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ABSTRACT

VARIATIONAL APPROXIMATIONS FOR DENSITY DECONVOLUTION
SEPTEMBER 2018
YUE CHANG
B.S., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
PH.D. UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor John Staudenmayer

This thesis considers the problem of density estimation when the variables of inter-
est are subject to measurement error. The measurement error is assumed to be ad-
ditive and homoscedastic. We specify the density of interest by a Dirichlet Process
Mixture Model and establish variational approximation approaches to the density
deconvolution problem. Gaussian and Laplacian error distributions are consid-
ered, which are representatives of supersmooth and ordinary smooth distributions,
respectively. We develop two variational approximation algorithms for Gaussian
error deconvolution and one variational approximation algorithm for Laplacian er-
ror deconvolution. Their performances are compared to deconvoluting kernels and
Monte Carlo Markov Chain method by simulation experiments. A conjecture based
on hidden variables categorization is proposed to explain why two variational ap-

proximation algorithms for Gaussian error deconvolution perform differently. We

vi



establish a stochastic variational approximation algorithm for Gaussian error decon-
volution, which improves the performance of variational approximation algorithm
and performs as well as MCMC method at faster speed. The stochastic variational

approximation algorithm is applied to simulation experiments and an example of

physical activity measurements.
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CHAPTER 1

INTRODUCTION

This thesis considers the problem of density estimation when the variables from
the density of interest cannot be observed directly. Observations are measurements
of the variable of interest and subject to additive measurement error. The problem

can be formulated as a one-way random effects model,
yij:xi+uij7izl,"',n,jzl,"',mi (1.1)

where y;;s are observations, x;s are unobserved variables from an unknown density
fz, wijs are measurement errors from a known density f,. Furthermore, we assume
x; ~ fo(2), wij RS fu(u), w;; are independent from z;. This problem arises when-
ever estimation of f, is desired. The problem of estimating f, from observations
yi;5 1s called measurement error deconvolution. An application of deconvolution
is to estimate the distribution of long-term mean sedentary time in a population.
In this case, the individual’s long-term mean sedentary time cannot be observed
directly. Repeated device-based measurements are subject to measurement errors.

There are a lot of literature studying the deconvolution problem. We review two
important nonparametric deconvolution approaches: deconvoluting kernel (DK)
method and Bayesian nonparametric deconvolution method. The deconvolution

kernel method proposed in [Stefanski and Carroll, 1990] is based on deconvoluting a



kernel estimator of the observed data. The shortcoming of DK methods is that rate
of convergence is very low for Gaussian measurement error. [Carroll and Hall, 1988]
shows that the best possible rate of convergence of the mean integrated squared
error (MISE) of a deconvoluting kernel estimator is only (logn)~2 if the density of
interest has kth bounded derivatives and errors are Gaussian. [Sarkar et al., 2014]
proposes the Bayesian non-parametric model to solve the deconvolution problem,
where the density of interest f, is specified by a Dirichlet Process Mixture Model
(DPMM). The Markov Chain Monte Carlo (MCMC) sampling of the Bayesian non-
parametric model is computational extensive and has low computing speed. In
this thesis, we develop mean-field variational approximation (VA) type approaches
to the Bayesian nonparametric model. We approximate the DPMM by a finite
mixture model with symmetric Dirichlet prior. Two types of measurement error
are considered for the deconvolution problem: Gaussian and Laplacian error. We
establish a stochastic variational approximation (SVA) approach for Gaussian error
deconvolution which performs better than DK method and achieves comparable
accuracy with MCMC method. We investigate VA approaches for Laplacian error
and explain the reasons why VA for Laplacian error performs worse than VA for
Gaussian error.

The rest of the thesis is organized as follows. In Chapter 2, we review deconvo-
luting kernels and MCMC sampling for the Bayesian nonparametric deconvolution
model, which are the benchmark methods. In Chapter 3, we establish two VA
algorithms for Gaussian error deconvolution. Algorithm A includes x as latent
variables in the posterior distribution, while algorithm B excludes x by integrating
out x. The performances of the two algorithms are compared through simulation
experiments. We propose a conjecture to explain why algorithm B outperforms

algorithm A and improve VA algorithm B by stochastic optimization. In Chapter



4, we develop a VA algorithm for Laplacian error and compare VA with benchmark
methods through a simulation study. Chapter 5 applies the SVA algorithm to a

physical activity dataset. Chapter 6 concludes the thesis and discusses extensions.



CHAPTER 2

LITERATURE REVIEW

This chapter reviews the state-of-art deconvolution methods. Section 2.1 re-
views deconvoluting kernels, which are nonparametric approaches based on a trans-
formation of the kernel density estimator. Section 2.2 presents a Bayesian non-
parametric deconvolution model built on Dirichlet Process Mixture Model (DPMM)
and reviews its Markov Chain Monte Carlo (MCMC) algorithm. Section 2.3 talks

about other existing deconvolution methods.

2.1 Deconvoluting Kernels

The deconvolution problem is originally formulated as

where y;s are observations, x;s are independent variables from the unknown distri-
bution f,, u;s are independent measurement errors from a known distribution f,,.
The problem is to estimate the density of interest f,. The deconvoluting kernels

can be derived from the inverse Fourier transform,

— 1 —itx _ i —itzwy_(t)
fo(x) = %/e Hahy (t)dt = 5 | ¢ %Uu(t)dt



where 1,1, 1, denote the characteristic functions of the variable z,y, v respec-
tively, that is, ¥, (t) = [€e™f,(n)dn for n € {x,y,u}. A function K(x) can be
used as a kernel if K(z) satisfies [ K(z)dz = 1 and is symmetric about origin.
Replacing f,(y) in 1, (t) by its kernel estimator (nh)~*> "  K((y — y;)/h) gives

deconvolution kernel density estimator

Folaih) = %ZK}; (%h) (2.2)

where

K (zh) = %/em%dt (2.3)

is called the deconvolution kernel [Stefanski and Carroll, 1990]. Given a bandwidth

value A the MISE is defined by
MISE(h) :E/{fx(x;h) - fr(x)}Qdm (2.4)
From the calculation in [Wand, 1998] the MISE can be derived as
MISE(h) = (2rnh)~! / e ()2 [t /1) 2 dt

+ (2m) 1 / {1 —nr(ht)? — 2 (ht) + 1} [, (1) dt (2.5)

The issue of how to choose bandwidth has been discussed in [Stefanski and Carroll, 1990]

[Fan, 1991] [Fan, 1992|[Hesse, 1999] [Delaigle and Gijbels, 2004a] [Delaigle and Gijbels, 2004b].
The R package fDKDE by [Delaigle and Wang, 2015] provides two options for

choosing bandwidth : (1)two-stage plug-in bandwidth as in [Delaigle and Gijbels, 2002]
(2)cross-validated bandwidth as in [Stefanski and Carroll, 1990]. [Delaigle and Gijbels, 2004b]
compares the plug-in bandwidth selectors with bootstrap and cross-validated band-

width selectors and concludes plug-in and bootstrap bandwidth selectors perform

similarly, and both outperform cross-validated bandwidth selector. Two-stage plug-

in bandwidth is used for DK method in simulation experiments of this thesis. For



Gaussian error the characteristic function ¢ x with compact support leads to a finite

integral K (z;h). The choice of kernel function in fDKDE is
48 15 144 si D
K(z) =——=2 (1 = —) -0t (2 = —) (2.6)

T mxd 2

Its corresponding characteristic function is
Uk (t) =(1-1*), Jt] <1 (2.7)

[Delaigle and Meister, 2008] extends the deconvoluting kernel method to models
with replicated measurements where the density of measurement error is known.
Since {y1., - ,yn.} is a sufficient statistic for f,, there is no loss of information
when applying the estimator (2.2) to y;. = x; + 4;., where J;, = Z;":l Yij /M,
. = Y5 uwig/m;. Replacing ¥,(t) by g, (t) = vu(t/\/mi) in (2.2) gives an
estimator for the model with replications. If the density of u is unknown and the

model has replicated measurements, v, (t) can be estimated by

N

) SOY cos (b — uin) (2.8)

2immilmi = 1) 5
under the assumption that the f, is symmetric. The asymptotic properties and con-

vergence rate of the estimator of f, using (2.8) are discussed in [Delaigle et al., 2008].

K(x)

0.00
|

Figure 2.1: The kernel function used in f{DKDE



2.2 Bayesian Approaches

2.2.1 Dirichlet Process Mixture Models

Reconsider the deconvolution problem
Yi=Ti+u, t=1,--n (2.9)

where y;s are observations, z; Y fo, U R fu, fuis known, f, is the density to be
estimated. Dirichlet process [Ferguson, 1973] mixture model is used for density de-
convolution problems in [Sarkar et al., 2014]. The density of interest f, is specified
as a mixture of normals. Let N'( - |, 0%) denote a normal distribution with mean
p and variance o2, ZG (v, 8) denote an inverse gamma prior with shape parameter
and scale parameter (. If p|o?, po, Ao ~ N (10, 0%/ Xo), %170, Bo ~ ZG (70, bo), then
(1, 0%) has a normal-inverse-gamma distribution, denoted by (11, 0) ~ NZG (10, Mo, Yo, Bo)-
[Ishwaran and Zarepour, 2002] proves that the DPMM can be obtained by taking

the limit as K goes to infinity in the following mixture model

yi’% N fu(yi_xi): t=1,---,n
xi’Ch ¢1;\(}N(MC” 0—2)

Cq

¢; | "% Categorical (y, 7o, - - - , Tx) (2.10)
7 ~ Dirichlet (o/ K, /K, -+, a/K)
(bc £ NIg (MO? )\07 Yo, BO)

where ¢; denotes the latent cluster associated with x;. For each cluster ¢, the vari-

able ¢, = (., o) determines the distribution of the associated zs. The collection

of all (., 02) is denoted by ¢.

[

Integrating out the probabilities vector 7w and then taking K to infinity, we

can write p(c|a) as the product of conditional probabilities of the following forms



[Neal, 2000]:
> On(ey)

ci=kand k =c; for some j <i|cy,...,ci-1) = =
p( i f Jj <iley =T a

plci # ¢ forall j <ilci,...,ci1) = ﬁ

where 0;.(c) = 1if ¢ = k, d(c) = 0 otherwise. The posterior p(x, ¢, @|y, @, o, Ao, Y0, So)

is proportional to

p(y> X, C, ¢’a7ﬂ07)\0770760)

o fuly — %) % fa(x|c, @) x p(c|a) x fs(|o, Mos Y0, Bo)

n

% Sk (ci)
1 (zi — p)? o [T (me — 1)!
ocfu(y—X>><HH<\/—eXp{_T,’i}> “alta) (- 1+a)

2
i=1 k=1 2noy;

1 Bo [ Xo Ao (ks — po)?
X HWGXP{—U—Z} X O'_]%exp{_T (211)

where ng =" 0x(¢;), K = J_,{ci}, and K denotes the cardinality of IC .

[Ishwaran and Zarepour, 2002] points that a finite mixture with symmetric Dirich-
let prior, which can be obtained by fixing K in (2.10), strongly approximates a

Dirichlet process. We call (2.10) a truncated DPMM if K is fixed. The posterior

of the truncated DPMM is proportional to

p(Ya X, C, m, ¢|04,M0,)\0,’Yo,50)
o fuly —%) x f(x]e, @) x f(c|m) x f(mw]a) x f(Plpo, Mo, 70, o)

n K 1 -2\
i Mk Or(ci
ocfu(y—x)xH ( 2exp{—Qf‘z}) XHHWkk( )
; k

i=1 k=1 2moy, i=1 k=1
K K
['(a) £-1 1 { Bo } Ao { Ao(pie — o)? }
X — K T x —————eXp{ ——5 ¢ X |5 eXpg ——
INCOL g k 1£[1 O.Z(’YO'H) o? o? 202
(2.12)



2.2.2 MCMC Algorithms

We consider the Gaussian and Laplacian distributions for measurement error,
which are two important cases having super-smoothness and ordinary-smoothness,
respectively. The density of interest f,(x) can be estimated by Markov Chain Monte
Carlo (MCMC) method. From the joint posterior distribution (2.11), we draw
samples from posterior distribution using Gibbs sampler and Metropolis-Hasting

algorithm. Specifically, each MCMC iteration contains the following steps.

Algorithm 1. 1. Updating the distribution of x using Gibbs sampler.
([Neal, 2000] Algorithm 2)

The full conditional distribution of c¢; is given by

Nk

— . 2

p(ci - k7 ke c—i’X7 C_i, ¢7 Oé) =1

- o Ti — Ho l
p(C,%C_AX, C—za ¢7 a)_ln_1+a7570 ( N ) X N

where M = \/ﬁo()\o+ 1)/ (M%), n—i = Z#i dx(cj), T,(-) denotes a stu-

dent’s t-distribution with v degree of freedom. The constant | is chosen such

that 3 e. . plci = k[x, i, @, a) +p(ci & ci|x, c_i, P, @) = 1.

Fork € c, the joint full conditional distribution of (i, 02) 18 NZG(tnks Aaks Yok, Buk)s
where Apk = Ao + 1, Yok = Yo+ 1/2, par = (Aofto + D icq, i)/ (Mo + 1) and

Bk = Bo + (Zz‘elk a7 + AOM% - Ankﬂik)/z
2. Updating ©

(a) Update x; by Gibbs sampler if u; ~ N(0,02), where o2 is known. The full
conditional distribution of z; is given by p(z; |y, ¢, ¢, &) = p(;| Y, (pte;» 0F)) ¢
faf($% | <Iuci7 0.621)) X fu(yz - QSZ)

~ N (1] (02, + 029) /(03 + 02), 020 (02, + 02).



(b) Update z; by random walk Metropolis algorithm if u; ~ Laplace(0,b),
where b = \/W and o2 is known. The full conditional distribution of
x; given by p(z; |y, ¢, ¢, @) = p(ai | yi, (te,, 02)) < fulwi | (pre, 02)) X
fulyi—x;) exp{—%g_(xi—ucif—w%m}. Fori=1,---,n, we propose
a new value for x; with proposal distribution q(z}|x;) = (2#05)’% exp{—(z;—
x;)?/(202)}. According to pre-run results, setting o2 = var(y) produces
an acceptance rate between 25% and 60%, We update x; to x} with prob-

ability

min {1 fulyi — x:)fz(xﬂﬂcwag,)}
’ Ju(yi _x’L')fr(ximcwagi)

. . Yi — 5 lyi — =i
:mln{l, exp{—ﬁ(l‘i _,U«q-)?_ | ; +202 (xi_/’LCi)2+ ; |}}

From [Escobar and West, 1995], a Monte Carlo estimate of f,(-|y) based on S

samples from the posterior is given by

s s a 1 T — Mo
fuolzly) = SZ[Z—NW%), gz(>)+n+&ﬁ75% <T>] (2.13)

s=1 Li=1

2.3 Other Existing Deconvolution Methods

Besides the deconvoluting kernel and DPMM methods, other nonparametric
deconvolution methods have been studied by researchers. [Carroll and Hall, 2004]
proposed an orthogonal series method. It expresses f, in an orthogonal expan-
sion with estimable coefficients and the functions in the orthogonal series may be
polynomials or trigonometric functions. [Pensky et al., 1999] [Fan and Koo, 2002]
[Donoho et al., 1996] discussed deconvolution by wavelets, which is a variety of

orthogonal series method.

