of one chemically active electrode such as Ag,[26]

Cu,[27] or Pd[28] were recently found to produce cation ions of Ag+ or Cu2+ that

migrate through a solid electrolyte under positive bias towards an inert counter elec-

trode (Pt, Ir or TiN). To obtain the LRS, the redox and dissolution process leads to

the formation of metallic filaments by applying a positive bias to the active electrode.

Conversely, a negative bias causes the conductive filament to dissolve and initiates the

LRS to HRS transition. Although issues in identifying the mechanism still need to be

addressed, recent in situ TEM and ex situ c-AFM observations of cation migration

have provided compelling experimental evidence.[29] [30]

The basic performance parameters of RRAM devices include retention time, en-

durance, scalability, stability, write speed and energy consumption. The ideal RRAM

is a high-density architecture with at least ten year reliability, stable lifetime, fast

response speed, and minimal energy consumption. One of the primary advantages

that RRAM has over Flash is its fast speed, which is on the order of nanoseconds.
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1.3 Remained Challenges and Perspectives

The revolution of RRAM is at a stage where theoretical studies are maturing and

steps towards large scale integration are realizing its potential. In the past decade,

RRAM have advanced in multiple industry arenas, primarily due to concurrent devel-

opments in materials engineering and knowledge of the underlying transport mecha-

nisms. Several challenges still remain to be solved in terms of further improvements

in scalability, uniformity and reliability. Enhancing the uniformity and reliability

are urgently required for high volume integration and are thus among the strongest

priorities for RRAM devices and improvements in order to replace the conventional

flash memory.

Scalability down to the nanometer regime is necessary for future high density in-

tegration. The active device area is defined by a single conducting filament, which

can be as small as a few atomic units, depending on various underlying mechanisms

responsible for filament formation. In recent years, device scaling has achieved sub-

100 nm dimensions by nanoimprint lithography and e-beam lithography; however,

further refinements are facing the resolution limit of lithography or etch techniques.

In addition to minimizing the size of the device, it is important to retain the per-

formance. Devices may lose their uniformity or reliability when scaling to extremely

small sizes, further motivating the importance of understanding the correlation be-

tween scalability and performance optimization.

1.4 Outline of the Dissertation

This thesis primarily focuses on understanding the underlying transport mecha-

nisms, controlling defect density and defect movement, designing device fabrication,

and improving device performance of RRAM to meet industrial requirements. The

switching behavior takes place in a highly confined volume, which enables the scal-

ing potential for a sub-nano device to create a large capacity memory. However, as

5



RRAM is based on the formation and rupture of conducting filaments during ev-

ery read/write operation, RRAM is strongly affected by switching fluctuation. In

this case, uniformity becomes one important evaluation factor for RRAM, as well

as a major barrier impeding industrial commercialization. Variations in the num-

bers/sizes of the conductive filaments resulting from random formation under electric

field are considered as the origin of the parameter fluctuations. To address this chal-

lenge, direct characterization of the filament morphology is required. In addition,

innovations in device structure and integration schemes are highly desirable. Other

outcomes include novel materials or processes that improve endurance, retention and

cost reduction. This thesis targets the resistive switching character of oxides, which

can be summarized as follows:

• Controlling the formation of the conductive filamentary channel in HfO2 based

RRAM devices by embedding highly-ordered metal nanoislands into the oxide

thin film matrix, which greatly reduced the operating voltages and enhanced

switching uniformity.

• Identifying the conductive channel morphology by three dimensional tomogra-

phy to understand the origin of instabilities in RRAM devices.

• The development of a low cost and innovative approach for solution-processed

nanoparticle assemblies, the study of their memristive behavior, the effect of

the organic ligands, and the realization of flexible resistive switching devices

with remarkable stability under 5% strain.

• Investigations of area dependent resistive switching in polycrystalline TiO2

based RRAM devices to gain further insights towards device scalability and

transport mechanisms.

This work outlines advances in three-dimensional AFM-based characterization

techniques that enable the direct and complete observation of the conductive regime,
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critical to VCM optimization. The goal of the thesis is to establish a clear correla-

tion between nanoscopic features and performance metrics. The strategies and the

resulting achievements are presented in six chapters.

Chapter 2 describes the basic scanning probe microscopy (SPM) techniques for

electrical characterization, including conductive atomic force microscopy (c-AFM),

Kelvin probe force microscopy (KPFM), electrostatic force microscopy (EFM) and

scanning tunneling microscopy (STM). The major advantages and drawbacks of these

techniques in characterizing RS will be discussed in detail. It covers the most progress

to the outstanding challenges and potential opportunities for future study, including

combined approaches to reach the intrinsic nature and origin of switching.

Chapter 3 demonstrates the direct correlation between variations in fabrication

and annealing environment on the resultant electroforming, set, and reset voltages in

TiO2-based thin-film nanostacks. This study presents the influence of varying elec-

trode sizes on the electroforming operation voltage and resistive switching properties

across nanoscale TiO2/Nb : SrTiO3 junctions. The nanostructures displayed effective

switching behavior, possessing highly stable and reproducible high resistance state to

the low resistive state ratios (RHRS/RLRS) as large as three orders of magnitude. It

compares the I-V character of samples with diameters ranging from 200 to 500 nm.

Moreover, the switching polarity can be reversibly changed between eight-wise and

counter-eight-wise due to variations in available oxygen vacancies.

Chapter 4 introduces a low-cost flexible blade deposition (FBD) method to create

highly ordered STO memristive nanoribbons from colloidal STONCs building blocks.

The FBD approach enables facile fabrication of high-quality perovskite oxide low-

dimensional nanostructure arrays onto arbitrary substrates that retain their resistive

switching functionality. Moreover, we demonstrate the transfer of the nanoribbons

from the original substrate onto a second, arbitrary substrate possessing a different

contact surface, posing significant implications for tailoring the resistive response type
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through substrate selection. The original structures were released into deionized wa-

ter and then transferred and redeposited the ribbons onto a flexible PET substrate

with metal coating for examination via c-AFM. Virtually all studies involving resis-

tive switching of thin films remain limited by the top-down lithographic processes to

evaporate or sputter various top electrode materials on a fixed film/metal/substrate

bottom electrode configuration. The FBD transfer process provides the unique ad-

vantage of selecting the bottom electrode material to induce or potentially enhance

a desired transport mechanism within functional oxide nanostructures. The resistive

switching character of nanoribbons was further determined to correlate directly with

the organic capping layer length of their constituting HfO2 nanoparticles, using oleic

acid, dodecanoic acid, and undecenoic acid as model nanoparticle ligands. Through

a systematic comparison of the forming process, operating set/reset voltages, and re-

sistance states, we demonstrate a tunable resistive switching response by varying the

ligand type, thus providing a base correlation for solution-processed RRAM device

fabrication.

Chapter 5 demonstrates a superior uniformity within HfO2-based memristors by

embedding highly-ordered metal nanoisland (NI) arrays. Both SET and RESET volt-

ages exhibit significant reduction, with enhanced uniformity of operating voltages and

resistance states. This improvement is attributed to the concentration of electric field

when metal NIs are inserted into the oxide film matrix. The interactions between the

Pt and Ti metal nanoislands and local oxide environment display separate filamentary

formations affecting the stability. To further optimize the uniformity the nanoisland

position is shifted down the thickness dimension towards the bottom electrode. A

comparison of the density and distribution of the oxygen vacancies responsible for

the formation/dissolution of conducting filaments is made via combined electrostatic

force microscopy (EFM) and conductive atomic force microscopy (c-AFM) studies.

Finally, a c-AFM nanotomography technique enables complete observation of the
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morphological evolution of conducting filaments produced by Pt and Ti, providing

direct correlations to the overall switching performance.

Chapter 6 summarizes the study in terms of fabrication, electrical characteriza-

tion and performance optimization of resistive switching memories. Potential future

directions will be discussed based on the research results in these years. The contents

of this chapter will concentrate on outlook of the field including the existing technical

difficulties to be addressed as well as the proposed solutions.
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CHAPTER 2

ADVANCED SCANNING PROBE MICROSCOPY
CHARACTERIZATION

The emerging commercialization potential of RRAM has resulted in part to the

rapid advances of nano-characterization technologies. Observations of conducting

channels and studies of the underlying physics have frequently used in situ transmis-

sion electronic microscopy (TEM),[7] [31] [32] scanning probe microscopy (SPM)[8]

[30] [33] [34] [35] or x-ray photoelectron spectroscopy (XPS)[36] [37]. Scanning probes

have become a powerful suite of tools for studying RS behavior due to the ability to

detect the local electronic response, map the current distribution, and profile the

band bending and defect density across the MIM structure to provide extensive infor-

mation on the surface potential in high lateral resolution before and after switching.

Although there are a few examples of reviews introduce this technique from back-

ground to the observations of conductive channel in memristor,[20] [38] [39] [40] [41]

the latest achievements and its potential functionality that may lead to future break-

through is still missing.

2.1 Atomic Force Microscopy (AFM)

AFM is the most efficient tool for studying surfaces, allowing topographic char-

acterization on the atomic level. Figure 2.1a illustrates the basic principles of AFM.

It can be operated in non-contact, lift or contact mode, where non-contact mode

operation is generally used as a nondestructive measurement method. The interac-

tion between the tip and sample is altered as the tip-sample distance changes and
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is represented as cantilever deflection, which is translated by the oscillating signal

on the photodetector. During the scanning, height and phase image offers wealth of

information about the topography and sample mechanical properties, respectively.

Figure 2.1. a. Basic working diagram of AFM. b. Illustration of c-AFM setup. The
conductive probe uses as a movable top electrode. The bias is applied to the bottom
electrode with the probe is grounded.

2.2 Conductive Atomic Force Microscopy (c-AFM)

Figure 2.2. a. The AFM topography of Pt nanodot arrays embedded in HfO2 thin
film and b. the corresponding c-AFM current response under a voltage of -5V.

C-AFM is a contact mode method that enables current mapping via applying

bias voltage between the sample and a conductive tip, which serves as a moveable top
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Figure 2.3. a. A stack of ten 2D slides collected by scalpel c-AFM on a HfO2

memristor, demonstrating the varying shape of the conductive filament from top
to the bottom. b, The 3D construction of the 2D slides c-d, with different cut-off
interface which allows detailed observation of the conductive filaments.

electrode. Figure 2.1b shows a typical setup of c-AFM. With topography imaging,

it directly detects local electrical properties to the region of interest with nanometer

precision. The nanoscale dimension of the tips, enables current sensing of specific

small features, and thus complements macroscale methods such as four-point probes

that test an entire device. As the tip interacts with the sample surface, it is biased

from a voltage source and the current flows through the sample into the tip which

then passed into an amplifier using a feedback resistor and converted into an output

signal. The topography and the current images can be recorded simultaneously, as

shown in the example Figure 2.2. The sample is a 5 nm HfO2 thin film embedded with

nanodots at the interface between oxide layer and bottom electrode. The bright spots

in Figure 2.2b correspond to the position of the nanodots which can be observed from

the topography in Figure 2.2a. During the measurement of localized current-voltage

(I-V) curves, the key factors include the force loading and the applied voltage.[42] In
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this case, the tip is engaged to the surface at a user-defined position. While the tip

is placed in contact with a large force, the noise is reduced and current signal can be

improved with the sacrifice of the wear of the conductive metal coating. Worn coatings

cause the failure of the tip at a high applied voltage because of the high electric field

concentrated under the tip creates a suddenly high current. These obstacles are

overcome by either decreasing the loading force appropriately or using solid metal

probes as a replacement of the silicon probe with conductive coating. C-AFM offers

high lateral resolution with sensitivity to carrier concentration, thus it can be used for

semiconductor dopant profiling which is especially useful for studying the mechanism

behind RS.[42] [43] [44] The electroforming process depends on the atmosphere [18]

and the compliance current in the symmetric cells,[45] which determines the resulting

switching type.

Major breakthroughs, such as the nature of conducting filament formation and

the distribution of defects in interface-type switching have been realized by advanced

SPM. C-AFM studies have demonstrated the nature of electroforming process in a

Pt/TiO2/Pt crossbar device.[46] In this study, the AFM cross-sectional profile of a

micro-sized device revealed considerable deformation within the topography image,

where the formation of a bubble at the top electrode after forming was attributed

to the drift of oxygen ions and subsequent oxidation reaction to form oxygen gas

at the positive biased top electrode. Upon reduction of the device dimensions to

the nanoscale the physical deformation disappears, and the performance metrics,

including reproducibility and stability, were also significantly improved. The overall

electroforming process for VCM made with transition metal oxides is thus defined by

an electroreduction process that produces oxygen vacancies which are subsequently

attracted to the anode to the form the conducting channel. Note in most cases

an asymmetric metal/oxide interface displays Schottky-like barrier while the other

maintains Ohmic contact.
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Recent studies by Umberto et al.,[30] [47] demonstrated a remarkable approach

that enables three-dimensional (3D) imaging of the conductive filament in both VCM

and ECM. Here sequences of the scanned and etched slides are performed of the bare

insulating layer using c-AFM under a low voltage bias after the removal of the top elec-

trode. The high lateral resolution 2D c-AFM imaging provides information of single

conducting filament in both HRS and LRS, permitting complete, multi-dimensional

observation as well as more insight into the understanding of the switching nature.

High resolution slices show that in a HfOx layer the filament displays a size shrinking

from 38.9 to 7.8 nm2 with the constriction at the bottom electrode. However, the

conical-shaped filament observed in ECM with Cu as the active electrode represents

a much larger size compared to that in VCM. This confirms that the resistance of the

conducting filament is determined by the number of defects at the narrowest point

and suggests that VCM can be scaled down to sub-10nm. Figure 2.3 shows an exam-

ple of the scalpel c-AFM of a HfO2-based memristive device. The 2D current maps

were obtained by the “remove-and-scan” method and stacked together, representing

the evolution in conductive spot size from the top interface to the bottom with a

sample slice spacing after removing the electrode. The three-dimensional integration

shown in Figures 2.4b-d demonstrates the ability to collect nanoscopic information,

such as the ability to distinguish only one larger primary filament that connects the

top and bottom electrodes from two partial filaments that end inside the oxide layer.

2.3 Kelvin Probe Force Microscopy (KPFM)

KPFM is one of the most important techniques that provide information of the

potential difference between the probe tip and the sample. It relies on an AC bias

applied between the tip-sample that creates an electrostatic force arising from the

differences in Fermi energy levels, which is interpreted by the following equation

which considers the tip and the sample surface as a parallel capacitive structure,[38]
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where C is the capacitance, z is the separation among the tip and the sample.

The contact potential difference will form when the system approaches an equilibrium

state that the Fermi level to align through electron tunneling current.[48] Applying

an external DC bias with the same magnitude of the potential difference can balance

the force, and then consequently measure the local work function using the known

tip work function.

Direct observation of filaments in many binary oxides presented in recent works

provides the opportunity to predict the switching properties under operating con-

ditions. Both BRS and URS phenomenon are frequently observed within NiO thin

films, corresponding to alternating formation and rupture processes of conducting

filaments that consist of oxygen vacancies.[16] [17] [49] [50] In order to realize the

position that drives RS, a study of BRS NiO by Min et al. used a combination of

c-AFM and KPFM.[39] Based on the c-AFM results, they suggested that the re-

dox reaction at the interface between NiO and the probe dominants the conduction

mechanism. KPFM imaging exhibited a more positive surface potential for the area

scan with positive voltage and vice versa, indicating that oxygen ion extraction and

incorporation occurs at the tip/NiO junction rather than in the NiO layer.

Grain boundaries play a crucial role in polycrystalline oxide switching materials,

providing a fast pathway for the transport of oxygen vacancies. The higher current

levels at leaky grain boundaries are the only sites to tune the RS phenomenon in

polycrystalline materials such as HfO2 because of the high concentration of oxygen

vacancies.[43] Current imaging revealed that grain boundaries act as the preferential

path while no RS can be observed within non-conductive grains. For amorphous

HfO2, however, the conduction was more homogeneous and no RS was detected at any
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position by using the probe. For a better understanding of the conduction mechanism,

a separate study by the same group showed the forming voltages at grain boundaries

are significantly lower than those at the grains where no RS is observed, confirming

the larger conductivity correlates with the favored formation of conducting filaments

at the grain boundaries.[8] Note that charge trapping of metal ions diffusing from the

probe tip into the insulator occurs when using a large applied voltage that yields a

considerably high current density under the tip.[51] Alternative mechanisms proposed

relate mechanical strength with RS behavior in HfO2, where the grain boundaries are

considered to be mechanically weaker than the nanocrystals which ultimately lead to

the formation of reversible conducting filaments at those sites.

Figure 2.4. EFM image of Pt nanoislands embedded HfO2 resistive switching struc-
ture a, before and b, after applying voltage sweeping locally. c. A comparison of the
phase shift profile along the black dot line and red dot line in a and c, respectively.

2.4 Electrostatic Force Microscopy (EFM)

Electrostatic force microscopy (EFM) represents an effective means to detect the

conductive inclusions within insulating matrix. EFM is a standard two-pass imaging

mode to qualitatively measure the thin film’s longer-range electrostatics forces, which

is represented as a phase shift of the oscillating cantilever. It maps the force gradients

generated by local variation in capacitance and conductors embedded in nonconduc-

tive materials. The variations originate from the trapped charge or potentials are

sensed by the conductive probe. For these reasons, EFM is valuable for studying
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memristive devices. In the first pass, a typical topography is obtained in tapping

mode. In the second pass, a lift mode retraces the first topography line at a constant

lift height above the sample surface. A DC bias between the tip and sample is applied

during the lifted scan while the cantilever is driven by the tapping piezo, allowing

shifts in the resonance frequency of the probe resulting from the electrostatic force

to be collected. Figure 2.4 compares the EFM images of Pt nanoislands embedded

HfO2 thin film before and after applying a DC voltage sweep for 50 cycles. The Pt

coated conductive probe has been lifted at 50 nm above the surface with a tip bias of

+5 V. The phase change profiles along the dotted lines in marked in black (before)

and red (after), respectively. A phase jump of the red line in Figure 2.4b indicates an

accumulation of positive charges across the circled region in Figure 2.4c, confirming

the results obtained via c-AFM images.

2.5 Scanning Tunneling Microscopy (STM)

Another important technique is scanning tunneling microscopy (STM), though

it has been rarely reported for studying RS due to the lack of material systems

with high conductivity.[20] [52] A recent study by Anja et al.[53] suggests that the

generation of metallic filaments resulting from the diffusion of metal ions from the

ultrathin oxide layer to the STM tip was responsible for the RS. It has been widely

accepted for years that binary transition oxide such as Ta2O5 and TiO2 are purely

VCM materials due to the movement of oxygen vacancies under electric field. These

STM measurements suggest that the electrochemical metallization process cannot be

excluded when explaining the RS in such oxides, thus proposing both ECM and VCM

switching phenomenon can be modulated and transformed between the two types, in

agreement with the direct observation of Ta channel in HfO2 memristor.[54] However,

corroborating experimental studies have not been completed, so researchers continue
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to debate whether the switching mechanism is either purely ECM or VCM, or if both

are intimately coupled, considering the conduction characteristics.

2.6 Summary and Remaining Challenges

Rapid developments in nanoscale characterization techniques are advancing our

understanding of how ionic and electronic charge transfer phenomena dominate the

conduction mechanism, control filament growth, influence size scaling, and the im-

provement of reliability to push further optimizations in RRAM applications. The

complexity of RS comes from the various mechanisms in different types of devices.

The observation of metallic filaments in ECM comprising chalcogenides and Cu-SiO2

has been confirmed by microscopic evidence; however, the intrinsic nature expected in

VCM based on the anion mobility is only starting to be debated. In particular, HfO2

and Ta2O5 based RRAM without using the typical electrochemically active metal elec-

trode have been found to show ECM behavior[54] or a transition from VCM to ECM

switching modes[55]. Although there are challenges for directly observing the mor-

phology of anions due to the poor contrast between the reduced phase and the oxide

matrix, conductive areas displaying orders of magnitude higher conductivity can be

readily detected by current imaging or identifying the oxygen concentration variation

with advanced characterization. For example, the conducting filament characteris-

tics in HfO2 based RRAM were recently revealed through a combination of electron

holography and in situ low-energy-filtered imaging TEM methods, providing direct

evidence that the formation and rupture of the filament are dominated by oxygen

activity.[54] In order to further identify the mechanisms and understand the opera-

tion of the whole test structure nanoscale observation and analyses are necessary.

