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ABSTRACT   
 

INFLUENCE OF RECONSOLIDATION PROCEDURE ON SMALL STRAIN 

SHEAR MODULUS AND UNDRAINED SHEAR BEHAVIOR OF SILTS 

SUBJECTED TO TUBE SAMPLING DISTURBANCE 

  

AUGUST 2018 

Shreeya Pandey, B.S., Asian Institute of Technology 

M.S., University of Massachusetts Amherst  

Directed by: Dr. Don J. DeGroot 

 

This thesis presents results of a laboratory testing program that studied the effects of 

laboratory simulated tube sampling disturbance on the undrained shear strength behavior 

of reconstituted low plasticity silts at overconsolidation ratios of 1.0 and 3.6. The three 

test soils consisted of two different mixtures of kaolin clay and silica silt and a 

reconstituted natural Dedham silt. Triaxial tests with bender elements were conducted 

on the reconstituted samples using the Ideal Sampling Approach (ISA) followed by 

post-ISA reconsolidation and undrained shear. The specimens were subjected to ± 1% 

and ± 3% ISA axial strain cycles. Changes in shear wave velocity and small strain shear 

modulus during simulation of tube sampling was used to develop a better understanding 

of the effects of sample disturbance on the undrained stress-strain-strength behavior of 

silts. 

Laboratory simulated tube sampling disturbance changed the undrained shear 

behavior of the low plasticity silts from contractive to dilative. The reconstituted silt 

samples experienced significant loss in effective stress due to ISA disturbance which 

decreased with an increase in overconsolidation ratio and plasticity. The normalized 

undrained shear behavior of the tested reconstituted silt samples did not show any 

dependency on the consolidation stress level, however, an increase in the consolidation 
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stress level increased the tendency for the low plasticity silts to exhibit dilative behavior. 

The effect of Recompression and SHANSEP consolidation procedures on recovering the 

undisturbed behavior was found to be dependent on the plasticity of the soil, to some 

extend on the pre-ISA consolidation stress, level of ISA disturbance experienced by the 

specimen and the overconsolidation ratio.  

The measured shear wave velocity and small strain shear modulus at various stress 

states showed significant reduction during ISA disturbance which could be used as an 

indicator of sample disturbance in similar types of silts. However, after reconsolidating 

the specimens back to the initial effective stress state the shear wave velocity and small 

strain shear modulus values were mostly recovered indicating little to no influence of 

sample disturbance. The amount of reduction in shear wave velocity and small strain 

shear modulus was found to be dependent on plasticity of soil, level of disturbance and 

overconsolidation ratio.  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction  

 

Sampling of undisturbed soil from the subsurface is essential for measuring 

engineering properties of the soil. During the process of retrieving soil from the 

subsurface, transporting it to laboratory and installing it in a testing device the soil is 

disturbed which changes the in-situ properties of soil. Tube sampling is commonly used 

to collect samples from the subsurface. Stress relief and distortion of the soil structure 

are irrecoverable forms of sample disturbance during tube sampling. It also causes 

significant shearing between the soil and the sampler wall changing the in-situ stress-

strain behavior of the soil and the resultant laboratory measurement of the sample can be 

significantly different than the in-situ behavior for highly disturbed samples.   

Many studies have been conducted on clays that have resulted in the development of 

methods to assess the effects of sample disturbance. However, there is a lack of similar 

such methods to quantify the effects of sample disturbance on intermediate soils such as 

sandy clays, silty clays, clayey silt, and silty sands. Sampling undisturbed silt is difficult, 

previous studies have reported densification of loose silts during sampling and there is 

lack of laboratory testing experience in determining the in-situ strength of silts due to its 

tendency to exhibit dilative behavior upon undrained shearing. Unlike clays, the 

undrained shear behavior of silts is more uncertain and there is lack of understanding of 

the influence of sample disturbance on determination of design parameters from 

laboratory tests.  

The goal of this research was to study the effect of tube sample disturbance on the 

undrained shear strength behavior of silts by laboratory simulation of tube sampling on 

reconstituted silt samples. Triaxial tests with bender elements were conducted on 
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reconstituted silts samples using the Ideal Sampling Approach (Baligh et al. 1987). 

Changes in shear wave velocity, Vs and small strain shear modulus, Gmax, during 

simulation of tube sampling was used to develop a better understanding of the effects of 

sample disturbance on the undrained stress-strain-strength behavior of silts.   

1.2 Objectives and Scope of Research  
 

The primary objective of this research was to study the effect of tube sampling 

disturbance on the undrained shear behavior of reconstituted silt samples by conducting 

triaxial testing. The reconstituted samples tested consists of 85S15K and 50S50K 

prepared by varying the percentage of kaolin clay (K) and silica silt (S) by dry mass. 

The third soil tested was Dedham Silt which is a natural glacially deposited silt from 

Dedham, Massachusetts. This research program incorporated triaxial cells embedded 

with bender elements to monitor the change in shear wave velocity, Vs, and small strain 

shear modulus, Gmax, throughout all phases of testing.     

The scope of this research included advanced laboratory testing of reconstituted silt 

samples and included the following tasks: -  

1. Index and classification tests such as grain-size distribution, specific gravity 

and Atterberg limits. 

2. Preparation of reconstituted specimens for triaxial testing using the vacuum 

split mold technique similar to Wang et al. (2011).   

3. Stimulation of tube sampling disturbance on test specimens using the ideal 

sampling approach.  

4. Evaluation of the effect of two reconsolidation procedures namely, 

Recompression and SHANSEP to mitigate the effects of sample disturbance 

in silts. 
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5. Evaluation of the influence of consolidation stress level on undrained shear 

behavior and normalized undrained shear strength of silts.  

6. Evaluation of the Brandon et al. (2006) failure criteria for selection of 

undrained shear strength of silts that exhibit dilative behavior during 

undrained shear. 

7. Evaluation of the influence of ISA straining, post-ISA Recompression and 

SHANSEP consolidation procedures after ISA disturbance on shear wave 

velocity and small strain shear modulus of the test soils.  

1.3 Thesis Organization  
 

Chapter 2 presents a brief review of the literature on sample disturbance and 

effects of sampling on clays and silts.  Topics include: ISA method for stimulating 

tube sampling disturbance, Recompression and SHANSEP reconsolidation 

procedures, criteria used to define failure for dilating soils and shear wave velocity – 

stress state framework.  

Chapter 3 presents the methods of investigation which includes index test and 

triaxial test procedure, sample preparation, equipment description and a brief 

description of bender elements used to measure the shear wave velocity and small 

strain shear modulus of the test soils. 

Chapter 4 is subdivided into three sections. Section 4.1 presents the results from 

anisotropically consolidated undrained triaxial compression tests (CAUC) performed 

at various consolidation stress levels on test soils 50S50K, 85S15K and Dedham 

Silt. This section discusses the influence of stress level on the normalized undrained 

shear strength and Brandon et al. (2006) failure criteria for selection of undrained 

shear strength of dilating soils. Section 4.2 presents and analyzes results from 

laboratory triaxial tests conducted on the test soils to study the effect of the 
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Recompression and SHANSEP consolidation procedures on post ISA behavior of 

the test soils. Section 4.3 presents and analyzes results of shear wave velocity and 

small strain shear modulus measurements obtained from laboratory triaxial cells 

equipped with bender elements. 
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CHAPTER 2. BACKGROUND 

 

This chapter presents a brief summary of background information and prior 

research on sample disturbance and effect of sampling on the behavior of different types 

of soils. Topics include: ISA method for stimulating sample disturbance, Recompression 

and SHANSEP reconsolidation procedures, criteria used to define failure for dilating 

soils and shear wave velocity – stress state framework.  

2.1 Sample disturbance  
 

 Engineering properties of soil are typically measured by conducting laboratory 

testing on undisturbed soil samples collected from the subsurface. However, during the 

process of retrieving soil from the subsurface, transporting it to laboratory and installing 

it in a testing device changes the in-situ properties such as water content, structure of the 

soil and changes in stress can occur which is referred to as sample disturbance. The 

three main sources of sample disturbance are stress relief due to drilling and collection 

of samples, sampling equipment and handling and storage of the sample before testing. 

Figure 2.1 shows the complex hypothetical stress path for a low OCR clay during 

drilling, tube sampling and specimen preparation (Ladd and DeGroot 2003). The stress 

path shows the change in stress that the sample undergoes during sample disturbance. 

As shown in the Figure 2.1 during drilling the specimen experiences removal of deviator 

stress q at constant effective horizontal stress σ’
ho, this resultant isotropic stress is known 

as the perfect sampling stress σ’
ps. However, the sample undergoes a series of stress 

changes during tube sampling, transport, extrusion and trimming causing the sampling 

effective stress σ’
s to typically be much less than the σ’

ps. The degree of sampling  stress 

relief is dependent on the stress history and plasticity of the soil (Hight & Leroueil 

2003).  
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 Apart from stress relief, distortion of the soil structure during tube sampling is a 

irrecoverable form of sample disturbance. Tube sampling causes significant shearing 

between the soil and the sampler inner wall. This changes the condition of the sample 

and the resultant laboratory measurement of its undrained stress-strain behavior can by 

far different from its in-situ behavior for severely disturbed samples.   

 Extensive research has been conducted to study sample disturbance in various 

type of soils especially, clays and sands. These studies identified that stress relief during 

sampling is unavoidable and quantified the effect of sample disturbance on the shear 

strength measured in the laboratory to explain the observed behavior of “disturbed” 

samples (Santagata & Germaine 2002). The effect of sample disturbance has been 

extensively studied on natural and resedimented clays (e.g. Baligh et al. 1987, Santagata 

and Germaine 2002, 2005, 2006, Ladd and Lambe 1963, Clayton et al. 1992, Siddique et 

al. 2000).  Lunne et al. (2006) investigated the effect of sample disturbance on measured 

shear strength behavior of low plasticity soft marine Norwegian clays. The study 

concluded that sample disturbance causes decrease in shear strength and elastic modulus 

and an increase in strain at failure.  

Unlike clays, less research has been conducted to study the effect of sample 

disturbance on intermediate soils such as silts, clayey silts and sandy silts mainly due to 

the difficulty in sampling these soils. Therefore, often reconstituted silt specimens are 

used by researchers for testing the behavior of intermediate soils. Fleming and Duncan 

(1990) tested reconstituted samples of Alaskan silts and found that sample disturbance 

increased the measured shear strength in CIUC and CAUC tests whereas the shear 

strength decreased in UU tests. Sandven (2003) found that loose and normally 

consolidated Norwegian silts tend to densify during tube sampling which causes the 

measured strength and stiffness of the soil to be higher than its in situ values. Similarly, 
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Long (2006a) studied Athlone laminated clay/silts and reported that tube sampling 

disturbance resulted in strong post-peak dilation and increase in stiffness and undrained 

strength of the soil. Carroll (2013) reported that low and non-plastic silts are more 

susceptible to densification during sampling. Carroll (2013) simulated tube sample 

disturbance on several Irish silts and observed dilative behavior during shear as opposed 

to the anticipated contractive behavior for an undisturbed specimen. Carroll (2013) also 

concluded that both actual and stimulated disturbance resulted in an increase in strength 

and stiffness of the soil, which would lead to selection of unconservative soil parameters 

for most design problems.  

2.2 ISA Method of Stimulating Sample Disturbance 
 

 Two models or frameworks that quantify the effect of sample disturbance are the 

perfect sampling approach (PSA, Ladd & Lambe 1963) and the ideal sampling approach 

(ISA, Baligh et al 1987). The perfect sampling approach simulates sample disturbance 

experienced during ideal block sampling. PSA framework identifies the release of the 

in-situ shear (or deviator) stress as the only unavoidable disturbance during sampling. 

However, for tube sampling there are additional factors that significantly contribute to 

sample disturbance, most notably penetration of the sampling tube into the soil and its 

subsequent extraction. Baligh et al (1987) introduced the ISA using the strain path 

method to simulate disturbance due to tube sampling.  

