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ABSTRACT

MODEL-BASED PREDICTIVE ANALYTICS FOR ADDITIVE AND SMART

MANUFACTURING

SEPTEMBER 2018

ZHUO YANG, B.S., BEIJING UNIVERSITY OF TECHNOLOGY

PhD., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sundar Krishnamurty

Qualification and certification for additive and smart manufacturing systems

can be uncertain and very costly. Using available historical data can mitigate some

costs of producing and testing sample parts. However, use of such data lacks the

flexibility to represent specific new problems which decreases predictive accuracy and

efficiency. To address these compelling needs, in this dissertation modeling techniques

are introduced that can proactively estimate results expected from additive and smart

manufacturing processes swiftly and with practical levels of accuracy and reliability.

More specifically, this research addresses the current challenges and limitations posed

by use of available data and the high costs of new data by tailoring statistics-based

metamodeling techniques to enable affordable prediction of these systems.

The result is an integrated approach to customize and build predictive meta-

models for the unique features of additive and smart manufacturing systems. This

integrated approach is composed of five main parts that cover the broad spectrum

of requirements. A domain-driven metamodeling approach uses physics-based knowl-

edge to optimally select the most appropriate metamodeling algorithm without re-

vii



liance upon statistical data. A maximum predictive error updating method iteratively

improves predictability from a given dataset. A grey-box metamodeling approach

combines statistics-based black-box and physics-based white-box models to signif-

icantly increase predictive accuracy with less expensive data overall. To improve

computational efficiency for large datasets, a dynamic metamodeling method modi-

fies the traditional Kriging technique to improve its efficiency and predictability for

smart manufacturing systems. Finally, a super-metamodeling method optimizes re-

sults regardless of problem conditions by avoiding the challenge with selecting the

most appropriate metamodeling algorithm.

To realize the benefits of all five approaches, an integrated metamodeling pro-

cess was developed and implemented into a tool package to systematically select the

suitable algorithm, sampling method, and combination of models. All the functions

of this tool package were validated and demonstrated by the use of two empirical

datasets from additive manufacturing processes.
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CHAPTER 1

INTRODUCTION

The English word manufacturing first appeared in 1683 and was derived from

the Latin term of manu factus, meaning made by hand[1]. Over thousands of years,

humans have produced products from a myriad of raw materials. Wood, stone, metal

or anything available to humans have been used to manufacture products. Manu-

facturing techniques improved gradually over thousands of years until the Industrial

Revolution began in England in the 1750s. Since then, the reliance on manual labor

has been rapidly replaced by machines, electrical devices and computers. In recent

decades, manufacturing became smarter. Since 2011, the term Industry 4.0 has been

used to represent the new age of manufacturing techniques, which is well known by its

alternative name of smart manufacturing. Smart manufacturing systems include new

technologies such as cyber-physical systems, the internet of things, cloud computing,

etc [2, 3, 4].

Behind the big picture of the manufacturing revolution, novel manufacturing

frontiers, such as advanced and additive manufacturing (AM), are replacing con-

ventional processes in many industries. AM, also well known as 3D Printing, has

overturned the conventional wisdom of traditional subtractive manufacturing. AM

gives designers numerous opportunities to produce parts with highly complex geom-

etry and/or functional material properties, which were previously near impossible to

produce.

However, challenges accompany these emerging capabilities. Engineers respon-
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sible for additive and smart manufacturing processes need to fully control the pro-

cesses, and at the very least predict the performance prior to production. Predictive

metamodels are widely used to solve manufacturing problems. Engineers can build

computer simulation and statistical models to estimate process parameters, prod-

uct quality, and manufacturing costs. A metamodel, which is a model of a model,

uses a black-box approach to estimate responses from a given complex system. A

typical metamodeling process includes data collection, sampling strategy, algorithm

selection, parameter optimization, and model validation. Predictive metamodeling

methods prescribed procedures and techniques, but some questions remain for these

current challenges. Can we solve a new problem using existing knowledge? How

can we choose the most appropriate technique based on any given conditions? How

should we improve traditional methods to use for specific domains? Can we develop

new methods that are suitable for additive and smart manufacturing scenarios?

Additive and smart manufacturing technology has evolved rapidly over the

past two decades. Thus, building traditional metamodels in these areas has many

challenges. Issues related to the unique features of additive and smart manufacturing

include not enough data, highly complex systems and large process uncertainty. This

dissertation focuses on developing novel metamodeling methods that can improve

model predictability while minimizing cost.

This dissertation will attempt to address the following key questions derived

in regard to the additive and smart manufacturing domains:

• How can all accessible information and techniques be integrated to improve

predictability?

• How can existing information be used more effectively to create more accurate

models at lower costs?

• How can physics-based knowledge and statistics-based information be com-

bined?
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• Can we modify traditional metamodeling methods to accommodate additive

and smart manufacturing features?

The rest of this dissertation is organized as follows. Chapter 2 reviews and

summarizes the relevant literature about additive and smart manufacturing. Chapter

3 introduces the common metamodeling techniques that are frequently employed in

this dissertation. These two chapters cover the background for this work. Chap-

ter 4 provides an overview of the metamodeling approaches developed in this work.

Chapters 5 through 9 introduce the approaches developed by this research to address

the questions posed above. Chapter 10 introduces an algorithm that integrates these

metamodeling methods for applicable use. A case study that uses metal additive

manufacturing data is presented in this chapter to demonstrate the ease and bene-

fits of using this integrated approach and associated tool package. The last chapter

summarizes the dissertation and discusses the potential future works.
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CHAPTER 2

ADDITIVE AND SMART MANUFACTURING

Smart manufacturing system (SMS) are defined by the advent of new tech-

nologies that promote rapid and widespread information flow within the systems and

surrounding its control [5]. In contrast to other technology-based manufacturing

paradigms, SMS merges information and communication technologies and combine

features of earlier manufacturing paradigms [6]. Industry is, and will continue to

be, increasingly reliant on data and predictive analytics to improve overall process

efficiencies [7, 8]. The cyber-physical system (CPS) that are deployed in smart man-

ufacturing presents unique features on increasingly reliant on data, interface of tools,

data sharing, knowledge integration, and etc. as illustrated in Figure 2.1. CPS

is sometimes called 4th generation manufacturing, and it is considered to be supered

than many former manufacturing generations such as mechanization and steam power

in the first, assembly line and electricity in the second, or computer and automation in

the third. These features make it increasing possible as access to technology improves.

2.1 Smart Manufacturing

The Smart Manufacturing Ecosystem encompasses a broad scope of systems in

the manufacturing business including production, management, design, and engineer-

ing functions as illustrated in Figure 2.2 [6]. As shown in the figure, the dimensions

of production (green), production system (blue), and business (orange) dominate
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Figure 2.1: Industry 4.0, ”Christoph Roser at AllAboutLean.com”

their own lifecycle. Three dimensions are interacted and integrated together by their

own functions. For example, the production system tends to focus on design, de-

ployment, operation and decommissioning of an entire production facility. On the

other hand, the business cycle is responsible for addressing the functions of supplier

and customer interactions. The integration of manufacturing software applications

along each dimension helps to enable advanced controls at the shop floor and optimal

decision-making at the plant and enterprise. The combination of these perspectives

and the systems that support them establish the ecosystem for manufacturing soft-

ware systems [6].

Such concepts were selected to be reviewed in this section due to their impor-

tance to smart manufacturing. CPS, internet of things, big data and cloud manufac-

turing would be further discussed in the rest of this section. AM, however, would be

discussed independently in Section 2.2 as it is one of the most critical topics in my

research.
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Figure 2.2: Smart Manufacturing Ecosystem [6]

2.1.1 Cyber-physical System

The term cyber-physical systems (CPS) refers to the systems with integrated

computational and physical capabilities that can interact with humans through many

new modalities. CPS aims to integrate knowledge and engineering principles across

the computational and engineering disciplines [9]. More specifically, it integrates

the embedded computer systems and networks that monitoring and/or controlling

the physical processes. In different to traditional embedded systems, CPS is usually

designed as a network of interacting elements with physical input and output instead

of as standalone devices [10].

In many years of traditional embedded systems history, such methods and

tools were developed by system engineers for solving systems control problems as the

time and frequency domain methods, state space analysis, stochastic control, and
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etc. [11, 12, 13]. Meanwhile, computer engineers have developed a variety of power-

ful programming languages, real-time computing techniques, visualization methods,

modeling formalisms, and verification tools for big breakthrough in this area [14, 15].

These methods and tools are now playing important roles in CPS. However, physical

and software components are deeply intertwined in CPS.

In current industrial practices, CPS is integrated with production, logistics and

services into smart manufacturing with significant economic potential [16]. It have

resulted in higher availability and afford-ability of sensors, data acquisition systems

and computer networks. These have further resulted in the continuous generation

of high volume data which is known as Big Data due to the ever growing use of

sensors and networked machines [17]. Under some environment, CPS can be further

transformed to a tool for managing Big Data and leveraging the interconnectivity of

machines to reach such goals as intelligent, resilient and self-adaptable machines [18].

Figure 2.3: 5C architecture for implementation of Cyber-Physical System [19]
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Figure 2.3 illustrates the detail of a 5-level CPS structure, namely the 5C

architecture, suggested by Lee et al’s recent publication [19]. The lowest level, called

smart connection, is the first step in developing CPS application which by acquiring

accurate and reliable data from machines and their components. The second level,

Data-to-Information, brings self-awareness to machines by data conversion such as

prognostics in health management. The Cyber level acts as central information hub

in this architecture as it has absorbed information from every connected machine in

the network. At this level, specific analytics are used to extract additional information

which aims to provide better insight over status of individual machines. Many data

analytics are involved in the Cyber level, such as future performance prediction based

on historical information. It requests more accurate and efficient predictive methods

to achieve better CPS performance, which is the one major topic of this dissertation.

Cognition as the fourth level is responsible for generation of thorough knowledge of the

monitored system. It would affect the correct decision and task optimization. For this

level, proper info-graphics are necessary to completely transfer acquired knowledge

to the users. Configuration, the top level of this architecture, is the feedback from

cyber space to physical space and acts as supervisory control to make machines self-

configure and self-adaptive.

CPS has many applications that are usually involved with sensor-based com-

munication enabled autonomous systems such as the wireless sensor networks mon-

itoring environment, autonomous automotive systems, medical monitoring, process

control systems, distributed robotics, etc. [20, 10, 21]. For these control systems to

work properly, CPS usually undergoes verification by extensive simulation, addressing

modeling uncertainties, and eliminating random disturbances. However, the integra-

tion of various subsystems, while keeping the system functional and operational, has

been time-consuming and costly [9]. One example in metal additive manufacturing

is a laser sintering control system relies on such different subsystem components of
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different physical environments as heat source, material supplying, melting, solidi-

fication, and post processing subsystems [22]. Each component may have its own

software and hardware. Quality of the final part depends on the performance of ev-

ery integrated components. The increasing complexity of components and the use

of different technologies can affect the CPS accuracy and efficiency. According to

current state of metal AM product quality, manufactures need a more reliable and

cost-effective communicating system for this multi-physics process. The keys for this

to work are: 1) accurate data processing and prediction to optimize control parame-

ters; 2) quick response and communication networks that able real-time monitoring

and controlling; and 3) insurance of safety, stability, and performance while minimiz-

ing computational cost.

2.1.2 Internet of Things

The term of ”the Internet of Things” was coined by Kevin Ashton of Procter

and Gamble, later MIT’s Auto-ID Center, in 1999 [23]. Similar to CPS, the Internet

of Things (IoT) also involves a lot of works in data communication. The difference

is CPS presents a higher combination and coordination between physical and com-

putational elements [24]. On the other hand, IoT is the inter-networking of physical

devices, connected devices, buildings, and other items embedded with electronics,

software, sensors, actuators, and network connectivity which enable these objects to

collect and exchange data [25]. Through unique addressing schemes, these Things are

able to interact with each other and cooperate with their neighbors to reach common

goals [26].

If say CPS has created a higher combination for multi-physical environment

and computational systems. The IoT is the one that allow involved objects to be

sensed and/or controlled across exiting network infrastructure for inter-operation [27,

28]. It was believed will play leading role in the near future for industrial, business
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and private users. It has already involved in the fields such as automation, industrial

manufacturing, logistics, business/process management, intelligent transportation,

assisted living, and e-health [29]. In these applications, IoT can create opportunities

for more direct integration of the CPS system, and resulting in improved efficiency,

accuracy and economic benefit in addition to reduced human intervention [30]. Figure

2.4 shows the components and layers of IoT for different application domains. These

applications involve number of works in data networking and would affect the system

performance.

Figure 2.4: Applications domains and relevant major scenarios of IoT [29]

In Transportation domain, advanced cars, trains with roads and/or rails are

becoming more instrumented with sensors, actuators, and processing power. Even

roads and transported goods themselves, which are the transportation media, are

equipped with tags and sensors that send important information to traffic control

sites and transportation vehicles to better route the traffic, help in the management

of the depots, provide the tourist with appropriate transportation information, and
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monitor the status of the transported goods. In assisted driving, for example, ad-

vanced transportation medias can provide the passengers better navigation and safety

based on the important information that collected from the sensors, actuators and

processing power. Assistant parking function relies on the data collected from the

sensors around the vehicle. Collision avoidance systems can detect the imminent

crash and make decision based on the data from radar and laser [31]. For traffic

management, more accurate information about traffic pattern can help for better

planing.

In Healthcare domain, IoT technologies can solve such issues as tracking of

objects and people, identification and authentication of people, and automatic data

collection and sensing [32]. Nowadays, doctors can make decision of treatment method

based on real-time monitoring data. This process relates to networking between data

collection, sensing, and prediction.

Other domains such as Smart environments, personal and social, futuristic

applications also can receive benefits from IoT. Smart environments can help in im-

proving the automation in industrial plants by reading the necessary data. Social

networking also closely relates to the IoT as the massive data processing that in-

volved in.

Generally, IoT is expected to offer advanced connectivity of devices, systems,

and services that goes beyond machine-to-machine communications and covers a va-

riety of protocols, domains, and applications such as those components in Figure 2.4

[33]. In fact, IoT has different meanings and definitions that may confuse people to

follow its major concept. From different orientation, it may include different compo-

nents [29]. In ”Thing” oriented perspective, it usually refers to variety devices such

as monitoring implants, wireless sensors and actuators, streaming live cameras, and

other smart items [34]. From this perspective, function of these devices are collect-

ing useful data [35]. However, in ”internet” oriented visions, IoT refers to data flow
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between ”things”. It builds the connection and allow data communicating in the sys-

tem. Another oriented vision of IoT is about ”semantic”. In this perspective, IoT

refers to a lot of semantic technologies, reasoning over data, and semantic execution

environments.

Under either perspective, Iot indicates massive works in data processing. A

challenge for producers of IoT applications is to clean, process and interpret the vast

amount of data which is gathered by the sensors. There is a solution proposed for the

analytics of the information referred to as Wireless Sensor Networks [36]. Accurate

and efficient data analytical methodology would benefit to the IoT system especially

for those irregular datasets such as defect and big datasets [36]. During this process,

data would be collected, stored, and analyzed in certain components. In different

to conventional analytical algorithms as typical solution, artificial intelligence (AI)

algorithms becomes more and more popular in recent decade. People are developing

new AI algorithms for the needs of IoT features [36].

2.1.3 Big Data and Cloud Manufacturing

In every industry and every part of the world, senior leaders always perusing

getting full value from the massive amounts of information they already have within

their organizations [37]. As mentioned in previous sections, data processing is a key

component in CPS and IoT for smart manufacturing. New technologies allow the

users to collect more data than ever before. In other words, datasets grow rapidly

because they are increasingly gathered by cheap and numerous information-sensing

Internet of things devices such as wireless sensors, mobile devices, monitoring equip-

ments, and etc. [38]. Big-data analytics enables continuous innovation and process

improvement of manufacturing systems, and has been recognized as a key enabler

of smart manufacturing. With a cloud-computing infrastructure, manufacturers gain

the ability to access software and real-time data at lower cost and to respond quicker
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to customer issues. [6].

The terminology Big data indicates the datasets are so large or complex that

traditional data processing application software is inadequate to deal with them [39].

After the term was invented and used for couple of years. Lately, big data tends

to refer to the use of predictive analytics, user behavior analytics, or certain other

advanced data analytics methods that extract value from data, and seldom to a

particular size of dataset [40, 41]. The analytics of data intends to explain where

we are, trace how we got here, and offer an urgently prediction to the benefits and

dangers that in the future [42]. However, the term big in big data does not only refer

to the volume of data. It also relates to other critical attributes of it such as data

variety and data velocity [37]. These three aspects, together, construct the completed

definition of big data (Figure 2.5).

Figure 2.5: The three Vs of big data [37]
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Volume, obviously, indicates the size of the data in storage which is the primary

attribute of big data. Variety, for example, can correlate to the dimensions or sources

of datasets. The great variety of sources, especially from the new technologies such

as Web data, can make the data extremely large. As shown in 2.5, it covers both

traditional structured data and such unstructured data as text and human language.

The variety accompany with volume make data even bigger. Another aspect is so

called data Velocity. It usually represents the feeding speed of data processing. For

example, it could represent the streaming data from sensors of manufacturing robots

and machines or clickstream data from websites. The analytics of these real time data

can help the companies make quick responses and decisions to optimize their profit.

Cloud manufacturing is a new manufacturing paradigm developed from exist-

ing advanced manufacturing models and enterprise information technologies under

the support of smart manufacturing such as IoT and cloud computing [43]. It aims

to realize the full sharing and circulation, high utilization, and on-demand use of

various manufacturing resources and capabilities by providing safe and reliable, high

quality, cheap and on-demand used manufacturing services for the whole lifecycle of

manufacturing [44]. The concept of cloud manufacturing refers to big manufactur-

ing that includes the whole lifecycle of a product (e.g. design, simulation, produc-

tion,test,maintenance) [45].

Cloud manufacturing system mainly includes three category users: provider,

operator, and consumer. As shown in Figure 2.6, the providers are those users own

and provide the manufacturing resources and abilities that involved in the whole

life cycle of manufacturing process. The operators, instead, operate the platform to

deliver services and functions other users. The consumers are those who purchase

the use of the manufacturing cloud service from the operator on an operational ex-

pense basis according to their needs. This process is always based on the knowledge.

During this process, different users can search and invoke the qualified MCSs from
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Figure 2.6: Abstract running principle for cloud manufacturing system [44]

a related manufacturing cloud according to their needs, and assemble them to be a

virtual manufacturing environment or solution to complete their manufacturing task

involved in the whole life cycle of manufacturing processes under the support of cloud

computing, service-oriented technologies, and advanced computing technologies.

In general, cloud computing is changing the way industries and enterprises do

their businesses. Technology and standards for big data and cloud manufacturing

will allow many types of advanced analysis and other functions to be provided on a

service basis, thereby making them more readily accessible to manufacturers. [6]

2.2 Additive Manufacturing

Additive manufacturing (AM), which also be well known as rapid prototyping

or 3D printing, is an advanced manufacturing technique invented in recent decades.

The earliest AM equipment and material were developed in the 1980’s for creating
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models and prototype parts layer by layer [46, 47]. It represents a reverse of the

traditional manufacturing method from subtractive to additive. Traditional adding

material techniques such as injection molding, casting and welding that remain require

pre-shaping mold or parts. However, AM machines finish the building process from

nothing to the final part in imported a three-dimensional Computer-Aided Design

(3D CAD) data [48]. It is the first time that engineers are able to create almost any

shape that can hardly be made by traditional machining methods.

Various materials were introduced to the AM machines for creating parts. Both

plastic and metal materials are compatible to AM processes, which give the engineers

more design options. Various printing methods were invented and commercialized

to the engineers to satisfy their design requirements such as photopolymerization,

powder bed fusion, direct energy deposition, material and binder jetting and sheet

lamination [48, 49].

AM techniques are exciting and have promising applications in such different

domains as aerospace, medical devices, and heavy industry [48]. However, these often

multi-physical processes are still not fully understood or controlled [50]. Thus cause

issues in the AM parts and processes such as failure printing, low quality, poor life

cycle, and large uncertainties. These limitations restrict further application of AM

techniques. A well developed analytic and predictive method for AM is needed to

overcome these issues, which is one of the primary goal of this research.

The aim of this section it to provide a clear background of AM in order to

develop more accurate and efficient AM predictive modeling method. In this section,

we briefly review the general AM techniques to discuss different AM processes and

materials. Metal powder bed fusion process as the main interest of my research would

be further discussed in an subsection with more detail. In this section, we would focus

on discussing the major AM processes an parameters.
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2.2.1 Additive Manufacturing Techniques

2.2.1.1 AM Process Chain

As shown in Figure 2.7, a generalized AM process usually has eight key steps.

Different AM technologies may handle the sequence differently. The eight key steps

in the process sequence [48] are:

• Conceptualization and CAD

• Conversion to STL/AMF

• Transfer and manipulation of STL/AMF file on AM machine

• Machine setup

• Build

• Part removal and cleanup

• Post-processing of part

• Application

The first step is a general step for any product development which aims to come

up with an idea for how the product will look and function. A generic AM process

must start with 3D CAD information, just as its alternative name 3D printing. The

second step would transform the CAD model into AM format that the machine is

able to read. To date, almost every AM technology uses the STL file format [48],

where STL was derived from StereoLithograhy - the first commercial AM technology

from 3D Systems in the 1990s [51]. At this step, all construction data and modeling

history are eliminated but only the surfaces of the artifact are modeled by series

of triangular facets are kept. Now the AM machines are able to read the CAD.

However, one should always set the minimum triangle offset to be smaller than the

resolution of the AM machine. Otherwise, there would be high possibility of error

during the printing process. Once the STL file has been created and repaired, it can
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be sent directly to the target AM machine. After verification of part, the AM systems

usually can usually let the user view and manipulate the part. Typically manipulation

includes reposition the part or change of the orientation to allow it to be built at a

specific location within the machine. This step would significantly correlate to the

final part quality such as relative density [52]. These types effect would be discussed

in Section 1.2.3. The next step is about machine setup for both software and physical

preparation. Sometimes, the user need to manually setup the building parameters

such as the laser power, scan speed, hatch spacing, and etc. When doing physical

preparation, the operator needs to make sure sufficient build material is loaded into

the machine to complete the build.

Figure 2.7: The eight stages of the AM process [48]

After these steps are completed, it is now actually going to part building

process. Step 5 build is usually done by the AM machine automatically as long as no
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error is detected. During this step, the part is built layer by layer in different ways

until the entire process is finished.

Ideally, the output from the AM machine should be ready for use with minimal

manual intervention. However, the AM parts sometimes require significant amount

of post-processing before they are ready for use. Removal and cleanup together is the

initial post-processing step, which need to remove the support material or surrounding

powders. Before going to the actual post-process, the part needs to be completely

separated from the build platform.

The post-processing may involve abrasive finishing, like polishing and sand-

papering, or application of coatings. In addition, some post-processing may involve

chemical or thermal treatment of the part to achieve final part properties. For exam-

ple, the temperature induced phase separation for polymer-ceramic composite pow-

ders can increase the alumina concentration significantly by reducing the particle size

[53]. Once every above mentioned steps are done, the parts are then ready to use,

which can proceed to the application level. Though AM parts are strictly built by

these steps, they may not behave according to standard material specifications due

to the unique of AM technology [48]. This is a major reason that AM need data and

knowledge to well predict the material properties.

2.2.2 Major AM Processes

This section will somes major AM processes, which includes extrusion-based

system, material jetting process, binder jetting process, directed energy deposition

process, and powder bed fusion (PBF) processes. This review work aims to better

understand the physics of general AM processes since the proposed predictive model-

ing method should compatible with different AM systems. However, as this research

was initially founded to study Metal PBF, a detailed review of this AM process would

be presented in Section 2.2.3.
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2.2.2.1 Extrusion-based Processes

Extrusion-based system is the most popular AM commercial system on current

market. While there are other techniques for creating the extrusion, heat is normally

used to melt bulk material in a small and portable chamber. The material is pushed

through by a tractor-feed system, which creates the pressure to extrude [48]. The

general procedure of extrusion-based system is followed as:

• Loading of material

• Liquification of the material

• Application of pressure to move the material through the nozzle

• Extrusion

• Plotting according to a predefined path and in a controlled manner

• Bonding of the material to itself or secondary build materials to form a coherent
solid structure

• Inclusion of support structures to enable complex geometrical features

To date, the most common extrusion-based AM technology is fused deposition

modeling (FDM) produced and developed by Stratasys [48]. Figure 2.8 shows the

basic FDM process. The filament of plastic feeds the machine and be extruded after

melted by the print head. The most popular material that used by FDM is acryloni-

trile butadiene styrene (ABS) [47]. Other materials such as polycarbonate (PC) is

also used. It is believed that parts made by FDM are among the strongest for any

polymer-based AM process [48].