The underlying RS behavior and charge transfer properties of TaO based mem-

ory devices have been reported recently.[56] Here oxygen migration orthogonal to

the applied field contributed to the switching phenomenon and was responsible for
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the formation of a Ta-rich conducting channel surrounded by a stoichiometric Ta2O5

matrix. Thus the surrounding lateral region, in addition to the vertical movement

produced by electric field, plays critical role in driving the components and enhancing

the formation of the conducting channel. It is necessary to investigate the switch-

ing character of materials with different surrounding conditions, where it is expected

to induce a change in the primary conduction mechanism in order to relate the ac-

tive, participating species with the resistive state change. The radial migration of

oxygen related species driven by thermal forces has been verified via probing the oxy-

gen transmission intensity using X-ray absorption spectromicroscopy.[57] This study

provided the direct observation and nature of the oxygen ion migration in tantalum

oxide based memristive devices. How the surrounding region influences the switching

character, i.e. whether those regions play essential role in the continuous movement,

and where/how the oxygen defects participate requires additional study.
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CHAPTER 3

EFFECT OF CONTACT SIZE AND OXYGEN ON TiO2

MEMRISTOR

3.1 TiO2 as a Switching Material

TiO2 nanostructures garner intense interest due to their multi-switching mode,

fast operation time, high RON/ROFF ratio and high cyclic endurance. For virgin TiO2

devices the RS character remains suppressed until a sufficiently large applied bias

induces a conductive path within the insulator layer via electroforming. Vacancy-

mediated transport drives the functionality of oxide-based nonvolatile memristive

devices. Previous work demonstrated a polarity-dependent electroforming process in

the Pt/Ti/TiO2/Pt system resulting from the drift of oxygen/oxygen vacancies [58]

and field-induced electro-reduction effects within Pt/TiO2-x/Pt devices.[46] Studies of

TaOx thin films showed temperature dependence of filamentary binary oxide RRAM

operation during the forming process,[59] [60] while Ta2O2−x layers exhibited current

localization induced during filament formation,[56] resulting in electroforming scal-

ing models.[61] [62] Studies that identify the size-dependent electroforming process of

crystalline TiO2, however, remain underexplored. Following the forming operation, a

noticeable change in conductivity through the oxide layer is observed. Various pro-

posed physical and chemical models describing the switching mechanism include the

formation and rupture of conductive filaments,[63] the modulation of the Schottky-

like barrier at the metal/oxide interface,[6] and trap-controlled space charge limited

current along the oxide junction,[56] thus obfuscating the predominant underpinning

mechanism. For oxide memristive devices, however, the content of oxygen vacancies
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is universally considered one of the key factors affecting the switching behavior.[64]

[65]

This work presents the direct correlation between variations in fabrication and

annealing environment with the resultant electroforming, set, and reset voltages in

TiO2-based thin film nanostacks. This study also presents the influence of varying

electrode sizes on the electroforming operation voltage and resistive switching prop-

erties across nanoscale TiO2/Nb : SrTiO3 junctions. The nanostructures displayed

effective switching behavior, possessing highly stable and reproducible high resistance

state (HRS) to the low resistive state (LRS) ratios (RHRS/RLRS) as large as three or-

ders of magnitude. Comparing the I-V character of samples with diameters ranging

from 200 to 500 nm shows that increasing size results in decreasing reset voltages and

increasing RHRS/RLRS ratios. Moreover, this study demonstrates that the switching

polarity can be reversibly changed between eight-wise and counter eight-wise due to

variations in available oxygen vacancies, as controlled by the oxygen flow ratio during

the deposition and post-annealing processes.

3.2 Device Fabrication

Oxygen-deficient TiO2 thin films were grown on 0.7 wt% Nb-doped SrTiO3 (Nb:STO)

(STONba050505S1, MTI Corp.) single crystal substrates with resistivity of 0.007

ohm-cm using DC magnetron sputtering at 700◦C, from a 99.9% purity Titanium

target. The substrates were annealed at 950◦C for 1 h after wet etching in aqua regia

((HCl (A144-212, Fisher Scientific.): HNO3 (SHBD9358V, Sigma-Aldrich.) 3:1)) for

12 mins. Non-stoichiometric TiO2 deposition was obtained in a mixed argon and oxy-

gen atmosphere under various oxygen flow rates (25%- 60%) at a base pressure 10−6

Torr. The nominal thickness of the TiO2 layer is approximately 15 nm. Nanoscale cir-

cular patterns from 50 nm to 1 µm were fabricated using e-beam lithography (JEOL

JSM-7001F; EBL). Both Ti adhesion and a Pd capping layers were deposited suc-
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cessively on both sides of the sample by DC sputtering, followed by a lift-off pro-

cess to form the top electrodes. The topography of the nanostructures was charac-

terized by Atomic Force Microscopy (Oxford Instruments/Asylum Research Cypher

ESTM; Goleta, CA). All conductive AFM (c-AFM) electrical measurements utilized

a platinum/titanium-coated silicon AFM tip (ASYELEC-01; Asylum Research; Go-

leta, CA) with a cantilever force constant of 2 N/m. Application of conductive silver

paste (TED PELLA, INC; Leitsilber 16035) provided an Ohmic contact between the

bottom electrode and the sample disk.

Figure 3.1 shows a representative topographic image of a highly-ordered dot elec-

trode array ranging in diameter from 100 nm to 900 nm as fabricated by e-beam

lithography. The cross-sectional profile, corresponding to the electrode in Figure 3.1a

shows the height of the Pd/Ti electrodes on TiO2 layer about 50 nm. Figure 3.1b

shows the schematic illustration of sample structure and the electronic characteriza-

tion setup. During c-AFM measurements, the bias was applied to the bottom of the

sample, and the resulting currents were collected by a grounded tip (top) electrode

connected to a dual-gain transimpedance amplifier cantilever holder (ORCATM; Asy-

lum Research, Goleta, CA). A compliance current of 10µA was used to prevent the

permanent hard breakdown of the device. The nanostack displayed non-volatile bipo-

lar RS character and “counter-eightwise” type switching behavior, which exhibits a

transformation from HRS to LRS and LRS to HRS at negative and positive biases,

respectively.[66]

3.3 Area Dependent Resistive Switching Behavior

To investigate the area-dependence of the forming process we applied a sweep volt-

age in the negative branch from 0 to -10 V with the identical increasing step-interval

for each device. The tip-induced electrical bias can be uniform applied to each pat-

tern thus providing a reliable current sensing technique for nanoscale devices. Figure
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Figure 3.1. a, An AFM topography image of the highly-ordered electrode pattern.
The inset shows the topography of a 400 nm x 400 nm zoomed-in region. The scale
bar represents a length of 100 nm. b, Schematic drawing of the I-V measurement
setup. The conductive AFM probe is ground while the bottom electrode is biased in
this work.

3.2a presents a comparison of the I-V curves of different contact diameters (d = 100

nm - 600 nm). Contact diameters smaller than 100 nm exhibited no sudden current

increases typically associated with the initial electroforming process after the first

cycle, which is attributed to insufficient switching fields result from the instrument

limitation of 10 V. Contact diameters between 100 nm - 600 nm display clear, size-

dependent changes in their respective forming voltages. Switching induced by the 100

nm diameter contact occurred at approximately -9 V with decreasing forming volt-

ages observed for increasing contact sizes. As the contact diameter approaches the

microscale no forming process required for taking place the switching phenomenon.

Figure 3.2b shows a semi-log plot of the average forming voltage as a function of

contact area taken of ten devices measured for each size. The plot shows a linear

correlation between increasing contact area and decreasing forming voltage exist for

these mesoscale electrodes, comparable to the trends recently observed in (10nm-

1µm) Hf/HfOx crossbar resistive RAM[59] and TiO2 nanocrosspoint junctions.[62] A

positive bias applied to the top electrode during the initialization process results in

local redox reactions and ionic migration. These phenomena heavily reduce the Ti/O
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Figure 3.2. a, I-V curves of electroforming as a function of contact diameter between
100-600 nm. b, A semi-log plot of forming voltage VF versus the contact area ln(A),
displaying a linear relationship. The errors for ten selected sizes of different diameters
are at 10% ± 5%. c, Representative I-V responses of varying interface diameters
showing a significant decrease of reset voltage with increasing contact size. The
markers estabilish the point in terms of the voltage at where the reset process occurs.
d, The resistance versus contact diameter for HRS and LRS read at -1V, indicating
a decrease of the RHRS/RLRS when increases the contact size.
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ratio and consequently create an appreciable density of oxygen vacancies near the

Ti/TiO2 interface.[6] Assuming a uniform electric field confined to the region under

the electrode, the associated defects will migrate randomly across the entire device

along the most favorable diffusion paths (i.e. grain boundaries). Increases in the

number of grain boundaries under larger area electrodes facilitate the formation of

the filamentary conductive path during electroforming process.[59] A larger electric

field or a longer time is therefore required to initiate the electroforming process when

the involved grain boundaries are relatively reduced. The topography of the deposited

TiO2 layer confirms that the grain sizes (20 ± 10 nm) are indeed much smaller size

than the top electrode diameters. Figure 3.2b shows the fitting results for VF versus

ln(A), displaying a clear, linear relationship. This consists with the simulation results

presents by other groups. For contacts of equal size, however, the number of available

vacancies plays a more critical role. If we consider a fixed number grain boundary for

contacts of identical size, then modulating the amount of available oxygen vacancies

is achieved by varying the oxygen gas partial pressure.

Figure 3.2c shows the I-V character for five chosen contact sizes under positive

applied bias. No sudden increases in current are observed but rather a gradual tran-

sition from HRS to LRS for all sizes. This phenomenon is likely attributed to oxygen

vacancy migration and resultant barrier modulation at the TiO2/Nb:STO interface.

Here the current increases incrementally with continual decreases in the barrier height,

suggesting that the redox reactions occur during the switching process. The junction

of 200 nm displays resistive switching with a reset voltage of 5.5 V and a large

RHRS/RLRS ratio greater than 104. For a 250 nm diameter the reset voltage reduced

to 5 V, and the RHRS/RLRS ratio slightly decreases to 104. The contact size of 300 nm

exhibits a reset voltage of 4.7 V and an even smaller RHRS/RLRS ratio of ∼103, which

is then reduced again to only 2.9 V and ∼ 100, respectively, for contact diameters of

500 nm. As shown in Figure 3.2d, the resistance at LRS increases slightly while at
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HRS decreases, resulting in significant decreases of the resistance ratio about three

orders of magnitude with increasing contact diameter. On one hand, smaller con-

tact induces higher built-in electric fields, which alter local defect concentrations.[67]

Therefore, due to the opposing signs of the applied external field and built-in electric

field contributions, smaller contact sizes require larger voltages to induce the move-

ment of oxygen vacancies. This explains the observed reduced reset voltage for the

larger contact area. On the other hand, decreasing size of the electrodes leads to

high electric fields at the edges which could dominate the SET process, for example,

producing switching to LRS with a larger leakage current. We also observed differ-

ences of the loop area during the reset process, indicative of changes to the dissipation

energy.[67] The decrease of the loop area indicates a decrease in power dissipation as

interface areas decrease, which results from higher electric fields under smaller inter-

faces. The decrease in LRS resistance with interface diameter corresponds to larger

filaments formed under larger contact areas.[64] Note that larger filaments gener-

ate higher Joule heating and further increase oxygen vacancy transport.[68] As such,

higher reset currents and voltages are measured for smaller contact areas.

3.4 Oxygen/Argon Flow Effects

To further investigate the effect of oxygen vacancies on the RS behavior, we com-

pared the hysteresis loops of 200 nm diameter nanostacks prepared under different

oxygen flow ratios (O2/(O2+Ar); 20%-60%) as shown in Figure 3.3. Here the higher-

oxidized sample shows a larger SET voltage and higher RHRS/RLRS ratio. By de-

creasing the oxygen flow ratio during deposition from 60% to 20%, the set voltage is

reduced by 4V and the resistance ratio dropped two orders of magnitude. As shown

in Figure 3.3b, the LRS resistance displays some modest fluctuation while the HRS

resistance exhibits a three order of magnitude increase with increasing oxygen flow

ratio, subsequently enhancing the resistance ratio significantly. This results from
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variations in the amount of oxygen vacancies present. As discussed previously, the

Schottky-like barrier at the TiO2/Nb:STO interface is typically induced by high con-

centrations of Nb-dopants and oxygen vacancies within Nb:STO.[66] Since the carrier

concentration in Nb:STO is much greater than that of TiO2, the increased oxygen

vacancy concentration resulting from decreasing the oxygen flow ratio consequently

lowers the barrier height. Therefore, the HRS resistance becomes much more sensitive

to the oxygen flux due to the strong dependence of leakage current on the vacancy

concentration.[62]

Figure 3.3. a, Representative dependence of onset voltage on oxygen flow rate at
total gas flow rates (25% - 60%). b, The resistance versus oxygen flow rate for HRS
and LRS.

In contrast to the area dependent case, however, the I-V curves here display no

discernable variation in reset voltage, as both the electroforming and resultant fil-

ament formation processes are strongly driven by electric field. This confirms that

during the reset process the migration of accumulated oxygen vacancies towards the

top electrode depends more on the Joule heating effect rather than the contact size.

Note that the stability, in terms of retention or endurance performance, improved

within samples with increased oxygen content. As shown in Figure 3.4, wider fluctu-
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Figure 3.4. Switching endurance of 500 cycles voltage sweep at a read voltage of -1
V for 20% and 60% oxygen partial flow rate, which shows a significant improvement
of the stability when reduces the oxygen vacancies.

ations occur as the oxygen content decreases, leading to a random and unpredictable

switching process. This instability is likely attributed to various TiO2 Magnéli phases

induced under different oxygen nonstoichiometry.[69] [70] Thus, for nonstoichiomet-

ric TiO2 the oxygen vacancies tune the conductive properties and simultaneously

represent the critical obstacle to the stability.

3.5 Polarity Reversal Across Oxide Interfaces

To compare the I-V characteristics of TiO2 thin films possessing the amount of

oxygen vacancies at the extremes, we conducted local current measurements across

junctions of identical 200 nm contact diameters after annealing in vacuum (10−6 Pa)

at 450◦ for 1.5 hours and reannealing in O2 condition (high pure) for the same period.

Figure 3.5 shows the I-V characteristics of the single sample as-prepared (black), af-

ter the vacuum anneal (blue), and after reannealing in oxygen (red), respectively.
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The nanostack displayed a higher current than the as-prepared state after the in-

troduction of oxygen vacancies during the vacuum (O2-poor) anneal. Interestingly,

the nanostack exhibits changes in the LRS to HRS and HRS to LRS direction after

application of positive voltages and negative voltage, respectively. This phenomenon

corresponds to the “eightwise” type switching. Polarity reversal from “eightwise”

to “counter-eightwise” switching, however, is observed after reannealing the sample

under O2-rich conditions. Previous reports of other oxide systems observed two types

of bipolar switching coexisted within a single cell,[15] [21] [71] [72] [73] with pro-

posed mechanisms ranging from device symmetry to changes in the active interface

position explaining the polarity reversal phenomenon. There are two possible factors

that result in the observed reversibility, one that involves the role oxygen vacancies

play during switching process, and another involving variations in oxygen vacancy

distributions induced by post-annealing. As-deposited, oxygen vacancies randomly

distribute throughout the oxide thin film layer. Subsequently, oxygen vacancy migra-

tion toward the TiO2/Nb:STO interface reduces the barrier under the application of

positive bias to the top electrode. In this case, the modulation of Schottky barrier

by the movement of oxygen vacancies dominates the conduction mechanism. The

following vacuum annealing process increases the oxygen vacancy concentration, thus

enabling the trap/detrap effects that cause the polarity conversion, as previously

demonstrated in Au/Sr2TiO4/Nb:STO junctions possessing Au/Sr2TiO4 active in-

terfaces. Switching behavior returns to “counter eight-wise” after reannealing under

pure oxygen conditions. This can be explained by the fact that the migration of

oxygen vacancies is favored in less defective switching layer which results from the

oxidation process during annealing. The different roles oxygen vacancies play dur-

ing both switching modes is illustrated by the schematic band diagrams in Figures

3.6a-d. In less defective layers the oxygen vacancies are more likely to migrate under

electric field from the Ti/TiO2→TiO2/Nb:STO interface under positive bias (Fig.
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3.6a; HRS→LRS) and from the TiO2/Nb:STO→Ti/TiO2 interface under negative

bias (Fig. 3.6b); LRS→HRS). During eightwise switching, increases in the amount of

available oxygen vacancies provide a high concentration of trap sites that modulate

the Schottky-like barrier at the TiO2/Nb:STO interface. Electron injection into the

traps occurs at the interface under positive bias (Fig. 3.6c; LRS→HRS). Electrons

are released from the traps along the interface into NSTO under negative bias (Fig.

3.6d; HRS→LRS).

Figure 3.5. The I-V character of a 60% oxygen flow ratio sample as-prepared (black),
after annealing in vacuum (blue), and reannealed in ambient oxygen (red); inset -
an illustration of the switching polarity for the three conditions, highlFighting the
reversibility of the switching mode between eightwise and counter-eightwise.

3.6 Summary of Chapter 3

The potential scalability to the nanometer regime is expected for future high

density integration. It is well known that the active device area is defined by a
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Figure 3.6. Schematic illustration of band diagram of a,b, Oxygen vacancy mi-
gration for “counter-eightwise” type switching and c,d, electrons trap/detrap at
TiO2/Nb:STO interface for “eightwise” type switching.

single conducting filament, which can be as small as a few atomic units, and that

different underlying mechanisms are responsible for filament formation. In recent

years, intense efforts have been expended to scale down the device dimension to sub-

100 range by nanoimprint lithography and e-beam lithography,[74] however, further

scaling is still facing the resolution limit of lithography or etching techniques. In

addition to minimizing the feature size of the device, it is important to retain the

performance while scaling. In fact, devices may lose their uniformity or reliability

when scaling to extremely small sizes, thus research must prioritize understanding

the correlation between scalability and performance optimization.

The I-V character of Pd/Ti/TiO2/Nb:STO/Ti/Pd nanostacks were measured lo-

cally as a function of contact diameter and oxygen flow ratio. The electroforming

voltage exhibits a linear dependence on logarithm of contact diameter due to an

increased number of grain boundaries as the electrode area increased. The linear

trend between reset voltage and contact area in log scale demonstrates the influ-
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ence of varying filament sizes and resultant Joule heating conditions. Controlling the

oxygen flow ratio during deposition alters the amount of available oxygen vacancies

and subsequently modulates the Schottky barrier height, resulting in significant vari-

ations in onset voltage and RHRS/RLRS ratio. Changes in available vacancies also

cause reproducible, reversible changes in switching polarity between eightwise and

counter-eightwise modes. These results reveal significant design implications for scal-

ing oxide-based resistive switching nodes that require controlling defect distributions

via deposition processes to alter overall device performance.