10



If one has a parametric assumption for f,, e.g., normal, skew-normal, gamma,
the SNP (seminonparametric) family [Zhang and Davidian, 2001], likelihood meth-
ods can be used to estimate the unknown parameters and obtain the density esti-
mate for z. [Carroll et al., 2006] gives a review of parametric deconvolution meth-

ods in chapter 12.

11



CHAPTER 3

VARIATIONAL APPROXIMATION APPROACHES FOR

GAUSSIAN ERROR DECONVOLUTION

In Chapter 3, we establish VA approaches for Gaussian error deconvolution
and compare our approaches with other nonparametric methods (DK and MCMC)
through simulation experiments. Section 3.1 reviews mean-field variational approx-
imation. Section 3.2 develops VA algorithm A for Gaussian error deconvolution
which includes x as latent variables in the posterior distribution. Section 3.3 estab-
lishes algorithm B which excludes x by integrating out x. The performances of the
two algorithms are compared through simulation experiments in section 3.4. We
propose a conjecture to explain why algorithm B outperforms algorithm A in section
3.5. Section 3.6 develops a stochastic variational approximation (SVA) approach,
which applies stochastic optimization to VA algorithm B. Section 3.7 compares
SVA to VA algorithm B on simulated datasets and shows that SVA improves VA
algorithm B. Section 3.8 adds SVA and MCMC to the deconvolution problems in
[Wand, 1998] and shows that SVA outperforms DK and performs similarly with

MCMC at a faster speed.

12



3.1 Introduction to Variational Approximation

Variational approximations (VA) are a class of alternatives to MCMC for ap-
proximating marginal likelihood and posterior densities. Variational approxima-
tions tend to be more computationally efficient than MCMC, but statistical prop-
erties of variational approximations are less studied than MCMC. [Blei et al., 2016]
gives a review of statistical research on variational inferences. [Hall et al., 2011]
[You et al., 2014][Wang et al., 2006] develop theory regarding consistency and asymp-
totic properties of point estimator of variational approximations for particular
models. [Wang and Blei, 2017] investigates the frequentist consistency and asymp-
totic properties of variational bayes estimators. [Blei and Jordan, 2006] presents
a mean-field variational inference algorithm for DPMM based on the truncated
stick-breaking representation of a DPMM. [Kurihara et al., 2007] experimentally
shows that there is little difference between the variational inference in the trun-
cated stick-breaking representation and the finite mixture model with symmetric
Dirichlet priors. In this paper we develop VA algorithms for the deconvolution
problem.

The basic idea of variational approximations is to approximate a posterior or
marginal distribution by a family of distributions and to solve it by optimization.
In this paper, we apply the most common class of variational approaches known
as mean-field approximation [Parisi, 1988]. Let 6 represent the collection of latent
variables in the model. Suppose the posterior distribution p(6|y) is approximated
by a variational distribution ¢(@), which is a family of distributions on 6, the
mean-field approximation aims to minimize the Kullback-Leibler (KL) divergence

[Kullback and Leibler, 1951] from ¢(0) to p(@|y). The KL divergence from P to @

13



is defined as Dy (P(2)]|Q(x)) = [ P(x)logP(z)dx — [ P(x)logQ(z)dx, then

Dicc(a(8) |p(8y)) = / 1(0)log ¢(6)d6 — / 1(O)logp(Bly)d0  (3.1)

It follows from the properties of KL divergence that Dk (q(8)||p(€]y)) > 0 with
equality holding if and only if ¢(8) = p(@|y) almost everywhere.

The logarithm of the marginal likelihood satisfies:

logp(y) = / q(0)log p(y)de

- [ atoyos (Z((—

B ply,
~ [ atoyow ("22) do -+ D ta(@)noly)
z/gwmg(quﬁde (32)

Define the lower bound of the marginal likelihood (or lower bound of the evidence,

ELBO)

p(y; q) =exp / q(0)log (p%’g?)) dé (3.3)

Minimizing Dg1(q(0)||p(8y)) is equivalent to maximizing log p(y; ). To make the

mean-field approximation more tractable, ¢(8) is restricted to factorize into ¢(8) =
szl q9,(0;) at the cost of degrading the dependency among 0;, j = 1,---,.J,
where {0, }37:1 is a disjoint vector partition of 8. The parameters of the variational
distributions gg,(60;) are called variational parameters. We optimize logp(y;q) by
coordinate ascent method, iteratively maximizing log p(y;¢) with respect to each
variational distribution gy, (6;) while holding other variational distributions fixed.

In particular, optimization of log p(y; ¢) with respect to gg,(6;) can be achieved by

d5,(0;) o< exp {E_g;logp(y,0)} (3.4)
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where E_p, denotes the expectation with respect to the density [], oy q0,(0;). The

formula (3.4) can be derived as follows:

logp(y; q) = / {bgp y,0 Zlogqel (6) }qul (1) HdGz

(oo

I#j I#j
- /qaj(ej)log%(ej)dej +Q(0-;) (3.5)

where 0_; = 0\0;, Q(0_;) only depends on 6_;. Define a new posterior density

p(05]y) by

exp/logp y,0 H%l (0) Hdez

. I#j 1]
p(0;ly) = ’ ’ (3.6)
/{eXp/logp y,0) [ a.(6)) Hdé’z}
I#j I#j

then equation (3.5) can be written as

logp(yi0) = [ a0,6,)102i(6,1y)d6; ~ [ a5, (6,)1oxa, (6,)46 + Q(6-)
= —Drc1(90,(0,)|5(8,]y)) + Q(6-;) (3.7)
Therefore, the optimal gg,(0;) is q;j(Bj) = p(6;]y) o exp {E_gjlogp(y, 0)}
Furthermore, if we assume that the prior p(8;) and the full conditional distri-

bution p(6;|y,0_;) are in the conjugate exponential family, the conditional distri-

bution p(0,|y,0_;) can be written as:

p(8;]y,0-;) = h(8;)exp {¢(6_;,y) T (8;) — A(C(6-;.¥))} (3.8)
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From the formula (3.4) we have

loggy, (8;) = E_g;logp(y. 0) + C1
=E_y, {logp(0;]y,0_;) +1logp(0_;|y)} + C:
=logh(8;) +E_g, {¢(0_;,y)"} T(0;) — E_g, {A((6_;,y)) + logp(6_;]y)} + C4

= logh(8,) + E_, {¢(8,y)"} T(8;) + C; (3.9)

where (' and (5 are constants. Therefore, the optimal density q;;j(ej) has a close
form which belongs to the same exponential family as p(8,|y, 0_;). We can see the
relation between Gibbs sampling and mean-field VA for conjugate exponential fam-
ilies from (3.8) and (3.9): Gibbs sampling iterates by drawing 8; from p(8;|y,0_;),
while mean-field VA iterates by evaluating the expection of the natural parameters

inp@,|y,0_;) forj=1,---,J.

3.2 VA Algorithm A

In this section, we develop a variational approximation algorithm for the Gaus-
sian error deconvolution problem. This algorithm allows repeated measurements

for the variable of interest. The deconvolution problem is formulated as
yZ]:xl+u2]7Z:17",n)j:1;,m'L (310)

where {y;;}72, are repeated measurements for z;, K o), uyy N N(0,02), 02

is known and f,(x) is unknown. The algorithm aims to estimate f,(z).
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3.2.1 Model specification

For the deconvolution problem (6.1), we consider the truncated representation

of model (2.10),

Yij | @i N (x,02), i=1,---,n, j=1,---,my
v | ci, @ = N (te;s Ué)
¢l "~ Categorical (71, T, -+, TK) (3.11)
7 ~ Dirichlet (o/K,a/K,--- ,a/K)
¢e = NIG (1o, Mo, 70, Bo)

The collection of all latent variables is @ = [x, ¢, 7, ¢]. The partition p(x, c, ¢, w|y) ~
02(%)gc(€)qr(7)qs(@) gives closed form for the full conditionals by 3.4. The varia-
tional distributions have the following form: ¢;(x) = [[;Z, N (%45 tg(a)> o))

q:(c) = [1:-, Categorical(c;; w1, wia, - - - , Wik ),

i (m) = Dirichlet(7r; ag(m),1, Qg(r)2,  +  Qg(m), &),

q5(@) = 15, NZG(on; La(ér)> Aa(én)> Aq(on) Ba(or)).  The variational parameters

are updated by the following algorithm.

3.2.2 Estimation method

Algorithm 2 (VA algorithm A for Gaussian error and known error variance). Ini-
tialize: foe,), Hater) € R and 02, Ag(an)» Agon)s Batar), Wi > 0 fork =1,... K, i =

1,--- ,n such that Eszl wir = 1 for all i. Repeat the following steps until the in-
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crease in logp(y;q) is negligible: Fori=1,--- n:

K —1
AQ(¢k Wik
oy o (3

k=1
Ui |~ A # ()
i (¢k) br)Vik

Mq(x) 2(:): < +Z q(Pr)a(Pk )

o; k)

Fori=1,....nandk=1,... K:

1
2/\Q(¢k)

1A ¢k
2 By,

((Ha(e) = Paten)” + Tote) —

1 1
Vi, < —§ZOQBQ(¢k) + §\If(Aq(¢%)) + qj(aq(ﬂ'),k>

exp(Vix)

lei1 exp(vi)
Fork=1,...,K:

n
W < E Wik
=1

i1 Ha(aWik + Aokt
W. k4o

Wik <

Ha(gr) <

)\Q(¢k) — Wi+ Ao

W.k
Aww%7;+%

1 1
aow) < Bo+ = szk ,Uq ) T Uq(x ) T 5)\0“(2) 2 (s +20) “2(%)

(0
Qg(r),k — Wy + E

Unknown measurement error variance

If 02 is unknown and there are replicate measures y;1, - - - , Yim, on subject ,
yij =T; + Uij, ZT; i%j- fx, Uij 1;\:1 N(0,0’i), 1= 1, e, n, j = 1, e,y (312)

the model is identifiable and 02 can be estimated from the model. Let N denote

the total number of observations, i.e. N = Y " m;. We put inverse gamma

18



priors on 02, 02 ~ IG(7,2,8,2). Conjugacy of prior for o2 leads to: ¢’ (o) =
IG(0?;

u’

Aq(02), Bq(oz))- The step of updating ¢}, (07) is

N
A a(o2) <—702 —|—§

a@) < 5 ZZ Yij = 2Ma@)Yis + Haten) T Oqta) + Bo

=1 j=1
The step of updating (ft4(z,), ag(xi)) is modified by replacing 1/02 by its expectation

nder g,2(c?), which i Autod)
under ¢,2 (o), whic SBq((,?)’

K -1
o2 miAg(o2) +2Aq<¢k>wik
e Bywzy = Baew

Lg(zs) < o2 AQ(UE)yi‘ + i AQ(%)NQ(%)M%
q\x; q(l'z) Bq(aﬁ) 1 B‘](¢k)

3.2.3 Density prediction

Next we derive the density estimator based on the variational distributions.

The predictive distribution for x,; conditional on observations y is given by:

PEaily) = / Zw (Tt 6)AP" (71, Gely) (3.13)

Under the factorized variational approximation to the posterior, the predictive

distribution can be written as a product of expectations:

PlEnsily) = ZEq @17 Egr o [P(@as1161)] (3.14)

where ¢*(-) denote the optimal densities. The explicit form of Eg«(4,)[P(Zn+1|P%)]

can be derived as follows:

1

P(Pk|Tn+1) :Eq*(m)[p(xnﬂ‘qjk)]

P(Tnt1|Pr)q" (D) (3.15)
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where

1 Ag(r) A (1 — fig(an)?
p(¢k|xn+1) E—— exp {_ q(¢r) o2 q(¢r)
k

21 az
~Aq(¢k) N ~
% B‘i(d)k) O'z(_Aq(d’k)_l)eXp _BQ(g)k)} (316)
I'(Aggn)) T
Aa(or) =Agap) T 1 (3.17)
~ q(Px) " q(or) n+l
Aoy T1
. . 1
Ager) =Ayen + 5 5 (3.19)
~ Arion) Tnt1 = 16 ))?
a(er) =Basp) 200, 1) (3.20)
and
Conalb)g (B0 = { (xnﬂ—uk)} IRV
Ty = exp i —
P\Tn+1(Pk)q Pk 202 P 207 o P
*A*
* * 2 q(Pg) . *
rexp  ANton e = 1560)” | Byon) e T, { Bq(¢k>}
20]% P(A;(sbk)) Jk
(3.21)

Comparing the factor terms in (3.15) which do not include py or of gives the

expression for Eg« ) [D(@ny1|0k)]:

1 - *A*

1 (Moo ) T(Agen) Basn
Eq*(¢k)[ (l’n+1|¢k>] \/_< k) F(Ag(;)) B‘IA;%) (3.22)
Pk k

q(éx)

Plugging (3.22) into (3.14) gives

-

*

E B*AZ(¢’k)
a(éx) ) Ayon) Buon

K 1
xn+l ’y A =
Z1 v ( q(¢r) (¢k)) BAQ(%)

a(or)
K
~ Zl "

*

33n+1 M*(¢))
9Pk 2A*

q(ér)
\/ Q(%)

(3.23)
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where T (y; v) denotes that the random variable y is from the student’s t-distribution

with degrees of freedom v. If n goes to infinity, (3.23) can be approximated by

K * *
« B
(i) * (¢x)
P(Tnialy) ~ E —aq—i—an <xn+1éﬂq(¢k);Az(¢k)> (3.24)
k=1 APk

3.3 VA Algorithm B

In this section, we establish another VA algorithm for Gaussian error deconvo-
lution problem. This algorithm assumes that there is no repeated measurement for

x;. The problem is formulated as
yi=x;+u;, i=1,--+,n (3.25)

where y; is a measurement for z;, x; ~ fo(z), u; ~ N(0,02), 62 is known and
fz(z) is to be estimated.