FDM is a process in which no chemical post-processing is required, no resins

to cure, less expensive machine and materials, resulting in a more cost effective pro-

cess [54, 55]. However, the low build speed and somewhat bad finishing are its key

drawbacks. Speed can be increased by increasing the print head velocity, though

it usually reduce the mechanical properties [56]. The correlation between the user
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Figure 2.8: FDM process [47]

inputs as speed and material cost to the outputs as accuracy, roughness, and other

mechanical properties is complex [57]. Thus, a accurate predictive model may help

the user find the optimal design parameters when using FDM machines. The low ma-

terial cost but long print time may affect the sampling strategy based on the model

developers opinion, which should be considered into future method development.

2.2.2.2 Material Jetting Process

Printing as a three-dimensional building method was first demonstrated in the

1980s with patents related to the development of Ballistic Particle Manufacturing,

which involved simple deposition of “particles” of material onto an article [48]. The

first commercially successful technology was introduced in 1994, which printed a basic

wax material that was heated to a liquid state [58].

During material jetting process, all of the part material is dispensed from a

print head which is similar to typical 2D inkjet techniques. The head moves in the x

and y axes depositing a photopolymer which is cured by ultraviolet lamps immediately
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lamps after each layer is finished. Figure 2.9 shows Polyjet process of Stratasys 3D

printer [59]. The produced parts by this process can have very high resolution as

its layer thickness may achieve 16 µm [47]. Support structures may be needed for

certain geometries, which are built in a gel-like material, which is removed by hand

and water jetting [59]. Polyjet process is marked as a low cost, high speed, scalability,

ease of building parts in multiple materials, and the capability of printing colors [48].

However, the parts produced by this process may be weaker than by stereolithography

and selective laser sintering [60].

Figure 2.9: Polyjet process [59]

Such studies found the mechanical properties of printed parts by Polyjet pro-

cess are correlated to printing orientations (Horizontal, Inclined and Vertical) [61, 62].

In these studies, the stress-strain properties and tensile strength vary by different

chamber setup methods. Engineers who using Polyjet as a manufacturing method to

produce their product would like to know the material properties effect during the

designing procedure. Predictive models can help them to address these issues.
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2.2.2.3 Binder Jetting Process

In contrast to material jetting that producing the part from a plain chamber,

in the binder jetting process, binder or other additive is printed onto a powder bed

which forms the bulk of the part. Binder jetting methods were developed in the early

1990s [63]. During this process, the binder is printed onto a powder bed to form part

cross sections (Figure 2.10). It can handle a wild range of materials from polymer

composite, sand, metals, and ceramic materials [48]. Binder jetting technology can be

divided into the following steps: printing, curing, de-powdering, sintering, infiltration,

annealing and finishing [64].

Figure 2.10: Binder jetting process [48]

The binder jetting processes share many of the advantages of material jetting

relative to other AM processes. The unique advantages of this process are: 1) fast

forming speed since only a small fraction of the total part volume is dispensed through

the print heads; 2) it enables the powder and binder materials be combined ; 3) it
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can achieve higher strength of products as it is compatible with multiple materials.

However, besides the advantages, parts built by binder jetting tend to have

poorer accuracies and surface finishes compare to material jetting [48]. As shown

in Figure 2.11, the surface roughness of the truss structure is fairly poor [65]. The

part might be fail if the cross-section is not properly designed. To avoid this condi-

tion, simulation based topology optimization can be applied, which is also a useful

application of predictive modeling technique.

Figure 2.11: Green part by binder jetting process [65]

2.2.2.4 Direct Energy Deposition Processes

Directed energy deposition (DED) processes enable the creation of parts by

melting material, mostly used for metal powder, as it is being deposited. Unlike

powder bed fusion process in which only laser or binder would be delivered by the

print head, the deposition head of DED machine feed both material and laser to

the chamber. By DED processes (Figure 2.12), powders are conveyed through the

powder delivery nozzle onto the build surface [66]. Meanwhile, a focused laser beam

consist the powders. Once particles are deposited, the laser beam provides sufficient
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thermal energy to melt the particles along the deposition path. Then the melt pool

which indicates the heat affect zone is created with different penetration depth. This

process is repeated layer by layer to create a solid three dimensional component. DED

processes provide engineers a way to produce fully dense parts with highly controllable

microstructure and functionally graded components. However, the parts produced by

DED is limited by its poor resolution and surface finish. It is difficult to approach

accuracy better than 0.25 mm and surface roughness of less than 25 µm [48].

Figure 2.12: Direct Energy Deposition process [66]

The DED process consists of various operating/process parameters. Such op-

erating parameters are user controllable such as laser/substrate relativevelocity (tra-

verse speed), laser scanning pattern, laser power, laser beam diameter, hatch spacing,

particle/powder feed rate and inter-layer idle time [66]. However, DED has certain

number of random parameters that are not fully controlled as particle size and cham-
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ber humidity. All involved parameters can affect the building process and finally

change the part properties. The multi-physical environment of DED is very diffi-

cult to be simulated and analyzed through traditional methods. Thus, the black-box

typed metamodeling method can be a appropriate candidate to provide cost efficient

solution.

2.2.3 Metal Powder Bed Fusion Process

The powder bed fusion (PBF) processes were among the first commercialized

AM processes [48]. Selective laser melting (SLM) is the alternative name of PBF.

These two terms together indicate the key characteristics of this AM process, powder

and laser melting. PBF, in principle, can melt and reform any types powder materi-

als. Polymers, metals, ceramics, and their components are all compatible with PBF

process. However, in this research, we focus on the metal powder PBF, which the

project founded for.

Figure 2.13: Schematic overview of laser PBF process [67]

Typical metal PBF systems have been illustrated in Figure 2.13. Generally,

it includes two components: the powder delivery and energy delivery systems. The
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former one is responsible for supplying resource material. The latter one delivers a

focused spot of energy to all points of the build platform [67]. For each layer forming,

a scrolling spreader would spread a thing layer of powder on the platform. Once the

thin layer has been appropriated preheated, a focused laser beam is directed onto the

powder bed and is moved along its path way. It thermally fuses the material to form

the cross-section. After this step, the surrounding powder that not fused by the laser

remains loose and serves as support for subsequent layers. Preparing for next layer

forming, the fabrication position moves down to let the spreader scroll back. Then the

top is flatted and the redundant powder is removed. Doing this way, the powder and

energy delivery systems can form the part by repeating the above process. Usually, it

request a cool-down period to bring the part to a low-enough temperature that they

can be handled and exposed to ambient temperature and atmosphere [48]. Finally,

the parts are removed from the powder bed, loose powder is cleaned off the parts,

and further finishing operations, if necessary, are performed.

Metal PBF process involves a number of subprocess and phase changes. For

example, the solid and loose powder firstly change to melted liquid due to the thermal

energy provided from the laser. Before forming the next layer, the melted material

is solidified, which is usually the case. Witherell and co-authors classified the four

major components of PBF process model: Heat source model, heat absorption model,

melt pool formation model, and solidification model (Figure 2.14). These models can

provide a general understanding of PBF process and how each individual part is

composed together.

2.2.3.1 Heat Source Model

This submodel provide the energy source of the PBF process. A laser or

election beam move on its designed track on the powder layer. It fabricates the

interaction between the beam spot and the powder particles. The laser power, spot
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Figure 2.14: Classification of PBF process models[22]

size, and scan speed are key factors to affect the energy input [68]. The heat source

model can be further divided into laser beam model, plasma model, and E-beam

model based on the different types of energy resources.

2.2.3.2 Heat absorption model

Two factors would decide the energy input to the powder. One is the amount

of energy resource that provided in heat source model. The other one is the energy

absorption behavior of the powder which depends on many factors such as beam

power density, wavelength and pulse duration, irradiation time (or scanning speed),

absorptivity of the powder, powder heat conductivity, and oxidation of the powders

[69, 70]. Simply speaking, heat absorbed by the powder depends on the heat capacity,

temperature difference, and the amount of power [71]. It can also be further divided

into the radiance model and bulk material model.
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2.2.3.3 Melt Pool Formation Model

The thermal energy from the former two models can cause the first phase

change in PBF process, solid powder to metal liquid. Once the melt pool is formed,

other material properties such as viscosity and buoyancy effects can lead the fol-

lowing re-solidification process [72]. The formation and re-solidification of the melt

pool determines the quality of the scan track. Key factors include melt pool size,

temperature distribution and history, fluid flow inside the pool, and cooling time, in

addition to material properties (both composition and particle size distribution) [22].

Note, the reheating process may happen in former layers formation due to thermal

transmission. Based on current study, melt pool formation model can be further

divided into heat conduction model, Rosenthal based model, heat convection model,

and Marangoni and capillary model [22].

2.2.3.4 Solidification Model

As the energy beam moves away from a certain point in the powder bed, the

molten material becomes cool and solidifies. The internal stress accumulation in

solidification, a result of heating and cooling, affects the quality of a manufactured

part. These accumulation may cause residual stress and other mechanical defects,

which might be reduced through post-processing heat treatment [73].

2.2.3.5 Process Parameters of Metal PBF Process

Metal PBF processes involve multi-physical environments. The parameters in-

volved can be generally divided into input, output, control, and environment domains

[22].

The input parameters correlate to the properties of powder, material, and

laser. The most important powder parameters are: relative density, particle shape

and size, shape distribution, thermal conductivity, absorptivity reflectivity, emissiv-
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ity, diffusivity, and etc. Such material parameters can be: Viscosity, surface ten-

sion, capillary force, conductivity, convectivity, specific heat, melting temperature,

evaporation temperature, and etc. For the laser, Mode (continuous wave, pulsed),

wavelength, intensity profile, average power, peak power, beam quality (how well the

beam can be focused), polarity are mainly be considered.

Figure 2.15: Parameters of PBF processes[74]

The output parameters mentioned here are mostly about the final part proper-

ties such as surface roughness, geometric dimension, porosity, residual stress, strength,

and etc. There are also some intermediate output parameters that can affect the final

output such as melt pool dimensions and melting conditions. Figure 2.15 categorizes

and lists the process parameters, process signatures, and product qualities for PBF

processes [74]. Such user controllable parameters can significantly affect the product

qualities as laser power, scan speed (beam velocity), and layer thickness. Parameters
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of process signature are sometimes can be used as critical intermediate parameters

that correlate to the final product. Most of current physics-based simulation model

are focusing on this area. The product includes the AM part qualities that designers

care about. However, predicting them can be very difficult. Dimensional deviation,

mechanical properties such as strength and hardness have large amount of uncer-

tainties. This becomes to the biggest challenge in AM predictive models. Improve

AM predictive model with limited resource under uncertainty is another goal of this

research.
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CHAPTER 3

METAMODELING TECHNIQUES

3.1 Physics-based Modeling

Predictive modeling is a technique that using existing knowledge to predict

outcomes of any type of unknown event. The prediction process can be simple or

complex. Engineers can use classical physical theory to predict the structural out-

comes of their design. For example, the small deflections of a beam can be predict

with its loading conditions using Euler-Bernoulli beam theory. Now ages, finite ele-

ment analysis (FEA) becomes to a popular numerical method for structural analysis,

heat transfer, fluid flow and etc. For example, Yang and co-authors FEA model can

predict the pelvic organ dislocation by mimic the abdominal conditions [75].

Along with the boost of computational power in recent decades, physics-based

predictive models become to more complex. The models are not limited in one phys-

ical environment. In AM domain, for example, a simulation model can integrate

such sub-processes as the heat absorption, melting and fusion. Ma and co-authors

construct a FEA model to predict the melt pool temperature that simulating the

heating and melting conditions during PBF process [76]. A more complex model of

metal PBF process was created by Lawrence Livermore National Laboratory that

predicts the melt pool data and some manufactured properties [77]. These models

are considered as typical physics-based model since their prediction is built on the

physical knowledge. According to their complexity, these types of model usually re-
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quest high computational cost. When knowledge is not fully available, it is almost

impossible to set up the model. These limitations encourage the users turn their sight

into other less expensive methods 3.1 [78].

Metamodeling technique is an alternative method to make prediction. In stead

of using physical knowledge, this method using statistical power to derive the solution.

Metamodeling approaches offer an excellent foundation to build predictive analytics

as they can establish robust models to realistically represent physical phenomena

without intrinsic knowledge of the complex system [79, 80]. Section 3.2 would review

the popular metamodeling techniques that may used by this dissertation.

Figure 3.1: Black-box approach for solving complex system[78]

3.2 Metamodeling technique

Metamodels, also known as surrogate models, construct a model of a model

to understand complex systems [81] using black-box approach. Unlike physics-based
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or numerical simulation models that often require detailed knowledge of internal pro-

cesses, metamodeling techniques focus on the input/output relationships [82]. This

data-driven approach is constructed using data which can provide fast approxima-

tions of the objects and has been used for design optimization, design space explo-

ration, sensitivity analysis, what-if analysis and real-time engineering decisions [83].

Metamodels can significantly reduce the cost of organizing knowledge for a poorly

understood system. Black-box based metamodeling is a useful approach for complex

system

There are number of metamodeling techniques that designed for different sit-

uation, e.g., Polynomial Regression (PR), Kriging, artificial neural network (ANN),

support vector machine (SVR), and radial basis function (RBF). In this section, we

would review PR, Kriging, and ANN methods due to their importance in current re-

search. Other metamodeling methods might be covered and employed in the future.

3.2.1 Polynomial Regression

Polynomial Regression (PR) is a form of regression in which a nth order poly-

nomial is modeled to represent the relationship between the independent variable x

and the dependent variable y. PR were originally developed to analyze the results

of physical experiments and create empirical models of the observed response values

[84]. It has been used for more than two hundred years since it was first published in

1815 [85]. Least squares method is usually used to fit PR models. The typical form

of PR model is:

y(x̄) = f(x̄) + ϵ (3.1)

where y(x̄) represents the unknown function, f(x̄) is a known polynomial function of

x̄ derived statistically, and ϵ is random error assumed to be normally distributed. x̄

is the set of the system’s independent input variables. The response of PR model can
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be presented as:

yi = β0 + β1x1 + β2x
2
i + · · ·+ βmx

m
i + ϵi(i = 1, 2, . . . , n) (3.2)

Which can be expressed in matrix form:



y1

y2

y3

...

yn



=



1 x1 x2
1 . . . xm

1

1 x2 x2
2 . . . xm

2

1 x3 x2
3 . . . xm

3

... ... ... . . . ...

1 xn x2
n . . . xm

n





β0

β1

β2

...

βn



+



ϵ1

ϵ2

ϵ3

...

ϵn



(3.3)

Its pure matrix notation is:
−→y = X

−→
β +−→ϵ (3.4)

Where X is the vector of input variables and −→y is the response vector. −→β is the

parameters vector and −→ϵ represents the random errors.

The vector of the estimated PR coefficients can be calculated through ordinary

least squares estimation:

−̂→
β = (XTX)−1XT−→y (3.5)

PR model provides the advantage of generating a mathematical function that

can easily compute the data location predicted by that equation. However, since PR

deploys curve-fitting techniques between the data points, it can tend to smooth out

such regions without data to lessen predictive accuracy for highly nonlinear responses

of systems [78].
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3.2.2 Kriging

3.2.2.1 Overview

The Kriging method has traditionally performed well for many complex prob-

lems with high dimensionality and nonlinearity [86, 87, 88]. The theoretical basis

for the method was developed by the French mathematician Georges Matheron in

1960. The fundamental assumption of point estimation in Kriging is the estimating

point (unknown point) can be represented by observed points (known points) based

on spatial correlation [89]. The estimation process is completed by so called spatial

correlation functions [90, 91], or the variogram. The variogram is commonly defined

as the variance of the difference between field values at two locations across realization

of the field [92]. The general form of a kriging estimation for an unknown predicted

value of a point ZE for a single outcome is [91]:

ZE = Z̄ +
n∑

i=1

λi(Zi − Z̄) (3.6)

where Z̄ represents the regional mean value of the response and λi is the distance-

correlated weight value, which is determined by the computation of spatial correlation.

To date, the Kriging method has multiple forms such as simple kriging, ordinary

kriging, regression kriging, and etc. [93, 94]. The fundamental difference of Kriging

methods is the different assumption of the regional mean, Z̄. For example, simple

Kriging assumes the model has zero regional mean (i.e. Z̄ = 0). In contrast, ordinary

Kriging is established by the assumption that there will be an unknown constant

mean value which can produce the minimum residual estimative error [95].

3.2.2.2 Distance and variance-covariance matrices

Kriging as a spatial statistical method builds its foundation on the observed

data points and their correlation. The estimating process first utilizes the given data
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to construct the distance matrix that the entire Kriging process relies upon. This

is critical because distances between data points serve as references of correlation

magnitudes. The correlation will determine how much influence is given by one

existing data point to others. Another critical matrix, called the variance-covariance

matrix, is derived from the distance matrix. It quantifies the spatial correlation for

computing the weight factors λi in the above equation. Weight factors are the final

determinant of the predictive result. For n observed points, the Euclidean distance

between points zi and zj can be written as d(i, j) = dis(zi, zj). As a result, the

distance matrix can be formulated as:

D =



d(1, 1) d(1, 2) d(1, 3) . . . d(1, n)

d(2, 1) d(2, 2) d(2, 3) . . . d(2, n)

d(3, 1) d(3, 2) d(3, 3) . . . d(3, n)

... ... ... . . . ...

d(n, 1) d(n, 2) d(n, 3) . . . d(n, n)



(3.7)

Since i = j, d(i, j) indicates the distance from the original point to itself, the diagonal
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of this matrix is constantly equal to 0. i.e.

D =



0 d(1, 2) d(1, 3) . . . d(1, n)

d(2, 1) 0 d(2, 3) . . . d(2, n)

d(3, 1) d(3, 2) 0) . . . d(3, n)

... ... ... . . . ...

d(n, 1) d(n, 2) d(n, 3) . . . 0



(3.8)

Similarly, the vector representing the distance of the estimating point, which

predicts the value of ZE, to all existing points can be formulated as:

A =



dis(ZE, Z1)

dis(ZE, Z2)

dis(ZE, Z3)

...

dis(ZE, Zn)



(3.9)

Note, the distance matrix is always a diagonal matrix since 0 represents zero

distance from one point to itself. Once the distance matrix is well established, each

correlation var(Zi, Zj) can be derived based on the correlation function and its corre-

sponding dis(Zi, Zj). The strongest correlation value corresponds to the distance of

any point from itself. For demonstrative purposes, we neglect any nugget effect that

could reduce correlation [92] and assume a constant regional mean. The variance-
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covariance matrix (C) is formulated as:

C =



var(Z1, Z1) var(Z1, Z2) var(Z1, Z3) . . . var(Z1, Zn)

var(Z2, Z1) var(Z2, Z2) var(Z2, Z3) . . . var(Z2, Zn)

var(Z3, Z1) var(Z3, Z2) var(Z3, Z3) . . . var(Z3, Zn)

... ... ... . . . ...

var(Zn, Z1) var(Zn, Z2) var(Zn, Z3) . . . var(Zn, Zn)



(3.10)

Accordingly, the variance-covariance vector for an estimated point to predict

ZE can be formulated as:

B =



var(ZE, Z1)

var(ZE, Z2)

var(ZE, Z3)

...

var(ZE, Zn)



(3.11)

Based on the matrix C and vector B, a weight factor Λ can then be derived

from these matrices. For example, the original ordinary Kriging weights may be

estimated by:

Λ = C−1B (3.12)

Where Λ = [λ1, λ2, λ3, . . . , λn]. In addition to approaching the minimum esti-

mation error, extensive calculus is also required for deriving the optimal weights[96,

97].
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3.2.2.3 Spatial correlation function

The fundamental assumption in kriging method is that the correlation between

points can be estimated by spatial correlation functions (SCF) [98]. The SCF for an

n dimensional problem in Gaussian distribution form is:

R(θ, xi, xj) =
n∏

l=1

exp(−θ(xi,l − xj,l)
2) (3.13)

where xi,l is the lth component of the ith vector xi and xj,l is the lth component of the

jth vector xj [98]. R(θ, xi, xj) depends on the location of points xi and xj, and the

correlation parameter, θ. The optimal correlation parameter can potentially improve

the predictive accuracy by providing more accurate correlation between all given data

points [99]. For example, the popular DACE toolbox uses the modified Hooke and

Jeeves (H-J) algorithm [100], which is efficient but unable to provide the true optimum

[101]. The Levenberg-Marquardt (L-M) method can efficiently find the local optimum

by employing a scoring method to calculate the Hessian matrix for optimization [102].

Alternatively, Forrester and Keane use the genetic algorithm (GA) to approach the

global optimal correlation parameter without considering computational cost [103],

which could be incompatible with very large data sets. Optimization of the correlation

parameter is a critical process for improving predictive accuracy. Table 3.1 lists the

regular formation of correlation functions [91].

3.2.3 Artificial Neural Network

Artificial Neural Network (ANN) is a computational algorithm that mimics

the central nervous system [104] and has been widely used for solving problems with

complicated structures. A typical ANN model consists of an input layer, hidden

layers, and an output layer [105]. Each layer consists of “neurons” that are connected

across layers to transmit and deduce information. The optimal number of neurons
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Table 3.1: Kriging correlation functions, dj = |xi − xj|

Type R(θ,xi,xj)

Gaussian exp(−θjd2j)

Exponential exp(−θjdj)

Linear max0, 1− θjdj

Spherical 1− 1.5σ + 0.5σ2

Cubic 1− 3σ2 + 2σ3

· · · · · ·

and hidden layers may differ, and depends on the complexity of the problem. The

structure of a simple ANN model [106] is shown in Figure 3.2, where x1 to x3 are

input parameters, u1 − u4 are the neurons in the single hidden layer, and outputs y1

and y2 are located in output layer. w(i, h) represents the weight factor for the link

between input i to hidden node h. x(h) represents the weight factor from hidden

node h. Here, N is the total number of input variables. The estimated output ŷi is

produced by:

ŷi =
N∑
j=1

wi(j)x(j) (3.14)

The optimal weight factors can be derived after training the neural network using

actual output yi:

wi(j)← wi(j) + µ(ŷi − yi)xi(j) (3.15)

when using backpropagation:

x(h)← x(h) + µ
n∑

p=1

(yp − ŷi)vp(h) (3.16)

where µ is the step size of each iteration. Here, vp(h) is the actual value of the hth

hidden node, using the sigmoid function, is given by:
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Figure 3.2: Typical structure of a simple ANN model

vp(h) =
1

1 + e−v∗p(h)
(3.17)

where v ∗ (h) is equal to:

v∗p(h) =
I∑

j=1

w(j, h)up(j) (3.18)

Each weight w(i, h) is updated using:

w(i, h)← w(i, h) + µ
n∑

p=1

(yp − ŷp)x(h)vp(h)(1− vp(h))up(i) (3.19)

where ŷp is the predictive result from neural network and yp is observed value from

given data.
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3.3 Uncertainties of Modeling Metal PBF Process

This section would mainly discuss about the uncertainty in Metal PBF process

on the origin and propagation. Uncertainty can be generated from four major sources:

modeling assumptions, unknown simulation parameters, numerical approximations,

and measurement error in calibration data [107]. PBF processes involves multiple

physical phenomena. The melting and solidification process are occurring cycling.

Such uncertainty sources in PBF processes are [108, 109, 76]:

• Particle-level dynamics neglected in continuum models

• Active laser power inaccurately distributed on the powder bed

• Inadequate choice of environment conditions that ignoring the path-to-path and
layer-to-layer interactions

Some uncertainties are highly correlated to the input variables of PBF simu-

lation and experiment [67]. For example, the laser beam size may not consist during

the building period as the heat can affect the optics. The properties of the powder

bed may vary due to the inconsistent distribution of powder particles. This may

originally caused by the powder or may occur after powder reuse. The calibration of

the laser power, speed, and beam size may change over time. All these variations will

influence the properties of the part being built. Thus, generate a certain number of

uncertainties.

The uncertainties generated from previous steps may also raise the uncertainty

in following steps, which so called uncertainty cumulation. For example, the temper-

ature evaluation will result in an uncertainty of the measurement of melt pool width,

depth, and length. Better understanding of measurement uncertainty assists system

controller design by identifying the necessary level of precision required to attain the

goals of the control system [74].
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CHAPTER 4

PREDICTIVE ANALYTICS FOR AM AND SMS

The primary goal of this research is to build high fidelity predictive models for

AM and SMS using preexisting datasets. Building on background covered in the pre-

vious chapters, the following five chapters introduce several metamodeling methods

developed to advance the state of the art in various ways. This research addresses

several major challenges. First, it is difficult to select an appropriate metamodeling

algorithm with limited knowledge or information. Secondly, inflexible preexisting

datasets are often not compatible with advanced sampling methods such as space

filling sampling (SFS) or sequential infilling sampling (SIS). Third, a domain-specific

metamodel can only partially represent an overall system. Forth, traditional meta-

modeling methods such as Kriging have limited capabilities for SMS applications.

