
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2018

System Support for Managing Risk in Cloud Computing Platforms System Support for Managing Risk in Cloud Computing Platforms

Supreeth Shastri

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Shastri, Supreeth, "System Support for Managing Risk in Cloud Computing Platforms" (2018). Doctoral
Dissertations. 1389.
https://scholarworks.umass.edu/dissertations_2/1389

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1389?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

SYSTEM SUPPORT FOR MANAGING RISK

IN CLOUD COMPUTING PLATFORMS

A Dissertation Presented

by

SUPREETH SHASTRI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2018

Electrical and Computer Engineering

© Copyright by Supreeth Shastri 2018

All Rights Reserved

SYSTEM SUPPORT FOR MANAGING RISK

IN CLOUD COMPUTING PLATFORMS

A Dissertation Presented

by

SUPREETH SHASTRI

Approved as to style and content by:

David Irwin, Chair

Prashant Shenoy, Member

Lixin Gao, Member

Michael Zink, Member

Christopher Hollot, Department Chair
Electrical and Computer Engineering

Dedicated to

Archie, Amma, and America

ACKNOWLEDGMENTS

Much of my lifestyle and value system stems from my traditional upbringing in a middle

class South Indian family. I grew up with stories celebrating Indian mythology and Indian

mathematics. Long before Robert Kanigel chronicled about Ramanujan, I had already

learnt that an equation has no meaning unless it expresses a thought of God. Everyone in my

social circle amplified my educational successes and trivialized my non-intellectual failures.

Through nature and nurture, I came to value education and the pursuit of knowledge above

all else. I am indebted to my parents, my brother, and my extended family for shaping my

younger self. Thanks to my college cohort at PESIT for picking up this mantle in my teen

years. To Akku, Aru, Ash, Bindu, Boda, Juggi, KC, Manu, MoF, PJ, Pothnis, Roonie,

Rush, Sree, Susan, Vikky and Vishwas: life would never have been this meaningful without

you all; nor would I have the conviction to take this PhD to completion.

The American higher education system has had a formative influence on my life. While

my stay at Columbia sprouted my curiosity in research, the time at UMass helped me

take it to a professional level. Thanks to my alma maters, I was able to find, and then

pursue my true calling. Also, without sustained funding from the U.S. National Science

Foundation and the U.S. Federal Aviation Administration, this journey would have been

arduous. Sincere thanks to the American public funding system.

My professors and friends at UMass have given me company through peace and panic.

Prashant Shenoy has been a mentor and a role model; Mike Zink and Lixin Gao went

beyond their roles as my committee members to help me; Tian Guo and Prateek Sharma

were instrumental in getting my first paper across the finish line; Amr Rizk’s queuing

theory genius was an eye opener and working with him brought down my Erdos number to

6; Dong Chen, Abhishek Dwaraki, Divyashri Bhat and Sunil Kumar have played host to me

numerous times, held me from wandering off-track, and spent numerous hours pondering

about life in academia. Thank you all, and I hope our roads cross again.

v

I wish to express my gratitude to the ACM Symposium on Cloud Computing and

USENIX Hot Topics in Cloud Computing. As a young researcher working on an unconven-

tional topic, I was amazed by their openness to diverse ideas. Majority of my research is

not only published in these two venues but are significantly better off because of it. Being

accepted into this research cohort has done wonders at warding off my imposter syndrome

as well as keeping my research grounded to reality.

PhD-ing as a parent turned out to be much more fun and frolic than I had imagined.

Credit for that mostly goes to my 9-year old boy, Sam. We taught and learnt from each

other. The time I spent with him not only made me a better dad but a better writer,

thinker, and teacher. His silly jokes, snarky comments, empathy and pride towards my

work have carried me through many rough waters. Sam 100, papa 0!

Finally and most importantly, the driving force and backbone of my doctoral journey

have been my advisor David Irwin and my wife Archie. They believed I could do it,

stuck with me through thick and thin, and poured their time and energy into making me a

researcher. They supported me financially, accommodated my shortcomings, and celebrated

every minor accomplishment wholeheartedly. I would not have lasted a moment without

their unwavering support. This work is as much theirs as mine.

vi

ABSTRACT

SYSTEM SUPPORT FOR MANAGING RISK

IN CLOUD COMPUTING PLATFORMS

SEPTEMBER 2018

SUPREETH SHASTRI

M.S., COLUMBIA UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Irwin

Cloud platforms sell computing to applications for a price. However, by precisely defin-

ing and controlling the service-level characteristics of cloud servers, they expose applications

to a number of implicit risks throughout the application’s lifecycle. For example, user’s re-

quest for a server may be denied, leading to rejection risk ; an allocated resource may be

withdrawn, resulting in revocation risk ; an acquired cloud server’s price may rise relative

to others, causing price risk ; a cloud server’s performance may vary due to external fac-

tors, triggering valuation risk. Though these risks are implicit, the costs they bear on the

applications are not.

While some risks exist in all Infrastructure-as-a-Service offerings, they are most pro-

nounced in an emerging category called transient cloud servers. Since transient servers

are carved out of instantaneous idle cloud capacity, they exhibit two distinct features: (i)

revocations that are intentional, frequent and come with advanced warning, and (ii) prices

that are low in average but vary across time and location. Thus, despite enabling inexpen-

sive access to at-scale computing, transient cloud servers expose applications to risks, the

scale of which were unseen in the past platforms. Unfortunately, the current generation

vii

system software are not designed to handle these risks, which in turn results in inconsistent

performances, unexpected failures, missed savings, and slower adoption.

In this dissertation, we elevate risk management to a first-class system design principle.

Our goal is to identify the risks, quantify their costs, and explicitly manage them for ap-

plications deployed on cloud platforms. Towards that goal, we adapt and extend concepts

from finance and economics to propose a new system design approach called financializing

cloud computing. By treating cloud resources as investments, and by quantifying the cost

of their risks, financialization enables system software to manage the risk-reward trade-offs,

explicitly and autonomously.

We demonstrate the utility of our approach via four contributions: (i) mitigating re-

vocation risk with insurance policy, (ii) reducing price risk through active trading, (iii)

eliminating uncertainty risk by index tracking, and (iv) minimizing server’s valuation risk

via asset pricing. We conclude by observing that diversity and asymmetry in the creation

and consumption of cloud compute resources is on the rise, and that financialization can be

effectively employed to manage its complexity and risks.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION .1

1.1 The State of Cloud Computing . 1
1.2 Limitations of Current Systems . 2
1.3 Managing Risks in the Cloud . 3
1.4 Summary of Contributions . 4
1.5 Dissertation Outline . 7

2. BACKGROUND .8

2.1 IaaS Cloud Server Contracts . 8
2.2 Implicit Risks in Cloud Contracts . 10
2.3 Case Study: Transient Cloud Computing . 12
2.4 Motivation . 14

3. MITIGATING REVOCATION RISK WITH INSURANCE 17

3.1 SpotOn Overview . 17
3.2 Modeling Fault-tolerance Overhead . 20
3.3 Cost-aware Insurance Policy . 23
3.4 Implementation . 26
3.5 Evaluation . 28
3.6 Related Work . 35
3.7 Conclusion . 36

ix

4. REDUCING PRICE RISK THROUGH ACTIVE TRADING 37

4.1 The Importance of Price Risk . 37
4.2 Active Trading by Server Hopping . 45
4.3 HotSpot Design . 46
4.4 Implementation . 53
4.5 Evaluation . 56
4.6 Related Work . 64
4.7 Conclusion . 65

5. ELIMINATING UNCERTAINTY RISK BY INDEX-TRACKING 67

5.1 Understanding Uncertainty . 67
5.2 Market Index for the Cloud . 71
5.3 Design of Index-tracking . 75
5.4 Implementation . 82
5.5 Evaluation . 84
5.6 Related Work . 90
5.7 Other Applications: Mitigating Spatial Price Risk . 91
5.8 Conclusion . 97

6. MINIMIZING VALUATION RISK VIA ASSET PRICING 99

6.1 Idle Cloud Pricing in the Wild . 99
6.2 Transient Server Characteristics . 100
6.3 Transient Guarantees . 105
6.4 Implementation . 112
6.5 Evaluation . 113
6.6 Related Work . 118
6.7 Conclusion . 119

7. CONCLUSIONS . 120

7.1 Summary of Contributions . 120
7.2 Directions for Future Research . 122

BIBLIOGRAPHY . 125

x

LIST OF TABLES

Table Page

1.1 Thesis contributions . 4

2.1 Risks exposed by EC2 and GCE cloud contracts. 11

3.1 Expected runtime and cost under different fault-tolerance mechanisms 24

4.1 Migrating to the spot VM with the lowest spot-to-on-demand ratio has
>0.5× revocations than other servers. 44

4.2 Migration latencies for EC2 API operations. 54

6.1 Approaches to selling idle cloud capacity . 107

xi

LIST OF FIGURES

Figure Page

2.1 Price of a representative Linux server (r3.4xlarge) across four availability
zones of the US-East-1 region. 14

3.1 Scatterplot of the rank in spot prices’ volatility and magnitude for 353
markets (left). Table of the top 10 most volatile markets (in
revocations/day when bidding the on-demand price) and their per-hour
spot and on-demand price (right). 18

3.2 Scatter-plot of normalized CPU, memory, and I/O resource usage per task
in Google cluster traces. 18

3.3 SpotOn’s Architecture . 19

3.4 Each fault-tolerance mechanism incurs a different overhead during normal
execution and on revocation. Here, reactive migration incurs an
overhead of Tm on each revocation, proactive checkpointing incurs an
overhead of Tc for each checkpoint, and replicating computation incurs
an overhead of TL based on the work lost when both replicas are
revoked. 21

3.5 The time to checkpoint-restore a container is a function of a job’s memory
footprint (top). The I/O throughput for local disks is an order of
magnitude greater than for remote disks over a range of workloads
(bottom). 28

3.6 Performance and cost for our baseline job when running on an on-demand
instance versus running on spot instances using different fault-tolerance
mechanisms (a). We also plot them as job’s memory footprint (b),
CPU:I/O ratio (c), and duration (d) vary. 30

3.7 The impact of varying the spot revocation rate (a), and on-demand:spot
price ratio (b) on our baseline job’s performance and cost. 31

3.8 Job cost (a) and performance (b) as a function of the job length. 32

3.9 Job cost (a) and performance (b) as a function of the job’s memory
footprint. 33

xii

3.10 Job cost (a) and performance (b) as a function of the revocation rate. 35

4.1 The average Time-to-Revocation (TTR) for 402 Linux spot VMs in EC2’s
us-east-1 region when bidding at the on-demand price and 10× the
on-demand price over a two month period. The average TTR across all
servers is ∼25 and ∼47 days, respectively, for 1× and 10× bids. 38

4.2 Example spot price trace for an m4.large VM with long periods of price
stability and short periods of volatility. 39

4.3 Ideal cost savings from automated VM hopping within each AZ in the
us-east-1 region over one month. 40

4.4 The Time-to-Change (TTC) for the cheapest VM in each of AZs of the
us-east-1 region over a two month period. The average TTC across all
AZs is 1.1 hours. 41

4.5 The x-axis is the spot-to-on-demand ratio, while the y-axis is the average
revocation rate across spot VMs when the spot price is less than or
equal to the x-axis value. 42

4.6 The cost-efficiency of on-demand VMs in the us-east-1 region for different
types of VMs in EC2. 43

4.7 The average normalized cost per ECU for the m4 family of spot VMs across
multiple regions. The error bars represent the maximum and minimum
cost across all AZs. 45

4.8 When the price of HotSpot’s host VM rises, it self-migrates or “hops” to
another VM with a lower cost. 46

4.9 Depiction of HotSpot’s basic control loop, which monitors spot prices and
application resource usage, determines when and where to self-migrate
based on its migration policy, and then executes the migration. 47

4.10 The time to transfer a container’s memory state and restore it as a function
of its memory footprint. The graph shows the average from four trials
with error bars representing the minimum and maximum transfer
time. 55

4.11 Comparison of cost (left), run time (middle), and revocation-related events
(right) when using on-demand VMs, spot VMs without fault-tolerance
(SpotFleet), spot VMs with checkpointing (SpotOn), and HotSpot when
running our baseline job on our HotSpot prototype. The error bars
represent the maximum and minimum of each metric across three
trials. 57

xiii

4.12 Comparison of cost (left), run time (middle), and system events (right)
when using on-demand VMs, spot VMs without fault-tolerance
(SpotFleet), spot VMs with checkpointing (SpotOn), and HotSpot as
the memory footprint varies. The error bars represent the maximum
and minimum of each metric across three trials. 59

4.13 Comparison of cost (left), run time (middle), and system events (right)
when using on-demand VMs, spot VMs without fault-tolerance
(SpotFleet), spot VMs with checkpointing (SpotOn), and HotSpot as
the spot price volatility changes. The error bars represent the maximum
and minimum of each metric across three trials. Once the revocation
rate increases to two per hour SpotFleet never finishes, so we label ∞
for its cost, running time, and system events. 61

4.14 Comparison of cost (left), run time (middle), and system events (right)
when using on-demand VMs, spot VMs without fault-tolerance
(SpotFleet), spot VMs with checkpointing (SpotOn), and HotSpot from
simulating jobs from a production trace on spot VMs based on EC2
spot price traces. The error bars represent the maximum and minimum
over five trials. 62

5.1 Index level for the global Linux spot markets (2406 across all 14 regions). 73

5.2 Indices for the three US-West-1 datacenters . 74

5.3 Indices of server families within a datacenter. 75

5.4 Index at the regional level . 76

5.5 On-demand prices vary across regions. 76

5.6 Indices showing price inversion across regions. 77

5.7 Illustrating the sufficiency condition to accommodate the overhead of
migration. 80

5.8 System architecture with HotSpot components boxed in gray and our
extensions in red. 82

5.9 Spot market setup (left), and the performance tradeoffs (right) at the
baseline configuration. 85

5.10 Performance of policies when application’s resource utilization varies. 85

5.11 Policies under changing market volatility. 87

5.12 Comparing the fully-predictive, fully-reactive and hybrid server hosting
systems on EC2 spot markets. 88

xiv

5.13 Price of a representative Linux server (r3.4xlarge) across four availability
zones of the US-East-1 region. 91

5.14 EC2’s global infrastructure comprises of 44 availability zones or datacenters
(shown in red) organized within 16 regions (shown in blue). Intra-zone
migrations require only detaching and attaching of EBS disk (shown in
green), inter-zone but intra-region migrations additionally require EBS
to be snapshotted and restored (shown in red) and finally, inter-region
migrations require copying snapshots across the regional data stores
(shown in blue) . 92

5.15 Global migration overheads for a 10GB snapshot. 94

5.16 Comparison of cost and availability of global trading policies. 95

5.17 Index-levels of on-demand and reserved servers in the US-East-1 region,
since EC2’s inception. 97

6.1 Availability, volatility, and predictability affect transient server
performance . 101

6.2 Impact on transient server performance when (a) varying availability, (b)
varying volatility at a given level of availability, and (c) varying
predictability at a given level of availability and volatility. 104

6.3 Platforms may offer their idle capacity as multiple transient classes with
different transient guarantees . 109

6.4 Utility functions that specify an offered price for a transient server with a
transient guarantee. 111

6.5 Impact on spot server performance due to incorrect MTTR
characterization . 113

6.6 Transient servers resulting from the idle capacity in Google cluster
traces . 114

6.7 Revocation and performance characteristics of transient servers in 6.6 115

6.8 Performance of transient servers under different pricing models 116

6.9 Revenue comparison from selling transient servers . 117

xv

CHAPTER 1

INTRODUCTION

“Risk comes from not knowing what you are doing.”

Warren Buffett

1.1 The State of Cloud Computing

Cloud computing [8] is an umbrella term that refers to hardware infrastructure, sys-

tem software or applications delivered as a service over the Internet. An early example

of a public cloud at scale is Amazon’s Elastic Cloud Compute (EC2), which started offer-

ing Infrastructure-as-a-Service (IaaS) virtual machines in 2006 [12]. IaaS cloud platforms

provided numerous benefits including on-demand access, pay-as-you-go billing model, and

near-infinite scalability—all of which came without any upfront capital investment. As a

result, cloud computing quickly became the foundation of our information-based economy,

providing large-scale compute power to nearly every segment of our society including com-

merce, science, communications, entertainment, finance, and healthcare. Such widespread

adoption has propelled cloud computing to account for more than half of the worldwide IT

spending by 2021 [27].

In order to benefit from this projected growth, major cloud providers—Amazon EC2,

Microsoft Azure, and Google Compute Engine (GCE) have been rapidly expanding their

datacenters. However, a growing infrastructure footprint makes it challenging to achieve

high resource utilization. For example, a 2014 report from the Natural Resource Defense

Council indicates the average utilization across cloud datacenters to be ∼40% [89]. To

mitigate this problem, providers have started evolving their cloud platforms from fixed-price

server rentals to full-fledged marketplaces that offer a wide variety of service contracts. As

of this date, a given IaaS cloud server could be procured on Amazon EC2 under 12 different

contracts, and on Google GCE under 6 different contracts. While their nomenclatures

1

vary, these contracts offer different combinations of pricing options, time commitments,

performance guarantees, and availability constraints.

Apart from increasing the temporal and spatial multiplexing of the infrastructure, cloud

contracts enable providers to offer purchasing options better tailored to the needs of a broad

customer base. Cloud contracts specify the service level agreements (SLAs) and service level

objectives (SLOs) that the provider is willing to offer to its customers. While SLOs simply

indicate objectives that would be met with best effort, SLAs constitute guarantees that

incur penalties upon violation. By precisely defining, and accordingly pricing the service-

level characteristics of IaaS compute servers, the cloud providers are implicitly exposing

their customers to several risks.

Customers experience risks throughout their computing lifecycle on the cloud. When

users request for resources, it may be denied by the provider, leading to Rejection Risk.

Even after resources have been acquired, they may become unavailable due to unexpected

datacenter failures or intentional revocation by the provider, thus resulting in Revocation

Risk. A procured cloud server may become less cost-effective relative to other servers over

time, causing Price Risk. Since cloud is intrinsically a shared platform, the performance

obtained by user’s application may vary due to external factors, triggering Variability Risk.

Given the complexity of cloud contracts and diversity of applications, the users may not

be able to accurately value a cloud server’s utility, thereby resulting in Valuation Risk.

While not exhaustive, this list demonstrates the presence of new risks that applications are

exposed to in the cloud.

1.2 Limitations of Current Systems

While an expansive set of contracts should help users in achieving a better fit for their

workloads, the current generation software systems are ill-prepared to handle the associated

risks. The origins of this can be traced back to times where compute servers were either

individually owned or shared amongst cooperating users belonging to the same organization.

In such settings, where the provider and consumers are working together, and not trying

to maximize their individual utility, the need for explicit contracts on server characteristics

was largely irrelevant. As a result, system software and applications evolved to treat all

2

servers alike expect for their hardware configurations. The notion that a compute server’s

characteristics do not change, at least in the lifetime of the application, has continued to

influence the design of modern system software frameworks like Hadoop and Spark.

However, ignoring the realities of the underlying infrastructure exposes applications

to several risks that result in inconsistent performances, unexpected failures, and volatile

costs. But prior research as well as current generation software systems either oversimplify

or ignore these risks. Though such practice is prevalent in applications that are not natively

designed for cloud platforms, it is not exclusive to them. For example, even cloud generation

cluster managers like Mesos and Kubernetes do not distinguish between majority of cloud

contract types. In summary, we observe that while the cloud has evolved into an advanced

marketplace, consumers lack the sophistication and toolset to manage the risks of operating

there. Our work is an attempt to bridge this gap.

While cloud applications face some risk in all types of cloud contracts, none are as

potent as the ones exposed in transient cloud computing. Transient servers originate from

datacenter’s unused capacity, which is idle at the given moment but could be summoned

for other purposes at any time. Thus, they exhibit two distinct features: (i) revocations

that are intentional, frequent and come with advanced warning, and (ii) prices that are low

in average but vary across time and location. On one hand, transient servers have enabled

access to cloud computing for a wide swath of applications that were hither to inhibited by

the high costs of on-demand servers; but on the other hand, they expose applications to

revocation-, price-, valuation-, and uncertainty-risks, the scale of which were unseen in the

past. Consequently, this is resulting in missed savings, and worse, slower adoption.

1.3 Managing Risks in the Cloud

In this dissertation, we elevate risk management to a first-class system design principle.

Our goal is to systematically identify the risks in cloud platforms, quantify their costs, and

explicitly manage them for applications. In doing so, we observe that IaaS cloud platforms

have turned into full-fledged marketplaces with contract offerings resembling those in the

commodity and financial markets. Over the last 50 years, financial companies have engaged

in sophisticated risk management strategies to operate effectively in their markets. We

3

Risks Problems Proposed Solution Result

Revocation
Revocations pose a new

fault-model that undermines the
benefit of using transient servers

Cost-efficient insurance
via SpotOn

91% cost-savings
over on-demand

Price
Applications may pay higher
price for less efficient servers

in variable-priced cloud markets

Active server trading
via HotSpot

50% cost reduction
over insurance schemes

Uncertainty
Applications deployed on

variable-priced cloud markets
suffer from cost uncertainty

Server hosting that tracks
Cloud Indices

Predictable costs that
match the index-level

Valuation
Transient servers are difficult
to price (for providers) and
to value (for consumers)

Asset pricing
via Transient Guarantees

5x increase
in the overall value

Table 1.1: Thesis contributions

argue that with compute-time turning into a core investment, technology-enabled companies

would need to understand and cope with the risks present in the cloud platforms.

This naturally leads us to adapt risk management techniques from finance and eco-

nomics, where it has been extensively researched and practiced. However, as the rest of

the thesis shows, there are significant differences between cloud servers and financial instru-

ments such that it requires considerable modifications and enhancements to adapt ideas

from these domains. Aptly, we call our approach to managing risks in cloud systems, fi-

nancializing cloud computing. By identifying cloud risks and then devising techniques to

quantify their costs, financialization enables system software to manage the risk-reward

tradeoff autonomously. As we describe in the next section, this approach enables unmodi-

fied cloud applications to manage their risks and at times, benefit from them.

1.4 Summary of Contributions

Our central hypothesis is that we can adapt and extend techniques from economics

and finance to transparently mitigate new types of risks that cloud platform expose to

applications. In evaluating this hypothesis, we focus on four key cloud risks, and design

new abstractions, mechanisms, and policies towards managing them. We highlight our

contributions in Table 1.1, and describe them below.

4

1.4.1 Mitigating Revocation Risk with Insurance

Revocations pose a new fault-model that undermines the benefit of using transient cloud

servers. Unlike the classical hardware failure, transient server revocations are intentional,

frequent and come with advanced warning. In SpotOn [78], we investigate how to insure

against revocation risk without incurring huge premiums.

We identify that the cost of insurance against transient server revocations is a func-

tion of application’s footprint, transient server’s market characteristics, and fault-tolerance

mechanism’s overhead. In order to make this cost-efficient, we (i) extend the classical fault-

tolerance mechanisms of migration, checkpointing, and replication to the new fault scenario

and model their overheads; and then (ii) design a greedy insurance policy that dynamically

selects a combination of transient server and fault-tolerance mechanism that results in the

lowest premium. We implement these in a service called SpotOn, which executes unmodified

batch applications on EC2 spot servers. Evaluations on Amazon EC2 show that SpotOn is

able to achieve near on-demand performance while also realizing ∼91% cost savings.

1.4.2 Reducing Price Risk through Active Trading

Transient cloud servers sold in variable priced markets, like EC2 spot markets, exhibit

price variations, inversions and arbitrages. These lead to price risk, or the risk that a chosen

server’s price will increase relative to others. In HotSpot [70], we explore how to avoid price

risk for unmodified cloud applications.

Through market analysis, we observe (i) that price risk is ∼500x more frequent than

revocation risk, and (ii) that servers with high discount also tend to have low revocation

risk (which is reflective of the supply-demand dynamics). With these key observations,

we hypothesize that by employing active trading (i.e., hopping from the current server to

a better one), a flexible application can reduce its costs without increasing its revocation

risk. Then, we design a server hopping mechanism at the system level (via a self-migrating

container) such that unmodified applications can utilize it. HotSpot, our prototype on

Amazon EC2 demonstrates that active trading results in ∼50% savings relative to insurance

based approaches.

5

1.4.3 Eliminating Uncertainty Risk by Index Tracking

Applications that run on variable-priced cloud servers suffer from cost uncertainty. Since

the server prices are market-based, and could vary considerably (up to 10×), customers find

it difficult to plan their IT expenses. In [72], we design an index-tracked cloud server to

eliminate the uncertainty risk.

While prior approaches have tried to model and predict individual transient server mar-

kets, they have had limited success due to the proliferation of EC2 spot markets. We propose

an alternative solution based on two key insights: (i) making price predictions at aggregate

market level is more reliable than at individual server level, and (ii) knowing the bench-

mark for cost estimates a priori enables reactive server management systems to achieve the

target cost-efficiency without sacrificing availability. Towards eliminating cost uncertainty,

we introduce a market-based cloud index, and design a mechanism for index-tracking via

server hopping. We implement and evaluate this system on Amazon EC2 spot markets,

and demonstrate that it can reliably achieve the predicted cost-efficiency for a broad class

of flexible applications.

1.4.4 Minimize Valuation Risk via Asset Pricing

For transient cloud server offerings, the providers do not reveal precise transiency infor-

mation as it makes their administration challenging. However, this opacity makes it difficult

for consumers to gauge their true value. In Transient Guarantees [73], we explore how to

minimize the valuation risk.

By distilling transient server characteristics into three orthogonal axes of availability,

volatility, and predictability, we introduce the notion of equilibrium price—i.e., the price

beyond which the utility of a transient server (modulo its fault-tolerance overhead) is no

better than an equivalent on-demand server. While equilibrium price is only applicable

in retrospect, it helps consumers determine how their transient server fared. Interestingly,

our market analysis using equilibrium price reveals that Amazon and Google transient

server contracts do not maximize the server’s value for either providers or consumers. To

address these problems, we design a new asset-pricing abstraction called transient guarantee

that offers probabilistic assurances on transiency characteristics. Through modeling and

6

evaluation, we show that transient guarantees not only help users in determining the value

of transient servers upfront but also enable providers to increase their revenue by up to 5×

without sacrificing their ability to revoke transient servers.

1.5 Dissertation Outline

The rest of the thesis is organized as follows. Chapter 2 provides the necessary back-

ground on cloud platforms, and motivates our approach of financialization. Chapter 3

describes SpotOn, a batch computing service that designs a cost-efficient insurance policy

against revocation risk. Chapter 4 covers HotSpot, a platform for active server trading that

mitigates the price risk. Chapter 5 details our market-based cloud index that enables index-

tracking, and eliminates cost uncertainty. Then, chapter 6 introduces Transient Guarantees,

an asset pricing model that minimizes the valuation risk of idle cloud capacity. Finally, we

conclude and highlight the future work in chapter 7.

7

CHAPTER 2

BACKGROUND

“I have always wished for my computer to be
as easy to use as my telephone; my wish has
come true because I can no longer figure out
how to use my telephone.”

Bjarne Stroustrup

This chapter serves as a primer on IaaS cloud server contracts, and how their composition

translates into specific cloud risks. We also describe how the risks are elevated in transient

cloud computing by using Amazon EC2 spot market as an illustrative example. Finally,

we highlight the recent progress towards commoditizing compute-time on the cloud, and

motivate our work on risk management via financialization.

2.1 IaaS Cloud Server Contracts

Early cloud server contracts bear strong resemblence to the conventional commodity

contracts namely, spot and futures. Spot contracts offer commodities for immediate deliv-

ery, while futures contracts offer commodities for at a predetermined future date. These

contracts are structured so that companies that rely on commodities can buy and sell them

based on their expectations of workload and market prices. For example, an airline might

purchase oil futures to meet its expected fuel demands over the next year. Then, as the

year progresses, if the actual demand is lower or higher than expected at any point, the

airline may sell its spare or buy extra as spot contracts to ensure the real-time demand is

met. However, as providers began amassing expertise in operating large-scale datacenters

efficiently, they evolved the cloud contracts along more specialized characteristics in order to

increase their utilization levels as well as to closely match the needs of their customers. Be-

8

low, we highlight the prominent types of IaaS cloud contracts, using examples from Amazon

EC2 and Google Compute Engine:

• EC2 On-demand and GCE On-demand: Most widely known and used, on-demand

contracts allow users to request and relinquish cloud servers at any time. While they

employ a fixed per-second pricing model, their price levels are considerably higher com-

pared to other contract types, given their flexibility.

• EC2 Reserved and GCE Committed Use: These are the cloud’s equivalent of

futures contract, where customers sign up for 1-3 years of committed use and in return,

the providers offer discounted rates and guaranteed access over that period. While

well suited for long-term predictable workloads, these contracts eliminate much of the

elasticity benefits of the cloud, and may increase the costs if not highly utilized.

• EC2 Spot and GCE Preemptible: The purpose of this contract is to increase dat-

acenter’s utilization levels by selling access to idle cloud capacity that otherwise cannot

be turned off. As the instantaneous surplus capacity varies with time, the providers

retain the right to revoke the offered servers with only a brief warning. While EC2

has adapted a market-based variable pricing option, GCE prices these at ∼30% of the

on-demand equivalent.

• EC2 Defined-duration: Also called the Spot-blocks, these contracts are a middle

ground between on-demand and reserved types. The provider guarantees 1-6 hours of

access at a discounted price and will reclaim the server after that period. The billing

model is same as that of EC2 spot markets i.e., market-based variable pricing. GCE

does not offer an equivalent contract.

• EC2 Burstable and GCE Shared Core: Designed for applications that do not need

consistently high-levels of CPU but may occasionally need to sprint, these contracts offer

inexpensive access to shared cloud servers. The prices are significantly discounted and

billed at fixed per-second granularity. The downsides include rate-limited performance

as well as direct exposure to interference by other cloud tenants.