We integrate out z; from model (3.11). Let ¢, denote the percentage of the
measurement error variance in the variance of observations from kth cluster, that

is, tyr = . The model can be re-parameterized as follows:

u
2 2
TutTsk

Ui | Cirtos g 0o ™ N (g ey 00 ftoe)s =1,
ci|m "~ Categorical (71, T2, , TK)
7 ~ Dirichlet (o/K, /K, ,a/K) (3.26)
1ok ok T o Ao "= N (pt0, 7/ (Nolo1)
to.x]ao, co R TG((0,1]; ag, co)
where TG((1, u]; a, ¢) represent a truncated gamma distribution on (I, u] with shape
parameter a and rate parameter c. In model (3.26) the parameters o2, o, jig, A, ao, Co

are known, K is fixed.
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Let ¢y = (toks o) and ¢ be the collection of ¢y, k = 1,---, K. The pos-
terior is partitioned by p(c, @, wly) ~ qc(c)qd;([b)qﬂ(ﬂ'). Since p(m|a), p(c|w) and
(P10, No, ao, co) are conjugate priors, the optimal densities g (c), ¢* () and q:;(q;b)
can be derived by g; (0;) o exp{E_g,logp(y,6)}. For concision of the notations,
we omit the known parameters {02, «, g, Ao, @o, o} in the derivation. Assume X
is a truncated Gamma random variable X ~ TG((0,1];a,¢), a > 0,¢ > 0, the

following results of X will be used in the estimation method:

! o aFy(1;a+1,¢)
EX = “ — =9 - 2
(Xt = || e e e = 327
1 a
_ c a—1 o
E[logX|a,c]—/0 F(a)Fg(l;a,c)IOg(t)t exp (—ct) dt (3.28)
ct 8 ! a—1
- TR Eaa ),
c” . 1 (T(a+0)F,(l;a+9d,¢c) T(a)F,(1;a,c)
= lim — —
I'(a)Fy(1;a,c¢) 609 coto c®

(3.29)

where F,;(x;a, c) represent the cumulative distribution function of gamma random
variable X ~ G(a, ¢):

Fy(z;a,c) = /0 ﬁt“_lexp(—ct) dt, © >0 (3.30)
3.3.1 Estimation method

Algorithm 3 (VA algorithm B for Gaussian error and known error variance).
Initialize: pgg,) € R and Ay(gy), Agen)> Cator) Wi >0 fork=1,... K, i=1,...,n

such that Zszl wir = 1 for all 1. Repeat the following steps until the increase in
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logp(y; q) is negligible: Fori=1,....,n, k=1,--- K,

1 1
vir ¢ 5 Bllog(te ) Agon), Caton] = 53 EltoklAaton), Caon](vi = Ha(or)?
1
- + U (ag(m)k) (3.31)
2>\‘](¢k) )
SE explv)
Fork=1,... ,K:
Yoy Yiwik + Aot
Hator) = == (3.33)
-k+Xo
)\Q(¢k) — wr+ Ao (3.34)
Ww.
Agion) 7k + ao (3.35)
1 n
Calen) < Co + 202 (Z wirys + Aoty — (wWk + Ao) u§(¢k)> (3.36)
i=1
(6%
Qg(my) € Wk T 7z (3.37)

3.3.2 Density prediction

Under the factorized variational approximation to the posterior, the predictive

distribution can be written as

P(Tpialy) = Z Eq )[p(xnﬂ |¢k)] (3.38)
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The expectation terms are given by

*

Epo(mlm] = 1% (3.39)
g (m) "k atn )
1 00

Eq*@k)[p(xnﬂlczﬁk)] = / / (T ks tor )0 (o rltor) @ (ton)dptgpdty i
/ / exp {_t¢,k($n+1 - M¢>,k)2}

\/m 205(1 —tor)
v foidyton Ao ton(tsr — o)

—exp
\/2mo? 202
C*( Q()¢>k)t q<¢k) -1
Pk *
—Cr it dig rdt
C T, VE(L A, Co )eXp{ sontor} Ao dto
k
/ et exp {_ Agtonto (Tns1 — o)’ }
\/27mz Mooy — Agrtor + 1) 202(X: 4y — Nisotos + 1)
*A* —1

O q(d)k)t Q(d)k)

« q(dx)  “Pk (3.40)
F<AQ(¢ ) (1 A ¢k)’O¢J(¢k))

exp {—Cqptor} dlos (3.41)

The integral (3.41) can be obtained by numerical methods.

3.4 Simulation 1: Comparison between VA algorithm A,

VA algorithm B, MCMC and DK

This section compares VA algorithm A and B with DK method and MCMC
method on simulated data. We consider a target density which is a two-components
normal mixture with m = 0.5,m = 0.5, 1 = 0, uo = 1.5,01 = 1,00 = 0.2. The
variance of Gaussian error is set to 0.25, which corresponds to reliability 81%. We
generated 100 simulated dataset of size n = 1000,m; = 1 for ¢ = 1,--- ;n and

applied the four methods on each dataset. Numerical integrated squared error
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(ISE) of the density estimate from dth dataset was calculated by I.SE( féd)) =
SL A fular) — A;gd)(x;‘)}QAt, where x, = x7 < -+ < x4 = 3, is an evenly spaced
grid points and A; = x7,; — z;. The endpoints were chosen to be z, = =8, 7, = 8,
which cover the support of target density.

The DK method was implemented by R package "fDKDE”. This package pro-
vides the a plug-in (PI) bandwidth selector by [Delaigle and Gijbels, 2004b] and a
cross-validated (CV) bandwidth selector by [Stefanski and Carroll, 1990]. We used
the PI bandwidth in all simulation experiments in this thesis since [Delaigle and Gijbels, 2004b]
shows that it outperforms the CV bandwidth through simulation experiments. The
VA and MCMC methods were also programmed in R. VA algorithms used K = 10
clusters for the truncated DPMM. We chose hyper-parameters 7o = Sy = Ay =
0.1, ug = y. for MCMC method and VA algorithm A, ag = co = Ao = 0.1, g = 7.
for VA algorithm B. We set the concentration parameter a = 0.1 for both VA and
MCMC methods. For VA the loop continues to iterate until the increase in the
lower bound of log marginal likelihood logp(y;q) is less than 10~%. For MCMC
each chain was run for 6000 iterations with the first 1000 discarded as burn-in.

Table 3.1: Simulation 1: ISE and speed comparison of DK, VA and MCMC method.

Quartiles of 100xISE
25% 50%  75%  Computing time for running one dataset

DK 9.39 10.59 11.82 40 s

VA algorithm A 18.64 19.49 20.21 28

VA algorithm B 0.93 288  4.75 5s
MCMC 1.32 205  3.37 10 min
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Figure 3.1: Simulation 1: the density estimate of the median ISE

The density estimate corresponding to the median ISE by MCMC, VA algorithm
A, algorithm B and DK are presented in figure 3.1 by dotted, dot-dashed, solid and
dashed line, respectively. VA algorithm B outperforms both VA algorithm A and
DK method; the density estimate of median ISE by VA algorithm A cannot catch

the two modes of the density of interest.

3.5 Exploration on Performance of Algorithm A and B

The simulation experiment in section 3.4 shows that VA algorithm B outper-

forms algorithm A in estimating the density of the two-mode mixture of normals.
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In this section, we investigate the reasons behind it. This section is organized as
follows. In subsection 3.5.1, we find different modes of the objective function of
algorithm A by deterministic annealing. We see that a higher bound of marginal
likelihood does not necessarily give a better density estimate for algorithm A. In
subsection 3.5.2, we propose a conjecture to explain the drawbacks of algorithm
A. Subsection 3.5.3 shows that VA algorithm B can also get stuck at a local opti-
mum. The ability of jumping out of a local optimum needs to be improved for VA

algorithm B. This section we reconsider the following deconvolution problem.
Yi=z; +u, t=1,---,n (3.42)

. ii.d. ii.d. .
where y; is a measurement for z;, z; ~ fo(x), u; ~ N(0,02), 62 is known and

fz(z) is to be estimated.

3.5.1 Multiple modes of algorithm A

To find different modes of the log marginal likelihood lower bound, we apply
deterministic annealing to VA algorithm A. Deterministic annealing (DA), which
is variant of simulated annealing [Kirkpatrick et al., 1983], uses a time-dependent
temperature parameter to deterministically deform the objective function. It can
find a different local optima from optimizing a fixed objective function. Determin-
istic annealing was originally established for clustering in [Rose et al., 1990]. Later,
[Ueda and Nakano, 1995] developed deterministic annealing variant of the EM al-
gorithms for estimating maximum likelihood parameters; [Katahira et al., 2008]
[Abrol et al., 2014] [Mandt et al., 2016] applied deterministic annealing to varia-
tional inference.

To apply deterministic annealing to VA algorithm A, we introduce temperature
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parameters 7" > 0 and define the tempered lower bound of marginal likelihood as

logp, (¥4) = Eqflogp(y[x)] + =E,[logp(xle, )] + Eqflogp(c|)] + Eqflogp ()]

T
TE, [logp(e)] — 10gC/(T) — Eyflogg.(x)] — Eyllogge(e)] — Eqfloggs ()] — Eq[logge(6)
(3.43)
where
o(T) = / p(yl)p(xle, ) Fplclm)p(m)p(@)dydxdedndp  (3.44)

When T = 1, the sum of first six terms in (3.43) is the expected logarithm of
the joint distribution of hidden variables and observed data. It favors ¢ to put
high probability on values of hidden variables that can best fit the observed data.
The rest terms are entropies of the variational distributions. The entropies work
like regularization and induce smoothness to gq. To achieve a density that better
explains the data, we initialize T at Ty = 0.7 and increase T by 1072 at each
iteration until 7" = 1. Following is the deterministic annealing algorithm A.
Algorithm 4 (DAVA algorithm A). Initialize: iq,), lqer) € R and

02(@)» Ng(on)s Agton)s Baon) wix > 0 fork =1,... K, i =1,...,n such that SO Wik =
1 for alli. Choose Ty < 1. Repeat the following steps until the increase in logp(y; q)

1s negligible: Fori=1,...,n
i —1
2 mi Ag(on Wik
2o | = + Y
q(z:) (02 Z TBq(¢k) )

o2 yl q(ér) Ha(or) Wik

Fori=1,....n andk:zl,...,K:

1 1 1 1A 1
o — — [ —=logB ZW(A _ 2 aw) = 2452 ) _
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Z?:l Mg(z;) Wik + T)\(),U,O
W.k + T)\Q

Ha(er) <

W.k
/\Q(¢k) A T + Ao

W.k
Agon) < 57 T0

1

1 - 2 2 1 2 2
By(on) < o+ 5 > wit (i) + Tien) + 30k = 5 (Wi + Ao) Hgs,
i=1

(8
Qg(r) g & Wi+ E

Increase T if T' < 1.

We generated a dataset from the model used in section 3.4, estimated vari-
ational parameters from the posteriors obtained by MCMC, and then chose the
estimated variational parameters as initial values for algorithm A. If the global
maximum of the lower bound of marginal likelihood can be obtained when the
variational distributions are the true posterior distributions, iterations starting
with those initial values will quickly converge to the global optima and give a
similar density estimate as MCMC. The variational parameters were estimated
as follows. We applied the MCMC method to the dataset and kept the sam-
ples drawn after the burn-in period. Let S be the number of samples drawn
from Markov chain, the mean and variance posterior of z; can be estimated by
fio, = 1307, 2 and 62 =g~ S5 (@ — h,,)% At s-th iteration after burn-in,
the two largest clusters were kept and ordered by the cluster mean. They were
indexed by (,ugfk), /\ffk), 77(15,2, T(fk)), k = 1,2. We initialized the variational parameters

in VA algorithm A and DAVA algorithm A by setting

— 2 _ A2 A .
Ha(a:) = Hais Uq($i) = Og;> for i = 17 LY
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Qg(m) k stln+ for k =1,2, ag(my e = 0.1 for k=3, | K;
Ha(o) = § Loam Hod for k=12, ptyo) = 9. = 5 Sy for k=3, K;

o) = S50 A for k= 1,2, Mgy = 0.1 for k=3, , K;

q($r) 52517n)f0rk—12A y=01for k=3, --- K;

Byow = 5305, 8% for k= 1,2. By, = 0.1 for k=3,--- , K.

Figure 3.2 shows that the two algorithms found different local optimum. Al-
though the initial values come from posterior means, VA algorithm A did not catch
the two modes of the target density. Density estimate of DAVA algorithm A is closer
to the target density than VA algorithm A, while the ELBO of DAVA algorithm A

is lower than VA algorithm A.

o
0 3 -
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— MCMC 8
- VAAgA =T I
—— DAVAAgA R x 2 : mmmmmmm ]
e | T h i
- 5 8 1 1
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Figure 3.2: Multiple modes of VA algorithm A

3.5.2 A conjecture based on the simulation results

This section starts with comparing the Bayesian networks of the two algorithms

and proposes a conjecture to explain why algorithm B outperforms algorithm A.
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In model 3.25, the observed variable is y; the hidden variables are x,c,m, ¢
for algorithm A, and c, ¢ for algorithm B. We categorize the hidden variables
into global hidden variables and local hidden variables, which are terminologies
defined in [Hoffman et al., 2013]. Hidden variables whose sizes grow linearly with
the size of observed variables are local hidden variables; hidden variables whose
sizes do not depend on the size of observed variables are global hidden variables.
In algorithm A, local hidden variables are {x, c}, global hidden variables are {7, ¢}.

In algorithm B, local hidden variables are {c}, global hidden variables are {7, ¢}.
The dependency between variables are shown in Bayesian networks 3.3 and 3.4.

Algorithm A approximates the posterior by p(x, ¢, 7, ¢|y) =~ ¢.(x)q.(c)g,(7)qs(@),
which breaks the dependancy between local variables x and ¢, that is, p(x;, ¢;|y;, 7, @) #
p(zi|lys, ™, @)p(ci|yi, ™, @d). Algorithm B approximates the posterior by p(c, 7, g?>|y) ~
qc(c)qﬂ(ﬂ')qq;(qg) and does not lose dependency between local hidden variables.
Based on the performances of algorithm A and B, we have a conjecture that

breaking dependency between local hidden variables leads to loss of accuracy in

variational inference.

Ci p(ci|m) —@— p(m)

(M, O2)VH PlUc, 02)

@ pyilxi) @p(xilc/, Hc, 02)

Figure 3.3: Bayesian network of VA algorithm A
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@ plyilci, b, te,)

Figure 3.4: Bayesian network of VA algorithm B

3.5.3 Multiple modes of algorithm B

VA algorithm B may also get stuck at a local optimum. To find a second local
optimum of algorithm B, we apply DA to VA algorithm B by defining the tempered

lower bound of marginal likelihood as

logp,.(ylg) = % {Eq[logp(YIc, ®)] + Eyllogp(c|m)] + Ey[logp(m)] + Eq[logp(fb)]}
—1logC(T) — Eqlogge(c)] — Eq[loggx ()] — Eq[logg; ()]

(3.45)

where

O(T) = / p(yle, @) T p(c|m)Tp(m) T p() T dydedmde (3.46)

The algorithm started with T = 4 and gradually reduced T to 1, it favored ¢ to
have high entropy and smoothness at start then allowed ¢ to put higher probability
on hidden variables that can better fit the observed data. Deterministic annealing

VA algorithm B is given as follows.

Algorithm 5 (DAVA algorithm B ). Initialize: jiq,) € R and

Ag(or)s Aqor)s Co(on)> wie > 0 fork =1,... K, i =1,...,n such that Zle wip = 1

32



for alli. Set Ty > 1. Repeat the following steps until the increase in logp(y;q) is

negligible: Fori=1,....,n, k=1,--- | K,

1(1 1
Vik < o {gE og(tsn) | Agton)s Caton)] = 53 Eltsrl Agton), Caton] (yi = Ho(n))’
1
- + W(ag(x ,k)} (3.47)
2/\Q(¢k) o)
Wik = f?(p(—%) (3.48)
> =1 exp (Vi)
Fork=1,... K:
Yo Yiwik + Aokto
Ha(oy) = == ” (3.49)
. 0
1
/\Q(¢k) — T (w‘k + )\0) (350)
W.k ap
Agon) o T 1 (3.51)
Co 1 -
Caton) & 7 T 3752 (Z wiry; + Aoty — (Wi + Ao) Mg(m)) (3.52)
u =1
W.k o

Decrease T if T > 1.

We chose a dataset from the 100 simulated datasets of section 3.4 and applied
both VA algorithm B and DAVA algorithm B using same initial values for varia-
tional parameters. The modes of marginal likelihood lower bound found by DAVA
and VA are almost equally high, while their density estimates are apparently dif-

ferent as shown in 3.5.
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Figure 3.5: Multiple modes of VA algorithm B

3.5.4 Limitations of VA algorithm B

VA algorithm B considers the deconvolution problem with balanced replications
and Gaussian measurement error. It has not been able to handle the following

situations.