 The ISA takes into account the disturbance due to undrained tube penetration at 

the centerline of an ideal sample of varying geometry. The soil undergoes axial 

compression during penetration followed by undrained triaxial extension as the soil 

enter the tube sampler. This compression and extension straining are presented in Figure 

2.2. The soil is also subjected to shear strain along the wall of the sampler where the soil 
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is remolded generating excess pore pressure. The vertical strain induced by the tube 

sampler is given by the following equation: -  

𝜀𝑧𝑧 = − ln(1 +
2𝑡

𝑂𝐷
 

𝑧

𝑂𝐷

[1+4(
𝑧

𝑂𝐷
)2]3/2

                                                                                (2.2.1) 

𝜀𝑧𝑧,𝑚𝑎𝑥 = 0.385
𝑡

𝐷𝑡
                                                                                                     (2.2.2) 

where 

t = sampler wall thickness (mm) 

𝐷𝑡 = external sampler diameter (mm) 

z = distance from the tip of the sampler (mm) 

𝜀𝑧𝑧,𝑚𝑎𝑥 = maximum vertical strain  

 ISA also considers the disturbance due to sample retrieval and extrusion, which 

is idealized by an undrained release of the post ISA disturbance shear stresses in the soil 

from final anisotropic stress condition in the tube to the final isotropic stress state before 

testing. Another part of the tube sampling that contributes to sample disturbance is the 

geometry of the cutting shoe of the sampler. Clayton et al (1998) investigated the 

influence of various geometric designs of the cutting shoe of the sampler on sample 

disturbance and concluded that: - 

1. increasing the area ratio of the sampling tube resulted in a significant increase in the 

peak compressive strain ahead of the sampler but only a slight increase in the peak 

extension strain; 

2. increasing the inside clearance ratio resulted in an increase in the peak extension 

strain with a slight reduction in the peak compressive strain; 

3. the inside cutting-edge angle only effected the peak extension strain; and 
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4. increasing the outside cutting angle resulted in a significant increase in the peak 

compressive strain and a slight increase in the peak extension strain. 

5. using a more realistic cutting shoe geometric rather than a blunt sampler by Baligh 

(1985) resulted in significantly lower peak axial strain during sampling as presented in 

Figure 2.2.2. 

Clayton et al (1998) recommended that a good sampler for clays is one with an area 

ratio not exceeding 10% and a cutting-edge angle less than or equal to 10◦. 

2.3 SHANSEP and Recompression Methods  
 

 The stress history and normalized soil engineering properties (SHANSEP) and 

Recompression methods were developed to consider the effects of sample disturbance, 

anisotropy and strain rate undrained shear behavior of clays. The Recompression 

method developed by Bjerrum (1972) and SHANSEP developed by Ladd and Foott 

(1974) both recommend using CK0U tests with consolidation to known stress states, 

shearing at different modes of failure and with appropriate strain rates to account for 

anisotropy and strain rate effects (Ladd & DeGroot 2003). The two methods, however 

differ significantly on how to deal with sample disturbance.  

 Figure 2.3.1 shows the Recompression and SHANSEP consolidation procedures 

for laboratory CK0U testing. The Recompression method anisotropically consolidates 

specimens to the estimated in situ state of stress σ’vo and σ’ho. This method is preferred 

for high quality samples because Recompression to in situ stress state for less disturbed 

specimen does not cause much decrease in water content and hence should result in a 

measure of the undrained shear strength (su) that is representative of in situ conditions. 

The Recompression method is also preferred for highly structured clays, cemented clays 

and high OCR clays (Ladd & DeGroot 2003). However, this method cannot be used for 
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truly normally consolidated soil as it might cause significant reduction of water content 

and overestimate the undrained su. Santagata and Germaine (2005) also reported that for 

NC RBBC soil Recompression to in situ stresses overestimated the su of the soil. 

Similarly, for NC RBBC specimen subjected to ISA 1% and 2% resulted in significant 

overestimation of undrained su.  

 The SHANSEP method is based on experimental observation and field data that 

the normalized undrained stress-strain-strength behavior of clays is a function of the 

stress history of the clay deposit. This method assumes perfectly normalized behavior 

for all values of σ’vc, mode of shear and uses mechanical overconsolidation to represent 

all preconsolidation mechanism (Ladd & DeGroot 2003). The perfectly normalized 

behavior or SHANSEP equation is given by the following: - 

𝑠𝑢

𝜎𝑣𝑐
′  = S (OCR)m                                                                                                                     

(2.3.1) 

where, 

 
𝑠𝑢

𝜎𝑣𝑐
′  = normalized undrained shear strength  

OCR = Overconsolidation ratio  

S and m = SHANSEP parameters  

To measure the normally consolidated behavior specimens are K0 consolidated 

to stress level greater than σ’p as shown in point A and B of Figure 2.3. The 

overconsolidated behavior is measured by unloading the specimen to the required OCR 

(point C and D). SHANSEP parameters S is computed from OCR =1 and m from 

varying OCR >1. SHANSEP method does not work for highly structured clays and 
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highly desiccated clay crust. For structured clays it underpredicts the in situ undrained 

stiffness of the soils and for desiccated crust the mechanical overconsolidation does not 

represent the primary overconsolidation mechanism (Ladd & DeGroot 2003).  

Santagata and Germaine (2005) reported that SHANSEP method on NC RBBC 

subjected to ±1% & ±2% ISA produced reliable conservative undrained shear strength, 

however, for higher degree of disturbance (± 5% ISA) the disturbance was not 

recovered.    

2.4 Failure Criteria for Selection of Undrained Shear Strength of Dilating Silts  
 

The dilative behavior tendency of low-plasticity silts when performing undrained 

triaxial test makes it difficult to evaluate the undrained shear strength and to define the 

failure point of the soil. Various criteria as listed in Table 2.4.1 have been proposed for 

soils such as dilating silts using as shown in an idealized stress path in Figure 2.4. 

Depending on the type of triaxial test performed, the strength parameter to be 

determined and the stress-strain-volume change behavior of the soil, the failure criteria 

is selected (Brandon et al. 2006). As given in Table 2.4 the peak deviator stress and 

limiting strain can be used for any type of triaxial test performed. The remaining criteria 

are used for tests where pore pressures and effective stress are known.  

Brandon et al. (2006) performed CU tests on undisturbed Yazoo silt, remolded 

OC Yazoo silt, remolded NC Yazoo silt and remolded OC LMVD (Lower Mississippi 

Valley division) silt and used all six failure criteria to evaluate the undrained shear 

strength. It was reported that the peak deviator stress failure criteria resulted in wide 

scatter of the undrained shear strength of the silts. Using the peak deviator stress failure 

criteria, the normalized undrained shear strength (su/σ’
vc) for undisturbed and remolded 

NC Yazoo silt ranged from 1.0 to 1.4, and 1.6 and >4.5 for remolded OC Yazoo and 
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remolded OC LMVD. Similarly, Long et al (2010) also reported high values of 

undrained shear strength of Norwegian glaciomarine silts using peak deviator stress 

failure criterion.  

The second criterion which is the peak principle stress ratio (σ1
’/ σ’

2)max also gave 

a wide scatter of undrained shear strength. The su/σ’
vc for undisturbed and remolded NC 

Yazoo silt ranged from 0.88 to 0.96, and 1.0 to 1.90 for remolded OC Yazoo and 

remolded OC LMVD. Brandon et al. (2006) concludes that the scatter is because the 

stress path lies very close to the failure envelope, and the exact value of deviator stress 

where the principle stress ratio is maximum is uncertain It was also observed that the 

principal stress ratio might be constant over a wide range of deviator stresses.   

The peak pore pressure umax showed the least deviation in su/σ’
vc and gave the 

lowest undrained shear strength. Using umax failure criteria the su/σ’
vc for undisturbed, 

remolded NC Yazoo silt and remolded OC LMVD was 0.49 and for OC Yazoo was 

0.48. Carroll (2013) also reported that umax failure criteria resulted in su/σ’
vc ranging 

from 0.44 to 0.45 for Irish silts. The umax failure criteria gives conservative undrained 

shear strength because umax often occurs before full mobilization of the effective stress 

properties (Brandon et al. 2006).  

For Ᾱ=0 or Δu=0 failure criteria the undrained shear strength is equal to the 

drained strength. This ensures reliability of the strength value as the strength that results 

from negative change in pore pressure is not taken into consideration. The su/σ’
vc 

reported by Brandon et al. (2006) are consistent ranging from 1.47 to 1.58 for remolded 

and undisturbed NC Yazoo silt, and 1.43 and 1.38 for remolded OC Yazoo and 

remolded OC LMVD silt respectively. However, the Ᾱ=0 failure criterion is not 

applicable when the pore pressure does not fall below zero as found in Norwegian 
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glaciomarine silts reported by Long et al. (2010). Brandon et al. (2006) recommends that 

Ᾱ=0 failure criteria to be used for low plasticity silts such as Mississippi Valley silts that 

experiences less dilation upon shearing.   

Similar to peak principle stress ratio criteria, the Kf line criteria produces scatter 

as the exact value of deviator stress that touches the Kf line is not clear. Using the Kf line 

failure criteria the su/σ’
vc for undisturbed and remolded NC Yazoo silt ranged from 0.88 

to 0.96, and 1.0 to 1.90 for remolded OC Yazoo and remolded OC LMVD.  

The limiting strain criteria used in literature ranges from 5% to 15%. It is not 

known what percent of εf is ideal as limiting strain criteria for low plasticity silts. 

Brandon et al (2006) suggest using εf = 10% for low plasticity silts, however, the 

reported su/σ’
vc values are not consistent ranging from 1.24 to 3.5.  

2.5 Shear Wave Velocity – Stress State Framework  
 

The following presentation of the shear wave velocity – stress state framework is 

abstracted from Lukas (2017). Hardin and Blandford (1989) presented an equation that 

relates the small strain shear modulus G0 to several state parameters and soil properties 

as 

𝐺0𝑖𝑗 = 𝑉𝑖𝑗
   2𝜌𝑡 = 𝑆𝑖𝑗𝐹(𝑒)𝑂𝐶𝑅𝑘𝜎′𝑟𝑒𝑓

     1−𝑛𝑖−𝑛𝑗
𝜎′𝑖

  𝑛𝑖𝜎′𝑗
  𝑛𝑗

 Eq. 2.5.1  

where 

G0ij = small strain stiffness 

Vij = shear wave velocity 

ρt = total density 

Sij = “structure” term 

F(e) = function accounting for void ratio change 

OCR = overconsolidation ratio 
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σ′ref = reference stress 

σ′ij = effective stress 

i = direction of wave propagation 

j = direction of wave polarization 

For measurement of the shear wave velocity in the vertical (v) direction with a 

horizontally (h) polarized wave and with σ'ref set equal to 1 kPa reduces Equation 2.5.1 

to: 

𝐺𝑣ℎ = 𝑉𝑣ℎ
   2𝜌𝑡 = 𝑆𝑣ℎ𝐹(𝑒)𝑂𝐶𝑅𝑘𝜎′𝑣

  𝑛𝑣𝜎′ℎ
  𝑛ℎ Eq. 2.5.2 

Laboratory data shows that the coefficient k = 0 and that the coefficients 'nv' and 

'nh' are equal to each other and constant (e.g., Jamiolkowski et al. 1995, Pennington et 

al. 1997). Several different forms of the void ratio function have been proposed with 

F(e) = e-m being a common one (Jamiolkowski et al. 1995). This further simplifies 

Equation 2.5.2 to: 

𝐺𝑣ℎ = 𝑉𝑣ℎ
   2𝜌𝑡 = 𝑆𝑣ℎ𝑒−𝑚(𝜎′

𝑣
  

𝜎′
ℎ
 

)𝑛 Eq. 2.5.3 

To determine the coefficients Svh, m, and n the shear wave velocity should be  

measured at known states of σ′v, σ′h, and e for: 1) various stress states but with little 

change in void ratio to determine n, i.e. unload cycles, 2) the same effective stress state 

but at different void ratios to determine m, and 3) normalization of Gvh by F(e) to 

confirm n and to determine Svh. These known states can all be achieved by performing a 

K0-consolidated test in a triaxial stress path cell equipped with bender elements with 

multiple unload-reload loops and frequent measurement of the shear wave velocity. 

Use of the shear wave velocity – stress state framework presumes that a 

disturbed state for soft clays will plot in a region below the backbone curve as shown 

schematically in Figure 2.5. This is based on sample disturbance in soft clays results in a 

reduction in effective stress and shear wave velocity due to the combined effects of 
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sampling stress relief and distortion (e.g., Hight and Leroueil 2003, Ladd and DeGroot 

2003, Lunne et al. 2006, Landon et al. 2007, Donohue and Long 2010).  No such similar 

framework has been developed for studying the effects of sample disturbance in silts 

which may contract or dilate during sampling depending on the initial in situ state 

conditions, sampling induced disturbance and whether that disturbance is drained or 

undrained.  As such Lukas (2017) will shift the backbone the Gvh-e-'2 backbone curve 

for a given soil as shown schematically in Figure 2.5 which is a modification of the 

Figure 2.4 framework for soft clays. For initially loose non-cemented low PI to non-

plastic intermediate soils where densification can occur during sampling, Gvh will 

increase since it is a direct function of void ratio; similarly an initially dense soil may 

dilate (loosen) during sampling, resulting in a decrease in Gvh. Hence, disturbed sample 

conditions for silts may occur above or below Figure 4.4 Line O-A. 