• EC2 Dedicated and GCE Sole Tenant: These are generic qualifiers that when

applied to a contract, alter its characteristics significantly. As the name suggests, the

9

provider allocates a dedicated physical machine for the contract. Thus, users could

expect predictable performances and arguably better privacy and security conditions.

However, since this directly affects the provider’s ability to multiplex user requests, the

costs are significantly higher.

2.2 Implicit Risks in Cloud Contracts

In structuring the IaaS cloud server offerings as contracts governed by carefully crafted

SLAs and SLOs, and pricing them accordingly, the cloud providers are implicitly exposing

the customers to various risks. This is a big departure from the pre-cloud days where com-

pute servers were primarily distinguished by their hardware capabilities, and any differences

in their price, performance, and failure characteristics were abstracted from the users. Thus,

we define risk as quantifiable cloud server characteristics that affect application’s expected

performance, behavior, and ultimately cost. We list below, significant risks exposed by the

current generation cloud platforms:

• Rejection Risk: While the cloud promises infinite scalability in theory, the cloud

providers many not be able or willing to fulfill the requested services at certain times.

This may be due to limitations of the datacenter infrastructure, instantaneous oversub-

scription, planned maintenance, or unexpected failures. Thus, the rejection risk leaves

customers unable to obtain the needed services. All contract types are subject to this

risk with the exception of futures contracts—EC2’s reserved instances and GCE’s com-

mitted use VMs, both of which require customers to sign up for 1-3 years of service,

ahead of time.

• Revocation Risk: Unlike rejection, the revocation risk affects the already allocated

servers. This risk is most visible in the transient server contracts—EC2’s spot instances

and GCE’s preemptible VMs, both of which grant providers the right to revoke an

already allocated server after a brief warning. Though most contracts explicitly prohibit

intentional revocations, they do not guarantee 100% availability. While providers pay out

a penalty upon unintended service failures, the customers are not immune to revocation

risks.

10

Rejection Revocation Price Variability Workload Valuation

EC2/GCE On-demand Yes No No Yes No No

EC2/GCE Reserved No No Yes Yes Yes No

EC2 Spot Yes Yes Yes Yes No Yes

GCE Preemptible Yes Yes No Yes No Yes

EC2 Defined-Duration Yes No Yes Yes Yes Yes

EC2/GCE Burstable Yes No No Yes No Yes

Table 2.1: Risks exposed by EC2 and GCE cloud contracts.

• Price Risk: This is the risk that an acquired cloud server becomes less cost-effective

relative to others. Though this risk occurs routinely in variable-priced contracts like

EC2 spot markets, it is not unique to them. Introduction of new generation of cloud

servers, discontinuation of contracts or server families, and price reductions for certain

servers are all examples that introduce price risks. While the timescales of price risks

may vary, no contract type is immune to this risk.

• Variability Risk: Since the cloud is a shared compute platform, the risk of performance

variability is intrinsic to it. While providers offer a contract type that mitigates this

risk (namely, EC2’s dedicated instances and GCE’s sole tenant VMs), most contracts

are not immune to it. However, unlike other risks, performance variability is hard to

quantify and mitigate as external interferences that cause it vary across applications,

locations, time, and server types.

• Valuation Risk: This risk manifests in user’s inability to accurately value a cloud

server’s utility. Unspecified server characteristics, market-based pricing, performance

variability, non-uniform effect of failures on applications are amongst the factors that

contribute to this risk. While valuation risk’s impact could be reduced by specialized

cloud contracts that provide additional guarantees (like dedicated hosting and reserved

pricing), it cannot be eliminated.

Table 2.1 succinctly represents the risks exposed by EC2 and GCE contracts. We note

that the table offers only a coarse approximation of each contract’s terms and composition

as they are too complex to capture in a concise tabular format. The main takeaway is that

11

no type of contract is free from all the risks, and applications have to evolve to manage

them explicitly. Also importantly, we observe that transient contracts are exposed to more

risks than all other types. In the next section, we explore this in more detail.

2.3 Case Study: Transient Cloud Computing

The origin of transient cloud computing lies in cloud providers’ attempt at repurposing

the spare server capacity, which turns out to be a significant portion (up to 40%) of the

cloud datacenters. Though unused, these servers could not be turned off due to variety

of reasons including: (i) provisioning for peak expected capacity, (ii) internal and external

fragmentation of physical machines caused by VM multiplexing, (iii) disruption-free ad-

ministration and maintenance, (iv) SLAs that expect server requests to be fulfilled faster

than the time it takes to cold boot physical machines, and (v) failover servers intended to

maintain high availability guarantees.

Since the providers do not know in advance as to which of the unused servers would be

required at what time, they have structured these offerings as transient server i.e., servers

whose availability is not guaranteed. EC2 spot instances and GCE preemptible VMs are

examples of this category. Because of their undesirable availability properties, transient

servers are offered at highly discounted prices. For example, compared to their equivalent

on-demand contracts, EC2 spot servers are discounted at 50-90% and GCE preemptible

VMs are discounted at 70%. The main difference between EC2 and GCE transient offering

is that the former employs a market-based variable pricing mechanism while the latter uses

a fixed price.

As a result of their low pricing, this new contract type suddenly provided access to

inexpensive cloud computing for a wide swath of applications that were hither to inhibited

by the high costs of on-demand servers. For example, the Fermilab Scientific Computing

Division employed spot servers to dynamically scale up their compute capacity by 4× during

the discovery Higgs-Boson [15]. Similarly, a group of machine learning and natural language

processing researchers recently set the record [16] for the largest ever high-performance

cluster on the cloud by using 1.1 million vCPUs on spot servers.

12

Though transient servers offer a significant potential for cost savings, the magnitude

of these savings is not guaranteed, and could ultimately be negative if their transiency

characteristics change unexpectedly. The effects are more profound but better quantifiable

in the EC2 spot markets, which adopts the following operating mechanism: users bid for

spot servers at the time they need them; EC2 continually evaluates the supply-demand

dynamics of their idle capacity to determine the clearing price; if a user’s bid exceeds the

spot price, they are allocated the server; when the spot price rises above the user’s bid level,

EC2 reserves the right to revoke the server with a two-minute warning [13].

EC2’s global footprint is massive and complex: it operates in 16 worldwide regions

each of which comprise of 2-6 availability zones, and has announced plans to add 6 new

regions with 17 additional zones in the future [3]. Since EC2 sets a different dynamic spot

price for each type of server in each availability zone of each region, the global spot market

currently includes more than 7600 separate server “listings”. Notwithstanding the global

footprint, the spot prices are hard to predict even for identical servers within a region. For

example, Figure 2.1 shows the price of r3.4xlarge Linux server in four availability zones

of US-East-1 region.

2.3.1 Elevated Risks in Transient Contracts

While renting out surplus capacity increases utilization for providers, and gives access to

cheap computing for customers, the need to repurpose them for more important endeavors

at a moment’s notice affects application’s performance. This worsens (i) the revocation risk

since providers are reclaiming the servers, intentionally and frequently, (ii) the valuation

risk since applications now have to employ fault-tolerance mechanisms to preserve their

forward progress, thereby making it difficult to value the true utility of the transient server.

While variable-priced and market-based allocation schemes are effective in determining

the right price and in automatically balancing the supply and demand in real-time, they

result in the price volatility. In turn, this exacerbates (i) the price risk since the prices

of all servers are varying in real-time, and (ii) the uncertainty risk since customers cannot

plan for their IT budgets in advance. These two problems are somewhat minimized in

GCE preemptible due to their fixed pricing but are not completely absent. This is because

13

 0

 2

 4

 6

 8

 10

Jan-1 Feb-1 Mar-1 Apr-1 May-1
S

p
o

t
P

ri
c
e

 (
c
e

n
ts

)

1a 1b

 0

 2

 4

 6

 8

 10

Jan-1 Feb-1 Mar-1 Apr-1 May-1

S
p

o
t

P
ri
c
e

 (
c
e

n
ts

)

1c 1d

Figure 2.1: Price of a representative Linux server (r3.4xlarge) across four availability zones
of the US-East-1 region.

the elevated risks of revocation and valuation affect application’s performance and total

incurred costs, which indirectly expose users to price- and uncertainty-risks.

2.4 Motivation

2.4.1 Towards Commoditized Compute

While our work financialization is motivated by cloud’s evolution into a marketplace, the

mechanisms and policies that benefit from this approach require compute-time to be a fun-

gible commodity. Over the last 5-10 years, we are witnessing a confluence of technological

advancements in virtualization and networking, especially in the context of datacenters. For

example, resource containers [5, 52, 24, 11, 56] and nested virtualization [20, 91] are elimi-

nating many of the implicit dependencies that bind applications to an underlying machine.

At the same time, bandwidth and capacity gains in datacenter networking are reducing the

time and performance penalties associated with migrating containerized applications across

servers. Finally, efficiencies in datacenter administration has allowed the cloud providers to

14

reduce the duration of renting from hours to seconds [17, 53]. Together, these three trends

are pushing compute-time towards being a fungible resource, thereby enabling applications

to “move with the market.” This has recently been demonstrated in Supercloud project [74]

by system researchers at Cornell University.

For a long time, both researchers and practitioners have called for an open commodity

markets for the cloud. However, such markets have not yet materialized due to several

reasons: (i) overhead and correctness issues when migrating applications across providers,

(ii) security and privacy concerns that preclude customers from running their applications

on unvetted platforms, and (iii) economic and scale issues of being a cloud provider that

create barriers to new entrants. As a result, public cloud computing is dominated by an

oligopoly of Amazon, Microsoft, and Google, who have amassed the technical expertise,

trust, and scale of economy needed to operate sustainably. Though cloud computing is not

an open market, and in all likeliness evolving away from it, there is tremendous internal

diversity and proliferation of risks in each of the provider silos to benefit from financializing

cloud applications.

There is a long history of prior research on market-based resource allocation prior to the

emergence of cloud computing, e.g., [85, 80, 77, 39, 40, 59, 9, 75]. However, prior work is

not applicable to todays cloud markets, as it focused on (i) optimizing resource allocation in

synthetic markets using virtual currency, (ii) did not address risk management in modern

distributed applications, and (iii) did not envision the diversity and complexity of cloud

server contracts.

2.4.2 Financializing Cloud Computing

Financialization [1] broadly refers to the process by which exchange of goods, services

and risks is increasingly facilitated via intermediation by financial institutions and instru-

ments. By translating all economic activities into a common medium, say currency, fi-

nancialization makes it easier to rationalize about assets and risks. For example, financial

derivates i.e. abstract instruments whose value is derived from the value of another under-

lying instrument, have become an effective tool in risk management. However, the term

financialization was originally coined by Gerald Epstein in 2001 [31] to convey the impor-

15

tance of financial markets, financial motives, financial institutions, and financial elites in

the operation of the economy and it’s governing institutions.

In our work, we use financialization to refer to the design of computing system frame-

works, abstractions, mechanisms, and policies, influenced by finance and economics, to

enable applications to be “financially-aware”, i.e. to treat compute resources as invest-

ments, rationalize about their risk-reward trade-offs and manage them in a way that adapts

to changes in the market. As cloud contracts increasingly resemble those in the commod-

ity and financial markets, the case for financialized computing becomes compelling. Since

compute-time represents the new “fuel” for the IT economy, organizations and users that

can significantly reduce their computing costs, while limiting their risks, will gain a com-

petitive advantage.

16

CHAPTER 3

MITIGATING REVOCATION RISK WITH INSURANCE

“Certainty belongs to mathematics, not to markets.”

Bill Miller, Investor and portfolio manager

Spot servers expose applications to a new failure model in the form of server revo-

cations, which are intentional and frequent but come with an advanced warning. While

fault-tolerance mechanisms can be employed as insurance against spot revocations, applica-

tions need to balance their “premium” (i.e., the mechanism’s cost and overhead) with their

“payout” (i.e., the ability to survive revocations). In this chapter, we address this challenge

for batch applications by designing a cost-aware insurance policy, which dynamically selects

the best combination of spot server and fault-tolerance mechanism. Below, we present the

design and evaluation of SpotOn, a batch compute service that incorporates this policy.

3.1 SpotOn Overview

SpotOn’s goal is to enable users to run their unmodified batch jobs at a performance sim-

ilar to that of on-demand servers but at a price near that of spot servers. To do so, SpotOn

dynamically determines (i) the best instance type and spot market to run the job, and (ii)

the fault-tolerance mechanism that best balances the risk of revocation with the overhead

of the mechanism. Our hypothesis is that by judiciously selecting the fault-tolerance mech-

anism and spot market, SpotOn can decrease the cost of running jobs, without significantly

increasing the job’s running time compared to using on-demand instances.

3.1.1 Motivation

SpotOn is motivated by two key observations (i) spot markets and batch jobs exhibit

a wide range of characteristics, and (ii) the choice of best fault-tolerance mechanism is a

function of both spot market and job characteristics.

17

0 50 100150200250300350
Rank by Spot Price

0

50

100

150

200

250

300

350

R
a
n

k
 b

y
V

o
la

ti
tl

it
y

Rank Zone Type Volatility
Spot
(¢)

On-demand
(¢)

262 ap-northeast-1c m1.large 137.51 0.50 5.23
261 ap-northeast-1c m1.xlarge 82.10 0.50 5.23
282 us-west-1a c1.xlarge 20.36 0.52 3.06
46 us-west-1a m2.4xlarge 14.49 0.28 4.33

299 ap-southeast-1b c1.medium 9.61 0.57 3.06
163 us-west-1a m2.2xlarge 9.60 0.34 4.33
18 us-west-1a m3.xlarge 8.83 0.25 2.63

307 ap-southeast-1a c1.medium 8.34 0.62 3.06
347 eu-west-1a cg1.4xlarge 6.21 1.64 6.66
39 us-west-1c m2.2xlarge 6.07 0.26 4.33

Figure 3.1: Scatterplot of the rank in spot prices’ volatility and magnitude for 353 markets
(left). Table of the top 10 most volatile markets (in revocations/day when bidding the
on-demand price) and their per-hour spot and on-demand price (right).

0.0 0.2 0.4 0.6 0.8 1.0
Normalized CPU

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

ze
d

 M
e
m

.

(a) CPU v.s Memory.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized CPU

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

ze
d

 I
O

(b) CPU v.s. IO.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Mem.

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

ze
d

 I
O

(c) Memory vs. IO.

Figure 3.2: Scatter-plot of normalized CPU, memory, and I/O resource usage per task in
Google cluster traces.

To illustrate the former, we analyze all the 353 spot markets in the US-East-1 region

over Dec-2014 to Mar-2015, Figure 3.1 gives some indication of the diversity in price char-

acteristics across these markets. The figure shows a scatterplot of the rank of 353 markets

in terms of their average spot price and volatility over the past three months (left), which

demonstrates that markets differ widely in their combination of volatility and price, i.e.,

the lowest price is not always the least volatile. The figure also lists the top 10 most

volatile markets and shows that their average spot price is as much as 10× less than the

corresponding on-demand price.

To demonstrate the latter, we consider a random sample of 1000 jobs from Google

cluster traces [61]. Figure 3.2 shows a scatterplot of CPU, memory, and I/O resource usage

18

Batch Jobs

Resource Profiler

Fault-tolerant Models

Price Monitor

Policy Algorithms

Job Scheduler

Container Manager

Public Cloud APIs

SpotOn

Zone

On Demand Spot

Container Container Zone Zone

Price information

Infrastructure-as-a-service Clouds

Submit

Figure 3.3: SpotOn’s Architecture

for Google cluster trace jobs (normalized to the 99th percentile value). As we discuss in

Section 3.2, the choice of fault-tolerance mechanism is a function of both resource usage

and spot price dynamics, and is likely different for each job.

3.1.2 Architecture

We depict SpotOn’s architecture in figure 3.3. Users interface with SpotOn by sub-

mitting their jobs as Linux Containers (LXC). We choose to package batch jobs within

containers for a number of reasons. First, containers are convenient because they encap-

sulate all of a job’s dependencies similar to a VM. Second, containers include efficient

checkpointing and migration mechanisms, which SpotOn requires; unlike with VMs, the

size of a container checkpoint scales dynamically with a job’s memory footprint. Third,

containers enable SpotOn to partition a single large instance type into smaller instances,

which makes a broader set of spot markets available to run a job. Finally, containers require

only OS support, and do not depend on access to underlying hypervisor mechanisms, which

are typically not exposed by cloud platforms.

Based on a job’s expected running time and resource usage profile, SpotOn monitors

spot prices in EC2’s global spot market and selects both the market and fault-tolerance

mechanism to minimize the job’s expected cost, without significantly affecting its completion

time. SpotOn also chooses whether the job should use locally-attached or remote storage,

e.g., via EBS. After making these decisions, SpotOn acquires the chosen instance from the

19

underlying IaaS platform, configures the selected fault-tolerance mechanism, and executes

the job within a container on the instance. Upon revocation, SpotOn always continues

executing a job on another instance in another market.

In the next two sections, we describe SpotOn’s fault-tolerance model, and how a cost-

aware selection of server is made in tandem with fault-tolerance mechanism.

3.2 Modeling Fault-tolerance Overhead

SpotOn can employ three broad categories of system-level fault-tolerance mechanisms:

(i) reactive job migration prior to a revocation, (ii) checkpointing of job state to remote

storage, and (iii) replicating a job’s computation across multiple instances. Each mechanism

incurs different overheads (i.e., insurance premiums) during normal execution and upon

revocation based on a job’s resource usage. Figure 3.4 depicts these overheads, which we

capture using the simple models described below.

3.2.1 Reactive Migration

The simplest fault-tolerance mechanism is to migrate a job immediately upon receiving a

warning of impending revocation. Since EC2 provides a brief two-minute warning, SpotOn

can use this approach for jobs that are capable of checkpointing their local memory and

disk state to a remote disk within two minutes. The time to checkpoint a job’s state is a

function of both the size of its local memory and disk state based on the network bandwidth

and disk throughput between the job’s VM instance and the remote disk. Of course, if a

job’s checkpoint does not complete within two minutes, this approach risks a failure that

requires restarting a job. While there are many migration variants, a simple stop-and-copy

migration is the optimal approach for batch jobs that permit downtime during migration.

Below, we model the migration time Tm for a job as a function of the size of its memory

footprint (M) and local disk state (D), the average I/O throughput (IOPS) of the remote

disk, and the available network bandwidth (B). We define Rb = min(B, IOPS) and use

Rsb and Rrb to represent the bottleneck when saving and restoring a job, respectively.

Tm =
M +D

Rsb
+
M +D

Rrb
(3.1)

20

Restore

Tm

T + Tm

t0

(a) Reactive Migration.

T + 4Tc + TL

Restore

Tc Tct0
TL

(b) Proactive Checkpointing.

Restart

t0

T + TL

TL

(c) Replicating Compuatation.

Figure 3.4: Each fault-tolerance mechanism incurs a different overhead during normal ex-
ecution and on revocation. Here, reactive migration incurs an overhead of Tm on each
revocation, proactive checkpointing incurs an overhead of Tc for each checkpoint, and repli-
cating computation incurs an overhead of TL based on the work lost when both replicas are
revoked.

The first term captures the time to save the memory and local disk state to a remote

disk, while the last term captures the time to restore it. Thus, the overhead for reactive

migration is a function of the magnitude of Tm and the market’s volatility, i.e., the number

of revocations over the job’s run time.

3.2.2 Proactive Checkpointing

Proactive checkpointing is an extension of migration that stores checkpoints at periodic

intervals. The per-checkpoint latency Tc to checkpoint a job’s state to remote disk is

equivalent to the first term of the time to migrate as shown below.

Tc =
M +D

Rsb
(3.2)

With this approach, the number of checkpoints is not related to market volatility and

the number of revocations, but on a specified checkpointing interval τ . Thus, the total

time spent checkpointing a job with running time T is T
τ ∗ Tc. Importantly, proactive

checkpointing not only incurs an overhead for each checkpoint, but also requires rolling a

21

job back to the last checkpoint on each revocation. For example, if a platform revokes a job

right before a periodic checkpoint, then it loses nearly an entire interval τ of useful work.

Thus, proactive checkpointing presents a tradeoff between the overhead of checkpointing

and the probability of losing work on revocation: the smaller the interval τ the higher

the checkpointing overhead during normal execution but the lower the probability of losing

work on revocation and vice versa. This overhead is a function of a job’s resource usage,

i.e., its memory footprint, and the spot market’s volatility.

3.2.3 Replicating Computation.

When replicating computation on multiple instances, the overhead is related to the

magnitude and volatility of spot prices in the market, and not the size of a job’s memory

and local disk state. As a result, replicating computation provides SpotOn useful flexibility

along multiple dimensions relative to the two previous mechanisms: (i) enables local storage,

(ii) allows exploiting multiple zones/regions, and (iii) supports parallel jobs. The choice of

using spot versus on-demand instances as replicas results in different overheads.

Replication on Spot Instance. Since the price of spot instances is often much more than a

factor of two less than an equivalent on-demand instance, deploying multiple spot instances

is often cheaper than executing a job on an on-demand instance. Given the probability

of revocation Pr in each market, the completion probability Pc that at least one of n job

replicas across different spot markets completes is one minus the probability that all of the

jobs are revoked, or Pc = 1 −
n∏
k=1

P kr . Thus, replication across spot instances is better for

shorter jobs, since they have a lower probability of all replicas being revoked.

Replication on On-demand Instance. The second replication approach is to execute

a replica on an on-demand instance, which has a 0% revocation probability. To offset

the expense of on-demand instance, SpotOn multiplexes multiple jobs on one on-demand

instance, which effectively serves as a replication backup server. In this case, each job is

given an isolated partition of the on-demand server’s resources, such that the application

executes slower than on a dedicated spot instance. On revocation, SpotOn loses any work

associated with the primary spot instance, which causes the job’s progress to revert to that

22

of the backup replica. SpotOn may then simply run the job at the slower rate, or acquire

a spot instance in another market and migrate the backup server’s job replica to it.

3.3 Cost-aware Insurance Policy

SpotOn employs a greedy cost-aware policy that selects the spot market and fault-

tolerance mechanism in tandem to minimize a job’s expected cost per unit of running time

(modulo overhead) until it completes or gets revoked. SpotOn re-evaluates its decision

whenever a job’s state changes, e.g., due to a revocation, in order to select a new instance

type and market to migrate the job.

We profile each spot market as a function of jobs’ remaining running time, T . In

particular, we define a random variable Zk for each spot market k to represent the amount of

time a job can run on a spot instance without being revoked. We then define the probability

that Zk is less than a job’s remaining running time Pz = P (Zk ≤ T), which represents the

probability that a job’s spot instance from market k is revoked before it completes. We use

E(Zk) to denote the expected time a job executes before being revoked. For a given running

time T , we can compute both P (Zk ≤ T) and E(Zk) over a recent window of prices, e.g.,

the past day, week, or month. For each spot market k, we also maintain the average spot

price C̄ksp, and the ratio of on-demand to spot price ratio, r. Finally, we determine the

optimal checkpointing frequency τ based on the job and market characteristics [29]. We use

these values in computing the expected cost E(Ck) and expected time E(Tk) for running

each job in a particular spot market k, as summarized in table 3.1. Below, we detail how

to compute the expected cost per unit of running time for each of the three mechanisms.

3.3.1 Expected Cost of Migration

In this case, the expected cost until the job either completes or is revoked is the proba-

bility the job is revoked (which is a function of its remaining running time) multiplied by the

cost of running the job to the first revocation plus the probability the job finishes without

being revoked multiplied by the cost of running the job to completion. On each revocation,

the job incurs migration overhead Tm. On similar lines, we determine the expected time the

job either completes or is revoked. Since reactive migration is the best option if migration

23

Mechanism Expected cost and run-time

Reactive Migration
E(Tk) = (1 − Pz) ∗ T + Pz ∗ (E(Zk) − Tm)

E(Ck) =
[
Pz ∗ E(Zk) + (1 − Pz) ∗ T

]
∗ C̄k

sp

Proactive Checkpointing
E(Tk) = E(Zk) − E(Zk)

τ
∗ Tc −

τ

2

E(Ck) =
[
Pz ∗ E(Zk) + (1 − Pz) ∗ T

]
∗ C̄k

sp

Replication (Spot)

E(Tk) = Pc ∗ T

E(Ck) = (1 − Pc) ∗
n∑

k=0

(C̄k
spE(Zk)) + Pc

n∑
k=0

C̄k
spT

Replication (On-demand)
E(Tk) = Pz ∗

E(Zk)

r
+ (1 − Pz) ∗ T

E(Ck) =
[
Pz ∗ E(Zk) + (1 − Pz) ∗ T

]
∗ (1 +

1

r
) ∗ C̄k

sp

Table 3.1: Expected runtime and cost under different fault-tolerance mechanisms

is feasible, SpotOn generally uses it whenever a job’s memory footprint permits migration

within the two minute warning.

E(Tk) = (1− Pz) ∗ T + Pz ∗ (E(Zk)− Tm)

E(Ck) =
[
Pz ∗ E(Zk) + (1− Pz) ∗ T

]
∗ C̄ksp

(3.3)

3.3.2 Expected Cost of Checkpointing

The expected cost of checkpointing is based on the checkpointing interval (defined by

the slack) and the potential loss of work due to revocations. As above, we compute the

expected cost until a job either completes or is revoked. However, in computing the expected

job running time E(Tk), we subtract the useful work completed by the job based on the

checkpointing interval and any work lost on the revocation.

E(Tk) = E(Zk)−
E(Zk)

τ
∗ Tc −

τ

2

E(Ck) =
[
Pz ∗ E(Zk) + (1− Pz) ∗ T

]
∗ C̄ksp

(3.4)

3.3.3 Expected Cost of Replication (Spot)

When replicating across spot instances, we do not re-run our selection policy on each

revocation. Instead, if all spot instances are revoked, we re-start the job on an on-demand

instance to ensure the job completes. The expected cost when replicating a job with re-

maining running time T across n spot markets is the expected cost if all spot instances are

24

revoked plus the expected cost if the job completes, weighted by the probability of each

event occurring. Here, Pc and Pr are the probability of a job completing and being revoked;

Cksp is the average price of the spot instance for market k.

E(Tk) = Pc ∗ T

E(Ck) = (1− Pc) ∗
n∑
k=0

(C̄kspE(Zk)) + Pc

n∑
k=0

C̄kspT
(3.5)

3.3.4 Expected Cost of Replication (On-demand)

Computing the cost of replicating on a “slower” and cheaper on-demand instance is

similar to checkpointing, except that we incur an additional cost for the discounted on-

demand instance. Here, we assume SpotOn pays the same price for the backup on-demand

instance as it does for the primary spot instance, which mirrors the price for replicating

across two spot instances above, and makes the different replication approaches comparable.

In this case, if the ratio of the on-demand to spot price is r, then we assume the remaining

running time of our job on the backup instance is r ∗ Ti, since we partition the resources of

the backup on-demand instance based on its price. The expected cost below is then similar

to checkpointing, but multiplies the price of the spot instance by a factor of two to account

for the cost of the primary spot instance and the backup on-demand instance.

With on-demand replication, if our primary spot instance is revoked, the useful work

done is dictated by the progress of the backup server, which is running a factor of r slower

than the primary. Note that unlike checkpointing, the useful work lost on each revocation

is a function of the ratio r and not a fixed checkpointing interval τ . Thus, while the

fraction of work lost on a revocation at any time remains the same, the absolute work lost

increases with job running time. Developing mixed policies that periodically checkpoint the

on-demand backup server to mitigate the impact of using on-demand replication for long

running jobs is future work. Thus, we can compute the expected job run time as below.

E(Tk) = Pz ∗
E(Zk)

r
+ (1− Pz) ∗ T

E(Ck) =
[
Pz ∗ E(Zk) + (1− Pz) ∗ T

]
∗ (1 +

1

r
) ∗ C̄ksp

(3.6)

25

3.3.5 Putting it all together

Given a job’s resource vector, our cost-aware policy uses a brute-force approach that

simply computes the expected cost of using each fault-tolerance mechanism until the job

either completes or is revoked across each spot market, and then chooses the least cost

mechanism and market. When acquiring the selected server, SpotOn needs to set a bid

level. Prior work [66] has shown that current spot markets tend to spike from very low to

very high, and thus results in a long-tailed price CDF that is not very responsive to minor

changes in bidding level. Thus, while SpotOn can be configured to bid at any desired level,

the default option is set to that of the on-demand price level.

3.4 Implementation

We implement a prototype of SpotOn on EC2 in python. The prototype includes a

job manager hosted on an on-demand instance and agent daemons that run on each spot

instance. Users package SpotOn jobs as Linux Container (LXC) images, which include the

entire state necessary to run the job (including any operating system libraries). The image

includes a start script at a well-known location within the image that SpotOn executes to

launch the job. Users store the image in a known directory inside an EBS snapshot in EC2,

which they authorize SpotOn to access. Users then submit jobs by selecting their instance

type and provide SpotOn an identifier for the EBS snapshot hosting their job’s container

image. To control the use of local versus remote EBS storage, jobs write intermediate data

to and from a well-known directory, which SpotOn configures to be either attached to an

EBS volume or attached to the local disk.

SpotOn’s job manager selects the EC2 spot market and fault-tolerance mechanism for

each job based on the cost-aware policy in Section 3.3. To execute the policy, the job

manager monitors and records spot prices across EC2 markets. For each market, the job

manager computes the expected cost of each fault-tolerance mechanism using the historical

price data, as well as the the job’s running time and resource usage vector. Our current

prototype assumes a job’s running time and resource usage vector are accurate and does

not monitor a job’s resource usage while it is running. In addition, our current prototype

does not support “phased” jobs, where resource usage changes significantly during different

26

phases of execution. After computing the expected cost for each market and fault-tolerance

mechanism, the job manager selects the least cost fault-tolerance mechanism and spot

market combination to run the job. The job manager interacts with EC2 to monitor prices,

place bids, and fetch instance information using the EC2 web services APIs. If the current

spot price in the market is above the on-demand price, then the job manager selects the

market with the next lowest expected cost.