32



CHAPTER 4

SOLUTION-PROCESSED MEMRISTORS

4.1 Importance of Nanocrystals

Zero-dimensional nanostructures received a significant boost over the last decade

with the advancement of high-performance and unique properties resulting from

the quantum phenomena. While the fabrication and characterization of resistive

switching oxide thin films,[69] [75] [76] [77] nanoparticles,[78] and nanowires [79]

have received considerable attention, the development of rapid and low-cost solution-

processed alternatives to complicated multi-step lithographic approaches remains

stunted. The low/high resistance states (LRS; HRS) across metal-oxide interfaces

within the conventional metal-insulator-metal structure, as reduced to true nanoscale

dimensions, become greatly influenced by concomitant local electric field effects,[67]

Schottky barrier modulation,[15] [80] and defect distribution dominated transport.[42]

In order to harness unique size-dependent resistance phenomena, other recent studies

demonstrated resistive switching character within vertically-aligned carbon nanotubes,[81]

individual perovskite nanotubes,[82] binary oxide nanowires[79] and individual TiO2

nanoparticles.[78] Studies involving these quasi-zero dimensional and one-dimensional

nanostructures remain rather scarce as device fabrication involves complicated multi-

step lithographic processes or suffer from the lack of order or periodicity requi-

site of memory architectures. Many studies of charge transport within solution-

processed semiconductors such as colloidal CdSe quantum dots and PbS photovoltaic

nanoparticles exist,[83] [84] however few studies demonstrate resistive switching be-

tween nanoparticles, where the ligand interparticle interface profoundly affects the
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response.[85] [86] Studies of the memristive character of individual, sol-gel produced

TiO2 nanoparticles revealed both complementary and bipolar switching character

that exhibited high sensitivity to annealing and partial redox processes involving

the sub-stoichiometric core.[78] Ag/Ag2Se nanoparticle film/Au[87] and Ag/Ag2Se

NP/MnO NP/Au bilayer devices[88] exhibited low power consumption, high reten-

tion, and high endurance properties that were retained upon the application of ±

0.4% stress states. Most studies of resistive switching within colloidal systems ob-

serve the electrical characteristics of spin-coated films comprising binary oxide[89]

or perovskite complex oxide[90] nanoparticles, dip-coated thin films,[91] [92] [93]or

compact pellets.[94] These assemblies are annealed, forming dense structures free of

ligands. Other approaches use electrostatic accelerating voltage during film growth

to induce interparticle bonding.[95] These studies remove the ligands between the

nanoparticles, effectively transforming the low-dimensional nanostructures into thin

films. To improve the performance of solution-processed memristive systems the

correlation between changes in ligand chemistry and properties such as operating

voltages, device stability, and switching type must be systematically evaluated.

In this study we have demonstrated memristive behavior in nanoribbons compris-

ing perovskite strontium titanate (SrTiO3) nanocubes capped with oleic acid that

either retained or altered its switching mechanism upon transfer from the original

substrate to a second, arbitrary substrate.[96] Subsequent studies extend to systemat-

ically compare the dependence of resistive switching behavior on ligand length within

individual HfO2 nanoribbons capped with oleic, dodecanoic, and undecenoic acid.

Hafnia, HfO2, is a prototypical resistive switching binary oxide that exhibits excellent

scalability, reliability, and CMOS compatibility in both amorphous and crystalline

form.[97] Here a facile, low-cost method is used to prepare highly ordered nanoribbon

arrays comprising single-crystalline HfO2 nanocrystals via convective self-assembly.

This approach addresses typical issues facing nanocrystal assembly (i.e. scalability
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and periodicity) to produce ordered nanostructure arrays without the complexity of

fabrication templates or lithographic patterning.[98] The HfO2 nanoribbons exhib-

ited both threshold switching (TS) and bipolar resistive switching (BRS) induced by

manipulating the conductive filament morphology, similar to recent studies of NiO

thin films.[99] Both the forming voltage and SET voltage scale with ligand length,

suggesting that the interparticle tunnel distance heavily influences the carrier trans-

port within HfO2 nanoribbons. Motivated by these results, we finally demonstrate

the fabrication and characterization of a solution-processed hafnia thin film device

that exhibits lower operating voltages, higher uniformity, and larger ON/OFF ratios

than its ALD-prepared counterpart.

4.2 Synthesis and Assembly of Nanocrystals

4.2.1 Colloidal STO Nanocrystal Synthesis

Figure 4.1. High angle annular dark field (HAADF) TEM images of a, monolayer
nanoribbon segments displaying b, an average interparticle distance of 3.2± 0.5 nm.

Colloidal undoped SrTiO3 nanocrystals (STONCs) were prepared using a modi-

fied hydrothermal method without hydrazine as prepared by the Kittilstved group.
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Figure 4.2. Powder X-ray diffraction patterns of undoped SrTiO3. The grain sizes
estimated from the Scherrer equation are 15 nm for SrTiO3. The red lines indicate
the powder diffraction pattern of bulk SrTiO3.

Figure 4.3. Room temperature absorption spectra of SrTiO3 suspended in Hexanes
(Solid blue line). Uncorrected emission spectra excited at 300 nm (dashed).
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Figure 4.4. a. top view and b. cross-sectional SEM images of a STONC nanoribbon,
respectively.

Nanocrystals were characterized using powder X-ray diffraction (Figure 4.2), absorp-

tion/emission (Figure 4.3) and TEM (Figure 4.1). The nanocrystals display a broad

emission peak centered at ∼465 nm that has is assigned to self-trapped excitonic emis-

sion associated with oxygen vacancies. The powder X-ray diffraction pattern of these

nanocrystals display only the cubic perovskite phase of strontium titanate. Figure

4.1a shows high resolution TEM images (JEM 2200FS-JEOL) of colloidal STONCs

deposited on a 3 nm carbon film supported on 400 mesh copper TEM grids (Electron

Microscopy Sciences). HAADF-TEM images of a STONC nanoribbon (Figure 4.4),

the image shows the boundary edge of the nanoribbon. The images were obtained

at room temperature, using ultrathin carbon film on lacey carbon support film (3nm

thickness), 400 mesh copper grid (Ted Pella, Inc.) and a JEOL 2200FS EFTEM unit

at an accelerating voltage of 200 kV. TEM analysis reveal that the nanocrystals are

cuboidal with average edge dimensions of ∼10 ± 2 nm. The nanocrystal concen-

tration was estimated from analysis of the Ti concentration obtained by inductively

coupled plasma optical emission spectroscopy (ICP-OES, PerkinElmer 4300 DV) and

the average particle size from TEM, which yielded a particle concentration of 25 µM

(micromolar, 10−6 mol/L). This was determined by dissolving 1 mL of the particle
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in 20 mL of aqua regia and then using ICP-OES by the standard addition method.

The concentration obtained is for the total titanium concentration in the unknown

stock solution. The estimate is then based on the average particle size the number

of Ti atoms per STONC and then divide the total Ti concentration by this number

(∼1100 for a 9 nm cube) to obtain this particle concentration

4.2.2 Hafnia Nanocrystal Synthesis

HfO2 nanocrystals (0.4 mmol HfO2) were synthesized by Jonathan De Roo at

Columbia University from HfCl4 and benzyl alcohol in a recently developed solvother-

mal process.[100] [101] After solvothermal synthesis and washing with diethyl ether,

the nanocrystals are redispersed in chloroform (4 mL). Then, 0.2 mmol fatty acid

(oleic acid, dodecanoic acid, or 10- undecenoic acid) was added to the milky sus-

pension. In case of 10-undecenoic acid, 5% of dodecanoic was also added to ensure

colloidal stability. Under stirring or ultrasonication, oleylamine (0.15 mmol or 50

µL) was added until a transparent and colorless suspension was obtained. Finally,

the particles are purified three consecutive times by adding acetone to induce pre-

cipitation, followed by centrifugation and resuspension in chloroform. After the last

purification, the nanocrystals were dispersed in toluene.

4.2.3 Nanoribbon Stop-and-Go Assembly

Nanoribbon Stop-and-Go Assembly The “stop-and-go” flow coating method de-

scribed previously[98] was used to create STO nanoribbons from colloidal STONCs

building blocks. The custom-built instrument uses a poly(ethylene terephthalate) film

(82 ± 7 µm in thickness, supplier McMaster-Carr) as a flexible blade, with a “scored”

region (2 mm) at the edge. This blade is attached to an adapter with pitch and roll

variability, allowing the scored region of the blade to be aligned parallel to a substrate

and brought into contact. The substrate is attached to a nanopositioner (Burleigh

Inchworm controller 8200), which is programmed to perform a series of stop-and-go
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Figure 4.5. An illustration of the stop-and-go flow coating process. The inset pro-
vides an illustration highlighting the long, bell-shaped nature of the STONC nanorib-
bons.

steps, with stop time (td), velocity (v), and spacing (d) as user-defined variables.

STO colloidal solution (8 µL) is injected between the substrate and scored region of

the blade. The capillary forces confine the injected solution to the scored region and

meniscus height is dictated by the capillary interactions. STO nanoribbons are flow

coated on commercially available Nb-doped STO (0.7 wt % Nb, MTI Corp.) and sil-

icon (P(100) 0-100 ohm·cm; single-side polished; University Wafer Inc.) substrates.

The height and width of the ribbon can be precisely controlled from nanoscale to

bulk dimensions by varying the stop time of the stop shift, thus enabling the direct

fabrication of nanostructures ranging from individual nanoribbons to thin films.To

deposit HfO2 nanocrystals, the similar approach was applied while a silicon wafer

(University Wafer Inc.) cut to an edge length of 15 mm used as a fixed blade. The

HfO2 nanoribbons in this study were prepared using the following parameters: v =

1500 µm/s, solution concentration = 1 mg/mL, d = 200 µm, and a td between 1000

and 6000 ms. Different stop times were used to vary the nanoribbon height (h) and

width (w), td = 1000 ms (h = 80 nm, w = 8 µm), td = 3000 ms (h = 160 nm, w = 13

µm), and td = 6000 ms (h = 230 nm, w = 17 µm). A fixed volume of 1 mg/mL HfO2

NC solution (10 µL) is injected between the fixed blade and the substrate, where
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capillary forces confine the solution to the blade edge. The HfO2 NC nanoribbons

were deposited directly on silicon wafer substrates (undoped <100>, University Wafer

Inc.) coated with 5 nm Ti/30 nm Pt thin films. Before deposition, all substrates and

blades were rinsed with isopropyl alcohol and toluene and then dried after each step

with a filtered stream of N2 gas.

Figure 4.6 shows the nanocrystalline morphology of the HfO2 nanoparticles and

schematic illustration of the ‘stop-and-go’ flow coating method. The transmission

electron microscopy (TEM) image of HfO2-D in Figure 4.6a shows the as-prepared

nanocrystal structure, while the inset shows a high-resolution TEM image that indi-

cates NC dimensions on the order of 5 nm. The x-ray diffraction (XRD) in Figure 4.6b

reveals the phase pure, monoclinic structure of HfO2 NCs. The stop-and-go flow coat-

ing method, as illustrated in Figure 4.6c, deposits nanoparticles onto a hard substrate

by flowing a NC solution under the rigid silicon blade. The height and the width of

the ribbon can be precisely controlled from nanoscale to bulk dimensions by varying

the stop time of the stop shift, thus enabling the direct fabrication of nanostructures

ranging from individual nanoribbons to thin films. The optical microscopy image in

Figure 4.6d shows highly ordered arrays of individual HfO2 nanoribbons prepared by

‘stop-and-go’ flow coating. Figure 4.6e shows the three-dimensional topographic pro-

file of an individual HfO2 nanoribbon collected via atomic force microscopy (AFM),

indicating that nanoribbons possess a wedge-like cross sectional profile, with an av-

erage width of 8 µm and an average height (maximum; top of the wedge) of 100

nm.

Figure 4.7 demonstrates an optical micrograph (scale bar: 500 µm) showing highly

scalable arrays of STONC nanoribbons (length = 1.5 cm) with highly regular peri-

odicity. A plot of STONC nanoribbon height and width dimensions versus the stop

time of the flow coating process, illustrating the scaling trend of the approach. Both

height and width of the ribbon increase with increasing stop time, displaying a linear
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relationship and thus indicates a highly scalability of the flow coating approach. By

varying the stopping distance, the width of the ribbon can be simply extended to thin

film scale, favoring the solution processed device manufacturing.

Figure 4.6. a, TEM image shows the crystalline structure of HfO2 nanoparticles
with the scale bar denotes 50 nm. Inset: HRTEM image of NCs indicates the lattice
fringe and size of 5 nm. b, X-ray diffraction patterns of monoclinic HfO2. c, An
illustration of the “stop-and-go” flow coating process. Inset shows the assembly of
the NCs driven by solvent evaporation. The shape and profile of the ribbon are
confirmed by d, three-dimensional AFM image. e, An optical micrograph (scale bar
200 µm) showing highly ordered ribbons comprising HfO2 nanoparticles. The width
and height of the wedge are approximately 8 µm and 100 nm, respectively.
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Figure 4.7. a, An optical microscopy (scale bar: 500 um) showing highly scalable
arrays of STONC nanoribbons (length = 1.5 cm) with highly regular periodicity. b,
A plot of STONC nanoribbon height and width dimensions versus the stop time of
the stop-and-go process.

4.3 Tip-Induced Current Measurements

Conductive AFM (c-AFM) is a powerful tool for studying RS behavior with the

ability to spatially resolve local heterogeneities within the electronic response, and

probe the current distribution simultaneously.[38] [40] [78] The electrical measure-

ment was conducted at room temperature on ORCA-Conductive AFM (Cypher ES,

Asylum). A silicon probe with Pt/Ir tip coating with a frequency of 70 KHz and

a spring constant of 2 N/m (ASYELEC-01) was used. Each bottom electrode was

attached to the sample holder via silver paint (TED PELLA, INC.) to form an electri-

cal path between the sample bias and the sample surface. During the measurement,

the sample was biased between +/- 10 V at the bottom electrode using while the

tip is held at 0 V potential. Current was collected through the tip and subsequently

passed through a dual gain (ORCATM) transimpedance amplifier. Prior to I-V mea-

surements, the topography of the sample surface was taken in AC mode. To do a

local I-V plot, the tip was moved to a different position of the ribbon and engaged to

it with a set point of 0.02 V. In the initial electroforming, a negative voltage of -10
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V was applied to the bottom electrode to switch the system into LRS. The general

c-AFM setup placed a Pt-Ir coated silicon tip in direct contact with the surface of

individual HfO2 nanoribbons, creating a Pt-Ir/HfO2 NCs/Pt test structure. The bias

is applied to the bottom Pt electrode, with the current flowing through the ribbon

vertically, which is then read via a grounded, conductive tip rastering along the top

surface of the nanoribbon.

Figure 4.8. a, Current mapping of individual HfO2-D ribbon with an applied voltage
of +5.7 V, displaying a yellow conducting spot formed after a forming voltage of +6
V. b, Corresponding current mapping of the area with an applied voltage of -2 V. No
observed conducting spot indicates the locally reset process occurred.

No current is measured across the nanoribbons before a forming process is induced

under a large voltage applied to the middle of the ribbon. The large applied field

creates and initiates the migration of oxygen vacancies, manifesting as a bright spot

corresponding to a highly conductive region, as shown in Figure 2b on the HfO2-U

system. Current imaging was conducted by scanning the nanoribbon with an applied

voltage of +5.7 V (Figure 4.8a), suggesting the conducting path formed locally during
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forming/SET process and its nonvolatile property. The LRS is then recovered in the

followed scan with -2 V applied bias (Figure 4.8b).

4.4 Resistive Switching and Transport Mechanism Between

Nanocrystals

The electrical examination was employed by conductive AFM (c-AFM) with the

tip placed in direct contact with individual nanoribbons, acting as a removable top

electrode. Conductive AFM represents a powerful tool in the study of resistive switch-

ing especially for tedious manipulation of nanocrystals displays a typical current-

voltage (I-V) response of an individual STONC nanoribbon, as collected using a

sweeping Figure 4.9b.

The (“1-2-3-4”) set-reset hysteresis observed in Figure 4.9b represents an “eight-

wise” (counterclockwise) resistive switching response (opposite to the polarity based

on biasing the TE).[5] [21] [24] [66] [75] [102] This result contrasts the “counter-

eightwise” (clockwise) response observed in 10 nm thick epitaxial intrinsic STO thin

films.[103] Though the nanoribbon height is approximately equivalent to the thick-

ness of the epitaxial film previously reported, the primary difference is the apparent

reduction in dislocation density[104] [105] within the individual STONC component

nanocrystals. Extended defects such as dislocations typically enable the migration of

oxygen vacancies via the filamentary conduction mechanism that dictates “counter-

eightwise” switching within single crystalline STO.[4] [5] [21] [24] [66] [75] [102] [104]

[106] [107] [108]

Figure 4.9c and d illustrate the possible mechanisms driving these phenomena,

which closely resemble those recently determined for tip-induced resistive switching

of individual TiO2 nanocrystals.[78] In that study sandwich test structures comprised

individual TiO2 nanoparticles sandwiched between a Pt/Ir tip electrode and a Pt/Ir

planar bottom substrate electrode. They subsequently applied a negative bias formed
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Figure 4.9. a, An illustration of the c-AFM measurement setup. The conductive
AFM probe was acting as the movable top electrode, allowing current passes through
the thickness direction. b, I-V response of individual nanoribbon displaying “eight-
wise” resistive switching behavior, as indicated by the arrow markers. An illustration
of the operating switching mechanism and the band structure across the multi-cube
Pt/STONC interface. c, Applying a negative voltage injects electrons from the trap
sites (oxygen vacancies or ligands; magenta spheres) to the top (tip) electrode, result-
ing in unfilled traps that narrow the Schottky-barrier and induces the HRS → LRS
transition (a, 1©). d, A positive applied voltage fills the interfacial traps with elec-
trons (black dots in magenta spheres) and recovers the Schottky-like barrier, yielding
a LRS → HRS transition (a, 4©).
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a depletion region at the bottom electrode as vacancies migrated towards the top

electrode (tip), resulting in a LRS to HRS transition. Here we ruled out possible

Schottky-like barrier modulation effects via oxygen vacancy migration due to the op-

posite polarity dependence observed, the down-scaling of the particle size and the re-

sulting reduction in vacancy conducting pathways that typically occur along extended

defects (dislocations, interfaces) of single crystalline STO. In this study the moveable

top Pt/Ir tip electrode maintains ground while the bias is applied to the bottom NSTO

electrode. Previous studies suggested a higher volume of oxygen vacancies concentrate

along the extended defects due to increased reducibility compared to bulk.[108] In this

study it is assumed that vacancies accumulate at the interfaces between individual

STONC. Electronic absorption studies showed that the majority of defects populate

the surface of the nanocrystal.[109] An oxygen deficient surface therefore creates a

space-charge depletion region that effectively hinders oxygen diffusion.[75] [104] [105]

This accordingly explains the observed lower current flow at low voltage region. For

these reasons we assume the positively charged oxygen vacancies remain fixed at the

Pt/Ir(tip)/STO interface and form a trap state for the following switch. The rec-

tifying I-V response of HRS (Figure 4.9b; solid purple portion between points “ 1©”

and “ 4©”) results from the Schottky-like barrier formed along the (Pt/Ir)tip/STO

interface. The initial bias sweep injects electrons into the STONC film and fills the

trap sites at the tip-STONC interface. Applying a sufficiently large negative voltage

to the bottom electrode releases the electrons, thus yielding unfilled traps and re-

duces the Schottky-like barrier width. This process enables electron tunneling, hence

we observe a HRS→LRS transition (Figure 4.9c; “ 1©”). Applying a large positive

voltage to the bottom electrode refills the traps at the tip-STONC interface with

electrons that neutralize the positive charge of the oxygen vacancies (Figure 4.9d;

“ 4©”). This process forms a strongly insulating interface and increases the barrier

width, thus inducing the LRS→HRS transition. Note the extent that vacancy accu-
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mulation/depletion occurs at the nanoribbon/Nb:STO interface must vary apprecia-

bly compared to heteroepitaxial STO/Nb:STO thin films. Recent studies of distorted

STO/Nb:STO heterointerfaces observed rectifying behavior attributed to the modu-

lation of interfacial vacancy depletion, where the electrode configuration used resulted

in a symmetrical hysteresis, hallmark of two Schottky-junctions. The hysteretic re-

sponse in Figure 4.9b is identical to those of Au/Nb:STO/Ag and s-In/NSTO/o-In

nanostacks possessing asymmetric Schottky/Ohmic contacts. Therefore the local c-

AFM I-V response of as-deposited STONC nanoribbons on NSTO are governed by

conduction mechanisms at the tip-sample interface that enable tunneling via charge

trapping/detrapping cycles defined by interfacial oxygen vacancy electron traps [5]

[24] [67] [71] [110] [111] or Schottky barrier modulation.[15] [80] [112] [113] [114]

Figure 4.10 highlights the results of LRS/HRS switching endurance testing across

STONC nanoribbons as collected locally by c-AFM. The semi-log I-V plot exhibits

relatively robust endurance properties, as demonstrated by the overlap after 1 (red),

100 (purple), 500 (light blue), and 1000 (green) cycles, respectively. The FBD pro-

cess likely results in incomplete deposition of STONC towards the ribbon edges in

multilayer ribbons, yielding a possible thickness dependence. Local endurance tests

were also performed at different tip positions along the nanoribbon from left-right at

the locations marked by the red �, black �N, and green ⊗ marks on the topographic

image found in Figure 4.10a, respectively. Endurance profiles of LRS/HRS switch-

ing current collected at a read voltage of -1.5 V are shown in Figure 4.10c, where

blue (square marker) lines indicate the LRS and red (diamond marker) lines indi-

cate the HRS, respectively. The results shown in Figure 3c demonstrate robust and

thickness-independent LRS/HRS values for the nanoribbons. The average RON/ROFF

ratio exceeds 103 over a span of 1000 switching cycles with no apparent position de-

pendence. While the ratio does not quite approach the reported value (106) of UHV

pulsed laser deposition-prepared 10-nm thick epitaxial thin films,[103] the value does
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compare favorably with higher quality Pt-STO interfaces created by DC-Sputtering

and e-beam evaporation (102 - 104),[80] or with sol-gel processed thin films with Pt

electrodes (103).[115] Note that STONC nanoribbons display a more triangular than

rectangular geometry, hence the stability displayed in the position-based endurance

tests further confirms that a trap/detrap mechanism at the tip-(top)STONC inter-

face defines transport, as no discernable thickness dependence is observed along either

edge of the nanoribbon.