 

 

 

  



16 
 

Table 2. 1 Summary of Failure Criteria for Triaxial Tests (Brandon et al. 2006) 

Failure criterion Test applicability 

Peak deviator stress, (σ1- σ2)max UU, CU, CD 

Peak principle stress ratio, (σ1
’/ σ’

2)max CU, DD 

Peak pore pressure, umax CU 

Ᾱ=0 or Δu=0 CU 

Reaching the Kf line CU, CD 

Limiting strain UU, CU, CD 
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Figure 2. 1 Hypothetical stress path during tube sampling and specimen preparation of 

centerline element of low OCR clay (Ladd and DeGroot 2003) 

 
Figure 2. 2 Strain history at the centerline of different simple samplers (Baligh et al. 

1987). 
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Figure 2. 3 Recompression and SHANSEP Consolidation Procedure for Laboratory 

CK0U Testing (after Ladd 1991) 

 

 

Figure 2. 4 Idealized stress path showing stresses at failure for different failure criteria 

(Brandon et al. 2006) 
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Figure 2. 5 Schematic of shear wave velocity Vvh (or small strain shear modulus Gvh) – 

stress state 'v'h framework and reduction in sample state for the perfect sample and a 

disturbed sample (after DeGroot et al. 2010). 

 

 

Figure 2. 6 Proposed framework to assess sample quality using shear wave velocity Vvh 

and stress state 'v'h for silts (from Lukas 2017). 
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CHAPTER 3. METHODS OF INVESTIGATION 

 

This chapter describes the methods used to perform laboratory soil 

characterization of the soils tested. This is followed by a description of the triaxial 

apparatus used, specimen preparation and triaxial test procedures. Methods used to 

conduct bender element tests to measure the shear wave velocity, Vs.  

3.1 Basic Index and Classification Tests  
 

 This section includes the methods used to characterize and classify the three 

different soils used which included: 85S15K (85% silt and 15 % kaolin), 50S50K (50% 

silt and 50% kaolin) and natural Dedham Silt. The index tests conducted on the above 

soils were Atterberg limits, grain-size analysis and specific gravity.  

3.1.1 Water Content  
 

 The water content of the soils was measured in general accordance to ASTM 

D2216-10 Standard Test Method for Laboratory Determination of Water (Moisture) 

Contents of Soil and Rock by Mass. Two water content samples were collected after 

trimming 50S50K to obtain the wet mass and then oven dried at 110 °C for 24 hours to 

obtain the dry mass of the samples. The water content of the soil is determined as  

wc = 
𝑀𝑡−𝑀𝑠

𝑀𝑠
 × 100                                                                                                            

(3.1) 

where:  

Mt = total soil mass (g)  

Ms = mass of solids (g)  

wc = water content (%) 
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Similarly, water content was measured after completion of the triaxial test to obtain the 

final water content of the soil.  

3.1.2 Grain-Size Analysis  
 

The Hydrometer test was conducted on the soils in general accordance to ASTM 

D7928-17 Standard Test Method for Particle-Size Distribution (Gradation) of Fine-

Grained Soils Using the Sedimentation (Hydrometer) Analysis. 5 g of sodium 

hexemetaphosphate was added to 100 mL of distilled water. The solution was then 

added to 50 g of soil and mixed in a malt mixer for 1 minute. The slurry was then 

transferred to a 1000 mL cylinder and was filled with distilled water to the 1000 mL 

mark. The slurry in the cylinder was mixed by shaking the cylinder up and down for a 

minute and tempered for at least 16 hours. A reference solution was also prepared using 

5 g of sodium hexemetaphosphate mixed with distilled water in a 1000 mL cylinder and 

tempered for 16 hours. After the 16 hours period the slurry in the cylinder was mixed by 

shaking the cylinder up and down for a minute. The cylinder is then placed on the bench 

and using a 151H hydrometer schedule readings was taken for both the soil and the 

reference solution over a period of 24 hours.  

After the test, the slurry was passed through #200 sieve and collected for oven 

drying to obtain the mass of solids. The mass of solids retained on the #200 is used to 

measure the percentage of sand fraction, the percentage of clay fraction is computed 

from the mass of solids less than 2 μm and the percentage of silt is equivalent to 100 

subtracted from the sum of % clay fraction and % sand.  

3.1.3 Atterberg Limits  
 

Atterberg limits on the soils was performed in general accordance to ASTM 

D4318 Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of 
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Soils. The soil was first mixed with distilled water until the 15th blow on a calibrated 

Casagrande cup closed the groove. The soil was allowed to sit overnight in the humid 

room.  The soil was taken out of the humid room and allowed to come back to room 

temperature before beginning the test. The soil was placed in the Casagrande cup and a 

groove was cut through the soil. The cup was dropped at the rate of 2 blows per second 

until the groove closed about 13 mm. A soil sample was taken and placed in the oven to 

measure the water content. The procedure was repeated to obtain 5 water contents at 

different blow counts. The water content at the 25th blow was determined as the liquid 

limit of the soil.  

 For the plastic limit about 25 g of soil was spread in a glass plate before 

performing the liquid limit on the soil. The soil was rolled into a 0.32 cm diameter 

strand. The soil was repeatedly rolled until it starts to crumble at 0.32 cm diameter. The 

crumbles were collected and placed in the oven to measure the water content. This 

procedure was repeated three times and the plastic limit is determined as:  

PL = 
𝑤𝑐1+𝑤𝑐2+𝑤𝑐3+𝑤𝑐4

4
                                                                                      (3.2) 

where:  

wc = water content (%) 

PL = Plastic Limit  

 

3.1.4 Specific Gravity  
 

 Specific gravity test was performed on the soils in general accordance to ASTM 

D854-14 Standard Methods for Specific Gravity of Soil Solids by Water Pycnometer. 

The test was conducted in a controlled temperature box using ASTM Method B. 50 g of 

soil was mixed with deaired water in a malt mixer for a minute. The slurry was 
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transferred to the calibrated pycnometer and deaired water was added until the water 

level was between one third and half of the depth of the main body of the pycnometer. 

The slurry was deaired using vacuum for at least 2 hours. A small diameter flexible tube 

was used to fill the pycnometer with deaired water until the calibrated mark. The 

pycnometer was left overnight in a controlled temperature box. The pycnometer is 

weighed and the temperature was recorded. The slurry was collected in a ceramic bowl 

and oven dried. The specific gravity was determined as: 

𝐺𝑡 = 
𝑀𝑠

𝑀𝜌𝑤,𝑡−𝑀𝜌𝑤𝑠,𝑡−𝑀𝑠
                                                                                                          

(3.3) 

𝐺20℃ = 𝑘 × 𝐺𝑡                                                                                                                   

(3.4) 

where: 

𝑀𝑠= mass of the oven dry soil solids (g) 

𝑀𝜌𝑤,𝑡 = mass of pycnometer and water at the test temperature (g)  

𝑀𝜌𝑤𝑠,𝑡 = mass of pycnometer, water and soil solids at test temperature (g) 

𝐺𝑡  = specific gravity of soil solids at test temperature  

K = temperature coefficient  

𝐺20℃ = specific gravity of soil solids at 20℃  

 

3.2 Triaxial Testing  

 

Triaxial test was performed on split mold samples of 85S15K and Dedham Silt 

and intact samples of 50S50K in general accordance to ASTM D4767-11 Standard 

Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. This 

section includes apparatus description, specimen preparation (using split mold and 

consolidometer) and test procedures.  
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3.2.1 Triaxial Apparatus  
 

 The triaxial tests were conducted using the GEOTAC TruePath automated stress 

path system for triaxial testing software. The triaxial apparatus consisted of a GEOTAC 

load frame, flow pumps, pore pressure transducer, cell pressure transducer, LVDT, 

internal and external load cell and triaxial test cell chamber. An internal load cell was 

used to determine the stress on the specimen avoiding the need for piston friction 

correction. The load frame was used for loading and unloading the specimen at a 

constant stress or strain rate. The LVDT attached to piston measured the change in the 

height of the specimen throughout the test. The pore pressure pump provided back 

pressure and maintained constant pressure during consolidation while the cell pressure 

pump controlled the cell pressure. The cell pressure in the triaxial cell chamber and pore 

pressure in the specimen were measured using two pressure transducers mounted 

directly on the triaxial cell. The TruePath software allowed the user to control and 

monitor each phase of the triaxial test.  

3.2.1 Specimen Preparation  
 

 Two mixtures of synthetic soil 85S15K and 50S50K were prepared by varying 

the percentage of kaolin clay and silica silt by dry mass. The third soil tested was 

Dedham Silt, which is a natural glacially deposited silt from Dedham, Massachusetts. 

The index properties and the Unified Soil Classification System of the test soils from 

Lukas (2018) are presented in Table 3.1 and Figure 43.1. The reconstituted specimen of 

85S15K (85% silt and 15 % kaolin) and Dedham Silt may be subjected to liquefaction 

during trimming, therefore the specimens were prepared in a split mold under vacuum. 

For the split mold specimens, the amount of distilled water added was 2-2.5 times the 

liquid limit of the soil. All specimens tested were 35.6 mm in diameter and 71.2 mm tall. 



25 
 

The spilt mold was set up on the triaxial base with an extender on the top to 

accommodate more soil as shown in Figure 3.2. The slurry was transferred to the split 

mold with a membrane already in place under vacuum. For low plasticity soil (85S15K) 

a small vacuum is applied to the specimen at the triaxial base and allowed to self-

consolidate overnight. Dedham silt which is non-plastic no vacuum was applied to the 

specimen and was left to self- consolidate for a few hours or overnight. The next day a 

total of 5 kg of dead weight was added to the specimen at the rate of 1 kg per hour and 

left to consolidate overnight. At the end of this preloading phase, the dead weights were 

removed, and the top cap was assembled on the specimen with the drainage lines 

attached to the top cap. Vacuum line was attached from the water trap and 

approximately 30 kPa of vacuum was applied to the specimen and left overnight under 

vacuum. The split mold was removed the next day, the dimensions of the specimen were 

measured and all the parts of a triaxial apparatus were assembled together and placed in 

the load frame. The vacuum applied to specimen was only removed after a seating cell 

pressure of 30 kPa was applied. This method of split mold set-up is described in more 

detail in Lukas (2018).  

 The soil 50S50K (50% silt and 50 % kaolin) which has enough clay content to 

be self-standing was prepared in a consolidometer. The soil was mixed with distilled 

water at 1.5-2 times the liquid limit and allowed to hydrate overnight. The parts of the 

consolidometer set up are shown in Figure 3.3.  Vacuum grease was applied to the 

bottom of the consolidometer with an O ring attached to the bottom. An acrylic cylinder 

with an inside diameter of 102 mm was lubricated with silicon oil (200cs) and attached 

to the bottom of the consolidometer along with a porous stone. The soil slurry was 

transferred to the cylinder. The soil was mixed with a propeller mixing blade under 

vacuum to minimize trapping air bubbles in the soil cake. A drill attachment was 
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connected to the top cap of the consolidometer and a mixing blade was inserted through 

the bottom of the top cap and attached to the drill. The soil was mixed for 30 seconds 

under vacuum. The drill attachment was removed and a piston along with a cross bar 

was attached to the cylinder and locked to the bottom of the consolidometer. A GeoJac 

frame was used to perform 1-D consolidation by applying incremental stresses starting 

from 5 kPa to 200 kPa until the specimen was consolidated with one log cycle of 

secondary compression at the maximum applied stress. The soil cake was then extruded 

and coated with 50-50 mixture of petroleum jelly and paraffin wax and covered with 

plastic film dipped in the wax mixture. The soil cake was stored in a humid room with a 

controlled temperature of 11℃.  