Once EC2 allocates the spot instance, the job manager launches a small agent daemon

within the instance, which it uses to remotely execute commands to launch the container

and start the job. To issue a termination warning, EC2 writes a termination time into the

file /spot/termination-time on the spot instance, which the agent polls every five seconds.

Upon receiving a warning, the agent notifies the job manager, which selects a new instance

type using the same policy as above based on the remaining running time of the job. One

exception is for the replication across spot policy, which does nothing on each revocation,

but rather restarts a job only after all replicated instances have been revoked. The job

manager computes the remaining run time by subtracting both the completed running time

and the overhead of checkpointing and migration operations. For checkpointing, the job

manager takes a container checkpoint at a periodic interval using CRIU (Checkpoint in User

Space) for LXC via the agent based on the slack. The job manager takes EBS snapshots at

the same time to checkpoint the disk.

To ensure network connectivity, SpotOn uses Virtual Private Clouds (VPC) in EC2

to manage a pool of IP addresses. The VPC allows the application provider to assign or

reassign any IP address from their address pool to any instance. We assume that batch

jobs need not be externally contacted but that batch jobs may need to access the public

Internet. NAT-based private IP addresses suffice for this purpose and we assume that the

VPC manages a pool of NAT-based private IP addresses, one of which is assigned to each

SpotOn container. Upon migration, after stopping the container, the job manager detaches

the container’s IP address from the original instance and reattaches it to the new instance.

The job manager also detaches the container’s EBS volume from the original instance

and reattaches it on the new instance. When rolling back to a previous checkpoint, the

job manager reattaches the EBS snapshot of the disk associated with the last container

27

 0

 400

 800

 1200

0.5 1 2 4 8 16 32

T
im

e
 (

s
e

c
)

Job Memory Footprint (GB)

Checkpoint/Restore (EBS SSD)

 0

 50

 100

 150

 200

Seq(4)

Rand(4)

Rand.RW
(4)

Seq(16)

Rand(16)

Rand.RW
(16)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Write Pattern (block size in kb)

EBS SSD (gen. purpose)
EBS SSD (provisioned)

Local SSD

Figure 3.5: The time to checkpoint-restore a container is a function of a job’s memory
footprint (top). The I/O throughput for local disks is an order of magnitude greater than
for remote disks over a range of workloads (bottom).

checkpoint. Once the IP address and EBS volume are attached, the job manager restarts

the container on the new instance from the last checkpoint.

3.5 Evaluation

The goal of our evaluation is to quantify the benefit of SpotOn’s cost-aware selection

policy that chooses the fault-tolerance mechanism and spot market to minimize costs, while

mitigating the impact of revocations on job completion time. We compare the cost and

performance of our policy with three other policies: a control policy that always executes

jobs on an on-demand instance, our basic policy that always selects the lowest price spot

market using checkpointing and reverts to an on-demand instance on the first revocation,

and a variant of our cost-aware policy that only uses checkpointing. We conduct experiments

using our prototype and in simulation. The prototype experiments demonstrate the impact

of resource usage and price characteristics on real jobs, while the simulations assess the

impact on performance and cost when using our cost-aware policies to execute multiple

jobs over time with realistic price traces.

28

We first conduct microbenchmarks to verify the assumptions of our models and to seed

our simulator. In particular, we plot LXC checkpoint/restore time in Figure 3.5(top) as

a function of a job’s memory footprint to verify relationship between checkpoint/restore

overhead and memory. The graph demonstrates that it is possible to migrate jobs that use

less than roughly 4GB of memory within EC2’s two-minute warning time. In addition, for

Figure 3.5(bottom) we use the FIO tool to measure the local versus remote EBS storage

throughput for multiple I/O workloads (in this case using the SSD variant of EBS); we see

that, as expected, the local I/O throughput is an order of magnitude larger than the remote

EBS throughput, which favors using local storage for I/O-intensive jobs. Our simulator uses

Figure 3.5 to compute a job’s checkpoint/restore and I/O overhead based on its resource

usage. The simulator also imposes delays of 62 seconds and 224 seconds for booting an

on-demand and spot instance, respectively, based on our experiments.

3.5.1 Prototype Results

We use our prototype to examine the impact of resource usage and spot price charac-

teristics on a job’s performance and cost. To do this, we write a synthetic job emulator

that enables us to set a job duration, working set size, and CPU:I/O ratio on a reference

machine. Using our emulator, we first create a baseline job that runs for roughly one hour,

has a memory footprint, i.e., working set size, of 8GB, and has a CPU:I/O ratio of 1:1. That

is the job spends half its time computing and half its time waiting on I/O to complete.

For our baseline experiment, we assume the cost of the spot instance is 20% of the

cost of the on-demand instance and the revocation rate is 2.4 revocations per day (or 0.1

revocations per hour). We chose 2.4 revocations per day as a median between the extreme

values in Figure 1 and the many markets that currently experience nearly zero revocations

per day. We execute the job on a r3.2xlarge instance type, which costs 70¢ per hour, and

measure its average completion time across multiple runs to be 3399s. Figure 3.6a shows

the job’s completion time (each bar corresponding to the left y-axis) and its cost (each dot

corresponding to the right y-axis) when running on an on-demand instance versus running

on a spot instance and i) replicating on a backup on-demand instance, ii) replicating across

two spot instances, and iii) checkpointing every 15 minutes. To fairly compare the two

29

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

On-demand

Replication (spot)

Replication (on-demand)

Checkpointing

 0

 20

 40

 60

 80

 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

C
o
s
t
(c

e
n
t)

Baseline cost

(a) Baseline

 0

 5000

 10000

 15000

 20000

2 4 8 16 32
 0

 20

 40

 60

 80

 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

C
o
s
t
(c

e
n
t)

Memory Footprint (GB)

Checkpointing

(b) Memory Footprint

 0

 5000

 10000

 15000

 20000

 25000

99:1 75:25 50:50 25:75
 0

 20

 40

 60

 80

 100

 120

 140

 160

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

C
o
s
t
(c

e
n
t)

Workload Characteristic (CPU:IO%)

Replication (spot)
Replication (on-demand)

Checkpointing

(c) CPU:I/O Ratio

 0

 5000

 10000

 15000

 20000

 25000

900 1800 3600 7200
 0

 50

 100

 150

 200

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

C
o
s
t
(c

e
n
t)

Job Length (sec)

On-demand
Replication (spot)

Replication (on-demand)
Checkpointing

(d) Job Duration

Figure 3.6: Performance and cost for our baseline job when running on an on-demand
instance versus running on spot instances using different fault-tolerance mechanisms (a).
We also plot them as job’s memory footprint (b), CPU:I/O ratio (c), and duration (d) vary.

replication approaches, when replicating on a backup on-demand instance we assume the

job runs at 20% the performance of the dedicated instance and is charged 20% of the cost

of the backup.

Our baseline experiment shows that both forms of replication and checkpointing reduce

the job’s cost by over a factor of two compared to running on an on-demand instance. How-

ever, both replication mechanisms complete the job sooner than when using checkpointing.

The reason is that the probability of revocation over the job’s running time is only 10%, so

90% of the time the job will finish without incurring any performance overhead due to a

revocation. In contrast, checkpointing repeatedly incurs the overheads from Figure 3.5. In

addition, checkpointing requires using a remote disk to facilitate migration, while replication

is capable of using the local disk. Thus, replication benefits from the I/O intensity of our

baseline job. Note here that the cost of replicating on a backup server and checkpointing

is similar, since the backup server doubles the cost (as we fix the amount we pay for the

30

 0

 2000

 4000

 6000

 8000

 10000

1.2 2.4 6 12 24
 0

 20

 40

 60

 80

 100

 120

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

C
o
s
t
(c

e
n
t)

Spot Revocation Rate (per day)

Replication (spot)
Replication (on-demand)

Checkpointing

(a) Revocation Rate

 0

 1000

 2000

 3000

 4000

 5000

 6000

10:1 7.5:1 5:1 2.5:1 1:1
 0

 25

 50

 75

 100

 125

 150

 175

 200

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

C
o
s
t
(c

e
n
t)

On-demand to Spot Price Ratio

Replication (spot)
Replication (on-demand)

(b) On-demand:Spot Price Ratio

Figure 3.7: The impact of varying the spot revocation rate (a), and on-demand:spot price
ratio (b) on our baseline job’s performance and cost.

backup server to be equal to that of the spot instance), while checkpointing nearly doubles

the running time, which also doubles the cost.

Figure 3.6 also plots the job’s performance and cost as its memory footprint and

CPU:I/O ratio change. Figure 3.6b shows that, as expected, an increase in the mem-

ory footprint causes an increase in the overhead of checkpointing, while it has no effect on

the replication approaches. Figure 3.6c then shows that, as the job becomes more I/O-

intensive, the job completion time and cost of checkpointing rise due to the need to use

remote I/O. In contrast, the cost and performance of the replication approaches remain

constant. Note that for CPU-intensive jobs the cost of replication is slightly more than the

cost of checkpointing, as there is less benefit to using the local disk, but both variants of

replication incur the cost of additional compute resources.

Figure 3.6d shows that checkpointing has the lowest cost for short jobs (< 1 hour), since

short jobs require fewer checkpoints and less overhead. However, the longer the job, the

higher checkpointing’s overhead and cost. While the overhead of both replication variants

also increase with job duration, due to the increased probability of losing work due to

revocation, the increase is less than with checkpointing.

Figure 3.7a shows that as the revocation rate increases the cost and performance of

replication becomes worse relative to checkpointing. Replication is highly sensitive to the

revocation rate, since revocation’s result in rolling back to either the progress of the slower

backup server or to the start. In contrast, checkpointing’s cost and performance is more

31

1 10 50 100
Job Length (Hour)

0.0

0.5

1.0

1.5

N
o
rm

a
li

ze
d

 C
o
st

Basic Cost-aware(CKP) Cost-aware(ALL)

1 10 50 100
Job Length (Hour)

0.0

0.5

1.0

1.5

N
o
rm

a
li

ze
d

 T
im

e

Basic Cost-aware(CKP) Cost-aware(ALL)

Figure 3.8: Job cost (a) and performance (b) as a function of the job length.

robust to an increasing revocation rate, since it only loses at most the smaller time window

between each checkpoint. The figure also demonstrates the key difference between replica-

tion across spot and replication on on-demand: under a high revocation rate (24 per day)

replication across spot has low running time, but a high cost (since it reverts to using an

on-demand instance), while replication on on-demand has a higher running time but a much

lower cost, since it always makes progress. Finally, Figure 3.7b shows that as spot prices

rise relative to the on-demand price, the replication variant that uses an on-demand backup

server takes longer to complete. This is due to increased multiplexing of jobs on the backup

server at a higher spot price. Since checkpointing and replication across spot do not use an

on-demand backup server, they are robust to this effect.

Result. The relative performance and cost of each fault-tolerance mechanism is a complex

function of a job’s duration, memory footprint, and CPU:I/O mix, as well as the spot price’s

magnitude and volatility.

3.5.2 Policy Results

We use our simulator to assess SpotOn’s cost and performance over a long period of

time; in this case, we consider the price for all spot instances in the us-east-1a zone over

three months from December 2014 to March 2015. Our simulator assumes users submit

jobs to run on m1.large instance types. Here, we normalize the job’s performance and cost

for each policy to the performance and cost of executing the job on a dedicated on-demand

instance. For the next set of experiments, we use a baseline job that has a memory footprint

of 7.5GB and a running time of ten hours on an m1.large on-demand instance, such that

we fix the checkpoint frequency to be hourly based on the slack.

32

0.5 1.0 2.0 4.0 8.0 16.0 32.0
Job Memory Footprint (GB)

0.0

0.5

1.0

1.5

N
o
rm

a
li

ze
d

 C
o
st

Basic Cost-aware(CKP) Cost-aware(ALL)

0.5 1.0 2.0 4.0 8.0 16.0 32.0
Job Memory Footprint (GB)

0.0

0.5

1.0

1.5

N
o
rm

a
li

ze
d

 T
im

e

Basic Cost-aware(CKP) Cost-aware(ALL)

Figure 3.9: Job cost (a) and performance (b) as a function of the job’s memory footprint.

We first evaluate SpotOn’s selection policies as we vary the duration of the jobs. We

simulate the execution of 30 jobs arriving randomly over the three-month time window

and record the cost and completion time for each of our policies. Figure 3.8 shows the

results normalized to the cost and completion time when using an on-demand instance. We

include error bars for the 95% confidence intervals over the 30 jobs. The results demonstrate

that all cost-aware policies incur a lower cost than using an on-demand instance for a

similar performance level. In addition, our basic policy, which always selects the spot

instance with the lowest price without regard to volatility and migrates to an on-demand

instance after the first revocation, has a significantly higher cost than either of our cost-

aware policy variants, which demonstrates the benefits of considering volatility in addition

to price when choosing a market. Our cost-aware policy also has a lower cost than a

variant that only uses checkpointing, which demonstrates the benefit of using replication

in addition to checkpointing. However, the cost benefit of replication decreases as job

duration increases, since the probability of revocation increases (which in turn increases the

overhead of replication). Finally, the completion time for each approach is similar and near

the completion time of the job on an on-demand instance.

Result. SpotOn’s cost-aware policy reduces the cost of running a job by as much as 86%

compared to running on an on-demand instance, while increasing the job’s completion time

by only 2%. When compared to a cost-aware policy that only uses checkpointing, SpotOn

reduces cost by up to 74%, again while increasing job completion time by only 2%.

Next, Figure 3.9 examines the impact of a job’s memory footprint on each policy. As

before, all policies reduce costs relative to on-demand with the same level of performance.

In fact, for small jobs less than 4GB, the completion time is lower than using an on-demand

33

instance. This is due to inversions in spot market prices, where the spot price of a particular

instance type drops below the spot price of a smaller instance type. Since SpotOn always

seeks the lowest-cost resources, it takes advantage of these price inversions. Figure 3.9 also

shows that jobs with memory footprints that use less than 4GB incur a much lower cost and

have higher performance than jobs that use more memory. This occurs because reactive

migration is feasible in this case, and reactive migration does not incur the performance

overhead of checkpointing or the cost overhead of replication. When reactive migration is

not possible after 4GB, the cost-aware and cost-aware checkpointing policies have a similar

cost with performance similar to an on-demand instance.

Result. Using reactive migration for jobs with low memory footprints substantially de-

creases costs, in this case by over a factor of four, due to its low overhead. Our cost-aware

policy uses reactive migration whenever it is feasible.

We next examine the impact of the revocation rate on cost and performance. Here, we

synthetically inject revocations at specific rates in the price trace to observe their impact.

As the revocation rate increases, we see that the cost savings from our cost-aware policy

relative to a cost-aware policy that only uses checkpointing decreases. This occurs because

the overhead of replication increases under more volatile market conditions more than the

overhead of checkpointing. However, in each case, our cost-aware policy has a lower cost

than the other policies, since it chooses checkpointing only when it is the lowest cost option.

The increase in revocation rate also increases job completion times, but in all cases the

completion time remains near the completion time when using an on-demand instance. As

before, price inversions combined with low revocation rates result in our cost-aware policy

executing jobs faster than when using on-demand instance in some cases.

Result. The benefit of using replication in addition to checkpointing decreases as the

revocation rate increases. Since SpotOn’s cost-aware policy chooses checkpointing when it

is the lowest cost option, it results in the lowest cost and highest performance across all

policies and revocation rates.

Lastly, to get a sense of SpotOn’s potential for savings with a real workload, we randomly

select 1000 tasks from a Google cluster trace [61] and compare the cost of SpotOn’s greedy

cost-aware policy and running the jobs on an m1.large on-demand instance. Our results

34

1 2 4 8 16
Revocation Rate (Per Day)

0.0

0.5

1.0

1.5

N
o
rm

a
li

ze
d

 C
o
st

Basic Cost-aware(CKP) Cost-aware(ALL)

1 2 4 8 16
Revocation Rate (Per Day)

0.0

0.5

1.0

1.5

N
o
rm

a
li

ze
d

 T
im

e

Basic Cost-aware(CKP) Cost-aware(ALL)

Figure 3.10: Job cost (a) and performance (b) as a function of the revocation rate.

show a cost savings of 91.9% when using SpotOn’s cost-aware policy versus the m1.large

on-demand instance. In addition, the total running time across all jobs when using SpotOn

actually decreases by 13.7%. In this case, the decrease occurs because SpotOn often chooses

to execute jobs on spot instance types that are faster than the m1.large because their spot

price is actually cheaper than an m1.large on-demand instance.

3.6 Related Work

SpotOn is similar to recent startup companies, such as ClusterK [54] and Spotinst [46],

that offer low prices by executing batch jobs submitted by users on spot instances. However,

their policies for handling revocations are not public, so it is unclear if they restart jobs

if spot instances fail, or if they use fault-tolerance mechanisms to mitigate the impact of

revocations.

Prior work examines bidding [51, 97, 76, 96, 81, 50] and checkpointing [84, 44, 95]

policies for batch jobs to minimize the cost of spot instances and mitigate the impact of

revocations. This work generally evaluates bidding and checkpointing policies in simulation

without considering how job resource usage affects their overhead (and cost) relative to other

fault-tolerance mechanisms. While these prior works have largely focused on checkpointing

as the fault-tolerance mechanism, one exception is the work by Voorsluys and Buyya [84],

which considers replicating computation across two spot instances. However, since they

only consider simulated compute-intensive jobs where the cost of checkpointing is low, they

find replication performs poorly by comparison; our results indicate replication is effective

at current spot prices, especially for I/O-intensive jobs, since it enables use of local storage.

35

In recent work, researchers have designed system frameworks and middleware to run

different classes of applications on spot servers including interactive applications [68], map-

reduce jobs [99], in-memory cache [88], in-memory storage [94] and machine learning [36].

However, these applications require low latency and high uptimes, which preclude spot

servers outside of the current zone, and certain fault-tolerance mechanisms. By focusing

narrowly on batch jobs that permit some downtime, SpotOn has much more flexibility,

enabling it to chose from multiple fault tolerance mechanisms, exploit spot markets in

multiple regions, and use local storage.

3.7 Conclusion

SpotOn optimizes the cost of running non-interactive batch jobs on the spot market.

We design a policy to balance the tradeoff between the fault-tolerance overhead and the

ability to recover from revocations. Our results using Google cluster traces and Amazon

EC2 market prices demonstrate that batch applications can benefit from inexpensive spot

servers despite their challenging failure model.

SpotOn has been implemented using Linux containers and prototyped on Amazon EC2.

Additional details on its design, implementation and evaluation are in [78].

36

CHAPTER 4

REDUCING PRICE RISK THROUGH ACTIVE TRADING

“Every man lives by exchanging.”

Adam Smith, Wealth of Nations (1776)

Cloud spot markets expose applications to price risk i.e., the risk that a VM’s price

will increase relative to others. Since spot prices vary continuously across hundreds of

different types of VMs, flexible applications can mitigate price risk by moving to the VM

that currently offers the lowest cost. To enable this flexibility, we present HotSpot, a

resource container that “hops” VMs—by dynamically selecting and self-migrating to new

VMs—as spot prices change. HotSpot containers define a migration policy that lowers cost

by determining when to hop VMs based on the transaction costs (from vacating a VM

early and briefly double paying for it) and benefits (the expected cost savings). As a side

effect of reducing the price risk, HotSpot is also able to reduce the number of revocations

without degrading performance. HotSpot is simple and transparent: since it operates at

the systems-level on each host VM, users need only run an HotSpot-enabled VM image to

use it. We implement a HotSpot prototype on EC2, and evaluate it using job traces from

a production Google cluster. We then compare HotSpot to using on-demand VMs and to

spot VMs (with and without fault-tolerance) in EC2, and show that it is able to lower cost

and reduce the number of revocations without degrading performance.

4.1 The Importance of Price Risk

While using fault-tolerance-based approaches on spot VMs offers significant cost savings

relative to using on-demand VMs, revocations are not frequent events in EC2’s current

market, and thus the savings relative to using spot VMs without any fault-tolerance is

37

0

0.25

1

4

16

64

256

1024

4096

 50 100 150 200 250 300 350 400

T
T

R
 (

in
 h

o
u

rs
)

Spot Server ID

bidding at 1x bidding at 10x

Figure 4.1: The average Time-to-Revocation (TTR) for 402 Linux spot VMs in EC2’s
us-east-1 region when bidding at the on-demand price and 10× the on-demand price over
a two month period. The average TTR across all servers is ∼25 and ∼47 days, respectively,
for 1× and 10× bids.

often not significant. To understand why, recall that users do not pay their bid price for

VMs, but instead pay the spot price. As a result, there is no penalty for bidding high, as

long as applications are flexible enough to switch to lower cost VMs if their current VM’s

price rises [66]. Thus, even a simple strategy that bids well above the on-demand price is

highly effective, since applications can prevent revocations by shifting to a cheaper fixed-

price on-demand VM once the spot price rises to near the on-demand price, and before it

comes close to the bid price. Since a VM’s spot price rarely exceeds its on-demand price,

the revocation rate at the on-demand bid level is low for most spot VMs.

Figure 4.1 illustrates this point by showing the average Time-to-Revocation (TTR) over

a two month period (from 2017-03 to 2017-04) for 402 Linux spot VMs across five AZs of the

us-east-1 region when bidding the on-demand price and when bidding 10× the on-demand

price. As the graph shows, while a few VMs have low TTRs, the vast majority of VMs

have high TTRs. The horizontal lines show the number of VMs that did not experience

any revocation over the two month period, which includes >35% and >75% of spot VMs

when bidding the on-demand price and 10× the on-demand price, respectively. Overall,

the average TTR across the 402 Linux spot VMs in us-east-1 is ∼25 and ∼47 days when

bidding the on-demand price and 10× the on-demand price, respectively.

These results reflect that spot prices often experience long periods of stability inter-

spersed with short periods of volatility, as illustrated in Figure 4.2. In this case, the

38

 1

 2

 4

 8

 16

 32

 64

 128

Mar 1 Apr 1 May 1 Jun 1 Jul 1

P
ri
c
e

 (
c
e

n
ts

/h
r)

1X on-demand

10X on-demand

Figure 4.2: Example spot price trace for an m4.large VM with long periods of price stability
and short periods of volatility.

m4.large spot VM in us-east-1a1 maintains a low and stable spot price for much of the

four month period, while experiencing a few highly volatile periods. As the graph shows,

during volatile periods, the spot price can rise higher than the on-demand price. These

steep rises could occur for many reasons including: “convenience bidding” where users bid

high assuming the spot price will not spike and do not vacate VMs when it does [23]; EC2

reclaiming spot VMs by artificially raising their price; or unavailability of on-demand VMs

that increases demand for spot VMs [57]. Regardless of the reason, applications should

react to price spikes by vacating high-priced spot VMs.

Our analysis above indicates that revocation risk in the current market is low, although

it could increase in the future, especially if EC2 alters its bidding rules such that users

pay their bid price instead of the spot price, or if users adopt our optimizations and those

proposed in prior work. In contrast, the market’s price risk—or the risk that a VM’s price

will increase relative to others—is much higher than the revocation risk. We quantify price

risk by measuring the average difference between the price of each AZ’s cheapest VM (in

terms of its normalized cost per unit of resource) at t0 and its price at each time t > t0

as the market’s cheapest VM changes. In this case, we normalize relative to a VM’s EC2

Compute Unit (ECU)—Amazon’s measure of a VM’s integer processing power [10].

The difference between the price of the cheapest server at t0 and the price of the cheapest

server as it changes reflects the cost savings possible from hopping VMs assuming the

application i) can fully utilize a VM of any capacity, ii) incurs no overhead when migrating

1Note that AZ labels are not consistent across EC2 accounts. For example, one account’s us-east-1a

may be labeled as us-east-1b under another account.

39

 0

 20

 40

 60

 80

 100

1a 1b 1c 1d 1e

C
o
s
t

s
a
v
in

g
s
 (

%
)

Figure 4.3: Ideal cost savings from automated VM hopping within each AZ in the us-east-1
region over one month.

between VMs, and iii) does not experience revocations. Under these assumptions, any

approach that does not hop to the cheapest VM incurs a higher cost. Note that we relax

these assumptions in HotSpot’s design (§4.3), since in practice applications cannot always

fully utilize VMs of any capacity and do incur an overhead when migrating. As a result,

our analysis here only sets an upper bound on HotSpot’s cost savings, and does not reflect

the migrations HotSpot would actually make.

Figure 4.3 shows the potential cost savings from hopping VMs within each AZ of the

us-east-1 region over two months starting 2017-03. The average savings in each AZ

is between 15% and 65% with an average of 33% across all AZs. Since the results are

dependent on the cheapest VM’s price at the start of each interval, the error bars reflect

the maximum and minimum savings from 10 randomly selected start times within the two

month period. The low minimum savings reflect times where the price of the cheapest VM

at t0 remained stable and was always near that of the dynamic cheapest VM. Note that the

figure represents additional savings relative to using spot VMs without hopping, which is

already significantly cheaper (∼50-90%) than using on-demand VMs.

Figure 4.4 then shows the average time until the cheapest VM in the market changes,

which we call the Time-to-Change (TTC), on the y-axis for each AZ of the us-east-1

region. In this case, the cheapest VM across the 402 spot VMs changes every 1.1 hours,

which shows that there is an opportunity to reduce cost by migrating to the cheapest

spot VM. Since the TTC is two orders of magnitude less than the TTRs in Figure 4.1,

applications are much more likely to experience a change in the cheapest spot VM during

40

 0

 0.5

 1

 1.5

 2

1a 1b 1c 1d 1e

T
T

C
 (

h
o

u
rs

)

Figure 4.4: The Time-to-Change (TTC) for the cheapest VM in each of AZs of the
us-east-1 region over a two month period. The average TTC across all AZs is 1.1 hours.

their execution than a revocation. Of course, each change in price of the cheapest spot VM

might be small relative to the cost of a revocation.

As mentioned above and discussed in §4.3, HotSpot containers migrate to new cloud

VMs to maximize their cost-efficiency. Thus, the migration policy does not consider either

revocation risk or application performance, which are both important metrics. In general, at

any time, the lowest cost VM is not necessarily the one with the absolute lowest revocation

risk or highest capacity. As a result, migrating to optimize cost-efficiency has the potential

to increase revocation risk and decrease performance. Of course, HotSpot could define a

migration policy that also considers revocation risk and performance. Configuring such a

migration policy would require users to compare and weight the relative importance of each

metric. Fortunately, as we show below, hopping VMs to minimize cost tends to also lower

revocation risk and does not decrease performance on average. Thus, HotSpot’s migration

policy focuses on minimizing cost, and does not consider revocation risk or performance.

4.1.1 Impact on Revocation

Prior work generally estimates revocation risk in terms of a spot VM’s TTR at a given

bid level based on its historical spot price over some previous time period, e.g., a few days

to weeks. However, since HotSpot frequently switches VMs, its revocation risk is not a

function of any single spot VM’s TTR, but the TTR of the multiple VMs it uses (weighted

by the time it spends on them). Our key insight is that there is a relationship between

a VM’s instantaneous revocation risk and its current spot price relative to its on-demand

price. This relationship derives from the observation that the lower the ratio of the spot

price to the on-demand price, the further away the supply/demand balance is from being

41

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.125 0.25 0.5 1

R
e

v
o

c
a

ti
o

n
s
 (

p
e

r
d

a
y
)

Spot:Ondemand price ratio

Figure 4.5: The x-axis is the spot-to-on-demand ratio, while the y-axis is the average
revocation rate across spot VMs when the spot price is less than or equal to the x-axis
value.

constrained and thus causing a spike in prices that triggers revocations to occur. That is,

assuming the spot price is based on supply and demand (as Amazon claims [6]), the lower

a VM’s spot price relative to its “risk free” on-demand price, the greater the change in

the balance of supply and demand required for the spot price to rise above the on-demand

price. As a result, a spot VM’s spot-to-on-demand price ratio is an indirect measure of its

instantaneous revocation risk relative to other spot VMs.

Figure 4.5 illustrates the relationship between the revocation risk and the spot-to-on-

demand ratio across 402 Linux spot VMs in the us-east-1 region from 2017-03 to 2017-

04. The graph shows that, as the average spot-to-on-demand ratio decreases, the average

revocation risk also decreases. While the spot VM with the lowest spot-to-on-demand ratio

is not always the same as the most cost-efficient one at any time, the most cost-efficient

VM often has a low spot-to-on-demand ratio. This correlation exists, in part, because

on-demand prices for VMs in the same family are uniform when normalized per unit of

resource, so a low normalized spot price implies a low spot-to-on-demand ratio relative to

other spot VMs in the same family [2]. The cost per ECU-hour for VMs in different families

is also similar. To illustrate, Figure 4.6 shows the on-demand price per ECU-hour for all

families in the us-east-1 region. The c4, m4, r4, and i3 families range from 1.25-2.56

¢/ECU-hour, while the more specialized memory-optimized (x1), storage-optimized (d1),

and GPU instances (p2) have a higher normalized cost.

However, as we discuss in §4.3, HotSpot normalizes spot prices per unit of resource

utilized, so variations in an application’s workload also affect a VM’s cost-efficiency. In this

case, we define utilization as the VM’s average CPU utilization. As a result, if a VM has a

42

 0

 2

 4

 6

 8

c4 m4 r4 i3 r3 x1 d2 p2

E
ff

ic
ie

n
c
y

(c
e

n
ts

/E
C

U
-h

r)

VM Family

Figure 4.6: The cost-efficiency of on-demand VMs in the us-east-1 region for different
types of VMs in EC2.

low average CPU utilization, e.g.,�100%, then it is wasting CPU capacity, which increases

the relative cost of the CPU capacity it utilizes. Thus, there is the possibility that the VM

with the lowest spot-to-on-demand ratio could have a high capacity that is over-provisioned

for the application and wastes resources, resulting in a low cost-efficiency. If only high-

capacity VMs over-provisioned for an application were to have a low spot-to-on-demand

ratio, it is technically possible for the most cost-efficient VM to have a high revocation

risk. However, we have not seen this scenario occur, as there are usually many spot VMs

at all capacities with low spot-to-on-demand ratios. Thus, given the correlations above,

migrating to the most cost-efficient VM results in a low revocation risk. For example, in

the experiment from Figure 4.3, the most cost-efficient VM was never revoked over the two

month period.