1. Unbalanced replications

If the model has balanced replications, that is m; = m for all i, then algorithm

B can be implemented by considering ;. | ¢;, tg, pg, 02 = N (fig,c;, 52/tp,), G2 =

%2‘, tor = &Qiig . If the model has unbalanced repeated measurements, the
u @,k
fraction —Ze/™ does not only depend on k but it also depends on 7. The pa-

rameterization of algorithm B does not have a closed form for the variational
distribution qé(&b). If (pig,k, 07 ) is restricted to be a normal-inverse gamma
distribution, variational parameters in gy (ge k, U;’k) need to be updated by

derivative-based optimization methods at lower speed.
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2. Non-Gaussian distributed errors

The latent variable x may not be integrated out if the measurement error is

non-Gaussian distributed.

Since integrating out x improves the performance of VA, it is desired to seek for

approaches to extend algorithm B to the above situations.

3.6 Stochastic Variational Approximation

In this section, we apply stochastic optimization to improve performance of algo-
rithm B. Stochastic optimization [Robbins and Monro, 1951] allows randomness in
the optimization process and may enable the algorithm to escape a local optimum.
Stochastic optimization has been used with Expectation-Maximization (EM) algo-
rithm in [Cappé and Moulines, 2009] [Nielsen et al., 2000] [Diebolt and Ip, 1996].
An EM algorithm can be expressed as a mean-field [Neal and Hinton, 1998]. Stochas-
tic optimization is also applied to traditional variational approximation by [Hoffman et al., 2013]
[Kiciman et al., 2008]. Rather than iterating between re-analyzing each data in the
whole dataset and re-estimating its hidden structure, stochastic variational approx-
imation (SVA) iterates between randomly sampling a subset of the whole dataset
and estimating the hidden structure based only on the subset. In this section, SVA
for algorithm B is established based on the idea of [Hoffman et al., 2013].

Algorithm B includes observations y;—;... », global hidden variables 3 = {t, p, 7}
and local hidden variables ¢;—;... ,. In model (3.26), both 3 and c have conjugate

priors which belong to exponential family. Their full conditionals can be expressed
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in the following form,

p(ci‘yv C—, 703) = hc(ci)exp {nc(ylv 705)TTC(Ci> - gc(nc<yi7 703))}

p(Bly,c,0.) = hs(B)exp {ns(y, c,00) " Ta(B) — &s(ngly,c,00))} (3.54)

where 1,(y;, 3, 02) or ns(y,c,02) is called natural parameter, Tc(c;) or Tg(8) is
sufficient statistic.

Under the restriction ¢(83, ¢) =~ gs(8)q.(c) and by (3.9), the optimal variational
distribution ¢. and gz belong to the same exponential family as p(¢;ly,c_i, 8, 02)

and p(Bly, c,0?), respectively.

¢e(ci) = he(ci)exp { p} Te(ci) — &c(p;) }

q5(8) = hp(B)exp {¢TTs(8) — £5(¢) } (3.55)

The coordinate decent algorithm iterates between updating ¢ and p; for i =
1,--- ,n. It updates the variational parameters to the expectation of the natural
parameters with respect to the current variational distributions. In the following
algorithm local parameters refer to the variational parameters in ¢., global param-

eter refer to the variational parameter in ggs.

Algorithm 6 (Coordinate decent algorithm for variational approximation).
1. Initialize €.

Repeat:

Update p; < Ec{n.(yi,3,02)} fori=1,--- n.

Update ¢ < E, {n(y,c,02)}

Until the increase in logp(y; q) is negligible.

S N

Step 3 evaluates local parameters for each local hidden variable, then step 4

updates global parameter based on all local hidden structures. The algorithm 6
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can find a local optima as it converges. The stochastic variation approximation
(SVA) allows randomness in the process of optimization. Instead of evaluating
the hidden structure for all local hidden variables, SVA randomly samples a batch
of data from the whole dataset and only evaluates the hidden structures for the
subsample. Rather than update the global parameter using all local parameters,
SVA estimates intermediate global parameter based on the hidden structures of the
subsample and then updates the global parameter to a weighted sum of the former

estimate and the intermediate estimate.

Algorithm 7 (Stochastic variational approximation algorithm).

1. Initialize C(O).

2. Fort=1,2,--- , 00, set step-size O; appropriately, repeat:

3. Sample {Yi,, Yip, - -+, Yi. } randomly from the whole dataset, update pg) — B {n.(vi,, B, 02)}
forl=1,---s.

4. Evaluate ¢ + E o {ns(yii=1,-.s. ¢, 02) }.

5. Update ¢W (1 —6,)¢"Y +6,C.

Applying the SVA algorithm to algorithm B, we have the following algorithm.

Algorithm 8 (SVA for Gaussian error deconvolution).

1. (0) (0) (0) (0) (0) _ L
Initialize: ooy € R and )‘q(m)’Aq(m)’Cq(m)’wik >0 fork =1,....K, 1 =

1,...,n such that Zszl wi(g) =1 for all i. Let D,EO) = Ag(g;k)ué(&k). Set step-size 0,

appropriately, repeat the following steps fort = 1,2, | T: Sample {yi,, Yip, "+ , Yi. }
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randomly from the whole dataset. Forl=1,2,--- s,

1 1
040 A0 ® A OERY
Vidk §E[log(t¢7k|Aq(¢k)’ Catonl — 202 BltoxrlAgig,y Cao Wi =ty
1
)
0 T V) (3.56)
q(¢
0 OPlu) (3.57)
Zg:l eXp(”’QQ)
Fork=1,... K:
Dy <= Y wiwin + Aopto (3.58)
=1
DY « (1= 6)D{™ +6,Dy (3.59)
Aaton) Wi+ Xo (3.60)
Ay (L= 8)A + 6, A (3.61)
o Dy,
Faer) \@ (3.62)
q(éx)
. W
Agg) = == + a0 (3.63)
t
At(l()d)k) ( (St)A (on ) + 515"4(1(% (3.64)
- 1
Caler) < Co + 22 <Z wff;iyi + Aoptg — (w + /\o> (qfk)> (3.65)
=1
®)
~ t (6]
Qg(my) < w.(k) T (3.67)
Qg = (1= )af ) + 0idig(m,) (3.68)

A variation of algorithm 8 can solve the Gaussian measurement error deconvo-

lution with repeated measurements.

Algorithm 9 (SVA for Gaussian error deconvolution with replicated measure-

ments).
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(0)

. 0) (0 0 .
Initialize: ooy € R and )\q(¢ Ag(% C(;k) wfk) >0 fork =1,....K, i =
: 0 0 0
1,...,n such that Zk 1w(0) =1 for all i. Let D,(g) = /\é(ik)ﬂg(;k). Let My =
min;_y .. ,{m;}. Set step-size &; appropriately, repeat the following steps for t =
L2, T: Sample YitysYitss s Yite, . TaRdOMIY from Yix, -+ Yim, for i =
1,2,---,n and let g = Zm"“" Yit; /Momin,
1 ® 1 _ Mmin ® © |
vin <= S E [og(t 1 A4ty Coter) — 202 Bltox| A y» Coto i = b))
1 (0
Q(¢k
exp(vig
f;? # (3.70)
> i1 exp(vi)
Fork=1,...,K:
Dy, + Z?i-%(z? + Aot (3.71)
i=1
DY « (1= 6)D{™ +6,Dy (3.72)
Af(zt() o < (1 5t)/\ ) + 0 h(s0) (3.74)
(1) Dy
Fa(en) < 1@ (3.75)
A
q(bx)
) L0
Agg) < == + a0 (3.76)
Ay = (L= 8) ALY + 61 Aq0) (3.77)
~ t)—x t 2(t
Cuon) o+ 5 (Z w72+ dopid = () + %) uq@}k)) (3.78)
c o (1-s)C"Y +5,C (3.79)
q(ox) )~ q(ér) t“q(or) .
~ t (6%
Qg(my) W~(k) + iz (3.80)
gy € (1= 00)a 3+ 01y (3.81)

In algorithm 9, the variance of measurement error o2 is assumed to be known.
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If ¢ is unknown, it can be estimated by 67 = = >.i) >0 (Yi; — ¥,.)?, where

Y;. = mi Z;”:l Yij, then algorithm 9 can be applied.

3.7 Simulation 2: Comparison between SVA, VA Algo-

rithm B, MCMC and DK

3.7.1 Non-repeated measurements

The SVA algorithm 9 was applied to the 100 datasets simulated in section 3.4.

— t_0'7

The step-size function was chosen as o, and 2000 iterations were run for

each dataset. We compare the results of SVA with VA algorithm B, MCMC and
DK. Table 3.2 shows median ISE of SVA is about half of the median ISE of VA

algorithm B, the overall performance of SVA is better than VA algorithm B.

Table 3.2: Simulation 2 - non-repeated measurements: ISE and speed comparison
of SVA, DK, VA and MCMC method.

Quartiles of 100xISE
25%  50% 75%  Computing time for running one dataset

DK 9.39 10.59 11.82 40 s

VA algorithm B 0.93 2.88 4.75 5s

SVA 0.75 1.46 2.36 10 s
MCMC 1.32 2.05 3.37 10 min
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Figure 3.6: Simulation 2 - non-repeated measurements: the density estimate of the
median ISE

3.7.2 Repeated measurements

We choose the target density f(z) = 0.5M(0,1) + 0.5N(1.5,0.2?) and error
variance o2 = (.25, which are the same as the last experiment. The sample size is
n = 240, the number of subjects is 60 for each number of repeated measurements
m; € {1,2,3,4}. The DK method for repeated measurements was implemented by
R package "fDKDEheterosc”. For SVA approach, the step-function was chosen as
8, = t~2 and 3000 iterations were run for each dataset. Table 3.3 compares the
ISEs of density estimates by SVA, DK and MCMC method and their computing

speed. Figure 3.7 shows the density estimates corresponding to the median ISEs.
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SVA achieves more accuracy in terms of ISE than DK and has comparable speed
with DK. Density estimate by MCMC is a little more precise than SVA in this
simulation experiment.

Table 3.3: Simulation 2 - repeated measurements: ISE of density estimates and
computing speed.

Quartiles of 100xISE
25%  50% 75% Computing time for running one dataset

DK 499 6.33 7.41 20 s
SVA 2.08 3.74 5.74 20 s
MCMC 1.60 2.46 3.49 5 min
o |
-~ true
— MCMC
------ SVA
--- DK
o |
P
‘»
C
(0]
©
v _|
o
o _| o=
o
T T T
-5 0 5
X

Figure 3.7: Simulation 2 - repeated measurements: the density estimate of the
median ISE
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3.8 Simulation 3: Add MCMC and SVA to [Wand, 1998]

This section presents the simulation results for four target densities which were
used in [Wand, 1998] to represent important density shapes in practice. These tar-
get densities are: (i)the standard normal density N(0,1), (ii)a two-components
normal mixture 2N(0,1) + N0, z), (iii)a gamma density G(4,1), (iv)a two-
component gamma mixture density %Q’ (5,1) + gg (13,1). For each target density,
we choose different error variances by varying the percentage of variance of the
observed data which is due to measurement error p = var(u)/(var(z) + var(u)).
Let p vary from p = 0 to p = 50%, corresponding to reliability from 100% to
50%. For each model, we generated 100 simulated datasets of size 250 obser-
vations and applied the naive kernel density estimation, DK, SVA and MCMC
method on each dataset. Numerical ISE of the density estimate from dth dataset
is calculated by [SE(fg(;d)) = S {fulal) - féd)(xz‘)}QAt, where z, = 2} <

- < o = 13 is an evenly spaced grid points and Ay = z;,; — x7. We choose
z, = (0.0005 quantile of f, — 3.290,) and x;, = (0.9995 quantile of f, — 3.290,) as
the endpoints so that [x,, 2] can cover an observation with probability > 99.8% for
p=0.1,0.2,0.3,0.4,0.5. The naive kernel density estimation was performed using
binned kernel density estimate function in R package " KernSmooth”. We used de-
fault options including standard normal kernel and the ’oversmoothed bandwidth
selector’ of [Wand and Jones, 1994]. The DK method was implemented by R pack-
age "fDKDE” and the plug-in (PI) bandwidth of [Delaigle and Gijbels, 2004b] was
used. SVA approach uses K = 10 clusters for the truncated DPMM. We set the
concentration parameter a« = 0.1 for both SVA and MCMC method. We choose
the hyper-prior parameters ag = ¢y = 0.1 = A\g = 0.1, uo = 7. for SVA approach,

Yo = Po = Ao = 0.1, up = y. for MCMC method. The step-size function was chosen
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as & = t7%7 for SVA and 2000 iterations were run for each dataset. For MCMC
each chain was run for 6000 iterations with the first 1000 discarded as burn-in.
Figure 3.9 shows the 95% confidence interval of MISE of the density estimates.
The distribution of the logarithm of ISE is approximately normal, so we calculate
the 95% confidence limits for the MISE by exp {log(ISE(fx)) + t9970-025&10g(15E(f1))/\/m}’
where log(ISE(f,)) and &

log(rsE(/»))
of log(ISE( fx)) respectively, tg90.025 denotes the upper tail 2.5% critical point of ¢

are the sample mean and standard deviation

distribution with 99 degrees of freedom. We can see from figure 3.9 that SVA and
MCMC outperform DK for target density (1)(2)(3) and and have similar perfor-
mance with DK for target density (4). SVA and MCMC have comparable accuracy
of density estimate. For a dataset of sample size n = 250, it takes about 1 sec, 20
sec, 3 sec and 5 mins for Naive, DK, SVA and MCMC to perform density estimation,

respectively.
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Figure 3.8: Simulation 3: target densities
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CHAPTER 4

VARIATIONAL APPROXIMATION APPROACHES FOR

LAPLACIAN MEASUREMENT ERROR

In this chapter, section 4.1 develops a variational approximation algorithm for
the Laplacian error deconvolution problem. This algorithm allows repeated mea-
surements for the variable of interest. The deconvolution problem is formulated

as

yij:xi+uij7i:17"'7n7j:17"',mi (41)

where {y;;};2, are repeated measurements for z;, z; "X fu(), uy; "X Laplacian(0, b),
b is known and f,(z) is unknown. The algorithm aims to estimate f,(z). Section
4.2 compares performances of DK, VA and MCMC method through simulation

experiments.
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4.1 VA Algorithm

4.1.1 Model specification
We model the density of interest f,(z) by the truncated DPMM,

yij | 2 % Laplacian(z, 0, /V2),i = 1,--- ,n, j=1,--- ,m,
Z; | Ci, @ e N(Mciv 02)
¢l "X Multinomial (701, T2, , TK) (4.2)
7 ~ Dirichlet (o/ K, /K, -+, a/K)
Pe = NIG (#0, Ao, Y0, Bo)

We approximate the posterior by p(x,c, 7, @|y) ~ ¢.(x)g.(¢)q:(7)qs(¢).The prior
for x is not conjugate and therefore optimal ¢}(x) does not have a close form. We
restrict ¢(z;) to be a normal distribution N (g (z,), US(zi)) and update its parameters

by Newton-Raphson method.