3.2.3 Test Procedure  
 

 TruePath automated stress path system for triaxial testing software was used to 

perform triaxial test on the test soils. 85S15K, 50S50K and Dedham silt specimens were 

anisotropically consolidated using controlled stress path to selected target K0 values. The 

K0 values presented in Table 3.2 were estimated by Lukas et al (2018) using Mesri and 

Hayat (1993) relationship among K0, OCR and ϕ'mo (effective stress friction angle at 

maximum obliquity). All specimens were normally consolidated to an effective vertical 

stress ranging from 100 to 800 kPa and unloaded, if an overconsolidated state was 

required, to the appropriate vertical stress and corresponding K0 for a given target 

overconsolidation ratio (OCR).  

 An initial seating pressure of 30 kPa was applied to the specimen and 

backpressure saturation was performed by ramping up the back pressure to 300 kPa and 

maintain that pressure until a B value >0.95 was achieved. The specimen was 

anisotropically consolidated using controlled stress path to K0 value as discussed above 
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at a strain rate of 0.2 %/hr for loading and 0.05%/hr for unloading. The specimen was 

allowed to creep overnight prior to undrained shearing for normally consolidated soil, 

ISA shearing or unloading in case of specimen with OCR 3.6. After consolidation, the 

specimen was subjected to undrained ISA shearing under strain-controlled mode with 

peak ISA strains of ± 1 % and ± 3 %. After completion of the ISA loading cycle, the 

specimen was unloaded to q = 0 (i.e., zero deviator stress) under undrained conditions 

and reaching an isotropic state after the removal of the deviator stress. Post-ISA, the 

specimen was anisotropically reconsolidated to pre-ISA vertical effective stress of 400 

kPa for normally consolidated specimen or unloaded to vertical effective stress of 111 

kPa for specimen with OCR 3.6 for the Recompression procedure. Finally, the specimen 

was sheared undrained in triaxial compression mode at the rate of 0.5%/hr until a 

maximum of 15% strain.  

 Post-ISA SHANSEP tests were also conducted, i.e., the specimen was 

reconsolidated past the pre-ISA vertical effective stress to 800 kPa and sheared 

undrained for normally consolidated soil or unloaded to an appropriate vertical effective 

stress for the OCR specimens.   

3.3 Bender Elements  
 

Bender elements were imbedded in the triaxial base and the top cap as shown in 

Figure 3.4. The construction system and configuration of bender elements is described 

in detail by Lukas (2018). The function generator used was a Wavetek model 29 19 

MHz Direct Digital Synthesis (DSS). The transmitting bender was excited by the 

function generator with a ±10 V single sine wave of varying frequency generated every 

100 ms. A PicoScope (Model 4226) oscilloscope along with PicoScope 6 software was 

used to read both the transmitted and received signals. The function generator, Wavetek 
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has different frequencies programmed in the system which can be recalled by clicking 

the RECALL button followed by the desired frequency, then ENTER button and 

OUTPUT button. The received and transmitted signals are displayed on the computer 

using the PicoScope interface. The data was recorded either by clicking the space bar or 

the go and stop button on the screen. 

All the bender signals were transmitted at frequency of 5kHz which was 

determined to produce the best recorded signal by the receiving bender element. The 

shear wave velocity was computed using the shear wave travel time (∆𝑡) estimated 

using the first zero crossover method also knows as the start-to-start method (Lukas, 

2018). This was determined by taking the time interval between the start transmission 

wave and the pre-deviated received wave which is defined as when it first crosses the 

zero-voltage value as shown in Figure 3.5. The shear wave velocity was determined as: 

𝑉𝑣ℎ =
𝐿𝑡𝑡

∆𝑡
                                                                                                           (3.5) 

where: 

 𝑉𝑣ℎ = shear wave velocity (v is the direction of wave propagation & h is the direction of 

wave polarization) 

𝐿𝑡𝑡 = tip to tip distance between the top and bottom benders  

∆𝑡 = shear wave travelled time (using the zero-crossover method)  

The small strain shear modulus 𝐺𝑣ℎ was estimated using the following reduced equation 

from Hardin and Blandford (1989).  

𝐺𝑣ℎ=𝑉𝑣ℎ
2 𝜌𝑡 = 𝑆𝑣ℎ𝑒−𝑚 (𝜎𝑣

′  𝜎ℎ
′ )n                                                                                                

.6) 

where: 

𝜌𝑡 = total density  
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𝑆𝑣ℎ = “structure” term  

 𝑒−𝑚 =void ratio function  

𝜎𝑣
′  = vertical effective stress  

𝜎ℎ
′  = horizontal effective stress  

  𝑆𝑣ℎ , 𝑚 and n coefficients were estimated by measuring the shear wave velocity 

at known states of σ′v, σ′h, and e of the test soils. The shear wave velocity was measured 

at various stress states by taking multiple bender readings while performing K0 -

consolidation triaxial test with multiple unload-reload loops. The 𝐺𝑣ℎ − 𝑒 −

𝜎′2 backbone curve for low PI to non-plastic silts was also established from the bender 

readings taken during K0 -consolidation triaxial test with multiple unload-reload loops. 

The analysis procedure is described in more detail in Lukas (2018).  
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Table 3. 1 Index properties of synthetic intermediate soil samples (Lukas 2018) 

Soil  LL (%) PL (%) PI (%) Fine Content 

(%) 

USCS 

50S50K 31 15 16 88 CL 

85S15K 19 15 4 79 CL-ML 

Dedham Silt 19 NP NP 100 ML 

Note: LL = liquid limit, PL = plastic limit, Fines Content =%<0.075 mm  

 

Table 3. 2 K0 values estimated by Lukas et al (2018) using Mesari and Hayat (1993) 

relationship 

Soil  50S50K  85S15K  Dedham Silt  

KNC (-) 0.59 0.52 0.56 

K3.6 (-) 0.98 0.96 0.97 

φ' mo (◦) 26.3 36.5 35.0  

Note: ϕ'mo=effective stress friction angle at maximum obliquity.  
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Figure 3. 1 Plasticity chart for test soils 50S50K and 85S15K (S=%Silt, K=%Kaolin) 
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(a)                                                                  (b) 

Figure 3. 2 Specimen preparation using a split mold under vacuum: (a) split mold set up 

on a triaxial base, (b) specimen after the split mold is removed. 
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Figure 3. 3 Consolidometer used to make cakes of test soil 50S50K 
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(a)                                                                           (b) 

Figure 3. 4 Bender element: (a) bottom bender on the triaxial base, (b) top bender 

incorporated in the top cap. 
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Figure 3. 5 Example for selection of travel time Δt using first zero crossover method. 
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CHAPTER 4. PRESENTATION AND INTERPRETATION OF RESULTS 
 

 This chapter presents and analyzes results from the laboratory triaxial test and 

shear wave velocity measurements using bender elements. This includes the influence of 

stress level on the normalized undrained shear strength, effects of SHANSEP and 

recompression on post ISA behavior, and evaluation of small strain modulus during 

ISA, Recompression and SHANSEP testing.  

4.1 Normalization Results  
 

 This section presents the results from anisotropically consolidated undrained 

triaxial compression tests (CAUC) performed at various consolidation stress levels on 

test soils 50S50K, 85S15K and Dedham Silt. Preparation of the test specimens is 

described in Section 4.2.1. The testing program was conducted on NC specimens 

anisotropically consolidated using the Ko values presented in Table 2.2. The test soils 

were consolidated to vertical effective stresses of 100 kPa, 200 Pa, 400 kPa, 600 kPa 

and 800 kPa followed by undrained shear. Given that the Dedham silt exhibited dilating 

behavior the undrained shear strength of the test soils were all computed using the 

Brandon et al. (2006) failure criteria which are peak deviator stress ( 𝜎1 − 𝜎3)max, peak 

principal stress ratio (𝜎1
′/𝜎3

′)max, peak excess pore pressure 𝛥𝑢𝑚𝑎𝑥, reaching kf line, 

limiting strain (5%) and A̅ =0 or Δu=0 as shown in Figure 2.4 in chapter 2.  

Table 4.1 summarizes the end of consolidation conditions for each of the test 

specimens and Figures 4.1 to 4.3 present the consolidation plots in terms of vertical 

(axial) strain and void ratio. Tables 4.2 to 4.4 summarizes the undrained shear strength 

and normalized undrained shear strength of the test soils consolidated to various vertical 

effective stress using Brandon et al. (2006) failure criterion.   
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 Figures 4.4 to 4.9 present the stress-strain, shear induced pore pressure, and 

effective stress paths for the 85S15K, 50S50K and Dedham Silt specimens.  The results 

show that the 50S50K soil exhibits contractive behavior (i.e., progressively increasing 

positive shear induced pore pressures) through the entire test for all preshear stress 

levels. In contract, the Dedham Silt specimens all exhibit dilative behavior with the 

effective stress path sharply migrating to the right and up the failure envelope. The 

85S15K specimens initially all show contractive behavior but switch to dilative behavior 

at larger strains towards the end of the tests nominally coinciding with where the 

effective stress paths appear to reach the failure envelope. The peak shear stress of 

85S15K and 50S50K is mobilized at <0.4 % strain followed by strain softening. It can 

also be observed that for 85S15K (P.I = 4), the post peak behavior is dependent on the 

preshear vertical effective stress. The 85S15K specimens consolidated to higher vertical 

effective stresses of 600 kPa and 800 kPa show a greater tendency towards dilative 

behavior, i.e., more rapid gain in shear strength with increasing strain. Dedham Silt 

which is a non-plastic soil does not reach a peak shear stress value and continues to 

migrate up the failure envelope with continued strain until the maximum strain level 

reached in a test.  

 Figures 4.7 to 4.9 present the results all normalized by the preshear vertical 

effective stress. The normalized shear stress versus axial strain plot of 85S15K shows 

that the normalized shear stress generally does not increase with an increase in stress 

level. However, the normalized shear stress for the specimen consolidated to stress level 

of 600 kPa is higher compared to specimen consolidated to stress level of 800 kPa. This 

specimen was used to develop the shear wave velocity framework (results presented in 

Section 4.2 below) and had three unload-reload loops prior to reaching the final 

consolidation stress of 600 kPa and it is possible this caused some changes in the 
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specimen structure resulting in a higher strength than if it had been consolidated directly 

to 600 kPa without any unload-reload loops. 

Figure 4.10 plots the undrained shear strength versus preshear vertical effective 

stress with su taken as equal to qmax for the 85S15K and 50S50K soils which all show a 

distinct peak shear stress during the initial contractive behavior.  Linear regression to the 

data with the intercept forced through zero results in the following S values, i.e., su/σ'vc 

for OCR = 1 conditions: 

85S15K: S = su/σ'vc = 0.30 

50S50K: S = su/σ'vc 0.26 

The near perfect linear regression fits indicate little to no dependency of the normalized 

undrained stress strength with consolidation stress level for these two soils 

Given that the Dedham Silt exhibits dilative behavior from the start of shear the 

Brandon et al. (2006) criteria are used to evaluate the potential dependency of undrained 

shear strength with consolidation stress level. Figure 4.11 presents an example 

application of the Brandon et al. (2006) criteria for the Dedham Silt specimen tested 

with σ'vc = 200 kPa. Tables 4.2 to 4.4 present su values for the Brandon et al. (2006) 

criteria for the test soils – note: the criteria are not intended for soils that exhibit 

contractive behavior but the results for the 85S15K and 50S50K soils are nevertheless 

presented here for comparative purposes. Figure 4.12 and 4.13 plots the Tables 4.2 to 

4.4 results versus preshear vertical effective stress. 

The post peak normalized shear stress behavior is also influenced by the preshear 

consolidated vertical effective stress depending on which criterion is used. For example, 

for 85S15K consolidated to vertical effective stress, σ’vc > 400 kPa, there is gain in post 

peak normalized shear stress with an increase in strain. If the specimen were subjected 
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to higher strain, then the post peak normalized shear stress would exceed the peak shear 

stress resulting from dilation. This demonstrates that the tendency for low plasticity silts 

to dilate increases with an increase in stress level. The normalized shear stress and post 

peak normalized shear stress behavior of 50S50K (P.I = 16) does not show an increase 

with the increase in the stress level.  

 For 85S15K, the results from the failure criteria methods show increase in 

normalized undrained shear strength with increase in stress level. However, the peak 

deviator stress method does not show an increase in normalized undrained shear strength 

with increase in stress level.  The remaining four methods shows large deviation in the 

normalized undrained shear strength with increase in stress level. The peak excess pore 

pressure and kf line methods shows consistency in increase in normalized undrained 

shear strength with increase in stress level. For 50S50K the normalized undrained shear 

strength results as shown in Figure 4.12 (b) does not show any trend with increase in 

stress level. The peak deviator stress method shows least deviation in the normalized 

undrained strength with increase in stress level.  