Of course, the high TTRs in Figure 4.1 from §4.1 show that revocation risk is not a

serious concern in EC2. However, our insight above implies that i) hopping VMs to reduce

price risk and lower cost will not increase revocation risk, and ii) if spot prices were to

become more volatile, VM hopping could reduce revocation risk. Table 4.1 illustrates the

latter point. Here, we emulate a more volatile market by taking the 10 most volatile spot

VMs in the us-east-1 region and assume that we can only migrate among them. The table

shows the average revocation rate for each of these volatile VMs from 2017-03 to 2017-04,

as well as the average revocation rate that results from migrating to the spot VM with the

lowest spot-to-on-demand ratio (and the lowest revocation risk) as spot prices fluctuate.

As the table shows, hopping to the spot VM with the lowest instantaneous revocation risk

43

Spot Market
Revocations

(per day)

c3.8xlarge.vpc.us-east-1d 15.4

g2.2xlarge.us-east-1d 12.1

r3.xlarge.us-east-1d 9.4

g2.8xlarge.vpc.us-east-1d 9.0

r3.8xlarge.us-east-1d 7.9

c3.2xlarge.vpc.us-east-1d 6.9

g2.2xlarge.vpc.us-east-1d 6.0

g2.2xlarge.us-east-1b 5.6

g2.2xlarge.us-east-1a 5.1

r3.4xlarge.us-east-1a 4.5

HotSpot VM 2.3

Table 4.1: Migrating to the spot VM with the lowest spot-to-on-demand ratio has >0.5×
revocations than other servers.

results in a revocation rate nearly 0.5× that of any single VM. Thus, VM hopping is a

useful mechanism for managing revocation risk if it ever increases.

4.1.2 Impact on Performance

As with revocation risk, HotSpot’s migration policy does not consider performance when

determining when and where to migrate. Since HotSpot migrates based on cost-efficiency,

which is a function of resource utilization, it favors VMs that do not waste resources.

Given this, HotSpot may select a host VM that is under-provisioned and degrades an

application’s performance. During our initial analysis of spot price data in us-east-1

(from 2016-08 to 2016-09), we observed that there was a volume discount: higher-capacity

VMs were cheaper on average than lower-capacity ones. As a result, the most cost-efficient

VM on average aligned with a high-capacity VM that prevented performance throttling.

However, our more recent analysis in Figure 4.7 across multiple regions shows that this

volume discount no longer applies. This change reflects how markets conditions can alter

HotSpot’s performance.

The figure shows the average normalized price per unit of resource for spot VMs in

the m4 family from 2017-03 to 2017-04, where the error bars represent the maximum and

minimum price across each region’s AZs. The graph indicates there is no consistent rela-

tionship between VM capacity and normalized cost: neither high-capacity nor low-capacity

VMs are consistently cheaper per unit of resource. As a result, migrating solely based on

44

 0

 0.2

 0.4

 0.6

 0.8

 1

us-east-1 us-east-2 us-west-1 us-west-2

E
ff
ic

ie
n
c
y

(c
e
n
ts

/E
C

U
-h

r)

m4.large
m4.xlarge

m4.2xlarge
m4.4xlarge

m4.10xlarge

Figure 4.7: The average normalized cost per ECU for the m4 family of spot VMs across
multiple regions. The error bars represent the maximum and minimum cost across all AZs.

cost-efficiency should not favor either low-capacity VMs, which degrade an application’s

performance, or high-capacity VMs, which may improve its performance. However, as we

discuss in §4.3, HotSpot’s migration policy takes into account multiple other factors when

making migration decisions that favor higher-capacity VMs, assuming equal cost-efficiency.

Thus, while HotSpot optimizes for cost-efficiency, in practice, it can also improve application

performance.

Summary. Our data analysis indicates that hopping to the most cost-efficient spot VMs

can reduce cost up to 15-65% on average relative to not hopping. While HotSpot considers

only cost-efficiency in selecting its host VM, based on our analysis, this VM also tends

to have a low revocation risk and does not degrade performance on average. As a result,

HotSpot does not explicitly consider revocation risk or performance in its migration policy.

4.2 Active Trading by Server Hopping

To enable active trading of cloud servers, we present HotSpot, a resource container

that automatically “hops” spot VMs—by selecting and self-migrating to new VMs—as spot

prices change. Our key insight is that applications can proactively and transparently migrate

to spot VMs that currently offer the lowest cost. An important design goal of HotSpot is

simplicity: to use it, applications need only select and run a HotSpot-enabled VM image

that requires little configuration. Applications then execute inside a resource container,

while HotSpot’s systems-level monitoring and migration functions run transparently in the

host VM. Thus, HotSpot is self-contained, requiring no application modifications or external

infrastructure, as its functions execute within its current host VM.

45

Time Time

$ $

Spot
Server

Container Migration

Spot Market A Spot Market B

Overall Price
$

Time

Spot
Server

Figure 4.8: When the price of HotSpot’s host VM rises, it self-migrates or “hops” to another
VM with a lower cost.

HotSpot is motivated by both the maturing of systems-level migration for virtualized

cloud hosts, e.g., via resource containers [5, 11] or nested virtualization [20, 74, 91], and

continuing advances in data center networking, which are reducing the overhead of migrating

memory state and accessing remote disks. Figure 4.8 illustrates HotSpot’s basic function:

when a VM’s price spikes, HotSpot migrates its container to another VM with a lower

price to maintain a high cost-efficiency. We define cost-efficiency as the cost (in dollars)

per unit of resource an application utilizes per unit time. As we discuss in §4.3, we define

utilization based on a VM’s average CPU utilization. Figure 4.9 depicts HotSpot’s basic

control loop, which i) monitors real-time spot prices across the market and application

resource usage, ii) uses the information to determine when and where to migrate based on

its migration policy, and then iii) executes the migration. These functions are hidden from

applications, which run within an isolated virtualized environment—a resource container in

our prototype—capable of systems-level migration.

4.3 HotSpot Design

4.3.1 Migration Policy

HotSpot’s migration policy determines when and where to migrate its resource container

based on current spot prices across all VMs within its AZ and its current resource usage.

Since migrations across AZs and regions require significant additional overhead to migrate

46

1. monitor

2. analyze
cloud market

prices

VM resource
usage

✔

$$. . .
cost-benefit

analysis

!

3. self-migrate

detach

terminate

attach

migrate
checkpoint

Figure 4.9: Depiction of HotSpot’s basic control loop, which monitors spot prices and ap-
plication resource usage, determines when and where to self-migrate based on its migration
policy, and then executes the migration.

disk state, we limit HotSpot to migrating within an AZ, where it can migrate disk state

by re-mounting a remote disk volume, e.g., via EC2’s Elastic Block Store (EBS), with

little overhead. We discuss policies for “global” migration across AZs and regions in [71].

As mentioned in §4.1, HotSpot’s migration policy optimizes for cost-efficiency, or the cost

per unit of resources an application utilizes per unit time. However, quantifying a VM’s

utilization is complex, since it includes many resources, e.g., computation, memory, I/O,

etc. Our policy quantifies cost-efficiency based on processor utilization, and only uses an

application’s memory footprint to eliminate candidate VMs. Specifically, since memory

significantly degrades performance when constrained, our migration policy includes a rule

to never migrate to a VM with less memory than the container’s memory footprint. Since

platforms often price network and disk I/O capacity separately from VMs, our policy does

not consider them, although we could apply a similar elimination rule as for memory.

At each time t, HotSpot’s migration policy computes the expected cost-efficiency of

every type of spot and on-demand VM within an AZ in units of $/ECU-utilized/hour. To

do so, HotSpot estimates the expected utilization on every potential VM i based on the

utilization of its current VM. HotSpot makes this estimate by considering two separate

cases based on the current utilization.

47

Low Utilization. If the ECU utilization on the current VM c is below an upper threshold

(near 100%), we approximate ECU utilization ui on VM i by proportionately scaling the

ECU utilization of c across the number of ECUs offered by i. In this case, since c is not

fully utilized, new VMs that have more ECUs than c should be even less utilized, while new

VMs that have less ECUs than c should have a proportionate increase in utilization up to

100%.

High Utilization. Alternatively, if the current VM c’s utilization is above the upper

threshold, new VMs that have fewer ECUs than c should also have a utilization near 100%.

However, if new VMs have more ECUs than c, we do not know how many additional

ECUs the application is capable of consuming. In this case, our policy makes the aggres-

sive assumption that the application can saturate any number of ECUs. This assumption

encourages HotSpot to try out higher-capacity VMs, which can improve application perfor-

mance.

Given the two cases above, we estimate the utilization ui of a new VM i based on the

utilization of the current VM c using the equation below. The equation includes a variable

ε, which sets our upper threshold and dictates how aggressive the policy migrates to higher-

capacity VMs. Note that the variables that are a function of t represent values that are

dynamic and change over time.

ui(t) =


min(uc(t)

ECUi/ECUc
, 1) if uc(t) < 1− ε

1 if uc(t) > 1− ε

Since HotSpot is application-agnostic, we also make the simplifying assumption that

applications are able to utilize any number of cores (or hardware threads) on a new VM,

specified as vCPUs in EC2. Note that, if our assumptions wrong, then the migration policy

will self-correct, as the actual utilization and cost-efficiency will be less than the expected

value, which, if low enough, will trigger another migration. Extending the policy to model

container performance and infer its degree of parallelism is future work. Given the estimated

utilization ui on each new VM i, HotSpot computes its cost-efficiency as below, where pi(t)

is the VM’s current spot price.

48

ei(t) =
pi(t)

ECUi × ui(t)
(4.1)

Next, for each potential host VM i that is more cost-efficient than our current host VM,

HotSpot performs a cost-benefit analysis to determine when and where to hop VMs.

4.3.2 Cost-Benefit Analysis

Our analysis in §4.1 assumes an ideal migration policy that is able to migrate with

no overhead to the VM with the highest instantaneous cost-efficiency at each time t. Of

course, in practice, migrations can incur a substantial overhead. This overhead comes in

two different forms: a performance overhead that stems from the downtime (or performance

degradation) caused by a migration, and a cost overhead that stems from paying for two

VMs during the migration and vacating a VM early (before the end of its billing period).

The combined cost of these overheads represents a migration’s transaction cost. HotSpot’s

migration policy only hops VMs if it expects the savings to outweigh the transaction cost.

Transaction Cost. From above, the two things HotSpot requires to estimate the transac-

tion cost are i) the time remaining Tr in the current billing interval and ii) the time required

Tm to migrate the container. HotSpot tracks Tr, which is computed from the running time

on the current VM and the billing interval, which is well-known. The migration time Tm

is a function of the container’s memory footprint and network bandwidth. As we discuss

in §4.4, HotSpot uses a memory-to-memory stop-and-copy migration that copies the con-

tainer’s memory state from the memory of the source VM to the memory of the destination

VM without saving it to stable storage. Thus, we estimate Tm based on the container’s

memory footprint M at time t of the migration divided by the available bandwidth B,

plus a constant time overhead O to interact with EC2’s APIs to configure the new VM, so

Tm(t) = M(t)/B +O. We evaluate the migration time and the constant time overheads in

§4.4.

During the migration, HotSpot must pay for both the source and destination VM. In

addition, since HotSpot uses a stop-and-copy migration, it does no work on either VM during

the migration time, i.e., both VMs have 0% application utilization. Thus, we compute the

transaction cost to migrate to a new VM i at time t as below.

49

Ci(t) = pi(t)× Tm(t) + pc(t)×max(Tr, Tm) (4.2)

Here, pi(t) and pc(t) are the current spot price of the new host VM i and current host

VM c, respectively. This equation represents the cost of the source and destination VM

over the migration time, since neither is doing useful work, plus the cost of the remaining

unused time HotSpot must pay in the source VM’s billing interval. Note that the source

VM’s spot price pc(t) is fixed, as EC2 charges for the spot price at the beginning of each

billing interval. Since migration times are short, as shown in §4.4, we also assume the

destination’s spot price is fixed during the migration.

Expected Savings. HotSpot estimates its expected cost savings Si(t) from migrating to

new host VM i at time t as the difference between its cost-efficiency ec(t) on its current

VM c and its expected cost-efficiency ei(t) on new VM i multiplied by both the time Ti it

expects to spend on i and the number of ECUs it uses.

Si(t) = (ec(t)− ei(t))× (ui(t)× ECUi)× Ti (4.3)

The expected net cost-benefit Ni from hopping to VM i is then Si(t)− Ci(t): HotSpot

only hops VMs if this value is positive. Among all hosts i where ei(t) < ec(t) and Ni > 0, the

migration policy selects the one that maximizes the net benefit Ni. Note that the expected

savings is, in part, a function of the number of ECUs on the new VM i, while the transaction

cost above is independent of VM capacity. This favors hopping to higher-capacity hosts,

which improve performance, assuming the container can utilize their resources, as higher-

capacity hosts are able to “pay back” their transaction costs faster than lower-capacity

hosts.

The key unknown variable in Equation 4.3 is Ti, or the time HotSpot expects to spend

on a new host VM i. HotSpot must have an accurate estimate of Ti to determine whether

the expected savings exceed the transaction costs. However, Ti is challenging to estimate,

since it depends on the future value of numerous other variables, including the remaining

lifetime of the container, the application’s future resource usage, and the relative spot prices

of every VM. A significant phase change in any of these variables can decrease the time Ti

50

that HotSpot spends on a new VM, reducing the expected savings and altering the cost-

benefit analysis.

Since HotSpot requires estimates of each of these variables to estimate Ti, its migration

policy is a heuristic. Our current policy makes simple assumptions to infer these variables,

and leaves more complex heuristics to future work. First, we assume containers are long-

lived, and thus do not terminate before paying off their transaction costs. We also assume

an application’s utilization is constant in the near term. Given these assumptions, HotSpot

estimates Ti as the maximum of the billing interval and the average Time-to-Change (TTC)

of the lowest cost VM. The TTC is the average time until we expect to hop VMs in the

ideal case. However, if the TTC is shorter than the billing interval, HotSpot is unlikely to

migrate until the end of the billing interval to prevent a large double payment.

Finally, HotSpot may migrate to a more cost-efficient VM, incurring transaction costs,

only to find an even more cost-efficient VM becomes available before it has recouped the

previous transaction costs. Thus, our policy also reduces the expected savings Si(t) in

Equation 4.3 from hopping to a new host VM i to account for any “unpaid” transaction

costs not recouped from previous migrations. As a result, HotSpot only hops to a new VM

if its price is low enough to yield a positive net benefit even after paying off accumulated

transaction costs from previous migrations. This choice is conservative in rate-limiting

migrations and preventing accumulating large transaction costs that increase cost. HotSpot

also enables users to specify a minimum time between migrations to rate-limit them.

Bidding. When requesting a new spot VM, HotSpot must place a bid. Since EC2’s

current spot market requires applications to pay the spot price and not their bid price,

HotSpot does not require a sophisticated bidding strategy, as it automatically migrates to

a new VM if the spot price rises. In contrast, the bidding policy is more important in prior

work [99, 38, 78], which commits to spot VMs until they are revoked, as the greater the bid

the lower the probability of revocation and the higher the potential cost. Thus, HotSpot

adopts a simple bidding strategy: it always bids the maximum price, which is 10× the

on-demand price in EC2. Since HotSpot also includes on-demand VMs in its cost-benefit

analysis, it will never pay near its bid price, since it will always migrate to an on-demand

VM if the spot price of all spot VMs ever rises above their corresponding on-demand price.

51

Note that the specific bidding policy is orthogonal to HotSpot’s design. For example, if EC2

were to change the spot market rules such that applications paid their bid price, instead of

the spot price, HotSpot could support a different bidding policy without altering any of its

other functions.

4.3.3 Qualitative Discussion

In reducing price risk, HotSpot addresses problems with current fault-tolerance-based

approaches that manage revocation risk. In particular, the primary problem with fault-

tolerance-based approaches is that applications configure their fault-tolerance mechanism

based on the historical TTR from traces of past spot prices. However, as discussed in

§4.1, spot prices often experience phases of stability and volatility. Thus, if applications

experience a phase change in the prices, they may incorrectly configure their fault-tolerance

mechanism, e.g., by checkpointing too much or too little, causing them to “pay” non-optimal

premiums. The benefits of employing fault-tolerance are also probabilistic, and must be

amortized across long time periods or a large number of applications. As a result, any

individual application may end up paying high premiums without ever receiving a payout,

e.g., if a revocation never occurs. In comparison, HotSpot has the following advantages.

• More Deterministic. Since migration decisions are largely based on current cost,

risk, and performance information, they are more deterministic than decisions on how

to configure fault-tolerance mechanisms, which are based on probabilistic expectations

of future cost, risk, and resource usage.

• Lower Overhead. Automated VM hopping does not incur fault-tolerance overhead

based on probabilistic information. While each migration incurs an overhead, it serves

as a natural checkpoint that applications only “pay” if the expected savings exceed the

costs. HotSpot often migrates more frequently than the optimal checkpointing interval

in fault-tolerance-based approaches, which obviates the need for these approaches.

• Lower Risk. VM hopping reduces price and revocation risk, since low-cost VMs also

have a low revocation risk.

HotSpot’s design has some limitations. In particular, to remain application-agnostic,

our migration policy makes a number of simplifying assumptions in §4.3 that do not apply

52

to all applications. Designing migration policies for specific applications that limit these

assumptions is future work. In addition, to simplify our design, HotSpot VMs are self-

contained and do not coordinate their migration decisions with other HotSpot VMs. As

a result, HotSpot’s local migration decisions may not be globally optimal for distributed

applications with complex dependencies. Applying HotSpot to distributed applications by

coordinating their migration is future work.

Finally, HotSpot uses stop-and-copy migrations that cause application downtime. We do

not consider live migration because containers do not yet support it. While live migration

decreases application downtime, it still causes some performance degradation during the

migration and increases the total migration time Tm, and thus also incurs a transaction

cost. However, live migration requires a different transaction cost model. We plan to

incorporate live migration into HotSpot once it becomes reliable for containers.

4.4 Implementation

We implement HotSpot’s controller daemon in Python, including the migration pol-

icy from §4.3 and the monitoring and migration functions described below. Specifically,

HotSpot uses EC2’s Python binding Boto3, and Linux Container (LXC) 2.0.7’s Python

API.

4.4.1 Spot Price and Resource Monitoring

Our prototype operates within an AZ and monitors real-time spot prices, which contin-

uously vary, from each spot VM. While the number of VMs varies across AZs, the largest

AZs in us-east-1 have 172 types of spot and on-demand VMs with distinct prices. To

monitor spot prices, HotSpot’s controller polls EC2’s REST API and keeps a window of

recent prices in memory, while maintaining a log of historical prices on disk. Likewise,

HotSpot also monitors container resource usage via lxc-info, including its CPU, mem-

ory, bandwidth, and block I/O usage. HotSpot also caches a window of recent processor

utilization and memory footprint readings in memory, and stores the historical usage data

on disk. Despite the large number of VMs, the performance overhead of monitoring is not

significant. In addition to spot prices, HotSpot also maintains a table of VM types and their

53

Operation
Min
(sec)

Mean
(sec)

Max
(sec)

Price and Resource Monitoring <1 <1 <1

Acquire On-demand VM 16 28 31

Acquire Spot VM 31 67 167

Transferring Disk & Network 18 28 48

Terminate Source VM 31 44 46

Total ∼64-80 ∼101-140 ∼126-262

Table 4.2: Migration latencies for EC2 API operations.

resource allotments, including their memory and number of ECUs and vCPUs, required for

computing cost-efficiency. This table also stores each VM’s on-demand price.

4.4.2 Host Migration and Handoff

When triggered by the migration policy, HotSpot’s controller must request and migrate

to a new EC2 host. The controller performs a sequenced handoff to complete a migration

to a new host VM by first requesting the VM via EC2’s REST API, waiting until it is

running, and then transmitting the container’s memory state to it. The source controller

must also perform a hand-off to a new controller running on the destination VM. This

hand-off requires transferring the metadata necessary to request and configure new host

VMs via EC2’s REST API, including the credentials necessary to access the API, such as

the Secret Key. The source controller must also transfer container configuration meta-data,

including the IP address and name of the root EBS volume, which the destination VM

must configure via EC2’s REST API before re-activating the container. Once the source

controller transfers this information, the destination controller terminates the source VM.

We ran a series of microbenchmarks to quantify the overhead of the REST API opera-

tions associated with migration, as listed in Table 4.2. Since there is some variance in the

latency, we report the mean, maximum, and minimum latency over 25 experiments. The

table shows that price and resource monitoring overhead (from monitoring 402 spot prices)

is negligible, even at per-second resolution. While the latency to acquire an on-demand or

spot VM is between 15s and 167s, these operations do not result in application downtime,

as the source VM continues to run during this period. Likewise, the 30-46s required to

54

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 2 4 8 16 32

T
im

e
 (

s
e

c
)

LXC memory footprint (GB)

Migrate via EBS
Migrate via RAMfs

Figure 4.10: The time to transfer a container’s memory state and restore it as a function
of its memory footprint. The graph shows the average from four trials with error bars
representing the minimum and maximum transfer time.

terminate the source VM also does not incur downtime. Application downtime is a function

of the time to i) disconnect and reconnect the container’s disk and network interfaces, and

ii) physically transfer the container’s memory state.

As the table shows, the time to disconnect/reconnect the disk and network interfaces

ranges from 17s to 48s. Figure 4.10 then shows the average time to transfer container

memory state as the application memory footprint increases. The EBS approach checkpoints

container memory state to a remote disk on the source VM and then reads it from the

remote disk on the destination VM, while RAMfs signifies an approach that uses a direct

memory-to-memory network transfer of container memory state. As the graph shows, the

memory-to-memory transfer enables migrations of up to 32GB in ∼30s (using EC2’s 10Gbps

interfaces), while transfers of 32GB over EBS take ∼200s (using I/O-optimized EBS drives).

Note that, while the memory-to-memory transfers are near linear in the amount of data

transferred, the EBS approach appears super-linear. While we do not know the specific

reason for this super-linearity, it could be due to caching effects in EBS. For example, the

time difference between the EBS and memory-to-memory transfers is small for low memory

footprints and only increases as the size of the memory footprint increases. This might

indicate the presence of an EBS cache that can accommodate low memory footprints. In any

case, HotSpot’s prototype uses direct memory-to-memory transfers, resulting in application

downtimes ranging from 20s to 80s, depending on the size of the memory state. Of course,

55

even these minimal downtimes could be eliminated with native support for live migration,

which GCE already provides.

HotSpot uses EC2’s Virtual Private Cloud (VPC) to assign its container a separate IP

address from the controller daemon, which uses the default public IP address allocated by

EC2. The controller selects an available private IP address from the VPC’s address space via

EC2’s REST API and configures the container with this IP address, such that all traffic to

the VPC IP address is forwarded to the container. When migrating, the controller transfers

this IP address to the new VM by detaching it from the source VM and re-attaching it to

the destination VM. Thus, when restarted, the migrated container always retains the same

VPC-allocated IP address.

4.5 Evaluation

We evaluate HotSpot at small scales using a prototype on EC2, and at large scales over

a long period in simulation using a production Google workload trace [61] and publicly-

available EC2 spot price traces. Our simulator, also implemented in Python, executes the

same migration policy as our prototype, but replaces its real-time monitoring with functions

that read spot price and resource usage data from traces. The traces include each appli-

cation’s processor utilization and memory footprint over time. Instead of migrations, the

simulator inserts a downtime derived from our microbenchmarks based on an application’s

current memory footprint.

We compare HotSpot with three other approaches, which select the single optimal i)

on-demand VM, ii) spot VM, and iii) spot VM plus optimal fault-tolerance mechanism to

run the application. The first case represents current practice; the second case is akin to

EC2’s SpotFleet tool, which automates bidding for spot instances (at the on-demand price

by default), and the third case uses SpotOn [78], which is a representative fault-tolerance-

based approach. Note that SpotOn only switches VMs on a revocation. Our evaluation

then compares three metrics—cost, performance, and revocation risk—for each approach.

56

 0

 20

 40

 60

 80

 100

SpotFleet

SpotO
n

H
otSpot

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

 0

 25

 50

 75

 100

 125

 150

 175

SpotFleet

SpotO
n

H
otSpot

R
u

n
ti
m

e
 (

%
 o

n
-d

e
m

a
n

d
)

 0

 1

 2

 3

 4

 5

 6

 7

 8

SpotFleet

SpotO
n

H
otSpot

S
y
s
te

m
 E

v
e

n
ts

Revocations
Checkpoints

Migrations

Figure 4.11: Comparison of cost (left), run time (middle), and revocation-related events
(right) when using on-demand VMs, spot VMs without fault-tolerance (SpotFleet), spot
VMs with checkpointing (SpotOn), and HotSpot when running our baseline job on our
HotSpot prototype. The error bars represent the maximum and minimum of each metric
across three trials.

4.5.1 Prototype Results

We intend these experiments to exercise our prototype and isolate key factors, such

as price characteristics and application resource usage, that influence HotSpot’s relative

cost, performance, and revocation risk, and not to quantify its benefits in practice. These

experiments do not reflect the possible values of all time-varying variables, such as spot

prices and resource usage, that influence HotSpot, as there are too many variables to emulate

in a controlled setting. To enable control of application resource usage, we use a job emulator

that generates a fixed, predictable CPU load and memory footprint. We use this emulator

to create a baseline job that takes 30 minutes to execute on a m4.4xlarge VM with a

steady memory footprint of 8GB and processor utilization of 50%. We run this job in an

LXC container on EC2 for each approach above, and perform all HotSpot functions, i.e.,

acquiring, migrating, checkpointing, terminating, etc., on real EC2 VMs.

To enable price control, we also generate synthetic spot price traces that reflect impor-

tant characteristics in the real market. We define synthetic spot prices for five separate VMs

(each of type m4.4xlarge) that vary based on a sinusoidal price function with a period of

one hour and peak/trough values equal to $0.8/hour, and $0.08/hour, respectively. In this

case, the maximum spot price of the VMs is equal to the on-demand price of a m4.4xlarge

VM, which costs $0.8/hour in us-west-1. We use synthetic spot prices instead of EC2 spot

price traces, since synthetic prices are defined by a well-known function that we can alter

to examine the effect of changing price volatility on cost and performance.

57

We initialize each experiment by setting the start time of each price function to a random

offset within its period. Thus, on average, the TTC of the lowest-cost VM is 12 minutes,

which is 5.5× faster than we observed in reality. Thus, our migration policy sets the TTC to

12 minutes when performing its cost-benefit analysis. We also set an emulated bid price in

the experiment equal to the maximum price, which results in an average of one revocation

per hour. While this revocation rate is high relative to real revocation rates, we select it so

our emulated job has the potential to experience revocations. This enables us to illustrate

the impact of revocations on the relative cost and performance of each approach, although

the magnitude of our results is not representative of real spot VMs.

We construct synthetic price traces to exhibit the correlation between price level and

revocation risk in the real market, where a low-cost server is less likely to be revoked.

While our experiments isolate some key factors in HotSpot’s design, they do not isolate all

of them. In particular, we set the billing interval to one minute, rather than one hour, so the

experiments do not include the increase in cost from vacating a VM early. We use a short

billing interval to enable us to isolate other factors when running half-hour jobs. Thus, in

these experiments, HotSpot’s transaction cost derives solely from its migration overhead.

Note that this overhead is higher, as a fraction of a job’s running time, the shorter the job.

The migration overhead ranges from 25 − 56s, or 0.7 − 1.6% of the running time for our

baseline half-hour jobs. We evaluate real-world performance over longer periods with an

hour-long billing interval in simulation.

Baseline Experiment. Figure 4.11 compares the cost, running time, and revocation risk

of using the on-demand, SpotFleet, SpotOn, and HotSpot approaches. Note that the y-

axis of the first two graphs is normalized relative to the metric’s value using on-demand

VMs. For each approach, we execute three trials with a different set of randomly chosen

offsets for each spot VM in the synthetic price function, where the error bars reflect the

maximum and minimum values. As expected, the cost (left) decreases between 30-75%

when we switch from using on-demand VMs to any approach that uses spot VMs, since

spot VMs are cheaper on average than on-demand VMs. Thus, even when the SpotFleet

approach, which does not use fault-tolerance or migration, experiences a revocation and

has to restart the job from the beginning, it remains cheaper than using an on-demand

58

 0

 25

 50

 75

 100

 125

 150

8 16 32 64

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

Memory Footprint (GB)

SpotFleet
SpotOn

HotSpot

 0

 50

 100

 150

 200

 250

 300

8 16 32 64

R
u

n
ti
m

e
 (

%
 o

n
-d

e
m

a
n

d
)

Memory Footprint (GB)

SpotFleet
SpotOn

HotSpot

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 16 32 64

S
y
s
te

m
 E

v
e

n
ts

Memory Footprint (GB)

Revocations
Checkpoints

Migrations

Figure 4.12: Comparison of cost (left), run time (middle), and system events (right) when
using on-demand VMs, spot VMs without fault-tolerance (SpotFleet), spot VMs with check-
pointing (SpotOn), and HotSpot as the memory footprint varies. The error bars represent
the maximum and minimum of each metric across three trials.

VM. The cost further decreases for SpotOn (by 34%) and HotSpot (by 65%) compared to

SpotFleet, since SpotOn benefits from periodic checkpoints that limit the work lost after a

revocation, while HotSpot does not experience a revocation. Finally, we see that HotSpot’s

cost is 45% less than SpotOn, since HotSpot always migrates to the lowest cost VM, while

SpotOn remains on each VM until it is revoked and thus experiences high price periods.