4.5 Nanoribbon Removal and Transfer

A key advantage of STONC nanoribbons produced by FBD is the ability to re-

lease the nanoribbons into a liquid for redeposition onto a second, arbitrary substrate

or surface topology (Figure 4.11a). Previous studies successfully demonstrated this

process for releasing CdSe stripes and grids into an aqueous solution.[98] [116] Fig-

ure 4.11b shows an optical micrograph of STONC nanoribbons floating on the water

surface upon micrograph of STONC nanoribbons floating on the water surface upon

removal by dissolution of a poly(acrylic)acid sacrificial layer, and of nanoribbons form-

ing helical mesostructures when released away from the liquid-air interface (inset). In

order to release the STO nanoribbons from the substrate, poly(acrylic) acid (PAA)

is used as a sacrificial layer. An aqueous solution of PAA (20 mg/ml) is spun-coat

(3000 rpm, 30s) on a pre-washed silicon wafer. Nanoribbons are released by dissolv-

ing the PAA sacrificial layer (height ∼ 50 nm) with water. Once the nanoribbons

were released, transfer was completed by placing the second, arbitrary substrate in

direct contact with the surface of the water meniscus. The STO helical shape of

the released nanoribbons from the original structure (Figure 4.12a) can be found in

Figure 4.12b and c. All commercial materials were used as received. The Ag and Pd

electrode deposition (thickness = 100 nm) was performed by RF- and DC-sputtering

of metal targets (Kurt Lesker; 99.99%) at room temperature and a base pressure
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Figure 4.10. a, A topographic AFM image of an individual STONC nanoribbon
(height = 400 nm). b, A semilog I-V plot of the STONC nanoribbon for the 1st
(red), 100th (purple), 500th (light blue), and 1000th cycle (green). c, An endurance
plot of log current vs number of cycles between the LRS (blue squares) and HRS (red
diamond) measured locally over the left edge (a, red �), top (a, black �N), and right
edge (a, green ⊗) at a read voltage of -1.5 V, respectively. The average RON/ROFF

ratio exceeds 103.
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of 10−6 Torr. The metallized-PET films and substrates were rinsed with isopropyl

alcohol and toluene and dried with a filtered stream of compressed air.

Figure 4.11. a. Illustration of the STONC nanoribbon to STONC nanohelix re-
lease/transfer cycle. After the FBD process samples are submersed in water, creating
a suspension of STONC nanohelices that are redeposited onto arbitrary substrate (Ag-
coated PET substrate, lavender-purple shown). b An optical micrograph of STONC
nanohelices released into water from the Nb:STO substrate (scale bar: 500 µm).
Inset: an optical micrograph of an individual STONC nanohelix displaying its flat-
ribbon-like geometry (scale bar: 200 µm).

To demonstrate the versatile nature of the FBD-deposition process nanoribbons

were removed from the original hard substrate and transferred onto a flexible PET

substrate with Ag and Pd metal coating for examination via c-AFM. Virtually all

studies involving resistive switching of thin films remain limited by the top-down

lithographic processes to evaporate or sputter various top electrode materials on a

fixed film/metal/substrate bottom electrode configuration. The FBD transfer process

provides the unique advantage of selecting the bottom electrode material to induce

or potentially enhance a desired transport mechanism within functional oxide nanos-

tructures.

The I-V response of the STO/Ag/PET structure shown in Figure 4.13a exhibits

switching characteristics opposite of the eightwise switching displayed by the same

nanoribbons on the NSTO substrate in Figure 4.7a. The I-V response displays highly
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Figure 4.12. a, 3D AFM image of the STO nanoribbons deposited on the substrate
by FBD approach. Optical image of b, STO helix and c, STO ribbons in water.
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Figure 4.13. a, The I-V response of an individual STONC nanoribbon post-transfer
on a Ag-metallized PET substrate. b, The I-V response of an individual STONC
nanoribbon post-transfer on a Pd-metallized PET substrate, exhibiting “eightwise”
switching character.

linear Ohmic behavior under the LRS and sharp, pronounced LRS↔HRS transitions,

indicative of formation and dissolution processes of filament induced by cation mi-

gration with the chemical active electrode being Ag. This curve fitting of the log-log

response confirmed the LRS exhibits Ohmic-character, with a slope of 1, which con-

firms the formation of metallic filaments (Figure 4.14a). Applying a positive bias to

the Ag bottom electrode creates Ag cations that drift through the STO nanoribbons

towards the top (tip) counter electrode, where they subsequently reduce to Ag atoms

and form the highly conductive filaments responsible for the steep current increase.

Conversely, an applied negative voltage induces Joule heating and oxidizes the Ag

atoms at the counter electrode, which causes the conductive filament to rupture and

starts the LRS→HRS transition. The slight variation in LRS current during en-

durance testing is attributed to the randomly branched growth of filaments near the

inert Pt electrode.[117] Improving the endurance stability within transferred nanorib-
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Figure 4.14. a, The STO/Ag/PET LRS branch on a log-log scale, which displays a
linear slope of 1 corresponding to the Ohmic conduction model. b, The resistance plot
of STO/Ag/PET under voltage sweeping for 100 cycles. c, The STO/Pd/PET LRS
branch on a log-log scale, displaying a slope of 1 at low voltages and an increased
slope (∼ 2) at higher voltages, corresponding to the space charge limited current
(SCLC) conduction model. d, The STO/Pd/PET HRS branch of the I-(1/V) response
on a log-log scale, which exhibits a negative linear slope indicative of trap-assisted
tunneling (TAT) conduction.
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bons warrants further studies involving optimization of the release, redeposition, and

secondary substrate/contact selection.

The I V curve (Figure 4.13a) shows a sudden increase of the current level when

reaches a threshold voltage, corresponding to the typical electrochemical metallization

memory (ECM) which consists of an electrochemically active electrode metal, i.e. Ag

and Cu. Here the switching mechanism is attributed to the redox and migration of

Ag ions, which possess higher mobility than oxygen vacancies.[4] As a positive voltage

is applied to the Ag electrode, oxidation occurs, of the form:

Ag − e−
Oxidation−−−−−→ Ag+ (4.1)

The cations in the STO nanoribbons drift towards the counter electrode under

the electric field and reduces there accords the reaction:

Ag+
Reduction−−−−−→ Ag + e− (4.2)

leading to the formation of highly conductive filaments responsible for the steep

increase of the slope. Conversely, an applied negative voltage dissolves Ag atom

from the counter electrode driven by the Joule heating. This causing the conduct-

ing filament to rupture, and switching back to the HRS. Moreover, the transferred

nanoribbons possessed an increased RON/ROFF ratio (104) and a reasonable endurance

lifetime of ∼ 100 cycles. The slight variation in LRS current during endurance test-

ing is attributed to the randomly branched growth of filaments near the inert Pt/Ir

electrode.[48] Improving the endurance stability within transferred nanoribbons war-

rants further studies involving optimization of the release, redeposition, and secondary

substrate/contact selection.

STONC nanoribbons were also transferred onto Pd-metalized flexible PET sub-

strates to create a Pt/Ir/STO/Pd/PET test structure, which displayed entirely dif-
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ferent switching characteristics, as observed in Figure 4.13b. In this case, the nanorib-

bons possessed counter-eightwise switching character but showed no rectifying behav-

ior at the HRS. This is due to the relative symmetry of the sample structure. Figure

4.14c shows the LRS response in a log-log scale, exhibiting an increasing slope from

1 (I ∝ V) to 2 (I ∝ V 2) with increasing applied voltage, thus suggesting transport

based on the space charge limited current model (SCLC). The HRS response (Figure

4.14d) displays a linear response that trends with ln I ∝ 1
V

, fitting the trap-assisted

tunneling model (TAT)[118] and emphasizing the critical role that traps play during

switching at the Ir-tip/STO interface. To induce an HRS→LRS transition, an ap-

plied negative voltage to the Pd bottom electrode injects electrons into the STONC

ribbons, which are then captured by the trap sites along the Ir-tip/STO interface and

subsequently emitted to the tip. This two-step tunneling process is likely assisted by

oxygen vacancies and the oleic acid ligands between nanocubes.

4.6 Local c-AFM of Pt tip/STO-(Pd/PET)substrate Under

Bending

We also explored the effect of the resistive switching behavior of nanoribbons

under bending force, the c-AFM I-V response of transferred STONC nanoribbons on

flexible, Pd-metallized PET substrates were also collected under a fixed curvature,

as shown in the inset of Figure 4.15. STO/Pd/PET assemblies were affixed to a

stainless steel nail shaft, inducing a strain of ∼3%. The stability exhibited by the

nanoribbons in a bending state demonstrates enormous promise as a candidate for

flexible electronic device platforms where electrical and mechanical reliability still

present significant challenges. The strain value of the bent STO/Pd/PET structure

is approximated as:

ε(%) =
t

D
, (4.3)
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Figure 4.15. a, The I-V response of an individual STONC nanoribbon on a Pd/PET
substrate under strain. (inset) The as-transferred nanoribbons are affixed to a steel
rod of known diameter, inducing a substrate strain of ∼3%.
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where ε is the strain in percentage, t is the thickness of the PET substrate and D

is the diameter of the bending radian, in this case a stainless-steel nail shaft.

Figure 4.16 shows the fitting results of the LRS response using the space charge

limited current model (SCLC; Figure 4.16a) and of the HRS response using the trap-

assisted tunneling model (TAT; Figure 4.16b), which emphasizes the important role

that traps play during switching at the Pt/STO interface. These curve fitting of

the I-V response in confirmed the nanoribbons retained both the SCLC-based LRS

and TAT-based HRS character displayed by the as-transferred STO ribbons on the

Pd/PET substrate. To induce an HRS→LRS transition, an applied negative voltage

on the Pd bottom electrode injects electrons into the nanocubes, which are then

captured by the trap sites along the Pt/STO interface and subsequently emitted to

the tip. This two-step tunneling process is likely assisted by oxygen vacancies and

the oleic acid ligands between nanocubes. The following equation represents the TAT

mechanism:

JTAT = A exp(
−8π
√

2qm∗

3hE
φ

3
2
T ) (4.4)

where φT is the energy of the electron traps with respect to the conduction band

edge of the oxide.

4.7 Thickness Dependency of Memristive Nanoribbons

As shown in Figure 4.6e, an individual nanoribbon presents varying thickness

along the cross-sectional profile. Figure 4.17 shows part of topography of the ribbon

and indicates the increasing height start from left. To study how the thickness affects

the switching behavior, three different spots have been chosen with the same space as

marked in the topography. The thickness can be approximated as 30 nm, 90 nm and

[119] nm, respectively. The first sweeping (-10V - +10V) and a typical switching I-V
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Figure 4.16. Curve fitting of a typical switching cycle of STO/Pd/PET after bend-
ing for a, LRS and b, HRS, respectively.

Figure 4.17. Thickness dependent measurement of HfO2-U. a, 10 µm× 10µm AFM
topography of HfO2-U sample. The red makers indicate the three different points
with increasing height that picked for the measurement. b-d, the I-V characteristic of
the first voltage sweeping (±10V) collected at point1, 2 and 3 respectively. e-g, the
corresponding I-V responses after the electroforming process at different positions.
All of them represent BRS behavior and show similar operating voltage.
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response (-2V - +2V) at each point were illustrated in Figure 4.17 b-g. Point 1 was

switched to LRS at around +6 V and the resistive switching behavior can be observed

after the first cycle. For larger thickness, however, the first cycle was not sufficient

to initiate the switching character so that extra voltage sweeping was required. After

forming, the I-V curves are similar including the SET and RESET voltages.

4.8 Effect of Ligands on Memristive Behavior

4.8.1 The Conduction Mechanism After Removing Ligands

For STO nanoribbons transferred onto a Pd-metalized, silicon substrate, the sam-

ple was annealed at 500◦C for 2 min under ambient conditions to remove the all the

ligands. The fitting results are presented in Figure 4.18c, d. The LRS character

remains identical for the flexible Pd/PET substrate and the hard Pd/Si substrate, as

both follow a linear relation at low voltages and a quadratic behavior at higher volt-

ages. However, the HRS character in the Pd/Si case deviates significantly from the

TAT model, as shown in Figure 4.18, which suggests a reduced trap-assisted effect. As

the annealing step removed the presence of ligands, the change in conductive mecha-

nism here confirms that the ligands play a critical role as traps for assisting electron

tunneling.[120] Note that the ligands can effectively reduce the current level up to

two orders of magnitude, thus demonstrating the potential role of ligands in reduc-

ing power consumption. Instead the HRS displays the character of Fowler-Nordheim

tunneling (F-N), which follows the model:

JFN =
q2

8πhφB
E2 exp(

−8π
√

2qm∗

3hE
φ

3
2
B) (4.5)

where φB is the barrier height, m∗ is the electron effective mass and h is the

Planck’s constant.
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Figure 4.18. a, Representative I-V curve of the STO/Pd/Si structure. b, AFM
topography of transferred STO nanoribbon on Pd/Si substrate after annealing at
500◦C for 2 min. c, d The curve fitting of the I-V characteristic of STO/Pd/Si
structure for LRS and HRS, respectively. The HRS follows the F-N tunneling model
while the LRS follows the SCLC model, which shows different mechanism from the
STO/Pd/PET structure. Inset shows the deviation of the HRS from the TAT model.
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Figure 4.19. a, I-V curves for the forming process of HfO2-U, HfO2-D and HfO2-O,
respectively. b, Representative I-V response of BRS for three samples. c, I-V curve
of the TS behavior of HfO2-U sample. d, 50 cycles endurance of TS by sweeping at
a read voltage of 0.5 V, showing a selectivity of 103 between the HRS (light purple;
open symbols) and LRS (dark purple; closed symbols).
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Figure 4.20. a. The statistical distribution plot of switching voltages as a function of
ligand length. Both VSET and its distribution scale with increasing ligand length. b,
The cumulative probability for the LRS (filled symbols) and HRS (open symbols) of
HfO2-U (purple; square), HfO2-D (greengreen; circle), and HfO2-O (orange; triangle),
respectively

4.8.2 How Ligand Length Affects Memristive Behavior

Nanoribbons comprising HfO2 NCs capped with three types of ligands; oleic acid,

dodecanoic acid, and undecenoic acid, labeled hereafter as HfO2-O, HfO2-D and HfO2-

U, were deposited onto silicon substrate coated with 5 nm Ti/30 nm Pt as the bot-

tom electrode. The electroforming process induced filament formation within HfO2

nanoribbons capped with the three ligand systems is shown in Figure 4.19a, where

the HfO2-U, HfO2-D and HfO2-O systems displayed forming voltages of 6.1 V, 8.2 V

and 10 V, respectively. As 10 V represents the limit of the internal bias source of

the AFM, electroforming HfO2-O required applying the bias of 10 V for longer time

periods (between 30 - 60 sec). Figure 4.19b shows the semi-log I-V response of the

three ligand capped HfO2 nanoribbons. They all display typical bipolar switching

character, where the SET and RESET process occur under positive and negative

voltage, respectively, and exhibit a variation in operating voltage, current level and

the resistance ratio between them. A standard 1 MΩ resistor was used to transition

between operative bipolar resistive switching and threshold switching modes in the
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nanoribbons. The current-voltage (I-V) character observed in Figure 4.19c represents

the threshold behavior under voltage sweeping (± 2 V, 1 Hz) when the resistor is con-

nected in series with the HfO2-U system. Unlike the bipolar switching, the threshold

switching shows a symmetric I-V curve. Moreover, it shows a high resistance (109

Ω) initially followed by an abrupt increase in current level upon reaching a threshold

voltage of approximately +1 V. The ribbon maintains LRS and recovers to the HRS

suddenly at a hold voltage of +0.25 V. This threshold behavior can be tuned with

the external resistor for each sample, exhibiting similar operating voltage ranges and

stability. Figure 4.19d shows 50 switching cycles within a single HfO2-U nanorib-

bon, suggesting the TS behavior remains stable, with a selectivity of 103. When the

resistor is removed, the typical bipolar resistive switching hysteresis is observed.

To evaluate the effect of ligand length on memristive behavior, we estimated the

interparticle spacing of the three samples based on the carbon-carbon covalent chain

length: HfO2-U (1.44 nm), HfO2-D (1.57 nm), HfO2-O (2.2 nm). Figure 4.20a plots

the SET and RESET voltage distribution for bipolar switching as a function of the

ligand length. The SET voltage clearly scales with increasing ligand length, while

the RESET voltage exhibits a smaller dependence on length. An increase in the

VSET distribution can also be observed in the statistical plot with the increased lig-

and length, while for VRESET, however, no clear correlation is found. Figure 4.20b

presents the cumulative distribution function of the LRS and HRS of the three ligand

types. The results were collected using DC sweeping mode at a read voltage of 0.5 V.

The resistance in LRS exhibits a much smaller variation compared to the large vari-

ations observed for HRS for all three types. The HfO2-O system shows a large HRS

fluctuation range of about 104 while the HfO2-U and HfO2-D systems show improved

uniformity of about 103 and 102, respectively.

Previous studies of PbSe NCs showed that the carrier mobility depends on nanopar-

ticle size and the ligand length, the latter of which determines the interparticle tun-
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nel distance.[85] As the same nanoparticle size was used for all samples, the ob-

served difference in RS behavior is therefore attributed to the variation in the ligand

length. The charge transport mechanism involves sequential electron hopping through

nanoparticles, as described by a tunneling model where the mobility strongly depends

on the interparticle distance.[86]

Here both the forming (Figure 4.19a) and the subsequent SET process (Figure

4.20a) display a ligand length dependence, as both VF and VSET increase with in-

creasing ligand length. During the charge transfer process the ligand facilitates elec-

tron tunneling by effectively serving as an insulating spacer.[121] Using the c-AFM

tip as the top electrode forms a Pt-Ir tip-HfO2 NCs-bridge-metal structure, where the

term bridge indicates the capping ligand separating neighboring NCs and the metal

bottom electrode with the bulk HfO2 NCs. When a positive voltage is applied to the

bottom electrode during the electroforming process, the high electric field enables the

creation of oxygen vacancies within the NCs and induces migration toward the tip

along the grain boundary to form a low resistance conductive path.[8] The electrons

injected from the tip under the negative voltage thus pass through the conductive

channel and tunnel between NPs, inducing a transition from HRS to LRS. When a

negative voltage is applied to the bottom electrode, the oxygen vacancies migrate

towards the counter electrode as driven by the electric field of opposite sign, thus

severing the conductive channel.