4.1.2 Estimation method

Algorithm 10 (VA approach for Laplacian error and known error variance). Ini-
tialize: fo(,), Hater) € R and 02, Ag(an)» Agon)s Batar), Wi > 0 fork =1,... K, i =
1,...,n such that Zszl wir = 1 for all i. Repeat the following steps until the
increase in logp(y;q) is negligible: For i = 1,...,n : find the mazimum point

(Hg(zs)s ag(mi)) of the following function with other parameters of q(0) fized:

logp(y; q) = E{logf (y|x)} + E{logf (x|c, ¢)} + Entropy{q(x)} + C

1 n  my
Ty Z Z Oqar) (215 (20(255) — 1) + 20(25)) Z l0go s

i1 jfl
w,kA oK)
5 Z Z O (02 )+ 12 ) — 2Haten (o) + C (4.3)
B
i=1 k=1 (¢%)
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/ . Lo 2 o YigTHg(xy) .
where C', C" are functions not containing Ha(zi) OT Ogizyr Zij = —O'q(xi)l , d(4)

and ¢ denote the PCF and PDF of the standard normal distribution respectively.
Replacing 03(“) by exp(ly(zy)) i (4.3) guarantees its differentiability on R?, where
lyzs) = log(ag(xi)) The partial derivatives of (4.3) with respect to (,uq(gci),lg(zi)) are
given by

ol : T
Diogp(y:q) _— (1= 2®(255) — 22550(2i5) — 20 (2i5))
a“Q(%) b

5 ((;) Wik () — Ha(ér)) (4.4)
k=1 1\%%

Ologp(y; q) _ 1 2 1wy,
— BT o <_g (6(z1) = 250(z) — 220 (3 —‘ZB

al‘](fﬂz) j=1 _ Q(¢k)

1
X exp(ly(zy)) + 5 (4.5)

Fori=1,....nandk=1,... K:

lAQ(%)

2 2
2 By, \(Hate) ~ Hao)) + i)

1 1
Vik < —§ZOQBQ(¢k) -+ é\II(Aq(d)i)) —

1
2X (1)

exp(vix)
lei1 eXp(Vil)
Fork=1,... K:

n
W < E Wik
=1

i1 Ha(aWik + Aokt
W.k+Xo

+ \Ij(aq(ﬂ),k>

Wik <

Ha(gr) <

)\Q(¢k) — Wy + Ao

W.k
Agon < 5 T

1
5 (Wi 20) g,

1 2
a(or) (—504— szk uq —|—0q(x )—FE)\Q/LO—Q(

(6]
Qg(r)k < Wi+ ia
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Unknown measurement error variance

If 02 is unknown and there are replicate measures 41, - - - , Yim, On subject 4, the

parameter o2 can be estimated from the model
Yij = Ti + Uij, T~ fa, u; ~ Laplacian(0,0), o2 = 2b? (4.6)

We put conjugate inverse gamma priors on b, b ~ IG(4p, 8p) and approximate

p(x, ¢, @, bly) by ¢.(x)qc(c)gr(m)qs(#)qs(b). Since p(b) is a conjugate prior, the
variational distribution g,(b) can be updated by (3.4) ¢;(b) = 1G(b; A, B ),

where
AZ(b) <— b —+ N

DD gt (255 (20 (i) — 1) +20(2i5)) + B

i=1 j=1
The step of updating (uq(xi),ag(mi)) is changed by replacing 1/b by its expecta-

. : . A (b) 2 * 2%
tion under g,(b), which is #@;' We update (tg(z;): 05(r,)) t0 (K10 Tatery) Which

;)

maximizes log p(y; q) with other parameters of ¢() fixed:

A
logQ(Y; Q) qub) Z Z Oq(xi) Zz] (QCI)(ZZJ) - 1) + 2¢ Zzg Z IOgO'q(w
q

11]1

1 - wzkA ¢>k (
2

. T2t + My = 2Ha(an) Ha(or)) + C (4.7)
i=1 k=1 q k

. . . . Yij— K .
where C” is a function not containing (tig(z,), ag(x_)) and z;; = ——"% (q(;”“.
1 q(z;

4.2 Simulation 4: Compare VA to MCMC and DK for

Laplacian measurement error

This section compares the performance of VA approach with DK method and

MCMC method on simulated data. We present results for two target densities which

20



are shown in figure 4.1: (i) 0.5M(0,1) 4+ 0.5M(1.5,0.2%) (ii)2A/(0,1) 4+ 2N(0,0.22).
Density (i) is left skewed and has two modes; density (ii) is symmetric and with a
kurtosis coefficient about 2.23 times that of the normal. For each density, we choose
different measurement error variance levels, p = 0,0.1,0.2,0.3,0.4,0.5, where p =
var(u)/(var(x) + var(u)).

We generated 100 simulated dataset of size n = 250,m; = 1 fori =1,--- |n
and applied four approaches on each dataset, naive kernel density estimation, DK
method with PI bandwidth, VA algorithm 10 and MCMC. We chose concentration
parameter o = 0.1 and hyper-prior parameters vy = Sy = A\g = 0.1, o = 7. for both
VA and MCMC method. The number of clusters for truncated DPMM of VA was
set at K = 10. Iterations of VA stop if the increase in logp(y; ¢) is less than 1074,
For MCMC each chain was run for 6000 iterations with the first 1000 discarded as
burn-in. Figure 4.2 shows the ISEs of density estimates by the four approaches.
For a dataset of sample size n = 250, the average computing speed of Naive, DK,
VA and MCMC method are 1 sec, 20 sec, 20 sec and 5 mins, respectively.

MCMC achieves comparable accuracy with DK but has lower speed; VA per-
forms worse than MCMC. VA algorithm 10 is developed based on the factorization
p(x, ¢, ¢, 7|y) & q(x)qc(c)qr(7)qs(¢p), where the dependence of local hidden vari-
ables x and c is broken. It can explain why VA algorithm 10 performs worse than
MCMC by the conjecture proposed in section 3.5.2. Since the p(y;|z;, b) is a Lapla-
cian density and p(z;|c;, @) is a Gaussian density, integrating out x; in model 4.2
does not give a closed form for p(y|¢,c) or p(¢l|y, c), therefore integrating out x
for Laplacian error cannot achieve same computation efficiency as VA algorithm B
for Gaussian error. Given that DK can achieve comparable accuracy with MCMC,

we will not further explore VA algorithms for Laplacian error deconvolution.
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CHAPTER 5

ANALYZING PHYSICAL ACTIVITY DATA

In Chapter 5, we apply deconvolution methods to analyze physical activity
data. Section 5.1 describes the dataset and develops a deconvolution model for
the activPAL sedentary behavior data. Section 5.2 solves the deconvolution model
and checks the fitness of the model. Specifically, subsection 5.2.1 and 5.2.2 apply
SVA and MCMC method to estimate the density of the average daily sedentary
time, respectively. Subsection 5.2.3 assesses the fitness of models by posterior
predictive methods. Subsection 5.2.4 discusses possibility of heteroscedasticity in

measurement error.

5.1 Data Description and Model Specification

Physical inactivity or excessive time spent on sedentary behavior has been iden-
tified as a risk factor for mortality and many adverse health conditions
[Matthews et al., 2012] [Thorp et al., 2011]. Physical activity researchers are inter-
ested in the distribution of long-term sedentary time in populations. This informa-
tion is important for public health surveillance and examining associations between

physical activity and health outcomes.
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Measurement of individuals’ physical activity time is subject to measurement
error. ActivPAL is one type of physical activity monitors. It is worn on the mid-
right thigh and uses information about thigh position to determine the time period
spent on sitting/lying or standing/stepping. [Grant et al., 2006] reported that the
activPAL accuracy for measuring posture and motion is 95% — 100%, therefore the
activPAL is regarded as a reliable and unbiased activity monitor. We illustrate
the deconvolution methods using the datasets of the active and sedentary behavior
study conducted by [Matthews et al., 2013]. During the study, 201 participants
wore an activity monitor during waking hours. Records with wear time greater
than 10 hours are considered as valid and included in data analysis. We rescale the
data such that the wear time is 10 hours. We use a linear mixed model to analyze

the activPAL data,
Yij =2 +dij, i=1,--,nj=1-- my.n=2011<m; <9 (5.1)

where x; represents the average daily sedentary time of ith subject over a long
time period, i.e., usual daily sedentary time of subject 7. The term d;; includes
the deviation of the sedentary time of subject ¢ on day j from the usual sedentary
time of subject 7 and the measurement error of activPAL. Furthermore, we assume

ii.d. ii.d. .
z; ~ fy, dij =~ fq, ¥; and d;; are independent.

5.2 Estimation Methods

5.2.1 Stochastic variational approximation

We apply SVA approach Algorithm 9 to estimate the distribution of x; under the

i.i.d.

assumption that d;; = N(0,03) and estimate o by 67 = 5 (yi; — %i.)* = 0.9485.

For the truncated DPMM, we chose concentration parameter o = 0.1, number of
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cluster K = 10 and hyper-prior parameters \g = ag = ¢o = 0.1, po = %Z?:l Y.
Step-function d; = ¢! was applied and 3000 iterations were run for SVA.

Figure 5.1 shows the density estimate for average daily sedentary hours by SVA
in solid line. It is left-tailed. The naive density estimate was obtained by applying

kernel density estimation to ¥; and shown in dashed line.

0.6

| — SvA
--- Naive

f(X)
02 03 04 05
| |

0.1

Figure 5.1: Sedentary time density estimation by SVA and naive method

Figure 5.2 shows the posterior mean estimate of f(x) by SVA in solid line and
95% confidence interval of f(z). The 95% confidence interval of f(z) is obtained

by Monte Carlo method as follows. Let 8 = {c,ﬂ,(z)} be the collection of all

hidden variables in the model. We drew S = 1000 samples 0‘(9‘217”, s from variational

distributions, i.e., ¢ "X ¢*(c), #) X gi (), q~b(s) ) q;(qb). The density estimate

™

based on 8 is given by f(z)®) = S8 W](CS)NCC;/LéS’L,&d/tgL — 62). The 95%
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confidence limits of f, are estimated by f ()% 20025 <ﬁ S5 (fla)® — f(:c))2> ’

s=1

where f(z) = %Zil F(2)® and z5 denotes the 2.5% quantile of the standard

normal distribution.

—— Posterior mean
------ 95% CI

0.4 0.5

1(x)
0.3

0.2

0.1

0.0

X

Figure 5.2: Posterior mean and 95% CI of sedentary time density estimated by
SVA

5.2.2 MCMC

Figure 5.3 shows the posterior mean estimate of f(z) by MCMC. The density
f(x) is modeled by a truncated DPMM with K = 10 clusters. A inverse gamma
prior was put on o3, 63 ~ ZG(0.1,0.1). We chose concentration parameter a = 0.1
and hyper-prior parameters A\g = v9 = 8o = 0.1, g = %Z?:1 y,.. Six thousand

iterations were run for MCMC with the first 1000 discarded as burin-in.
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Figure 5.3: Sedentary time density estimation by MCMC

5.2.3 Posterior predictive assessment

We use posterior predictive assessment methods of [Gelman et al., 1996] to
check the fitness of model specified in section 5.1. In the framework of poste-
rior predictive assessment, we select a discrepancy statistic denoted by D(y; @),
which measures the discrepancy of observed data and a posited model M with pa-
rameters 6. Define y"P as the replicated data that would appear if the experiment
that produced y were replicated with the same model M. The posterior predictive

distribution of discrepancy is derived from the joint posterior distribution of y"*
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and 0,
P(y™,0|M,y) = P(y""|H,0)P(6|M,y)

Under the posterior predictive distribution of discrepancy, the posterior predictive

p-value is defined as
p — value(y) = P(D(y"*;6) > D(y; 6)|M,y)
The discrepancy is chosen as

n K
D(y;0) = —2logp(y|6) = —2 ) log {Z TN (s gy 3 (1/tgn + 1/m; — 1))}

i=1 k=1
The calculation of posterior predictive p-value is implemented by Monte Carlo sim-
ulation. Given S = 500 draws 0@‘21,,., s from the variational distributions, we drew
a simulated replicated data y"?* from P(y"®|M,0")) for each s and calculated
D(y; 0(5)), D(yr?*, 0)). Figure 5.4 shows the scatter plots of D(y"P*, 0')) ver-
sus D(y; 0(8)). The predictive posterior p-value is estimated by the proportion of
points above the 45% line, p-value=0.654. We obtained no evidence of lack of fit

of the homoscedastic Gaussian error deconvolution model.
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Figure 5.4: Scatter plot of predictive vs realized discrepancies for the homoscedastic
Gaussian error deconvolution model

5.2.4 Heteroscedasticity assumption

This subsection discusses the possibility of heteroscedastic measurement error.
Figure 5.5 shows the scatter plot of within-subject variance s? versus subject mean
Y;., where 7, = m% > iy and 87 = ﬁ > (yi — ¥;)?. Figure 5.5 shows no

linear or curvilinear trend as ¥;. gets larger, although the points with large s? scatter

iny, <7.
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Within-subject variance versus subject mean
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Figure 5.5: Scatter plot of within-subject variance versus subject mean

Under the heteroscedasticity assumption, we model within-subject variance as
a function of subject mean, i.e. var(d;;) = exp{g(z;)}. The variance function g(z;)

is specified as a linear mixed model,
KTI

9(@) =0 + NpT + Z Pron (T — Kk )+, Py~ MVN(0, U,%T,I)
k=1

We put normal prior on +, and inverse gamma prior on o : v, ~ MVN(0, 02 T),
o ~1G(a,,,b,,).

In figure 5.6, the first plot shows 95% CI interval and posterior mean estimation
for g(z); the second figure shows the posterior mean estimate of f(x) by MCMC.
The first plot shows that the log variance function g(x) decreases as x increases.
The spline function is based on 35 evenly spaced knots on the range of y;;. Latent
variables are updated by Metropolis-Hasting algorithm and Gibbs sampling. We

run 60000 iterations for MCMC with the first 10000 discarded as burin-in.
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CHAPTER 6

SUMMARY AND EXTENSIONS

In this chapter, section 6.1 discusses an extension of the deconvolution prob-
lem which relaxes the parametric assumption of measurement error; section 6.2

summarizes the thesis.

6.1 Extension to Nonparametric Measurement error

This section considers an extension of the deconvolution problem, where the

distribution of measurement error is unknown. The problem is formulated as
Yij = i+, t=1,---,n, g=1,---,m; (6.1)
where {y;;}7", are repeated measurements for x;, z; K f(x), Wij " f.(u). Both

fz and f, are unknown, the density of interest is f,.

6.1.1 Model specification

Yij =T tuy, 1=1,2,...,n, j=1,...,my

where z; < f.(-), u; ~ fu(-), fu(-) has mean zero. We specify f, and f, by mix-

ture of normals: f,(z) = EkK:’“l Tw kN (5 g g agﬁ,ﬁ), fulu) = 2221 Tu kN (U5 [ aivk).
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We use the method in [Bao and Hanson, 2016] to impose the mean zero constraint
on f,. Let ¢ "= N(0, 0Z) and choose L to be a K, x (K, — 1) matrix such that
the K, — 1 columns of L spans the space orthogonal to the vector of all ones 1k, ,
then fi, 1, = W;ilgc satisfy ZkK;‘l Tuklur = 0, Where l% denotes the kth row of L
and ¢ = ((1,(, -+ ,Ck,—1). The Bayesian hierarchical model can be specified as

follows:

iid. — . .
yijl.iﬂi,Cuij,C,ﬂ'u,O'il’l\/ N(’/T lT.Caaz )7221727"'7n7]:17"'7mi

uvcuij Cui] uvcuij

ii.d.