Finally, traditional metamodeling approaches are often not well suited for non-ideal

data. This chapter provides an overview of these issues and potential solutions.

The main process of creating a metamodel is shown in Figure 4.1. Each step

has unique challenges when using previous AM or SMS datasets. To begin, one

needs to analyze the problem and select the best metamodeling technique. Input and

outputs variables need to be identified at that stage. Constraints such as the sample

size and computational cost should be specified. The appropriate sampling method

needs to next be selected. Design of experiment (DOE) techniques are generally

deployed as a basis for empirical studies [110]. For computer experiments, SFS and

SIS become more practical [111, 63]. For the step of algorithm selection, generating
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Figure 4.1: General steps for building metamodel

and testing metamodels from all candidate algorithms may be done if the data is

simple and fast to use. Alternatively, one can eliminate the non-practical candidates

based on prior knowledge and information. Model accuracy and efficiency are key

criteria to optimize during model construction. Parameter optimization can improve

a metamodel when additional data is available beyond that used to build the initial

metamodel. Finally, model validation measures the performance of a built metamodel.

Table 4.1 lists the current potential limitations of each step for the AM and SMS

domains.
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A significant challenge with reusing a dataset is that the given data points

may not have desirable locations. The given data is collected based on a specifically

designed sampling method which matches the conditions of the original problem.

Conditions such as the design variables, sample size, experimental conditions, and

initial uncertainties can significantly affect the metamodel performance. As a result,

the metamodel built by prior data may not completely suit a new problem. For ex-

ample, design variables among datasets might be inconsistent. The data collected

from different prior experiments can be partially overlapped or nonoverlapped when

combining multiple datasets. The desired data points may not exist in the given

dataset. In addition, it is hard to select an appropriate metamodeling algorithm if

any important information is missing. The desired predictability could be unobtain-

able without enough data. For the issue of not enough data, collecting additional

data points may provide the solution. However, it is difficult to completely mimic

the original experimental conditions. Thus, a technique is needed to combine data

or models generated under inconsistent conditions. A very big dataset can reduce

the model efficiency if a conventional metamodeling method is deployed to remedy

situations of disparate or inadequately small sample sizes.

The following five chapters aim to address these issues by developing specifi-

cally targeted metamodeling methods. In Chapter 5, a domain-driven metamodeling

selection algorithm uses limited knowledge to select the most appropriate method

before actually building the metamodel. Chapter 6 introduces the Maximum Pre-

dictive Error Updating (MPEU) Method which can improve the sampling strategy

when using small sized previous data. The grey-box metamodeling method intro-

duced in Chapter 7 addresses the issue of inconsistent experimental conditions be-

tween multiple prior datasets. Chapter 8 modifies the traditional Kriging method

to improve the model predictability and efficiency for SMS datasets. An algorithm

integration method called a ”super-metamodeling method” is presented in Chapter
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9. It maximizes the metamodel predictive accuracy by optimally combining different

metamodeling algorithms.

These methods can work independently to address each of the issues listed in

Table 4.1. They can also solve the overall suite of problems when integrated together

in a comprehensive process. To achieve this goal, we systematically developed a usable

toolbox developed in Matlab that integrates these methods via various function calls

that are demonstrated to be robust and easy to use. This tool package is introduced

and discussed in Chapter 10.
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CHAPTER 5

DOMAIN-DRIVEN METAMODELING
APPROACH

5.1 Overview

The first step to build a metamodel is to select the appropriate metamodeling

algorithm. The selected algorithm should be able to provide higher predictive ac-

curacy and better computational efficiency. This process could be done statistically

after complete the data collection through characterizing the data features. This

method enable the model developers have deep insight to the data. However, the

working sequence can limit the application of this method. One important limitation

is the model developers may find they have run more experiments than what needed

after establish the metamodel. This is because of the lack of general idea to the

unknown system in advance the DOE process.

Test samples of metal AM are usually very expensive. So AM user would

need a model selection method which can be operated prior the DOE process. Re-

cent studies have shown advantages to utilizing metamodeling techniques to mimic,

analyze, and optimize system input-output relationships in AM. In this chapter, we

would investigate the way to use the physics-based knowledge and historical data to

select the most appropriate metamodeling method for new problem. We would ad-

dress a key challenge in applying such metamodeling methods, namely the selection

of the most appropriate metamodel. This challenge is addressed with domain-specific
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AM information, derived from physics, heuristics and prior knowledge of the pro-

cess. Domain-specific input/output models and their interrelationships are studied

as a basis for a domain-driven metamodeling approach in AM. A metamodel selection

process is introduced that evaluates global and local modeling performances, with dif-

ferent AM datasets, for three types of surrogate metamodels PR, Kriging, and ANN.

A salient feature of this approach is its ability to seamlessly integrate domain-specific

information in the model selection process. The approach is demonstrated with the

aid of a metal PBF case study and the results are discussed.

5.2 Background

Previous modeling selection frameworks have used information about data,

called data features, to identify the optimal modeling algorithm for certain types

of problem. ”Data features” in this context are considered characterizations of how

each parameter impacts the responses in a given domain. For example, Rice et al.

proposed a model can use extracted characteristics and performance measurements

such as normalized root mean square error (NRMSE) and maximum relative error

magnitude (MREM) from a given dataset to select the optimal modeling algorithm

from a set of candidates [112]. Cui et al.’s energy model recommendation framework

uses dual performance evaluation criteria and criteria reduction methods to implement

a meta-learning procedure for modeling algorithm selection [83]. While these well-

established methods work for some general problems or problems in specific domains,

they usually require significant work in data feature characterization.

This chapter aims to address AM predictive modeling challenges by construct-

ing a specific-to-AM framework that looks to efficiently and accurately identify op-

timal metamodeling methods for given problems, prior to deeply investigating data

features related to a specific domain. The term “domain” in this chapter indicates the
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topic area to which the parameters apply. For example, laser power is a parameter in

the AM thermal domain and powder density resides in the AM material domain, etc.

In the following sections, we will first discuss the performance of metamodels with

different domain-inspired AM input/output parameters. Unlike Rice’s model that

uses data features for algorithm recommendation, the method proposed in this chap-

ter focuses on using correlations between AM parameters to efficiently identify data

features. An AM input/output correlation chart was developed to visually present

the nonlinearity of different combinations of parameters. We introduce the domain-

driven framework in Section 5.4. For demonstrative purpose, a case study based on

AM datasets is presented in Section 5.5 The benefits of using this domain-driven

approach are explained and further discussed in these sections.

Section 5.3 discusses parametric correlations in AM models based on a detailed

literature review. The remaining sections are built upon the findings from Section

5.3. The three candidates presented in this paper are used to demonstrate the frame-

work. The fundamental structure of the framework and an illustrative case study

with empirical data from an AM process are introduced in Sections 5.4 and Section

5.5. Section 5.6 concludes with a comprehensive discussion of the early framework.

5.3 Analysis of the Correlation between Input/Output

of PBF Process

This section investigates a metamodel selection method that leverages pre-

existing knowledge of parametric relations instead of pure data analysis. For an

identical system under the same conditions, one might perceive that the basic relation

between inputs and outputs is unchanged. The following beam bending example is

introduced to explain this hypothesis.

In the general case of any beam, when an analysis of beam bending is desired
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many of its characteristics may be unknown. For example, consider a large beam

made of lattice of different orders of magnitude (Figure 5.1) with a load applied.

Measurements of loading conditions can be taken, but not enough information can be

obtained to perform a complete analysis due to the presence of too many variables.

Figure 5.1: Beam created with lattice

However, given the loading and constraints, we can observe that the case

behaves like a bending beam. While only partial measurements can be taken at

micro and meso scales, we can make the hypothesis that it will perform according to

beam theory at the meso and macro levels, thus making domain-specific observations.

These observations allow us to extrapolate measured values, based on a combination

of measured results and expected macro performance.

A similar situation is found in metal PBF processes in that they are very

complex and involve a large number of parameters (more than 50) [48, 113]. The

input/output relation is difficult to discern using theoretical analysis. If one considers

every single PBF parameter, there are millions of combinations of different models.

Thus, we introduce a domain-driven framework that uses past model performance to

predict the appropriate modeling method for a new problem. The rest of this section

will summarize parametric relations between AM parameters from the literature to

construct the prerequisite knowledge for development of a model selection framework.

Figure 5.2 shows 8 inputs and 6 outputs that have high occurrence in recent

PBF literature. The relation between these parameters is currently marked as un-

known due to lack of information.
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For single input cases, PBF parameters such as laser power, scan speed, and

hatch spacing have highly linear correlations to certain outputs [114, 115]. For exam-

ple, Tang et al (2003)’s metal laser sintering experiment indicates the surface rough-

ness and tensile strength is linearly increased with laser power [116]. Similarly, tensile

strength decreases monotonically with higher scan speed with other parameters held

constant. From the same study, however, surface roughness was not linearly related

to scan speed. With reduced layer thickness, scan speed and roughness instead had a

slight nonlinear relation. Another study, using different materials but the same laser

parameters, found scan speed and layer thickness have a linear relation to relative

density when varied individually [117]. Such similar results using multiple materials

suggest that relative density is linearly related to laser power, scan speed, and layer

thickness [118]. Intermediate outputs such as penetration depth (not included in

Figure 5.2 have also been shown to exhibit a linear relation with some parameters.

Kruth et al (2003)’s laser sintering experiment found higher scan speeds produced a

linearly decreasing layer thickness [119]. Some inputs, such as laser pulse frequency,

have been found to have a highly nonlinear relation to relative density [120].

Compared to the single input/output problem, the relations between variables

become considerably more complicated when studying multiple input parameters.

Tang et al (2003) found that the surface roughness is not linearly related to a com-

bination of laser power and hatch spacing [116]. Similarly, when considering the

relation of laser power and layer thickness to surface hardness, the relation is also

nonlinear [32]. A similar, nonlinear relation is also observed in Morgan et al (2004)’s

empirical result [120]. The simple linear relation between scan speed and relative den-

sity becomes significantly more complicated when pulse density is also varied. This

evidence seems to imply that more variables generate larger uncertainties in PBF due

to an increase in unknown interactions. However, other outputs such as the tensile

strength are not that sensitive to the same combinations of inputs. The observed re-
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lation remains linear under a combination of factors. Thus, more inputs can increase

PBF problem complexity but do not necessarily indicate increasing nonlinearity of

the input/output relation.

This proposed method focuses on the development of a general algorithm rec-

ommendation framework based on input/output parameters before deeply investi-

gating physical interactions between PBF parameters. As such, it is necessary to

understand the general factors that cause the uncertainty in PBF processes. Beaman

et al (1997) first introduced the concept of energy density for AM, which is described

by the following Equation [121]:

Eρ =
4P

πr2
2r

v

2r

s
(5.1)

where Eρ is Energy density, P is laser power, r is beam radius, v is scan speed, and s

is hatch spacing.

This equation indicates higher laser power, lower scan speed, and closer hatch

spacing produce higher energy density. More energy delivered to the powder usually

means better melting conditions. Improved melting conditions will result in lower

porosity and thus higher relative density. For example, Meier et al (2008)’s experi-

ment with the metal laser sintering process shows the relative density increases from

69% to 99% with a power increase from 30W to 90W with other parameters held con-

stant [122]. Another study [123] concluded higher energy density tends to produce

a continuous melting track against irregular melt shape. These findings imply the

linear relations may be more likely if the involved input/output parameters can be

related to an overall energy density dependency.

In contrast, nonlinear relations were found in studies on outcomes related to

part microstructure. Meier et al (2008) found surface roughness is not monotonically

increased with scan speed, with the optimal roughness obtained in the middle of the

range of scanning speeds tested [122]. Other research suggests that microstructure
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varies throughout the entire PBF part, and thus can be considered a local rather

part-wide property. Wang et al (2012) found the hardness tests at different loca-

tions/directions in the same AM part produce different results [124]. Similarly, stud-

ies of thermal conditions indicate that variation of thermo-physical properties of AM

parts are complicated [125].

Figure 5.3: Hypothetical relation of input/output correlations

Figure 5.3 summarizes the hypothetical relation of input/output correlations

observed in the literature. The thick arrow in the middle of the figure represents

the relation from linear to highly nonlinear. The arrow (right to left) on the top

represents whether the input parameters can be classified as related to energy density

or not. The bottom arrow (left to right) represents whether the outputs are in macro-

scale or micro-scale. The observations performed in this section pertain to linearity

of input/output relationships. Figure 5.4 illustrates the more general case to which
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these techniques may be applied.

Figure 5.4: General case to model input/output relationships

Figure 5.3 can be used to summarize past literature results for the particular

case of PBF. As discussed, laser power, layer thickness, and scan speed are input

parameters that relate to energy density. Pulse frequency is located in the upper

right corner since it is unrelated to energy density. For outputs, relative density

is considered a high macro scale property as it depends on part width rather than

local porosity. Surface roughness, however, relates more to AM microstructure. For

the problem that involves the parameters in Figure 5.5(a), the link between inputs

and outputs intersects with the bold arrow on the left. Figure 5.5(b) indicates pulse

frequency and surface roughness have a highly nonlinear relation. Figure 5.5(c) and

Figure 5.5(d) demonstrate the limitations in past research.

Figure 5.5 visually summarizes the relation between different combinations of

PBF parameters observed in the literature. However, it must be stressed that, like

the literature, it only summarizes some of the parameters of interest, and might not

be sufficient to guide metamodel selection, especially in the case of indeterminate

parameter sets. A more rigorous mathematical solution is thus needed, which will be

introduced in next subsection.
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Figure 5.5: The use of AM input/output correlation chart

5.4 Domain-Driven Model Recommendation Frame-

work

An exhaustive search, which is also known as the generate and test method, is

the most general problem solving technique for systematically enumerating all pos-

sible candidate algorithms and selecting the most appropriate candidate based on a

set of criteria [126]. While it is a global optima algorithm, it is also extremely in-

efficient, especially for those problems with abundant candidates and/or large input
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datasets. In such cases, it may be more efficient to incorporate prior knowledge into

the algorithm selection process.

Many selection or recommendation techniques were developed to improve the

efficiency of exhaustive search. Rice’s model [112], for example, can recommend the

best candidate for a new instance based on previous model selection knowledge. It in-

cludes four spaces: the problem space P represents the datasets of learning instances;

domain space F contains the characteristics; algorithm space A includes all candidate

algorithms; performance space Y is the measured performance of instance P for each

algorithm in A [112]. Rice’s model compares characteristics of a new instance to all

previous examples and then assesses the suitability of each algorithm based on a set

of rules or a selection algorithm. The model findings can be used to select the optimal

algorithm from a given problem. Once the solution is derived, the performance in the

new instance is added to the performance space Y, updating the model with a new

point. In this way, a user can avoid exhaustively testing each candidate algorithm

for a new instance [83].

The proposed domain-driven method is built upon Rice’s algorithm selection

method. However, instead of using data-features to characterize the new dataset,

this proposed AM framework uses AM knowledge to indicate a possible optimal op-

tion from candidate algorithms. This approach is fundamentally different than Rice’s

method in that the result can be independent of the unfixed data strategy and rely

on the relatively fixed knowledge of the physics of the problem. The AM character-

istics used are the relations between input/output parameters discussed in previous

subsection. The general workflow of the proposed framework is shown Figure 5.6. It

requires sufficient knowledge to commence the selection process. Knowledge construc-

tion consists of collecting existing datasets, classifying the instances, and computing

the performance of each candidate algorithm on each dataset. The extracted infor-

mation is then fed back into the current knowledge model and the system predicts a
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possible optimal metamodeling algorithm. Before proceeding to model construction

with actual data, the newly calculated solution updates the knowledge model. Details

of each critical step are discussed in the rest of this section.

Figure 5.6: General workflow of the proposed framework of AM domain-driven mod-
eling selection method
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5.4.1 AM Characterization

The AM characteristics mentioned at this stage are AM input/output param-

eters. At this step, all parameters are formed to input vector X̄ of the selection

framework:

X̄ = [x1 x2 x3 . . . xn y1 y2 y3 . . . ym]
T (5.2)

where x and y are the inputs and outputs respectively and are equal to 1 or 0. 1

indicates that the problem includes the parameter and 0 indicates the parameter is

not considered. These vectors are the inputs to the learning process. For problems

that have exactly the same outputs, y can be ignored.

5.4.2 Performance measurement

Measuring model performance of known datasets is critical to improving model

selection accuracy. Two criteria were employed in the case study in next subsection

to evaluate the modeling performance by a set of candidate algorithms. For global

measurement, normalized root mean square error (NRMSE) [83] is used. Maximum

relative error magnitude (MREM), on the other hand, is used to evaluate the out-

standing error of the models [127]. These were formulated as:

NRMSE =

√∑N
i=1(yi − ỹi)2

N

/
(ymax − ymin) (5.3)

MREM = max

(
|yi − ỹi|

yi

)
(yi ̸= 0) (5.4)

where yi( ̸= 0) is the actual observed value, ỹi is the estimated value from the meta-

model, ymax and ymin are the maximum and minimum actual observation, and N

is the total amount of validation samples. With NRMSE and MREM, the frame-

work can make its recommendation based on both global and local performances of

the datasets by assigning appropriate weights to each criteria. Note, if yi is very
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small, MREM could represent noise and be very large. This is a potential limitation

of MREM. In this study, yi is always an actual AM output that not close to zero.

However, if the small yi number is appeared, it should be removed to avoid noisy veri-

fication result. At this stage all case studies consider the NRMSE and MREM criteria

equally to not bias either way. However, in some cases, these two objectives could

conflict. Under these circumstances, a user could deploy a weighted multi-criteria

decision making formulation.

5.4.3 Prediction Process

The prediction process of the proposed recommendation framework could be

completed by either model-based or instance-based methods. Model-based methods

build predictive models to determine the optimal modeling algorithm. The predictive

selection is based on an input vector X̄ (model variables) and the resulting model-

ing performance (model outcome). Once the model is built, the new instance with

PBF-related information in X̄new would then import to the model and calculate the

predictive result. The model-based method is similar to what is discussed in previous

subsection. For example, the vector X̄ is the input variable set of the recommended

predictive model. The values of NRMSE and MREM then become the predictive

results. Once the recommended model is built based on existing instances, the model

can predict the NRMSE and MREM of candidate algorithms for a new problem. The

user can decide which algorithm would be employed according to these indicators of

model performance.

An instance-based method by comparison solves the problem based on existing

examples. It assumes an algorithm has similar performance on similar problems,

where the similarity is measured by Euclidean distance between instance input and

output vectors. The k-nearest neighbor (k-NN) ranking approach as was employed

in this study. The k-NN approach ranks the nearby k nearest examples for their
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similarity. However, the simplest case of k-NN is the closest neighbor example based

on the comparison of the Euclidean distance of all examples, which also called as

1-NN. The formulation of 1-NN is:

dist(i, j) =
√

(ai − aj)2, j = 1, 2, 3, . . . ,m (5.5)

Where ai represents the new instance, aj represents the existing examples, and m is

the total number of examples. In the case of the metamodeling algorithm, a set of

datasets composed of input and output parameters would serve as the existing points,

each of which has been characterized by a set of metamodels. By comparing the input

parameters (aj) to those used in the new dataset, the user can then determine how

similar the data is to a known dataset. At this point, users would simply compare the

performance of various modeling algorithms in the existing examples. Thus, a likely

best predictive modeling algorithm can be chosen without costly characterization

of information and data features of the dataset. This saves the cost of testing all

candidate algorithms individually, allowing the user to directly proceed to model

construction and parameters optimization. A demonstrative example in the following

section shows how the method works.

5.5 Demonstrative Case Study

A simple example was constructed from existing AM datasets (2 for construct-

ing knowledge and 1 for verification) to illustrate the proposed AM domain-driven

framework. Tang et al (2003)’s and Morgan et al (2004)’s metal PBF datasets were

used to construct the knowledge base [116, 120]. The dataset from Chatterjee et al

(2003)’s was selected to verify the selection accuracy [52]. The three datasets have

the same output parameter, relative density. Because of this, the Ȳ output vector is

omitted, and the results obtained may potentially be more accurate since the knowl-
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edge is constructed from somewhat similar examples. The 1-NN method was used

to predict the optimal modeling algorithm. The predicted algorithm was then com-

pared to actual modeling results with all candidate algorithms to assess the predictive

solution [52].

5.5.1 Knowledge construction

The knowledge used for model predictions was composed of a small dataset

with 15 samples [116] and a large dataset with 105 samples [120]. They were selected

to build the knowledge model because of their similarities: 1) both are metal PBF

process; 2) both use similar experimental conditions; 3) they have the same output

as the new dataset (relative density). The differences between them also provide op-

portunities for future model selection for new instances, namely: 1) they use different

input parameters; 2) they use a different DOE strategy and 3) both have different

variables that are not considered in DOE such as materials and specific machines.

Thus, the knowledge base of these datasets is reasonable and has useful variation.

For initial construction we consider 6 independent input variables, though

neither dataset can cover the parameter of layer thickness. The two datasets overlap

in individual parameters. The matrix of the inputs is shown in Table 5.1. Note,

the order of input parameters that are in the table and elements in the vector are

constantly fixed for a future prediction process.

Table 5.1: The inputs matrix of given datasets

Laser
power

Scan
speed

Powder
density

Layer
thickness

Pulse
frequency

Hatch
spacing

Tang (2003) 1 1 1 0 0 1

Morgan (2004) 0 1 0 0 1 1
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Writing these inputs as input vecors:

X̄tang = [1 1 1 0 0 1]T (5.6)

X̄morgan = [0 1 0 0 1 1]T (5.7)

The output vector Ȳ is omitted in this case study since both knowledge and verifica-

tion datasets have the same target output–relative density.

Three algorithms were used to characterize both input datasets. A PR model

was built using the pure quadratic regression method. The Kriging model is built

by ordinary Kriging method and the Gaussian correlation function with maximum

likelihood approach. The ANN model is defined with 10 hidden layers. It should

be noted that the candidate algorithms used in this case study are not meant to

be exhaustive, but rather to represent a set of common modeling approaches. To

calculate the performance, each original dataset is divided into training and testing

sets with fixed ratio 80% and 20% using the Latin Hypercube based Minimum Eu-

clidean Distance method [127]. For Tang et al (2003)’s dataset, PR works the best

from three candidates as both NRSME (0.1580) and MREM (0.0220) are the lowest

(Table 5.2). However, in the second dataset the Kriging model tested was found to be

the best possible choice among the candidate algorithms. Thus, at a system level the

knowledge base indicates: 1) while X̄tang = [1 1 1 0 0 1]T , recommend model=PR;

2) while X̄morgan = [0 1 0 0 1 1]T , recommend model=Kriging. The future model

selection process is built based on these rules.

5.5.2 Modeling Algorithm Recommendation

The verification dataset consisted of 13 samples manufactured using the metal

PBF process [52]. Compared to the datasets in the knowledge model, the experiment

used carbon steel powder instead of stainless steel or a copper alloy, and has the
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Table 5.2: Model performance of both datasets for three candidates

NRSME MREM

PR Kriging ANN PR Kriging ANN

Tang (2003) 0.1580 0.1757 0.5603 0.0220 0.0230 0.1642

Morgan (2004) 0.2018 0.1332 0.3917 0.1055 0.0669 0.1866

smallest sample size (13) and number of input variables (2). The two input variables

were layer thickness and hatch spacing, resulting in an input vector of:

X̄new = [0 0 0 1 0 1]T (5.8)

Based on 1-NN approach, the Euclidean distance between the new and former datasets

are:

dist(new, tang) = 2 (5.9)

dist(new,morgan) = 1.732 (5.10)

The knowledge model at this stage is likely insufficient due to a very limited

number of example instances. Though it has these defects, the distance results show

that the dataset is closer to Morgan’s data than Tang’s. Thus, the recommended

algorithm would be a Kriging model. Once confirmed, the result can be used to update

the current knowledge model with a new instance – while X̄tang = [1 1 1 0 0 1]T , and

Y is relative density, the optimal candidate model is Kriging. Once this is done, the

updated knowledge model was updated and can cover the aspect of layer thickness.

For verification, the performance of each candidate model with the new dataset

is shown in Table 5.3. All models were constructed using the same methods and

model parameters as in the knowledge model datasets. Based on the performance

measurement, Kriging model shows small advantages in both NRSME and MREM

compared to the PR and ANN models. Thus, the result is consistent with the solution
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predicted using the framework.