When a negative voltage is applied to the bottom electrode, the oxygen vacan-

cies migrate towards the counter electrode as driven by the electric field of opposite

sign, thus severing the conductive channel. The mechanism driving the formation

and rupture of conducting filaments in HfO2-based RRAM is typically attributed to

oxygen vacancy migration.[8] [97] [122] [123] For the inorganic:organic capping ligand

system presented here we cannot fully exclude the possibility of more complicated

switching mechanisms involving ligand-mediated vacancy transport, however as the
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ligands comprise long hydrocarbon backbones and possess limited available oxygen

sites compared to the oxide nanoparticles, this process is highly unlikely to occur.

The coexistence of tunable TS and BRS character within HfO2 and NiO thin films

[99] [123] [124] [125] has been attributed to current-controlled morphology changes

of the dominant conductive filament. Joule heating also contributes to thermally-

assisted processes and thus facilitates the formation and rupture of the conducting

path.[124] Limiting the current flow with an external resistor significantly reduces

the current and subsequently induces an instability within the filament, ultimately

resulting in filament rupture after the applied voltage is removed. Conversely, the

current increases when the external resistor is removed such that a stronger filament

is formed by continuous growth, thus producing an active conducting path even after

the removal of external voltage.

The significant ligand length dependent RS behavior is observed in both electro-

forming and subsequent switching processes. In general, variations in VRESET (Fig.

4.20a) and the LRS (Fig. 4.20b) result from either changes in the filament diameter

or the number of conducting filaments formed during the SET process, while varia-

tions in VSET (Fig. 4.20a) and the HRS (Fig. 4.20b) highly depend on variations in

the tunneling gap.[97] HfO2-O nanoribbons exhibit a larger distribution in VSET and

HRS compared to the other two ligand systems, suggesting that the large variation

in the reset process occurs due to the longer ligand length of oleic acid. Also, HfO2-U

possesses a lower HRS resistance compared to HfO2-D since it possesses the shortest

ligand length for electron tunneling at HRS.

4.9 HfO2 Nanoparticles Crossbar Devices

To demonstrate a solution-processed memristive platform, a crossbar device was

fabricated with a flow-coated HfO2-U thin film sandwiched between Ti top and Pt

bottom electrode. The schematic of the cross-point HfO2-U test structure is shown
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Figure 4.21. a, Schematic of a single Pt/HfO2-U/Pt ReRAM device. b, The repre-
sentative I-V characteristics of Pt/HfO2-U/Pt ReRAM device. c, Comparative statis-
tic cumulative probability of the operating voltage for HfO2-U and ALD-prepared
HfO2. d, The cumulative probability of the resistances in each state of HfO2-U and
ALD-prepared HfO2.
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in Figure 4.21a. Using the same solution concentration, the width of the ribbon is

simply extended by varying the stopping distance and substrate velocity. Using the

longer stopping distance, we fabricated a 5x5 µm2 crossbar type device comprising a

40 nm thick HfO2-U thin film sandwiched between 30 nm thick Pt electrodes. The

bipolar resistive switching I-V response was measured by sweeping a DC voltage

from -0.5 V to +1.5 V after a forming process using a compliance current of 100 µA

(Figure 4.21b). An ALD-deposited 10 nm HfO2 RRAM device with the same area

was fabricated for comparison. Here the solution-processed HfO2-U device clearly

exhibits smaller operating voltages, narrow distribution/increased uniformity, and

larger ON/OFF ratio as shown in Figure 4.21c, d. The average SET and RESET

voltages were 0.97 V and -0.36 V, respectively for HfO2-U; the ALD-deposited HfO2

displayed values of 3.2 V and -5.7 V, respectively. The ON/OFF ratio improved

from 10 for ALD HfO2 to 105 for the HfO2-U at the expense of a small decrease in

the uniformity of the resistance. Thus, the solution-processed device exhibits both

stable switching behavior and small operating voltages that are competitive with

more commonly employed ALD-deposited HfO2 thin film-based devices.

4.10 Summary of Chapter 4

Top-down, ultrahigh vacuum (UVH) deposition approaches for MIM nanostruc-

tures yield highly crystalline, heteroepitaxial interfaces, but limit the number of elec-

trode configurations due to a fixed bottom electrode. Therefore a facile, inexpen-

sive, scalable fabrication method was introduced that yields memristive nanoribbon

structures comprising solution-processed, single-crystalline complex oxide nanoparti-

cles possessing complete transferability to arbitrary substrates. As-fabricated SrTiO3

nanoribbons displayed stable eightwise switching, in contrast to the counter-eightwise

polarity exhibited by single crystal STO thin films with appreciable dislocation densi-

ties. The endurance of memristive behavior was also demonstrated, including switch-
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ing ratios up to 104, after nanoribbon redeposition onto polyethylene terephthalate

(PET) flexible substrates. The combination of ambient, aerobic prepared nanocrystals

and convective self-assembly deposition herein provides a pathway for facile, scalable

manufacturing of high quality, functional oxide nanostructures on arbitrary surfaces

and topologies. The ability to transfer nanoribbons to arbitrary substrates creates

a rich parameter space by which any desired polarity response, improved RON/ROFF

ratio, and switching type is potentially tailored through bottom electrode metalliza-

tion selection (or change). The transferability and durability of memristive properties

post-transfer or in a strained state boast promise as flexible and printed electronic

elements.

Subsequently the ligand length was shown to directly affect the resistive switching

behavior through the comparison of three commonly employed ligand chemistries.

Our c-AFM results showed that individual HfO2 nanoribbons demonstrated both

threshold switching and bipolar resistive switching modes, dependent upon an exter-

nal resistance applied to the system, which limits current and further changes the

filament morphology. Oxygen vacancies formed during hydrothermal process and un-

der high applied voltage drive the switching behavior, while the operating parameters

and stability correlate directly with ligand length. Finally, a solution-based device

displays promising advantages, including low cost, lower operating voltages, increased

uniformity, and larger ON/OFF ratio compared to the typical ALD thin film HfO2

memory device. The chosen ligands for this study are frequently used for nanoparti-

cle stabilization, and thus should immediately apply to optimizing resistive switching

behavior in other solution-processed, complex oxide nanoparticle systems.
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CHAPTER 5

ENHANCED CYCLE-TO-CYCLE UNIFORMITY

5.1 Cycle-to-Cycle Variability

Figure 5.1. a. I-V curve during 100 cycles DC sweeping on Ti/HfO2/Pt RRAM
device. b. histogram of the set and reset voltage over 100 cycles. c. The corresponding
cumulative probability of the resistance values at HRS and LRS.

As the most promising candidate for the next generation nonvolatile memory

device with high scalability, high speed and low power consumption, the large-scale

manufacturing of RRAM is targeting to replace the conventional flash memories for

future data storage. The commercialization of RRAM has progressed rapidly in the

last decade. At the same time, several challenges still remain, in terms of device

uniformity, endurance, retention and high density integration.[97] [126] [127] Among

the performance issue today, poor uniformity becomes a major task for commercial
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realization. Intense parameter fluctuation may occur from cycle to cycle or device

to device, leading to serious reliability problems as well as programming and readout

issues. The cycle-to-cycle uniformity includes the variation of the operate voltage,

VSET and VRESET, and the HRS/LRS resistance values.

For CF-based RRAM devices, the underlying origin of the fluctuations is consid-

ered to be the stochastic nature of filaments generated from the continuous switching

process, including the ion motion associated with the generation and recombination

of oxygen vacancies or variation on number/size of conducting filaments formed in

the SET process.[128] [129] The switching process does not typically form a single

columnar unit bridging the top and bottom electrodes within the oxide film, but

forms multiple local, competitive pathways during CF formation. Even a small varia-

tion may induce intense parameter fluctuations including operate voltages, HRS/LRS

resistance and reset current and further cause retention and endurance problems. Es-

pecially, the fluctuation of VSET may be explained in terms of the varying tunneling

gap between the filament tip and the counter electrode generates in the RESET pro-

cess. Remarkably, simulation results show that a small variation, i.e. 0.1 nm, in

tunneling gap distance can create a significant resistance change of 102, thus gives

rise to large distribution of VSET.[130] Pushing forward studies revealing the details of

the continuous filament formation and rupture from a microscopic point of view pro-

vide a potential pathway to solve the difficulties in controlling the filamentary activity

during the resistive switching process. Figure 5.1 shows a typical I-V characteristic of

traditional HfO2 memristor during 100 cycles. It represents a typical bipolar switch-

ing behavior with a poor repeatability from cycle to cycle. The histograms in Figure

5.1 b shows the operating voltage range and cumulative probability in Figure 5.1c

demonstrates the resistance value distributions transferring from the I-V curves. A

large voltage range exists from -3 to -0.4 V and 0.5 to 2.2 V for VSET and VRESET,

respectively.
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One effective approach to control the growth of CF is the inclusion of metal-

lic nanostructures embedded within oxide films. These systems exhibit multilevel

switching, enhanced retention, higher on/off ratios, and lower operating voltages, all

attributed to enhanced local electric fields and higher vacancy concentrations.[131]

[132] Previous studies proposed possible solutions for solving the uniformity problems,

and one is by choosing the proper material system. TiO2, a well-studied prototype

switching material is facing serious reliability issues result from the large range of its

non-stoichiometry at room temperature, which due to its complicated oxidation state

in TiOx matrix.[69] In this case, an effective way is to use metal oxide that presents

stable chemical states, Ta2O5 and HfO2 for instance, decreasing the possible different

resistance levels.

An alternative type of solution has been reported is engineering the interface struc-

ture, such as inserting a buffer layer between the metal oxide and electrode. Here the

buffer layer can typically be, but not limit to, metal, oxide or nitride thin film, provid-

ing improvement in uniformity and reliability. It has been observed excellent switch-

ing uniformity and reliability by introducing an Zr metal layer.[133] The induced

ZrOx/HfOx bilayer precisely controls the oxygen vacancy concentration in HfO2 and

creates a tunneling barrier within HfOx for the reset process. Another recent study re-

lates to the interface engineering technique utilized the highly ordered Ag nanocones,

serving as the electric-field concentrators so that achieving selective and controlled

filament growth.[134] In this work, the conventional cell and the nanopatterned cell

have been compared, implying the narrowed operating voltage distributions is at-

tributed to the guided growth of Ag filament. Moreover, the confined conducting

path is visualized as bright spots by c-AFM, indicating the correlated locations of the

nanocones and the Ag filament.

The third method regards to the confinement of conducting filament by concen-

trating the local electric field at the region where nanoparticles are inserted, but not
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achievable by the continuous intermediate layer. Efforts towards embedding metal

nanoparticles into oxide thin film for memristors have been presented as both mod-

eling and experimental evidence that prove the enhanced resistive switching proper-

ties. Many type of metal nanoparticles, such as Ag,[132] [135] Au,[136] [137] Co,[138]

Ni,[53],[139] Pd,[140] Pt,[141] Ru,[142] [143] Ti,[144] and Hf[145], have been embedded

in bulk oxide material acting as an electric field concentration center.

One notable work published by Jung Ho Yoon et al[143] reported the highly

improved uniformity in resistive switching behavior by inserting the Ru nanodots

in TiO2 memristor. They confirmed the reduced variation in different parameters

for chosen device sizes, nanodots diameters and inserting positions. Note that the

t-Ru and b-Ru, which is near anode (t-top) interface and cathode (b-bottom) inter-

face, respectively, play different roles change from field-enhancer to field-suppressor

as injecting at different positions. Tsung-Kuei et al[140] recently reported resistive

switching characteristics in HfOx memristor with embedded Pd nanocrystals into dif-

ferent locations. However, they did not present a reference sample for comparison,

so there is no significant improvement can be observed. Furthermore, they con-

clude that the resistive switching character is closely related to the forming process,

which is unreasonable due to the missing analysis of VSET/VRESET distribution. In

fact, the cycle-to-cycle uniformity and device failure phenomenon display strongly

dependency on the repeating set and reset process. Although these works pointed

out the direction for solving the main problems and improved the performance to

some extent, the randomly dispersed nature, unpredictable density and large size

distribution of nanoparticles remain an issue, thus hindering the maximization of

filament confinement origins from asymmetric electric field. Min Ju Yun et al[144]

demonstrated optimized resistive switching properties using several metal nanocrys-

tals embedded in NiN-based memristor. The different work functions between metal

nanocrystals and bulk NiN are claimed to introduce different conduction mechanism,
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which enables further improvement by precisely calculating the induced potential

barrier height. However, investigation of comparing different metal nanoparticles in

oxide-based memristor is still lacking, where associated issues need to consider in-

cluding their different oxygen affinity and mobility when involved in oxide material.

Importantly, although the embedded species is known to be field concentrator, the

additional correlations between metal and the oxide matrix are not yet clear. In-

deed, oxygen sink or vacancy sink behaviors are believed to form closely around the

nanoparticle based on the electrochemical active level of the metal type.

In these cases, however, the embedded nanostructures suffer from random dis-

tributions, unpredictable density, and highly variable sizes of metallic nanoclusters

in the oxide layer, which are typically fabricated either by ion bombardment or an

annealing/dewetting process. The recrystallization process is highly dependent on

temperature and environment. While the cluster size has been shown to depend on

metal electronegativity,[144] the size and distribution of embedded metal nanocrystals

has not been systematically varied or controlled. This may further cause the device-

to-device uniformity issues due to the spatial variety of the nanostructures. On the

other hand, the inclusion of these metals to modulate the barrier height and help

dictate the conduction mechanism motivated us to confine, pre-define, and directly

probe the ionic interactions between the embedded nanocrystals and the surrounding

oxide. Though the embedded species is known to locally concentrate the electric field,

additional correlations between the metal and the oxide matrix, such as the effects of

oxygen affinity and mobility, remain unclear.

5.1.1 Summary of the embedding nanoparticles approach

• Inserted nanoparticles of different types of metal with varying sizes.2�

• Improved the uniformity and reliability to some extent.2�

• Showed observation of conductive filament and composition analysis.2�
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• Built the simulation model of electrical field distribution for embedded sample.2�

• Thermal dewetting yields nanoparticles of random dispersion and density.4

• No experimental evidence towards the correlation between the position where

the conducting filament formed and the nanoparticles.4

• The understanding of the roles that different metals play within the oxide

switching layer is still missing.4

Aiming at improving the variability on redox-based resistive switching devices, we

established a simple, versatile template-assisted fabrication scheme to embed ordered

metallic arrays in the archetype switching oxide hafnia HfO2, the first demonstration

of fully patterned nanostructures in a memristive oxide film, thus eliminating the

random spatial distribution that plagues currently employed approaches to prevent

the further issue of device-to-device variability. We illustrated thin films embedded

with ordered arrays of Pt, Ti, and Ag nanoislands (NIs) all exhibit significantly

reduced operating voltages and drastic improvements in overall uniformity of the

LRS and HRS.

5.2 Templated-Directed Device Fabrication

As a low-cost approach competing with complicated multi-step lithographic pro-

cesses, ultrathin anodic aluminum oxide (AAO) template provides highly ordered

individual patterns meanwhile with attractive advantages involving large scale fabri-

cation. AAO boasts additional advantages such as large scale fabrication, and tun-

ablility of the nanopore size, thickness and interpore spacing, motivating its use in

recent studies of RRAM devices.[146] [147] [148] [149]

Figure 5.2 shows the templated-directed process developed for embedding ordered

metal nanoisland (NI) arrays within the oxide layer of M-O-M structures. The process

begins with the deposition of i) a bottom electrode by evaporation; ii) the initial
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Figure 5.2. a, Illustration of the template-directed device fabrication approach. b,
The cross-sectional schematic of the nanoisland embedded HfO2 RRAM devices. c,
SEM image of the ultrathin AAO template after transferring on the substrate.

Figure 5.3. a, SEM image of the D90 nm NIs deposited on HfO2. b, SEM image of
top surface after depositing the second layer HfO2. Scalebar: 500 nm.
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Figure 5.4. The particle analysis of the Pt nanoislands deposited on HfO2 after
removing the AAO template. a-b, Surface topography of highly-ordered nanoisland
arrays for D30 and D90, respectively. c, A plot of the number of nanoislands versus the
device area, indicating a controllable density of the nanostructure by using template-
driven approach.

oxide layer by atomic layer deposition (ALD); iii) transfer of ultrathin (aspect ratio

< 8) AAO templates on the first oxide layer; iv) templated metal nanoislands by

evaporation; v) a second oxide layer by ALD; patterned vi) top electrode and vii)

capping layers. The NIs are deposited via AAO templates with two different pore sizes

(30 and 90 nm), follow by a mechanical removal of the template allowing well-ordered.

NI arrays comprising three types of metals (Pt, Ti, Ag) of two different diameters were

embedded into ALD-prepared HfO2 thin films, denoted Pt-D30/Pt-D90, Ti-D30/Ti-

D90, and Ag-D30/Ag-D90 hereafter. A SEM image of ultrathin AAO template (Fig.

5.2c) after transferring, periodic NI arrays achievable through the simple template-

assisted deposition approach in Figure 5.3. The nanoisland diameter, inter-island

spacing and the resulting area density are precisely controlled through changes in the

pore size by varying the anodization voltage during template fabrication. The highly

ordered, consistent structure of the NI arrays has been confirmed by SEM images in

Figure 5.3a. After the second oxide layer deposition, the topography has also been

examined by SEM in Figure 5.3b.
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In order to prepare the device, a 5 nm Ti adhesion layer and 30 nm Pt bottom

electrode was deposited by evaporator sequent on the SiO2/Si substrate. 5 nm HfO2

oxygen layer were grown by (ALD) at 250◦C with Tetrakis(dimethylamino)hafnium

and H2O as Hf precursor and oxygen source, respectively. The AAO template (Top-

Membranes Inc., Shenzhen, China) was transfer onto HfO2 with two different pore

sizes (20 and 100 nm), follow by the deposition of metal thin film (Ti, Pt, Ag) of

3.5 nm using evaporation. After removing the template, another HfO2 layer of 5

nm in the same conditions was obtained using ALD. Finally, 30 nm Ti top elec-

trode and 15 nm Pt capping layer with diameter of 50 µm was deposited to form

the memristor device. A Ti/HfO2(10 nm)/Pt structure with no embedded NIs was

prepared for reference propose. The cross-section of embedded sample was observed

by high resolution transmission electron microscopy (HRTEM). The topography was

characterized by atomic force microscopy (AFM) and scanning electron microscopy

(SEM).

The number and density of the NIs have been thoroughly examined by the particle

analysis in ImageJ software. Figure 5.4 demonstrates the well-ordered NI arrays of Pt

after template removal. The calculated average sizes based on a 1 µm topography scan

was 29.7 ± 3.0 and 92.2 ± 6.7, respectively. Therefore, we use D30 and D90 indicate

the different size of the NIs in this chapter. Furthermore, the number of NIs increases

with increasing device area as shown in Figure 5.4c, indicating a precisely controlled

density which can be determined according to the linear relationship between number

of NIs and the device area. The density is approximated as 227 ± 2µm−2 and 68 ±

1µm−2, respectively.

5.3 Switching Performance of Embedded Memristors

To demonstrate the electrical performance of the embedded devices, the I-V char-

acter was analyzed over 100 cycles of DC voltage sweeps using a probe station. Figure
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Table 5.1. The statistical results of VSETand VRESETcomparing the bare HfO2 and
embedded HfO2 memristors.

Figure 5.5. Histograms of operating voltage distribution of embedded HfO2 with Pt,
Ti and Ag nanoislands with diameter of a-c, 90 nm and d-f 30 nm. A gray histogram
indicates the operating voltage of bare HfO2 memristor inserted as the background
for the purpose of comparison.
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5.5 compares the histograms of the set (red) and reset (blue) voltages of Pt (Figs.

5.5a,b), Ti (Figs. 5.5c,d) and Ag (Figs. 5.5e,f) embedded memristors to that of a

bare HfO2 control film without any embedded nanoislands (grey; Figs. 5.5a-f). Ta-

ble 5.1 summarizes the details of the statistical data found in the histograms of the

metal nanoisland-embedded films (Figs. 5.5a-f). The reference control films exhib-

ited an average VSET and VRESET of 1.295 ± 0.363 and -1.121 ± 0.484, respectively.