Figure 4.11(middle) shows that the job’s running time increases relative to using an

on-demand VM. This occurs because our experiment, in contrast to EC2’s actual spot

market, does not include VMs with multiple capacities at different normalized prices. As

a result, there is no opportunity to improve on the performance of an on-demand VM by

selecting a higher-capacity spot VM. In the figure, the average running time of SpotFleet

is worse than both SpotOn and HotSpot. For SpotFleet, the decrease in running time

derives from the large overhead of having to restart the job from the beginning after each

revocation, while, for SpotOn and HotSpot, the decrease derives primarily from the smaller

overhead of checkpointing and migration, respectively. As shown in Figure 4.11(right), while

HotSpot migrates an average of ∼2 times, its performance overhead does not exceed either

SpotFleet or SpotOn. Unlike SpotFleet, HotSpot experiences no revocations and never has

to recompute lost work. The figure also shows that HotSpot executes fewer migrations than

SpotOn executes checkpoints. However, each checkpoint only has an overhead of 8s, while

the migration overhead of the 8GB memory footprint ranges from 25-56s. These overheads

balance out such that SpotOn and HotSpot maintain a similar performance.

59

Changing Memory Footprint. We next evaluate how changes in an application’s memory

footprint, which dictate the transaction cost of migration, affect cost and running time

relative to our baseline 8GB memory footprint. Figure 4.12 shows the results where the

error bars indicate the maximum and minimum value across three trials. Using the same

configuration as our baseline experiment, we vary the memory footprint from 8GB to 64GB.

As before, the cost (left) of using an on-demand VM is high relative to the other approaches

in nearly all cases. In this experiment, note that the cost and performance of using an

on-demand VM is the same for any size memory footprint. Only SpotOn with a 64GB

memory footprint costs slightly more than using an on-demand VM due to its high periodic

checkpointing overhead. SpotOn’s cost decreases relative to using on-demand VMs as the

memory footprint and the resulting checkpointing overhead decrease. SpotFleet maintains

the same cost across all memory footprints, since it does not perform any checkpoints or

migrations. HotSpot’s cost is consistently lower than both SpotFleet and SpotOn, since it

always migrates to the lowest-cost server. As the memory footprint increases, the overhead

of these migrations also increase, which reduces the cost savings relative to using on-demand

VMs. However, even for a 64GB memory footprint, HotSpot’s cost is 40% less than the

on-demand VM.

Figure 4.12(middle) shows that HotSpot’s running time is also consistently equal to or

less than the running time of SpotFleet and SpotOn as the memory footprint varies. Spot-

Fleet’s running time remains constant since it does not depend on the memory footprint,

and is greater than HotSpot’s running time even for a 64GB memory footprint. SpotOn’s

running time is nearly equal to HotSpot’s running time for the 8GB memory footprint, as

discussed in the baseline case. However, SpotOn’s running time increases more rapidly as

the memory footprint increase compared to HotSpot’s running time. For a 64GB memory

footprint, HotSpot’s running time is nearly 40% lower than SpotOn’s running time.

The differences in running time stem from the overheads of checkpointing, migrating,

and recomputing lost work after each revocation. Figure 4.12(right) plots the number of

revocations, checkpoints, and migrations, where the order of the bars for SpotFleet, SpotOn,

and HotSpot are the same as the adjacent figures. We do not include the on-demand

approach, since it does not experience any revocation-related events. The graph shows

60

 0

 20

 40

 60

 80

 100

0 1 2 4

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

Revocation Rate (per hour)

∞ ∞

SpotFleet
SpotOn

HotSpot

 0

 40

 80

 120

 160

 200

0 1 2 4

R
u

n
ti
m

e
 (

%
 o

n
-d

e
m

a
n

d
)

Revocation Rate (per hour)

∞ ∞

SpotFleet
SpotOn

HotSpot

 0

 4

 8

 12

 16

 20

 24

0 1 2 4

S
y
s
te

m
 E

v
e

n
ts

Revocation Rate (per hour)

∞ ∞00

Revocations
Checkpoints

Migrations

Figure 4.13: Comparison of cost (left), run time (middle), and system events (right) when
using on-demand VMs, spot VMs without fault-tolerance (SpotFleet), spot VMs with check-
pointing (SpotOn), and HotSpot as the spot price volatility changes. The error bars rep-
resent the maximum and minimum of each metric across three trials. Once the revocation
rate increases to two per hour SpotFleet never finishes, so we label ∞ for its cost, running
time, and system events.

that HotSpot never experiences a revocation, since it always migrates to the lowest-cost

server with a low revocation risk. In contrast, SpotFleet and SpotOn experience at least

one revocation on average. For low memory footprints, SpotOn checkpoints frequently,

since the overhead of checkpointing is low. However, for large memory footprints, the

checkpointing overhead is high so SpotOn only checkpoints once. Thus, the revocations for

SpotOn at large memory footprints incur a large recomputation overhead that increases its

running time.

Changing Spot Price Volatility. We also vary the frequency of revocations relative to

our baseline to illustrate the impact of market volatility on cost and running time. In

this case, we vary the revocation rate by changing the periodicity of our sinusoidal price

function. Figure 4.13 plots the resulting revocation rate (in revocations per hour) on the

x-axis. Again, all spot-based approaches in Figure 4.13(left) cost less on average than

using an on-demand VM. The error bars represent the maximum and minimum cost across

three trials. We also see that HotSpot has a lower cost than the other approaches across

all revocation rates. As the spot price becomes more volatile, HotSpot’s cost advantage

improves relative to both SpotFleet and SpotOn due to the overhead they experience from

both checkpointing and recomputing lost work after a revocation.

Figure 4.13(middle) plots the job running time as the revocation rate changes. We see

that SpotFleet’s performance is highly sensitive to the revocation rate, since each revocation

incurs a large recomputation overhead. Note that once the revocation rate increases to two

61

 0

 5

 10

 15

 20

 25

 30

S
potFleet

S
potO

n

H
otS

pot
H
otS

pot (m
4)

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

 0

 20

 40

 60

 80

 100

 120

S
potFleet

S
potO

n
H
otS

pot
H
otS

pot (m
4)

R
u

n
 t

im
e

 (
%

 o
n

-d
e

m
a

n
d

)

 0

 5

 10

 15

 20

 25

 30

S
potFleet

S
potO

n

H
otS

pot

S
y
s
te

m
 E

v
e
n
ts

 (
p

e
r

d
a
y
)

Revocations
Checkpoints

Migrations

Figure 4.14: Comparison of cost (left), run time (middle), and system events (right) when
using on-demand VMs, spot VMs without fault-tolerance (SpotFleet), spot VMs with check-
pointing (SpotOn), and HotSpot from simulating jobs from a production trace on spot VMs
based on EC2 spot price traces. The error bars represent the maximum and minimum over
five trials.

per hour SpotFleet never finishes, so we label ∞ for its cost, running time, and system

events. By comparison, both SpotOn and HotSpot have similar running times across all

revocation rates. While SpotOn experiences some revocations at higher revocation rates, as

shown in Figure 4.13(right), the performance impact of these revocations is limited by its

periodic checkpoints. As before, the order of the bars for SpotFleet, SpotOn, and HotSpot

in Figure 4.13(right) are the same as the adjacent figures.

Since the checkpointing overhead is low for our 8GB baseline memory footprint, SpotOn

is able to checkpoint many times over the length of the job, e.g., one checkpoint every 6

minutes in the baseline case of one revocation per hour. This frequent checkpointing limits

the performance impact of revocations. In comparison, the lowest-cost VM changes more

frequently as price volatility increases, which requires HotSpot to migrate more frequently.

While each migration incurs more overhead than each checkpoint, HotSpot experiences no

revocations and thus incurs no recomputation overhead. As in Figure 4.11’s baseline, the

checkpointing and migration overheads of SpotOn and HotSpot, respectively, balance out

such that their performance is similar across all volatilities.

4.5.2 Simulation Results

Our simulator uses job traces from a production Google cluster [61], and the same EC2

spot price traces described in §4.1. The Google cluster traces report each job’s memory

62

footprint and normalized CPU utilization every five minutes. Since the Google cluster

trace normalizes the server capacity between zero and one, it does not contain the actual

CPU capacity of the servers. As a result, we re-normalize the server capacity to between

6.5 and 195 ECUs, which represent the minimum and maximum number of ECUs offered

by EC2 across its VM types. For the on-demand approach, we select the VM type that has

the closest number of ECUs to the ECUs in the trace. For the spot-based approaches, we

initially select the lowest cost VM that matches each job’s average ECU utilization. For

SpotFleet, we also use this policy to select a new VM on each revocation. SpotOn and

HotSpot use their own respective policies for selecting VMs after a revocation. We also

assume each job’s performance is a linear function of its resource utilization, i.e., ECUs

utilized. That is, if a job is at 100% utilization of its normalized server capacity, and then

migrates to a server with half the number of ECUs, we assume a 2× slowdown. If a job’s

utilization in the trace is 100% we do not know what its utilization would be on a higher

capacity server. In this case, we make the pessimistic assumption that the job cannot scale

up to use more ECUs than it did in the original trace. Our experiments assume EC2’s

standard one-hour billing interval, and sets the expected time to spend on a new server Ti

equal to the MTTC of 1.1 hours based on our analysis in §4.1.

We select 1000 random jobs from the job trace and assume each job starts at a random

time within the EC2 spot price trace. Since HotSpot containers are long-lived, we restrict

our evaluation to jobs with durations greater than 24 hours to reduce the relative effect on

the total cost from terminating the container before the end of its last billing interval. For

shorter jobs, HotSpot should re-use the same container, rather than spawn a new container

per job, to mitigate these end-of-lifetime effects. As before, we compare HotSpot’s cost,

performance, and revocation risk across the different approaches. Note that when the

HotSpot container experiences a revocation, it restarts its job from the last migration time.

Figure 4.14(left) shows the average cost of each approach, where the error bars reflect

the maximum and minimum values across five trials. As the graph shows, all of the spot-

based approaches have a significantly lower cost than using on-demand VMs. In addition,

HotSpot is able to further lower the average cost compared to both SpotFleet and SpotOn.

In addition, Figure 4.14(middle) shows that all the spot-based approaches slightly increase

63

the average running time relative to using the on-demand VM specified in the job trace.

In particular, HotSpot increases the running time compared to using on-demand VMs by

<0.5% due its migration overhead, which is less than the increase caused by both SpotOn

and SpotFleet. This increase in running time occurs because jobs in the original trace tend

to run on over-provisioned servers, such that their average utilization is low. Thus, there is

never an opportunity to improve performance by migrating to even higher capacity servers.

To demonstrate HotSpot’s ability to improve both cost and performance, we plot an

another scenario that normalizes HotSpot’s cost and performance relative to running jobs

on an m4.large on-demand VM with 6.5 ECUs, which we call HotSpot (m4). Since running

on m4.large on-demand VMs periodically bottlenecks job performance, such that utiliza-

tion reaches 100%, HotSpot is able to decrease the running time from migrating to higher

capacity servers. However, HotSpot’s cost advantage also decreases, as the m4.large is

more cost-efficient on average than the high-capacity on-demand VMs originally selected

by the jobs. Even so, in this case, HotSpot costs ∼25% of using m4.large on-demand VMs

while decreasing the running time by ∼27%.

Finally, Figure 4.14(right) shows the revocation, checkpointing, and migration rate per

day of each approach. HotSpot migrates on average ∼6 times per day, while SpotOn ex-

ecutes ∼28 checkpoints per day. While difficult to see in the graph, all approaches also

experience revocations. Specifically, SpotFleet, SpotOn, and HotSpot have average revo-

cation rates of 0.118, 0.152, and 0.02 revocations per day, respectively. Thus, HotSpot

migration policy reduces the revocation rate compared to the other spot-based approaches.

4.6 Related Work

Many researchers have recognized the opportunity to reduce cost by leveraging spot

VMs, however, there is little prior work similar to HotSpot that supports proactive migration

as market conditions change. Instead, the focus of prior work has been on selecting the

“optimal” spot VM based on an application’s expected resource usage and future spot

prices [36, 38, 65, 67, 68, 78, 99, 94]. Much of the prior work focuses on reducing revocation

risk by configuring fault-tolerance mechanisms, such as checkpointing and replication [36,

38, 65, 67, 68, 78]. In §4.5, we compare with SpotOn [78], which automatically selects and

64

configures the optimal spot VM and fault-tolerance mechanism to execute a job. Prior

work applies similar fault-tolerance-based approaches to specific distributed applications

including Hadoop [99], Spark [65, 67], parameter servers [36], and matrix multiplication [38].

In contrast, HotSpot is transparent to the application and operates at the level of a single

server (not a distributed system). Unlike HotSpot, prior work does not dynamically migrate

to new VMs as spot prices change, but instead selects new VMs after a revocation [78, 65, 67]

or at periodic intervals [36].

Since prior work often implicitly commits to running on a particular spot VM until

a revocation occurs, the bidding strategy is important in balancing high costs due to an

increase in the spot price (when bidding too high) and the performance penalty from in-

creased revocations (when bidding too low). Thus, there is a significant body of work on

spot VM bidding strategies [99, 48, 97, 76, 81, 50, 51, 92]. In contrast, the bidding strategy

is not as important to HotSpot, as it proactively migrates as spot prices change. HotSpot

never commits to a spot VM, and often migrates to a new VM before prices spike and

cause revocations. Prior work also notes that EC2’s spot market is artificial, since Amazon

both operates the market and is the sole provider. For example, Ben-Yehuda et al. showed

that before 2011, EC2 spot prices were not consistent with a constant minimal price auc-

tion [22, 21]. However, HotSpot’s cost benefits do not rely on spot prices being driven by

supply and demand, but only that there is a price difference between VMs.

Finally, similar to HotSpot’s container migrations, Smart Spot instances migrate nested

VMs between spot VMs in EC2 [42]. However, Smart Spot instances use a centralized

scheduler that monitors a group of nested VMs and determines an optimal packing of them

on spot VMs to reduce cost. Smart Spot Instances also do not consider revocation risk in

their placement decisions, and suggest applications use fault-tolerance mechanisms, such as

replication or checkpointing to mitigate this risk, which violates transparency.

4.7 Conclusion

This paper presents HotSpot, a container that automatically “hops” spot VMs—by

selecting and self-migrating to new VMs—as spot prices change. We demonstrate the

benefits of hopping VMs in EC2’s spot market, and its effectiveness in reducing revocation

65

risk and improving performance. We implement a prototype on EC2, and evaluate it using

job traces from a production Google cluster. We compare HotSpot to using on-demand

VMs and spot VMs (with and without fault-tolerance) in EC2, and show that it is able to

lower cost and reduce the revocation rate without degrading performance.

66

CHAPTER 5

ELIMINATING UNCERTAINTY RISK BY INDEX-TRACKING

“Prediction is very difficult, especially
if it’s about the future.”

Danish proverb

Applications that run on transient cloud servers suffer from cost uncertainty since spot

prices are market-based. This inability to predict future spot prices affects both customers

and applications: former, because they cannot plan their IT expenses in advance and latter,

because the spot price determines the availability and performance characteristics of the

transient servers. While researchers have proposed techniques for modeling and predicting

prices of individual spot markets, their utility have been limited given the proliferation of

spot markets, which now exceed 7600 on Amazon EC2.

In this work, we address the challenge of providing a reliable cost-estimate to flexible

applications hosted on cloud spot markets. Our work is motivated by a simple but key

market observation that spot markets are reliably predictable at aggregate levels (e.g., a

datacenter, or a server family) than at individual server level. Towards quantifying this,

we devise a novel index for cloud spot markets. We analyze EC2’s global markets over

6-months to validate our hypothesis and to identify additional market insights. Building

on these insights, we design an index-driven server hosting mechanism, and implement it

on top of an open-source spot server framework. Evaluations on EC2 spot markets, via

prototyping and simulation, show that our system not only matches the index-predicted

cost-efficiency but does so while maintaining high availability.

5.1 Understanding Uncertainty

To model and predict the behavior of EC2 spot markets, most of the prior work analyzes

the historical price traces from individual spot markets and then picks a queuing model that

67

best describes the analyzed dataset. While intuitive, this approach faces several challenges

that limit its utility. First, EC2 spot markets are massive and complex: it comprises of

∼7600 independently priced server “listings” across 44 zones in 16 regions. By comparison,

there are only around 6000 stocks listed across both the New York Stock Exchange and

NASDAQ. While a number of researchers [92, 22, 99, 76, 66, 7, 41, 87] and startups [4,

46, 54] have proposed techniques for modeling and predicting spot market prices, there

is no guarantee a one-size-fits-all model even exists as price characteristics are based on

local supply-demand conditions. Second, EC2 spot markets exhibit price inversions and

arbitrages such that a higher capacity server may be priced lower than a lower capacity one,

or identical servers across zones may be priced differently based on the real-time supply-

demand conditions. It is impossible for static prediction methods to account for such

real-time inversions a priori. Finally, as application’s resource usage changes over time, its

choice of optimal server is unlikely to remain same throughout its lifetime.

In this work, we take first principles approach to observing and understanding the

physical infrastructure-level realities in cloud datacenters.

5.1.1 On Diversity

In order to allow users to select the best fit server for their application, cloud providers

sell a large number of server types that differ in their resource capabilities. However,

these numerous server types are carved out of a limited number of physical machines. For

example, EC2 offers 23 general-purpose server types (in T2, M3, M4, and M5 series) that

are internally hosted on just 4 types of physical machines1. While the total number of

physical machines in a given datacenter does not change drastically in short timeframes

(like hours, days or even weeks), the number of servers of each type is likely to vary more

frequently (as governed by the administrative policies, supply-demand dynamics of different

contract types etc.). In other words, despite m4.large and m4.16xlarge being sold in

separate spot markets, their availability, revocation characteristics and in turn, their prices

are not likely to be independent. Prior works have largely ignored this physical reality in

1this inference directly follows from EC2’s listing of dedicated hosts, a contract type where physical
machines are rented instead of virtualized servers

68

assuming that price and revocation characteristics of different spot markets are independent

and identically distributed (likely because the spot price traces under consideration did not

explicitly reveal this).

Property 1: Spot markets originating from the same physical machine family are not free

from mutual interference. This has two implications to the users of idle capacity: First, it

is not prudent to model the behavior of spot markets individually without regards to other

markets that share the same underlying physical machines. Second, spot markets that

do not share a common underlying machine type could be expected to be free of mutual

interference (barring datacenter-wide emergency or maintenance events).

5.1.2 On Stability

Though individual market’s spot prices vary drastically (up to 10×), presumably based

on the supply-demand dynamics of the given server type, the overall idle capacity of data-

center paints a different picture. In the first public release of its kind, Microsoft researchers

published [45, 28] detailed workload- and utilization characteristics of Azure datacenters

in 2017. While it was known a priori [89] that significant portions of datacenter resources

remain idle, Azure traces shed light on the exact nature of this idleness: the actual CPU

utilization varies by the order of half the datacenter capacity but the users are not dynam-

ically scaling their allocated servers to match the actual real-time utilization. Thus, Azure

datacenters do not experience large swings in server allocations either at the customer level

or at the datacenter level. The reported median volatility for server allocations is 6.3%

hourly, 2.6% daily, 3.2% weekly (at the datacenter level). These findings also corroborate

with observations from multiple Google datacenters [26], where researchers proposed that

large chunks of idle capacity experience higher availability (>98.9%) over the window of 6

months.

Property 2: For public cloud providers, datacenter’s aggregate idle capacity tends to be

stable. If compute was a fungible resource like oil and electricity, and all of datacenter’s idle

capacity was offered in a single marketplace to be consumed by perfectly flexible applica-

tions, then property-2 implies (i) that there would be a single unified clearing price like in

the commodity spot markets, and (ii) that this clearing price would be largely stable and

69

predictable (via the efficient market hypothesis [33] since the overall supply and demand are

stable). Thus, flexible applications operating in this hypothetical setup would always pay

the fair market value as well as have predictable expenses. Obviously, the assumptions on

application’s flexibility and compute’s fungibility are not (yet) practical. However, in the

next section, we explore a first order approximation that helps us benefit from this insight.

5.1.3 Market Indices

The market properties of §5.1 prompt us to analyze and model spot markets at aggregate

levels instead of individual ones. Specifically, two granularities of aggregation are natural

choices: (i) all the markets belonging to a given datacenter, and (ii) set of markets originat-

ing from a given server family (for e.g., all compute-optimized servers or all general-purpose

servers housed in the datacenter). Towards collectively modeling a group of spot markets,

we employ market indices.

A market index, in finance and economics, is a statistical measure of the value of a

collection of items, and is useful in representing their collective movement in a time-series.

For example, the Consumer Price Index (CPI) measures the changes in the price level

of a pre-determined market basket of consumer goods purchased by typical households.

Economists use the annual percentage change in CPI as a measure of inflation, which in

turn guides the monetary policies on wages and taxes, interest rates, and cost of living

adjustments. Similarly, stock market indices like the Dow Jones Industrial Average, the

Standard and Poor’s 500 and the NASDAQ Composite report the statistical measure of

a prominent set of publicly traded stocks, and are considered as broad indicators of the

country’s economy.

Thus, financial companies that engage in sophisticated market strategies to manage

their cost-risk-performance tradeoffs, rely on these indices to evaluate their positions as

well as to make investment decisions. We argue that with compute-time turning into a

core investment, technology-enabled companies would benefit from an index that succinctly

describes the behavior of cloud spot markets. More importantly, when applied to spot

markets, market indices overcome several limitations of current approaches. First, index

composition is based on directly-observed market properties, and not on indirect inferences

70

from historical price traces. Second, by revealing the fair market value of idle compute

capacity in real-time, the index provides a cost-benchmark for flexible applications. Lastly,

it yields an open framework that can be easily extended and adapted to the needs of specific

applications or market phenomena that the user is trying to model.

5.2 Market Index for the Cloud

The goal of the index is to succinctly describe the spot price characteristics of a group

spot markets to reveal insights and to enable decision making. First, we describe the index

construction methodology and then apply it on to EC2 spot markets to characterize its

salient features.

5.2.1 Methodology

Our index construction methodology comprises of four components: characterization,

composition, weighting, and consistency.

Characterization. Any compute server is characterized by the quartet of CPU, memory,

storage and network. However, cloud servers are typically defined only by their CPU and

memory since storage and networking are decoupled and sold separately. For EC2 servers,

the compute capacity varies between 1 and 349 ECUs (EC2’s measure of CPU capacity),

and memory capacity varies between 0.5 to 1952 GiB. Thus, in order to normalize these

two independent metrics, we compute their geometric mean for each server. Putting it all

together, P̂i(t) represents the normalized price of server i, with Ci number of ECUs, Mi

GiB of RAM and a market price of Pi at time t.

P̂i(t) =
Pi(t)√
Ci ·Mi

(5.1)

Composition. Composition determines the set of spot server markets that go into com-

puting the index. While this is primarily driven by the market properties of §5.1, it could be

further trimmed to accommodate application’s resource constraints or expanded to study

broader market phenomena. For example, tuple (us-east-1,16GB) describes the set of

spot markets in all six datacenters of us-east-1 region that have a memory size of at least

16GB.

71

Weighting. Index weighting determines the relative impact that each constituent item

has on the final index value. The commonly used weighting mechanisms are (i) equal

weighting, where each item contributes equally, (ii) size-proportional weighting, where each

item contributes proportional to its size or capacity, and (iii) attribute weighting, where

each item is weighted as per the score it gets for its attributes. In the real-world, DJIA uses

equal weighting, S&P 500 uses market capitalization of stocks as their weight, and S&P 900

Growth uses growth prospect scores of stocks as their weight. For our purposes, since EC2

does not publish any details about the overall or available spot pool capacity, we simply

employ equal weighting.

I(t) =

N∑
i=1

P̂i(t)

N
(5.2)

Consistency. Consistency is the property of an index to absorb market changes i.e.,

addition or removal of elements, or alteration to the characteristics of elements, in such

a way that the index values are comparable across those changes, and over time. Since

we employ normalization and equal weighting, it is trivial to incorporate introduction of

new spot markets, discontinuation of existing ones and even changes in resource capacities.

However, in EC2 spot markets, spot servers may become temporarily unavailable i.e., no

matter how high the users bid, EC2 will not make any new allocations for servers of that

type. To communicate this situation, EC2 has set a bidding cap of 10× the equivalent

on-demand price such that no user can outbid EC2, when it wishes to allocate certain

type of spot servers for other purposes. Thus, in order to keep our indices consistent, we

temporarily exclude all the 10× markets from index computation for as long as their prices

remain at the cap level.

In summary, the index value at a given time represents the average price per unit of

compute time (for the selected group of servers).

5.2.2 EC2 Spot Markets

The goal of applying the index on EC2 spot markets is twofold: first, to validate the

market properties presented in §5.1, and second, to derive insights that can drive spot server

72

 0

 0.5

 1

 1.5

 2

 2.5

 3

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r)

Global spot markets

Global on-demand

Figure 5.1: Index level for the global Linux spot markets (2406 across all 14 regions).

selection. In the interest of space, we analyze indices only for Linux markets and only at

select geographical locations.

First, we observe the spot markets at the highest possible aggregation i.e., global level.

Figure 5.1 shows the index for all 2406 active Linux markets worldwide, with Y-axis plotting

the index-level and X-axis indicating the day of the year. The graph shows that EC2’s spot

market is remarkably stable, in aggregate, with prices around 0.5 cents/hr, which equates

to 80% discount over the global on-demand average.

Second, we observe the aggregate markets at the datacenter level with Figure 5.2 plotting

the index-level for the three zones of US-West-1. We see that the characteristic peaky

behavior of individual spot markets does not exist at the zone level. We also note that

despite being located in the same geographical region, price variations across different zones

are largely uncorrelated. This is because each zone is a separate datacenter with its own

usage patterns and administrative overheads such that unused server capacity at a given

time need not match across the datacenters.

Next, we decrease the granularity of aggregation to observe groups of servers belong-

ing to three distinct set of families: compute-optimized, memory-optimized, and storage-

optimized. Figure 5.3 shows these families for the US-West-1a zone. While there is increased

volatility compared to the zone-level index, the values are still stable and predictable. Fi-

nally, we increase the levels of aggregation with Figure 5.4 demonstrating the corresponding

regional index. As expected, it shows a higher level of stability and predictability compared

to the zone-level indices, with price remaining at ∼16% of the on-demand price level.

73

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) US-West-1a

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) US-West-1b

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) US-West-1c

Figure 5.2: Indices for the three US-West-1 datacenters

Insight (on predictability): Our analysis confirms that spot markets are remarkably stable

and its prices are reliably predictable at aggregate levels. We see this behavior consistently

at the global, regional, datacenter, and server-family levels.

Given its generality, the index could be trivially extended to analyze the EC2 on-demand

offerings. While on-demand prices are fixed within a region, they vary across regions as

shown in Figure 5.5, which plots the index-level across all 14 of the EC2 regions. First off,

we see that the price of compute varies substantially across regions with SA-East-1 being

57% more expensive than CA-Central-1 on average. Surprisingly, significant price differ-

entials exist for geographically nearby regions as well. For example, index for US-East-1 in

Virginia is ∼20% higher than US-East-2 in Ohio. While such disparities may be due to the

regional economic factors including price of energy, availability of technical staff, and cli-

mate conditions, it does provide significant cost saving opportunities for flexible applications

(even without using spot servers).

74

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) US-West-1a Compute-optimized

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) US-West-1a Memory-optimized

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) US-West-1a Storage-optimized

Figure 5.3: Indices of server families within a datacenter.

Since on-demand prices vary across regions, the magnitude of cost savings from choosing

particular regional spot markets also varies widely. For example, while the index levels of

EU-West-1 and EU-West-2 (not shown here) hover around 0.45 and 0.3 cents/hour respec-

tively, indicating a 33% price differential, this is reflective of the ∼30% price differential that

exists in their on-demand price levels. However, many price inversions do exist between on-

demand and spot markets. For example, though AP-Northeast-1 is slightly more expensive

than AP-Southeast-1 for on-demand servers, their spot market averages are flipped, with

AP-Northeast-1 offering 60% discount over AP-Southeast-1 region as shown in Figure 5.6.

Insight (on inversions): The market index allows users to readily identify systematic

price differentials, inversions and arbitrage opportunities both within the spot markets and

across different types of EC2 contracts.

5.3 Design of Index-tracking

Our system design goal is simple: run a given application on variable-price spot servers

such that it incurs a predictable expense. Given that we have devised a market index that

75

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) US-West-1

Figure 5.4: Index at the regional level

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ca
-ce

n
t-1

u
s-e

a
st-2

e
u
-w

e
st-2

a
p
-so

u
th

-1
u
s-w

e
st-2

a
p
-n

e
-2

e
u
-ce

n
t-1

u
s-e

a
st-1

u
s-w

e
st-1

e
u
-w

e
st-1

a
p
-se

-2
a
p
-se

-1
a
p
-n

e
-1

sa
-e

a
st-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r)

Worldwide On-demand Markets (Linux)

Figure 5.5: On-demand prices vary across regions.

exhibits reliably predictable cost-efficiency for groups of spot markets, there is a trivial

solution: build a cluster composed of one spot server from each of the constituent markets

such that the overall cluster’s cost-efficiency always matches that of the index. While

trivial, this solution is not practical for generic applications. So, we aim to realize the

performance of market indices without replicating its scale i.e., even single-node application

should achieve cost-predictability. In this section, we design mechanisms and policies toward

that goal.

We approach this in two steps: first, determine a broad set of candidate spot server

markets that satisfy application’s resource requirements. For this set, compute the cloud

index to get the target cost-efficiency. Second, from amongst the candidate markets, select

the best server (§5.3 outlines three policies for this selection) that meets the target level.