Table 5.3: Model performance for the new dataset

NRSME MREM

PR Kriging ANN PR Kriging ANN

Chatterjee (2003) 0.3374 0.3186 1.0447 0.0282 0.0257 0.0681

5.6 Discussion

The AM domain-driven metamodeling recommendation framework has the

potential to provide an efficient and reliable way to predict the optimal metamodel

for a new problem. It is efficient as it can avoid exhaustively testing all possible

candidate algorithms once a sufficient knowledge model is constructed. Moreover, the

solution can help to direct future model construction when considering data-features

that might allow the user to hone in from a broad class of algorithms to a specific

one. The general framework was established based on the hypothesis that certain

combinations of input/output parameters have consistent behavior. The predictive

solution could be made more reliable if it were derived from a larger set of consolidated

knowledge. A simple demonstrative case study that included three distinct metal PBF

datasets shows the algorithm prediction process.

Though the proposed framework shows a multiple of advantages in AM meta-

modeling problems, the details of the method need further improvement. The current

set of candidate algorithms is limited, including only PR, Kriging, and ANN. While

suitable for demonstration, this limited size of candidates potentially restrains higher

model performance of new datasets. Furthermore, each model only has the basic

modeling configuration without the ability for user modification. It may cause false

results due to incomplete consideration of modeling options. For example, the find-
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ing that the ordinary Kriging model works better than a pure quadratic regression

model does not mean that it also works better than a higher order PR model. With-

out consideration of the range of available algorithm types, the current framework

may mislead the user. To overcome these disadvantages, more detailed metamodeling

techniques should be added to the current framework. This work is being undertaken.

Beyond adding more broad classes of algorithms, subclasses of algorithms also

need to be considered for a more robust solution. For example, consideration of

different Kriging methods might enrich the study. Simple Kriging, stochastic Kriging,

and dynamic Kriging may further define the Kriging class in the set of candidates.

In addition to adding more algorithms, it may be useful to bring modeling guidelines

into the framework. For example, such guidelines might indicate that ANN may not

be well suited for use with small datasets. Such considerations may improve the

predictive accuracy of the framework for a larger breadth of datasets.

For the specific case of AM and the PBF process, algorithms for the AM

characterization process also need further improvement. There are more than 50 in-

dependent variables in metal PBF process [48, 113]. This study has included less

than 1/3 of them. Another disadvantage is that the framework can only count cate-

gorical input/output vectors, rather than considering broad classes of inputs and the

relative similarity between different types of variables. For example, in the review of

the literature, variables relating to energy density were found to behave very similarly

within a range of outputs. This is knowledge that might improve the model selec-

tion process. If included in the knowledge model, the system could possess greater

insight when calculating the distance between instances. More robust parameter

classification may thus be needed for more accurate prediction. Similarly, as research

continues, the vectors can be further detailed and classified in multiple levels based

on process knowledge and empirical data. For example, materials could be classi-

fied as 0 (single component), 0.5 (multiple components without steel), or 1 (multiple
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components with steel), or using some other scheme to provide greater insight into

problem similarity. However, development of reasonable methods requires a more

comprehensive understanding of AM processes.

All of this suggests the need for a hybrid approach that utilizes a combina-

tion of process-specific knowledge and experience, algorithmic knowledge and dataset-

specific considerations. The process knowledge might consist of empirical input/output

relations as in this paper, utilize knowledge of problem physics to assess the similarity

of datasets and suggest several candidate classes of algorithm. Algorithmic knowl-

edge might consist of a well defined model of broad algorithm classes and subclasses,

and defined model and data attributes that affect their performance. Simple data

features such as sample size and the utilized DOE methods could then be used.

The most important challenge in this work currently is a lack of data to con-

struct a more reliable knowledge model. In the case study, the naive knowledge

model consists of only two instances. To improve the model, more AM knowledge is

needed. In the current knowledge model, only empirical datasets can be used to build

the knowledge model. Simulation models might be used to enhance the knowledge

model. For example, Ma et al (2015)’s FEA model has 10 independent AM input

variables, which may allow the framework to include a broader range of problem

physics [76]. Formal information models may also contribute to better knowledge

construction. More candidate metamodeling algorithms should be considered into

such information models to not limit the overall performance. Recent development of

an AM ontology might provide the basis for more effective utilization of process spe-

cific knowledge. If this information can be utilized in a future version of the proposed

framework, it can potentially boost its predictive ability and accuracy.
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CHAPTER 6

MAXIMUM PREDICTIVE ERROR UPDATING
METHOD

6.1 Overview

In Chapter 5 we have developed the method to optimally select the metamod-

eling algorithm based on existing knowledge. Once the algorithm is selected, the next

step is to maximize the predictive accuracy of the metamodel. Building metamodel

using historical data is challenging since the data points may not what exactly wanted

for the new problem. The desired data point may not exist in given dataset. Or there

may be redundant data points that would not contribute to the new problem. Though

one could generate additional data points, this requires that the new experiments can

fully replicate the former experimental conditions. This can be extremely difficult

if the data is adopted from historical experiments. If the conditions are not match,

additional data may increase the uncertainties.

To address this challenge, this chapter analyzes and prescribes metamodeling

techniques to select optimal sample points, construct and update metamodels, and

test them for specific and isolated physical phenomena. Case studies of two different

laser welding experiments are presented to illustrate and validate this method.
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6.2 Background

AM processes are more complex, variable, and difficult to understand than

subtractive manufacturing [48, 128]. Typical AM processes implement material pat-

terning, energy patterning, new layer creation, and support from previous layers [129]

to realize shape, material, and hierarchical complexities [130].

Material properties of AM-produced parts often depend upon the process pa-

rameters. For example, platform temperature, building direction, and post heat treat-

ment influence the part microstructure that determines fatigue properties of selective

laser melting parts [131]. Further, variations in layer thickness and hatching distance

settings have affected material porosity along with hardness and density [52].

Various models have been developed in recent years to describe complex AM

process-structure-property relationships. In spite of advances in model accuracy, the

enormous computational cost of complex, high-fidelity physics-based simulations of

AM makes these models impractical to adopt in industry [132, 108]. A more preferable

strategy is to utilize surrogates, or metamodels, as they provide a “model of the

model” to replace the expensive simulation model in design and optimization processes

[80]. Metamodeling has been used successfully as an alternative to computationally

expensive simulations in aerospace and other advanced manufacturing domains. [132,

133].

Currently, varieties of metamodeling techniques are applied in engineering de-

sign. Several comparative studies present the performance of these various techniques

under different modeling criteria [132, 134]. Generally, different modeling methods

show both advantages and disadvantages for different types of problems. These dis-

advantages include orders of nonlinearity and problem scales [132]. To simplify expla-

nation in this chapter, we mainly focus on the PR and Kriging Method for metamodel

construction to illustrate selection of the most applicable metamodeling techniques

for these specific cases.
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In spite of the benefits envisioned through the use of such metamodeling tech-

niques, very little research has been done in this area. Some notable exceptions include

a polynomial regression model of density, hardness, and porosity of a carbon steel se-

lective laser sintering process [52], porosity predictions in selective laser melting [135]

and an energy density model of CoCrMo powder material [123]. These approaches

are limited to experimental designs for a specific portion of an AM process. There

is a need for a complete AM metamodeling methodology to construct and integrate

local metamodels [22] for robust prediction of AM process results. Challenges for the

AM situation include cost of experimentation [136], accuracy of simulation capabili-

ties [137], and complex interactions of different physical phenomena during the AM

process [138].

This study aims to investigate metamodeling as a means to generate accu-

rate predictive models compatible with a composable multilevel structure, defined as

made up of highly reusable models that can be used together and mirror the general

AM process model [22]. Such a metamodeling methodology will be able to address

the challenges in AM processes such as high system complexity, uncertainty, and

limitations of legacy data conducted by design of experiments (DOE) that design-

ers may need to rely on due to the expense of producing experimental sample parts

[22, 136, 139].

Section 6.3 introduces methodical approaches to construct and test individual

metamodels. A pair of case studies in Section 6.4 illustrates the potential effectiveness

of these approaches. Section 6.5 discusses this work and potential future work.
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6.3 Development of Model Updating Method for

AM

This section introduces a predictive metamodeling approach to address some

of the unique challenges particular to metamodel construction to represent the various

sub-processes in AM. The following subsection explains the rationale of this method-

ical approach based on the challenges identified previously in this paper related to

predictive metamodeling for AM processes.

6.3.1 Minimum Euclidean Distance (MED) Method

Eddy et al’s prior work addressed a similar situation of metamodel construction

in non-ideal data locations for design space filling [140]. This work identified Latin

Hypercube Design (LHD) as a potential approach for the reasons given in the last

subsection. Given the inability to choose the points at the exact locations identified

by an LHD sample set generation, this work proposed a method to find the minimum

Euclidean distance between each identified data location and the data point identified

in the data set [140]. The procedural steps begin with the generation of the desired

amount of LHD points from a given data set. Next the Euclidean distance is calculated

between each DOE data point to the generated LHD points by the Maximin method.

Those points closest to the desired LHD points are selected for constructing the

metamodel. Since the selected DOE points depend upon the LHD points, selection

of the initial points from these LHD results is critical to improvement of metamodel

construction. Such methods as Maximin LHD [40], orthogonal array-based LHD [141],

and optimal Audze-Eglais uniform LHD [142] can generate optimal LHD sampling

points.
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6.3.2 Maximum Predictive Error Updating (MPEU) Method

Shao and Krishnamurty developed a surrogate model based design optimiza-

tion (SMBDO) method to sequentially update a surrogate model by capturing the

critical features of an unknown system in a simulation-based experiment [143]. Simi-

lary, a comprehensive adaptive sampling methodology is presented in Sandia’s Dakota

framework [144] to enable selection of successive sample points based on the maxi-

mum distance from existing points or the uncertainty of model prediction. Based on

these methods, the initial LHD sample points are used to construct the initial sur-

rogate model. During each updating step, potential optimal locations predicted by

the current model are then validated. Those points that exhibit high predictive error

are then added into the current model iteratively until the desired model accuracy is

obtained. However, the clustering based multilocation search procedure of SMBDO

and the adaptive sampling method both rely upon an ample supply of data points

from efficient computer simulations, which is simply not realistic in this case. Thus,

there is a need to develop a model updating method for the limited data sizes inherent

with using historical data for metamodel construction.

To address these challenges and limitations, we introduce the Maximum Pre-

dictive Error Updating (MPEU) method to gradually improve model accuracy. Figure

6.1 outlines the general framework of the MPEU method using the MED method to

select the most appropriate sampling points from original DOE data. The method

begins by generating LHD points using the maximin method in the design space

given by the data. The Kriging method with a Gaussian correlation function was

employed to build the surrogate models. Then, the points are selected to construct

the initial metamodel by using the MED method. A validation procedure next deter-

mines whether the current surrogate model needs further improvement. MREM(5.4

and average relative error magnitude (AREM) are used to test the metamodel for
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predictability at each iterative stage of model updating:

AREM =
1

m

(∑m
i=1 |yi − ŷi|

yi

)
(yi ̸= 0) (6.1)

where yi is the observed value from given data, ŷ is the value predicted by the meta-

model of the DOE points that were not selected to construct the metamodel, and m

is the number of data points.

If either error calculation exceeds a preset threshold for robustness, the point

presenting the largest predictive error is added into the initial sample pool. A new

model is created based on the new sample set. The model creating-validating proce-

dure will iteratively proceed until both MREM and AREM satisfy the preset threshold

value for robustness. This is the MPEU method that sequentially infills the sample

set by updating the model to improve the resulting metamodel construction.

Verification and validation techniques must test the metamodel at each stage

[78]. Verification tests the internal consistency of constructed metamodels and valida-

tion tests reliability with external data [44]. To validate the newly built metamodel,

a model validation criterion is established based on the prediction accuracies [78] of

all non-selected DOE points. If the MREM and AREM are both greater than a spec-

ified preset threshold value for robustness, the data point with the lowest prediction

accuracy (or highest MREM value) would be added into the current sample pool and

the metamodel is updated accordingly. Subsequently, the newly built metamodel

will be validated again with the same process iteratively until convergence to within

the threshold MREM and AREM values. Thus, effective model construction can be

achieved efficiently by combining predictive metamodel construction simultaneously

with validation to robustness requirements.

The preset threshold values of MREM and AREM are based on design require-

ments such as penetration depth and melt pool width. Both average and maximum
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error are involved in the validation process since they represent general and distin-

guished model performance. A designer would need to decide on what model accuracy

and predictability are necessary or acceptable before model construction [140]. An

unnecessarily low threshold value may significantly increase the computational cost.

Conversely, an excessively high threshold value may reduce model predictability and

utility. The following section demonstrates the potential use of these proposed space

filling and sequential infilling techniques in a pair of case study examples.

Figure 6.1: Maximum Predictive Error Updating (MPEU) Method

76



6.4 MPEU Method in Advanced Manufacturing

The laser welding process is used in the case studies reported in this section

due to its similarities to directed energy deposition processes. In both applications, a

heat source fuses metal as it is being deposited. The processes share similar process

parameters and their quality is determined by similar metrics (dimensional accuracy,

surface finish, residual stresses and mechanical properties, all of which can be traced

back to the geometry of the melt pool). With that said, data is more readily available

for laser welding, making the process a good candidate for demonstrating proof-of-

concept.

The following two case studies illustrate the potential applicability of the pro-

posed MPEU method for different DOE data. Both cases focus on the same response

of the penetration depth (P). The cases have similar experimental methods but dif-

ferent DOE strategies. These two simple and somewhat similar experiments help to

illustrate various results that can be expected from different data sets. This section

shows the potential to deploy methods to construct and test various individual AM

metamodels by use of the method introduced in the prior subsection.

6.4.1 Full Factorial DOE Data Set

In the first case by Kahn, et al. [145], laser power (LP), welding speed (WS),

and fiber diameter (FD) are the input variables. Among those three variables, LP

and WS ranged from 800W to 1100W and 4.5m/min to 7.5m/min by three linear

levels, with midpoint 950 and 6.0 respectively. The third variable of FD has only

two levels at values of 300m and 400m FD [145]. The full factorial DOE consists

of eighteen total data points for penetration depth, measured in micrometers after a

standard washing procedure and with no special heating treatment.

The first step is generating an LHD sample set in the design space. In this case
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the LHD set consists of five points in order to give the initial model enough options

for future updating. Fewer start points may not adequately cover the design space.

Using the MED method described in the previous section, the Euclidean distance

between each LHD point and DOE point are calculated. Table 6.1 lists the initial

data points selected by the MED method. The first column represents the standard

order number of each point in the original DOE. The initial metamodel would be

constructed from these five points.

Table 6.1: Initial data points generated by MED method

Input variables Observed value

Data point number LP(W) WS (m/min) FD (µm) P (µm)

1 800 4.5 300 960

5 950 6 300 950

6 1100 6 300 1180

14 950 6 400 727

17 950 7.5 400 580

From the collected data, the initial metamodel is built using a standard kriging

method. Kriging has built-in verification of internal consistency to prevent the error

that can occur when RSM is used. The remaining thirteen data points next validate

the metamodel by calculation of MREM and AREM as explained in the prior section.

Model updating is next done iteratively by applying the MPEU method, as described

in the prior section, to the preset thresholds for robustness of ϵMREM ≤ 10%, and

ϵAREM ≤ 5% in this case.

Table 6.2 lists the results for this example of the first four iterations of the

MPEU method. Note that each sequential iteration represents the validation results

calculated by the current updated metamodel. Only the points showing the most

significant error are included in this table. At each iteration, the point with the
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Table 6.2: MREM and AREM at each stage

Iter
Data Input variables Observation Predictive

MREM AREM
point LP WS FD P value

Stage 1

3 1100 4.5 300 1610 1108 31.12%

28.37%
7 800 7.5 300 560 891 59.18%∗

12 1100 4.5 400 1307 875 33.02%

13 800 6.0 400 577 818 41.86%

16 800 7.5 400 492 756 54.43%

Stage 2

3 1100 4.5 300 1610 1339 16.79%

11.10%
9 1100 7.5 300 880 1019 15.76%

11 9.5 4.5 400 1043 899 13.82%

12 1100 4.5 400 1307 1094 16.31%

16 800 7.5 400 492 385 21.70%∗

Stage 3

2 950 4.5 300 1290 1107 14.20%

14.26%
3 1100 4.5 300 1610 1244 22.71%

11 9.5 4.5 400 1043 845 18.93%

12 1100 4.5 400 1307 882 35.53%∗

15 1100 6.0 400 920 806 12.37%

Stage 4

2 950 4.5 300 1290 1241 3.81%

3.71%
3 1100 4.5 300 1610 1471 8.57%∗

8 950 7.5 300 730 702 3.87%

13 800 6 400 577 539 6.65%∗

15 1100 6.0 400 920 963 4.62%

greatest MREM is marked with star. At stage 1, the point at standard order 7 is

selected by adding it into the initial sample pool since it shows the highest MREM

(59.18%). As a result, after the third iteration both the MREM and the AREM values

satisfy the preset threshold value. According to the MPEU method, the updating

process converged to construct the final metamodel with eight DOE data points at

8.57% MREM and 3.35% AREM. Figure 6.2 shows the error values at each iteration.
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Note that the MREM and AREM values did not always decrease monotonically prior

to the final stage, as one would expect in the early stages in any numerical iterative

approach, but shows monotonicity and convergence towards the end. Similar trends

were observed in the application of SMBDO to several classical simulation-based

model updating case studies [145].

Figure 6.2: Error at iterations

In this first case study a two level, three factor DOE strategy becomes the

only choice if one prefers to create the model by classical DOE techniques without

collecting new experimental data. Beyond the proposed MPEU method and a two

level DOE method, another compatible sampling method is a random search method.

However, this method is not recommended here due to its uncontrolled behavior. The

comparison results of AREM and MREM between random search method, two level

full factorial DEO method, and MPEU method with different threshold values are

listed in Table 6.3.

As shown in the table, both AREM and MREM of the model built by the

MPEU method are significantly lower than the random search and DOE methods

when the sample size is the same. When gradually reducing the threshold values of
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Table 6.3: AREM and MREM results of random search method, two levels full fac-
torial DOE method, and MPEU method

Random DOE MPEU

Sample size n=8 n=8 n=8 n=10 n=12

AREM 22.76% 7.76% 3.35% 2.44% 1.94%

MREM 59.16% 12.99% 8.57% 4.74% 5.18%

AREM and MREM, the MPEU method typically incorporates a few more points to

improve the model accuracy to the new convergence requirements.

Table 6.4: Comparison of different point selection strategies

Single stage sampling MPEU method
Improvement

Sample size n=8 n=8

AREM 7.60% 3.35% 55%

MREM 12.66% 8.57% 32%

With the MPEU method, the model is iteratively improved by updating sample

points. However, only the initial sample points can evenly distribute across the given

design space by use of the MED method. Newly updated points are selected based

on the validation results from previous iterations without considering their location

in a design space. As shown in Table 6.4 the metamodel that is constructed by

sequential infilling reduces prediction errors at comparable sample sizes. Thus, despite

the possibility of the initial five data points not adequately filling the design space,

the MPEU method shows potential to generate a more accurate model through the

updating strategy. The following subsection examines the results of applying this

same method to a situation that provides fewer data points in a data set.
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6.4.2 Fractional Factorial DOE

The second case study of laser welding DOE data is based on a three factor,

three level Box-Behnken design with full replication [146]. “Beam angle” (BA) in

this experiment replaced the input of “fiber diameter” from the first case study. The

experimental design generated fifteen data points. A mean value of the data set’s

three replicate points reduces the size of the data set from fifteen to thirteen.

Table 5 lists the MREM and AREM values at each stage for those points having

significant predictive error. As shown, the MREM started with five sample points

from 82.00% and gradually decreased to 4.80% after five updates, or six stages. The

error at the start could have a significant effect on the number of iterations required.

It is notable that the error at the first stage is 39% higher than the amount shown for

the first stage in Table 6.2 for the first case study. It is also notable that this second

case study is covering more levels with less data than the first case study.

Figure 6.3: Error at iterations

After applying the MPEU method, accuracies of the final model satisfied the

threshold values (ϵMREM ≤ 10%) and ϵAREM ≤ 5% The error convergence progression

is shown in Figure 6.3. Both MREM and AREM increased slightly during the middle
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stages as new points were added into the previous sample pool.

Table 6.5: MREM and AREM at each stage

Iter Std. order MREM AREM

Stage 1

3 45.89%

34.93%
4 82.00%∗

6 52.50%

8 54.79%

Stage 2

1 15.46%

11.09%
3 22.16%∗

8 21.71%

13 4.79%

Stage 3

3 41.51%∗

15.71%
6 33.93%

8 0.85%

13 16.64%

Stage 4

3 4.48%

4.60%
8 1.30%

9 2.71%

13 13.32%∗

Stage 5

3 17.07%∗

6.16%
6 3.69%

8 3.22%

13 0.65%

Stage 6 9 4.80%∗ 3.72%

6.5 Discussion

The objective of this chapter was to explore a metamodeling methodology

tailored for AM and adaptable to different types of empirical data. To address the
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challenges identified, this work introduces an MED method to select usable sample

points from different types of given data and an MPEU method with an updating

procedure to create predictive metamodels to predetermined robustness requirements

from limited data sets. The proposed MED method can select usable initial sample

points from various types of DOE data since its foundation is based on the LHD sam-

pling method, which is adaptable for most any design space. Though the generated

LHD sample locations may not be occupied by given DOE data, the MED method

can improve selection of more appropriate existing points over other methods.

The MPEU method allows model developers to balance the tradeoff between

model accuracy and computational cost by adjusting the threshold values of MREM

and AREM to achieve specified levels of robustness. As shown in Table 6.3, with

the same number of sample points, the MPEU method, which also utilizes the MED

method, provides a more accurate model than the random search and eight DOE data

points for the example that was tested. The MPEU method also provides an option

if one intends to improve the model at the expense of slightly higher computational

costs. In the first case study, two added new points can significantly reduce the

MREM from 8.57% to 4.74%. Furthermore, the updating strategy of the proposed

method can contribute more to capture the critical features of an unknown system

than simply picking up points from the given data set. As shown in Table 6.4, MPEU

method significantly reduces both MREM and AREM. In other words, the proposed

method focuses more on capturing the critical system features rather than the point

locations.

Despite the advantages in model construction with the MED and MPEU meth-

ods, there are some limitations. Such disadvantages can potentially limit the appli-

cation of proposed methods. For example, since the MED method selects the initial

points through randomly generated LHD samples, each time the MPEU method may

produce different models to the same convergence criteria. It cannot guarantee that
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the generated LHD sampling set is optimal in a given DOE design space. Rather,

the updating procedure depends highly upon the initial MED selected points. With-

out a confirmed starting point, the overall performance of the MPEU method may

decrease. For example, the final model required ten points for construction but left

only three points for validation. Thus, another limitation relates to model validation.

Unlike metamodels generated by computer simulations, historical DOE data is of-

ten not reproducible. One can only rely on the existing data since it is impossible to

gather additional information. In this second case study, the start point accuracy and

resulting number of points remaining to validate the model were not as acceptable

as found in the first case study. This second case study also had less data than the

first case study. While not conclusive, this supports the assertion that the amount

of data or information can have a significant effect on the results of using metamod-

eling methods. Methods such as Grey System Theory that work with little data

or information may be introduced along with this current proposed method [147].

Nonetheless, future work could potentially improve the MPEU method by adding a

check and adjustment process based on the error at the first stage.

Two laser welding case studies in the prior subsection show that the proposed

MPEU method is compatible with different DOE data sets in these cases. The two

data sets have similar experimental conditions such as the same laser source, common

input variables of laser power and welding speed, the same response of penetration

depth. However, one must use these two metamodels separately due to their different

ranges of data locations in the design space. To overcome such a shortcoming or data

limitation, a future goal is to build towards a global metamodel by combing two local

data sets. Such a development may more efficiently utilize different historical data

sources to know more about a process and also raises the issue of uncertainty between

data sets with different sources.

The MPEU method lays the foundation for a predictive metamodeling method-
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ology to use in AM. Next, we would investigate development of a hybrid metamodeling

method through the application of clustering techniques [148] and multisurrogate ap-

proximation (MSA) methods [149] to build the global model by combining data sets

with different input variables, process conditions, or material parameters.
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CHAPTER 7

GREY-BOX METAMODELING FOR
PREDICTIVE ANALYTICS IN AM AND SMS

7.1 Overview

The MPEU method improves the predictive accuracy of the metamodel for

historical data. A critical baseline of the MPEU method is the data points are from the

same experiment. In some cases, however, we may have to combine the datasets from

multiple experiments. Traditional model integration methods require the candidate

datasets have same experimental conditions. Whereas, historical data usually does

not have this advantage if they are from different resources. This condition increases

the predictive error of the integrated metamodel. Therefore, to address this issue, we

need to detect and interpret the differences between datasets.