Ly | Cxia ¢z ~ (/"[’CC7Cz,L-7 0-32:70331.)

i

Co; | T2 ~" Categorical (Ta1s Tao2, s Tok,)
7, ~ Dirichlet (o, /Ky, /Ky, -+ o/ Ky)
¢x,c i"i\‘?' ./\/-Ig (,ua:,[): )\:):,07 796,07 ﬁx,O)

i.i.d. .
m, ~ Categorical (Ty 1, Tu2, ", TuK,)

Cuyj
7, ~ Dirichlet (o, /Ky, /Ky, -+ o/ Ky)
G NN (0,09)
ook "X IG (Yu, Buo)
(6.2)
where ¢, (1 may be z; or w;;) denotes the cluster from which 7 is drawn. ¢,. =

(Um,m Ug,c)'

6.1.2 Variational approximation approach

Let 0 = {x,¢,;, p,, s, Cy,C, ™y, 02} denote the collection of all hidden vari-

ables in the model and assume ¢(@) can be factorized into

q(0) = q(x)q(c)q(¢,)a(m)q(cu)q(¢)g(my)q(a?). The conditional posterior p(6;]y, 6_;)

has close form for all §; € 6\, therefore g; (0;) can be updated by formula (3.4)
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for all §; € 8\m,. For ¢(m,), we restrict it to be a Dirichlet density

F(&q(m)) ﬂ_o‘q(wu,m_l
Ky u,k
[T Dlagr, )

and update {aq(ﬂuyk)}ﬁil by Newton-Ralphon’s method:

q7ru (Tru) ) wh’ere dq(ﬂ'u) = Zaq(ﬂ-u,k) (63)

Q) = ATBINAX 01,0, €200 OB LY 0) (6.4)

Algorithm 11 (Variational approximation algorithm for nonparametric error).

Initialize: o), Moo, ) € Ro050 M(es) Aai) Baton i) win > 0 for k =
1,....K;,, 1=1,....n, j=1,...,m; such that ZkK:1Wik =1 for alli; ¢ € RE«~!
and Ay o2 ), a(02 ) Pigk fork=1....K,, i=1,...,n, j=1,...,m; such that
Zk 1 Pije =1 foralli,j.

Repeat the following steps until the increase in logp(y;q) is negligible:

K - ~ —1
~ ra) — 1 ) —2) Ao Iy
EC — (Z (QQ( u) )(O‘Q( u) ) q( u,k) p7klklz; + K, 1)

— (g i) = D (Qg(ms) = 2) Batop) of

. O[ T 1 A(Uu )
0 )
q(mu k) — q

k=1 =1 j=1

Fori=1,....n

Agoz,)

< 5 Aoy |
2 P,k
Tg(ai) {Z B Pi-k T Z B Wik}

=1 9 k) 1 Paldar)

Ku A

m; ~ K.
402 1) < Gig(r,) ~ Ag(oa0)
Ha(w) € (e {Z 5o D P (y“ - aq—l’“ ”C> D By e

k=1 a(oh ) =1 —1 —4(Pak)

Fori=1,...nandk=1,... K,:

1 1 1 Ag(gan)
Vie = =5 l09Bu0 + 5V Aaez) ~ 5 B’ (Kt = Hatoe)” + Ogta)
1
_ (o
2/\q(¢x,k) " (O“I( I’k))
o pr(ﬂ'j,k)
Zl:l eXp(TijJ)
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Fori=1,....n,5=1,....m; andk=1,... K,:

_ 1 AQ(ou,k)

Byou ) (ygj = 2Yijba(es) T Myt T Taa)
q(gu,k)

1) (@g(r,) = 2)

1 1
Tigh 4= (g, ) = 5109Bgo2 ) + 5V (Ag(o2 )
Qgm) — 1 p (Qg(ra) —
=2Ysj = Hate) — gl +
T e = 1T (g —
exp(Tijx)
Pijk < K
S exp(Tij)

Fork=1,... K,:

n
W.p < E Wik
=1

Z?:l g (x;)Wik + )\CC,O/J’.Z‘,O
W.k + )\1‘,0

Hog(dar) €

)\Q((z)x,k) A w'k + )\.Z,O

B(pepl +3 )zk>
D) (gm, ) —2) F 00T

W.k
Agoun) € 5 + 1m0
B 1 - 2 (2 2 1/\ > 1 A 2
A(pap) 59“0 + 2 Zw’k (u(J(wi) + 0-11(551')) + 9 0,0 9 (w'k + 1’70) Fog(u i)
=1
Qy
Qg(m, i) €~ Wk T K.
Fork=1,...,K,:
Pk
Aq(aik) — T + Yu0
¢~ Qmy) =1 1
Bq(aik) < Buo + 5 Z Z (?JZQJ = 2YijHg(a;) T u?,m) + 02@) - QW% te(Yij — Mq(mﬂ) Pij.k
i=1 j=1 (T i
1 (G = DO —2) g
+ —pok B “ U (et + )l
27 (gt ) — D@ —2) 7T
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Update ay(r,) to O (e which mazimizes logp(y; q) with other parameters fized:

Ky n
1 alo? ,) Q (ma) —
ZOQE(Y;Q) = _52 { ZZ yw Hg(zy) pzyk 4 — 1lk:uC

2
k=1 qu i=1 j=1 Qy(mur)

(Qg(r) — D) (Gg(ra) — 2) T

+ Pk (MC,MT + Zg)lk
() = D@ —2) 5
+ Z (p k + T 1) \Ij(aq(m,k)) - (N + oy — dq(ﬂu)) \I}<5‘q(7ru))
Ku
+ ) logl (g, ) — logT (@g(r,)) + C
k=1
where C'is a function not containing ay(r, ) for allk =1,...  Ky. Q) > 2 for

alk=1,... K, .

Partial derivative of logp(y; q) with respect to cy(r, ) is given by:

vg(r,, 1) 2= Byo2 Qg

ol : K -2 n o m;
M:_EZ G { ZZQ?JU Mg (x;) pljt 1_11?

=1 j=1
200 (r,) — 3
(aq(wu t) 1)(C“q(7r ) 2

+ P )ltT(McugT + EC)lt}

n

U (Wuk)
et DI SR

i=1 j=1 (I(ﬂ'uk

(Qg(ma) — D (Qg(r) — 2)(20(m, ) — 3)
(Q(rar) = D2 () — 2)?

— Pk I (sl + Ec)lk}
Qi -
+ (ﬂ-,k + X aq(ﬂ'u,k)) \Il/(QQ(ﬂu,k)) - (n + oy — O‘q(ﬂu)) 4 (aq () ) +

where C" is a function which does not depend on ay(x, ,)-

6.1.3 A simulation example

We consider a target density which is a two-components normal mixture with

m = 0.5,m = 0.5, 41 = 0,us = 1.5,01 = 1,00 = 0.2. The measurement errors
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are from a two-components normal mixture with 7, = 7 = 0.5, 1 = —1, s =
1,01 = 09 = 0.5. We generated 100 simulated dataset of size n = 1000, m; = 5
and applied VA algorithm 11 on each dataset. The number of clusters was set at
K, =10 for f, and K, = 5 for f,,. We chose concentration parameter o, = a,, = .1
and hyper-prior parameters v,0 = Ayo = Boo = 0.1, pa0 = Doy i/ Yuo = 3,
Buo = 65/ (o — 1), where 67 = 77 S0 S % For VA algorithm
11, the loop continues to iterate until the increase in the lower bound of log marginal
likelihood log p(y; ¢) is less than 10~*.

In addition, we applied SVA algorithm 9 to the datasets by neglecting the non-
Gaussian pattern of the measurement error and assuming g.|x; ‘~ N (z;,1.25/5).
Figure 6.1 shows the density estimates by algorithm 11 and 9 corresponding to

1st,2nd and 3rd quartile of ISEs, respectively. VA algorithm 11 cannot catch the

two-mode shape and work worse than SVA algorithm 9.

Q1 of MISE Q2 of MISE Q3 of MISE

- true - -
-- VA
»»»»» SVA

(x)
f(x)
f(x)

Figure 6.1: Density estimates which correspond to quantiles of MISE

In VA algorithm 11, local hidden variables are {x,c,,c,}. Approximating the

posterior by p(0ly) ~ q(x)q(c.)q(d,)a(m.)q(c.)a(¢)a(m.)q(o?) leads to loss the
dependencies between x and c,, x and c,, which are supposed to be reason for loss

of accuracy.
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6.2 Summary

This thesis considered the problem of density estimation when the observations
are contaminated with measurement error and developed VA-type approaches to
this problem. This thesis had three achievements. First, it developed two varia-
tional approximation algorithms for Gaussian error deconvolution. Their perfor-
mances were compared to deconvoluting kernels and Monte Carlo Markov Chain
method by simulation experiments. A conjecture was proposed to explain why
two variational approximation algorithms for Gaussian error deconvolution perform
differently. Secondly, the thesis established a stochastic variational approximation
(SVA) approach to the Bayesian nonparametric model for Gaussian error deconvo-
lution. The SVA approach outperforms DK method and performs comparably well
with MCMC at faster speed. The SVA approach for Gaussian error deconvolution
was illustrated through simulation experiments and data from a physical activity
study.

Thirdly, this thesis also investigated VA approach for Laplacian error deconvo-
lution and extended VA to nonparametric error deconvolution. Simulation exper-
iments showed that DK method performs comparably well with MCMC method
for Laplacian error deconvolution. Simulation experiments suggested that breaking
dependencies between local hidden variables leads to loss to accuracy in variational
inference. It provided an explanation for the fact that the accuracy of VA approach
for Gaussian error deconvolution was not achieved for Laplacian or nonparametric
error deconvolution. Potential extensions of this thesis would be investigating suf-
ficient and necessary conditions in theory to obtain consistency of VA algorithms

for the deconvolution problem.
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APPENDIX A

DERIVATION OF VARIATIONAL APPROXIMATION

ALGORITHMS

In this chapter, we derived VA algorithm A and B for Gaussian error deconvo-

lution, VA algorithms for Laplacian and Nonparametric error.

Gaussian or Laplacian measurement error with known vari-
ance.
VA Algorithm A

According to model 3.2, the joint distribution of (y,x, c, 7, ¢) is given by

logp(y7 X,Cc,m, d)‘aa Ho, )\07 Yo, 50)

= logp(y|x,02) + logp(x|c, @) + logp(c|m) + logp(w|a) + logp(e| o, Mo, Y0, Bo)

~ oealyle.o?) + 35 { ~Floatznad) - L) + 305 il ()

i=1 k=1 =1 k=1

K
« «
+ logl'(a) — KlogF(E) + (E —1) ; logmy, + Kvologfy — KlogI' (7o)
= Bo 1 ot = n)?
0 ol Mk — Mo
+ Z {—(% + 1)log(o}) — 0_13 - §log(27m,%/)\0) — T} (A.1)
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If f,, is a Gaussian distribution, the optimal density a5, (0;) o< exp{E_g,logp(y,0)},

0, € {x,c,m, ¢} are in the same exponential family as the prior of §; due to

conjugacy of the model. Following is the derivation for q;j (6).

Table A.1: Conditional expectations to be evaluated in g¢,(n)*

n || prior 4,(n) conditional expectations in g, (n)
zi | N(2; pie,, 02) N5 105005 Taleny) E_« 2,E Or(ci)

¢ || Cat(e; 7r1, 7r2, cmr) | Cat(eg; wiy, wiy, -+, wik) _Clogak, E_ w E_clogmy
m || Dir(m; &, %, , %) Dir(m; Wy 10 V()20 ,a;(w),K) E_.0k(¢)

Or|| NZG(d; tos Mos 70, Bo) | NZG (s NZ(%): )\;(¢k)77;(¢k)?5;(¢k>)E*@10ggg7E ¢(z M) E_g0k(ci)

Table A.2: Values of conditional expectations

Conditional Expectation Value
xg2 Agor)/ Bator)
E—cloggka ¢>10ng IOgBQ(¢k) - \Ij(Aq(m))
L (a0 = 1a060)* + 72y ) Aaton/ Baton) + 1/ Maton
E_clogmy, W (ag(m.e) = V(e gim)
E_r0k(ci), E_pdk(cs) Wik
E—¢% (020 + My = 2HaGeo b + 13) /0%

e Derivation of ¢} (x)

¢ (x) x exp{E_,logp(y,x,c,m, @)}

ocexp{ ZZ
ey

7)?

202 )

<——log (2mo?) — (s —

=1 k=1
¢k)”q<¢k>wlk
—~ 1/1 Ag(prywik + Zk’ 1 By(sr)
X exp 5 |\t —F Ti—
2 \ o2 B ‘ K Aqwk)%k
i=1 u Q(¢k) 2 “I— Z

q((Pk)

oc [ [NV (@3 t1qe)s o)

=1
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where

K ! K M
0'2 = % —+ E w g(zs) = + Z By(sp)
i) ) q(x; 1 ;
" & k=1 Byr) + ZK qwk:; k
k

e Derivation of q;@(q&)

qz;)(d)) X €xp {E—¢10gp(Y7 x,c,m, d))}

K n
1 Ti — pig)?
wen{B0 3 (3 (<ot - 2 e
k=1 =1

1 2 Ao (Mk - ,UO)2 Bo 9
_§log0k - T - _13 — (70 + 1)logoy;
K " )
wx + Ao ( D i Motz Wit + )\o,uo) <wk +1 ) ,
e 952 - ; - + v + 1) logo
g {kz:; 207, o Wk Ao 2 0 k
1 - 2 2 ]- 2 1 2 ]_
_ (50 + 3 Zwik (,Uq(xi) + Uq(:vi)) + §A0u0 3 (wr + No) Ha(or) 0_,%
i=1
(A.3)
K
X HNIQ(G%; Faén)» M) Aaton) Baon) (A.4)
where
* _ Z?:l Pz Wik + Aofo
Fg(pr) =

Wek+Xo

Agor) = Wk + Ao

* W.k
A qlér) — B + %
1

5 (@1 M) Ky

1 2
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e Derivation of ¢(c)

qz (C) X €xp {E—clogp(Y> x,Cc,m, ¢)}

n K
1 1 (2 — pg)?
o exp {E »3 <_§1Og02 - 5% ' Wk) 5k<ci>}

x H Categorical (¢;; wiy, Wiy, - - -, Wik) (A.5)

i=1
where
. exp(va)
ik — <k, <
Ellil exp (Vi)
1 Ag(gr)

1 1 s
Vi = ~g108Buon + 5V Aep) = 35 ((Hateo) = Hat)” + 04(z,))

1
2/\Q(¢k)

+ U(agm,r)
fort=1,2...,nand k=1,2..., K. Digamma function is denoted by W.
e Derivation of ¢* ()
Q;(ﬂ-) X €exXp {E—Tflogp(y7 x,C,m, d))}
K n a
X exp {E_ﬂ- Z ((Z 5k(c,~)) + T 1) logﬂk}
k=1 i=1

K (&3
wirt+e—1
o' | |7rk K
k=1

o Dirichlet (7r; V()15 Qg(m) 20 - - - 7a:;(7r),k) (A.6)

where Wy s = Wt T wfork=1,2,... K.
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If f, is Laplacian density, the optimal density ¢,(x) o exp{E_,logp(y,0)} does
not have closed form. We restrict g,,(z;) to be normal distributions with mean
[q(z;) and standard deviation o4,y and update (ig(z,), 02(%_)) by Newton-Ralphson’s
method:

(Hatar) Oafeyy) 4= A18MAX 4, er log p(y; q) (A7)

oy R
The coordinate decent algorithm cyclically iterates to update each variational

parameter until the increase of the Evidence Lower Bound (ELBO) is less than the

threshold. The ELBO can be found by

logp(y; ¢) = Entropy{q(x)} + Entropy{q(¢)} + Entropy{q(c)} + Entropy{q(7)}
+ E{logp(y|x,02)} + E{logp(x|c, )} + E{logp(c|m)} + E{logp(m|a)}

+ E{logp(@|1t0: Ao, Y0, Bo) } (A.8)

The explicit expression for each term is given by

n U
Entropy{q(x)} = §log(27r) t5t3 Z 10g(072,)) (A.9)
i=1

K K & 1 3
Entropy{q(¢)} = log(2m) + = + > —5108(A0) + Agan) + 5108(Byian)

k=1
3
HOBT (o) = (Ao + ¥ Ay} (A10)
n K
Entropy{q(c) Z wirlogwir, (A.11)
i=1 k=1

=1

—(Oéq(mc) — 1) (\Ij Oéq(ﬂk — (Z gy 7rk)))) (A12)
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n

N 1 -
E{logp(y|x,03)} = —5108;(2703) ~ 52 DD (i = tgwn)® +0oy)  (ALL3)
u =1 =1

where N = 3"  my, if f, is a Gaussian distribution.