If changes in market conditions or application characteristics render the selected server no

longer meeting the target, then transparently migrate the application to another server

that does (§5.3 proves why such a market always exists). Our design draws inspiration

76

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) AP-Northeast-1

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) AP-Southeast-1

Figure 5.6: Indices showing price inversion across regions.

from two techniques followed in the financial markets: (i) index funds, which are financial

instruments constructed to track the performance of a reference market index, and (ii) active

trading, the strategy of actively trading stocks and other instruments in the short-term in

order to benefit from market volatility. However, there are significant differences between

financial instruments and cloud servers such that these techniques are not applicable as is.

Remainder of this section addresses these challenges.

5.3.1 Index Tracking by Server Hopping

Fundamentals of Tracking. Index tracking is a rule-based investment mechanism with a

goal to match the financial returns from a portfolio to the performance of the market index

it tracks. Originally conceived to quell the notion that one cannot buy the averages, index

funds have grown to account for ∼20% of all the managed funds in the U.S. Their efficacy

is rooted in the Efficient market hypothesis [33], which states that the stock prices fully

reflect all available information such that the benefits of acting on information do not exceed

the transaction costs. Simply, the hypothesis implies that one cannot consistently beat the

market by predicting future prices of stocks. We have devised the cloud index on the same

principle that while it is hard to predict the future prices of individual spot markets, it is

possible to reliably predict the behavior of certain groups of markets in aggregate.

77

Adapting to cloud servers. While our design retains the high-level goal of matching (or

improving on) an index’s performance, we are constrained by having a portfolio of one server

at a time. To track the performance of the selected server i with respect to the reference

cloud index I, we define

Gain(t1, t2) =

t2∑
t=t1

(I(t)− P̂i(t)) ·
√
Ci ·Mi (5.3)

where Gain(t1, t2) represents the gain on the index between times t1 and t2 that the

server i was held, while Pi, Ci and Mi denote the server’s price, CPU and memory capacity

respectively. In order to keep the gain positive (i.e., maintain a cost-efficiency at or better

than the index level), it may become necessary over time to migrate to a better server.

Server Hopping. This derives from the techniques such as day trading in financial

markets, and loan refinancing in credit markets, where the objective is to benefit from

favorable market conditions by actively trading one’s assets or obligations. Recent advances

in container virtualization, datacenter networking and per-second billing models have made

it possible (and even attractive) to frequently migrate applications from one cloud server

to another in response to real-time dynamics. For example, Supercloud [74] live migrates

applications in response to geographically shifting workloads, and HotSpot [70] migrates

applications to more cost-efficient servers in spot markets. Server hopping algorithms are

designed as localized greedy optimizations: they incur upfront migration costs in the hopes

of future benefits.

Our primary goal in adapting server hopping is to prevent the portfolio server from

becoming cost inefficient with respect to the index level. But every hop reduces the already

accrued gain on the index. To account for this, we consider the overheads of paying for

two servers for the duration of migration, while making no progress on the application’s

work. Thus, Loss(i, j) quantifies the monetary loss of hopping from spot server i to j, with

migration taking time Tm.

Loss(i, j) = (Pi(t) + Pj(t)) · Tm (5.4)

78

By tracking an application’s Gain and accounting for its Loss over the course of its

lifetime, we can determine its overall cost-efficiency vis-a-vis the index. Next, we analyze

the properties of these mechanisms and the market conditions under which the index-level

cost-efficiency could be maintained.

5.3.2 Properties of Tracking-by-Hopping

Property 1. There will always be a cost-efficient market to hop. While this property is

critical for the functionality of our algorithm, it is also the easiest to establish. In the base

case, when the candidate set contains only one spot server market, the cost-efficiency of that

market is the same as that of the market index (by definition 5.2). So, one can always hop

back to the default spot market. Next, when the candidate set contains multiple markets,

there needs to be at least one spot market whose cost-efficiency is better than or equal to

that of the index level (this follows from the definition of market index, which is the average

of the constituent market’s efficiencies). Thus, there will always be a spot market whose

cost-efficiency is better than or equal to the index level.

However, the mere existence of an efficient-cost market at all times does not imply that

the overall cost-efficiency target would be met. In fact, it is trivial to prove the opposite:

consider a set markets such that the cost-efficiency of one half of them are below the index-

level and the other half is above the index-level. Let us also say that these markets are

extremely volatile such that at every unit of time, the markets in each of these halves

swap i.e., those with better than index efficiency become worse and vice-versa. Under

such a volatile setup, the application continually ends up hopping, leaving itself no time

to perform any actual work. Thus, for tracking-and-hopping algorithm to be viable, the

negative impact of hopping overhead needs to be compensated by gains in index tracking.

Property 2. Necessary and sufficient conditions. It is trivial to establish the necessary

and sufficient condition for tracking-by-hopping to be effective: If the aggregate gain on

tracking exceeds the cumulative losses on hopping for the entire duration of hosting, the

mechanism would have met the goal.

79

Time

C
os

t-
eff

ic
ie

nc
y

Migration time (Tm)

Work delayed due to migration

Pi

Pj

index-level (I)

Start of
migration

Figure 5.7: Illustrating the sufficiency condition to accommodate the overhead of migration.

However, we derive a sufficiency condition that helps make localized greedy decisions

instead of having to wait till the end of the execution to verify meeting the target cost-

efficiency. Figure 5.7 illustrates an application migrating from server i to j with migration

taking time Tm (shown by the gray area). In order to completely absorb the overhead of this

migration, we need to account for not only the Loss(i, j) but also the actual work that has

gotten delayed by migration (shown by the red area). Thus, if the cost-efficiencies of two

spot markets satisfy the following condition with respect to the index-level, then hopping

would not affect any previously accrued Gain on the index. Note that this condition is

sufficient but not necessary.

P̂i(t) + (2 · P̂j(t)) ≤ I(t) (5.5)

Property 3. On the efficacy of the mechanism. Another advantage of tracking-by-

hopping mechanism is that it scales well with increased adaption. As more users seek to

achieve index-level cost-efficiency, we expect the market to become increasingly stable since

everyone’s target is the fair market value of the idle cloud capacity. In turn, this should

reduce the number of server hopping required to maintain the desired cost-efficiency, thereby

leading to an increased application availability. This is in contrast with the behavior induced

by HotSpot, where every application is actively trying to hop to the most cost-efficient

server, which could exacerbate the market volatility.

80

5.3.3 Server Selection Policies

Now that we have established the existence of one or more spot markets that satisfy

the target cost-efficiency levels at all times, we present three policies that enable a tradeoff

between lower cost and higher availability while maintaining the target cost-efficiency.

Cost-centric Policy. The goal of this policy is to maximize cost savings by aggressively

migrating to the best-fit server that is also cost-efficient. In order to determine this, we re-

normalize the server’s cost-efficiency from Eq-5.1 to take into account the actual resources

utilized at time t, namely Cutil and Mutil.

P̆i(t) =
Pi(t)√

Cutil ·Mutil
(5.6)

Thus, cost-aware policy chooses the spot market that provides the best P̆i value at the

given time. Since availability is a not concern, selections are triggered every time a better

fit cost-efficient server emerges due to any changes in spot market or application behavior.

However, in order to maintain the target cost-efficiency, only those migrations that satisfy

Eq-5.5 are carried through.

Availability-aware Policy. The goal here is to maximize application’s availability by

selecting a stable server that also meets the cost-efficiency targets. To identify such a

server, this policy computes the standard deviation of each market’s price with respect to

the index-level over a predefined window. Then, from amongst the spot markets, whose

average is below the index-level, it picks the one with the least deviation. No further

proactive selection is triggered until the chosen server’s cost-efficiency crosses the group’s

index level.

Balanced Policy. To mind the gap between the two extremes, we define a policy whose

goal is to achieve a balance between higher cost efficiency and higher availability. We infer

that higher a spot market’s price variability, higher the risk of needing to migrate away.

In order to balance this risk-reward tradeoff, we employ the Sharpe ratio [69], a statistical

measure commonly used in finance to compute the risk-adjusted returns of an asset. We

define balance factor as a variant of the Sharpe ratio,

81

Availability

1. Monitoring

Spot prices

Server’s
utilization

4. Hopping via Self-migration

detach

terminate

att
ach

migrate
ch

eck
point

2. Index Tracking

Index gain Hopping loss

3. Server Selection

Policies & Accounting

Cost

>?

I

Pr
ic

e
Figure 5.8: System architecture with HotSpot components boxed in gray and our extensions
in red.

Si(t) =
Ig(t)− P̆i(t)

σi
(5.7)

where Ig is the index level of the group, P̆i is the server’s average cost-efficiency over

a small window, and σi is the standard deviation of the spot server’s cost-efficiency with

respect to the index level over the same window. While the numerator estimates the server’s

current “return” relative to the index-level, the denominator quantifies its expected “risk”

of deviating from the return and thus needing to migrate again. In this policy, hopping

is triggered only when the current server is no longer the one with highest balance factor,

thus minimizing migrations while not sacrificing on cost-efficiency.

5.4 Implementation

Since we propose a middle ground between fully-predictive and fully-reactive approaches

to spot server management, we had several options to build on the prior work. How-

ever, given the ease of adding a predictive component (i.e., index tracking) to an already

functional reactive system (that does server hopping), we chose HotSpot [70] as our base

framework.

5.4.1 HotSpot Overview

HotSpot introduces a self-migrating server abstraction for containerized applications.

It works by (i) continuously monitoring the spot market prices and application’s resource

utilization, (ii) periodically performing cost-benefit analysis to determine whether to stay

82

or migrate to a cheaper server, and finally (iii) migrating the containerized application to

the newly chosen server and shutting down the current one. Since this logic is embedded

inside the Amazon Machine Image (AMI), any EC2 server booted with it becomes a self-

migrating server (i.e., runs this control loop throughout its lifecycle). Thus, HotSpot is

easily adaptable: it requires no application modifications nor any external infrastructure

support.

Since we reuse the HotSpot framework, we also inherit some of its restrictions. First,

due to LXC integration, we can only support stop-and-copy migration. Second, hopping

semantics force applications to use remote storage and virtual network i.e., Elastic Block

Storage (EBS) and Elastic Network Interface (ENI) respectively. Finally, HotSpot is archi-

tecturally decentralized i.e., each server manages itself without explicit coordination with

others. Thus, efficient coordinated deployments in multi-node configurations may need a

centralized orchestrator (we address this in evaluation).

5.4.2 Extending HotSpot

HotSpot is implemented in Python with additional integrations with EC2’s Boto3 li-

brary, LXC bindings and administrative Shell scripts. We retain the monitoring and hop-

ping components but replace the cost-benefit analysis logic with index-tracking and server

selection modules as depicted in Figure 5.8. We implement our extensions in ∼850 lines of

Python.

First, we build a standalone cost estimator utility that takes in application’s resource

constraints, then computes the market index-level for the selected availability zone, and

finally predicts the overall cost to be incurred. This enables users to know their expenses

before starting the workload. A library version of this utility is integrated in the index-

tracking module, which in turn polls the monitoring engine once every five minutes to update

the gain on index-tracking. This also triggers the server selection policy, which iterates

through all the applicable spot markets to determine if server hopping is required. For the

most populous zone (US-East-1a with 106 spot markets), this whole operation sequence

of monitoring, tracking and server selection takes an average of ∼2 seconds. We configure

the migration module for direct memory-to-memory transfer as it maximizes application’s

83

availability. We find that the migration latencies observed in HotSpot are still current:

migration of up to 32GB RAM takes ∼30 seconds (as it is bottlenecked by the EBS/ENI

transfer happening in parallel), and the latency for larger memory sizes (up to 128 GB)

increases linearly at the rate of ∼1 second per GB.

5.5 Evaluation

We hypothesized that we could achieve cost-predictive server hosting by modeling the

spot markets in aggregate via a cloud index and then by tracking it via server hopping.

Additionally, we presented server selection policies that enable a tradeoff between higher

availability vs. lower cost, while maintaining the index predicted cost-efficiency. Our eval-

uation investigates the validity of these claims by setting up experiments that answer two

key questions: (i) How do server selection policies perform under different market and ap-

plication conditions? (ii) How effective is index-tracking on EC2 spot markets, and how

does it fare against fully-predictive and fully-reactive approaches? We quantify the former

via prototype experiments, and the latter via simulations of jobs from Google clusters.

5.5.1 Prototype Experiments

In order to evaluate the server selection policies (described in 5.3), we have to be able to

control application’s and spot market’s characteristics. Since the prototype is intended to

run real workloads on EC2 instances with real-time prices, it limits our ability to control key

parameters. Thus, in the following set of experiments, while our prototype is deployed and

run on the EC2 platform, we stub out certain EC2 API calls (for e.g., real-time spot price

querying). We also use an emulated job to better control application’s CPU and memory

usage. Below, we describe these setup, establish a baseline performance and then quantify

the effect of varying key parameters.

Application. To predictably control the application behavior, we emulate the job using

lookbusy [25]. Our job runs for an hour on the reference server m4.2xlarge and has two

distinct resource utilization phases. In the first phase (lasting 30 minutes), it consumes 4

vCPUs and 16 GB of memory while in the second phase (the next 30 minutes), it consumes

2 vCPUs and 8 GB of memory.

84

Time

Pr
ic

e
($

/h
r) m4.2xlarge (8 vCPU, 32GB RAM)

c4.2xlarge (8 vCPU, 16GB RAM)
r4.xlarge (4 vCPU, 32GB RAM)

m4.large (2 vCPU, 8GB RAM)

8.5

4.5

6.5

 0

 10

 20

 30

 40

 50

 60

C
ost-centric

Balanced

Avail-aw
are

C
o
s
t
(%

 i
n
d
e
x
-l
e
v
e
l)

 90

 92

 94

 96

 98

 100

C
ost-centric

Balanced

Avail-aw
are

A
v
a
ila

b
ili

ty
 (

%
)

Figure 5.9: Spot market setup (left), and the performance tradeoffs (right) at the baseline
configuration.

Time

app2

app1

Resource Utilization Phases

app3

 0

 10

 20

 30

 40

 50

 60

app1 app2 app3

C
o
s
t
(%

 i
n
d
e
x
-l
e
v
e
l)

Cost-centric Balanced

 90

 92

 94

 96

 98

 100

app1 app2 app3

A
v
a
ila

b
ili

ty
 (

%
)

8
9
.5

Availability-aware

Figure 5.10: Performance of policies when application’s resource utilization varies.

Spot Markets. To ensure identical market conditions over different runs, we generate

synthetic spot price traces for four spot markets: m4.large, m4.2xlarge, c4.2xlarge and

r4.xlarge. These are chosen as their vCPU varies between 2-8 and memory capacity

between 8-32, which cover the entire spectrum of our application’s resource utilization. We

model their prices as follows: m4.large has an average price of 4.5 cents per hour and a

standard deviation of 0.5, m4.2xlarge has the same standard deviation but an average price

of 8.5 center per hour, while c4.2xlarge and r4.xlarge have identical average price of 6.5,

the former has a standard deviation of 1, while the latter has 1.1. Figure 5.9(left) gives an

illustrative representation for these markets. For our experiments, the instantaneous spot

price is computed randomly such that their average and standard deviation characteristics

hold good. We use the same per-second billing model that EC2 operates on.

Baseline Result. Figure 5.9(right) shows both the cost incurred and availability achieved

by the three different policies. We normalize the cost to that of a reference server running

at the index-level cost-efficiency. We observe that all three policies perform better than

the index predicted levels. Also, expectedly the cost-centric policy realized the cheapest

run, and the availability-aware policy attained the highest availability. The balanced policy

managed to be within 12% of the lowest cost, and 1.7% of the highest availability.

85

Changing Application Behavior. Next, we modify the baseline configuration of the

application to exhibit more diversity in its resource consumption as depicted in Figure 5.10

(left). The resource variations are such that the application could be executed on at least one

of the four target spot markets at all loads. Figure 5.10 (right) shows the results of hosting

the three different application configuration. First thing to notice is that the performance

of the availability-aware policy does not change at all, which is not unexpected because

this policy optimizes for stability and not savings. Next, we see that both balanced and

cost-centric policies incur increasing overheads as the application’s utilization gets bursty.

As the markets have remained the same, the cost-efficiency gains of moving to a better fit

server gets overtaken by the migration overheads. However, since the balanced policy does

not react to changes as quickly as the cost-centric policy, its losses are less pronounced.

Changing Market Behavior. Finally, we vary the baseline market conditions to see its

impact on the policies. We achieve this by changing the standard deviation. Figure 5.11

then shows how the policies perform under more volatile conditions. We plot the increase

in market volatility (compared to the baseline) along the X-axis. The first graph shows

that both cost-centric and balanced policies slightly improve their cost efficiencies when the

market volatility increases. Interestingly, the availability policy, when forced to migrate

under more volatile conditions, has managed to reduce its cost as a side effect of repeated

migrations. However, the availability graph shows that all policies suffer, when markets are

more volatile. Our experiments in §5.5 give a better sense of the current state of the EC2

markets as they use real spot price traces.

Summary. The balanced policy using the Sharpe ratio consistently achieves better cost-

efficiency tradeoffs than the extreme policies, under varying market conditions and applica-

tion’s resource utilization.

5.5.2 Simulation Experiments

The goal of our simulation experiments is to quantify the efficacy of different spot

server management techniques under realistic spot market conditions. We evaluate three

approaches for two categories of applications using job traces from Google cluster and price

traces from EC2. Below, we describe each of these as well as our experimental findings.

86

 0

 10

 20

 30

 40

 50

 60

0% 50% 100%

C
o

s
t

(%
 i
n

d
e

x
-l
e

v
e

l)

Cost-centric Balanced

 90

 92

 94

 96

 98

 100

0% 50% 100%

A
v
a

ila
b

ili
ty

 (
%

)

8
7

.6

Availability-aware

Figure 5.11: Policies under changing market volatility.

Spot Markets. For these set of experiments, we use EC2’s spot price traces from the

US-West-1 region between 1-MAR-2017 and 31-AUG-2017. We run three separate trials,

one for each of its three zones (1a, 1b, 1c), whose index levels are depicted in Figure 5.2.

While each zone consists of 79 Linux markets, every jobs considers only the set of markets

that meet its minimum resource requirements.

Server Management Techniques. The three approaches to spot server management that

we evaluate are: (i) Fully-predictive, (ii) Fully-reactive, and (iii) Hybrid. A fully-predictive

system employs static selection such that once a server is selected from amongst the available

pool of spot servers, the application is continually hosted on it as long as the server is

not revoked. If that happens, the selection process is repeated and the application is

restarted on the new server. Amazon’s Spotfleet tool is an example of this style. In

contrast, the fully-reactive approach continually looks for better servers and as soon as one

is found, it migrates the application. HotSpot belongs to this category. Finally, the hybrid

approach uses index-tracking as the predictive component and server hopping as the

reactive component. We configure its server selection to be driven by the balanced policy.

5.5.2.1 Long-running Occasionally-interactive Applications

This emerging application category includes data sink servers for IoT sensors, cryptocur-

rency miners and peer-to-peer file trackers. While they are flexible in tolerating moderate

downtimes and application restarts, they typically do not benefit from the classical fault-

tolerance mechanisms like checkpointing or replication. Thus, we run the application with-

out any fault-tolerance, and investigate how the three spot server management approaches

manage its hosting. To do so, we simulate running the application for a duration of 6

87

 0

 5

 10

 15

 20

 25

 30

Predictive

H
ybrid

R
eactive

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

index-level

 90

 92

 94

 96

 98

 100

Predictive

H
ybrid

R
eactive

A
v
a

ila
b

ili
ty

 (
%

)

(a) Long-running application

 0

 5

 10

 15

 20

 25

 30

Predictive

H
ybrid

R
eactive

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

 90

 92

 94

 96

 98

 100

Predictive

H
ybrid

R
eactive

A
v
a

ila
b

ili
ty

 (
%

)

(b) Parallel applications

Figure 5.12: Comparing the fully-predictive, fully-reactive and hybrid server hosting systems
on EC2 spot markets.

months. The simulator is seeded with the following characterization of the application’s be-

havior. First, the application requires a minimum of 2 vCPUs and 10GB of memory. While

its performance degrades below these levels, it does not scale up with additional resources.

Second, the application could be transparently migrated with a stop-and-copy migration,

and that it would incur a downtime of 30 seconds given its resource levels. Finally, an

application restart following a server revocation would incur a downtime of 90 seconds (for

acquiring a new spot server, and setting up EBS/ENI).

Figure 5.12a shows both the overall cost and availability of running the application

over the 6-month window. To establish a baseline, we simulate running the application on

the cheapest on-demand server that meets the resource constraints, which happens to be

r4.large. Then, we normalize the running cost of all techniques to this level. First, we

see that all three approaches are substantially cheaper than on-demand hosting. But the

reactive and hybrid schemes not only manage to meet the index-level cost-efficiency but also

achieve ∼50% cost reduction over the predictive approach. Next, in terms of availability, the

predictive and hybrid schemes achieve three nines of availability whereas the reactive scheme

manages only 95%. Under the hood, we observe that the predictive scheme experienced an

average of 4.33 revocations, the reactive scheme migrated 4208 times with no revocations,

and the hybrid scheme suffered 1 revocation and chose to perform 24.66 migrations.

88

5.5.2.2 Parallel Synchronous Applications

A staple of high-performance scientific computing, these applications are deployed in

multi-server configurations with all the servers working in lock step, often involving sig-

nificant data exchanges and synchronizations. Thus, a downtime for one server negatively

impacts all other servers interacting with it. In this experiment, we evaluate how decen-

tralized server management approaches cope with this parallel setup. To do so, we simulate

running 1000 randomly selected jobs from the Google cluster traces [61]. Internally, each

of these jobs comprise of worker tasks (ranging from ∼10-500) that are run on separate

servers but coordinate during their execution. Google traces report the CPU and memory

consumption of every task at the granularity of 300 seconds. The run length of jobs vary

between ∼10-720 minutes. We execute each job, at the time it arrives by choosing the best

spot servers for each of its tasks as per the hosting technique. Within the simulator, we

make three operational assumptions: (i) if a task gets revoked, the whole job is restarted,

(ii) when a task is migrated to a new server, all other tasks of that job pause until the

migration is fully completed, and (iii) we consider the job as completed only when all of its

tasks are finished.

Figure 5.12b then shows the cost and availability of running these jobs. For the cost

graph, we normalize the Y-axis to that of running all the jobs on the cheapest matching

on-demand servers. We see that the hybrid scheme not only meets the index predicted cost

levels but also comes out 30-40% cheaper than the other two schemes. The reactive scheme

suffers from asynchronous migrations, where a small number of hopping nodes hold a large

number of communicating nodes frozen for the duration of migration, thereby increasing

the overall cost. This problem was not as pronounced in the hybrid approach since its

policy naturally encouraged synchronous (and fewer) migrations. On the other hand, the

predictive scheme improved its performance (compared to prior experiment) as it benefited

from having a large number short jobs that in turn reduced the probability of revocation

and also increased its ability to find better matched servers repeatedly. Availability paints a

similar picture as before: predictive achieved four 9s, hybrid managed three 9s, and reactive

mustered ∼96%.

89

Summary. For long-running as well as parallel applications, the hybrid approach meets

the index predicted cost-efficiency. Not only that it also achieves the best combination of

lower cost and higher availability compared to other approaches.

5.6 Related Work

To the best of our knowledge, this is the first work to apply market indices to analyze

cloud spot markets, as well as propose a mechanism for cost-predictive server hosting on

variable-price spot markets. While a preliminary version of this work appeared in [71], the

current treatment differs in three significant ways: (i) we validate our intuition for using

cloud indices via infrastructure-level observations in public cloud datacenters, (ii) we have

a more specific goal (on cost predictability) and do not consider global trading, and (iii)

we present a rigorous treatment of the index composition, tracking-by-hopping mechanism,

and server selection policies. Below, we describe the related work in detail.

Spot market predictions. The first category of related work comprises of modeling spot

markets with a goal to predict its future behavior. The earliest work came from Ben-Yehuda

et.al. [22] in 2013, and has been followed since then by a large body of work including

[92, 93, 7, 41, 87]. These work mainly focus on predicting the behavior of individual server

markets, whereas our work proposes to analyze markets in aggregate. In conjunction with

prediction schemes, researchers have also developed bidding strategies [99, 76, 66] for

different types of applications. However, bidding policies are orthogonal to our work since

our system migrates away from risky (i.e., cost-inefficient) markets naturally.

Financial concepts applied to spot markets. The next category is the application of

financial and economic concepts to cloud spot markets. Prior efforts include creating an

options market [82], adapting the modern portfolio theory [67], implementing active trad-

ing [70], proposing asset pricing [73], and composing derivative cloud markets [78, 68, 98].

However, none of these share our goal of realizing cost-predictive spot server hosting.

Market indices for non-cloud environments. Financial market indices have existed for

a long time with the Standard and Poor’s index dating back to 1923. Our work extends

and adapts the index construction methodology of several indices including the Consumer

90

 0

 2

 4

 6

 8

 10

Jan-1 Feb-1 Mar-1 Apr-1 May-1

S
p

o
t

P
ri
c
e

 (
c
e

n
ts

)

1a 1b

 0

 2

 4

 6

 8

 10

Jan-1 Feb-1 Mar-1 Apr-1 May-1

S
p

o
t

P
ri
c
e

 (
c
e

n
ts

)

1c 1d

Figure 5.13: Price of a representative Linux server (r3.4xlarge) across four availability zones
of the US-East-1 region.

Price Index [55], the S&P and Dow Jones [43]. Researchers have applied market indices to

other spot markets like electricity [32]. However, the unique characteristics of compute-time

namely, its state and the use-it-or-lose-it property make its application distinct from the

prior indices.

System design aspects. Finally, our work derives several system design elements from

HotSpot [70], SmartSpot [42], and Supercloud [74]. These include mechanisms and policies

for container- and nested VM migration, automated server hopping, and decentralized server

lifecycle management. However, the goals of these projects are distinct from ours. Both

SmartSpot and Supercloud employ migration to lower access latency and improve resiliency

but do not focus on spot market dynamics. While HotSpot uses automated server hopping

to reduce server hosting costs, it makes no predictions on the resulting cost-efficiency.

5.7 Other Applications: Mitigating Spatial Price Risk

In this section, we extend the cloud index framework to address price risk. While

Chapter 4 designed a solution to mitigate price risk, the focus was temporal in nature

i.e., price risk arising in a given geogrpahical market over time. However, as the global

footprint of the spot markets have expanded, the applications are exposed to another form

of price risk: spatial price risk i.e., risk that a chosen server’s price rises relative to servers

in different geographical locations. We posit that enabling applications to operate in global

spot markets, similar to how financial investors trade in global financial markets, provides

additional cost-saving opportunities. In this section, we address the challenges of deploying

applications in global spot markets, and demonstrate how cloud indices can help solve those.

91

Figure 5.14: EC2’s global infrastructure comprises of 44 availability zones or datacenters
(shown in red) organized within 16 regions (shown in blue). Intra-zone migrations require
only detaching and attaching of EBS disk (shown in green), inter-zone but intra-region
migrations additionally require EBS to be snapshotted and restored (shown in red) and
finally, inter-region migrations require copying snapshots across the regional data stores
(shown in blue)

5.7.1 Server Trading in Global Spot Markets

EC2’s global footprint is massive and complex: it operates in 16 worldwide regions each

of which comprise of 2-6 availability zones, and it has announced plans to add 6 new regions

with 17 additional zones in the future [3]. EC2 spot markets, which Amazon uses to sell

the unused compute capacity in its datacenters, have the exact same global footprint. Since

EC2 sets a different dynamic spot price for each type of VM in each availability zone of each

region, the global spot market currently includes more than 7600 separate server “listings”.

Notwithstanding the global footprint, the spot prices are hard to predict even for identical

VMs within a region. For example, Figure- 5.13 shows the price of r3.4xlarge Linux server

in four availability zones of US-East-1 region. However, prior work have largely restricted

their scope to either individual servers or those that are located within the same availability

zone (or datacenter).

Understanding and modeling server migration (interchangeably referred to as server

trading) is essential for any system that reacts to market changes in real-time especially

since trading can be sticky. In EC2, the overhead of migrating an application and its data

is governed by the geographical separation between the source and destination VMs, and

the data size. Figure 5.14 shows the organization of EC2 spot markets into regions and

availability zones, with each zone housing ∼150-200 spot markets. To keep our migra-

tion model consistent across geographical boundaries, we employ stop-and-copy migration,

92

which unlike live migration, minimizes the migration costs in exchange for some application

downtime. We also assume that applications use remote disks like EC2’s Elastic Block

Storage (EBS) that support built-in APIs for migration.

Figure 5.14 then depicts a simplified view of EC2’s data migration model. If both the

servers are located within the same zone, the EBS volume can simply be detached and

remounted (as shown in green), resulting in a fixed overhead that is independent of the

data size. Our microbenchmarks show these operations to take an average of ∼30 seconds.

In contrast, when the servers are in different zones but within the same region, the EBS

disk needs to be snapshotted and recreated fully (via a globally accessible datastore like

S3) between the detach and remount operations (as shown in red). However, snapshot and

restore operations need to be run serially, and their time to completion depends on the

data size. Our microbenchmarks indicate an average rate of 1-2 minutes per GB of data.

Finally, for inter region migrations, there is an additional operation of copying the EBS

snapshot from source region’s S3 bucket to that of the destination region (shown in blue).

While the overhead of snapshot copying varies across regions, our microbenchmarks show

it to be 15-60 seconds per GB. Putting these together, Figure 5.15 chronicles the overhead

of migrating a 10GB EBS disk across and within regions. Thus, for an application with

a data footprint of 32GB, migrating once per day results in an availability of 99.96% for

intra-zone, 96.6% for intra-region and 95.2% for inter-region.