The peak deviator stress method cannot be used for dilating soil such as Dedham 

Silt. In Figure 4.12 (c) all methods except peak excess pore pressure (Δumax) show large 

deviation in the normalized undrained shear strength with increase in stress level. 

However, a decreasing trend in normalized undrained shear strength with increasing 

stress level is observed for peak deviator stress ( 𝜎1 − 𝜎3)max, peak principal stress ratio 

(𝜎1
′/𝜎3

′)max, kf line and limiting strain (5%) failure criteria.  

The axial strain at failure versus stress level is shown in figure 4.13. The axial 

strain at failure is constant with the increase in the stress level for 85S15K and 50S50K. 

The axial strain at peak stress and peak excess pore pressure are most consistent with 
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increase in stress level. It can be observed that the peak shear stress occurs at very small 

strain for both the soils. The axial strain at failure for Dedham Silt shows significant 

deviation with increase in stress level except for axial strain at peak excess pore 

pressure.  
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Table 4. 1 Summary consolidation and undrained shear results 

 

Soil 
'vc 

(kPa) 

Kc 

(-) 

wc 

(%) 

ec 

(-) 
a 

(%) 

v 

(%) 

f 

(-) 

qf 

(kPa) 
qf/'vc 

(−) 

' at 

qf (◦) 

'mo 

(◦) 

85S15K 

108 0.55 20 0.683 1.6 0.8 0.14 29.8 0.276 21 21 

198 0.51 16 0.661 3.5 2.2 0.15 57.3 0.289 23 36 

401 0.52 24 0.615 5.2 5.1 0.15 117.5 0.293 23 37 

600 0.51 17 0.622 5.5 4.7 0.33 182.3 0.304 25 36 

808 0.51 18 0.556 5.0 6.0 0.29 236.8 0.293 25 37 

50S50K 

208 0.58 23 0.745 9.2 2.9 0.29 51.9 0.250 20 23 

397 0.57 24 0.591 7.1 7.0 0.22 101.9 0.257 20 27 

599 0.56 25 0.598 11.8 8.8 0.18 151.0 0.252 19 25 

803 0.56 28 0.579 13.0 10.2 0.37 210.7 0.262 21 26 

Dedham 

Silt 

109 0.60 18 0.644 0.5 0.3 11.62 159.7* 1.465* 33* 33 

204 0.57 14 0.646 1.3 0.7 14.40 232.8* 1.141* 34* 35 

400 0.56 22 0.560 3.5 2.4 11.02 176.4* 0.441* 35* 35 

601 0.56 17 0.631 2.9 1.9 13.00 356.6* 0.593* 33* 35 

Note: * italics denotes specimen had not reached a peak q; the value listed is the final 

reading 

Table 4. 2 Shear strength of 85S15K tests using Brandon et al. (2006) failure criteria 

 

 

 

 

 

 

 

σ'vc 

(kPa) 

(σ1 - σ3)max 

 

(σ'1/σ'3)max umax Kf line εf =5% 

qf  

(kPa) 

εf 

(%) 

qf  

(kPa) 

εf 

(%) 

qf  

(kPa) 

εf 

(%) 

qf  

(kPa) 

εf 

(%) 

qf 

(kPa) 

108 29.8 0.14 32.1 13.7 25.7 4.3 32 13.5 26.1 

198 57.3 0.15 41.3 10 39.4 7 38 4.6 39 

401 117.5 0.15 83 10.8 79.7 7.7 81 3.8 79.2 

600 182.3 0.33 162.3 11.3 153.2 7.2 156 2.8 151.5 

808 236.8 0.29 200.9 10.5 194.9 7.6 200 2.4 191.7 
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Table 4. 3 Shear strength of 50S50K tests using Brandon et al. (2006) failure criteria 

 

Table 4. 4 Shear strength of Dedham Silt tests using Brandon et al. (2006) failure 

criteria 

 

Note: * italics denotes specimen had not reached a peak q; the values listed are the final 

reading 

 

 

 

 

 

σ'vc 

(kPa) 

(σ1 - σ3)max 

 

(σ'1/σ'3)max umax Kf line εf =5% 

qf  

(kPa) 

εf 

(%) 

qf  

(kPa) 

εf 

(%) 

qf  

(kPa) 

εf 

(%) 

qf  

(kPa) 

εf 

(%) 

qf 

(kPa) 

200 48.3 0.29 43.8 7.4 39.1 14.6 42 10.4 45.6 

400 101.9 0.37 81.5 11.5 77.7 15.1 78 14.7 89.6 

600 151 0.18 127.9 9.3 118.6 15 120 13.6 135.7 

800 210.7 0.37 177.4 10 167.5 14.8 170 13.4 189.5 

σ'vc 

(kPa) 

(σ1 - σ3)max 

 

(σ'1/σ'3)max umax Kf line 𝐴̅=0 εf =5% 

qf  

(kPa) 
εf 

(%) 

qf  

(kPa) 
εf 

(%) 

qf  

(kPa) 
εf 

(%) 

qf  

(kPa) 
εf 

(%) 

qf  

(kPa) 
εf 

(%) 

qf 

(kPa) 

100 159.5* 14.9* 111.2 10.1 36.1 1.3 52 3.8 78 7 61.5 

200 232.8* 14.4* 187 11.4 66.5 1.9 125 7.3 150 9.1 95.5 

400 176.4* 11.2* 176.4 11.2 111.1 3.9 148 8.5 - - 117.6 

600 356.6* 10.5* 349.3 10.1 211.4 10.1 290 7.4 - - 245.6 
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Figure 4. 1 Strain and void ratio versus vertical effective stress of 85S15K at different 

stress level 
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Figure 4. 2 Strain and void ratio versus vertical effective stress of 50S50K at different 

stress level 
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Figure 4. 3 Strain and void ratio versus vertical effective stress of Dedham Silt at 

different stress level 
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Figure 4. 4 Shear stress versus axial strain (a) 85S15K (b) 50S50K (c)Dedham Silt 
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Figure 4. 5 Shear induced pore pressure versus axial strain (a) 85S15K (b) 50S50K 

(c)Dedham Silt 
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Figure 4. 6 Effective stress path (a) 85S15K (b) 50S50K (c)Dedham Sil 
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Figure 4. 7 Normalized shear stress versus axial strain (a) 85S15K (b) 50S50K 

(c)Dedham Silt 
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Figure 4. 8 Normalized shear induced pore pressure versus strain (a) 85S15K (b) 

50S50K (c)Dedham Silt 
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Figure 4. 9 Normalized shear effective stress path (a) 85S15K (b) 50S50K (c)Dedham 

Silt 
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Figure 4. 10 Undrained shear strength at qmax versus effective stress for 85S15K, 

50S50K and Dedham Silt (su at Kf line) 
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Figure 4. 11 Example of using Brandon et al (2006) failure criteria for Dedham Silt 

(σ’vc=100 kPa) (a) Effective stress path (b) q versus strain 
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Figure 4. 12 Normalized undrained shear strength versus vertical effective stress using 

Brandon et al (2006) failure criteria (a) 85S15K (b) 50S50K (c)Dedham Silt 

 

 

0.16

0.20

0.24

0.28

0.32

0 100 200 300 400 500 600 700 800 900

s u
/σ

'v
c 

(-
) 

qmax (σ1-σ3)max
(σ'1/σ'3) max
kf line
umax
εf (5%)

(a)

0.16

0.20

0.24

0.28

0.32

0 100 200 300 400 500 600 700 800 900

s u
/σ

'v
c 

(-
) 

(b)

0.0

0.4

0.8

1.2

1.6

0 100 200 300 400 500 600 700 800 900

s u
/σ

'v
c 

(-
) 

σ'vc (kPa)

(c)



55 
 

 

 

 

Figure 4. 13 Axial strain at failure versus vertical effective stress using Brandon et al 

(2006) failure criteria (a) 85S15K (b) 50S50K (c)Dedham Silt 
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4.2 SHANSEP versus Recompression  
 

This section presents and analyzes results from laboratory triaxial tests 

conducted on reconstituted specimens of 85S15K, 50S50K and Dedham Silt to study the 

effect of recompression and SHANSEP consolidation procedures on post ISA behavior 

of the test soils. As described in the Methods Chapter, all specimens were first 

anisotropically consolidated using controlled stress path to the target K0 value at a strain 

rate of 0.2 %/hr for loading and 0.05%/hr for unloading, followed by undrained ISA 

shearing. At completion of the ISA cycle, the specimens were either reconsolidated back 

to the pre-ISA effective stress state (i.e., Recompression method) or consolidated first 

well beyond the pre-ISA effective stress state as per the SHANSEP procedure to a final 

OCR equal to that of the pre-ISA stress state (i.e., OCR = 1 for NC and OCR = 3.6 for 

OC specimens). At the end of Recompression or SHANSEP reconsolidation procedure 

the specimens were sheared undrained at 0.5%/hr.  

 

4.2.1 ISA Behavior 
 

Figure 4.2.1 presents the stress strain, shear induced pore pressure versus strain 

and effective stress path for normally consolidated 85S15K and 50S50K specimens 

during ±1% & ±3% ISA shearing and Figure 4.2.2 presents the same plots for specimens 

of the same two soils with OCR =3.6. The undisturbed CAUC behavior is also plotted in 

Figures 4.2.1 and 4.2.2 for reference and Table 4.2.1 presents a summary of the 

undisturbed CAUC consolidation and undrained shear behavior. It can be observed that 

for OCR = 1 85S15K the loss in effective stress during ISA disturbance is significant in 

reference to the undisturbed behavior and is also much larger than the 50S50K 

specimen. For OCR=3.6, the loss in effective stress is much smaller than the OCR = 1 

behavior for both soils. Dedham Silt, as shown in Figure 4.2.3, demonstrates similar 
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behavior to 85S15K in terms of significant loss in effective stress, which is also lower 

for higher OCR. 

 

4.2.2 OCR 1.0 Behavior for 50S50K and 85S15K   
 

Figures 4.2.4 to 4.2.7 present examples for 50S50K and 85S15K of the complete 

compression curve in void ratio (e) versus effective stress space and the complete 

effective stress path during the full test sequence consisting of: initial consolidation to 

OCR = 1, ISA shearing, post-ISA reconsolidation (either Recompression or SHANSEP), 

and final undrained shear. Figures 4.2.4 and 4.2.5 compare results for 50S50K with 

OCR = 1 and ± 1% ISA straining followed by either Recompression consolidation back 

to the pre-ISA effective stress state with 'vc = 400 kPa versus SHANSEP consolidation 

to a final post-ISA 'vc = 800 kPa. Figures 4.2.6 and 4.2.7 present results for the same 

Recompression and SHANSEP test procedures for 85S15K. 

Figure 4.2.8 to 4.2.11 present the final undrained shear stress-strain, normalized 

stress-strain, shear induced pore pressure and effective stress paths for OCR = 1 

undisturbed, ±1% & ±3% ISA Recompression and SHANSEP tests.  The results for the 

CAUC undisturbed behavior for each of the three soils are summarized in Table 4.2.1.  

Table 4.2.2 presents a summary of the post-ISA Recompression and SHANSEP 

undrained shear behavior for 50S50K. In all cases the normally consolidated 50S50K 

specimens subjected to ISA disturbance exhibit contractive behavior throughout 

undrained shear. The undisturbed 50S50K specimen had a peak shear stress at 0.37% 

followed by contractive behavior until the end of shear. The OCR = 1 specimens 

subjected to ±1% ISA followed by Recompression and SHANSEP consolidation 

reached a peak shear stress at 1.08% and 0.18% strain respectively. The normalized 

peak undrained shear stresses increased from 0.255 for the undisturbed to 0.287 for ±1% 
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ISA with Recompression post-ISA consolidation. However, the specimen with 

SHANSEP post-ISA consolidation had a value of 0.255 thus apparently mitigating the 

effect of ISA disturbance. Similarly, for ±3% ISA with Recompression post-ISA 

consolidation the peak normalized shear stress increased to 0.312 compared with 0.267 

for the test with SHANSEP post-ISA consolidation. It can also be observed that 

normally consolidated 50S50K specimens subjected to ISA disturbance did not show 

dilative behavior.  