The ordered embedded nanoisland arrays of all metal types and diameters yielded a

significant reduction in operating voltage. Two distinct trends are observed in the

performance of the ordered, embedded nanoisland arrays. The first trend shows Ag

nanoislands of either size lower both VSET and VRESET more effectively than either

Pt or Ti nanoislands; for the D30 systems the order of highest to lowest percentage

reduction is Ag > Ti > Pt, for D90 systems Ag > Pt > Ti. These devices exhibit

both VCM and electrochemical metallization process (ECM), where electrochemical

metal deposition/dissolution cycles enable switching between active and inert elec-

trodes, has been illustrated in Ag nanoparticle-embedded Al2O3 thin films. The

second trend shows that generally the larger diameter D90 systems reduce both the

VSET and VRESET values more effectively than their smaller D30 counterparts, but

display slightly broader distributions (higher standard deviation).

The ordered, embedded nanoisland systems also significantly enhanced the cycle-

to-cycle resistance uniformity compared to the bare HfO2 thin films, as shown in the

plots of the cumulative probability of resistance for 100 cycles between the HRS and

LRS of both the embedded and reference devices in Figure 5.6. Full statistics can be

found in Table 5.2. The bare HfO2 reference films exhibit significant changes in the

resistance values and consequently large coefficients of variation (CV) for the LRS

(Figs. 5.6a,b; grey open) and HRS (Figs. 5.6a,b; grey solid). The Pt-D30 system

displayed exemplary uniformity enhancements (Fig. 5.6a, green), with an overall

95% reduction in CV of the LRS and 89% reduction in CV of the HRS! The Pt-
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D90 system (Fig. 5.6b, green) also significantly reduced the CV by a factor of 68%

(LRS) and 79% (HRS), respectively. The Ag-embedded films similarly yielded stark

improvements to the uniformity, with a reduction in CV of the set/reset voltages

of 55% and 75% for the Ag-D30 system and 41% and 56% in the Ag-D90 system,

respectively (Figs. 5.6a,b; azure). Devices embedded with ordered Ti nanoisland

arrays, however, exhibited only nominal improvements (∼ 5% or less) in uniformity

for the Ti-D30 system (Fig. 5.6a; magenta) and moderate improvements (41% in CV

of VSET; 56% in CV of VRESET) for the Ti-D90 system. Based on the results shown

in Figure 5.5, 5.6 and Tables 5.1 and 5.2, the embedded nanoislands clearly reduced

the operating voltage (Ag, the most) while improving the cycle uniformity (Pt, the

most). We attribute the differences in performance between the embedded nanoisland

systems to the properties of the metal types itself. While the embedded Ag systems

work under the ECM principles involving cation migration mentioned earlier, the Pt

and Ti systems leverage the filamentary dynamics of oxygen vacancies to enable a

valence change mechanism, the evolution and manipulation of which serves as the

focus of this study. Figure 5.7 shows the resistance versus number of cycles at HRS

and LRS for the reference, m-TiD90 and m-PtD90, respectively. Note that both

reference and m-TiD90 display an extensive degradation of the resistive level during

100 cycles, which is significantly improved in the m-PtD90 system. In other words,

a large ON/OFF ratio as 103 can be maintained with an increasing number of cycles

by embedding PtD90.

The physical origin of the resistance fluctuations arises from the variation in the

number and/or size(s) of the conductive filaments or ion motion associated with the

generation and recombination of oxygen vacancies. The enhanced performance uni-

formity is attributed to the confinement of the conductive filament growth pathway.

Simulations of the electric field distribution surrounding embedded species within

a dielectric film matrix showed that the highest field concentration occurs at the

80



edge of nanostructure, favorable for both electrochemical reduction and oxygen va-

cancy migration processes.[143] Embedding metal nanoislands within the oxide thin

film concentrates the electric field such that the fast oxygen reduction occurs only

between the Ti top electrode and the location of the nanoisland array. Controlled

growth of the conductive filamentary channel is subsequently achieved by electric field

modulation, manifested as a reduction in operating voltages and a narrowing of their

subsequent distributions.

Figure 5.6. Resistance cumulative probability of different embedded memristor with
nanoisland diameter of a, 30 and b, 90, respectively.

Figure 5.7. Resistance values at HRS and LRS read at 0.2 V during 100 cycles for
a. reference device, b. m-TiD100 and c. m-PtD100, respectively.
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Table 5.2. The statistical results of resistance at LRS and HRS comparing the bare
HfO2 and embedded HfO2 memristors.

The ordered, embedded nanoisland systems also significantly enhanced the cycle-

to-cycle resistance uniformity compared to the bare HfO2 thin films, as shown in the

plots of the cumulative probability of resistance for 100 cycles between the HRS and

LRS of both the embedded and reference devices in figure 5.6. Full statistics can be

found in Table 5.2. The bare HfO2 reference films exhibit significant changes in the

resistance values and consequently large coefficients of variation (CV) for the LRS

(Figures 5.6a,b; grey open) and HRS (Figures 5.6a,b; grey solid). The Pt-D30 system

displayed exemplary uniformity enhancements (Figure 5.6a, green), with an overall

95% reduction in CV of the LRS and 89% reduction in CV of the HRS! The Pt-D90

system (Figure 5.6b, green) also significantly reduced the CV by a factor of 68%

(LRS) and 79% (HRS), respectively. The Ag-embedded films similarly yielded stark

improvements to the uniformity, with a reduction in CV of the set/reset voltages

of 55% and 75% for the Ag-D30 system and 41% and 56% in the Ag-D90 system,

respectively (Figs. 5.6a,b; azure). Devices embedded with ordered Ti nanoisland

arrays, however, exhibited only nominal improvements (∼ 5% or less) in uniformity

for the Ti-D30 system (Figure 5.6a; magenta) and moderate improvements (41% in

CV of VSET; 56% in CV of VRESET) for the Ti-D90 system. Based on the results shown

in figure 5.5, 5.6 and Tables 5.1 and 5.2 , the embedded nanoislands clearly reduced
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the operating voltage (Ag, the most) while improving the cycle uniformity (Pt, the

most). We attribute the differences in performance between the embedded nanoisland

systems to the properties of the metal types itself. While the embedded Ag systems

work under the ECM principles involving cation migration mentioned earlier, the Pt

and Ti systems leverage the filamentary dynamics of oxygen vacancies to enable a

valence change mechanism, the evolution and manipulation of which serves as the

focus of this study. figure 5.7 shows the resistance versus number of cycles at HRS

and LRS for the reference, m-TiD90 and m-PtD90, respectively. It should be noted

that both reference and m-TiD90 displace an extensive degradation of the resistive

level during 100 cycles, which has been significantly improved in m-PtD90 system.

In other words, it can be maintained a large ON/OFF ratio as 103 with increasing

number of cycles by embedding PtD90.

The physical origin of the resistance fluctuations arises from the variation in the

number and/or size(s) of the conductive filaments or ion motion associated with the

generation and recombination of oxygen vacancies. The enhanced performance uni-

formity is attributed to the confinement of the conductive filament growth pathway.

Simulations of the electric field distribution surrounding embedded species within a

dielectric film matrix showed that the highest field concentration occurs at the edge

of nanostructure, favorable for both electrochemical reduction and oxygen vacancy

migration processes. Embedding metal nanoislands within the oxide thin film concen-

trates the electric field such that the fast oxygen reduction occurs only between the

Ti top electrode and the location of the nanoisland array. Controlled growth of the

conductive filamentary channel is subsequently achieved by electric field modulation,

manifested as a reduction in operating voltages and a narrowing of their subsequent

distributions.
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Figure 5.8. The comparison of the resistive switching characteristics of PtD90 em-
bedded memristor in different thickness dimension. a. I-V response of m-PtD90 and
b-PtD90 with b-PtD90 shows a reduced and narrowed range of VSET. b. histogram
of the operating voltage of b-PtD90. The gray histogram in the background indicates
the operating voltage distribution of m-PtD90, showing an improved uniformity by
moving the NIs towards bottom electrode. c. representative I-V curve of m-TiD90
and b-TiD90, respectively. d. histogram of the operating voltage of b-TiD90. Inset
of a and d shows the position of the embedded NIs.

Table 5.3. The statistical results of operating voltages of Pt and Ti embedded HfO2

devices inserted at different thickness position
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Figure 5.9. a, Comparison of the cumulative probability of the resistance in LRS
and HRS, suggesting a decreased HRS can be observed in b-PtD90. b, comparison of
the cumulative probability of the resistance in LRS and HRS, suggesting a decreased
HRS and resistance distribution in each state.

5.3.1 Inserting NI Arrays Near the Bottom Electrode

Embedding ordered nanoisland arrays to effectively limit the variability that oc-

curs in bare HfO2 memristive films generates a secondary challenge of narrowing the

VSET and the reset resistance distributions. To address these issues, the position of

the nanoisland array was moved along the film thickness dimension and then its influ-

ence on the switching performance was explored. Altering the sequence in Figure 5.2a

to deposit only a 1 nm HfO2 thin film in step iii) shifted the placement of a Pt-D90

nanoisland array from the film middle to the film bottom (defined by the thickness

of the film in step iii above the bottom electrode), labelled hereafter as b-PtD90 as

shown within the inset of Figure 5.8a. Figure 5.8 compares the I-V responses of

m-PtD90 (green) and b-PtD90 (purple) (Fig. 5.8a) and the operating voltages (Fig.

5.8c), respectively. Figure 5.8b shows the b-PtD90 system exhibits a stark reduction

in VSET (red) and VRESET (blue) compared to the m-PtD90 system (grey), and a

narrower overall VSET distribution. Their statistical summary can be found in Table
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Table 5.4. The statistical results of resistance at HRS and LRS of device with
embedding NI at varying thickness positions.

5.3 and 5.4. Similar improvements were also observed for m-Ti90 vs b-TiD90 systems,

as shown in Figures 5.8c,d, further demonstrating the strong correlation between the

reset process and the position of the nanoisland arrays along the film thickness di-

mension. This reduction likely originates from adjusting the space between the tip

of the filament and the bottom electrode, a gap that ultimately dictates the high

resistance state and set voltage. Figure 5.9 compares the cumulative probability of

the resistance of m-PtD90 and b-PtD90 (Fig. 5.9a) as well as m-TiD90 and b-TiD90

(Fig. 59b). The b-PtD90 system produces a lower HRS due to the smaller gap formed

by reset process compared to the m-PtD90 system; the reduction in gap distance also

produces larger electric fields that further facilitate ion migration, thus explaining the

observed reduction in set voltage. Similar trends were observed in recent studies that

showed decreases in gap distance yielded electric field enhancements that restricted

the self-accelerating filament growth to specific sites during the set process.

5.4 EFM and c-AFM

We demonstrated the face that the difference in the volume of oxygen vacancies

leads to the varying conductive regimes examined via c-AFM. The current images

show significant differences in the (dark blue) local conductive spot areas for Pt-

D90 (2250 ± 5nm2; Fig. 5.10e) and Ti-D90 (4460 ± 4nm2; Fig. 5.10f) systems, as

measured using a tip voltage of 7 V during scanning. The presence of a second,

86



Figure 5.10. EFM and c-AFM measurements. a, EFM result of PtD90 under +5 V,
the blue area represents the embedded nanoisland in HfO2 thin film. b, EFM result
after 50 cycles of locally voltage sweeping, suggesting an accumulation of oxygen
vacancies under the conductive probe. c, c-AFM image shows a conductive channel
around the oxygen vacancy cluster. d, EFM result of TiD90 under +5 V. e, a much
larger area of oxygen vacancy accumulation can be observed under +2 V. f, c-AFM
shows a conductive channel with larger size and multi-filamentary behavior.
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satellite conductive spot observed in the Ti-D90 system (580 ±3 nm2; Fig. 5.10f)

likely results from one of two possible formation mechanisms; i) multiple filaments

formed due to a higher oxygen vacancy concentration, in agreement with a similar

phenomenon reported for subfilamentary structures,[119] [150] [151] or ii) the forma-

tion of a filament network comprising multiple smaller filament branches connected

to the main conducting region subsurface. A multi-branched structure likely affects

the resistance level significantly, while the morphological complexity generated from

each subsequent reduction cycle drives the instability observed for both the VSET and

ON/OFF ratio.

5.4.1 3D Observation of Conductive Channel

Nanoisland-embedded memristors of all metal types exhibit strongly enhanced

switching uniformity while the apparent change in local oxygen vacancy concentra-

tion surrounding various metal nanoislands suggest different filament morphologies

exist. As conductive filaments dictate both the location and mechanism of trans-

port, and ultimately enables information storage and multi-functionality, obtaining

spatially-resolved information involving their construction is required to maximize

the enhancements in performance. Three-dimensional conductive-AFM (3D c-AFM)

tomography,[30] [47] [152] a recently developed AFM approach, combines the sensi-

tive force control in the z-dimension of the AFM with a hard, conductive diamond

probe to sequentially remove material layer-by-layer and subsequently measure the

local current, thus yielding a slice-and-view approach to observe conductive filaments

within oxide-based memristors.

In order to locate the position of the conductive filament, the diameter of the

top electrode has been reduced to 1 µm, which was patterned by electron beam

lithography. Before scanning, I-V characteristics were collected and the devices were

operated into LRS. A doped-diamond conductive tip (Bruker) with a spring constant
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Figure 5.11. The c-AFM image (300 nm × 300 nm) on the bare HfO2 RRAM
devices surface scanned after removing the top electrode.

of [79] N/m was used as both scalpel and the current detective probe. The removal

rate strongly depends on the material type and the fabrication conditions and can be

controlled by adjusting the scan velocity and contact force.[153] A small scan rate of

0.3 Hz has been use to ensure a uniform removal region while a relative large force has

been applied for removing the electrode material, remaining an average removal rate

of 10 nm/scan. After removing the electrode, the oxide layer was entirely exposed

such that the filaments were observed as multiple conductive spots and magnified to

obtain high lateral resolution. The removal rate then has been reduced to about 0.5

nm/scan, leading to large number of 2D slices containing current information.

Figure 5.11 shows the current map of the bare HfO2 device surface after removing

the top electrode. One large and multiple small conductive spots can be observed, sug-

gesting subfilamentary nature originates from the random growth of the conducting

filaments. Each filament provides a potential pathway for current flow during the re-

set process, which explains the large variation taken place in the reference device. The
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Figure 5.12. Schematic Illustration of the 3D tomography approach for conducting
filament observation of b-PtD90.

subfilamentary phenomenon has been proved in recent work where the microscopic ori-

gin of the cycle-to-cycle variability was investigated in graphene/SrTiO3/Nb : SrTiO3

memristive devices.[150] A series of high resolution two-dimensional c-AFM images

displays the evolution of local current spots corresponding to the presence of conduc-

tive filaments along the film thickness direction, thus enabling detailed analysis of the

switching behavior.

In order to probe how nanoislands dictate the three-dimensional filament morphol-

ogy and reduce variability, c-AFM 3D tomography was employed to observe filament

formation. The devices were first subjected to 50 cycles and left with the LRS in-

duced prior to any sample removal or measurement. Doped diamond c-AFM probes

served as the nanoscalpel, which executed two separate sweeps operated in contact

mode; the first sweep of removed material, the second sweep performed the conductive

measurement (Fig. 5.12; bottom). Removing the electrode exposed the conducting

filaments on the film surface underneath, the locations of which were magnified for

subsequent scanning (Fig. 5.12, top right). A series of 2D current images (Fig. 5.13)

were collected of the Pt-D90 system to produce a sequence of 3D side view conductive

maps (Fig. 5.14). Here one larger, main filament was observed that spans the entire
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Figure 5.13. Two-dimensional current maps series (10 out of 30 slides). The con-
ductive spots indicate the filament geometry varying from top to the bottom of the
oxide layer.
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film thickness from top to bottom which was flanked by two smaller, fragmented con-

ductive channels (subfilaments; Fig. 5.14b top, bottom) that terminate within the

HfO2 layer. The main filament possessed an average diameter of 10, 15, and 20 nm,

respectively, as measured at different slices along the film thickness direction of the

cross-sectional profile. The main filament produces the strongest current, dominating

the electrical behavior during the switching process.

Figure 5.14. a. top view observation of 3D construction via volume viewer. b. cross-
sectional observation of multifilamentary geometry inside Pt-D90. Three individual
filaments with one larger and two small can be found at different cross-sectional
positions. c. top view of the filament in high transparency with the shade area
indicates the location of the embedded nanoislands. d. Three-dimensional structure
of the conducting filament.

A combination of an hourglass-like and conical-shaped main conductive channel

morphology[154] was observed (Fig. 5.14d), with an area ranging from 390 ± 2 nm2

92



to 110 ± 2 nm2 and variations in the corresponding cross-sectional diameter from

20 ± 1 nm to 10 ± 0.5 nm. The coexistence of one main and several secondary,

subfilaments observed fully supports recent photoelectron emission studies of oxide

thin films that showed subfilamentary formation caused cycle-to-cycle variability due

to thermally-assisted recombination of oxygen vacancies.[150] A transparent 2D cur-

rent image is shown in Figure 5e, which highlights the position of the main filament

(blue, middle) and subfilaments (blue, upper left, lower right) relative to the em-

bedded Pt-D90 nanoisland array (grey). Removing the HfO2 thin film layer-by-layer

along the thickness-direction of the entire device enabled the direct observation of the

embedded nanoislands (grey areas) close to the bottom electrode, with the resulting

filaments also visible along the nanoisland periphery. Note the filament growth fol-

lows along the outermost edge of the embedded nanoislands where the highest electric

field occurs. The majority of the current flow is confined to the main conductive fil-

ament after SET operation, as evident by the highest current values observed within

the largest filament in Fig. 5.14b. As the dominant filament ruptures during the

RESET process,[155] each subfilament effectively competes to become the active, pri-

mary conductive pathway for the next cycle. The presence of multiple filaments thus

controls the switching behavior, inducing undesired parameter fluctuation and device

failure.[156] Figures 5.14b.d demonstrate the ability of 3D c-AFM nanotomography

to directly observe the overall shape/morphology, spatial position, and strength for

complete filament characterization.

Compared to the subfilamentary formation observed in the embedded Pt-D90 thin

films, the filament morphology generated by the embedded Ti-D90 nanoisland array

exhibits significantly different features, such as the enlarged area observed in the 2D

current image (Fig. 5.15) and the stochastic geometry found in the 3D reconstruction

(Fig. 5.16b, c). In contrast to the Pt-D90 system, the Ti-D90 system displays three

separate, individual conductive pathways originating at the surface (with diameters
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Figure 5.15. Two-dimensional current maps series (10 out of 30 slides). The con-
ductive spots indicate the filament geometry varying from top to the bottom of the
oxide layer.
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ranging from 10 ± 2 nm to [79] ± 5 nm) that eventually merge to become one large,

primary filament (area = 1460 ± 5 nm2), as shown in the 3D side view current image

projection in Figure 5.16a. These results are consistent with the EFM phase im-

age (Fig. 5.10d) and current image (Fig. 5.10f) of embedded Ti-D90,which further

supports an increase in the local oxygen vacancy concentration due to the Ti scav-

enging oxygen from the surrounding film,[157] thus creating the complex, branched

network-like morphology of the conducting channel.

Figure 5.16. conducting filament observation of b-TiD90 on a. top view, b. cross-
section and c. entire 3D structure, respectively.

The c-AFM nanotomography results shown in Figure 5.14 and 5.15 identified two

separate filamentary morphologies; the existence of one large, primary filament sur-

rounded by additional subfilamentary conductive paths in the Pt-D90 system, and

the growth of a multi-branched conductive network in the Ti-D90 system. The large,

stochastic nature of the branched filament network likely contributes to the severe

degradation of the resistance states observed for the Ti-D90 system. Removing the

top electrode of the bare HfO2 thin film reference sample revealed multiple conducting

spots (Figure 5.11) attributed to the random migration and redistribution of oxygen

vacancies that drive the unexpected formation of smaller, secondary channels that
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ultimately increase the number of competitive pathways during the reformation pro-

cess. These results suggest that the design of embedded thin films should strongly

emphasize the importance of the electrochemical stability of the nanoislands with

its surround matrix. Inert nanoislands clearly simplify the morphological complex-

ity of the conducting channel, thus reducing both the operating parameters and the

cycle-to-cycle variability.