This chapter develops a two-stage grey-box modeling approach that com-

bines manufacturing knowledge-based (white-box) models with statistical (black-box)

metamodels to improve model reusability and predictability. A white-box model can

use various types of existing knowledge such as physical theory, high fidelity simu-

lation or empirical data to build the foundation of the general model. The residual

between a white-box prediction and empirical data can be represented with a black-

box model. The combination of the white-box and black-box models provides the

parallel hybrid structure of a grey-box. For any new point prediction, the estimated

residual from the black-box is combined with white-box knowledge to produce the
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final grey-box solution. This approach was developed for use with manufacturing

processes, and applied to a powder bed fusion additive manufacturing process. It

can be applied in other common modeling scenarios. Two illustrative case studies

are brought into the work to test this grey-box modeling approach; first for pure

mathematical rigor and second for manufacturing specifically. The results of the case

studies suggest that the use of grey-box models can lower predictive errors. More-

over, the resulting black-box model that represents any residual is a usable, accurate

metamodel.

7.2 Background

Smart manufacturing is becoming increasing possible as access to technology

improves. Industry is, and will continue to be, increasingly reliant on data and predic-

tive analytics to improve overall process efficiencies [8]. With this trend, industry is

now collecting data at never before seen rates in hopes of gaining competitive advan-

tages related to their products and processes. Often data are collected without regard

for their interrelation, and it is not readily apparent how the collected information

can be used to improve system efficiencies. To address this issue, we investigate a

novel metamodeling technique based on the context from which the data was acquired

and the domain in which it is relevant.

White-box modeling methods use knowledge such as rules and theories, to

formulate models such as those that represent physical phenomena. Such classical

white box modeling methods have been used for thousands of years. Newton’s Law

or Euler–Bernoulli bending theory [150] is a classic example of a traditional physical

model. Such models usually require comprehensive knowledge of the target system

and are usually represented by parametric formulation. For instance, in manufac-

turing, physics-based models are often derived from theoretical analysis that mostly
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focuses on individual sub-processes with idealized assumptions. In reality, the actual

multi-physical system of manufacturing may involve numerous interactions among

these sub-processes. Such complexity can be difficult to fully understand. For exam-

ple, in AM, the isotherm migration method develops a thermal model to calculate

the temperature on a powder surface being heated by a laser beam modeled as a

point source [151]. However, the complex inter-relationship between parameters of

Powder Bed Fusion (PBF) processes renders these theoretical analyses insufficient for

the needs of many practical applications [113]. On the other hand, metamodel is a

typical representation of black-box modeling methods.

Either white-box or black-box approach has unique advantages. However, such

metamodels built by pure statistical approaches usually lack information about the

model’s physical meaning and assumptions due to a large degree of data-dependency.

Moreover, modeling inaccuracies might accumulate during the model construction

process due to the lack of physical knowledge about the critical features of the repre-

sented system [78]. Thus, both white and black box approaches alone have accuracy

limitations due to different reasons.

Due to these intrinsic limitations in both approaches, a technique that can

harness the advantages of both white and black box models while reducing their

disadvantages is desirable for complex problems with understood subdomains. The

modeling approach known as grey-box, or hybrid modeling, was invented to combine

the benefits of domain knowledge and empirical information [152]. The models gener-

ated by this approach can obey general physical rules (white box) while optimizing the

parameters from actual experimental data (black box). Many of the newer and less

established white box manufacturing physics-based models and numerical simulations

may be founded on incomplete and/or inaccurate knowledge and idealized assump-

tions. For example, the previously mentioned isotherm migration model in AM does

not account for the influence of powder particle size, part geometry, and environmen-
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tal conditions [151]. The calculated solutions from current AM physics-based models

are usually limited in the scope of what they describe, diminishing their predictive

capability. Though AM metamodels can potentially avoid these errors, they usually

require a large number of expensive samples and may not be reusable. Many examples

in smart manufacturing have similar modeling challenges. These barriers potentially

limit the adaptability of metamodeling in any manufacturing domain. Thus, neither

approach can optimally construct robust, usable manufacturing models alone.

This chapter aims to develop a grey-box modeling approach which combines

the benefits of traditional serial methods (where black and white box knowledge is

applied sequentially) and parallel methods (where knowledge from black and white

boxes is composed before being applied). The result is a hybrid combination of knowl-

edge of physical phenomena and statistical information. To address the challenge of

combining knowledge of physical phenomena with statistical information, a two-stage

approach is used. The first stage deploys a serial grey–box approach to build a statis-

tical black-box model to estimate the errors caused by the inaccuracies in a white-box.

The second stage uses the model from the first stage to estimate the basic solution

and the residual solution. The final solution is a combination of these two.

Section 7.3 provides fundamental background knowledge relating to grey-box

modeling techniques and introduces this general algorithm of a two-stage grey-box

modeling approach for additive or smart manufacturing. Case studies using a general

mathematical example and a representative metal PBF AM problem are presented in

Section 7.4. Section 7.5 discusses the results and identifies future work for this study.

7.3 Grey-box Modeling Method

A grey-box model is a hybrid model that combines different types of models

such as physics-based models, numerical simulation models and statistical models
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[153]. The term “grey-box” stems from the mixture of white-box and black-box

models. A conventional grey-box model uses a physical formulation to maintain the

physical interpretation and uses data to estimate parameters [153]. In general, the

basic structure of a grey-box model is inherited from knowledge and further improved

by experimental data.

7.3.1 Overview of Grey-box Modeling Technique

Grey-box model development can be summarized into three steps: 1) construct

the foundation for the system with a simplified knowledge model; 2) determine the

physical parameters from the description of the system behavior; 3) identify the value

of model parameters from actual data [83]. The relationship between these three

types of model and knowledge sources is shown in Figure 7.1. The proposed grey-box

metamodeling method was developed based upon this viewpoint.

Figure 7.1: Relationships among physics-based white-box, statistics-based black-box,
hybrid grey-box models and knowledge sources

Grey-box models can be generally classified into serial approach and parallel

approaches [154, 155], which are shown in Figure 7.2. A serial approach aims to
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sequentially fill the gap between knowledge and experimental data. For example, the

uncertainties raised from incomplete knowledge of a white-box model can be reduced

by accompanying that model with actual data. A parallel approach, alternatively,

aims to use both models together to estimate the correct results that would be diffi-

cult to approach by either a white or black-box model individually. A grey-box model

with serial structure focuses on reducing the error between the prediction from phys-

ical model and actual result from experiments. For example, Duarte and coauthors

developed a hybrid modeling approach that combined knowledge and mechanistic,

rather than statistical models, to improve traditional model performance [156]. In

this approach, the first model is built based on first-principles system behavior, and

the second model estimates the residuals between real data and mechanistic predic-

tions.

A traditional grey-box model with parallel structure uses data to estimate the

correct values of model responses which are difficult to approach given incomplete

knowledge of phenomena [157]. For example, Psichogios and coauthor’s hybrid neural

network model utilizes a partial first principles model [154]. This modeling approach

combines available prior knowledge with an ANN model to derive an estimator of

unmeasured process parameters. This hybrid structure can interpolate and extrapo-

late much more accurately than a standard “black-box” ANN with significantly fewer

training sample points to accompany the knowledge model.

The next subsection will introduce the two-stage grey-box modeling approach

developed for manufacturing problems in this study. To get the final prediction, the

data serially flows into both types of grey-box models for the purpose of constructing

the black-box model and estimating the residual. To demonstrate this approach, we

chose a complex manufacturing process that we believe could particularly benefit.

The AM-specific grey-box modeling approach is built upon both the Type II serial

approach and parallel approach shown in Figure 7.2 based on current AM challenges.
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Figure 7.2: Basic grey-box modeling approaches
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7.3.2 Two-stage Grey-box Modeling Approach

Many barriers and challenges, such as the large uncertainty of AM process

results, have prevented its further adoption in industry [158]. The relationship be-

tween process parameters and mechanical properties are not fully understood for AM

processes. For example, relative density, one of the major structural properties of

the parts produced by metal PBF processes, depends upon multiple AM parameters

such as laser power, scan speed, pulse frequency, and layer thickness [159]. Previous

studies show that a typical metal PBF process consists of four general sub-systems

classified by related physical phenomenon. Each sub-system can be further divided

into multiple sub-processes [22]. A general AM process can involve more than fifty

independent parameters [113]. For example, the melt pool sub-system is related to a

number of factors that involve both thermal and fluid mechanics [28]. Though diffi-

cult, AM models built upon theoretical analysis, numerical simulation and statistical

modeling have been developed for predictive purposes in recent years [127].

The general procedure to construct an AM grey-box model by using the ap-

proach introduced in this work is shown in Figure 7.3 and Figure 7.4. First, the

method builds the white-box model from available prior knowledge. If knowledge was

derived from theoretical analysis, the white-box model can be directly represented by

a parametric formulation. Alternatively, a parametric model can be derived through

an approximation of a physics-based model using a formulation such as FEA for

computational simplification. However, if the knowledge is based on a complex nu-

merical simulation that requires high computational cost, the white-box model can

be redesigned to be represented by some simplified parametric function such as a

PR response surface model to more rapidly estimate a white box model using fewer

sample points of that expensive data.
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The sampling data to construct that PR model could be collected by a tech-

nique such as space filling sampling (SFS) or sequential infilling sampling (SIS) [148]

from data generated by an adequate number of simulations. It can be expected that

the solution from the white-box model would contain large errors due to limited

knowledge.

Figure 7.4: General workflow of the second stage

The next step is to build a black-box model from additional information. Po-

tential sources of the additional information could be actual experimental data or

a higher fidelity simulation used to generate the data. The black box model cap-

tures both the discrepancy between a lower fidelity FEA type of model and the real

process as well as the discrepancy between a high fidelity model (FEA model) and
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the simplified model. The input values of this additional data are entered into the

constructed white-box model to calculate the corresponding output responses. This

computational output from the white-box model is next compared with the actual

output values of the additional data to calculate each difference. This difference can

be considered the white box model’s actual residual at that data location as shown

in Figure 7.3. Since each pair of the computational output and the actual output

has the same input variables, the residual value directly represents the accumulated

errors caused by incomplete and/or imperfect knowledge used to construct the white

box model. The black-box model is used here to evaluate the relation between input

variables and the estimated residual.

At the first stage, the serial grey-box structure is established based on the

type II serial approach that is shown in Figure 7.2 b: the output from the white-box

becomes an intermediate input to the black-box. This serial grey-box approach is used

to build a black-box model to estimate the residual value that cannot be derived from

the white-box alone. That residual is the difference between the responses predicted

by the white and black boxes. The inputs to the black box are those used to generate

the white-box responses. The black-box model uses the kriging method to model the

relationship between input variable values and residual response values. The kriging

method is applied since this interpolation approach helps to avoid any significant

intrinsic error in the resulting model [92]. Once the black-box is created, it can

compute the estimated residual for any new data point. The approach, illustrated in

Figure 7.3, establishes the black-box model used to derive the grey-box model created

in the subsequent steps shown in Figure 7.4.

Figure 7.4 depicts the second stage of the process, wherein the white-box and

black-box of the residual built in the first stage are composed to a parallel structure.

It is considered a parallel structure because the given values of input variables are

entered into white-box and black-box models simultaneously. The white-box in Figure
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7.4 is the same as the one in Figure 7.4.

However, at this grey-box modeling stage, the output from the white-box

directly estimates the final solution in concert with the estimated residual from the

black-box. For each new data point prediction, the output from the white-box is

used as the basic solution. The residual solution from the black-box is the estimated

residual for that same new data point. The final solution is the combination of basic

solution with its estimated residual, or the results from both stages.

To illustrate the proposed grey-box modeling method, two case studies are

presented in the next subsection. The first, a classical mathematical example of a

mystery function [78, 102] demonstrates the process of constructing grey-box models

from pre-existing knowledge that can be expressed numerically. The second example

illustrates the use of this grey-box modeling technique to predict the relative density

resulting from an AM process and represented by actual experimental data.

7.4 Application of Two-Stages Grey-box Metamod-

eling

To illustrate the method, two case studies are presented in this section. The

mystery function examples illustrate the process of grey-box model construction for

different types of knowledge. A Metal PBF case study is used to test the method

in actual situation. Similarly, MREM (5.4) and AREM (6.1) are used to represent

the model predictability. To illustrate the method introduced in the prior section,

two case studies are presented in this section. The mystery function (7.1) examples

illustrate the process of grey-box model construction for different types of knowledge.

98



7.4.1 Case Study: Mystery Function Problem

A classical mystery function [78, 102] is brought into this study to mimic a

complex unknown system. The function f(x1, x2) that represents a nonlinear and

complex system is used to generate experimental results used for model creation and

assessment. The original equation of this mystery function is:

Y = f(x1, x2) = 2 + 0.01(x2 − x2
1)

2 + (1− x1) + 2(2− x2)
2 + 7sin(

x1

2
) (7.1)

Where x1 and x2 are two input variables and Y is the actual output. The true

surface and contour plots of the original mystery function are shown in Figure 7.5.

To illustrate the effectiveness of this method, the original equation is manipulated

to illustrate a scenario similar to that of an inaccurate white-box model representing

model construction with incomplete prior knowledge. In this situation, a parametric

formulation is accessible before constructing the grey-box. However, another example

simulates a situation where the parametric white-box model cannot be directly derived

from current knowledge. In that case, the prior knowledge was delivered by running a

hypothetical simulation-based model, i.e. the manipulated function fk(x1, x2). These

two examples illustrate how to use this grey-box modeling approach for different types

of problems.

Figure 7.5: (a) True 3D surface plot and (b) contour plot of the original mystery
function
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Case study: Theoretical physics-based model

In this example, the available prior knowledge is assumed derived from the-

oretical analysis and represented by an inaccurate parametric formulation. In this

paper, it is assumed that the white-box models are reasonable representations of the

manufacturing phenomena being modeled, and no validation step was included in our

approach. Thus, to mimic this condition, the original mystery function was modified

to:
Ȳ = fk(x1, x2) =2 + 0.001(x1 − x2

1)
2 + (1− x1) + 2(2− x2)

2+

7sin(
x1

2
)sin(

5x1x2

10
)− 0.4x1sin(2x1)cos(x2)

(7.2)

Where subscript k indicates a function derived from knowledge. Ỹ is computational

output from the white-box model fk(x1, x2).

Plots of the white-box model are shown Figure 7.6 (earlier stage of grey-box

modeling). After the manipulation, the 3D surface maintains its general shape but

several characteristics are changed, which can be observed in the figure. For example,

the original local minima and maxima have shifted and the original sharp ridges be-

came flatter. These changes result from the inaccurate white-box model. If we use the

correct data from the original function to test current white-box model, the MREM

and AREM are equal to 942.43 and 2.74, respectively. The large error indicates that

the white-box model has very low fidelity and large predictive errors.

Figure 7.6: (a) 3D surface and (b) contour plots of manipulated mystery function
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Though the white-box model has defects, it can contribute to a grey-box model.

As mentioned in the last paragraph, the general information delivered from this white-

box model is a reasonable representation of the level of knowledge to be expected

from a white-box since the plots are generally similar to its original shape in that

the local optima are still located close to their original positions. The next step is

to add additional information to the initial, low fidelity prediction obtained from the

white-box model. This high fidelity data is used alongside the low fidelity white-box

prediction to build the black-box model. The additional information was generated

from the original function using Latin Hypercube Sampling (LHS) [160] to generate

100 new data points. These additional data points represent an experimental or high

fidelity model result as they were generated from the original function f(x1, x2), which

is defined as a high fidelity system without significant error.

Figure 7.7: Black-box model construction to estimate residual

Table 7.1: Results at some sample data point locations

Input Actual output Computational output Actual residual

(x1,x2) (y) (Ỹ) (ϵ)

(3.73, 0.98) 6.1881 8.1416 -1.9535

(4.48, 4.03) 9.3751 11.9010 -2.5258

(0.23, 1.83) 3.0593 3.0066 0.0527

(4.33, 2.98) 5.0025 4.7074 0.2951

Figure 7.7 shows the process to construct the black-box model using the Type

II serial approach (second stage of grey-box modeling). The input variables x1 and
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x2 are first entered into the white-box model fk(x1, x2) and used to calculate the

computational output Ỹ . The residual ϵ is the difference between Ỹ and actual

output Y. The input variables (x1, x2) and the residual ϵ are next used to construct

the black-box model Z(x1, x2) using the Ordinary Kriging method. The black box

model is used to compute the estimated error ϵ̃ in subsequent steps. Table 7.1 shows

some examples from the 100 data points for illustration of the process shown in Figure

7.8. For example, one of the additional data points (3.73, 0.98) has an actual output

6.1881. This input when entered into the white-box model yields a prediction of

8.1416. The actual residual � is next derived based on ϵ = Y − Ỹ , which is equal to

-1.9535. Once the black-box model is built from the residual values, it can estimate

the residual of any unknown point from its input variable values. This estimated

residual represents an expected difference between the white-box prediction and an

unknown actual output. As a result, the final grey-box solution Ỹfinal should at any

point be equal to Ỹ − ϵ̃̃. This value combines the results from both stages, as shown

in Figure 7.8. The white-box model in the parallel grey-box structure is the same one

used in the prior serial approach. For any new point, the grey-box would combine

basic solution Ỹnew and the estimated residual ϵ̃new to get the final solution at that

point location.

One thousand randomly generated data points from the original mystery func-

tion were used to validate the resulting grey-box model. The grey-box model has

reduced the initial white-box MREM from 942.24 to 2.7452 and AREM from 2.74

to 0.0359. The 3D surface and contour plots shown in Figure 7.9 are significantly

improved and very close to the true plots of the original mystery function (Figure

7.5).

The grey-box constructed with 100 additional data points improved the initial

white-box model globally. However, the MREM which represents the local error of

the model remains higher than expected. It may be that the information provided by
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Figure 7.8: Grey-box model construction

Figure 7.9: (a) 3D surface and (b) contour plots for grey-box model built based on
100 additional data points

the additional dataset is insufficient. To further test the proposed method, Table 7.2

shows the MREM and AREM of grey-box models that are constructed with different

numbers of additional data points. The top number of zero data points is a case
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where no data is available and the results are derived from the white-box model only.

As shown, the model performance can decrease exponentially with more points in this

process. Convergence criteria can be established to determine the desired accuracy.

Table 7.2: Model performance of additional quantity of data

Number of additional data MREM AREM

0 942.4327 2.7451

100 2.7452 0.0359

200 0.9372 0.0030

500 0.0019 0.0001

Case Study: Simulation-based Knowledge

Many times, a theoretical physics-based parametric model is hard to access for

complex problems. Simulation-based models have become more and more popular

as basic reference points. Here, the initial knowledge-based parametric model fk is

assumed to be no longer available. Instead, a hypothetical simulation model replaces

the former parametric white-box model. As a result, the function fk(x1, x2) cannot

be used to generate the data needed to directly construct a black-box model and a

subsequent grey-box model. Thus, a simplified white-box model is necessary since

it is costly to run a high fidelity simulation for each point. To address this issue, a

PR model was built to represent the white-box model. The manipulated function

in previous subsectio was assumed to be the simulation model. 1000 simulated data

points were generated from function fk(x1, x2) and were used to create the PR model

using LHS. The reason that the manipulated function fk was employed instead of

directly using the original mystery function is because the simulation-based model is
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also assumed to be low fidelity. The white-box model in PR form was generated as:

ỸPR = fPR(x1, x2) =− 0.3048− 2.753x1 − 0.228x2 + 3.543x2
1 + 1.973x1x2 + 1.973x1x2

+ 8.582x2 + 0.5552x3
1 + 0.9604x2

1xx + 0.9191x1x
2
2 + 0.6433x3

2

− 1.103x4
1 − 0.7201x3

1x2 + 0.3864x2
1x

2
2 − 0.5393x1x

3
2 − 1.435x4

2

(7.3)

The R2 value of this PR model is 0.7296. Comparing the PR white-box model

to the original function yields an MREM of 846.6876 and an AREM of 1.9458. This

indicates that this white-box model has poor predictability. This finding is reflected

visually in the 3D surface and contour plots shown in Figure 7.10. In this figure, the

shape is completely different from the original model (Figure 7.5). The ridges on the

original surface disappeared. Thus, it is necessary to use the additional data points

to build the grey-box model.

Figure 7.10: (a) 3D surface and (b) contour plots of the initial white-box model

The general updating process is similar to that shown in previous case study.

The same 100 additional data points were used in this example compare the difference

between to current case study. The Kriging black-box model was formulated by

input variables and the corresponding residual values. The grey-box model was then

developed by combining the PR and Kriging models by the process shown in Figure

7.8. The same validation process was executed to evaluate the model performance

with the same validation dataset that was used previously. The final MREM and

105



AREM of this grey-box model are 3.4318 and 0.0506, which is slightly higher than

using physics-based white-box model with same amount of additional data. The plots

for this grey-box model are shown in Figure 7.11. The results from using additional

data points are listed in Table 7.3.

Figure 7.11: (a) 3D surface and (b) contour plots of the grey-box model built by
simulation-based knowledge and additional actual data

Table 7.3: Model performance of additional data

Number of additional data MREM AREM

0 846.6878 1.9458

100 3.4318 0.0506

200 1.5988 0.0055

500 0.0052 0.0001

7.4.2 Case Study: Metal PBF Problem

This example uses the proposed method to build a grey-box model for a real-

istic PBF problem. Louvis and associates’ experiments with a PBF process measured

the relative density produced by different scan speed (v) and hatch spacing (d) for

different aluminum alloy powders [118]. Relative density is the ratio of the actual

part density to that of a completely filled solid with no porosity. The experimen-
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tal results indicate higher relative density is generally produced by lower scan speed

and closer hatch spacing. However, the relative density has unique behavior for spe-

cific powders and machines. For example, the density of AlSi12 and 6061 aluminum

powder produced by the same parameters in different machines have different results

[118], which indicates the a model built based on 6061’s data may not be accurate

for AlSi12. Instead of building an expensive new model, this study uses the findings

from 6061’s data to construct a grey-box model for AlSi12 for illustrative purposes.

In this case, there is no available physics-based knowledge to build the white-

box model since the only available prior knowledge is from historical experiments.

Therefore, the prior experimental knowledge of 6061 powder [118] was used to build

a PR model to serve as the white-box model for illustrative purposes just as was done

in previous section. The reported measurements from AlSi12 powder were used as the

additional information. First, the 177 data points from the 6061 powder experiment

were used to build the PR based white-box model. The resulting quadratic model

was generated as:

ỸPR = fPR(v, d) = 81.54+116.83v−0.0127d−0.079vd−332.39v2+7082600d2 (7.4)

The initial R2 value of this model is 0.953. The set of 36 data points from

the AlSi12 PBF experiment was divided into two sets. 80% (29 points) of the data

was extracted from the initial dataset to use as additional information for grey-box

construction. The remaining 20% (7 points) of the data set was used to validate the

models. Table 7.4 lists the MREM and AREM for different types of models based on

the data. The 7 validation data points from the AlSi12 experiment were entered into

all three types of models to evaluate and compare the predictive accuracy. The pure

white-box is the PR model built using the 6061 powder experiment. The pure black-

box model represents the model built with the 29 AlSi12 data points with kriging
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method. The grey-box represents the model built with input from both experiments

using the same method presented in the prior sections. As shown, even though the

pure white-box model has low predictive error, the model can be further improved by

the grey-box modeling approach. The MREM of the original model is reduced from

0.0375 to 0.0238, which is a 37% improvement. Compared to the pure black-box

model, the MREM of the grey-box model reduced from 0.0485 to 0.0238, which is a

51% improvement after the completion of both modeling stages.

Table 7.4: The performance of different types of models

MREM AREM

Pure white-box 0.0375 0.0170

Pure black-box 0.0485 0.0169

Grey-box 0.0238 0.0134

7.5 Discussion

Effectively deploying predictive analytics in smart manufacturing is a chal-

lenge. This challenge is highlighted in AM, where current AM models often lack

comprehensive information, and where information could be either knowledge-based

or statistically generated. The lack of the former is typically the result of an in-

complete understanding of the physical processes of AM. The lack of empirical data,

on the other hand, may be caused by the difficulty of instrumenting AM processes,

and more generally, the expense of producing AM parts. Even as more and more

empirical data is available in the coming years, it is still difficult to duplicate all the

conditions and the model predictability for all data sets. The experimental results

can exhibit noticeable differences even where the experiments are operated in similar

AM processes with comparable process parameters. It is also very difficult to build
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the connection between simulations and actual experimental data. These difficulties

result from the uncertainties in and complexities of AM processes. The uncertainties

significantly reduce the utility of AM predictive models since a well-validated model

from one dataset may be difficult to apply to other experimental conditions.

