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This note contains a proof of Corollary 1 on page
9 of the paper, repeated below. The corollary is
stated as an example in Koltchinskii and Panchenko
(2005, p. 1465). The proof of the corollary is omit-
ted in that paper but has been provided in unpub-
lished class notes by Panchenko (2004, class 21),
that we follow here.

Corollary 1. Consider a classifier f =
∑K

i=1wkhk
in F which classifies correctly a training set T =
((x1, y1), . . . , (xn, yn)) with margin δ = δT (f),
namely y1f(x1), . . . , ynf(xn) > δ.

• If the weights wk decay polynomially, i.e. wk ≤
k−B for someB > 1, KP’s bound (8) becomes:
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where CB → 1 as B →∞.

• If the weights wk decay exponentially, namely
wk ≤ e−k, KP’s bound (8) becomes:

ErrP(f) ≤ K
(
V

n
log2

n

δ
+
t

n

)
(2)

Proof. Recall that the effective dimension dT (f)
of a classifier f =

∑K
i=1wkhk ∈ F = conv(H)

which succeeds on a training set T of cardinality n
with a margin of confidence δT (f) = δ is defined as
follows:

dT (f)= min
0≤d≤K

d+
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Suppose that the weights wk in the representation
of f decay polynomially, i.e. wk ≤ k−B for some

B > 1. For any integer d ∈ {1, . . . ,K − 1}, the
following chain of inequalities thus holds. Step (a)
uses the assumption wk ≤ k−B . Step (b) uses a
well-know integral upper bound for finite series with
a decreasing summand (see for instance Cormen et
al. 1990, appendix A.2). Step (c) uses the identity∫
xαdx = xα+1/(α+ 1).
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The effective dimension of the classifier f can there-
fore be bounded as follows:

dT (f) ≤ min
0≤d≤T

[
d+

1

(B − 1)2

(
1

d

)2(B−1) 2 log n

δ2

]
︸ ︷︷ ︸

F (d)

By setting the derivative of the function F (d) equal
to zero, we obtain:

F ′(d) = 0 ⇐⇒ 1− 2
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⇐⇒ d = DB
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where we have used the position:

DB =

(
2

B − 1

) 1
2B−1
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The effective dimension of the classifier f can there-
fore be bounded further as follows:

dT (f) ≤
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where we have used the position:

CB = 2
1

2B−1

{
DB +

D
−2(B−1)
B

(B − 1)2

}

Plugging this bound on the effective dimension into
the general expression (8) of KP’s bound, we obtain:
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Finally, we note that DB → 1 when B → ∞, in
fact:

logDB =
log 2

2B − 1
− log(B − 1)

2B − 1
→ 0

Furthermore, D
−2(B−1)
B
(B−1)2 → 0 when B →∞, in fact:

log
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Thus, CB → 1 as B →∞.

Suppose next that the weights wk in the repre-
sentation of the classifier f =

∑K
i=1wkhk decay

exponentially, namely wk ≤ e−k. For any inte-
ger d ∈ {0, . . . ,K − 1}, the following chain of
inequalities thus holds. Step (c) uses the identity∫
eαxdx = eαx/α.

K∑
k=d+1

wk ≤
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≤
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e−xdx

= e−d

The effective dimension of the classier f can there-
fore be bounded as follows:

dT (f) ≤ min
0≤d≤T

[
d+ e−2d
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]
︸ ︷︷ ︸

F (d)

By setting the derivative of the function F (d) equal
to zero, we obtain:
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The effective dimension of the classifier f can there-
fore be bounded further as follows:
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Plugging this bound on the effective dimension into
the general expression (8) of KP’s bound, we obtain:
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concluding the proof of the corollary. 2
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