5.5 Summary of Chapter 5

Memristors have reached a critical developmental stage where emerging large scale

integrations face major challenges involving the severe instability of performance pa-

rameters. Hierarchically-ordered metallic nanoislands were embedded within memris-

tive HfO2 thin films to overcome the random size and spatial distribution limitations

of other embedded nanostructured approaches to enhance switching performance and

observe conductive filament dynamics. Thin films embedded with Pt, Ti, and Ag of

two distinct diameter regimes demonstrated significant reductions in both operating

voltage and resistance, while also yielding enhanced cycle-to-cycle uniformity. Further

improvements to VSET were made possible by translating the embedded nanoisland

arrays from the middle of the film towards the bottom electrode. The concentrated

electric fields promoted oxygen vacancy generation and accumulation, as shown by

the evolution of EFM phase and c-AFM current images between Pt and reactive Ti

nanoislands. Use of the slice-and-view 3D c-AFM nanotomography confirmed the

subsequent morphological differences of conductive filaments produced with Pt and

Ti nanoislands. The electrochemical stability of Pt nanoislands yielded multiple,

hourglass-shaped filaments found along the nanoisland periphery where the maxi-

mum local electric field enhancement occurs. A large branched filamentary network

within the Ti-embedded film, resulting from the high vacancy concentrations induced

as Ti extracts oxygen from the surrounding oxide matrix. Overall the versatility of
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template-directed deposition of embedded nanostructures is expected to extend to

include other, non-metallic material systems such as functional complex oxides, thus

opening a wealth of opportunities to study transport, ferroic, and physiochemical

phenomena sensitive to large electric fields.
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CHAPTER 6

CONCLUSION AND OUTLOOK

Overall the work detailed in this thesis span topics ranging from fabrication pro-

cesses to physical understanding of oxide-based resistive switching memory devices.

All studies focused on identifying the underlying transport properties, controlling

defect density and migration, and designing device fabrication methods that ulti-

mately improve device performance to meet industrial requirements. The first study

revealed the area dependency of electroforming and switching voltages in a TiO2

based resistive switching cell, and reported on the different roles of oxygen vacancies

on inducing a tunable polarity reversal during the switching process. Another series

of work introduced an inexpensive fabrication approach that enables deposition of

memristive nanoribbons comprising transition metal oxide nanoparticles that possess

the ability to be transferred to arbitrary substrates, thus providing a rich parameter

space. The latest study successfully demonstrated stark improvements to memristive

functionality in HfO2 thin films, including voltage reduction and enhanced parameter

uniformity, by embedding nanoislands with pre-defined ordered, size and density.

Considering the potential of RRAM as a future high-density storage platform, new

approaches must address remaining technological challenges such as device reliability,

scaling for high density applications, and large-scale manufacturing. To overcome

these challenges, studies of RRAM that pair materials engineering with structure and

integration schemes have accelerated developments in performance, reliability and

cost at an extraordinary pace. This chapter draws from the conclusions of the studies

outlined above to identify future needs and directions in the field, including exciting
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issues and the most promising solutions. The following sections will also highlight the

most up-to-date characterization efforts that determine the shape, chemical properties

and growth dynamics on conducting filaments.

6.1 Potential Works & Future Scope

In order for RRAM devices to break into commercial markets it is necessary to

increase the reliability as well as leverage its scaling capability. Metal-oxide nanos-

tructures are an essential building block in modern emerging memory technology and

demonstrate significant promise as the functional switching material in RRAM de-

vices. To achieve high performance device, it is important for the switching layer to

possess uniform properties and a controllable conductive regime. Only devices with

stable switching parameters can be effectively operated with optimal productivity.

Based on the observation of subfilamentary networks via advanced SPM characteri-

zation techniques, an ideal uniformity should theoretically scale with the device size

to the atomic level. This behavior has been well established recently yet demon-

strated higher variability, as the degradation of reliability becomes a major issue in

such small cells. While the evolutionary nature of the conductive filaments based on

nanodevices has been revealed, characterization of the conducting component in a

sub-nano structure still remains a rather difficult task, limiting the full knowledge of

the switching mechanism and true scaling potential. Therefore, nanoscopic analyses

involving advancements in materials engineering and characterization techniques will

continue to play a key role in RRAM development.

6.1.1 Nanocrystals in Emerging Memristive Technology

Solution processing of a wide range of functional materials has been developed

rapidly due to the potential to provide low-cost, large-area production and flexi-

ble electronics.[158] [159] Tremendous materials such as organic/polymer, organic-

99



inorganic nanocomposites, metal oxide nanocrystals and other nanostructures have

been explored for this application. The STO and HfO2 colloidal nanocrystals I used

in my work served as an ordered switching layer assembly. This layer displays a

porous structure with large interfacial area between neighboring nanocrystals, thus

acting as a reservoir and a fast migration matrix of ions. The switching character of

colloidal nanocrystals can be altered by the selection of the electrode materials. As

described in Chapter 4, a reversed I-V response is observed when the Pt bottom elec-

trode was replaced by Ag, suggesting that different switching mechanism is induced

within the same material in contact with various metals. Until now, the most common

approaches for depositing colloidal nanocrystals included spin coating, dip coating,

and self-assembly. Drawbacks include the uniformity variations in film thickness from

device to device induced from dip coating, and difficulties to obtain thin thickness by

spin coating and dip coating. The convective self-assembly approach used here gener-

ates significant interest due to facile fabrication of scalable patterned nanostructures

or continuous layers of colloidal nanocrystals. However, the transport mechanism at

the tip/nanoribbon interface and between nanocrystals is not yet clear. While the

nanocrystals attract attention because of their unique properties, it is important to

address the reliability issues in such solution-processed RRAM devices.

The organic ligands between nanocrystals play a part in the assembly process, al-

lowing a uniform film with order-distributed nanocrystals deposited on the substrate.

It is important to note that the electrical behavior would be significant affected by

the type, length and property of the organic ligands, which has received increased

attention as the charge transport pathway.[83] [85] [160] High temperature anneal-

ing is required to remove the ligands and thus obtain a denser nanocrystal layer,

changing the thickness of the film as well as enlarging the size of the nanocrystals.

Further chemical analysis is also necessary to extensively investigate the transport

mechanism.
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6.1.2 Embedding Nanostructures

One attractive option to overcome the cycle-to-cycle variability in traditional

RRAM devices is nanostructure-embedded devices, which have demonstrated sub-

stantial uniformity improvements in both set/reset and resistance. Consideration of

the inherent scaling trend of memristive oxides implies better performance would also

be found in smaller sizes. Ideally, perfectly uniform resistive switching is possible if

only one conductive filament was formed and ruptured under a highly confined elec-

trical filed. Due to the fact that the pore size and interpore spacing of AAO templates

can be controlled (chemically and physically), it is worth to push forward the progress

in fabrication of small pore size to catch up with the scaling potential. Additionally,

the varying location of the embedded nanostructure may induce different effect on

the set and reset processes, and thus there are ample opportunities to improve the

performance.

6.1.3 Probing the Nanofilaments

The novelty of the 3D scalpel lies in the capability to completely observe the

conductive channel. On one hand it provides an efficient way to remove the top

electrode physically without introducing the unexpected chemical effects associated

with other approaches such as ion milling. On the other hand it can overcome the

challenges in providing experimental evidence of complex oxygen exchange due to

the poor contrast between the reduced phase and the oxide matrix. The resolution

of the image depends on the condition of the tip such as the geometry, resistance,

spring constant and the tip-surface interaction, thus precise control is required during

scanning. It is worth noting that c-AFM only offers the information in terms of

the current contrast with high lateral resolution, permitting the realization of the

location, shape and size of the filaments. However, the compositional identification

of the filaments is still missing, limiting the understanding of ions activities involved
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in switching behavior. Direct in situ characterization of the filament evolution is also

not possible using this method. Combining 3D c-AFM and compositional analytical

tools would provide a powerful, exciting platform to obtain the microscopic details

from both the top surface of the device and inside the oxide layer.
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APPENDIX A

MACROBUILDER

Figure A.1.

Loop(Imaging: Scan rate: 0.3 Hz, deflection setpoint volts: 1.5 V, scanlines: 512,

scan point: 512; Imaging: scan rate: 2 Hz, deflection setpoint volts: 0.01V, scanlines:

256, scan point: 256, surface voltage: 500 mV.)
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APPENDIX B

3D CONSTRUCTION USING IMAGEJ SOFTWARE

1. Create a folder with the 2D current images in sequence.

2. File→ Import→ Image Sequence, click the first file and open. In the Sequence

Options window, use virtual stack.

3. Plugins → Volume Viewer

4. Adjust z-Aspect and Sampling to achieve appropriate structure.
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“Resistive switching in hafnium dioxide layers: Local phenomenon at grain
boundaries,” Applied Physics Letters, vol. 101, no. 19, p. 193502, 2012.
[Online]. Available: http://aip.scitation.org/doi/abs/10.1063/1.4765342

[9] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B.
Kim, C.-J. Kim, D. H. Seo, S. Seo, U. I. Chung, I.-K. Yoo, and K. Kim,
“A fast, high-endurance and scalable non-volatile memory device made from
asymmetric bilayer Ta2O5−x/TaO2−x structures,” Nat Mater, vol. 10, no. 8,
pp. 625–630, 2011. [Online]. Available: http://dx.doi.org/10.1038/nmat3070

105

https://doi.org/10.1038/s41928-017-0006-8
http://www.ncbi.nlm.nih.gov/pubmed/17972938
http://www.sciencedirect.com/science/article/pii/S1369702108701196
http://www.sciencedirect.com/science/article/pii/S1369702108701196
http://dx.doi.org/10.1038/nnano.2008.160
http://dx.doi.org/10.1038/nnano.2009.456
http://aip.scitation.org/doi/abs/10.1063/1.4765342
http://dx.doi.org/10.1038/nmat3070


[10] M. M. Shirolkar, C. Hao, X. Dong, T. Guo, L. Zhang, M. Li,
and H. Wang, “Tunable multiferroic and bistable/complementary resistive
switching properties of dilutely li-doped BiFeO3 nanoparticles: an effect of
aliovalent substitution,” Nanoscale, vol. 6, no. 9, pp. 4735–4744, 2014. [Online].
Available: http://dx.doi.org/10.1039/C3NR05973A

[11] C. Li, Y. Vaynzof, G. Lakhwani, G. J. Beirne, J. Wang, and N. C. Greenham,
“Observation of oxygen vacancy migration in memory devices based on zno
nanoparticles,” Journal of Applied Physics, vol. 121, no. 14, p. 144503, 2017.
[Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.4979973

[12] C.-H. Huang, W.-C. Chang, J.-S. Huang, S.-M. Lin, and Y.-L. Chueh,
“Resistive switching of sn-doped in2o3/HfO2 core-shell nanowire: geometry
architecture engineering for nonvolatile memory,” Nanoscale, vol. 9, no. 20, pp.
6920–6928, 2017. [Online]. Available: http://dx.doi.org/10.1039/C6NR09564J

[13] S. K. Hwang, J. M. Lee, S. Kim, J. S. Park, H. I. Park, C. W. Ahn, K. J. Lee,
T. Lee, and S. O. Kim, “Flexible multilevel resistive memory with controlled
charge trap b- and n-doped carbon nanotubes,” Nano Letters, vol. 12, no. 5,
pp. 2217–2221, 2012. [Online]. Available: https://doi.org/10.1021/nl204039q

[14] D. Ielmini, C. Cagli, F. Nardi, and Y. Zhang, “Nanowire-based resistive
switching memories: devices, operation and scaling,” Journal of Physics
D: Applied Physics, vol. 46, no. 7, p. 074006, 2013. [Online]. Available:
http://stacks.iop.org/0022-3727/46/i=7/a=074006

[15] M. Kubicek, R. Schmitt, F. Messerschmitt, and J. L. M. Rupp, “Uncovering
two competing switching mechanisms for epitaxial and ultrathin strontium
titanate-based resistive switching bits,” ACS Nano, vol. 9, no. 11, pp. 10 737–
10 748, 2015. [Online]. Available: http://dx.doi.org/10.1021/acsnano.5b02752

[16] D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K.
Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S.
Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of
filamentary conductions for the resistive memory switching in nio films,”
Applied Physics Letters, vol. 88, no. 20, p. 202102, 2006. [Online]. Available:
http://aip.scitation.org/doi/abs/10.1063/1.2204649

[17] J. Y. Son and Y.-H. Shin, “Direct observation of conducting filaments on
resistive switching of nio thin films,” Applied Physics Letters, vol. 92, no. 22,
p. 222106, 2008. [Online]. Available: http://aip.scitation.org/doi/abs/10.1063/
1.2931087

[18] D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, “Characteristic
electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on
atmosphere,” Journal of Applied Physics, vol. 104, no. 12, p. 123716, 2008.
[Online]. Available: http://aip.scitation.org/doi/abs/10.1063/1.3043879

106

http://dx.doi.org/10.1039/C3NR05973A
https://aip.scitation.org/doi/abs/10.1063/1.4979973
http://dx.doi.org/10.1039/C6NR09564J
https://doi.org/10.1021/nl204039q
http://stacks.iop.org/0022-3727/46/i=7/a=074006
http://dx.doi.org/10.1021/acsnano.5b02752
http://aip.scitation.org/doi/abs/10.1063/1.2204649
http://aip.scitation.org/doi/abs/10.1063/1.2931087
http://aip.scitation.org/doi/abs/10.1063/1.2931087
http://aip.scitation.org/doi/abs/10.1063/1.3043879


[19] S. Hyunjun, C. Dooho, L. Dongsoo, S. Sunae, L. Myong-Jae, Y. In-Kyeong, and
H. Hyunsang, “Resistance-switching characteristics of polycrystalline Nb2O5 for
nonvolatile memory application,” IEEE Electron Device Letters, vol. 26, no. 5,
pp. 292–294, 2005.

[20] Y. L. Chen, J. Wang, C. M. Xiong, R. F. Dou, J. Y. Yang, and J. C. Nie,
“Scanning tunneling microscopy/spectroscopy studies of resistive switching in
nb-doped SrTiO3,” Journal of Applied Physics, vol. 112, no. 2, p. 023703,
2012. [Online]. Available: http://aip.scitation.org/doi/abs/10.1063/1.4733999

[21] R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, A. Be-
smehn, F. Kronast, C. M. Schneider, and R. Waser, “Scaling potential of lo-
cal redox processes in memristive SrTiO thin-film devices,” Proceedings of the
IEEE, vol. 100, no. 6, pp. 1979–1990, 2012.

[22] E. Linn, R. Rosezin, C. Kugeler, and R. Waser, “Complementary resistive
switches for passive nanocrossbar memories,” Nat Mater, vol. 9, no. 5, pp.
403–406, 2010. [Online]. Available: http://dx.doi.org/10.1038/nmat2748

[23] Y. Yang, P. Sheridan, and W. Lu, “Complementary resistive switching
in tantalum oxide-based resistive memory devices,” Applied Physics
Letters, vol. 100, no. 20, p. 203112, 2012. [Online]. Available: https:
//aip.scitation.org/doi/abs/10.1063/1.4719198

[24] K. Shibuya, R. Dittmann, S. Mi, and R. Waser, “Impact of defect
distribution on resistive switching characteristics of Sr2TiO4 thin films,”
Advanced Materials, vol. 22, no. 3, pp. 411–414, 2010. [Online]. Available:
http://dx.doi.org/10.1002/adma.200901493

[25] S. Kim, S. Choi, and W. Lu, “Comprehensive physical model of dynamic
resistive switching in an oxide memristor,” ACS Nano, vol. 8, no. 3, pp.
2369–2376, 2014. [Online]. Available: http://dx.doi.org/10.1021/nn405827t

[26] Z. Wang, S. Joshi, S. E. Savel/’ev, H. Jiang, R. Midya, P. Lin, M. Hu,
N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H. L. Xin, R. S.
Williams, Q. Xia, and J. J. Yang, “Memristors with diffusive dynamics as
synaptic emulators for neuromorphic computing,” Nat Mater, vol. 16, no. 1,
pp. 101–108, 2017. [Online]. Available: http://dx.doi.org/10.1038/nmat4756

[27] K. H. Jin, Y. K. Jean, P. T. Hyung, K. H. Joon, K. Y. Jae, S. X. Long,
K. D. Eun, K. Y. Min, and H. C. Seong, “Filament shape dependent reset
behavior governed by the interplay between the electric field and thermal
effects in the Pt/TiO2/Cu electrochemical metallization device,” Advanced
Electronic Materials, vol. 3, no. 2, p. 1600404, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600404

107

http://aip.scitation.org/doi/abs/10.1063/1.4733999
http://dx.doi.org/10.1038/nmat2748
https://aip.scitation.org/doi/abs/10.1063/1.4719198
https://aip.scitation.org/doi/abs/10.1063/1.4719198
http://dx.doi.org/10.1002/adma.200901493
http://dx.doi.org/10.1021/nn405827t
http://dx.doi.org/10.1038/nmat4756
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600404


[28] Z. Wang, H. Jiang, M. Hyung Jang, P. Lin, A. Ribbe, Q. Xia, and J. J.
Yang, “Electrochemical metallization switching with a platinum group metal
in different oxides,” Nanoscale, vol. 8, no. 29, pp. 14 023–14 030, 2016. [Online].
Available: http://dx.doi.org/10.1039/C6NR01085G

[29] J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, S.-J. Lin,
W.-W. Wu, and L.-J. Chen, “Dynamic evolution of conducting nanofilament
in resistive switching memories,” Nano Letters, vol. 13, no. 8, pp. 3671–3677,
2013. [Online]. Available: http://dx.doi.org/10.1021/nl4015638

[30] U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze,
C. Detavernier, O. Richard, H. Bender, M. Jurczak, and W. Vandervorst,
“Three-dimensional observation of the conductive filament in nanoscaled
resistive memory devices,” Nano Letters, vol. 14, no. 5, pp. 2401–2406, 2014.
[Online]. Available: http://dx.doi.org/10.1021/nl500049g

[31] S.-J. Choi, G.-S. Park, K.-H. Kim, S. Cho, W.-Y. Yang, X.-S. Li,
J.-H. Moon, K.-J. Lee, and K. Kim, “In situ observation of voltage-
induced multilevel resistive switching in solid electrolyte memory,” Advanced
Materials, vol. 23, no. 29, pp. 3272–3277, 2011. [Online]. Available:
http://dx.doi.org/10.1002/adma.201100507

[32] K. J. Norris, J. J. Yang, and N. P. Kobayashi, “Tem and eels study on
TaOx-based nanoscale resistive switching devices,” MRS Proceedings, vol.
1805, 2015. [Online]. Available: https://www.cambridge.org/core/article/
div-class-title-tem-and-eels-study-on-tao-span-class-sub-x-span-based-nanoscale-resistive-switching-devices-div/
5E284ACAEDA6871BEF2683CD71D5E585

[33] R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, “Coexistence of
filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film
memristive devices,” Advanced Materials, vol. 22, no. 43, pp. 4819–4822, 2010.
[Online]. Available: http://dx.doi.org/10.1002/adma.201001872

[34] R. Münstermann, J. J. Yang, J. P. Strachan, G. Medeiros-Ribeiro,
R. Dittmann, and R. Waser, “Morphological and electrical changes in TiO2

memristive devices induced by electroforming and switching,” physica status
solidi (RRL) – Rapid Research Letters, vol. 4, no. 1-2, pp. 16–18, 2010.
[Online]. Available: http://dx.doi.org/10.1002/pssr.200903347

[35] J. Xiao, W. L. Ong, Z. Guo, G. W. Ho, and K. Zeng, “Resistive switching
and polarization reversal of hydrothermal-method-grown undoped zinc oxide
nanorods by using scanning probe microscopy techniques,” ACS Applied
Materials & Interfaces, vol. 7, no. 21, pp. 11 412–11 422, 2015. [Online].
Available: http://dx.doi.org/10.1021/acsami.5b01988