While our analysis focused on the transfer of disk data, a stateful migration also requires

trasfering the current CPU and memory state of the VM or the container. Since EC2 VMs

support a network bandwidth of 25Gbps within a datacenter, a direct VM-to-VM transfer

of the application state would not exceed the EBS migration overhead (of ∼30 sec). For

transfers across zones and regions, the application state could be dumped on the EBS, so

that it gets migrated along with the disk data.

Summary. Compared to intra-zone migrations (which incur a fixed overhead), inter-

zone and inter-region migrations consume an orders of magnitude more time and are not

practical, given the current network bandwidth.

93

ap-se-2

ap-se-1

ap-ne-2

ap-ne-1

eu-w2

eu-w1

us-e2

us-e1

us-w2

us-w1

u
s-

w
1

u
s-

w
2

u
s-

e
1

u
s-

e
2

e
u
-w

1

e
u
-w

2

a
p
-n

e
-1

a
p
-n

e
-2

a
p
-s

e
-1

a
p
-s

e
-2

S
o

u
rc

e
 R

e
g

io
n

Destination Region

6.3 15.3 17.6 10.7 21.2 13.3 19.2 12.3 15.4 12.3

9.2 12.5 18.4 10.6 19.9 13.3 19.1 12.2 12.1 11.0

9.9 16.7 14.8 10.4 20.9 11.8 18.9 13.0 13.4 12.1

10.3 18.4 17.7 7.8 20.1 13.1 21.7 15.7 11.9 12.8

11.2 17.8 17.8 13.2 15.7 10.7 24.1 14.2 15.7 13.6

12.8 16.7 18.5 13.2 20.0 8.0 21.2 14.7 12.8 13.8

10.7 16.3 18.6 13.5 23.1 15.9 14.1 10.6 15.2 11.8

10.9 17.1 19.6 16.3 21.6 15.9 17.5 8.5 13.9 12.8

11.4 16.8 20.2 16.3 22.5 13.3 16.8 11.7 5.9 15.2

10.9 17.4 20.0 15.7 23.1 16.1 21.0 12.3 12.9 6.4

 5

 10

 15

 20

 25

T
im

e
 t

o
 c

re
a

te
 a

n
d

 c
o

p
y
 s

n
a

p
s
h

o
ts

 (
m

in
s
)

Figure 5.15: Global migration overheads for a 10GB snapshot.

5.7.2 Index-based Global Trading

We demonstrate the importance of index-based global trading using a generic long-

running application in simulation. We assume our application i) has no geographical con-

straints, ii) is capable of consuming whatever resources are available, and iii) executes

within a virtualized environment, such as a nested virtual machine or resource container,

that makes it capable of trading servers via transparent systems-level migration. We also

assume the application can gracefully handle IP address changes when crossing regions and

AZs, and employs fault-tolerance mechanisms, such as replication or checkpointing, to make

it robust to revocations. Solutions to enabling these assumptions are well-known, as prior

work on superclouds has resolved many of these “plumbing” issues [74].

We simulate the application’s behavior over the past two months using real spot market

prices from EC2’s 2287 Linux spot markets. To enable trading, we assume the application

monitors spot prices in each of these Linux spot markets, and includes a trading policy

that dynamically migrates as prices change to the server with the lowest current price per

ECU. Our simulation accounts for the overhead of trading across AZs and regions based on

Figure 5.14. We define multiple global and local trading policies, as outlined below.

• Market-based No Trading selects the individual spot server across the global market

with the highest Sharpe ratio below, which is a standard measure for estimating an

asset’s risk-adjusted returns: for an asset i, it is the ratio of the expected difference

94

 0

 20

 40

 60

 80

 100

O
v
e
ra

ll
C

o
s
t

(%
 o

f
N

o
 T

ra
d
e
 p

o
lic

y
)

Market-based No Trading
Market-based Local Trading

Market-based Global Trading
Index-based Global Trading

90

99

99.9

99.99

99.999

A
v
a

ila
b

ili
ty

 (
%

)

Figure 5.16: Comparison of cost and availability of global trading policies.

between the asset’s returns Ri and the risk-free returns Rfree divided by the standard

deviation of the returns σi. In this case, the on-demand price captures the risk-free

returns. As in nearly all prior work on spot instances, this policy commits to its chosen

server and never trades, regardless of price changes.

Si =
E[Ri −Rfree]

σi
(5.8)

• Market-based Local Trading selects the individual spot server in the global market

with the lowest price per ECU, and then actively trades within that server’s AZ to

ensure it always runs on the server with the lowest price per ECU. Thus, this policy

avoids any trading overheads from crossing AZs and regions.

• Market-based Global Trading selects the spot server in the global market with the

lowest price per ECU, and then actively trades across the global market to ensure it

always runs on the server with the globally lowest price per ECU. The policy incurs the

trading overheads from crossing AZs and regions.

• Index-based Global Trading first selects the AZ with an index having the highest

Sharpe ratio, then selects the individual spot server in that AZ with the lowest price per

ECU, and finally actively trades within that server’s AZ to the server with the lowest

price per ECU.

Note that incorporating risk, in this case using the Sharpe ratio, is most important when

committing to a subset of markets (either the individual server market in the first bullet or

the AZ in the last bullet). Considering risk is much less important when actively trading,

as the application often migrates before revocations ever occur.

95

Figure 5.16 shows both the overall cost (left) and availability (right) of running our

generic application over the two month period. The cost is normalized as a percentage of

the No Trading policy to illustrate the benefits of actively trading servers as market prices

change. As mentioned above, this No Trading policy is similar to policies in prior work,

which commit to spot servers and only select a new server after a revocation [65, 68, 78, 99].

Since spot prices for individual servers are generally stable, revocations are rare, and thus

there are few opportunities for selecting a new server in prior work. However, given the

large number of individual server markets, the lowest cost server (across the global market,

region, or AZ) actually changes quite frequently. Thus, policies that actively trade servers

can reduce their costs relative to policies that do not actively trade. As the figure shows,

the No Trading policy incurs a higher cost than all of the active trading policies.

The figure also shows that the Market-based Local Trading policy incurs a much higher

cost than the Market-based Global Trading policy. Since the local trading policy only

trades within its own AZ to eliminate trading overhead, it cannot take advantage of low

prices in other AZs. In general, the individual server in the global market that has the best

combination of price and risk, as measured by the Sharpe ratio, is not necessarily contained

in the AZ with the best combination. Overall, the Market-based Global Trading policy

achieves the lowest cost, even when accounting for its high trading overhead, as it always

actively migrates to the globally least-cost server. In comparison, the index-based global

trading policy, which commits to the AZ with the highest Sharpe ratio, but then restricts

itself to intra-AZ trading to mitigate trading overhead, incurs only a slightly higher cost

than the Market-based Global Trading policy.

To quantify availability, we assume the application is unavailable when trading servers

according to the benchmarks in Figure 5.15 with intra-AZ trades incurring an unavailability

of two minutes. The figure shows that, while the Market-based Global Trading policy has

the lowest cost, it also has the lowest availability (1 nine) due to the high trading overhead

imposed by frequently crossing regions and AZs. While it is costly, the No Trading policy

exhibits a slightly higher availability (2 nines), since it never trades and only experiences

downtime when its spot price spikes. The Market-based Local Trading policy has the highest

availability (4 nines), since it also restricts trades to within its AZ; by actively moving to

96

 0

 1

 2

 3

 4

 5

 6

 7

 8

8/2006

8/2008

8/2010

8/2012

8/2014

8/2016

In
d

e
x
 l
e

v
e

l
(c

e
n

ts
/h

r) On-demand
Reserved-1Y
Reserved-3Y

Figure 5.17: Index-levels of on-demand and reserved servers in the US-East-1 region, since
EC2’s inception.

the lowest-cost server it experiences few price spikes that cause unavailability. However, the

policy incurs a high cost, since it selects an initial server based on its price characteristics

and not AZ-level characteristics. Finally, in this case, our index-based policy achieves the

best of both worlds—a high availability (3 nines) at a low cost—by selecting an AZ with

an index price that has low magnitude and variability, and then actively trading within it.

Of course, the best policy is application-dependent, and varies based on an application’s

footprint and other availability constraints.

5.8 Conclusion

Our work stems from the most prevalent deployment concern of the spot markets namely

cost uncertainty, and how the diversity and span of EC2 spot markets have exacerbated

this concern. We observe infrastructure-level realities from public cloud datacenters, and

devise a novel index for cloud spot markets. The insights from these indices enable us to

design a cost-predictive server hosting framework. We implement and evaluate it on EC2

spot markets.

Benchmarking. Though this work primarily uses cloud indices for cost-predictive server

hosting, we believe in its broad applicability beyond this purpose. For example, by suc-

cinctly representing the aggregate behavior of spot markets, cloud indices establish a bench-

mark for comparing the performance of spot server management techniques. This is espe-

cially important as researchers and startups are designing sophisticated strategies such as

portfolio diversification and derivative clouds, whose performances need to be vetted against

a reference benchmark.

97

Beyond Spot Markets. In recent years, cloud computing platforms are rapidly evolving

the IaaS offerings to cater to the diverse needs of cloud customers. While spot markets

exhibit price and risk dynamism in short timescales of seconds and hours, other contract

types like on-demand and reserved servers do so in terms of months and years. Cloud indices

are a natural way to track this long-term evolution. For example, Figure 5.17 concisely

represents the price trajectory of on-demand and reserved servers in the US-East-1 region

over the last decade. We posit that insights from cloud indices can drive informed investment

decisions for cloud users.

98

CHAPTER 6

MINIMIZING VALUATION RISK VIA ASSET PRICING

“Uncertainty is more stressful than knowing
for sure something bad will happen.”

Archy de Berker et.al. [30]

A significant fraction of cloud capacity is idle [19] and providers are actively exploring

ways to monetize it. The resulting transient server contracts are predominantly structured

to provide flexiblity for cloud platforms to reclaim these servers any time. In this chapter,

we outline the challenges consumers face in correctly valuing these transient servers, and

demonstrate that even probabilistic information on transient server characteristics helps

increase their utility dramatically, by more than 5×. We use this insight to design a new

asset pricing abstraction, transient guarantee, which helps both providers (in setting prices

correctly) and consumers (in determining if the prices are good).

6.1 Idle Cloud Pricing in the Wild

While on-demand servers are the most common cloud contract, they restrict a platform’s

control over its resources, as only users can decide how long they hold on-demand servers and

when they release them. As a result, even though platforms guarantee high availability once

an on-demand server has been allocated to a user, they do not guarantee obtainability [57]

(i.e., requests for new on-demand servers can be rejected). Instead, for those customers who

do not want to face this risk, cloud platforms offer reserved servers, which can be obtained

anytime during the reservation periods of 1-3 years. To support reservations, platforms have

only two options: either keep physical resources idle or maintain a pool of resources they

can reclaim to satisfy reserved requests. Of course, keeping physical servers idle is highly

inefficient, as it wastes their computational resources, as well as the capital and operational

99

expenses incurred to provide them. Thus, transient servers exist both to reduce this waste

by enabling platforms to earn revenue from their idle capacity, and also to provide a pool

of revocable resources to support reservations.

Since transient servers are a relatively new concept, there are not yet widely accepted

standards for setting their terms and prices. EC2 offers its version of transient servers,

called spot instances, via a market mechanism. Users place a bid for servers by specifying

the maximum price they are willing to pay per unit time. EC2 then provisions the servers

if the bid price is greater than the servers’ current spot price, which is market-based and

varies in real time. However, if the spot price rises above the user’s bid price, EC2 revokes

the servers. In contrast, GCE charges a fixed price for transient servers, called preemptible

instances, such that it will always revoke them within 24 hours. Importantly, EC2 and GCE

currently reserve the right to revoke transient servers at any time.

Our key insight is that transient servers’ revocation characteristics influence their per-

formance relative to on-demand servers, since these characteristics affect the overhead of

the fault-tolerance mechanisms applications employ to handle revocations. As we show later

in Section 6.3, knowing even probabilistic information about a transient server’s revocation

characteristics can increase its performance by enabling users to optimally configure fault-

tolerance mechanisms. Unfortunately, the revocation characteristics for EC2 and GCE are

unknown and unbounded. Due to the lack of information, EC2 and GCE users are also

unable to accurately quantify transient server value. For example, while a transient server

may be 50% the price of an on-demand server, its unknown revocation characteristics may

result in a 50% performance overhead due to fault-tolerance. Thus, “cheaper” transient

servers may actually offer no normalized discount relative to on-demand servers.

In the next section, we highlight three key metrics of transient servers, and how they

affect the perceived application performance.

6.2 Transient Server Characteristics

Transient servers in EC2 and GCE are significantly cheaper because they entail an

unbounded risk of revocation, as platforms may revoke them at any time. Handling revoca-

tions not only introduces additional application complexity, but also additional performance

100

AS

Unit time

Av
ai

la
bi

lit
y 1

0

Time to checkpoint
Compute time

t

(a) Available, Not Volatile, Predictable

a1 a2 a3 a4 aV. . .

Unit time

Av
ai

la
bi

lit
y

1

0

Time to checkpoint
Compute time

∑ai = AS

t

(b) Available, Volatile, Predictable

Unit time

Av
ai

la
bi

lit
y

1

0

Time to checkpoint
Compute time

t

Lost time

fchkp

a3, a4
< fchkp

(c) Available, Volatile, Not Predictable

Figure 6.1: Availability, volatility, and predictability affect transient server performance

overheads, which decrease transient server performance. While applications can reduce this

overhead, given sufficient knowledge of revocation characteristics, they cannot eliminate it.

Thus, transient server performance is strictly less than on-demand performance. We distill

the revocation characteristics that influence performance into three independent metrics:

availability, volatility, and predictability. Below, we discuss these metrics in the context of

EC2, as GCE releases no information on, and provides no control over, them.

• Availability is the percentage of time a transient server is available—in EC2, this

translates to the percentage of time the spot price is below a user’s bid price.

• Volatility is the frequency of transient server revocations—in EC2, this translates to

the frequency at which the spot price rises above the user’s bid price.

• Predictability is the stationarity in the distribution of revocations over time—in EC2,

it is the frequency at which the mean and variance of spot price time-series changes.

101

Figure 6.1 illustrates, in the context of our simple batch job that these three metrics are

distinct from, and independent of, each other. Figure 6.1(a) shows a time-series of transient

server availability that is not volatile and highly predictable. In this case, there is only a

single revocation at a well-known time. As a result, the application need only checkpoint

immediately before the revocation occurs, thereby minimizing its overhead (in green) and

maximizing the useful work it performs (in grey). In contrast, Figure 6.1(b) shows a similar

time-series with the same availability over time, but with a higher volatility that includes

many revocations. In this scenario, the application incurs more overhead (in green) than

before because it needs to checkpoint much more frequently. However, since the time of each

revocation remains well-known and predictable, it still need only checkpoint immediately

prior to each revocation. Finally, Figure 6.1(c) shows a time-series again with the same

availability, but with a high volatility and low predictability. Here, the application incurs a

higher checkpointing overhead (in green), since it does not know precisely when revocations

will occur, and must instead periodically checkpoint at a fixed interval. In this case, the

application also incurs some recomputation overhead (in red) when it loses work after an

unexpected revocation.

Our simple example illustrates that volatility and predictability affect transient server

overhead and performance much more than availability. Despite this, prior work focuses

largely on optimizing availability in EC2—by determining the bid that minimizes cost, while

allowing an application to satisfy a performance target, e.g., a deadline [99, 49, 96, 81] or

specified availability [35]. However, we contend that there is no reason to ever wait for

a particular transient server to become available, since cloud platforms are large enough

that resources are effectively always available somewhere (at some price). This has been

corroborated by recent work [68, 37, 78, 42, 66] as well.

As a result, volatility and predictability—and not availability—are the critical metrics

that affect transient server overhead and performance. Prior work likely does not focus

on these metrics because EC2’s current spot market is predictable and not volatile—prices

generally remain low and stable for long periods. However, as more users exploit the spot

market’s arbitrage opportunities (by using spot instances when the spot price is low, and

migrating to on-demand instances when it rises), spot prices will not only rise, but also

102

become more volatile and less predictable. This will ultimately decrease the performance

and value of using spot instances [79].

6.2.1 Quantifying the Performance Impact

We quantify the performance impact of revocation characteristics for HPC-oriented

batch applications that use checkpointing to handle server revocations. We focus on batch

applications, since these are commonly run on transient servers [60, 83, 58]. In addition,

we assume these applications have non-trivial memory footprints that prevent dynamically

checkpointing memory state after a platform notifies a server of impending revocation, but

before server termination. Current revocation warnings for transient servers range from

thirty seconds (on GCE) to two minutes (on EC2), which prevents such dynamic check-

pointing once memory footprints exceed 1GB to 4GB, respectively. Note that the current

trend is towards shorter revocation warning times, as platform’s are placing a higher prior-

ity on short re-provisioning and booting times [18]. Platform’s revoke transient servers to

reallocate them to satisfy other higher-priority requests, e.g., for on-demand and reserved

instances. As a result the re-provisioning and boot times for on-demand and reserved in-

stances must be greater than the warning time. Thus, platform’s cannot arbitrarily increase

their warning time to accommodate the dynamic migration of applications after a warning

without increasing the boot times for high-priority on-demand and reserved instances.

Thus, applications with non-trivial memory footprints must employ checkpointing to

ensure forward progress and prevent restarting from the beginning after each revocation.

Based on prior work [29, 65], the optimal checkpointing interval that minimizes application

running time when accounting for the overhead of recomputation and checkpointing is

below.

topt ∼
√

2 ∗ δ ∗MTTR (6.1)

Here, δ is the time to write each checkpoint and MTTR is the mean-time-to-revocation

(assuming that the inter-arrival time of revocations is exponentially distributed). Thus,

every topt interval, the application must pause and spend δ time writing a checkpoint of its

memory state to a remote disk.

103

 0

 20

 40

 60

 80

 100

20 40 60 80 100

P
e

rf
o

rm
a

n
c
e

(%
 o

f
O

n
-d

e
m

a
n

d
)

Availability (% of On-demand)

Useful Server Time
Chkp Overhead

(a) Available, Not Volatile, Predictable

 0

 20

 40

 60

 80

 100

0.25 0.5 1 2 4 8 16 32

P
e

rf
o

rm
a

n
c
e

(%
 o

f
O

n
-d

e
m

a
n

d
)

Mean-Time-To-Revocation (in hours)

Useful Server Time
Chkp Overhead

(b) Available, Volatile, Predictable

 0

 20

 40

 60

 80

 100

M
TTR/8

M
TTR/4

M
TTR/2

M
TTR

M
TTR*2

M
TTR*4

M
TTR*8

P
e

rf
o

rm
a

n
c
e

(%
 o

f
O

n
-d

e
m

a
n

d
)

Predicted MTTR

Useful Server Time
Chkp Overhead
Recomputation

(c) Available, Volatile, Not Predictable

Figure 6.2: Impact on transient server performance when (a) varying availability, (b) varying
volatility at a given level of availability, and (c) varying predictability at a given level of
availability and volatility.

Figure 6.2 then shows how the performance of transient servers (as a fraction of on-

demand server performance) varies based on availability, volatility, and predictability. Here

we model the transient server revocations as following a Poisson process with a specified

MTTR over a two week period. We then simulate running a batch job on a transient server

with a 16GB memory footprint, which incurs a checkpointing overhead of ∼10 minutes on

EC2 using an EBS magnetic disk. We consider 16GB a medium-sized memory footprint,

as we assume the use of systems-level mechanisms that checkpoint the memory of an entire

server. Currently, 28 of the 40 instance types offered by EC2 have >=16GB memory. Of

course, a larger memory footprint would increase the checkpointing overhead resulting in

a larger δ. In this example, since we use system-level checkpointing of the entire memory

footprint, we also assume that applications are well-matched to the transient server’s mem-

ory size. If an application uses significantly less memory than a transient server offers, it

should acquire a smaller (and cheaper) server. In addition, each revocation in EC2 would

also incur an additional two minute overhead to acquire and boot a replacement server. As

104

before, we show the useful server-time in grey, the checkpointing overhead in green, and the

recomputation overhead in red.

Figure 6.2(a) shows that, as expected, the percentage of time a transient server is avail-

able is linearly related to its rate of computation: if the server is only available 50% of

the time, its rate of computation is at most 50% that of an on-demand server. However,

as we discuss, the availability of any single transient server is not an important metric, as

cloud platforms are large enough that servers of some type are nearly always available. In

contrast, Figure 6.2(b) demonstrates the impact of volatility on performance over a range

of MTTRs. As in Figure 6.1(b), this figure assumes revocation times are entirely pre-

dictable, and thus represents the minimum overhead of transience at each MTTR. As the

figure shows, transient server performance is 35%-70% less than an on-demand server with

MTTRs of 0.25-1 hour even for a modest-sized 16GB server.

Finally, Figure 6.2(c) shows the impact of unpredictability on performance. Here, we fix

the MTTR at four hours, but assume the precise revocation times are not known. We then

plot the overhead due to checkpointing and recomputation for different estimates of the

unknown MTTR. As the figure shows, even with a correct MTTR, the overhead increases

by more than 6× compared to Figure 6.2(b) where the revocation times are known (from

∼4% overhead in (b) to ∼27% overhead in (c)). Thus, unexpected server revocations can

incur substantial overhead. The figure also shows that inaccurate MTTR estimates further

increase this overhead. Note that GCE releases no information on MTTR to guide users,

while EC2’s price history (which indirectly reveals historical MTTRs at different bid levels)

does not necessarily guarantee future performance.

6.3 Transient Guarantees

A transient guarantee is the simple idea of providing users a probabilistic assurance on a

transient server’s availability, volatility, and predictability. While many variants of transient

guarantee are possible, we propose a variant that provides a probabilistic guarantee by

specifying a transient server’s MTTR. Providing a probabilistic guarantee on the MTTR

has two advantages: (i) it does not impose strict limits on a platform’s freedom to revoke

servers, as the MTTR need only converge to a particular value across many requests (ii)

105

the overhead of many fault-tolerance mechanisms, including the optimal checkpointing [29],

is typically defined with respect to MTTR.

Of course, we could define much stronger transient guarantees to enable even higher

performance. For example, EC2 introduced spot block instances in October 2015, which

guarantee access to a transient server for a fixed block of time between 1 and 6 hours. Thus,

EC2 promises a spot block instance will be revoked with 100% probability at the end of each

block but not before. While spot (and preemptible) instances are 50-90% cheaper (in an

absolute sense) than on-demand servers, spot blocks are typically only 30-45% cheaper [14].

Based on our analysis in Figure 6.1(a), since spot block revocations are predictable, they

require less fault-tolerance overhead (and have higher performance) than spot instances, as

applications need to checkpoint only once, immediately prior to the revocation. However,

spot blocks also impose greater restrictions on a platform’s freedom to revoke.

In effect, the more accurately a platform can predict the future supply of its idle capacity,

the stronger the transient guarantees it can offer users. For example, if EC2 could perfectly

predict the precise times of all future requests for on-demand and reserved servers (and

when users would release them), it could simply offer spot block instances to exactly fill

any idle time. As mentioned, these spot block instances are much more valuable (and cost

more) than current spot instances. Of course, platforms are likely not able to predict their

future demand with such precision. As a result, EC2 typically offers only a small number

of spot block instances (for short time windows), likely when they are near 100% certain

they will not need to revoke them within the window. However, we expect platforms are

better able to forecast the statistical attributes of their future demand, e.g., its distribution,

mean, and variance. For example, recent work develops prediction techniques to accurately

forecast the percentage of idle server capacity, i.e., not allocated to on-demand or reserved

servers, over multi-month periods for multiple production Google clusters [26]. Transient

guarantees assume that platforms can accurately estimate the MTTR of transient servers

based on the distribution of demand for on-demand (and reserved) servers.

We envision platforms offering transient servers with transient guarantees for a fixed

price, similar to GCE’s model for preemptible instances. Note that platform’s could also

offer servers with transient guarantees for a variable spot price. However, fixed pricing is

106

Volatility Predictability Pricing

GCE Preemptible Unknown None Fixed

EC2 Spot Unbounded Weak Market-based

Transient Guarantees Probabilistic Probabilistic Fixed

Table 6.1: Approaches to selling idle cloud capacity

simpler for users to budget than EC2’s variable priced bidding model because users know

the actual price in advance (and not just the maximum possible price). Since EC2 charges

users based on the variable spot price, and not their bid price, users do not know the

cost of transient servers a priori. Fixed pricing also makes decision-making for users much

simpler, as they do not have to monitor, analyze, and predict prices across thousands of

markets to select an optimal market and determine an optimal bid. Table 6.1 summarizes

the differences between our MTTR-based transient guarantees, GCE preemptible, and EC2

spot instances.

6.3.1 Equilibrium Price

An advantage of transient guarantees is that they enable users to quantify transient

server value. We define a transient server’s maximum value in relation to its amortized per-

formance compared to on-demand servers after accounting for the overhead of revocations,

e.g., checkpointing, migration, and recomputation. That is, if a transient server with high

volatility and low predictability incurs a 25% overhead for checkpointing, migration, and

recomputation, then we say its value is 25% less than an equivalent on-demand server. We

call this the transient server’s equilibrium price: where the price per unit of useful time

(modulo overhead) between a transient server and an on-demand server is equal. Rational

users should never pay more than it for a transient server, as it provides no discount.

Based on our analysis, we can derive the equilibrium price for a batch application in

terms of its volatility, checkpointing overhead, and the price of an equivalent on-demand

server. The expected completion time E[Tj] for an application j with running time Tj on

a transient server is below. Here, the first term is the application’s actual running time,

the second term is the additional overhead from checkpointing (at the optimal frequency),

107

which incurs δ overhead at every checkpoint interval, and the last term is the expected

recomputation overhead across all revocations (assuming the probability of revocation at

any time during each interval is equal). Thus, if an equivalent on-demand server costs po,

then the transient server’s equilibrium price peq is:

E[Tj] = Tj +
Tj
topt

δ +
Tj

MTTR ∗
topt
2

peq = po ∗ Tj
E[Tj]

(6.2)

Note that platforms should offer transient servers for a discounted price that is strictly

less than their equilibrium price, as the equilibrium price reflects the point at which transient

servers offer no savings relative to on-demand servers. The magnitude of the discount

represents the size of the arbitrage opportunity that exists for using transient servers.

6.3.2 Transient Classes

Current platforms not only provide no guarantees on revocation characteristics, they

also offer only a single class of transient servers. Transient guarantees permit platforms to

define multiple service classes with different strength guarantees. Offering multiple service

classes has two advantages:

• Multiple Choices. It offers users multiple choices at different price and performance/risk

levels. For example, important, but non-critical, applications might be willing to tol-

erate a few interruptions, e.g., with a high MTTR, in return for a slightly lower price

compared to on-demand servers. However, less important background tasks may be

willing to tolerate more frequent interruptions, e.g., with a low MTTR, in return for a

much lower price.

• Accurate Revocation Characteristics. It also enables platforms to reduce the ag-

gregate overhead incurred by transient servers (and increase their aggregate value) by

more accurately specifying the revocation characteristics in each class, enabling users to

better tune fault-tolerance mechanisms for servers in each specific class.

To illustrate, consider Figure 6.3, which depicts the idle capacity over time after servicing

on-demand requests for a platform with a total capacity of N servers. This idle capacity

108

0

N

Time

Se
rv

er
s

MTTR1

On-demand server load
Transient servers (revocation rate = MTTRavg)

MTTRN

.

.

.

Figure 6.3: Platforms may offer their idle capacity as multiple transient classes with different
transient guarantees

can be offered as a single class of transient servers with MTTRavg based on the average

revocation characteristics across all idle servers. However, notice that if we allocate on-

demand requests with servers 0 to N in order, higher ranked servers experience fewer

revocations than lower ranked servers. Thus, a platform could carve out the top N th server

to be allocated and offer it as a separate class with MTTRN � MTTRavg. Since the

N th server’s MTTR is much longer than the average, it is more valuable to applications: it

experiences fewer revocations, incurs less overhead, exhibits higher performance, and has a

higher equilibrium price. In contrast, offering the N th server as part of a single class with

MTTRavg significantly undersells its true value, since its actual revocation characteristics

are much better than average.

In the extreme, to maximize aggregate transient server performance and value, platforms

would offer each individual server as a separate class with a unique MTTR that precisely

captures its revocation characteristics. As per Equation 1, this minimizes the fault-tolerance

overhead incurred by each transient server, thereby maximizing the performance and value

of the entire transient server pool. Of course, this extreme is not feasible, as it would result

in thousands of classes, each composed of a single server. However, offering only a single

class reduces aggregate performance by treating the most available servers similarly to the

least available ones. Thus, to mind this gap, we define a small number of classes such that

they approach the optimal performance and value. In addition, defining a small number

109

of transient classes, each consisting of many servers, enables providers to more accurately

estimate the aggregate MTTR of each class [26].

We assume the number of idle servers ranges from [0, N] at any time t. The plat-

form then partitions N servers into k classes with each class having Mj servers, such that∑k
j=0Mj = N . As in Figure 6.3, we assume a strict ordering of servers with server N

having the fewest revocations and server 0 having the most. Thus, higher numbered classes

have higher performance than lower numbered classes. We then offer each class with a

transient guarantee specifying the average MTTR for transient servers within that class.

Since composing the optimal set of k classes that minimize overhead requires examining all(
N
k

)
combinations classes (with complexity O(nk)), we define two simple heuristic policies.

• Equal-Split Policy. Our equal-split policy näıvely divides the idle server capacity into

k equal-sized classes, such that each class has the same number of N/k servers.

• Greedy-Split Policy. In contrast, our greedy-split policy iteratively composes classes

as follows. The policy starts with only the most available server N in the first class.

The policy then proceeds iteratively by adding the next most available server N − 1

to the first class, and then determines whether the addition of the server increases the

aggregate value across all servers in the class. The aggregate value is computed as the

number of servers Mj in the class multiplied by the equilibrium price pe of servers in

the class, where the equilibrium price is computed based on the average MTTR across

all servers in the class.