Nlog(2h) 1 <~
E{logp(y|x,07)} = —# 3 DO ouzis (28(2i;) — 1) + 26(=i5)
i=1 j=1

(A.14)

where b = ¢, /v/2 and 2ij = % if f, is a Laplacian distribution.

n 5w 1
&
Elogp(x|c, ¢)} = —7log(27) — > - (10g(3q<¢>k>) = U(Age0) + 5 )
k=1 q(bx)
n K ka
{ Pr)
- Z Z XL (MQ(M) - 'U"I(¢k))2 + Ug(mi)) (A'15)
i=1 k=1
K
E{logp(c|m)} =) " wi¥(aym,)) — n¥(a+n) (A.16)
k=1
K
a o
E{logp(m|a)} =logl’ (o) — KlogI’ (%) +(K—a)¥Y(a+m)+ Z (E — 1) U (tg(my))
k=1

(A.17)

Bl o0 0) - —51og<2w> + S log(h) + Kolog(fo) — Klog(T'(0))

q(or) 2ﬂ0)
_ _l’_ -
{2>\q (%) 23 a(ér) <(Mq(¢’“) fo) Ao

+ (;’ #0) (toe(Bey) — W) (19
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VA Algorithm B

The logarithm of the joint distribution of ¢, , p,, ts and y is,

logp(Y7 C,m, /J'qba t¢|Oé, Ho, )\07 Qp, b07 0-3)

= logp(ylc, py: o, 07,) + logp(c|m) + logp(m|a) + logp(pey[t, 1o, Ao, 07) + logp(ta, co)

- Z Z {_%bg(?WUi/%k) - t¢,k(yz‘2;2,u¢,k)2 } Or(c) + Z Z Ok (¢;)log(my)

i=1 k=1 i=1 k=1
a a -
+ logl'(a) — Klogf(?) + (? - 1) ; logmy + Kaglogey — Klogl'(ag)

K

— Klog(Fy(1;a0,¢0)) + Y _{(ag — Dlog(tsr) — cotyr—
k=1

1 2ro? Mot k(Lo g — 1o)?

=1 |- : : A.19

where F(x;a,c) represent the cumulative distribution function of gamma ran-

dom variable X ~ G(a,c):

X Ca
F,(x;a,c :/ t*lexp (—ct)dt, x>0 A.20
a0 = [ st (-a) (4.20)

Since p(m|a), p(c|mw) and p(pey, ts|po, Ao, ao, co) are conjugate priors, the optimal
density gz(c), gr(m) and gj(¢) can be derived by g5 (6;) < exp{E_g;logp(y, )}
For concision of the notations, we omit the known parameters {02, a, 110, Ao, @o, Co }

in the derivation. Assume X is a truncated Gamma random variable X ~ T7G((0,1]; a, ¢),a >
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0,c > 0, the following results of X will be used in the derivation:

1 cd aF (1. a -+ 1 C)
ElX _ . ’ | |
[(Xa, c] /0 T(a)F,(1; a,c)t exp (—ct) dt = Filad (A21)
1 a
_ c - )
EllogXla, ] = /0 T(a)F,(1;a,c) log(t)t* 'exp (—ct) dt (A.22)
c® o ! -
- F(G)Fg(l;a,c)%/o t*exp (—ct) dt
_ c® I 1 [(a+6)Fy(1;a+9,c) B I(a)F,(1;a,c)
T T(a)F,(L;a,c) 5200 v, !

(A.23)

e Derivation of ¢}(¢)

() o exp {E—¢10gp(y, C, T, fhy, ty) }
o 2
X exp{ ¢Z (Z ( log(tsr) — t¢,k<91202u¢,k) > Ok (ci)

1 2o Mt _ 2
+(ap — 1)log(tg ) — cotyr — =log < T ) _ 70 6.6 (Hok — Ho) ) }

2 )\0t¢7k 20’5
K n 2
tor(Wr + Ao) S yiwik + Aoko
X exp {Z T 92 Mok — D
k=1 u ‘k+XAo

wr+1
— ( k2 + ag — 1) log(t(p,k)

1
L (S~ s ) ) |

=1

2

Uu
M(f)kmuq (o1)7 )\* o)
9\ Pk

®
— >
=
N o

) X TG(tor; (0,1]; As)s Coton))

(A.24)
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where

Z?zl Yiwik + Aoflo
W-k+Xo

u;(¢k) -

Ad(gr) = Wik + Ao

. Wk
a(dr) — 7

* 1 .
Cq(d,k) =+ ﬁ <Z wz’k!/? + )\OM(ZJ - (W-k + )\0) u§(¢k)>

w i=1

+ ag

e Derivation of ¢(c)

q;(c) o exp {EfCIng(y, C, ™, py, ty) }

 tor(yi — por)?
X exp Z Z log tok) 572 + logmy, | 0k (¢;)

i=1 k=1 u

n K
1 1
X H €xXp {Z (QE[log<t¢ k)|A (or)» C, (¢k)] 2 [t¢ /f|A (pr)s OQ(cbk)](yi - MQ(fbk))Q

k=1

1
- + \I/(Oé (7),k > (Sk CZ }
2/\¢I(¢k) !
x H Categorical (¢;; Wy, wi, . .., wix) (A.25)
i=1
where
. exp(vi)
Wik = &K\
> =1 exp (Vi)
L1 1
Vie = 5 El08(to )| Aasn)s Caon] = 55 Bllor| Aawns Caton) (Ui = Haon)”
! + U( )
2Xq(0) wn

fori=1,2...,nand k=1,2... K.
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e Derivation of ¢f ()

qi(m) x exp{E_gxlogp(y,x,c, 7, ¢)}

x eXp{E_ﬂ-kZi ((Z(Sk (¢; ) +— - 1) logﬂk}

K .,
x H mo TR
k=1
o Dirichlet (7r; V()15 Ag() 20 - - - >O‘Z(7r),k;) (A.26)
where o ) =wg + & for k=1,2,..., K.

The lower bound on the log marginal likelihood is given by

logp(y; q) =Entropy{qs(¢)} + Entropy{q(c)} + Entropy{q(m)} + E{logp(y|c, p,, t)}

+ E{logp(c|m)} + E{logp(w|a)} + E{logp(¢| 10, Ao, o, o)} (A.27)

The explicit forms of the terms in (A.27) are given by

K
N 1
E{logp(y|c, py, t)} = —glog(%mi) +3 > wiBllog(tsr)| Agse): Caen)

k=1
Blto.lAgon, Caton] S~ < ( Wk )
— Hg( wzk -
207, ; z:; o) 2Aq(61)
(A.28)
K
E{logp(c|m)} = Z WY (agery) — n¥(a +n) (A.29)
k=1
a "
E{logp(m|a)} =logl’ (o) — KlogI’ <?> +(K—a)¥(a+n)+ Z <? - 1) U(ag(my))
k=1
(A.30)
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K
E{logp(e|10, Mo, ao, co)} = —3log(27r03/)\0) + Kaglog(cy) — Klogl'(ag) — K Fy(1; ao, co)

Ao Ao
+ = Z { log t¢k |A (Px)» C q(¢ )] - ;E[t¢,k|AQ(¢k)7 CQ(¢k)](MQ(¢k) - MO)Q - >\q(¢ ) }
2 k

K
(ap — 1) ZElog o) | Ag(er) Caton)] ZCOE okl Agor)> Caton)]
k=1

k=1

(A.31)

K
K K 1
Entropy{q(¢)} = 510g(27ﬂ73) +o+ > {—510»?;(%(%)) + Fy(1; Agon)s Caton)
k=1

- AZ(zz)k)lOg(CtI(d)k)) + logF(AQ(d)k)) + CQ(¢k)E[t¢7k|AQ(¢k)’ CQ(¢k)]

1
- (Aq(m) - 5) Ellog(tsr)| Agsr)s quk)]} (A.32)
n K
Entropy{q(c) Z wirlogwir (A.33)
i=1 k=1

Entropy{q(m)} = —logl'(a + n) + Z (logl (atg(my)) — (tgemy) — 1) (¥ (tg(ry)) — ¥(a + 1))

(A.34)
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Gaussian or Laplacian measurement error with unknown

variance.

e Derivation for ¢%, (02) if measurement error is Gaussian.
u

ng(ai)

X €exXp {E,UZIng(y, X,C, T, ¢7 Ui)}

e 1 ij — i)’ o
X exp {E_Ug (Z Z (—Elog(%mi) — %) - % — (Vo2 + 1)log03> }
i=1 j=1 u
N
X exp {— o2 + 5 + 1) log(c?)

3 1
Z Z yl] 2“‘1(% Yij H’q(x ) + 0 ) + 502 O'_
7=1

=1

SN
——

x IG(oy; Alo2): B;(ag)) (A.35)
where

. N
Adoz) = Yoz + 3

By = ZZ%J 2btateYis + Hy(a) + Taten) T Bt

11]1

e Derivation for g;(b) if measurement error is Laplacian.

g, (b)

X exp {E—blogp(y7 X,C,m, ¢7 b)}

ocexp{ (lel( log(20) —W) —%—(%—l—l)logb)}
i=1 j

n

o< exp {— (7 + 1+ 1) log(b) — (Z Z Oq(ar) (235 (28(255) — 1) + 20(245)) + 5b>

i=1 j=1

S =

}
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Yij—Hq(x,
where z;; = —L—12)

9q(z;)

Ay =+ N

n

By =D Og(ay (215 (2B (21) — 1) + 26(235)) + B

i=1 j=1

Nonparametric measurement error

According to the model specification in section 4.1, the joint distribution of

(y, X,Cyp, Ty, ¢x? Cuy Ty, C? Ui) is

logp<Y7 X7 c:EJ 7T:E7 ¢g;7 CU7 7TU7 C7 Ui’awa ,uw,o’ >\x,07 ,71',07 /BLB,()’ Oéu, 7&,07 6114,07 U?)
= logp(y|x, cu, Tu, €. 07) + logp(x|e,, @,) + logp(c,|m,) + logp(,|a,)

+108p(@,|112,0, A2.0: V2,05 Br0) + logp(cu|my) + logp(m,|an,) 4 logp(¢|o?)

+logp(74,0: Buo)

-1

no 2 i~ T T, k€
—ZZZ{——log (270l ) — v )}5k(cuij)

202
i=1 j=1 k=1 u,k

+§:Z{ %og 2mo? k)—( ka }5k Cz;) —i—iZ(Sk (€z;)log(my k)

=1 k=1

K
oy oy
+ logl' () — K, log (E) + (E — 1) ; logmy k + KoYz 0loghs 0 — Kplogl(7.0)

(Yoo + Dlogo? ;. — @ _ llog (27“792%) _ A0 (ot — Mm,0)2}
z .,k

{ 0-323714: 2 )\IB,O 20.5’]{:
n m; Ky .
+ Z Z Z Ok (Cu;; )log(mu k) + logl () — KUIOgF(?i)
i=1 j=1 k=1
o Ko i
+ (?u — 1) log(ﬂ'u,k) + Ku'.)/u,olOgﬁu,O - KulOgF()\uyo) - 7“10,2;(270?)
“ k=1
o ¢ os [ Buo
k u, )
= {02 et 1>1°g"””f} (A.37)
k=1 k=1 u,
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The optimal densitiy g; (6;) o

rived as follows.

e Derivation of ¢%(x)

gx(x) oc exp {E_,log p(y, 0)}

Tl €)?

exp{E_g,logp(y,0)} for 0; € 8\m, can be de-

ol S5

5k(cuij)

n m; Ku )
o exXp Z ZZ_MPi'k 552—2231' yi-—a‘](—_lkﬂ
J j 2B (Uik) " J qu(wu B — ¢

x HN(%, Hq(z;)> 03(%‘))

i=1
where

A

UZ(M) = {Z ym,k + Z

Hq(zi) = 0’3(@-) {Z "o Zp”k (yu

k=1 qu.k

e Derivation of ¢} (c;)

qe, (cg) < exp {E_c,logp(y, 0)}

Ku Ke -1
o’ AQ(¢z,k)
Wik
k=1 4(0% 1) i Batse

(7ru k) o

(A.38)
K.
— ) + L iteba(s)
1 C ; Bq(¢z k !

e 3 3 . e L)

i=1 k=1 ,k
- K 1 1
o [Jexp< D —5108B4(0,.1) + 5V (Ag(..0))
=1 k=1
1 Aq(¢ k) 2 2 1
) (1) — ) - V(g ) ) Ok(C,
2 Bt s (K@) = Hator )" + 0am) = 5 Mo + U(ay(r, ) | Orlcs)
x H Categorical (c;; wiy, Wiy, - . ., Wik, ) (A.39)
=1
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where

o exp(Vix)

E j
' leixl exp (Vi)

X 1 1 Agur)
l%:—?%&@m+gwmwh _iamm

(@) — Hatéo)” + Taan)

1
2A‘1(¢m,k)

+ \I](QQ(WCL‘,IC))
e Derivation of ¢ (m,)

4y, (ms) < exp {E_zx logp(y,0)}

X exp {E_ﬂ'x z“”: ((i 5143(0;@)) + % - 1) 10g7Tz,k}

k=1 i=1
x 1_[7(,]6'}C Ka
k=1
o Dirichlet <7rx; Vg 1) Vglmaa)s - - ,a;(ﬂ17k)> (A.40)
where O‘z(wz,k) =wp+ ¢ for k=1,2,...  K,.
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e Derivation of ¢} (¢,)

*

a5, (¢,) o< exp{E_y,logp(y, 0)}

K, n
T 1 Ti — [y 2
X exp {Em E < E (—ilogaik - w) ox(ca,)

2
k=1 \i=1 20%’9
1 )\xﬂ(ﬂxk_,uxﬂ>2 6{1}0
| 2 _ =z ) ) 2 1 2
2 Og0$,k 20_:3’k O_{ik (’y ,0 + ) OgO’ka
K Wi+ Az0 > i Ha(e)Wik Az 0lhe,0 ?
X exp Z T o052 Mz ke —
1 Ux,k w.k+>\170