The highlight of the two-stage grey-box modeling approach developed in this

paper is that it can combine disparate knowledge and information together to pro-

duce an accurate hybrid model. To further extract the information from limited

knowledge, this two-stage grey-box structure can functionally improve the predictive

accuracy. However, a smaller sample size is expected in actual AM experiments. It is

thus desirable to further reduce that sample size needed to achieve the higher model

predictability.

The involved metamodeling algorithms were used as primary candidates to

build the grey-box in this work. However, the general modeling process should have

no bias to other black-box modeling techniques. Any suitable algorithm that can

improve the model predictability might be introduced in future work
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CHAPTER 8

DYNAMIC METAMODELING FOR
PREDICTIVE ANALYTICS IN ADVANCED

MANUFACTURING

8.1 Overview

Kriging as an important metamodeling method has been frequently deployed in

this research. In Chapter 5, Kriging serves as a candidate method that would be used

to build the optimal metamodel. The MPEU method from Chapter 6 is developed

based on the characteristics of Kriging method. Chapter 7 builds the grey-box model

by combining physics-based white-box model and Kriging based black-box model. It

can work properly to predict the outcomes in complex and random processes of AM.

However, for large and non-ideal data sets in SMS, the Kriging method may lose its

predictability and efficiency.

To address these potential vulnerabilities, this chapter introduces a novel, dy-

namic metamodeling method that adapts Kriging covariance matrices to improve

predictability in contextualized, non-ideal data sets. A key highlight of this approach

is the optimal linking process, based on the location of prospective points, to alter

the conventional stationary covariance matrices. This process reduces the size of

resulting dynamic covariance matrices by retaining only the most critical elements

necessary to maintain accuracy and reliability of new-point predictability. To further

improve model fidelity, both the Gaussian parameters and design space attributes
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are optimized holistically within a problem space. Case studies with a representative

test function show that the resulting Dynamic Variance-Covariance Matrix (DVCM)

method is highly efficient without compromising accuracy [161]. A second case study

representative of an advanced manufacturing setting demonstrates the applicability

and advantages of the DVCM method, including significantly increased model ro-

bustness.

8.2 Background

In today’s advanced manufacturing systems, model-based system engineering

(MBSE) principles often guide how data are best used to evaluate, optimize, verify,

and validate alternative system models [162, 163, 164]. Common MBSE techniques

such as metamodeling have successfully been used in engineering for simplifying pre-

dictions of behavior for complex systems [78, 89, 90, 103]. In engineering design

scenarios, representative data can be simulated in abundance. However, in process

modeling of advanced manufacturing systems, in which direct data collection is pre-

ferred, accumulating data can be challenging and cost prohibitive [165, 166]. In such

cases, manufacturers are often faced with the alternative of highly complex, high-

fidelity physics-based simulations [108] that may not be representative of the pro-

cess. This chapter introduces a scenario-agnostic dynamic metamodeling approach,

in which the metamodel state is adapted and altered based on localized design space

characteristics. This approach possesses unique capabilities that are able to han-

dle the multifaceted data forms that are representative of advanced manufacturing

systems.

Metamodeling approaches offer an excellent foundation to build predictive

analytics, as they can establish robust models to realistically represent physical phe-

nomena without intrinsic knowledge of the complex system [79, 80]. In predicting
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behaviors of advanced manufacturing processes, as is typical with metamodel appli-

cations, the trade-off between high fidelity and cost-effectiveness becomes a central

issue in the model development process. Model fidelity, which represents the “de-

gree of similarity” [167], can be influenced by multiple conditions, such as sampling

scheme or data quality [78, 148]. A major challenge in the construction of metamodels

of complex manufacturing processes is in the data collection process itself vis-à-vis

how to know where to collect reliable data for model building of unknown systems

prior to model construction [22]. Standard metamodeling methods, such as the Krig-

ing technique [168, 86], are not well suited for advanced manufacturing systems, as

the sampling points can greatly influence the resulting metamodels. To this end, we

has introduced novel techniques to improve metamodeling of advanced manufacturing

systems with methods that recursively update kriging metamodels [127]. We combine

the benefits of kriging with knowledge-based models [169] and use process knowledge

to select the best metamodeling technique [170].

An underpinning of our Kriging-based approach is that the effectiveness of

any metamodeling techniques should be customized to meet the predictive analyt-

ics requirements of SMS. Accordingly, the preferred metamodeling approach is one

that can (a) improve modeling efficiency without permanently eliminating sampling

points from an existing data set; (b) improve the overall performance of a traditional

kriging-based metamodeling process for large and nonideal data sets through modi-

fication of fundamental kriging covariance matrices; and (c) be equally applicable to

construct different types of data-driven manufacturing predictive models. To meet

these goals, this chapter introduces the dynamic variance-covariance matrix (DVCM)

method, developed specifically to dynamically adjust the size of Kriging matrices de-

rived from SMS. Section 8.3 introduces the DVCM method for dynamically reducing

the size of the distance matrices and deriving DVCM parameters for optimization.

To demonstrate the utility of the proposed method, the section “Demonstration of
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the DVCM Method” executes the DVCM method in two case studies illustrative of

different aspects of advanced manufacturing systems. The effectiveness of the method

and results are discussed and summarized in Section 8.4.2.

8.3 DVCM Method

From Section 3.2.2 the number of elements within matrix C from Equation

3.10 for a sampling size of n is n2. It may potentially require O(n3) computations

to obtain the inversion of an n × n matrix [86], where O represents the Big O nota-

tion (computation time taken by an algorithm in computer science) [171]. In these

circumstances, computation of inversion for a very large matrix becomes very time

consuming even for modern computer systems, which indicates that the conventional

Kriging method can lose efficiency when used for the very large data sets that can

occur in manufacturing scenarios. Alternatively, reductions in data may permanently

decrease the predictive accuracy. For SMS scenarios, a preferred method would ac-

count for the balance between predictive accuracy and computational cost.

Kriging matrices and vectors are constructed by relative distance and the

predetermined spatial correlation function (Section 3.13. A value of 1 represents

strongest correlation and 0 indicates no correlation. Figure 8.1 shows an example of

a Gaussian covariogram in which the farthest distance between all given points is 6

and θ is equal to 1.4. For demonstrative purposes, all the numbers are randomly gen-

erated. As shown, the correlation diminishes rapidly to negligible correlation above

radial distance values of 3. For a different Gaussian covariogram, the exact thresh-

old value of the radius may vary because of the different distribution behavior. The

size of the original distance matrix can consequently be reduced by eliminating data

points that are outside of the determined radius. As the DVCM method is dynamic

to maintain model integrity, any elimination is temporary and subject to reevaluation
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when other new points are estimated.

Figure 8.1: Gaussian covariogram for maximum distance of 6 and θ = 1.4

Next, the original distance matrix D is transformed to the dynamic distance

matrix Ḋk, where k is the index of the estimating point. For single point estima-

tion, k is equal to 1. Elements in Ḋk corresponding to non-selected points would

be eliminated from the original matrix D. For example, if d(i, j) is dropped due to

being outside of the radius, the entire ith row and jth column would be erased from D.

Thus, corresponding reductions in the Ċk and Ḃk matrices that determine Λ reduce

the computational cost of inversion from O(n3) to O((n − r)3), where r represents

the number of eliminated elements. For example, an original 100 point problem has

10,000 elements in the matrix, but the reduced matrix only has 2,500 elements (75%

reduction) if half the points are temporally eliminated. Moreover, the propagated

numerical error of the matrix inversion can also be avoided by reduction.

The predictive accuracy and reduction of the DVCM method highly depend

on the value of correlation parameter θ and optimal radius r. From Section 3.2.2, the

optimal value of θ determines whether the covariogram can accurately represent the

unknown system. Different methods have different advantages and disadvantages,
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such as the H-J method’s [100] inability to provide the true optimum despite its

efficiency or the L-M method’s limitation to provide only the local optimum [101, 102].

In this chapter, GA method [103] is deployed to optimize design variables of θ and

r. Parameter θ is the optimal correlation parameter that would be used for the

kriging model, which should be larger than 0 to indicate that the correlation exists.

The upper bound c1 of θ is determined by the covariogram and the size of design

space as determined by the user for a given problem. In this study, it was manually

set to 10. Radius r specifies a distance from the estimating point in which data

points are included in that estimation. The objective function of this optimization

problem minimizes the average relative error magnitude (AREM), given in Equation

8.1. AREM is determined from an independent data set that contains m data points.

Here, parameter yi is the observed value at point i. rlb is the lower bound of r that can

guarantee that the DVCM is not empty, and rub is based on the maximum acceptable

matrix size. The estimated response at point i is a function of θ, r, and data point

values, xi, as shown in Equation 8.1.

minimize : AREM(θ, r) =
∑m

i=1

∣∣fi(xi,θ,r)−yi
yi

∣∣ (yi ̸= 0)

subjectto : 0 ≤ θ ≤ c1

rlb ≤ r ≤ rub

(8.1)

The θ and r values optimization procedure is introduced in Figure 8.2. The

method first divides sampling points into training and testing sets. The training set

constructs the metamodel that the testing set validates. Because the AREM and the

MREM (Equation 5.4) are highly correlated, the latter would only be evaluated at

the optimal AREM to improve computational efficiency.

The optimization process described in Figure 8.2 is iteratively updated by
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Figure 8.2: Optimization process for obtaining θ and r values

the DVCM process for point estimation (Figure 8.3). Based on the location of an

estimated point ZE,k , and the optimal parameter r derived from the previous op-

timization process, the original distance matrix D reduces to the DVCM distance

matrix Ḋk. The matrix Ċk is next derived by the optimal θ parameter by the for-

mulation in Section 3.2.2. The estimated value of each point ZE,k is computed from

these temporary matrices. In next subsection, examples are demonstrated by a clas-

sical function [4, 33, 36] to illustrate how this method functions mathematically. The

AM case study tests the method performance with large AM data sets generated by

simulation.
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Figure 8.3: General DVCM algorithm for point estimation

8.4 Demonstration of DVCM Method

Two case studies will be presented. One validates the approach from a mathe-

matical point of view and a second showcases its usefulness in advanced manufactur-

ing. The first case study represents a complex nonlinear function. The second case

study predicts an actual additive manufacturing process.
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8.4.1 Case Study 1: Function to Represent Complex System

The first case study tests the development of the DVCM with both small and

large data sets. Section 8.4.1.1 illustrates the process of building the DVCM from

eight data points. Section 8.4.1.2 gives a comprehensive presentation of the DVCM

method by comparing estimated results with and without using the DVCM method

and with different DVCM parameters used for a larger data set. Mystery Function

(Equation 7.1) is deployed in these examples.

8.4.1.1 Limited Data Scenario

In the first scenario, we simulate a small data set, perhaps the initial runs of

a new production line. Until new data are generated that are representative of the

observed process, we can only extrapolate known partial data sets. In this example,

eight randomly generated data points (normal) are used to test the versatility of the

dynamic matrix reduction process in this DVCM method, where Z1 through Z6 repre-

sent existing data points and ZE,1 and ZE,2 are the estimated points. This illustrative

example focuses on the process of constructing DVCM matrices and vectors using the

fundamentals described in Section 3.2.2, rather than metamodel construction. The

locations of all the generated data are shown in Figure 8.4, with specific locations of

the data listed in Table 8.1.
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Figure 8.4: Location of existing data points (Z1 to Z6) and estimating points (ZE,1

and ZE,2)

Table 8.1: Sampling and estimating points locations

Location

NO. x1 x2

Z1 2.92 2.08

Z2 2.08 0.42

Z3 0.42 2.92

Z4 4.58 1.25

Z5 3.75 4.58

Z6 1.25 3.75

ZE,1 1.50 2.50

ZE,2 3.50 1.00
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The original distance matrix for the existing 6 data points is formulated as:

D =

Z1 Z2 Z3 Z4 Z5 Z6



Z1 0.00 1.86 2.64 1.86 2.63 2.36

Z2 1.86 0.00 3.00 2.63 4.48 3.43

Z3 2.64 3.00 0.00 4.48 3.72 1.17

Z4 1.86 2.63 4.48 0.00 3.43 4.16

Z5 2.63 4.48 3.72 3.43 0.00 2.63

Z6 2.36 3.43 1.17 4.16 2.63 0.00

(8.2)

And distance vectors for ZE,1 and ZE,2 are formulated as:

AE,1 =

ZE,1



Z1 1.48

Z2 2.16

Z3 1.16

Z4 3.32

Z5 3.06

Z6 1.27

(8.3)
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AE,2 =

ZE,2



Z1 1.23

Z2 1.53

Z3 3.63

Z4 1.11

Z5 3.59

Z6 3.55

(8.4)

Figure 8.5: Use of the optimized radius

For illustrative purposes, we assume the optimal r value for this example is 2.5

(shown in Figure 8.5). The solid circle marks the selective region for ZE,1 with radius
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r1 and the dashed circle marks the selective of region for ZE,2 with radius r2. Based

on observation, two points, Z4 and Z5, become temporally eliminated for the DVCM

distance matrix of ZE,1. Similarly, three points, Z3, Z5 and Z6, become temporally

eliminated for the DVCM distance matrix of ZE,2. The first step of the reduction

process for constructing DVCMs is completed at this stage.

The DVCM to estimate the value at point ZE,1 can now be reduced from the

original distance matrix D to:

D̃E,1 =

Z1 Z2 Z3 ��Z4 ��Z5 Z6



Z1 0.00 1.86 2.64 ���1.86 ���2.63 2.36

Z2 1.86 0.00 3.00 ���2.63 ���4.48 3.43

Z3 2.64 3.00 0.00 ���4.48 ���3.72 1.17

��Z4 ���1.86 ���2.63 ���4.48 ���0.00 ���3.43 ���4.16

��Z5 ���2.63 ���4.48 ���3.72 ���3.43 ���0.00 ���2.63

Z6 2.36 3.43 1.17 ���4.16 ���2.63 0.00

=

Z1 Z2 Z3 Z6



Z1 0.00 1.86 2.64 2.36

Z2 1.86 0.00 3.00 3.43

Z3 2.64 3.00 0.00 1.17

Z6 2.36 3.43 1.17 0.00

(8.5)
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Similarly, the DVCM vector for point ZE,1 can be written as:

ÃE,1 =

ZE,1



Z1 1.48

Z2 2.16

Z3 1.16

��Z4 ���3.32

��Z5 ���3.06

Z6 1.27

=

ZE,1



Z1 1.48

Z2 2.16

Z3 1.16

Z6 1.27

(8.6)

The DVCM and vector of point ZE,2 become:

D̃E,2 =

Z1 Z2 ��Z3 Z4 ��Z5 ��Z6



Z1 0.00 1.86 ���2.64 1.86 ���2.63 ���2.36

Z2 1.86 0.00 ���3.00 2.63 ���4.48 ���3.43

��Z3 ���2.64 ���3.00 ���0.00 ���4.48 ���3.72 ���1.17

Z4 1.86 2.63 ���4.48 0.00 ���3.43 ���4.16

��Z5 ���2.63 ���4.48 ���3.72 ���3.43 ���0.00 ���2.63

��Z6 ���2.36 ���3.43 ���1.17 ���4.16 ���2.63 ���0.00

=

Z1 Z2 Z4



Z1 0.00 1.86 1.86

Z2 1.86 0.00 2.63

Z4 1.86 2.63 0.00

(8.7)
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ÃE,2 =

ZE,2



Z1 1.23

Z2 1.53

��Z3 ���3.63

Z4 1.11

��Z5 ���3.59

��Z6 ���3.55

=

ZE,2



Z1 1.23

Z2 1.53

Z4 1.11

(8.8)

The original 6× 6 distance matrix is now reduced to a 4× 4 matrix for point

ZE,1 and a 3× 3 matrix for point ZE,2. Thus, the total number of elements in these

DVCMs is reduced from the original 36 elements to 16 and 9, respectively. However,

the complete data set is still available for more point estimations.

8.4.1.2 Large Data Set Scenario

Here we test the DVCM method against large data sets, which can be a chal-

lenge when building models of complex manufacturing systems. This second example,

using the same nonlinear function, is designed to test the versatility of the DVCM

method. A total of 100 points were generated from Latin Hypercube (LH) [141, 172].

The surface and contour plots of the exact solution of this function are shown in

Figure 7.5, which also used in Equation 7.1. To best demonstrate the effects of both

estimation parameters, this case study is executed in two sequential stages of the

DVCM method.

In the first stage of the DVCM method (Figure 8.2), increments of θ values

ranged from 3, the initial guess, to an optimal value of 1.0496, determined by the

procedure. The values of 2, 1.5, and 1.25 included in this table were incrementally
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Table 8.2: Estimation error as a function of θ

θ AREM MREM

3 35.45% 1287.63%

2 5.07% 141.76%

1.5 4.79% 112.70%

1.25 3.66% 59.55%

1.0496∗ 2.17%∗ 40.98%∗

selected to illustrate the optimization process. These values were derived from a

single variable GA optimization without varying parameter r. The results from test-

ing estimates from 1000 additional random points (Table 8.2 and Figure 8.6) show

that manipulation of parameter θ can positively affect the predictive accuracy of the

metamodel, providing a more accurate spatial correlation for this unknown system.

A “misread” initial correlation might fail to assign the appropriate weight factors to

a given data point. When this happens, the estimated new points for ZE are unlikely

to approach true values accurately until θ is optimized.

In the second stage we optimize both θ and r using the entire process, with

the goal of using all accessible data points for estimation without any reduction of

computational efficiency. The Maximum Predictive Error Updating (MPEU) method

[127] was applied to separate the 100 LH points into training and testing data sets.

The distance matrix was reduced in size to only those data points within the neigh-

borhood region determined by radius r, similar to the Section 8.4.1.1. Table 8.3 lists

the returned error of the metamodels constructed with different DVCM parameters.

All case studies were run on the same computer system to evaluate metamodeling

efficiency.

We are able to demonstrate that the optimal design of both DVCM param-

eters will simultaneously improve predictive accuracy while reducing computational
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Table 8.3: Metamodeling performance of DVCM

θ r AREM MREM Average points used Total running time (s)

1.0496 n/a 2.17% 40.98% 100(100) 45.396

1.0496 4.000 2.05% 42.42% 85.06(100) 32.506

1.0496 3.000 2.04% 35.63% 62.38(100) 19.673

1.0760 1.718 1.48% 12.41% 26.70(100) 6.910

cost by limiting the size of original matrices. Furthermore, reducing the size of dis-

tance matrices does not increase the error for equivalent values of θ. However, the

original optimal parameter θ shifted to a slightly higher value because of the stronger

spatial correlation relationship between sampling points when using fewer points for

prediction. The results in Table 8.3 were derived from two data sets. The first data

set that includes the 100 LH points was divided into two subsets. One subset was

used to build the Kriging model, and the other subset was used to find the optimal

DVCM parameters. The second data set that includes the 100 random points was

only used to calculate the AREM and MREM, which was not involved in the opti-

mization work. An optimal DVCM radius was found at 1.7180, which is considerably

smaller than the farthest pair of points in the design space (Euclidean distance equal

to 7.071). Notably, the maximum error (MREM) column in Table 8.3 was reduced

to less than one third the magnitude of that in Table 8.2. This reduction suggests

significantly better predictability with the DVCM method. For comparison, the au-

thors reproduced the same problem by use of the DACE kriging toolbox [35]. The

MREM was found to be 62.37% with the same data set. The optimization of r using

the DVCM method resulted in a speed increase of nearly six times faster than that

found without distance matrix reduction. Moreover, Figure 8.7 nearly matches every

detail in Figure 7.5, the true representation of this example function.
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Figure 8.7: 3D surface and 2D contour plots of optimal DVCM metamodel

8.4.1.3 Case Study 2: Thermal Sub-process in Metal AM

This case study demonstrates the use of the DVCM method to build a meta-

model for predicting AM melt pool size, part of a critical sub-process in metal AM

systems. Laser PBF (L-PBF) AM can be divided into different sub-processes, such

as a heating process, melting process, solidification process, etc. [22]. A predictive

AM model may include multiple modeling techniques such as finite element models,

physics-based models, and statistics-based models [76, 52, 151].

Metal L-PBF AM processes fabricate solid objects directly from three-dimensional

(3D) model data by melting metal powders with a laser layer by layer [173]. Metal

L-PBF is considered one of the most promising AM technologies because of its supe-

rior surface and geometric quality and its potential to work with a wide spectrum of

materials. Contrary to other AM processes, L-PBF can produce almost fully dense

products and reach mechanical properties that sometimes surpass those of compo-

nents produced by traditional manufacturing methods.

Modeling continues to play a large part in maturing metal laser PBF technolo-

gies. A large number of processing parameters (e.g., material, laser power, scanning

speed, layer thickness, scanning pattern) influence various process qualities, such as

the prevention of under- and over-melting defects, dimensional accuracy and sur-

face finish, microstructure and mechanical properties, and the distribution of residual
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stresses in the product. Various process signatures have been proposed to study the

relationships between observations and process qualities in L-PBF processes [74].

Here, we choose to investigate melt pool width as a process signature because of

the direct relationship it creates between geometry and solidification, which ultimately

determines dimensional accuracy, microstructure, and mechanical properties (e.g.,

tensile strength). Larger melt pools may result in rough surface finish and poor

dimensional accuracy for small features, whereas smaller melt pools may cause voids,

low density, and low tensile strength. Melt pool width can be observed during the

process with noninvasive cameras and after the process [174].

Both experimental and computational studies have sought to determine the

influence of process parameters on melt pool geometry in L-PBF. Melt pool simula-

tions continue to pose a challenge, as the physics are difficult to model, and empirical

data are limited because of the high cost of running experimental studies. As an al-

ternative, low-cost simulations offer the ability to quickly explore the large data sets

associated with the high-dimensional spaces required for process optimization. Given

the high complexity and difficult-to-define behavior of AM systems, data reduction

before model validation can become extremely difficult. Additionally, constructing a

conventional kriging metamodel over the substantial design space may also be very

difficult because of the extremely high computational cost.

In this study, we use a heat transfer simulation to investigate the influence of

laser power (P), scan speed (v), absorption coefficient (A), and thermal diffusivity

(α) in melt pool width. This simulation accounts for heat transfer on a single scan

track, neglecting track-to-track and layer-to-layer interactions. The model is based

on the isotherm migration method for laser cladding [151], and adjusted for laser

PBF [174]. In this case study, 1050 melt pool width data points were generated to

illustrate the utility of the DVCM method. For consideration, the deployment of a

conventional kriging method would result in a distance matrix that contains more
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than one million elements (10502 elements for this square matrix). The generation of

the covariance matrix and its inversion is unrealistic and inefficient. However, these

challenges highlight the efficacy of proposed DVCM method for its efficiency and

accuracy.

Table 8.4 summarizes the experimental setup of this case study. Laser power,

scan speed, heat absorption coefficient, and thermal diffusivity are the four input vari-

ables for simulating the melt pool width. A total of 1050 data points were generated

to fill the design space of a full factorial design of experiment (DOE). The simulation

results of melt pool width ranged from 87.57 to 244.80 µm. Here we adopt reduced

order simulations without further corroboration to mimic a manufacturing scenario

of non-ideal data.

Table 8.4: Experimental design of AM case study

Process factors Symbols Levels Range of value

Laser power (w) P 7 180 - 210

Scan speed (m/s) v 5 0.75 - 0.85

Heat absorption coefficient (W/(m2K)) A 5 0.5 - 0.7

Thermal diffusivity (m2/s) α 6 0.75 - 1.75

After normalizing all input variable values, the entire data set was divided into

training and testing sets with 750 of the points used to construct the metamodel. By

deployment of the Minimum Euclidean Distance (MED) method with LH sampling

[127], 100 points were selected to optimize the DVCM parameters. The c1 (upper

bound of parameter θ) value was set at 5 based on the initial maximum likelihood

analysis. The rlb value was set to 0.3 to avoid potential empty DVCM matrices

based on the calculation of the minimum Euclidean distance between points. The rub

value was set to 0.6 to guarantee that the DVCM is restricted to 200 data points,

or 40,000 elements. Table 8.5 shows both errors at the optimal solution are reduced
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to less than 4% of the initial errors. Furthermore, the number of points required

to construct new DVCM estimations is reduced to less than half of the number of

points initially required, with a corresponding element reduction of 76% due to the

optimized radius parameter value.