For 85S15K OCR=1 the undisturbed CAUC specimen had a peak shear stress at 

small strain of 0.15% followed by contractive behavior until the specimen reached the 

failure envelope at which point it exhibited dilative behavior. For OCR 1, ±1% ISA and 

post-ISA Recompression consolidation the specimen reached a peak shear stress at 1.31 

% strain followed by dilative behavior. The SHANSEP test with OCR 1 and ±1% ISA 

reached a peak shear stress at 0.47% strain slightly recovering the undisturbed 

contractive phase which is followed by dilative behavior. 

For 85S15K two specimens were first normally consolidated to σ’vc= 200 kPa 

followed by ±1% ISA for one and ±3% ISA for the other. Thereafter both specimens 

were SHANSEP consolidated to 'vc = 800 kPa. For ±1% ISA the specimen reached a 

lower peak shear stress than the specimen that was consolidated to σ’vc= 400 kPa prior 

to ISA shearing and recovered the undisturbed contractive phase followed by dilative 

behavior. The normalized effective stress path, as shown in Figure 4.2.9, the specimen 

consolidated to σ’vc= 200 kPa prior to ISA shearing followed closest to the undisturbed 

effective stress path and the tendency for dilative behavior was reduced compared to the 

specimen with pre-ISA σ’vc= 400 kPa followed by SHANSEP consolidation to 'vc = 

800 kPa.  
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Table 4.2.3 summarizes the post-ISA undrained shear results for 85S15K 

undisturbed and ±1% & ±3% ISA Recompression and SHANSEP tests. Overall, the 

undrained shear strength is significantly affected by ISA disturbance. For OCR=1, ±1% 

ISA disturbance the normalized peak shear stress increased from 0.290 at 0.15% strain 

for undisturbed to 0.353 at 1.31% strain for ±1% ISA with Recompression post-ISA 

consolidation. The SHANSEP post-ISA consolidation resulted in a normalized peak 

shear stress of 0.327 at 0.47% strain which is closer to the undisturbed normalized peak 

shear stress reducing some but not all of the effect of ISA disturbance. It can also be 

observed that SHANSEP consolidation reduced the tendency to develop dilative 

behavior. However, for ±3% ISA disturbance, SHANSEP consolidation does not 

counter act the disturbance and the specimens had a greater tendency towards post-ISA 

dilative behavior  

 

4.2.3 OCR 3.6 Behavior for 50S50K and 85S15K 
 

Figures 4.2.12 presents the complete compression curve and full test sequence 

for a 50S50K specimen with OCR = 3.6 and ± 1% ISA straining followed by 

Recompression post-ISA consolidation. Figure 4.2.13 presents the same plots for 

85S15K with Recompression post-ISA consolidation and Figure 4.2.14 for SHANSEP 

post-ISA consolidation. Figures 4.2.15 to 4.2.18 present the final undrained shear stress-

strain, normalized stress-strain, shear induced pore pressure and effective stress paths 

for OCR = 3.6 undisturbed, ±1% & ±3% ISA Recompression and SHANSEP (only for 

85S15K) tests. 

For 50S50K the post-ISA Recompression behavior closely resembles that of the 

undisturbed CAUC behavior for both ± 1% and ± 3% ISA, except for the slope of the 

stress-strain curve during the initial part of shear up to around 4% strain. For 85S15K 
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there are more noticeable differences in behavior among the undisturbed, 

Recompression and SHANSEP specimens. The normalized SHANSEP effective stress 

paths initially followed exactly that of the undisturbed specimens for both ± 1% and ± 

3% which was not the case for the Recompression tests. However, neither 

reconsolidation procedures captured the initial peak shear stress followed by a brief 

contractive behavior and then dilative behavior shown by the undisturbed specimens 

(i.e., the S shape in the effective stress paths as they approach the failure envelope). 

Depending on how the undrained shear strength is defined there can be large differences 

among the test results for 85S15K unlike that found for the 50S50K soil. 

 

4.2.4 Dedham Silt Behavior 
 

Figures 4.2.19 presents the complete compression curve and full test sequence 

for a Dedham silt specimen with OCR = 1.0 and ± 1% ISA straining followed by 

Recompression post-ISA consolidation and Figure 4.2.20 presents the same plots for 

OCR = 3.6. Figures 4.2.21 and 4.2.22 present the final undrained shear stress-strain, 

normalized stress-strain, shear induced pore pressure and effective stress paths for OCR 

= 1.0 and 3.6 undisturbed, ±1% & ±3% (OCR = 3.6 only) ISA Recompression tests. The 

eventual behavior in all cases is highly dilative but ISA straining removes the initial 

contractive phase for the OCR = 1 behavior while it creates an initially softer response 

(i.e., lower slope in the stress-strain curve) for the OCR = 3.6 specimens with ±1% & 

±3% ISA straining. Table 4.2.4 presents a summary of the undrained shear results. 

 

 4.2.5 Summary 
 

 Tables 4.2.5 and 4.2.6 present a comparison of results for post-ISA 

Recompression and SHANSEP consolidation procedures for OCR=1 and OCR=3.6 for 
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all three test soils. The effect of ISA disturbance is significant in the low plasticity 

85S15K silt than the low plasticity 50S50K clay. For 85S15K, the ISA Recompression 

results in an increase in the undrained shear strength and eliminates the contractive 

behavior of the undisturbed specimen resulting in dilative behavior. The SHANSEP 

consolidation procedure recovers to some extent the undisturbed behavior and reduces 

the dilative behavior for OCR = 1 and ±1% ISA disturbance, however, it overestimated 

the undrained shear strength of the soil. For higher OCR and ISA disturbance 

SHANSEP consolidation does not counter act the ISA disturbance and the specimens 

have a greater tendency to post-ISA dilation. For 50S50K SHANSEP consolidation is 

more effective in recovering the undisturbed behavior compared to 85S15K but 

overestimates the undrained shear strength.  
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Table 4.2 1 Summary consolidation and undrained shear results from undisturbed CAUC tests 

Soil 

σ'vmax 

σ'vc 

(kPa) 

OCR Kc (-) 
wc 

(%) 

ec  

(-) 
εa (%) 

εvol 

(%) 
εf (%) 

qf 

(kPa) 

qf/σ’vc 

(-) 

φ' at 

qf (◦) 

φ'mo 

(◦) 

 

85S15K 

401 

  111 

1.0 

3.6 

0.52 

0.99 

24 

24 

0.615 

0.543 

5.2 

4.6 

5.1 

6.6 

0.15 

14.7* 

118 

91* 

0.293 

0.818 

23 

36 

36 

36 

50S50K 397 

110 

1.0 

3.6 

0.57 

1.02 

24 

25 

0.591 

0.618 

7.1 

6.4 

7.1 

6.1 

0.37 

3.53 

102 

78 

0.257 

0.711 

21 

26 

26 

27 

Dedham Silt 399 

111 

1.0 

3.6 

0.56 

0.98 

22 

23 

0.560 

0.678 

3.5 

2.2 

2.4 

1.7 

11.18* 

14.7* 

176* 

270* 

0.442 

2.430 

35 

35 

35 

35 

Note: Kc = σ'hc/ σ 'vc, * denotes specimen had not reached a peak q; the values listed are the final reading 

 

Table 4.2 2 50S50K Shear Results 

Undisturbed - CAUC  

 

ISA 

(%) 

Disturbed - Recompression Disturbed - SHANSEP 

OCR 
σ'vc 

(kPa) 

su  

(kPa) 

εf  

(%) 
OCR 

σ'vc 

(kPa) 

su 

(kPa) 

εf  

(%) 

Δe/e0 

(-) 

εv 

(%) 
OCR 

σ'vc 

(kPa) 
su 

(kPa) 
εf  

(%) 
Δe/e0 

(-) 
εv  

(%) 

 

1.0 

 

397 

 

101.9 

 

0.37 

1 1.0 394 115 1.08 0.025 0.94 1.0 814 208 0.18 0.099 4.2 

3 1.0 404 126 3.01 0.047 1.86 1.0 811 216 0.89 0.110 4.3 

 

3.6 

 

 

104 

 

78.2 

 

3.53 

1 3.6 107 75 3.83 0.002 0.06 - - - - - - 

3 3.6 107 76 3.68 0.001 0.06 - - - - - - 
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Table 4.2 3 85S15K Shear Results 

Undisturbed-CAUC 

ISA 

(%) 

Disturbed Recompression Disturbed - SHANSEP 

OCR 
σ'vc 

(kPa) 

su  

(kPa) 

εf  

(%) 

σ'vc 

(kPa) 

Initial Peak qmax 
Δe/e0 

(-) 

εv  

(%) 

σ'vc 

(kPa) 

Initial Peak qmax 
Δe/e0 

(-) 

εv  

(%) su 

(kPa) 

εf  

(%) 

su 

(kPa) 

εf  

(%) 

su 

(kPa) 

εf  

(%) 

su 

(kPa) 

εf  

(%) 

 

1.0 

 

 

401 

 

116.3 

 

0.15 

1 398 141 1.31 148* 10* 0.031 1.2 838 274 0.47 - - 0.065 2.6 

3 408 - - 227* 11* 0.067 2.6 833 - - 391* 9.4* 3.559 0.09 

 

3.6 

 

 

106 

 

84.98 

 

0.85 

1 109 - - 102* 10* 0.011 0.4 223 - - 253* 10* 0.054 2.1 

3 108 - - 95* 5* 0.048 1.9 227 - - 242* 10* 0.095 3.4 

Note: * denotes specimen had not reached a peak q; the values listed are the final reading 
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Table 4.2 4 Dedham Silt Shear Results 

Undisturbed 

ISA 

(%) 

Disturbed Recompression 

OCR 
σ'vc 

(kPa) 

Initial Peak qmax 

OCR 
σ'vc 

(kPa) 

Initial Peak qmax 
Δe/e0 

(-) 

εv  

(%) su 

(kPa) 

εf  

(%) 

su  

(kPa) 

εf  

(%) 

su 

(kPa) 

εf  

(%) 

su 

(kPa) 

εf  

(%) 

1.0 399 109.8 0.38 164* 10* 1 1.0 400 - - 455* 10* 0.010 0.39 

 

3.6 

 

 

110 

 

80.3 

 

0.58 

 

195* 

 

10* 

1 3.6 109 - - 248* 10* 0.014 0.54 

3 3.6 111 - - 401* 9* 0.046 1.65 

Note: * denotes specimen had not reached a peak q; the values listed are the final reading 
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Table 4.2 5 Comparison of recompression and SHANSEP technique on normally 

consolidated 85S15K, 50S50K and Dedham Silt 

 

 

Table 4.2 6 Comparison of recompression and SHANSEP technique OCR=3.6 on 

85S15K, 50S50K and Dedham Silt 

Soil  Test Type σ'vc 

(kPa) 

qpeak 

(kPa) 

qpeak/σ’vc 

(-) 

εpeak 

(%) 

Dilative 

Beahvior  

 

 

50S50K 

Undisturbed 104 78 0.752 3.53 No 

ISA 

(±1%) 

Recompression 107 75 0.700 3.83 No 

SHANSEP - - - - - 

ISA 

(±3%) 

Recompression 107 76 0.713 3.68 No 

SHANSEP - - - - - 

 

 

85S15K 

Undisturbed 106 85 0.802 0.85 No 

ISA 

(±1%) 

Recompression 109 No peak Yes 

SHANSEP 223 No peak Yes 

ISA 

(±3%) 

Recompression 108 No peak Yes 

SHANSEP 227 No peak Yes 

Note: No peak was observed for Dedham Silt OCR=3.6 recompression and SHANSEP 

tests. 