1
— < 5 + Yz0 + 1) 10g0926,k

1 1 1
<ﬁx0 + 3z szk Mq )+ o) alz )) + 5)\x,oﬂi,0 3 (W + o) MZ(%)) U—%}

x H NIG(ba ks s, ) Aat6e) Adoer) Batons)) (A.41)
k=1

where

Z?:1 Ha(zs) Wik + Ax,oux,o

w'k+)\z,0

Hg(6, 1) =
)\Z(%,k) =wg + )\5’3’0

. Wk
G(ber) = 5 T Vw0

1 1
¢x ) ﬁm(} + = szk qu + O' q(z; ) + 5)‘96,0#:25,0 - 5 (w'k + )\170) Mg(d)x,k)
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e Derivation of ¢} (c,)

qe, (cu) ocexp{E_¢ logp(y,0)}

o 1 (yij — i — 7 1 17 C)?
X exp {Ecu Z Z Z (——logau ET 5 d 207, ’ +logmy s | Ox(cuy,)

i=1 j=1 k=1
= 1 1
X H H exXp Z aq(ﬂ'uvk)) - §long(UZ,k) + §\D(AQ(Ui,k))
=1 j5=1
1A (0w k) &q( ) L 7
“ 9 Bq(o‘ R (y - Qywluq(xz) + Nq( 3) + 02 q(zs) — 2(3/z‘j - qu(xi)) o) — 1lk e
(Agr) = D(Or) =2) 7, 7
+ - - e (epe + 20 | ) Or(cuyy)
(g, ) — D (Qg(m, ) —2) F ¢ ’
x H H Categorical (cy,; Pijas Pijas- - ,p;‘j’Ku) (A.42)
i=1 j=1
P exp(7ijx)
ik —
Zl 1€Xp(7'”l)
1 1
Tijk = ( a(mu)) — B Ong(o— s §W(Aq(ai’k))

u,k)
Tuk)

O[ (7ru) (dQ(Wu) - 1)(&Q(7Tu) - 2) T T
—2(Yij — Ma(as )—q I e + L (el + )l
- © 7 (g — D0,y —2) F ¢

2 2
Yii = 2Wijhaes) + Myt T Tata
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e Derivation of ¢}(¢)

4:(¢) > exp {E_Clogmy, o)}

o yz] Ty — T llclgcy 1 g l%
x exp E CZZZ_ - Or(cu;) — = Z

2
i=1 j=1 k=1 Jf 2k=104
K n -1
1 p-. klk IK _1 Tru,k
con{r ¢ e (300 293109) SURREIN AT
uk k=1 \i=1 j=1 u,k
Ko - ~
1.7 - (aq(m) - 1)(aq(ﬂ'u) —2) Aq(Uu k) r o Ik,-1
x expq —5¢ =p. kbl +—5 ¢
{ 2 (Z;@wmm—lﬂ%mmr—ﬂmew b
Ky n o m;
(m) = 1 Ag(on) 1
+ (Yig = M) Pij % ¢
“<;i1 TP a1 — 1 Byiou )
x MVN(C: i, 55) (A.43)

K ~ ~ -1
- Tw) 1 Tw) 2 A o I _
EZ — ( (aq( u) )(aq( u) ) Q( u,k) pklkl% _'_ Ky 1)

— (g, ) = 1) (@Qm) = 2) Ba(our) o¢
K, n my
* * aq(ﬂ'u) - 1 AQ(Uu,k)
pe =X (yij — (:vz))pz k U
‘ ‘ ; i=1 j=1 ! ! 8 Qg(m, i) — 1 Byoun)
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e Derivation of ¢*,(o2)

K n m 19T ~\2
- - I (Yij — 2 — 7, 10, €)

X exp {EJ2 . ' Z <—§logau . 207, Ok (Cz;)

k=1 i=1 j=1
_Bgo — (Yuo + 1)10g03,k}
O-u,k

Pk 4 o + 1) logo?, — ——( 3

& H exp < Yu,0 80wk 037,g 0

Qg(mry)
+35 Z Z (yzj 2YijHq(z;) T '“q( o T o a(z) — Q—Zk pie(Yij — Mq(wi))) Pij,k

i=1 j=1 a‘](ﬂu,k) - 1

1 (dq(ﬂu) - 1)(dq(7ru) - 2) T T
TPk b (Bepe + )l
2 (Oéq(ﬂ—u,k) - 1)<Oéq(7ru,k) - 2) ¥ ¢ ¢

Ky

< [[Z6(0% s Az Bria ) (A.44)
k=1 ’

where

Bz y) = Buo + 3 ZZ Yii = 2YijHa(e) + Moty T Taay)

=1 j:1
Q
_2 q(ﬂ-u l ’ | ;
) — 1’”‘<<y1 ”qw))m,k
1 o Tu _1 & T —2
+ =p (Gg(r) ) (@) )

1T AN 38/
5 ok (Oéq(wu,k) — 1)(@(1(%0 — 2) k (Hgﬂg C) k
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APPENDIX B

CONVERGENCE OF VARIATIONAL APPROXIMATION

ALGORITHMS

This chapter proves that the variational approximation algorithms developed in

this thesis converge to local optima.

Convergence of the variational approximation algorithms for
Gaussian and Laplacian error distributions

In this section we show that the variational approximation method for Laplacian
error with unknown variance is convergent. The proofs of the convergence results

of variational approximation algorithms A and B for Gaussian error are similar to

the one we give here.
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The objective function is

logp(y; q) = Entropy{q(x)} + Entropy{q(¢)} + Entropy{q(c)} + Entropy{q(m)}
+ Entropy{q(b)} + E{logf.(y —x(b)} + E{logp(x|c, ¢)} + E{logp(c|m)} + E{logp(|a)}
+ E{logp(e| 10, Mo, 70, 5o) }

_ _lg@N N K (N + 7 + 1) (log(By)) — ¥(Aq)))

2 2 2
Ao
S5+
i=1 j=1
K n AR
, Ao Ag(on)
+3 { 5 2 Wit (95 + (e = taton)’) = T (Hator) = H0)” = Bo+ Bq“”“)} BZ(¢:>
k=1 i=1

+ i { (J% - 70> 10g(By(n)) + (% +70 — Aqwk)) ‘P(Aqwk))}

K
« wr+ A 1
+> { (w t T O‘q(frk)) U (atg(my)) + 08I (Ag(ey)) + logl (g(ry)) — - —10g(/\q<¢k))}

l0go? . Z Z wirlogwir, + Agwy + log(Bywy) + logl'(Agw)) — (14 Agw)) ¥ (Aqw))

i=1 i=1 k=1

K
— KlogI’ (%) + logl'(a) + Elog)\o + KyologBy — KlogI'(7o) — logl' (v + n)

+ ylog3, — logl (1) (B.1)

subject to the constraint Zle wir = 1 for e = 1,--- ,n. The parameters updated

in each iteration are

£= ({(Mq(mnﬁﬁ(m)}izl,{(#qwk),)\q(m)w‘l< 50 Bato) Y - ok,

{aq(ﬂk }5—1  (Ag), Bqo )), if we divide them into Np=3 blocks & = {(Mq(mi), a§($,))} ,
7 ) i=1

K K
= {wi} i o & = <{(Mq 0 Aa(60)s Agton)s Baon) oy {0 Yoy » (Ao Bay) )

then parameters in the same block can be updated simultaneously in each iteration.

n

N———

Our maximization methods can be rewritten as the following iteration:

&t =arg  max logp(y;q,&",
T€domain(§;)

G T 6y (B2)
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[Grippo and Sciandrone, 2000] shows that the sequence {(5{, e ,{fVB)} generated
by the method is convergent to a local maxima if the objective function is com-
ponentwise strictly quasiconcave with respect to Ng — 2 components. To prove
the convergence results for our variational approximation method, we only need
to show that logp(y;q) is strictly quasiconcave with respect to §. With the con-
straint szzl wip = 1 for ¢ = 1,--- n, there are n(K — 1) free parameters in
&, denoted by & = {%k}l 1, k 1. Since ;illof—gg;z = 0 for 7; # i, the objec-

tion function logp(y;¢) is strictly concave with respect to & if and only if it is

strictly concave with respect to 52(1-), where ég( = {wi 1 il L. Next we show that
2 .

w is a negative definite matrix. Noting that % =1 ___1
£2(1) i Wik 1=3700 wik

0*1ogp(yiq) 82logp(y;q)
W: Wforl<kl<[(—landk‘7ﬁls 65%7(1.) =
—diag(wﬂ, cee ,wi,K,l) — 121(—7119:][(717 where JK,1 1S a (K— 1) X (K— 1) matrix

T 2ik=1 Wi
2 .
of ones. For any nonzero vector v with length K — 1, we have vT%v =
2(4)

Zk 1 wlkvk ZK T, (Zk 1Uk) < 0Owhenw;, >0forallk=1,---, K, which

a2logp(y; q)

indicates that 582,

is negative definite.

Convergence of the variational approximation algorithms for

nonparametric error distributions

The objective function is

logp(y; ¢) = Entropy{q(x)} + Entropy{q(¢,)} + Entropy{q(c.)} + Entropy{q(.)}
+ Entropy{q(¢)} + Entropy{g(c¢)} + Entropy{g(c.)} + Entropy{q(m.)}
+ E{logp<Y‘X7 Cus T, Ui)} + E{logp(x\cm ¢x)} + E{logp(qumx,o, )\x,Ov V,0, 593,0)}

+ E{logp(c:|m.)} + E{logp(ma|as)} + E{logp(cu|my)} + Eflogp(m|on)}
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+ E{logp(¢lo?)} + E{logp(os |70, Buo)}

Ky

= —glog(%r) + 5 + ; <—7 - %70> log(By(s,.))

K Ky
Pk W.k
+) (—7 - %p) log(Byo2 ,)) + > (7 + Va0 — Aq(asx,k)) U (Ag(gon))
k=1

Ky n
Pk
+ Z (7 + Yu,0 — Aq(ai’k)> a(@2 ) { (o2 ;) Bu 0

=1 klzlgl

) dQ(Wu)
q(ﬂu,k) - ]'

k @,
(QQ(M k) 1)(aq(7ru k) 2) e 1 Bo(g,0) et

5 T
<ym 2yl]/‘q(x1) + ,uq( 5) + Uq(:r ) 2(%’3‘ = Hg(x;) l E H¢

)\m,O
— B0 — = szk + (M) — :Uq(%,k))z) Ty (Mq(%,k) - ﬂx,O)Q}

Ky
1

Oy
+ { (w-k +t e %(wz,m) U (ag(r, ) +logl(ayr, 1)) + 10gF(Aq(¢z,k))}

k= x

K

o,
+> { (P--k + - aq(wu,k)) U(agir, ) + logl (qg(m, 1)) + 10gF(Aq(¢u,k>)}

k=1

<

+ (6‘q(7rz) —n+ ozx)\ll(d (m )) + (&q(wu) - N+ O‘u)‘lj(dq(w ) — 10gr<6‘q(7r ))

n Ky n mg
IOgF aq 7ru) Z zklongk - Z Z Z Pij, klogpw Tz Z loggq(z
i=1 k=1 i=1 j=1 k=1
K,—1 1 K, 1
- logog — 52 (uC pe +tr¥e) + 710g)\x0 + 210g(det(§3§))
z,0 + Wk 1
— + —log\
Z{ Doy 20 q(%’k)}

logT’ K,
+ logl'(av,) — og<K

T

> + 1Ogr(au) Kulog (&) + Kaﬂ/x,[)logﬁ:c,o

K,

— K logl'(v..0) + Kuyu0logBuo — Kulogl(7u,0) (B.3)

Let & denote the collection of all parameters contained in (B.3) and partition &
into Np = 5 blocks: § = {Nq(wi)v Uf,m)}i: {{wzk}z Lk= 1 APk ?:1’,’}21,[251}7
63 = {IJ’@ EC})
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Ky _
54 = {(Aq(ai,k)ﬂ Bq(Uin)k:l? (:U’Q(¢z,k)7 A‘I(d’z,k)’ AQ(¢z,k)7 B q(Pz.k) ) } 55 - {ﬂ-wu 7Tu}.

According to our estimation algorithm, the parameters in the same block can be

updated simultaneously in each iteration and the iterations can be represented by

5{5+1 t+1 t
i

=arg max lng(y q, €t+17"' 751 15T Qi1 " 755\[13)7 NB =5 <B4)

T€domain(&;)

According to the results of [Grippo and Sciandrone, 2000], convergence of the es-
timation algorithm can be established if logp(y; ¢) is componentwise strictly qua-
siconcave with respect to Ng — 2 = 3 blocks. For simplicity of notation, we let f

represent logp(y; ¢) in the following proofs.
Lemma 1. The function logp(y;q) is strictly concave with respect to ;.

Proof: Since

an B _i miAq(o2 ) i u)ZkAq(UZ ) <0
2
Fq(as) =1 Bq(‘fﬁ,k) k=1 Bq(afc k)
0 f _0
8%(@)503(@)
o? 1
5 f o = <0
8O-q(gc ) q(@:)
the function f is strictly concave with respect to (ftg(a,), ag(m)). Noting that ngq(z) =
Brin; 8)28]; = 5 aQan = 0 for all 7 # j, we conclude that f is strictly concave
@ q(zj) a(z;)” " a(zy)

with respect to &;.
Lemma 2. The function logp(y;q) is strictly concave with respect to &,.

Proof: Let w; = (w1, wig, -+ Wik, 1| fori=1,--- nand Pij = [pij1; Pijs =+ s pij,

fori = 1,---,n, j = 1,---,m;. According to (B.3) we have gJ—J = —wi_k —
ik 3

1 2f _ 2f

TSRO Bogdon = s ZK”_I o yfor 1 < kI < K,—1land k #1, so e

—diag(wi1, -+ ,Wik,—1) — Jr,—1, where Jg, 1 isa (K, — 1) x (K, — 1)

e
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matrix of ones. For any nonzero vector v with length K, — 1, we have vI'2 aw2v

— Y W} — — ZK — (Zk L) < 0 when wy, > 0 forall k =1, K,.

Therefore awf? is negative definite. Similarly we can derive that pf is also negative

definite. So f is strictly concave with respect to w; and p;; for alli =1,--- ,n and

j=1,---,m;. Noting the facts that L = 0 for 71 # 19, (%L =0
1171

11k18w12k2 j ,klapi2j2,k2

for (i1,71) # (i, jo) and az—f = 0 for all iy, 19, jo, k1, ko, we can conclude
Owiy ey OPig g ks

that f is strictly concave with respect to &.

Lemma 3. Let S¥ denote the set of all symmetric and positive definite matrices of

size K, then g : SK — R give by g(3) = log(det(X)) is a strictly concave function.
Proof:
§(t) = log(det(S + tX)) = D72 + log(det(I + X2 X072))

K
=¥r 4 Zlog(l + twy,)
k=1

where wy, are the eigenvalues of Y3 XY :. For any nonzero symmetric matrix X
such that ¥ + X € S%, [wy]i, is a nonzero vector, it follows that g(¢) is strictly

concave, thus g is strictly concave.
Lemma 4. The function logp(y;q) is strictly concave with respect to 3.

Proof: Since

Pf AP0 (Eym = DAy = 1), g 1
a 2 - _Z B A (& 1 lklk - _QIKu—l
F¢ k=1 (o2 ;) (QQ(Wu) - )(aq(wu) —1) O¢

v < 0 for all nonzero vector

where Ik, 1 is a identity matrix of size n. Since v 8‘9”2
v with length K, — 1, f is strictly concave with respect to p,.
According to (B.3), we can write f as f = Jlog(det,) + fgc, where fgC is a linear

function of ¥¢. By Lemma 3, f is strictly concave with respect to .
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Noting that ;Tf does not depend on ¥, and f is componentwise strictly concave
¢

with respect to p¢, ¢, we conclude that f is strictly concave with respect to 3.

By the results of Lemma 1,2 and 4, the estimation algorithm is convergent to at

least a local maximum.
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