108

http://dx.doi.org/10.1039/C6NR01085G
http://dx.doi.org/10.1021/nl4015638
http://dx.doi.org/10.1021/nl500049g
http://dx.doi.org/10.1002/adma.201100507
https://www.cambridge.org/core/article/div-class-title-tem-and-eels-study-on-tao-span-class-sub-x-span-based-nanoscale-resistive-switching-devices-div/5E284ACAEDA6871BEF2683CD71D5E585
https://www.cambridge.org/core/article/div-class-title-tem-and-eels-study-on-tao-span-class-sub-x-span-based-nanoscale-resistive-switching-devices-div/5E284ACAEDA6871BEF2683CD71D5E585
https://www.cambridge.org/core/article/div-class-title-tem-and-eels-study-on-tao-span-class-sub-x-span-based-nanoscale-resistive-switching-devices-div/5E284ACAEDA6871BEF2683CD71D5E585
http://dx.doi.org/10.1002/adma.201001872
http://dx.doi.org/10.1002/pssr.200903347
http://dx.doi.org/10.1021/acsami.5b01988


[36] C. Baeumer, C. Schmitz, A. H. H. Ramadan, H. Du, K. Skaja, V. Feyer,
P. Müller, B. Arndt, C.-L. Jia, J. Mayer, R. A. De Souza, C. Michael Schneider,
R. Waser, and R. Dittmann, “Spectromicroscopic insights for rational design
of redox-based memristive devices,” Nature Communications, vol. 6, p. 8610,
2015. [Online]. Available: http://dx.doi.org/10.1038/ncomms9610

[37] S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, and
M. Aono, “Generic relevance of counter charges for cation-based nanoscale
resistive switching memories,” ACS Nano, vol. 7, no. 7, pp. 6396–6402, 2013.
[Online]. Available: http://dx.doi.org/10.1021/nn4026614

[38] M. H. Lee and C. S. Hwang, “Resistive switching memory: observations with
scanning probe microscopy,” Nanoscale, vol. 3, no. 2, pp. 490–502, 2011.
[Online]. Available: http://dx.doi.org/10.1039/C0NR00580K

[39] M. H. Lee, S. J. Song, K. M. Kim, G. H. Kim, J. Y. Seok, J. H. Yoon, and
C. S. Hwang, “Scanning probe based observation of bipolar resistive switching
nio films,” Applied Physics Letters, vol. 97, no. 6, p. 062909, 2010. [Online].
Available: http://aip.scitation.org/doi/abs/10.1063/1.3479526

[40] H. Lee, H. Kim, T. N. Van, D.-W. Kim, and J. Y. Park, “Nanoscale resistive
switching schottky contacts on self-assembled Pt nanodots on SrTiO3,” ACS
Applied Materials & Interfaces, vol. 5, no. 22, pp. 11 668–11 672, 2013. [Online].
Available: http://pubs.acs.org/doi/abs/10.1021/am4032086

[41] L. Yang, C. Kuegeler, K. Szot, A. Ruediger, and R. Waser, “The
influence of copper top electrodes on the resistive switching effect in
TiO2 thin films studied by conductive atomic force microscopy,” Applied
Physics Letters, vol. 95, no. 1, p. 013109, 2009. [Online]. Available:
http://aip.scitation.org/doi/abs/10.1063/1.3167810

[42] H. Jiechang, R. Baptiste, Q. Wei, S. N. Stephen, and A. B. Dawn,
“Tip loading effects on afm-based transport measurements of metal–oxide
interfaces,” Nanotechnology, vol. 24, no. 39, p. 395703, 2013. [Online].
Available: http://stacks.iop.org/0957-4484/24/i=39/a=395703

[43] M. Lanza, K. Zhang, M. Porti, M. Nafŕıa, Z. Y. Shen, L. F. Liu, J. F.
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M. Niwa, and K. Shiraishi, “On-off switching mechanism of re-
sistive–random–access–memories based on the formation and disrup-
tion of oxygen vacancy conducting channels,” Applied Physics Let-
ters, vol. 100, no. 7, p. 073502, 2012. [Online]. Available:
http://scitation.aip.org/content/aip/journal/apl/100/7/10.1063/1.3685222

[112] S. X. Wu, L. M. Xu, X. J. Xing, S. M. Chen, Y. B. Yuan,
Y. J. Liu, Y. P. Yu, X. Y. Li, and S. W. Li, “Reverse-bias-induced
bipolar resistance switching in Pt/TiO2SrTi0.99Nb0.01O3/Pt devices,” Applied
Physics Letters, vol. 93, no. 4, p. 043502, 2008. [Online]. Available:
http://scitation.aip.org/content/aip/journal/apl/93/4/10.1063/1.2965469

[113] T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and
Y. Tokura, “Electrical properties and colossal electroresistance of
heteroepitaxial SrRuO3/SrTi1−xNbxO3 schottky junctions,” Physical Re-
view B, vol. 75, no. 16, p. 165101, 2007. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.75.165101

[114] E. Mikheev, B. D. Hoskins, D. B. Strukov, and S. Stemmer, “Resistive
switching and its suppression in Pt/nb:SrTiO3 junctions,” Nat Commun,
vol. 5, 2014. [Online]. Available: http://dx.doi.org/10.1038/ncomms4990

[115] K.-J. Lee, L.-W. Wang, T.-K. Chiang, and Y.-H. Wang, “Effects of electrodes
on the switching behavior of strontium titanate nickelate resistive random
access memory,” Materials, vol. 8, no. 10, p. 5374, 2015. [Online]. Available:
http://www.mdpi.com/1996-1944/8/10/5374

[116] D. Y. Lee, J. T. Pham, J. Lawrence, C. H. Lee, C. Parkos, T. Emrick,
and A. J. Crosby, “Macroscopic nanoparticle ribbons and fabrics,” Advanced
Materials, vol. 25, no. 9, pp. 1248–1253, 2013. [Online]. Available:
http://dx.doi.org/10.1002/adma.201203719

117

http://scitation.aip.org/content/aip/journal/jap/105/6/10.1063/1.3100209
http://scitation.aip.org/content/aip/journal/jap/105/6/10.1063/1.3100209
http://dx.doi.org/10.1021/acs.chemmater.6b00049
http://scitation.aip.org/content/aip/journal/jap/113/3/10.1063/1.4779767
http://scitation.aip.org/content/aip/journal/apl/100/7/10.1063/1.3685222
http://scitation.aip.org/content/aip/journal/apl/93/4/10.1063/1.2965469
http://link.aps.org/doi/10.1103/PhysRevB.75.165101
http://dx.doi.org/10.1038/ncomms4990
http://www.mdpi.com/1996-1944/8/10/5374
http://dx.doi.org/10.1002/adma.201203719


[117] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation
of conducting filament growth in nanoscale resistive memories,” Nat
Commun, vol. 3, p. 732, 2012. [Online]. Available: http://dx.doi.org/10.1038/
ncomms1737

[118] S. Yu, X. Guan, and H.-S. P. Wong, “Conduction mechanism of tin/HfOx/Pt
resistive switching memory: A trap-assisted-tunneling model,” Applied
Physics Letters, vol. 99, no. 6, p. 063507, 2011. [Online]. Available:
http://aip.scitation.org/doi/abs/10.1063/1.3624472

[119] U. Celano, Y. Y. Chen, D. J. Wouters, G. Groeseneken, M. Jurczak, and
W. Vandervorst, “Filament observation in metal-oxide resistive switching
devices,” Applied Physics Letters, vol. 102, no. 12, p. 121602, 2013. [Online].
Available: http://aip.scitation.org/doi/abs/10.1063/1.4798525

[120] M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science
of nanocrystals,” Nat Mater, vol. 15, no. 2, pp. 141–153, 2016. [Online].
Available: http://dx.doi.org/10.1038/nmat4526

[121] D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan,
P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E.
Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S.
Schanze, J. Yardley, and X. Zhu, “Charge transfer on the nanoscale: Current
status,” The Journal of Physical Chemistry B, vol. 107, no. 28, pp. 6668–6697,
2003. [Online]. Available: http://dx.doi.org/10.1021/jp0268462

[122] S. Xavier, M. Enrique, J. David, L. Shibing, L. Ming, R. Joan Marc,
C. Francesca, and S. Jordi, “Threshold switching and conductance
quantization in Al/HfO2 /si(p) structures,” Japanese Journal of Applied
Physics, vol. 52, no. 4S, p. 04CD06, 2013. [Online]. Available: http:
//stacks.iop.org/1347-4065/52/i=4S/a=04CD06

[123] S. U. Sharath, S. Vogel, L. Molina-Luna, E. Hildebrandt, C. Wenger, J. Kurian,
M. Duerrschnabel, T. Niermann, G. Niu, P. Calka, M. Lehmann, H.-J. Kleebe,
T. Schroeder, and L. Alff, “Control of switching modes and conductance
quantization in oxygen engineered HfOx based memristive devices,” Advanced
Functional Materials, vol. 27, no. 32, pp. 1 700 432–n/a, 2017. [Online].
Available: http://dx.doi.org/10.1002/adfm.201700432

[124] S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D. W. Kim,
and T. W. Noh, “Occurrence of both unipolar memory and threshold resistance
switching in a nio film,” Physical Review Letters, vol. 102, no. 2, p. 026801, 2009.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.102.026801

118

http://dx.doi.org/10.1038/ncomms1737
http://dx.doi.org/10.1038/ncomms1737
http://aip.scitation.org/doi/abs/10.1063/1.3624472
http://aip.scitation.org/doi/abs/10.1063/1.4798525
http://dx.doi.org/10.1038/nmat4526
http://dx.doi.org/10.1021/jp0268462
http://stacks.iop.org/1347-4065/52/i=4S/a=04CD06
http://stacks.iop.org/1347-4065/52/i=4S/a=04CD06
http://dx.doi.org/10.1002/adfm.201700432
https://link.aps.org/doi/10.1103/PhysRevLett.102.026801


[125] C.-Y. Lin, P.-H. Chen, T.-C. Chang, K.-C. Chang, S.-D. Zhang, T.-M. Tsai,
C.-H. Pan, M.-C. Chen, Y.-T. Su, Y.-T. Tseng, Y.-F. Chang, Y.-C. Chen,
H.-C. Huang, and S. M. Sze, “Attaining resistive switching characteristics and
selector properties by varying forming polarities in a single HfO2-based rram
device with a vanadium electrode,” Nanoscale, vol. 9, no. 25, pp. 8586–8590,
2017. [Online]. Available: http://dx.doi.org/10.1039/C7NR02305G

[126] L. Goux, “Resistive switching: From concept to device optimization,” in 2015
IEEE 15th International Conference on Nanotechnology (IEEE-NANO), Con-
ference Proceedings, pp. 17–19.

[127] I. Daniele, “Resistive switching memories based on metal oxides: mechanisms,
reliability and scaling,” Semiconductor Science and Technology, vol. 31, no. 6,
p. 063002, 2016. [Online]. Available: http://stacks.iop.org/0268-1242/31/i=6/
a=063002

[128] Z. Wang, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, and Y. Nishi,
“Resistive switching mechanism in ZnxCd1−xS nonvolatile memory devices,”
IEEE Electron Device Letters, vol. 28, no. 1, pp. 14–16, 2007.

[129] Y. Huang, Y. Luo, Z. Shen, G. Yuan, and H. Zeng, “Unipolar resistive switching
of zno-single-wire memristors,” Nanoscale Research Letters, vol. 9, no. 1, p.
381, 2014. [Online]. Available: https://doi.org/10.1186/1556-276X-9-381

[130] D. Ielmini and S. Menzel, Universal Switching Behavior. Wiley-VCH
Verlag GmbH & Co. KGaA, 2016, pp. 317–340. [Online]. Available:
http://dx.doi.org/10.1002/9783527680870.ch11

[131] W.-Y. Chang, K.-J. Cheng, J.-M. Tsai, H.-J. Chen, F. Chen, M.-J.
Tsai, and T.-B. Wu, “Improvement of resistive switching characteristics
in TiO2 thin films with embedded Pt nanocrystals,” Applied Physics
Letters, vol. 95, no. 4, p. 042104, 2009. [Online]. Available: http:
//aip.scitation.org/doi/abs/10.1063/1.3193656

[132] G. Leiwen, L. Yanhuai, L. Qin, S. Zhongxiao, and M. Fei, “Enhanced
resistive switching characteristics in Al2O3 memory devices by embedded Ag
nanoparticles,” Nanotechnology, vol. 28, no. 21, p. 215201, 2017. [Online].
Available: http://stacks.iop.org/0957-4484/28/i=21/a=215201

[133] J. Lee, S. Jungho, L. Daeseok, W. Lee, S. Jung, M. Jo, J. Park, K. P. Biju,
S. Kim, S. Park, and H. Hwang, “Diode-less nano-scale ZrOx/HfOx rram device
with excellent switching uniformity and reliability for high-density cross-point
memory applications,” in 2010 International Electron Devices Meeting, Confer-
ence Proceedings, pp. 19.5.1–19.5.4.

119

http://dx.doi.org/10.1039/C7NR02305G
http://stacks.iop.org/0268-1242/31/i=6/a=063002
http://stacks.iop.org/0268-1242/31/i=6/a=063002
https://doi.org/10.1186/1556-276X-9-381
http://dx.doi.org/10.1002/9783527680870.ch11
http://aip.scitation.org/doi/abs/10.1063/1.3193656
http://aip.scitation.org/doi/abs/10.1063/1.3193656
http://stacks.iop.org/0957-4484/28/i=21/a=215201


[134] B. K. You, J. M. Kim, D. J. Joe, K. Yang, Y. Shin, Y. S. Jung,
and K. J. Lee, “Reliable memristive switching memory devices enabled
by densely packed silver nanocone arrays as electric-field concentrators,”
ACS Nano, vol. 10, no. 10, pp. 9478–9488, 2016. [Online]. Available:
http://dx.doi.org/10.1021/acsnano.6b04578

[135] D. T. Wang, Y. W. Dai, J. Xu, L. Chen, Q. Q. Sun, P. Zhou, P. F. Wang,
S. J. Ding, and D. W. Zhang, “Resistive switching and synaptic behaviors of
TaN/Al2O3/ZnO/ITO flexible devices with embedded Ag nanoparticles,” IEEE
Electron Device Letters, vol. 37, no. 7, pp. 878–881, 2016.

[136] W. Guan, S. Long, R. Jia, and M. Liu, “Nonvolatile resistive switching
memory utilizing gold nanocrystals embedded in zirconium oxide,” Applied
Physics Letters, vol. 91, no. 6, p. 062111, 2007. [Online]. Available:
http://aip.scitation.org/doi/abs/10.1063/1.2760156

[137] K. Geetika, M. Pankaj, K. Nitu, K. Sudheendran, F. S. James, and
S. K. Ram, “Enhanced resistive switching in forming-free graphene oxide
films embedded with gold nanoparticles deposited by electrophoresis,”
Nanotechnology, vol. 27, no. 1, p. 015702, 2016. [Online]. Available:
http://stacks.iop.org/0957-4484/27/i=1/a=015702

[138] M.-C. Wu, T.-H. Wu, and T.-Y. Tseng, “Robust unipolar resistive switching
of co nano-dots embedded ZrO2 thin film memories and their switching
mechanism,” Journal of Applied Physics, vol. 111, no. 1, p. 014505, 2012.
[Online]. Available: http://aip.scitation.org/doi/abs/10.1063/1.3674322

[139] D. Panda, A. Dhar, and S. K. Ray, “Nonvolatile memristive switching
characteristics of tio¡formula formulatype=”inline”¿¡tex notation=”tex”¿bm2

¡/tex¿¡/formula¿ films embedded with nickel nanocrystals,” IEEE Transactions
on Nanotechnology, vol. 11, no. 1, pp. 51–55, 2012.

[140] T. K. Kang, C. C. Tsao, and W. L. Chen, “Resistive switching characteris-
tics in HfOx memory devices embedded with pd nanocrystals,” in 2014 Silicon
Nanoelectronics Workshop (SNW), Conference Proceedings, pp. 1–2.

[141] C.-Y. Liu, J.-J. Huang, and C.-H. Lai, “Resistive switching characteristics of
a Pt nanoparticle-embedded sio2-based memory,” Thin Solid Films, vol. 529,
pp. 107–110, 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0040609012003999

[142] L. Chen, H. Y. Gou, Q. Q. Sun, P. Zhou, H. L. Lu, P. F. Wang, S. J. Ding, and
D. Zhang, “Enhancement of resistive switching characteristics in Al2O3-based
rram with embedded ruthenium nanocrystals,” IEEE Electron Device Letters,
vol. 32, no. 6, pp. 794–796, 2011.

120

http://dx.doi.org/10.1021/acsnano.6b04578
http://aip.scitation.org/doi/abs/10.1063/1.2760156
http://stacks.iop.org/0957-4484/27/i=1/a=015702
http://aip.scitation.org/doi/abs/10.1063/1.3674322
http://www.sciencedirect.com/science/article/pii/S0040609012003999
http://www.sciencedirect.com/science/article/pii/S0040609012003999


[143] J. H. Yoon, J. H. Han, J. S. Jung, W. Jeon, G. H. Kim, S. J. Song, J. Y. Seok,
K. J. Yoon, M. H. Lee, and C. S. Hwang, “Highly improved uniformity in the
resistive switching parameters of TiO2 thin films by inserting ru nanodots,”
Advanced Materials, vol. 25, no. 14, pp. 1987–1992, 2013. [Online]. Available:
http://dx.doi.org/10.1002/adma.201204572

[144] M. J. Yun, H.-D. Kim, S. M. Hong, J. H. Park, D. S. Jeon, and T. G.
Kim, “Effect of embedded metal nanocrystals on the resistive switching
characteristics in nin-based resistive random access memory cells,” Journal
of Applied Physics, vol. 115, no. 9, p. 094305, 2014. [Online]. Available:
http://aip.scitation.org/doi/abs/10.1063/1.4867639

[145] M. Irini, B. Panagiotis, S. Spyros, B. Nikos, and T. Dimitris, “Coexistence
of bipolar and threshold resistive switching in TiO2 based structure
with embedded hafnium nanoparticles,” Journal of Physics D: Applied
Physics, vol. 50, no. 4, p. 045103, 2017. [Online]. Available: http:
//stacks.iop.org/0022-3727/50/i=4/a=045103

[146] S. Hong, T. Choi, J. H. Jeon, Y. Kim, H. Lee, H.-Y. Joo, I. Hwang,
J.-S. Kim, S.-O. Kang, S. V. Kalinin, and B. H. Park, “Large resistive
switching in ferroelectric BiFeO3 nano-island based switchable diodes,”
Advanced Materials, vol. 25, no. 16, pp. 2339–2343, 2013. [Online]. Available:
http://dx.doi.org/10.1002/adma.201204839

[147] L. Zhao, Z. Lu, F. Zhang, G. Tian, X. Song, Z. Li, K. Huang, Z. Zhang,
M. Qin, SujuanWu, X. Lu, M. Zeng, X. Gao, J. Dai, and J.-M. Liu, “Current
rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays
on nb-SrTiO3 substrates,” Scientific Reports, vol. 5, p. 9680, 2015. [Online].
Available: http://dx.doi.org/10.1038/srep09680

[148] Z. Lu, Z. Fan, P. Li, H. Fan, G. Tian, X. Song, Z. Li, L. Zhao, K. Huang,
F. Zhang, Z. Zhang, M. Zeng, X. Gao, J. Feng, J. Wan, and J. Liu,
“Ferroelectric resistive switching in high-density nanocapacitor arrays based on
BiFeO3 ultrathin films and ordered Pt nanoelectrodes,” ACS Applied Materials
& Interfaces, vol. 8, no. 36, pp. 23 963–23 968, 2016. [Online]. Available:
http://dx.doi.org/10.1021/acsami.6b07792

[149] K. Park and J.-S. Lee, “Controlled synthesis of ni/cuo(x)/ni nanowires by
electrochemical deposition with self-compliance bipolar resistive switching,”
Scientific Reports, vol. 6, p. 23069, 2016. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4791678/

[150] C. Baeumer, R. Valenta, C. Schmitz, A. Locatelli, T. O. Menteş, S. P. Rogers,
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