Table 8.5: Results of DVCM parameter optimization

Steps θ r AREM MREM Average points used

Initial
1.000 0.6000 13.00% 141.00% 109(750)

0.6020 0.4847 17.00% 257.00% 51(750)

0.9970 0.4504 6.60% 170.00% 43(750)

Intermediate
1.0600 0.4720 3.59% 67.00% 51(750)

3.1980 0.4703 0.57% 7.01% 48(750)

3.5120 0.4713 0.53% 5.71% 48(750)

Optimal 4.5405 0.4997 0.44% 2.85% 53(750)

8.4.2 Discussion

The case studies in the section “Demonstration of DVCM Method” demon-

strate that optimization of the SCF’s correlation parameter θ can significantly reduce

average predictive error (AREM) in the DVCM method. Although significant im-

provements can be made in the MREM, which typically represents the outstanding

predictive error, it may not be amenable to further improvement if the correlation

parameter is already optimal. In such cases, the newly introduced DVCM parameter

can work jointly with the optimal � for further improvement. The results indicate

that, for specific scenarios, the DVCM approach has the ability to use fewer data to

produce more accurate predictions.

This observation seems to contradict common intuition that more data can un-

cover hidden information about an unknown system to improve predictive analytics.

Though often correct, scenarios exist in which potential weaknesses are shown when
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applied to large data sets, such as the findings from this AM study in Section 8.4.1.3.

These findings indicated that estimation done locally by this DVCM approach may

result in better performance, given that the local data are of the right type. A possible

explanation for this phenomenon can be partially seen in the fundamental structure

of the Kriging estimation algorithm. The covariance matrix that follows from an ini-

tial distance matrix has a diagonal structure. Elements contained in the covariance

matrix usually formulate from 0 to 1 based on the determined covariogram. Conven-

tional Kriging methods tend to construct the matrices with all given data, regardless

of the distance between the data points and the estimating point. For a large data

set, a vast number of data points are widely distributed in the entire design space,

meaning a number of them may not be strongly correlated according to their remote

distance. Thus, it follows that many of the elements contained in a resulting distance

matrix are close to a 0 correlation. This DVCM approach can fundamentally avoid

the aforementioned disadvantage by constructing a distance matrix locally and dy-

namically. Therefore, the outstanding estimated error of MREM can be significantly

reduced with this approach.

Some issues were observed in the detailed inspections of certain DVCM dis-

tance matrices. Sets of points located close to the edge or corner of the design space

or in low population areas may have an unreasonably small DVCM distance matrix.

In the AM case study, for example, the smallest matrix contains only 15 data points,

which is considerably inadequate given the average of 53 points. As differently sized

matrices had the same correlation parameter applied to them, this could potentially

produce inaccurate estimating results. One way to address this challenge is to allow

the radius to be flexible with regard to its location and neighborhood population.

With such a modification, all DVCM matrices could hypothetically be established

without bias to a predetermined radius. With an equally sized matrix for every

estimating point, the outstanding MREM might be further reduced to improve meta-
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models. In this study, AREM and MREM are employed as the validation criteria.

Because we are using simulation data, we can manually remove any data points with

response values nearly equal to 0 and replace these points by new simulations to avoid

issues of division by 0. However, in some cases, removal of data points from an exist-

ing data set could reduce predictive accuracy. Root mean square error measurement

could potentially be used to avoid this issue.
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CHAPTER 9

A SUPER-METAMODELING FRAMEWORK
TO OPTIMIZE SYSTEM PREDICTABILITY

9.1 Overview

Chapter 5 through Chapter 8 developed four different methods that can work

together to produce accurate metamodel. They are designed for specific modeling

conditions. The MPEU method is designed for highly nonlinear system with small

dataset. Dynamic Kriging method, however, aims to improve the accuracy and ef-

ficiency for very large dataset. Grey-box metamodeling method aims to combine

multiple historical datasets. It requires the user to determine which metamodeling

method would be employed through carefully analysis of the given problem. This is

a time consuming process and the predictive accuracy would highly depend on the

user’s personal decision. If there is one method that can simplify this process and

optimize the system predictability, creating a metamodel can be easier.

From previous chapters, we already know that metamodels can robustly pre-

dict manufacturing process and engineering systems design results. Various tech-

niques, such as Kriging, PR, ANN and others, are each best suited for different

scenarios that can range across a design space. Thus, methods are needed to iden-

tify the most appropriate metamodel or model composite for a given problem. To

account for pros and cons of different metamodeling techniques for a wide diversity

of data sets, in this chapter we introduce a super-metamodel optimization framework
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(SMOF) to improve overall prediction accuracy by integrating different metamodeling

techniques without a need for additional data. The SMOF defines an iterative process

first to construct multiple metamodels using different methods and then aggregate

them into a weighted composite and finally optimize the super-metamodel through

advanced sampling. The optimized super-metamodel can reduce an overall predic-

tion error and sustains the performance regardless of dataset variation. To verify the

method, we apply it to 24 test problems representing various scenarios. A case study

conducted with AM process data shows the method is effectiveness in practice.

9.2 Background

Many approaches have addressed the metamodel technique selection problem

from the sampling perspective [175]. Chapter 5 also develops a selection method

use domain knowledge. However, generic methods are still needed to address other

factors that affect the selection of the best metamodeling technique.

Brute force search, also known as “generate-and-test”, is the most general

problem solving method that consists of systematically enumerating all possible can-

didate metamodeling techniques and selecting the most appropriate one based on a

set of criteria [126]. This “generate-and-test” method is robust but lacks efficiency

when the size of the candidate space is big. Modified methods were developed to im-

prove the efficiency of exhaustive search using data-driven approaches [112, 83, 170].

Some research focuses on characterizing different metamodeling techniques to pro-

vide a metamodeling selection strategy. For example, Jin and coauthors suggest that

polynomial regression should be implemented first to see if a reasonable fit can be

obtained when constructing metamodels [132].

A selected technique is typically used for subsequent updates and predictions.

However, data sampling can have a significant impact on the performance of a meta-
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modeling technique [132]. Changing or adding data points could also affect the ac-

curacy of a metamodel [148, 127]. There is no guarantee that the technique with the

lowest prediction error for one region in a design space will also have the lowest error

for another region in that same space [176].

Integrated metamodeling approaches compose two or more techniques to ad-

dress the issue of metamodel performance variation. For example, Turner (2005)

introduced the Non-Uniform Rational B-splines (NURBs) method to model the hy-

perdimensional design spaces of products [177]. More conventionally, a method such

as Universal Kriging combines PR and the ordinary Kriging method to improve mod-

eling accuracy [91]. Grey-box metamodeling offers another approach to combine mod-

els of different fidelity levels [83, 169]. Both universal Kriging and grey-box modeling

techniques require two datasets to construct a metamodel. One is a high fidelity

small dataset and the other a lower fidelity large dataset. However, it is not always

possible in practice to generate additional customized data. Furthermore, only cer-

tain types of techniques can be integrated using the existing approaches. A more

general method is thus needed that can combine any assortment of candidate meta-

modeling techniques to generate a composite that is best suited for a given problem

globally. Such an approach should be broadly applicable and eliminate the need for

case-by-case exploration for the best technique for every new data set.

This chapter develops a metamodel integration approach called the super-

metamodel optimization framework (SMOF). SMOF integrates PR, Kriging, and

ANN metamodels to improve accuracy over the individual metamodels. SMOF iter-

atively approaches the optimal combination of the techniques for a given dataset.
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9.3 Super-Metamodel Optimization Framework (SMOF)

To account for pros and cons of different metamodeling techniques for a wide

diversity of data sets, this section introduces the super-metamodel optimization frame-

work (SMOF). Figure 9.1 shows the schematics of a SMOF model that is a compo-

sition of weighted individual models. The architecture of SMOF is typically a three

nodes neural network in which the nodes are individual metamodels.

Figure 9.1: SMOF general model

The following equations provide a general formulation of the SMOF model:

f̃(x) =
3∑

i=1

wif̃i(x)
( 3∑

i=1

wi = 1
)

(9.1)

where wi is the weight factor of the ith individual metamodel. Once the individual

models are constructed, additional data can be used to find the optimal weight factors

in the following procedure. The integrated SMOF model aims to minimize the sum

of the prediction errors at these additional points, which is a function of the weight

factors as expressed in the following equation.
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Minimize :
n∑

j=1

Errorj(w1, w2, w3) (9.2)

where, Errorj represents the relative prediction error of the weighted composed meta-

model at Pointj. The absolute error of the composite model defined in Equation 9.1

can be calculated using Equation 6.1 for each data point. Equation 9.2 uniquely de-

fines an optimization problem considering the performance of each individual meta-

model at every data point.

The resulting formulation of a relative Errorj thereby follows in Equation 9.3.

Point1 : Error1 =

∣∣∣∣w1ỹ
1
1 + w2ỹ

1
2 + w3ỹ

1
3 − y1

y1

∣∣∣∣
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∣∣∣∣w1ỹ
2
1 + w2ỹ

2
2 + w3ỹ

2
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∣∣∣∣
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3
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∣∣∣∣
... ... ...

Pointj : Errorj =

∣∣∣∣w1ỹ
j
1 + w2ỹ

j
2 + w3ỹ

j
3 − yj

yj

∣∣∣∣
... ... ...

Pointn : Errorn =

∣∣∣∣w1ỹ
n
1 + w2ỹ

n
2 + w3ỹ

n
3 − yn

yn

∣∣∣∣

(9.3)

Where, yj represents the observation value at the jth point. Errorj is calculated

based on the weighted average of the predicted values from the individual models in

Equation 9.1 and the observation value. After a transformation, the jth point error

becomes:

∣∣∣∣w1ỹ
j
1 + w2ỹ

j
2 + w3ỹ

j
3 − yj

yj

∣∣∣∣ = ∣∣∣∣ ỹj1yjw1 +
ỹj2
yj
w2 +

ỹj3
yj
w3 − 1

∣∣∣∣ (9.4)

138



Thus, the matrix formation of Equation 9.3 is:

{Error} =


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(9.5)

By applying linear algebra operations, a general optimization problem is for-

mulated to minimize the sum of all prediction errors at all data points by choosing a

set of weight factors. The weight factors are the independent variables to solve for in

this optimization problem.

Minimize :
n∑

j=1

3∑
i=1

∣∣∣∣wi
ỹji
yj
− 1

∣∣∣∣
Subject to :

3∑
i=1

wi = 1

wi ≥ 0

(9.6)

Figure 9.2 introduces a SMOF-based work flow that targets to compose mul-

tiple metamodels into a super-metamodel to minimize the total prediction error as

formulated in Equation 9.6. The preceding step in Figure 9.2 of “build individual

models” is based on established principles to generate and test individual metamod-
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els using a given dataset [126]. If additional data is available, a further step follows

to derive a global optimal super-metamodel by composing the individual metamodels

through a weight optimization procedure.

Figure 9.2: General procedure to build a SMOF metamodel

This SMOF-based approach also works when additional data is not available,

by dividing the initial data set into three sub-sets: a set for metamodel construc-

tion, another set for super metamodel optimization, and the final set for metamodel

validation. Since the optimal dataset for the original metamodel construction is un-

known, it is necessary to iteratively segregate the data set until an acceptable AREM

is achieved. As shown in Figure 9.2, the first step divides the given dataset into three

140



sample sub-sets using the Minimum Euclidean Distance (MED) method [127]. Sub-set

1 is used to build individual metamodels. Sub-set 2 is used to find the optimal weight

factors for the current super-metamodel. Sub-set 3 is used to verify whether the

newly generated super-metamodel is better than the previous best super-metamodel

and all the individual models.

For our case study, the percentages of the 3 sample sub-sets are set to 60%,

20% and 20%, respectively. The final optimal super-metamodel will be obtained when

the error criteria are met or the total number of iterations reaches its preset maximal,

kmax. The final super-metamodel is composed as an optimally weighted sum of the

last set of individual metamodels, as shown in Equation 9.1.

It is true that a cross-validation technique could be used to verify the meta-

models. However, there is no guarantee that the metamodel with the lowest error

from the training set will also have the lowest test error [176]. Thus, the SMOF pro-

cedure dedicates a separate data set of sub-set 3 to verify whether or not the AREM

criteria shown in Figure 9.2 are met.

9.4 Test of SMOF Effectiveness

This section presents two illustrative case studies to demonstrate the effec-

tiveness of the SMOF method. The first case study applies SMOF to 3 different

benchmark functions that have low, medium and high degrees of nonlinearity, re-

spectively. Each function is further configured with various sample sizes and dimen-

sionalities. The second case study tests the SMOF method using real manufacturing

data. A Matlab build environment was deployed to execute the SMOF method and

generate the results for these case studies. The ooDACE toolbox created the Kriging

metamodels within Matlab [178].
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9.4.1 Case Study 1: Benchmark Functions

To test the effectiveness of the SMOF method, 24 tests were designed to ob-

serve the hypothesized variations in recommended metamodeling techniques posed

by differences in linearity, dimensionality, and sample size. Three benchmark func-

tions with suggested different degrees of nonlinearity were deployed to generate the

test datasets [179]. The Axis Parallel Hyper-Ellipsoid (APHE) function given below

(continuous, convex and unimodal) generates data with a low-order of nonlinearity:

f(x) =
n∑

i=1

(i · x2
i ) (−5.12 ≤ xi ≤ 5.12) (9.7)

The Rastrigin function (with frequent and regularly distributed local minima

and multimodal) below generates data of medium-order nonlinearity:

f(x) = 10n+
n∑

i=1

[x2
i − 10 cos(2πxi)] (−5.12 ≤ xi ≤ 5.12) (9.8)

The Ackley function (with frequent local minima and highly multimodal) below

generates high-order nonlinear data:

f(x) = −a · exp
(
− b ·

√
1
n

∑n
i=1 x

2
i

)
−32.768 ≤ xi ≤ 32.768

a = 20, b = 0.2, c = 2π

(9.9)

The dimensionality variable was grouped into three categories: small scale

(number of variables = 2 or 3), medium scale (number of variables = 5), and large

scale (number of variables = 8).

The LHS method [160] was used to generate the data for all of the problem

configurations. To investigate the SMOF effectiveness for different sample sizes, two
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Table 9.1: Design of experiment for case study 1

Problem No. Nonlinearity Sample Size Dimensionality (# of variables)

1 Low Small (20) Small (n=2)

2 Low Small (30) Small (n=3)

3 Low Small (50) Medium (n=5)

4 Low Small (80) Large (n=8)

5 Low Large (100) Small (n=2)

6 Low Large (300) Small (n=3)

7 Low Large (500) Medium (n=5)

8 Low Large (800) Large (n=8)

9 Medium Small (20) Small (n=2)

10 Medium Small (30) Small (n=3)

11 Medium Small (50) Medium (n=5)

12 Medium Small (80) Large (n=8)

13 Medium Large (100) Small (n=2)

14 Medium Large (300) Small (n=3)

15 Medium Large (500) Medium (n=5)

16 Medium Large (800) Large (n=8)

17 High Small (20) Small (n=2)

18 High Small (30) Small (n=3)

19 High Small (50) Medium (n=5)

20 High Small (80) Large (n=8)

21 High Large (100) Small (n=2)

22 High Large (300) Small (n=3)

23 High Large (500) Medium (n=5)

24 High Large (800) Large (n=8)
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sampling scenarios were considered: small datasets with 10n samples (n represents

the number of variables) and large datasets with 50n samples. Table 9.1 details the

experimental design of the resulting 24 trials.

Table 9.2 summarizes the results of running these trials. The iteration would

continue if current AREM is larger than previous. The initial AREM was set to a

very large value to enable iterations. The maximum number of iterations was set to

100 for all trails. For the more linear data generated by trials 1 through 8, the PR

technique perfectly dominates the entire design space with prediction errors close to

0. Accordingly, the super-metamodel generates exactly the same AREM as the PR

metamodel does, consistent with the optimal weights of [1, 0, 0]. For trials 9 to 16,

the Kriging metamodel performed better than the other two techniques. Therefore,

it weighs heavily on the super-metamodel and has comparable AREMs.

The highly nonlinear trials of 17 through 24 reveal more about the effects

of sample size and dimensionality on the SMOF metamodel. The AREMs of the

individual metamodels and the SMOF super-metamodels are shown in Figure 9.3. For

all of the 8 trials, none of the individual metamodels is always superior to the other

two. Further, the SMOF super-metamodel outperforms all of the three individual

metamodels. Table 9.2 shows that even the least accurate individual metamodel has

a nonzero weight factor in the super-metamodel composition. This indicates that

every individual metamodel contributes to the super-metamodel accuracy for this

type of function with higher-order nonlinearity. Thus, Table 9.2 suggests that the

SMOF is most beneficial for highly nonlinear problems. These results in Table 9.2

also indicate that use of the SMOF may reveal insights about the order of linearity

of a given data set.

The test result in Table 9.2 was calculated from sub-set 3, which was segregated

from the original given data. In this case, additional data points can be generated

to further verify the effectiveness of the SMOF method. For the following study,
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Table 9.2: Test results of individual and SMOF metamodels. For each test problem,
the AREM of individual models and SMOF models are presented to compare the
performance. The optimal weight factors are presented to indicate the dominant
individual model

No. PR Kriging ANN SMOF Weight

1 0.0000 0.0204 2.0429 0.0000 [1.0000, 0.0000, 0.0000]

2 0.0000 0.0600 0.3921 0.0000 [1.0000, 0.0000, 0.0000]

3 0.0000 0.2535 0.4661 0.0000 [1.0000, 0.0000, 0.0000]

4 0.0000 0.1914 0.3188 0.0000 [1.0000, 0.0000, 0.0000]

5 0.0000 0.0001 0.0698 0.0000 [1.0000, 0.0000, 0.0000]

6 0.0000 0.0001 0.0197 0.0000 [1.0000, 0.0000, 0.0000]

7 0.0000 0.0022 0.0629 0.0000 [1.0000, 0.0000, 0.0000]

8 0.0000 0.0181 0.0634 0.0000 [1.0000, 0.0000, 0.0000]

9 1.8630 1.1284 1.8787 1.1274 [0.0000, 0.9990, 0.0010]

10 0.5051 0.2699 0.5266 0.2298 [0.2143, 0.7796, 0.0061]

11 1.1268 0.1496 0.9306 0.1483 [0.1478, 0.8511, 0.0011]

12 1.3834 0.1727 0.2746 0.1712 [0.0001, 0.9771, 0.0228]

13 0.5209 0.0082 0.2540 0.0081 [0.0001, 0.9961, 0.0038]

14 0.5545 0.3425 0.4110 0.3218 [0.0001, 0.9163, 0.0836]

15 0.3489 0.2164 0.4519 0.2105 [0.0867, 0.9115, 0.0018]

16 0.2649 0.2363 0.2523 0.2348 [0.0001, 0.7392, 0.2607]

17 0.1047 0.0714 0.1727 0.0564 [0.3402, 0.6570, 0.0028]

18 0.1251 0.1485 0.2554 0.1160 [0.5732, 0.1450, 0.2818]

19 0.0794 0.0836 0.1233 0.0255 [0.5068, 0.3726, 0.1206]

20 0.0548 0.1025 0.1657 0.0357 [0.5904, 0.2778, 0.1318]

21 0.0715 0.0943 0.1255 0.0608 [0.4986, 0.1013, 0.4001]

22 0.0459 0.0857 0.0825 0.0380 [0.5948, 0.1549, 0.2503]

23 0.0377 0.0490 0.0468 0.0287 [0.6739, 0.2075, 0.1186]

24 0.0258 0.0364 0.0436 0.0238 [0.6287, 0.3384, 0.0329]
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Figure 9.3: AREM of PR, Kriging, ANN, and SMOF metamodels for test problems
17 to 24 with high-order nonlinearity

additional 250n data points (n = number of independent variables) were generated

using the Monte Carlo method.

The results for these trials are given in Table 9.3. For a consistent comparison,

none of the existing metamodels were updated using any of this additional data.

Therefore, the weight factors for all of the trials remain the same as shown in Table

9.2. The formerly developed SMOF super-metamodels still consistently outperform

all the individual metamodels as shown in Figure 9.4, even though for some cases, for

example in trial No. 20, the performance ranks of PR and Kriging have switched.

9.4.2 Case Study 2: A Manufacturing Application

This section illustrates a test of the SMOF effectiveness with real data from

an additive manufacturing process. This example utilizes an experimental dataset

of a Direct Metal Laser Re-Melting (DMLRM) additive manufacturing process [120].
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Table 9.3: AREM results from additional data

No. PR Kriging ANN SMOF

1 0.0000 0.0115 13.4318 0.0000

2 0.0000 0.3016 0.9600 0.0000

3 0.0000 0.4044 0.6045 0.0000

4 0.0000 0.2553 0.3807 0.0000

5 0.0000 0.0000 0.0831 0.0000

6 0.0000 0.0000 0.0342 0.0000

7 0.0000 0.0011 0.1577 0.0000

8 0.0000 0.0147 0.2042 0.0000

9 1.8010 1.3374 1.5044 1.3359

10 0.6435 0.5986 0.6545 0.5866

11 0.4357 0.3453 0.4740 0.3439

12 2.0602 0.2498 0.3157 0.2420

13 1.4063 0.0147 0.1255 0.0146

14 0.5357 0.2516 0.3942 0.2453

15 0.3720 0.2973 0.3808 0.2859

16 0.2337 0.2197 0.2603 0.2087

17 0.1214 0.0989 0.2251 0.0896

18 0.1024 0.1396 0.2220 0.0959

19 0.0974 0.1130 0.1274 0.0709

20 0.1281 0.0904 0.1282 0.0894

21 0.1089 0.1056 0.1126 0.0950

22 0.0679 0.0643 0.0592 0.0551

23 0.0422 0.0478 0.0583 0.0367

24 0.0288 0.0392 0.0456 0.0275

DMLRM is a process variant of selective laser sintering (SLS). The experiment studied

the effects of scanning speed, scanning spacing and laser pulse frequency on the
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Figure 9.4: AREM of PR, Kriging, ANN, and SMOF models for test problems 17 to
24 using additional data

relative density of the parts produced by this SLS process. The experimental design

was based on a fractional factorial DOE with 105 total trials for the three input

variables with values sets as shown in Table 9.4. The laser power remained fixed at

80 W for all the experiments.

Table 9.4: Variable values in experiment

Variable Values

Scan speed (mms−1) 50, 100, 200, 300, 400, 500

Scan spacing (µm) 25, 50, 75

Pulse frequency (kHz) 0, 10, 20, 30, 40, 50, 60

To implement SMOF, the data was first divided into 3 sub-sets using MED

sampling method at every iteration, as shown in Figure 9.2. 63 data points (60%) were

included in sub-set 1 to build individual metamodels. Sub-sets 2 and 3 each include
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Table 9.5: AREM for individual and SMOF metamodels, and corresponding weight
factors

PR Kriging ANN SMOF

Optimal Weight 0.151 0.571 0.277 N/A

Final AREM 9.50% 6.72% 9.42% 5.47%

21 different data points (20%). At the end of a total of 100 iterations, the weight

factor vector is optimized to w = [0.151, 0.571, 0.277]. Table 9.5 shows the superiority

of the SMOF super-metamodel compared to the three individual metamodels in this

case. These results also verify that the individual metamodel with the smallest error

always has the largest weight value. Based on the discussions of the prior subsection,

the results in Table 9.5 also indicate that this problem likely has a high level of

nonlinearity.

9.5 Discussion and Summary

The main objective of this work is to compose super-metamodels from multiple

metamodeling techniques for a better global accuracy without the need to generate

additional data, which can be expensive. The idea of the SMOF introduces several

salient features. First, a matrix of all data points and metamodeling techniques ac-

counts for each corresponding error value. Second, a composite weighted formulation

aggregates predicted values from various metamodeling techniques. Third, iterative

sampling of the data optimizes error as a function of the weights’ vector to find the

optimal weighted composite for a given problem.

These innovations lead to several main benefits. First, the advantages and dis-

advantages of different techniques for various conditions of different types of problems

become irrelevant. Thus, superior predictive accuracy can be assured regardless of

which technique is best for a given problem. Second, use of the SMOF provides some
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indication about the degree of linearity of the problem. Third, it becomes unneces-

sary to generate expensive additional data to overcome any inaccuracies related to

technique selection. These benefits should help to address uncertainty about which

metamodeling technique to use for a given problem, which should result in more

consistent predictive accuracy.

All the case studies in the previous section corroborate the hypothesis that

the proposed SMOF approach of an iteratively optimized and weighted composite of

individual techniques can significantly and consistently improve prediction accuracy

over individual techniques regardless of the sample size and the dimensionality of the

data. The first case study also strongly suggests that significance of these advantages

can increase with the degree of nonlinearity of a dataset. However, even for relatively

linear conditions, SMOF can simultaneously verify the degree of linearity and reveal

which metamodeling technique is best to use for that given dataset. Although only

the PR, Kriging and ANN techniques were used in this study, the overall approach

should be extendable to a mixture of other metamodeling techniques.

There are several notable limitations of the SMOF method to address. No

more than 800 data points could verify the method for the data sets used in this

work. Future work could examine scenarios of more complicated conditions such as

large data sets of more than 10,000 data points. These larger datasets could run with

various resolutions, and with various weighting schemes of the points in the design

space to test more comprehensively.