Soil  Test Type σ'vc 

(kPa) 

qpeak 

(kPa) 

qpeak/σ’vc 

(-) 

εpeak 

(%) 

Dilative 

Beahvior  

 

 

50S50K 

Undisturbed 400 102 0.255 0.37 No 

ISA 

(±1%) 

Recompression 400 115 0.287 1.08 No 

SHANSEP 814 208 0.255 0.18 No 

ISA 

(±3%) 

Recompression 404 126 0.312 0.89 No 

SHANSEP 811 216 0.267 0.15 No 

 
 

85S15K 

Undisturbed 401 116 0.290 0.15 No 

ISA 

(±1%) 

Recompression 398 141 0.353 1.31 Yes 

SHANSEP 838 274 0.327 0.47 No 

ISA 

(±3%) 

Recompression 408 No peak Yes 

SHANSEP 833 No peak Yes 

 

Dedham 

Silt 

Undisturbed 399 110 0.275 0.38 Yes 

ISA 

(±1%) 

Recompression 404 No peak Yes 

SHANSEP 803 No peak Yes 
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Figure 4.2 1 Stress-strain, shear induced pore pressure vs ISA strain and ISA stress path for normally 

consolidated undisturbed, ±1% & ±3% ISA cycle. 
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Figure 4.2 2 Stress-strain, shear induced pore pressure vs ISA strain and ISA stress path for OCR=3.6 

undisturbed, ±1% & ±3% ISA cycle. 
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Figure 4.2 3 Stress-strain, shear induced pore pressure vs ISA strain and ISA stress path for OCR=1 & 

OCR=3.6, undisturbed and ±1% & ±3% ISA cycle 
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Figure 4.2 4 Complete compression curve and stress path for normally consolidated 50S50K, ±1.0% ISA test 

with post-ISA recompression consolidation 
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Figure 4.2 5 Complete compression curve and stress path for normally consolidated 50S50K, ±1.0% ISA test 

with post-ISA SHANSEP 
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Figure 4.2 6 Complete compression curve and stress path for normally consolidated, ±1.0% ISA test on 

85S15K with post-ISA recompression consolidation. 
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Figure 4.2 7 Complete compression curve and stress path for normally consolidated, ±1.0% ISA test on 

85S15K with post-ISA SHANSEP.
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Figure 4.2 8 Stress-strain, normalized stress-strain, and shear induced pore pressure plots for normally 

consolidated undisturbed, ±1% ISA and SHANSEP tests
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Figure 4.2 9 Stress paths and normalized stress paths for normally consolidated undisturbed, ±1% ISA and 

SHANSEP tests. 
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Figure 4.2 10 Stress-strain, normalized stress-strain, and shear induced pore pressure plots for normally 

consolidated undisturbed, ±3% ISA and SHANSEP tests 
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Figure 4.2 11 Stress paths and normalized stress paths for normally consolidated undisturbed, ±3% ISA and 

SHANSEP tests. 
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Figure 4.2 12 Complete compression curve and stress path for an OCR = 3.6, ±1.0% 

ISA test on 50S50K specimen with post-ISA recompression consolidation. 
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Figure 4.2 13 Complete compression curve and stress path for an OCR = 3.6, ±1.0% 

ISA test on 85S15K specimen with post-ISA recompression consolidation. 

 

 

0.55

0.60

0.65

0.70

0.75

1 10 100 1000

e
(-

) 

σ'v (kPa)

1-2 Initial Consolidation 

2-3 ISA 

3-4 Reconsolidation 

4-5 Final Shear 

1

23

4 5

-50

0

50

100

150

0 50 100 150 200 250 300 350

q
(k

P
a)

 

p' (kPa)

1,

2,4

5

3



80 
 

 

 

 

Figure 4.2 14 Complete compression curve and stress path for an OCR = 3.6, ±1.0% ISA test on 85S15K 

specimen with post-ISA SHANSEP. 
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Figure 4.2 15 Stress-strain, normalized stress-strain, and shear induced pore pressure plots for OCR=3.6 

undisturbed, ±1% ISA and SHANSEP tests
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Figure 4.2 16 Stress paths and normalized stress paths for OCR =3.6 undisturbed, ±1% ISA and SHANSEP 

tests 
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Figure 4.2 17 Stress-strain, normalized stress-strain, and shear induced pore pressure plots for OCR =3.6 

undisturbed, ±3% ISA and SHANSEP tests
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Figure 4.2 18 Stress paths and normalized stress paths for OCR= 3.6 undisturbed, ±3% ISA and SHANSEP 

tests. 
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Figure 4.2 19 Complete compression curve and stress path for normally consolidated Dedham Silt, ±1.0% ISA 

test with post-ISA recompression 
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Figure 4.2 20 Complete compression curve and stress path for OCR=3.6 Dedham Silt, ±1.0% ISA test with 

post-ISA recompression 
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Figure 4.2 21 Stress-strain, normalized stress-strain, and shear induced pore pressure plots for Dedham Silt 

OCR=1 & OCR =3.6 undisturbed, ±1% & ±3% ISA with recompression 
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Figure 4.2 22 Stress paths and normalized stress paths for Dedham Silt OCR=1 & OCR= 3.6 undisturbed, ±1% 

& ±3% ISA with recompression
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4.3 Shear Wave Velocity  
 

 This section presents and analyzes results of shear wave velocity and small strain 

shear modulus measurements obtained from laboratory triaxial cells equipped with bender 

elements. The tests were conducted on reconstituted specimens of 85S15K and 50S50K to 

study the influence of ISA straining and post-ISA Recompression and SHANSEP 

consolidation procedures after ISA disturbance on shear wave velocity and small strain shear 

modulus of the test soils. A shear wave velocity-stress state backbone curve was developed 

for each soil. The change in the shear wave velocity and small strain shear modulus due to 

both ISA disturbance and post-ISA reconsolidation procedure was evaluated relative to the 

backbone curve. The backbone curve was developed using the following equation as 

introduced in the Section 2.6:  

𝐺𝑣ℎ = 𝑉𝑣ℎ
   2𝜌𝑡 = 𝑆𝑣ℎ𝑒−𝑚(𝜎′

𝑣
  

𝜎′
ℎ
 

)𝑛 Eq. 4.3.1 

where 

Gvh = small strain shear modulus 

Vvh = shear wave velocity 

ρt = total density 

Svh = “structure” term 

σ′v = vertical effective stress 

σ′h = horizontal effective stress  

In order to determine the coefficients Svh, m, and n the shear wave velocity ideally 

needs to be measured at known states of σ′v, σ′h, and e for: 1) various stress states but with 

little change in void ratio to determine n, i.e. unload-reload cycles, 2) the same effective 
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stress state but at different void ratios to determine m, and 3) normalization of Gvh by F(e) to 

confirm n and to determine Svh. These known states were achieved by performing K0-

consolidated tests in a triaxial stress path cell equipped with bender elements with multiple 

unload-reload loops and frequent measurement of the shear wave velocity.  

Table 4.3.1 summarizes the triaxial testing loading schedule used for development of the 

shear wave velocity – stress state framework. The symbols in Figure 4.2.1a shows at which 

'v values the shear wave velocity was measured which were recorded using an input 

frequency of 5 kHz.  Figure 4.2.1b plots the small strain shear modulus Gvh versus stress 

squared for which Gvh was computed as the product of Vvh squared and the corresponding 

specimen total density for each shear wave velocity measurement. Figure 4.3b also plots the 

data analyzed (solid lines) using the following procedure as described by Hight and Leroueil 

(2003) and Lukas (2017): 

1) Determine Gvh, Vvh, ρt, e, σ′v, and σ′h at various normally consolidated (OCR = 1) and 

over consolidated (OCR > 1) states during the test  

2) From plot of Gvh versus σ′vσ′h for the unload-reload cycles perform a best fit 

regression for the equation y = axb to determine the value of n in Equation 4.3.1 

3) From plot of Gvh/(σ′vσ′h)
n versus e perform a best fit regression for the equation y = 

axb to determine the value of m in Equation 4.3.1 

4) From plot of Gvh/e
-m versus σ′vσ′h perform a best fit regression for the equation y = ax 

to determine the value Svh in Equation 4.3 and confirm the value of n, denoted as n*. 

Table 4.3.2 presents the resulting Equation 4.3.1 coefficients which define the backbone 

curves for the 50S50K and 85S15K soils. 

For the ISA tests, shear wave velocity was measured at selected stages for each test 

including: the end of consolidation also known as the pre-ISA shear wave velocity (Vvh,0), end 

of ISA (Vvh,ISA) and end of post-ISA reconsolidation (Vvh,p-ISA) as summarized in Table 4.3.3.  
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Figure 4.3.2 presents the Gvh, Vvh and Gvh/e -m versus σ’v σ’h for normally consolidated 

85S15K with ±1% & ±3% ISA straining followed by Recompression and SHANSEP post-

ISA consolidation. It can be observed that the value of Gvh and Vvh during ISA disturbance is 

reduced significantly relative to the pre-ISA undisturbed stress state. Table 4.3.3 summaries 

the ratio of Vvh at the end of ISA (Vvh,ISA) to the pre-ISA value (Vvh,ISA/Vvh,0). A maximum 

reduction in Vvh,ISA/Vvh,0 ratio equal to 0.29 is observed for  normally consolidated 

(σ’vmax=400kPa) 85S15K specimen subjected to ±3% ISA. However, the specimen normally 

consolidated to pre-ISA σ’vmax=200 kPa with ±3% ISA shows much smaller reduction in 

Vvh,ISA/Vvh,0 equal to 0.71. Post-ISA reconsolidation Gvh and Vvh values return to pre-ISA 

undisturbed states exhibiting that the specimen has fully recovered the disturbance according 

to these measures. This is also demonstrated by the Vvh,p-ISA/Vvh,0 ratio which equals to 1 for 

post-ISA Recompression but is greater than 1 for SHANSEP consolidation. However, the Gvh 

and Vvh for 85S15K plot very close to the backbone curve demonstrating minimal destruction 

during ISA disturbance, again according to these measures.  

For OCR=3.6, the reduction in Gvh and Vvh during ISA disturbance is smaller than 

normally consolidated specimen with Vvh,ISA/Vvh,0 equal to 0.72 for ±3% ISA specimen. 

Figure 4.3.3 shows the Gvh, Vvh and Gvh/e -m versus σ’v σ’h for 85S15K OCR=3.6. Even 

though Gvh and Vvh are reduced during ISA disturbance in reference to the pre-ISA 

undisturbed behavior, the values plot on the backbone curve exhibiting full recovery of these 

parameters destruction.   

Figure 4.3.4 presents the Gvh, Vvh and Gvh/e -m versus σ’v σ’h for normally consolidated 

50S50K ±1% & ±3% ISA Recompression and SHANSEP consolidation. Unlike 85S15K, the 

specimen undergoes very small reduction in Gvh and Vvh during ISA with Vvh,ISA/Vvh  equal to 

0.86 and 0.90 for ±1% & ±3% ISA respectively. The post-ISA Recompression specimen 
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recovers Gvh and Vvh back to the pre-ISA undisturbed state. ISA with SHANSEP 

consolidation, however, results in higher Gvh and Vvh. Similarly, for higher OCR=3.6 the 

specimen exhibits very small reduction in Gvh and Vvh which is recovered back to the pre-ISA 

undisturbed state after post-ISA reconsolidation.   

The normally consolidated 85S15K underwent significant reduction in Gvh and Vvh 

along with σ’vσ’h which decreases for higher OCR.  The post-ISA Recompression brings Gvh 

and Vvh back to the pre-ISA undisturbed state but the SHANSEP consolidation results in 

higher values of Gvh and Vvh. The end of ISA Gvh and Vvh values plot on the backbone curve 

depicting very small or no destruction during the ISA disturbance. Plotting close to the 

backbone curve is consistent with the specimens being reconstituted and presumed to possess 

no structure.  The normally consolidated and OCR=3.6 50S50K specimens experienced very 

small reduction in Gvh and Vvh during ISA disturbance which was recovered during post-ISA 

reconsolidation.  
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Table 4.3 1 Shear wave framework loading schedule for triaxial test 

Loading 

Step 

Loading/ 

Unloading 

Target 

σ′v 

(kPa) 

Strain 

Rate 

(%/hr) 

Target 

OCR 

(-) 

Target 

K0 (-) 

50S50K 85S15K 

1 Loading 100 0.2 1 -- 0.51 

2 Unloading 20 0.1 5 -- 1.12 

3 Loading 200 0.2 1 0.56 0.51 

4 Unloading 25 0.1 8 1.40 1.41 

5 Loading 400 0.2 1 0.56 0.51 

6 Unloading 50 0.1 8 1.40 1.41 

7 Loading 600 0.2 1 0.56 0.51 

Note: The 50S50K cakes were consolidated to 200 kPa so no 100 kPa unload was performed. 