The iterative process does require more computation than the established ex-

haustive “generate-and-test” approach [126], which is identical to the first iteration

of SMOF execution without any optimization. Thus, users should be aware of this

inherent tradeoff between predictive accuracy and computational cost, especially for

large datasets on a case-by-case basis. Computations of the SMOF approach could

be reduced by partially updating the sample sets for each iteration. The second limi-
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tation concerns the opportunity to improve the predictive accuracy of the individual

metamodels. The current data sub-set segregation by the MED method runs the same

sampling process at each iteration. However, it does not necessarily optimize all the

metamodels. A second sampling stage of sequential infilling technique could be intro-

duced to make improvements. Thus, a research opportunity exists for novel sampling

techniques that could further improve both predictive accuracy and computational

efficiency.
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CHAPTER 10

METAMODELING METHODS INTEGRATION

The previous five chapters focused on the development of metamodeling meth-

ods that aim to solve various AM and SMS problems. Each developed method can

execute independently under different conditions. Under complex conditions, how-

ever, these methods could potentially be integrated together to improve overall re-

sults. Functions such as modeling technique selection, sampling method, and data

combination approaches could be procedurally organized and semi-automated with

a user interface to further improve metamodels. The metamodel constructed in this

way could fully represent the overall work flow presented in Figure 4.1. This chapter

introduces the integrated metamodeling process along with a blueprint for associated

tool package development.

The methods described in previous chapters provide the foundations upon

which Unified Meta-Analytics (UMA) was derived. The UMA results in a MATLAB

toolbox that operates the underlying algorithms that support and connect all of these

functions. This results in an easy to use toolbox to build predictive metamodels under

different conditions.

This chapter describes the architecture of UMA. Here, we introduce the data

structures employed, commands, user interface, operating instructions, and case stud-

ies to demonstrate deployment in a MATLAB environment. The demonstration aims

to show ease of use, speed and accuracy without requirements of strong programming

skills or in depth understanding of metamodeling techniques.
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10.1 Unified Meta-Analytics (UMA) Matlab Tool

Package

10.1.1 General Work Flow

Figure 10.1 shows the overall integration for the UMA Toolbox. The data

must first be properly prepared in a specific structure. The required form of this data

structure is introduced in the following section.

The model selection process can be executed in different ways: 1) manual se-

lection; 2) performance comparison; 3) domain-drive approach. Manual selection is

the fastest way, but requires more understanding of the data and the model. Other-

wise, performance comparison method is recommended to exhaustively compare each

metamodeling technique’s validation result to select the most appropriate one. The

algorithm and codes of the domain-driven method is available in the tool package.

However, a library of AM instances will be necessary to enable use of that technique.

The tool provides two ways to create the metamodel, the leave-one-out (LOO)

and MPEU methods. If additional data is available after creation of the basic model,

the process can proceed to the second stage. If no additional data is available, the

current model would be saved as the final model. During this process, PR, Kriging,

and ANN would serve as candidate algorithms for high fidelity data. However, Kriging

is removed if the data quality is relatively low. When additional data is available, the

data quality drives a choice between options of the MPEU or grey-box methods. If

the initial dataset has lower quality than the additional dataset, the grey-box method

would be selected. The data quality is determined according to such conditions as

standard deviation of the measurement and the experimental conditions. DVCM

method is employed for scenarios of highly a nonlinear system with a large amount

of data. The final metamodel technique can be selected by the user.
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10.1.2 Data Structures

The data structures used throughout the UMA process must match a specific

form of vectors and matrices. Here, spreadsheet (in .csv file format) columns corre-

spond to different variables. Input variables are organized from the first column to

the penultimate column. The output variable is located at the last column as shown

in Table 10.1. The i represents the ith input variable. The j represents the jth data

point. The top row has the literal name of each variable. Each execution of UMA

predicts a single output.

Table 10.1: Data Structure of UMA tool package

x1 x2 x3 … xi y

x1
1 y1

x2
1 y2

x3
1 y3

... ...

xj
1 xj

2 xj
3 xj

4 xj
i yj

10.1.3 Built-in Functions of UMA Tool Package

The program structure of the overall toolbox is composed of customized func-

tions that can be called into other MATLAB programs. Table 10.2 lists the coded

name and purpose of each function, and is followed by in depth description of each

function. The functions are presented in Matlab command line.

This dataPreProcess function requests the input and output stored in differ-

ent workspace variables. The function reads the .csv file described in the prior section

and returns that data to a matrix of input variables of any dimension and a vector

of the output variable.
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Table 10.2: Functions for UMA

Functions Name Purpose

[dataInput, dataOutput] Read given data file and return the
input matrix and output vector= dataPreProcess(data)

[trainMED, verMED] Divide the data into training and
testing sets uses MED method with
preferred ratio= selectMED(data, percentMED)

[mdl_quad, quadAREM, quadNRMSE] Build the PR model and return its
AREM and NRMSE= fit_quad(trainData, verData)

[mdl_k, kAREM, kNRMSE] Build the Kriging model and return
its AREM and NRMSEfit_k(trainData, verData)

[mdl_ann, annAREM, annNRMSE] Build the ANN model and return its
AREM and NRMSEfit_ann(trainData, verData)

yp = fitData(input, type, mdl) Make prediction uses selected model

[mdlGrey, greyAREM, greyNRMSE] Build the grey-box model and return
its AREM and NRMSE by the
additional datasetgreyBox(mdlInt, type, dataAdd)

yp = fitGrey(input, mdlGrey) Make prediction uses grey-box model

[trainData, verData] Return training and testing sets uses
the LOO method= LooCrosVal(data, ith)

[mdlUpdate, updateAREM, updateNRMSE] Uses MPEU method to update the
initial model and return updated
AREM and NRMSE=MPEU(dataInt, mdlInt, type, dataAdd)

[NRMSE, AREM] = modelError(outP, out) Evaluate AREM and NRMSE

The function of selectMED executes the MED method developed in Chapter

6. It returns the training set and the testing set divided by MED method. The user

defines the training-testing ratio after select the MPEU method. It is compatible

with wide ranges of dimensions and data sizes.

The function fit_quad builds a quadratic PR metamodel. If there are not
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enough data points to fit quadratic parameters, the option of fitlm changes the

metamodel construction technique to first order linear regression. This function re-

turns the AREM and NRMSE of the PR model. The parameters of the PR model

are saved in the first element of the returned vector. The input variables of this func-

tion are the training set and the testing set, which can be derived from the function

selectMED or LooCrosVal.

The function fit_k is similar to fit_quad in regard to input variables and

components returned. The difference is that this function returns a Kriging meta-

model created by the ooDACE toolbox [178].

The function fit_ann builds an ANN model that uses a backpropagation

method. To ensure compatibility, these codes build a single layer ANN metamodel.

Backpropagation is used to optimize the ANN weight factors. Default values are: 1)

total number of hidden neurons is set to 10; 2) the threshold value of convergence

is set to 0.01; 3) default step length is set to 5

B +m
, where B is a constant equal

to 1000 and m is the step number. The user can adjust these numbers for different

problems; 4) each ANN model has five attempts to try different initial weight factors

where only the best model is returned. The user can always adjust these parameters

to approach better results for their model by modifying this fit_ann function. This

function is also compatible with any dimension of data.

The UMA can predict from different models, algorithms, and input variables.

However, for different conditions, this toolbox needs to call different functions and

request different data structures. To simplify this process, the fitData function

allows use of the same command to predict from different metamodels. When calling

this function, the user can import the input variables and the name of the selected

metamodel. UMA would automatically construct the required data structure and

choose the correct MATLAB command. It returns the value of a predicted data

point.
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For example, to predict a data point x by a Kriging model named mdl_k,

directly use the command:

y = fitData(x, "Kriging", mdl_k)

If using other models, simply change the last two input variables of fitData by proper

names.

The function greyBox builds a grey-box metamodel using the method devel-

oped in Chapter 7. The user needs to type in the name of the initial model and

the additional dataset. The initial model is considered a low fidelity model for this

grey-box approach. The additional data is assumed to have higher fidelity.

Similar to fitData, the function of fitGrey predicts from given input variables

that use the grey-box model.

The function LooCrosVal extracts the ith data point from a given dataset. It

returns the training set without the ith data point and testing data that is the ith

data point.

The function MPEU uses the MPEU method introduced in Chapter 6 to sequen-

tially update the model. To call this function, the user needs to import the initial

dataset, initial model, and the additional data. It is originally developed for a prob-

lem with two datasets. However, if run with the function of selectMED, it can be

applied to a single dataset problem by manually dividing into two datasets.

The function modelError is a simple way to evaluate the AREM and MREM

simultaneously by one line command. The inputs for this function are the predicted

value and the observed value. When combined with the function of LooCrosVal, it

can derive the result of Leave-one-out Cross Validation (LOOCV).

158



10.2 Build AM Metamodel Through UMA

This section presents a pair of examples to show how to use UMA to build

AM metamodels under different conditions. Here, datasets were collected from two

independent experiments conducted for a laser melting PBF metal AM process [180].

Laser power (LP) and scanning speed (SS) are the input variables, and melt-pool

width is the output variable of the metamodel for both data sets. Both experiments

used the fractional factorial DOE method, with the laser power ranging from 100W

to 250W and the scan speed ranging from 200 µms−1 to 1400 µms−1. All 26 data

points are listed in Table 10.3. The melt-pool width was measured multiple times at

different locations on each scan trace. The results listed in the table are the mean

values. The first experiment melted the powder directly on a bare build plate. This

set of data was used to build an initial metamodel. The second experiment was

conducted on a powder bed and the data generated was considered a new data set.

10.2.1 Test Scenarios

Two test scenarios were designed to test UMA: 1) build a metamodel for bare

plate data; 2) build a grey-box model for the on-powder experiment using both

datasets. For the first scenario, the model was created by the LOO method and

the MPEU method, respectively. The second scenario aimed to predict the melt-pool

width for on-powder condition. It assumed that the bare plate data has low fidelity

since the experimental conditions are inconsistent to what is predicted. The powder

data is treated as high fidelity data. The grey-box approach is employed to build this

metamodel.
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Table 10.3: Results of laser melting experiments

LP(W) SS(µms−1)
Meltpool width(µm)

Bare build plate On powder

100 200 134.57 127.77

100 400 114.75 112.43

100 800 80.52 97.98

100 600 87.58 86.64

100 1000 75.35 64.43

150 200 181.44 162.65

150 400 126.50 149.24

150 600 124.70 129.07

150 800 106.39 119.95

150 1000 103.50 101.26

150 1200 99.28 97.98

150 1400 99.40 95.95

195 200 235.94 225.16

195 400 178.07 150.01

195 600 150.52 153.05

195 800 129.57 7 151.04

195 1000 122.86 119.19

195 1200 115.38 125.60

195 1400 112.40 114.83

250 200 247.39 253.57

250 400 227.55 253.57

250 600 159.31 150.13

250 800 160.85 175.71

250 1000 141.34 141.05

250 1200 134.58 137.31

250 1400 126.69 124.42
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10.2.2 Results from UMA

This section presents the modeling process, user interface, and results of using

UMA for solving an AM problem. Screen shots and comments are presented to

describe the modeling process.

10.2.2.1 Bare Build Plate

The preliminary step is to import the UMA tool package into a MATLAB

environment. The user can see the codes after calling the main function in the Editor

(Figure 10.2). Note that the data files need to be placed in the same folder of the

package. The user also needs to modify the codes on line 5 to specify the correct path

of the ooDACE Kriging toolbox.

After the tool package is run, as shown in Figure 10.3, the command window

first asks the user to provide the name of the data file. The file name needs to be

typed in between the double quotes to claim the string data format. Once the data

file is successfully imported, the command window asks the user to press any key to

proceed to the next step (Figure 10.4).

The next step (Figure 10.5) asks the user to specify the fidelity of the given

data. In this example, since the physical experiment is carefully operated and the

standard deviation is less than 5%, the fidelity level of ”High” is selected. In this

version of UMA, the tool uses a manual algorithm selection method since there are

not yet enough AM examples in the current library to deploy the domain-driven

approach. Candidate algorithms are PR, ANN, and Kriging. The user can decide

which metamodeling technique to deploy after comparing the performance of each

metamodel. In this example, LOO method is selected to validate the metamodel.

The tool builds the metamodel with selected algorithms and presents validation

results in the command window. Figure 10.6 shows the result based on LOOCV

method. Only one metamodel can be selected for future use. The decision can be
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Figure 10.2: Main function of UMA

made based on the preferred AREM and NRMSE result.

The user next types in the name of the algorithm and the corresponding num-

ber of that metamodel. In this example, ”Kriging” and ”3” were entered to select the

”3-Kriging” model as it presents the lowest NRMSE and relatively lower AREM.
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Figure 10.3: Import the AM data

Figure 10.4: Proceed to the next step once data file is successfully imported

Figure 10.5: Select data quality and the candidate algorithms
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Figure 10.6: Results of the metamodels built by all candidate algorithms

Figure 10.7: Select the model for future use

In this example, we do not have additional data to improve the current meta-

model. The command window would skip the following steps and shows the result.

If needed, the user can type a name to save current model into a .m file. Here, the

final model is saved into a filename of "demo_data1_loo". The following command

line shows the data structure of the saved model.

mdlInfo = {fidelity, validMethod, algmOpt, methodAdd, mdlFinal,

finalAREM, finalNRMSE}

The element of fidelity stores a data fidelity value of high or low. Element

validMethod stores the validation method (LOOCV or MPEU). Element algmOpt

stores the metamodeling algorithm used. Element methodAdd stores the sampling

method used to infill data. Element mdlFinal stores the model parameters. Elements

finalAREM and finalNRMSE store the model performance results. After the file name

is entered, MetaAnalytica displays a summary of the final model, as shown in Figure

10.8.

The user can omit some candidate algorithms to accelerate the modeling time.
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Figure 10.8: Result of built metamodel is presented in the command window

For example, as shown in Figure 10.9, the result from the ANN model is presented

as ”N/A” since it was not selected in the previous step.

Figure 10.9: When PR and Kriging models are selected

Figure 10.10 and Figure 10.11 show the entries in a command window when

the MPEU method was selected. To complete this process, the user needs to input

the percentage of the training dataset. Due to the randomness of the MPEU method,

MetaAnalytica would attempt several times to evaluate the results from different

sample sets. A user can adjust this number in the program if more attempts are

needed. The command window would ask which metamodel to select. As shown in

Figure 10.11, ”PR” and the number ”1” are entered to select the first PR model.
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Figure 10.10: When MPEU method is selected

Figure 10.11: Results of MPEU method

10.2.2.2 On Powder

The second case study uses the two datasets from a bare plate and on a powder

bed to build a grey-box model. Figure 10.12 and Figure 10.13 show the similar process

to that of the previous case study. The dataset of bare plate experiment is imported

first as low fidelity data and the dataset of powder bed experiment is imported late

as high fidelity data. In this example, we select the MPEU method with 80% training

data to build the initial model based on the bare plate data. PR is the only selected

algorithm which produces 5 different models.

When the initial model is created, UMA asks the user to import the additional
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Figure 10.12: Result of initial grey-box metamodel

dataset. As shown in Figure 10.14, the AREM is 0.078 and the NRMSE is 0.079 from

the initial model to predict the melt pool width from the on-powder experiment. The

model ”grey-box 3” can reduce the AREM to 0.073 and NRMSE to 0.045. Thus, this

model is selected as the final model and can be saved.

Figure 10.13: Result of final grey-box model

10.3 Summary

This chapter introduced the UMA tool package and tested it with two AM

datasets. One dataset is tested to build individual metamodel using different ap-
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Figure 10.14: Result of built metamodel is presented in the command window

proaches. The second dataset is used to build the grey-box metamodel. The func-

tions of UMA work properly for different conditions. The tool allows the user provides

minimum input to build the metamodels with high predictive accuracy. For different

conditions, the tool provides instructions in the command window to guide the user.

However, this tool was only tested on a few datasets. In the future, more case studies

are request to fully test the UMA.
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CHAPTER 11

CONCLUSION AND FUTURE WORK

11.1 Conclusion

The overall goal of this dissertation is to address the challenges of building

metamodel in AM and SMS using historical datasets. The first challenge is that

the sampling methods designed for different problems are not compatible with the

new design conditions. There may be not enough samples, missing data, and too

large raw dataset. This work addressed this challenge by the unique contribution

of the developed metamodeling methods such as the MPEU and DVCM approaches.

Salient features of these approaches include a optimal post-sampling strategy that able

to improve the predictive accuracy and modeling efficiency simultaneously without

adding more data.

Second, building one overall metamodel by combining multiple historical datasets

is difficult since it is nearly impossible to integrate the data with different experimen-

tal conditions. This challenge is addressed by the two stages grey-box modeling

method. This grey-box approach efficiently utilized both low fidelity and high fidelity

datasets to build a more accurate metamodel. It also improves the collaboration be-

tween physics-based knowledge and statistics-based information. Results showed that

significantly reduced the amount of samples that needed to build accurate predictive

metamodel.

Third, algorithm selection is very important to the metamodel as it correlates
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to the sampling method and the predictive accuracy. The challenge is that the se-

lection process can be extremely difficult in the fact of having limited information.

To address this challenge, we developed the domain-driven approach and the super-

metamodeling method. Domain-driven approach uses prior physics-based knowledge

to accurately predict the metamodeling algorithm without investigating the statisti-

cal data. A unique feature of this approach is that the metamodel is no longer limited

by the sampling method. The most appropriate metamodel can be derived before the

sampling stage. The super-metamodeling method mainly addressed this challenge

by systematically integrate different metamodeling algorithms to utilize the benefits

of each of them. The integrated metamodel created by the super-metamodeling ap-

proach showed the highest predictive accuracy than all individual metamodels. But

this was only tested on a few datasets.

The development of these methods for AM processes and SMS revealed a num-

ber of important outcomes. The domain-driven approach is able to use AM domain

knowledge to guide the construction of statistics-based models. It provides a method

to investigate physics-based correlations between AM parameters. Through these

correlations, the metamodeling algorithm can be selected without actual data. This

approach can significantly improve the predictive analytics in AM because metal AM

parts and test samples are very expensive. The MPEU method provides a unique

sampling method for inflexible historical datasets. It builds upon the LHS and Krig-

ing methods to build optimal models from historical data. The grey-box modeling

approach introduced a way to use less expensive high fidelity data and more inexpen-

sive low fidelity data to improve the predictability. The low fidelity data can be easily

derived from physics-based models without additional cost. This approach requests

small amounts of high fidelity data from actual experiments to build the grey-box

metamodel. This method provides another solution to predict more about AM pro-

cesses using more AM physics-based knowledge. The DVCM approach modified the
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traditional Kriging method to improve its performance in the SMS domain. The pre-

diction derived from this DVCM approach is dynamically determined by the nearby

data points and optimal correlation factors. It significantly reduced the computational

cost of traditional Kriging method for large data scenarios. The super-metamodeling

method is a robust method compatible with different modeling conditions. It sim-

plifies the modeling procedure by eliminating the technique selection challenge. The

super-metamodel is able to automatically find the optimal weight factors for each in-

tegrated algorithm. The metamodel, thus, can utilize the benefits from all candidate

algorithms and can automatically adapt to different data.

Another outcome of this dissertation is the UMA integrated process introduced

in Chapter 10. An easy to use, interactive execution was demonstrated to show fast

and accurate design prediction. It integrates and semi-automates the functions of

methods introduced in this dissertation. It provides a user interface with instructions

to enable building usable predictive metamodels. Furthermore, the functions devel-

oped for this toolbox can be extracted and used independently in other MATLAB

programs.

11.2 Future Work

Future work could advance and build upon this work in several critical ways.

Chapter 5 revealed the utilization of physics-based knowledge in the predictive meta-

modeling area. This provides a non-empirical way for the earlier stage of metamodel

development. The result of the domain-driven approach can potentially guide the

sampling strategy of metamodel development in later stages. This notion raises the

hypotheses that prior information such as physics-based knowledge and/or historical

data could possibly be used to guide future new metamodel development. It may be

possible to use current knowledge and information to predict the sampling strategy
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such as an optimal DOE method and sample size for future metamodels. For exam-

ple, with the knowledge from a metamodel in a current design space, it should be

possible to estimate the conditions in an interpolated or extrapolated design space.

Such meta-features as Kurtosis and nonlinearity could be used to make predictions.

Future work could focus on ways to use meta-features and physics-based knowledge

to guide DOEs for the same or similar problems.

In Chapter 7, the grey-box modeling approach combined the physics-based

white-box model and statistics-based black-box models to make more accurate pre-

dictions. However, the prerequisite is that the dataset must have same input and

output variables and under the same physical environment. This limits the use of the

grey-box approach. As introduced in Chapter 2, AM processes compose multiple sub-

models in different domains. This approach is not compatible with the datasets and

models in different domains though they may be partially correlated. Thus, future

work could investigate ways to compose metamodels in different domains. In AM,

for example, the research can focus on how to compose the metamodels from a heat

source domain and a laser melting domain. The key challenges are: 1) it is difficult

to compose the model with a non-overlapped design space; 2) sub-models have differ-

ent input variables; 3) datasets are collected from unique physical environments and

different experimental conditions. The goal of this future work is to build an overall

AM metamodel by multiple sub-models. This can potentially improve the sampling

efficiency, predict more of the overall system and provide a better understanding of

AM processes.
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APPENDIX

DATA TABLE FOR DVCM CASE STUDY

Table A1: The 100 LH data points used in Section 8.4.1.2

x1 x2 Y

3.725 0.975 6.1881

4.475 4.025 9.3751

0.225 1.825 3.0593

4.325 2.975 5.0025

2.525 1.025 9.0019

0.475 3.275 7.2363

1.325 1.625 6.2250

2.625 3.525 6.5130

4.925 3.625 6.7891

4.975 3.775 10.5713

0.725 2.525 5.2057

4.575 0.425 11.2235

4.375 1.325 -2.8137

2.575 4.675 20.5493

3.52 0.925 7.7824

0.925 4.275 13.5660

2.025 3.025 -2.2909

4.875 4.975 15.0679

3.375 0.325 10.7076

173



4.825 2.475 6.1129

2.775 0.575 10.7148

0.575 4.925 21.3560

3.775 0.025 8.5628

4.775 3.875 10.3089

3.425 4.175 5.9007

4.175 4.425 14.5198

3.075 0.475 10.9537

1.725 2.175 3.9716

2.875 15.575 0.5819

1.225 4.125 9.2562

3.225 2.375 -5.0001

0.325 4.625 17.4403

1.075 1.125 6.1407

0.075 1.675 3.1593

0.125 0.875 5.4398

3.825 0.825 8.4012

3.625 4.475 6.1703

1.575 3.225 2.4393

4.675 3.125 0.1852

0.025 0.775 5.9774

2.375 4.375 17.4413

1.875 3.325 -0.6405

3.575 1.925 -6.5150

4.075 2.925 7.7235

0.825 2.25 4.9689

1.625 0.275 8.9005

1.675 1.425 7.1738

2.475 0.675 10.2586
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3.125 1.225 4.6367

3.325 1.475 -1.1792

1.375 2.325 5.3291

2.825 0.175 9.4467

3.275 4.575 7.4369

1.425 4.825 12.9869

0.375 2.775 4.6954

2.325 2.725 -4.3577

4.725 1.875 1.0031

1.925 4.525 12.7971

2.675 2.075 -4.0744

0.625 0.625 6.7380

3.875 3.975 1.7810

1.125 2.125 5.6199

2.075 1.525 6.2456

3.175 2.275 -6.1363

3.975 0.525 11.1370

4.425 0.725 8.5014

2.975 4.774 12.3105

0.975 4.875 17.9512

0.875 3.175 7.6472

0.775 0.225 8.8486

4.125 1.375 -3.2303

1.025 1.975 5.3683

4.275 4.325 13.6661

0.525 0.075 9.9369

4.225 0.125 9.8300

1.525 1.075 7.6012

1.175 3.475 7.2616
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1.475 3.675 4.2819

3.025 3.425 10.1729

2.175 2.625 -3.0054

1.775 3.075 0.1456

4.025 1.725 -5.6505

2.925 3.725 13.1237

2.275 1.275 7.5541

4.625 3.575 1.8257

1.275 1.175 6.6987

3.475 2.025 -6.4804

3.675 3.375 8.6387

1.975 3.925 4.0575

2.225 0.375 9.5921

0.675 4.725 19.0053

0.425 3.825 10.5770

2.425 2.675 -4.8536

3.925 2.425 3.1511

4.525 2.575 6.8271

0.275 1.775 3.1481

2.725 2.825 -3.4841

2.125 2.875 -3.0800

0.175 4.225 13.0291

1.825 4.075 4.9322
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