 

 

 

 

Table 4.3 2 Shear Wave Framework Parameters from Equation 4.3.1 

Soil n m Svh n* 

50S50K 0.226 1.53 4.24 0.218 

85S15K 0.249 1.52 1.99 0.248 
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Table 4.3 3 Shear wave velocity values for pre-ISA (Vvh,0), end of ISA (Vvh,ISA), and after 

post-ISA (Vvh,p-ISA) reconsolidation and post-ISA reconsolidation Δe/e0 values 

Soil OCR Test Type  Vvh,0 

(m/s) 

Vvh,ISA 

(m/s) 

Vvh,ISA/ 

Vvh,0  

Vvh,p-ISA 

(m/s) 

Vvh,p-ISA/ 

Vvh,0  

Δe/e0 

(-) 

 

 

 

 

85S15K 

  

1.0 

ISA  

(±1%) 

Recompression 175 97 0.55 177 1.01 0.031 

SHANSEP 180 88 0.48 - - 0.065 

ISA  

(±3%) 

Recompression 178 55 0.31 189 1.06 0.067 

SHANSEP 180 53 0.29 234 1.30 0.093 

 

3.6 

ISA  

(±1%) 

Recompression 140 91 0.65 142 1.01 0.011 

SHANSEP 143 91 0.63 226 1.58 0.054 

ISA  

(±3%) 

Recompression 137 60 0.44 141 1.02 0.047 

SHANSEP 141 101 0.72 225 1.60 0.095 

 

 

 

 

50S50K 

 

1.0 

ISA  

(±1%) 

Recompression - - - - - - 

SHANSEP 218 188 0.86 266 1.22 0.099 

ISA  

(±3%) 

Recompression 165 149 0.90 202 1.22 0.047 

SHANSEP 149 161 1.08 202 1.36 0.110 

 

3.6 

ISA  

(±1%) 

Recompression 185 169 0.91 185 1.00 0.002 

SHANSEP - - - - - - 

ISA  

(±3%) 

Recompression 180 145 0.80 180 1.00 0.010 

SHANSEP - - - - - - 
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Figure 4.3 1 Shear wave framework for 85S15K and 50S50K: (a) void ratio versus effective 

stress at the measured shear wave velocity during K0 consolidation. Equation 4.3.1 

parameters (b) n, (c) m, and (d) Svh and confirmation of n. 
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Figure 4.3 2 Backbone curve of 85S15K normally consolidated (a) Vvh versus σv’σh’ (b) Gvh 

versus σv’σh’ (c) Gvh/e
-m versus σv’σh’ with pre-ISA (crisscross symbols), end of ISA, and 

post-ISA (shaded symbols) data from ±1% & ±3% ISA Recompression and SHANSEP 

consolidation 
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Figure 4.3 3 Backbone curve of 85S15K OCR=3.6 (a) Vvh versus σv’σh’ (b) Gvh versus σv’σh’ 
(c) Gvh/e

-m versus σv’σh’ with pre-ISA (crisscross symbols), end of ISA, and post-ISA (shaded 

symbols) data from ±1% & ±3% ISA Recompression and SHANSEP consolidation 
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Figure 4.3 4 Backbone curve of normally consolidated 50S50K (a) Vvh versus σv’σh’ (b) Gvh 

versus σv’σh’ (c) Gvh/e
-m versus σv’σh’ with pre-ISA (crisscross symbols), end of ISA, and 

post-ISA (shaded symbols) data from ±1% & ±3% ISA Recompression and SHANSEP 

consolidation 
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Figure 4.3 5Backbone curve of 50S50K OCR=3.6 (a) Vvh versus σv’σh’ (b) Gvh versus σv’σh’ 
(c) Gvh/e

-m versus σv’σh’ with pre-ISA (crisscross symbols), end of ISA, and post-ISA (shaded 

symbols) data from ±1% & ±3% ISA Recompression and SHANSEP consolidation 

 

0

50

100

150

200

250

300

350

10 100 1000 10000 100000 1000000

V
vh

(m
/s

)

50S50K

Backbone Curve

ISA±3%

ISA ±1%

(a)

0

40

80

120

160

200

10 100 1000 10000 100000 1000000

G
vh

 (M
p

a)

(b)

0

20

40

60

80

10 100 1000 10000 100000 1000000

G
vh

/e
-m

 (
-)

σ'vσ'h (kPa)2

(c)



100 
 

 

 

 

Figure 4.3 6 Shear wave velocity at various ISA test stages for normally consolidated 

85S15K (a) Vvh (b) Gvh (c) Gvh/e
-m (e0BP = end of back pressure, ’vc = pre-ISA, Vvh,ISA = end 

of ISA, and Vvh,p-ISA = after post-ISA reconsolidation). 
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Figure 4.3 7Shear wave velocity at various ISA test stages for 85S15K OCR=3.6 (a) Vvh (b) 

Gvh (c) Gvh/e
-m (e0BP = end of back pressure, ’vc=pre-ISA(loading), Vvh,0 = pre-

ISA(unloading), Vvh,ISA = end of ISA, Vvh,p-ISA = after post-ISA SHANSEP, Vvh,0-ISA = 

after post-ISA reconsolidation). 
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Figure 4.3 8 Shear wave velocity at various ISA test stages for normally 50S50K (a) Vvh (b) 

Gvh (c) Gvh/e
-m (e0BP = end of back pressure, ’vc=pre-ISA, Vvh,ISA = end of ISA, Vvh,p-ISA = 

after post-ISA reconsolidation). 
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Figure 4.3 9Shear wave velocity at various ISA test stages for 50S50K OCR=3.6 (a) Vvh (b) 

Gvh (c) Gvh/e
-m (e0BP = end of back pressure, ’vc=pre-ISA(loading), Vvh,0 = pre-

ISA(unloading), Vvh,ISA = end of ISA, Vvh,p-ISA = after post-ISA reconsolidation). 
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CHAPTER 5. SUMMARY AND CONCLUSION 

5.1 Summary  
 

This thesis presents methods and test results from triaxial testing of reconstituted silt 

samples subjected to simulated tube sampling disturbance. The test soils consisted of two 

synthetic soils 85S15K consisting of 85% silt and 15% kaolin and 50S50K consisting of 50% 

silt and 50% kaolin and one natural soil known as Dedham Silt. The plasticity index for the 

soils were 16% for 50S50K, 4% for 85S15K and non-plastic for Dedham Silt. The 

reconstituted specimens were prepared using the vacuum split mold technique and were 

tested in a triaxial stress path cell system equipped with bender elements using ideal sampling 

approach (ISA) framework to simulate tube sampling.  

The first part of the laboratory testing was to perform anisotropically consolidated 

undrained triaxial compression tests (CAUC) at various consolidation stress levels on test 

soils with the end of consolidation vertical effective stress (s'vc) ranging from 100 to 800 

kPa. The objective of these tests was to evaluate the influence of stress level on the 

normalized undrained shear strength of the test soils. 85S15K specimens initially showed 

contractive behavior during undrained shear for all preshear consolidation stress levels but 

changed to dilative behavior at larger strains towards the end of the tests. The normalized 

undrained shear strength generally does not increase with an increase in stress level. 

Similarly, 50S50K specimens all exhibited contractive behavior through the entire shearing 

phase of the tests. The near perfect linear regression fit through the undrained shear strength 

(su = qmax) versus preshear vertical effective stress for 85S15K (S = su/s'vc = 0.30) and 

50S50K (S = 0.26) indicated little to no dependency of the normalized undrained stress 

strength with consolidation stress level. Unlike the other two test soils, Dedham silt 

specimens exhibited fully dilative behavior during undrained shear for all consolidation stress 

levels and did not reach a peak shear stress value.  
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85S15K consolidated to σ’vc > 400 kPa, showed a gain in the post peak normalized 

shear stress with an increase in strain once the stress paths reached the failure envelope. If the 

specimens were subjected to continuing shearing to much higher strains, then the post peak 

normalized shear stress would exceed the peak shear stress reached during the initial 

contractive behavior phase. This demonstrates the tendency for low plasticity silts to exhibit 

dilative behavior not only increases with a decrease in plasticity but also with an increase in 

consolidation stress level. The later effect is presumably due to the continuing decrease in 

void ratio with increasing consolidation stress level. Using the Brandon et al. (2006) failure 

criteria for 85S15K, the peak excess pore pressure and kf line methods showed consistency in 

an increase in normalized undrained shear strength with an increase in consolidation stress 

level. For 50S50K the normalized undrained shear strength does not show any trend with an 

increase in consolidation stress level. Dedham silt showed a decreasing trend in normalized 

undrained shear strength with increasing consolidation stress level for peak deviator ( 𝜎1 −

𝜎3)max, peak principal stress ratio (𝜎1
′/𝜎3

′)max, kf line and limiting strain (5%) failure criteria. 

The second part of the laboratory testing included normally consolidated 

(overconsolidation ratio OCR = 1)  and OCR = 3.6 specimens that were subjected to two 

levels of ISA axial strain cycles ±1.0%, and ±3.0% followed by either Recompression or 

SHANSEP reconsolidation and then sheared undrained. The objective of this test program 

was to study the effect of Recompression and SHANSEP consolidation procedures on post 

ISA behavior of the test soils. The effect of ISA disturbance is much more significant for the 

low plasticity 85S15K soil than the low plasticity 50S50K clay. 85S15K and Dedham silt 

showed significant loss in effective stress during ISA disturbance in reference to the 

undisturbed behavior and much larger than 50S50K. Although this loss in effective stress 

decreased with increase in OCR.  
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 For normally consolidated 85S15K and the lower ISA straining of ±1.0%,, 

Recompression consolidation resulted in an increase in the undrained shear strength and 

eliminated the contractive behavior of the undisturbed specimen resulting in dilative 

behavior. The SHANSEP consolidation procedure recovers to some extent the undisturbed 

behavior and reduces the dilative behavior exhibited by the Recompression specimen, 

however, it overestimated the undrained shear strength of the soil. For higher OCR and ISA 

disturbance SHANSEP consolidation does not mitigate the ISA disturbance and the 

specimens have a greater tendency for post-ISA dilation behavior. For 50S50K, SHANSEP 

consolidation is more effective in recovering the undisturbed behavior compared to 85S15K 

but overestimates the undrained shear strength. Dedham Silt in all cases shows highly dilative 

behavior but ISA straining removes the initial contractive phase for the OCR = 1 behavior 

while it creates an initially softer response (i.e., lower slope in the stress-strain curve) for the 

OCR = 3.6 specimens with ±1% & ±3% ISA straining.  

The third part of the laboratory testing included measurement of shear wave velocity 

and small strain modulus during undisturbed and ISA tests performed on 85S15K and 

50S50K. The objective of these measurements was to evaluate the influence of ISA straining, 

post-ISA Recompression and SHANSEP consolidation procedures after ISA disturbance on 

shear wave velocity Vvh and small strain shear modulus Gvh of the test soils. For normally 

consolidated 85S15K ISA straining followed by Recompression and SHANSEP post-ISA 

consolidation, the values of Gvh and Vvh during ISA disturbance reduced significantly relative 

to the pre-ISA undisturbed stress state. This reduction in Gvh and Vvh during ISA was higher 

for specimens consolidated at higher consolidation stress levels and subjected to higher levels 

of disturbance but smaller with higher OCR and plasticity of the soil. Post-ISA 

reconsolidation Gvh and Vvh values returned to the pre-ISA undisturbed states exhibiting that 

the specimen has fully recovered the disturbance according to these measures. Even though 
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Gvh and Vvh are reduced during ISA disturbance in reference to the pre-ISA undisturbed 

behavior, the values plot on the backbone curve exhibiting full recovery of the ISA induced 

degradation of these parameters.  

5.2 Conclusions   
 

The CAUC tests results of 85S15K and 50S50K indicated little to no dependency of 

the normalized undrained stress strength with consolidation stress level, however, as 

observed in 85S15K, increase in consolidation stress level increases the tendency for the low 

plasticity silts to exhibit dilative behavior. Overall, ISA tests results showed that the effect of 

Recompression and SHANSEP consolidation procedures on post ISA behavior (i.e. 

recovering the undisturbed behavior) of intermediate soils is dependent on the plasticity of 

the soil, to some extend on the pre-ISA consolidation stress (as observed in 85S15K), level of 

ISA disturbance experienced by the specimen and the overconsolidation ratio. 

 The Gvh and Vvh measurements showed that the reduction due to ISA disturbance 

for 85S15K and 50S50K could be used as an indicator of sample disturbance in similar types 

of silts. The amount of reduction in Gvh and Vvh was found to be dependent on plasticity of 

soil, level of disturbance and OCR. However, once specimens are reconsolidation back to the 

initial effective stress state it appears that Gvh and Vvh values are largely fully recovered and 

do not indicate any influence of the induced disturbance. Furthermore, since these 

observations are limited to two kinds of silts tested, more research incorporating different 

types of silts is needed to fully understand the effect of sample disturbance on Gvh and Vvh of 

the soil.  
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