Thus, a tradeoff exists when greedily adding each additional server (with lesser avail-

ability) to a class: adding a new server increases the total number of servers Mj in the class,

but it decreases the class’ aggregate MTTR and thus the equilibrium price of all servers pe

in the class. As a result, the greedy-split policy proceeds by adding servers to the first class

in order of their availability (from most to least) until adding the next server decreases the

overall value of the class. The greedy-split policy then defines a new class, and proceeds

in the same fashion. The policy stops once it has defined k classes, or there are no more

servers to add.

110

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
ri
c
e
 (

%
 o

f
o
n
-d

e
m

a
n
d
)

Performance (% of on-demand)

Google
Economy

Google
Preemptible

Exponential utility
Equilibrium Price

Figure 6.4: Utility functions that specify an offered price for a transient server with a
transient guarantee.

6.3.3 Transient Server Pricing

We assume that transient servers are priced such that they are never idle, i.e., their price

is always low enough to attract saturating demand. Note that our analysis in Section 6.3.1

only derives an equilibrium price, which represents the maximum amount a user should

be willing to pay for a transient server. In practice, transient servers should be discounted

from this maximum price. For example, recent work defines an economy class of on-demand

servers for Google that are >98.9% available (instead of near 100%), but proposes selling

them for only 70% of the on-demand price [26]. Thus, they discount these servers 30% due

to only a slight reduction in availability.

Prior work on defining utility functions for real users indicates a similar steep dropoff

in utility for the initial degradation in performance [47, 90]. Thus, we adopt a similar ex-

ponential utility function for estimating the offered price of transient servers with different

MTTRs. Figure 6.4 plots our exponential utility function, where the offered price (as a per-

centage of the on-demand price) on the y-axis is a function of transient server performance

on the x-axis (based on the MTTR). The exponential utility function1 captures the steep

drop-off in price once servers are not 100% available. We also plot the current price-points

for the Google economy class described above and GCE preemptible instances, which cost

∼70% of the on-demand price for all servers. Finally, we plot the equilibrium price, which is

1Exponential utility is derived from the function y = 101(x/100) − 1.

111

simply the line y=x. The difference between our utility function and the equilibrium price

is the normalized discount from using transient servers.

We use the utility function above in the Evaluation section to estimate the potential

revenue from offering transient guarantees. Note that, to verify transient guarantees, large-

scale users can average their performance across a large number of requests. Ensuring

small-scale users can verify transient guarantees poses a more challenging problem. While

such verification is outside the scope of this paper, crowd-sourced techniques [86] are a

promising direction.

6.4 Implementation

We implemented a cluster simulator in python to evaluate the performance improve-

ments that transient guarantees offer. The simulator takes a fixed server capacity as input

(where each server has a specified memory size), as well as a trace of requests for on-demand

servers. Each request specifies a job to run that includes the number of servers the job re-

quires, job submission time, and job duration. We assume any excess capacity is then

allocated to the pool of transient servers. Each transient server incurs an overhead by pe-

riodically checkpointing its memory state. We assume that transient guarantees specify an

MTTR, which transient servers use to compute the optimal checkpointing interval (based

on topt). Our simulator implements the equal-split and greedy-split algorithms.

The simulator is designed to operate on publicly-available job traces from a produc-

tion Google cluster [61]. The trace contains job characteristics, server configurations, and

scheduling decisions on a cluster of 12.5k servers over a 29-day period. We make a few

simplifying assumptions using this job trace in our evaluation. First, we normalize the het-

erogeneous servers in the trace based on the smallest server type, and assume a cluster with

homogeneous servers. If a server runs multiple jobs concurrently, we assume it runs multiple

VMs. We also rank cluster nodes from 1 to N , and schedule jobs in rank order (as opposed

to following Google’s scheduling decisions), such that if k jobs are active, they occupy

servers 1 to k. These assumptions enable the simulator to avoid trace-specific scheduling,

bin-packing, and cluster management decisions that are not central to evaluating transient

guarantees.

112

 0

 4

 8

 12

 16

 20

 24

Oracle OPT 1-HR

O
v
e
rh

e
a
d
 (

%
 o

f
U

s
e
fu

l
T

im
e
) Chkp Overhead

Recomputation

(a) Baseline Policies

 0

 10

 20

 30

 40

 50

 60

 70

T
opt /8

T
opt /4

T
opt /2

T
opt

T
opt *2

T
opt *4

T
opt *8

O
v
e

rh
e

a
d

 (
%

 o
f

U
s
e

fu
l
T

im
e

)

Chkp Overhead
Recomputation

(b) Checkpoint Interval

 0

 3

 6

 9

 12

 15

 18

 21

1Y 1M 1W 1D 1H

O
v
e

rh
e

a
d

 (
%

 o
f

U
s
e

fu
l
T

im
e

)

Prediction Window

Chkp Overhead
Recomputation

(c) Inaccurate Predictions

Figure 6.5: Impact on spot server performance due to incorrect MTTR characterization

6.5 Evaluation

The goal of our evaluation is three fold. First, we examine the overhead and performance

degradation due to revocations in EC2 spot markets. Next, we analyze the demand pattern

of a production Google cluster trace [61] to quantify the characteristics of its idle capacity.

Finally, we compare the benefits of transient guarantees vis-a-vis the current approaches of

EC2 and GCE in pricing and valuing the resulting idle capacity.

6.5.1 EC2 Spot Instance Performance

We evaluate spot instance performance for a representative EC2 spot market—the

m1.large instance type running Linux in one availability zone of the U.S. East region

over 2014. Note that we focus on EC2, since GCE offers no information on the revocation

characteristics of preemptible instances. The m1.large market represents one of the most

popular configurations of the most popular instance types in the most popular region of

EC2. In this analysis, we assume a bid equal to the on-demand price since users can nearly

always switch to using on-demand servers if their spot instances are revoked. Based on

spot price data from 2014, we observe 555 revocations over the year with an MTTR of ∼15

hours. We assume a modest-sized memory footprint of 16GB, which takes ∼10 minutes to

checkpoint and restore based on our benchmarks using EBS magnetic disks.

Figure 6.5a plots the overhead of spot instances in the m1.large market for three dif-

ferent fault-tolerance policies: an oracle policy that minimizes overhead by checkpointing

immediately before each revocation, a periodic policy that checkpoints at the optimal (OPT)

periodic interval [29] (topt ∼ 2 hours in this case) assuming the MTTR is known, and a static

113

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

O
c
c
u

p
ie

d
 n

o
d

e
s

Time (from 5/1/2011 to 5/30/2011)

On-demand
Reserved

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

T
ra

n
s
ie

n
t

N
o

d
e

s

Time (from 5/1/2011 to 5/30/2011)

Availability (in 10-min intervals)

Figure 6.6: Transient servers resulting from the idle capacity in Google cluster traces

policy that checkpoints once each hour. The latter policy is proposed in prior work, since

EC2 bills on an hourly basis [84]. The figure shows that the static per-hour checkpointing

consumes 24% of the useful server-time, and the optimal periodic policy consumes 12% of

the useful server-time. While the oracle consumes less than 1% overhead, it is not viable in

practice as future demand is not precisely known.

Figure 6.5b then shows the impact on overhead of incorrectly setting the checkpointing

frequency when computing the optimal periodic checkpointing interval from Figure 6.5a.

In this case, the optimal checkpointing frequency is near 2 ∗ topt, since the optimal formula

is only a first-order approximation and incorrectly assumes revocation interarrival times

are Poisson distributed. However, recall that with EC2, users actually do not know future

revocation characteristics. The graph shows that selecting a checkpointing frequency too

short can result in significant additional overhead that further reduces performance. Finally,

Figure 6.5c shows the impact of mispredicting the revocation rate on overhead. In this case,

we use the optimal periodic checkpointing interval, but where we compute the MTTR based

on spot price history over different size past windows, e.g., the last hour, day, week, month,

and year. The graph shows that overhead varies widely (from 9% to 21%) depending on

the prediction window we select.

Result. Though the current EC2 spot markets are highly stable, their limited volatility

already reduces the performance of spot instances by 9-24% relative to on-demand servers.

6.5.2 Origin and Characteristics of Idle Cloud

Using the Google cluster traces, Figure 6.6(left) plots the server allocation pattern for

two classes of jobs – high-priority (akin to requests for reserved instances) and low-priority

(akin to requests for on-demand instances). The peak server capacity required for executing

114

 0

 50

 100

 150

 200

 250

 300

 350

 0 20000 40000 60000 80000

M
T

T
R

 (
h

o
u

rs
)

Transient node id

MTTRmean = 3.72 hours

(a) MTTR Distribution

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000

U
s
e

fu
l
ti
m

e
 (

%
 o

n
-d

e
m

a
n

d
)

Transient node Id

Using individual MTTR
MTTR = 24hr
MTTR = 1hr

MTTR = 30m

(b) Performance

Figure 6.7: Revocation and performance characteristics of transient servers in 6.6

both job classes is ∼141k VMs. Thus, the white space at the top of the graph indicates

the varying amount of idle server capacity that is available to offer as transient servers.

Figure 6.6(right) then plots the idle server capacity over time, where only those servers that

are unused for at least 10 minutes are considered. The availability of idle capacity ranges

from 0 to ∼80k VMs, where we assume each server has 16GB of memory.

Figure 6.7a then shows the mean-time-to-revocation (MTTR) for each transient server

in the cluster. While the average MTTR across all transient servers is 3.72 hours, we note

that the top 10% of servers have an MTTR >84 hours and the top 50% have an MTTR

>17 hours. Thus, as discussed earlier, a large fraction of transient servers experience much

longer periods of availability than reflected in the average MTTR.

Next, we derive the maximum amount of useful server-time (modulo fault-tolerance

overhead) for each transient server, assuming that we offer each server based on its own

unique MTTR. We also plot the useful server-time assuming an MTTR of 24 hours, 1 hour

and 30 minutes across all transient servers. Figure 6.7b shows that, in this case, using a

MTTR of 24 hours achieves near the optimal useful server-time, while using a MTTR of 30

mins reduces the useful server-time by ∼40% across all servers in the cluster. Since only

7% of transient servers have an MTTR in the range of 30 minutes, this results in excessive

checkpointing overhead for the vast majority of servers.

Result. Since idle capacity varies over time, transient servers exhibit a wide range of

characteristics. Checkpointing transient servers based on incorrect revocation characteristics

115

 0

 20

 40

 60

 80

 100

C1
100%

C1
50%

C2
50%

C1
25%

C2
25%

C3
25%

C4
25%

P
e
rf

o
rm

a
n
c
e

(%
 o

n
-d

e
m

a
n
d
)

Transient Classes (% of nodes)

One Class Two Classes Four Classes

(a) Transient Guarantees

 0

 20

 40

 60

 80

 100

30m 12h 24h 0% 10% 25% 50%

P
e
rf

o
rm

a
n
c
e

(%
 o

n
-d

e
m

a
n
d
)

Assumed MTTR Market-induced Volatility

GCE Preemptible Amazon EC2 Spot

(b) GCE (left) and EC2 (right)

Figure 6.8: Performance of transient servers under different pricing models

results in significant performance losses (up to ∼40%), especially for the least volatile (and

most valuable) servers.

6.5.3 Transient Guarantees

Figure 6.8a next quantifies the benefit of partitioning transient servers into multiple

classes with different transient guarantees. This graph employs the equal-split policy to

partition transient servers into 1, 2, and 4 classes. In each case, the y-axis quantifies the

average useful time of a server in each class (modulo checkpointing overhead). The graph

demonstrates how separating transient servers into different classes enables platforms to

offer differentiated quality-of-service for different transient servers. We see that, as we offer

more transient classes, the increase in the performance of higher classes is significantly

more than the decrease in the performance of lower classes, thereby increasing the overall

performance of the cluster. For example, moving from a single class configuration to a

two class configuration results in an overall decrease in fault-tolerance overhead across all

transient servers of 13.5%. This reduction in overhead is due to more accurately specifying

revocation characteristics in multiple classes.

Figure 6.8b then compares the performance of transient guarantees with the current

approaches used by GCE and EC2. Since GCE does not reveal any information about

preemptible instances, we consider three distinct fixed-interval checkpointing policies that

assumes a MTTR of 30 minutes, 12 hours, and 24 hours. For EC2, we use the commonly

employed one hour checkpointing strategy [84]. Since EC2’s spot market is strictly more

116

 0

 20

 40

 60

 80

 100

GCE EC2 1 2 4 MaxR
e
v
e
n
u
e
 (

%
 o

f
o
p
ti
m

a
l)

Current markets Transient classes

Optimal Equal-split Greedy-split

Figure 6.9: Revenue comparison from selling transient servers

volatile than our approach, we add differing levels of market-induced volatility to the Google

job trace for EC2. The graph shows that the performance of GCE and EC2 is less than

that with transient guarantees. GCE’s performance (assuming a 24 hour MTTR) is near

that of offering a single class with transient guarantees, but has 13% higher overhead than

offering two separate classes. EC2 also performs worse than a single class with transient

guarantees, largely because of the additional market-induced volatility. For example with

an additional 25% volatility, its performance is 28% less than using transient guarantees

with a single class.

Finally, we evaluate the potential increase in revenue from offering multiple classes of

servers with transient guarantees compared to GCE and EC2. For this graph, we use

the exponential utility function [73] to assign prices to transient servers based on their

performance. Figure 6.9 then shows the aggregate revenue from selling GCE preemptible

instances, EC2 spot instances, and using transient guarantees at these prices. The dot

represents the optimal revenue if transient servers were sold at their equilibrium price. In

all cases, we assume saturating demand, such that all transient servers are sold. The y-axis

quantifies the revenue as a % of the maximum, where every transient server is priced at

its equilibrium price, for each approach on the x-axis. The maximum number of transient

classes represents the optimal where each transient server has its own class and revoca-

tion characteristics. For GCE and EC2 we select the top performing configuration from

Figure 6.8. The figure shows the potential revenue of offering multiple classes of transient

servers.

117

In this case, using the optimal maximum number of transient classes achieves 6.5× more

revenue than GCE and 14× more revenue than EC2. In addition, partitioning transient

servers into only two and four classes brings the revenue to within 25% and 15% of the

optimal maximum, respectively. This result stems from the fact that most of the value

of transient servers derives from the servers with the lowest volatility. Thus, selling them

separately at a higher price yields significant gains. Thus, while offering each transient server

as its own class is not viable, offering two or four classes of transient servers is reasonable

and can offer significant benefits. In addition, the greedy-split partitioning policy yields

slightly better revenue that the equal-split policy in all cases, e.g., adding 20% revenue

when offering two classes.

Result. Partitioning servers into just four classes increases revenue from transient

servers by ∼6.5× compared to GCE and EC2, and comes within 15% of the optimal revenue.

6.6 Related Work

Prior work focuses on optimizing existing offerings of transient servers from a user’s

perspective. For example, there is substantial prior work on analyzing EC2 spot price char-

acteristics [22, 41], designing optimal bidding policies [96, 81, 99], and modifying particular

applications to gracefully handle transient servers using fault-tolerance mechanisms, such

as checkpointing [84, 78]. Our work differs from these work in that we propose a new service

contract that maximizes the performance of transient servers for users, while still allowing

platforms the freedom to revoke transient servers when necessary.

Related work that takes a similar platform-centric perspective proposes offering a new

economy class of on-demand servers that have slightly lower availability (>98.9%) [26]. The

work analyzes data from multiple Google production clusters and shows that a large fraction

of servers (6.7-17.3%) are idle with high probability for long multi-month time periods. On

similar lines, Amazon introduced Spotblocks [14], a new contract type for servers that come

with a predefined fixed block of time (1-6 hours) for higher price than regular spot servers.

Our work generalizes and expands upon these ideas by defining the concept of a transient

guarantee, and then showing how to partition idle capacity into an arbitrary number of

transient server classes to maximize the performance of transient servers. Importantly, we

118

also identify the relationship between a transient server’s performance and its volatility and

predictability, and define its equilibrium price to capture its value relative to an on-demand

server.

Finally, researchers at Princeton have proposed (i) Availability-knob [63], an incentive

scheme where users can specify the desired availability and be charged accordingly, and

(ii) Graceful degradation [62], a self-adaptive technique to enable cloud applications to

respond to supply variations at the cloud provider. While our work shares the high-level

goal of increasing the datacenter utilization, it differs at both system and policy levels. For

example, transient guarantees do not require any modifications to the user applications; nor

do they require real-time interactions between users and providers.

6.7 Conclusion

Since transient servers are a new concept and are not widely used, there remains an

opportunity to experiment with their terms and pricing. We show that the current terms

offered by EC2 and GCE limit the useful performance that users can extract from transient

servers. We propose transient guarantees to maximize their performance and value, while

still allowing platforms to revoke servers when necessary. We analyze the performance and

cost benefits of transient guarantees for batch applications. We show that the aggregate

revenue could increase by up to ∼6.5× when selling transient servers through transient

guarantees than through the current market mechanisms of EC2 and GCE. Thus, transient

guarantees may represent a better way to offer and consume transient servers.

Transient guarantees have been evaluated on Google cluster traces via simulation. Ad-

ditional details on its design, implementation and evaluation are in [73].

119

CHAPTER 7

CONCLUSIONS

“How lucky I am to have something that
makes saying goodbye so hard.”

Winnie-the-Pooh

Cloud platforms sell computing capabilities to applictions for a price. However, by finely

controlling the characteristics of their offerings, the cloud providers expose applications to

several risks. These cloud risks incur implict costs and potential losses for applications

running on the cloud. Our work elevates risk management in cloud computing plaforms to

a first-class design principle. In this dissertation, we identify and quantify these risks, and

then develop system-level support to transparently optimize their costs to the applications.

In what follows, we summarize our contributions, and explore avenues for future work.

7.1 Summary of Contributions

Our goal is to identify the cloud risks, and build system support to manage them. In

doing so, we observe its similarities to the risks encounted in the financial and commodity

markets, which in turn enable us to adapt and extend risk management concepts from

these domains to cloud computing. Guided by this new approach dubbed financializing

cloud computing, we make four significant contributions.

First, we mitigate the revocation risk with insurance. Revocations pose a new

fault-model that undermines the benefit of using transient cloud servers. Unlike the clas-

sical hardware failure, transient server revocations are intentional, frequent and come with

advanced warning. In SpotOn [78], we investigate how to insure against revocation risk

without incurring huge premiums.

120

We identify that the cost of insurance against transient server revocations is a func-

tion of application’s footprint, transient server’s market characteristics, and fault-tolerance

mechanism’s overhead. In order to make this cost-efficient, we (i) extend the classical fault-

tolerance mechanisms of migration, checkpointing, and replication to the new fault scenario

and model their overheads; and then (ii) design a greedy insurance policy that dynamically

selects a combination of transient server and fault-tolerance mechanism that results in the

lowest premium. We implement these in a service called SpotOn, which executes unmodified

batch applications on EC2 spot servers. Evaluations on Amazon EC2 show that SpotOn is

able to achieve near on-demand level performance while also realizing ∼91% cost savings.

Second, we reduce the price risk through active trading. Transient cloud servers

sold in variable priced markets, like EC2 spot markets, exhibit price variations, inversions

and arbitrages. These lead to price risk, or the risk that a chosen server’s price will increase

relative to others. In HotSpot [70], we explore how to avoid price risk for unmodified cloud

applications.

Through market analysis, we observe (i) that price risk is ∼500x more frequent than

revocation risk, and (ii) that servers with high discount also tend to have low revocation

risk (which is reflective of the supply-demand dynamics). With these key observations,

we hypothesize that by employing active trading (i.e., hopping from the current server to

a better one), a flexible application can reduce its costs without increasing its revocation

risk. Then, we design a server hopping mechanism at the system level (via a self-migrating

container) such that unmodified applications can utilize it. HotSpot, our prototype on

Amazon EC2 demonstrates that active trading results in ∼50% savings relative to insurance

based approaches.

Third, we eliminate the uncertainty risk by index tracking. Applications that

run on variable-priced cloud servers suffer from cost uncertainty. Since the server prices

are market-based, and could vary considerably (up to 10×), customers find it difficult to

plan their IT expenses. In [72], we design an index-tracked cloud server to eliminate the

uncertainty risk.

While prior approaches have tried to model and predict individual transient server mar-

kets, they have had limited success due to the proliferation of EC2 spot markets. We propose

121

an alternative solution based on two key insights: (i) making price predictions at aggregate

market level is more reliable than at individual server level, and (ii) knowing the bench-

mark for cost estimates a priori enables reactive server management systems to achieve the

target cost-efficiency without sacrificing availability. Towards eliminating cost uncertainty,

we introduce a market-based cloud index, and design a mechanism for index-tracking via

server hopping. We implement and evaluate this system on Amazon EC2 spot markets,

and demonstrate that it can reliably achieve the predicted cost-efficiency for a broad class

of flexible applications.

Finally, we minimize the valuation risk via asset pricing. For transient cloud

server offerings, the providers do not reveal precise transiency information as it makes their

administration challenging. However, this opacity makes it difficult for consumers to gauge

their true value. In Transient Guarantees [73], we explore how to minimize the valuation

risk.

By distilling transient server characteristics into three orthogonal axes of availability,

volatility, and predictability, we introduce the notion of equilibrium price—i.e., the price

beyond which the utility of a transient server (modulo its fault-tolerance overhead) is no

better than an equivalent on-demand server. While equilibrium price is only applicable

in retrospect, it helps consumers determine how their transient server fared. Interestingly,

our market analysis using equilibrium price reveals that Amazon and Google transient

server contracts do not maximize the server’s value for either providers or consumers. To

address these problems, we design a new asset-pricing abstraction called transient guarantee

that offers probabilistic assurances on transiency characteristics. Through modeling and

evaluation, we show that transient guarantees not only help users in determining the value

of transient servers upfront but also enable providers to increase their revenue by up to 5×

without sacrificing their ability to revoke transient servers.

7.2 Directions for Future Research

Our dissertation focused on four key cloud risks, and on transparently managing them

for specific cloud applications. Here, we identify several directions to extend our work.

122

• Managing Additional Risks. A natural direction for future work would be to iden-

tify additional risks and extend the system support framework to incorporate those.

Chapter-2 identified a number of risks including rejection-, utilization-, and performance-

risks. This line of enquiry leads to several interesting yet unanswered questions: (i) Is

it possible to hedge risks by combining cloud servers of different contract types? (ii)

How to extend the risk management framework to newer types of risks arising from an

evolving set of contracts?

• Handling Different Applications. Another intuitive set of extensions would be to

support different classes of applications. The main challenge here is to automatically

infer the behavior and utility function of application categories such that cloud risks

could be quantified at the system-level. For example, in chapter 6, we designed transient

guarantees with a focus on batch applications that could be checkpointed. However, the

mechanism of deriving equilibrium price can be extended to other applications with

different characteristics for e.g., latency-senstive applications, distributed frameworks,

and replicated services.

• Risk management beyond IaaS. We observe that the diversity and asymmetry in

the creation and consumption of compute resources is not only on the rise but also

getting more explicit. So, while our focus here has been on the IaaS cloud servers,

risks exist at different levels of cloud services. For example, the emerging interface of

serverless computing or Function-as-a-Service poses risks in a different context. On the

provider side, it exemplifies the utilization risk since a fixed set of servers are required

to execute a variable workload subject to performance constraints. On the user side, it

exacerbates valuation- and rejection-risks since cloud resources are even more abstracted

out compared to IaaS.

• Emerging Computing Platforms. Cloud datacenters are experiencing many tech-

nological advancements in the recent years including disaggregated datacenters [34, 64].

While current datacenters are built as racks of individual servers, each of which tightly

integrate small amounts of compute, memory, storage, and network resources, the dis-

aggregated datacenters are built as racks of standalone resources interconnected via fast

123

networks. This paradigm shift will force a rethinking of system software, and we believe

that financialized system design serves a valuable reference point in the debate.

124

BIBLIOGRAPHY

[1] Financialization. https://en.wikipedia.org/wiki/Financialization.

[2] Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/on-demand/, Accessed
August 2017.

[3] AWS Global Infrastructure. https://aws.amazon.com/about-aws/global-
infrastructure/, Accessed October 2017.

[4] Cmpute inc. http://www.cmpute.io, Accessed October 2017.

[5] Linux Containers. http://linuxcontainers.org, Accessed October 2017.

[6] Spot Instance Product Details. https://aws.amazon.com/ec2/spot/details/, Accessed
August 2017.

[7] Sara Arevalos, Fabio Lopez-Pires, and Benjamin Baran. A Comparative Evaluation of
Algorithms for Auction-based Cloud Pricing Prediction. In IC2E, April 2016.

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.
A View of Cloud Computing. Communications of the ACM, 53(4):50–58, April 2010.

[9] Alvin AuYoung, Laura Grit, Janet Wiener, and John Wilkes. Service contracts and
aggregate utility functions. In HPDC, June 2006.

[10] Charles Babcock. Amazon’s ‘Virtual CPU’? You Figure it Out, in InformationWeek,
December 23rd 2015.

[11] Gaurav Banga, Peter Druschel, and Jeffrey Mogul. Resource Containers: A New
Facility for Resource Management in Server Systems. In OSDI, February 1999.

[12] Jeff Barr. Amazon EC2 Beta. AWS Official Blog, August 2006.

[13] Jeff Barr. EC2 Spot Instance Termination Notices. https://aws.amazon.com/blogs/
aws/new-ec2-spot-instance-termination-notices/, January 2015.

[14] Jeff Barr. New - EC2 Spot Blocks for Defined-Duration Workloads. AWS Blog, October
6th 2015.

[15] Jeff Barr. Experiment that Discovered the Higgs Boson Uses
AWS to Probe Nature. https://aws.amazon.com/blogs/aws/

experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/,
March 2016.

125

http://www.cmpute.io
http://linuxcontainers.org
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/

[16] Jeff Barr. Natural Language Processing at Clemson University - 1.1 million vcpus
and EC2 Spot Instances. https://aws.amazon.com/blogs/aws/natural-language-
processing-at-clemson-university-1-1-million-vcpus-ec2-spot-instances/, September
2017.

[17] Jeff Barr. Per-Second Billing for EC2 Instances. https://aws.amazon.com/blogs/

aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/, 2017.

[18] Alex Barrett. The Need for Speed: This Week on Google Platform. Google Cloud
Platform Blog, June 2016.

[19] Luiz Barroso, Jimmy Clidaras, and Urs Holzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-scale Machines. Morgan and Claypool Pub-
lishers, 2009.

[20] Muli Ben-Yehuda, Michael Day, Zvi Dubitzky, Michael Factor, Nadav Har’El, Abel
Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. The Turtles
Project: Design and Implementation of Nested Virtualization. In OSDI, October 2010.

[21] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. Decon-
structing Amazon EC2 Spot Instance Pricing. In CloudCom, November 2011.

[22] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. Decon-
structing Amazon EC2 Spot Instance Pricing. ACM TEAC, 1(3), 2013.

[23] Johnathan Boutelle. What to do when Amazon’s spot prices spike, in Gigaom, Decem-
ber 27th 2011.

[24] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
Borg, omega, and kubernetes. ACM Queue, 14(1), 2016.

[25] Devin Carraway. Lookbusy - A Synthetic Load Generator.
http://www.devin.com/lookbusy/, Accessed October 2017.

[26] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John Wilkes. Long-term
slos for reclaimed cloud computing resources. In SoCC, 2014.

[27] Louis Columbus. Roundup of Cloud Computing Forecasts 2017. Forbes, April 29th
2017.

[28] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and
Ricardo Bianchini. Resource central: Understanding and predicting workloads for
improved resource management in large cloud platforms. In SOSP, 2017.

[29] John Daly. A Higher Order Estimate of the Optimum Checkpoint Interval for Restart
Dumps. In Future Generation Computer Systems, volume 22, 2006.

[30] Archy de Berker, Robb Rutledge, Christoph Mathys, Louise Marshall, Gemma Cross,
Raymond Dolan, and Sven Bestmann. Computations of Uncertainty Mediate Acute
Stress Responses in Humans. Nature communications, 7, 2016.

[31] Gerald Epstein. Financialization and the World Economy. Edward Elgar Publishing,
2005.

126

https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/

[32] Paolo Falbo, Marco Fattore, and Silvana Stefani. A new index for electricity spot
markets. Energy Policy, 38(6), 2010.

[33] Eugene Fama. Efficient capital markets: A review of theory and empirical work. The
Journal of Finance, 25(2), 1970.

[34] Peter Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network Requirements for Resource
Disaggregation. In OSDI, 2016.

[35] Weichao Guo, Kang Chen, Yongwei Wu, and Weimin Zheng. Bidding for Highly Avail-
able Services with Low Price in Spot Instance Market. In HPDC, June 2015.

[36] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory Ganger, and Phillip Gib-
bons. Proteus: Agile ML Elasticity through Tiered Reliability in Dynamic Resource
Markets. In EuroSys, April 2017.

[37] Xin He, Ramesh Sitaraman, Prashant Shenoy, and David Irwin. Cutting the Cost of
Hosting Online Internet Services using Cloud Spot Markets. In HPDC, June 2015.

[38] Botong Huang, Nicholas Jarrett, Shivnath Babu, Sayan Mukherjee, and Jun Yang.
Cumulon: Matrix-Based Data Analytics in the Cloud with Spot Instances. PVLDB,
9(3), November 2015.

[39] David Irwin, Jeff Chase, Laura Grit, and Aydan Yumerefendi. Self-recharging virtual
currency. In EconP2P, August 2005.

[40] David Irwin, Laura Grit, and Jeff Chase. Balancing risk and reward in a market-based
task service. In HPDC, June 2004.

[41] Bahman Javadi, Ruppa Thulasiramy, and Rajkumar Buyya. Statistical Modeling of
Spot Instance Prices in Public Cloud Environments. In UCC, December 2011.

[42] Qin Jia, Zhiming Shen, Weijia Song, Robbert van Renesse, and Hakim Weatherspoon.
Smart Spot Instances for the Supercloud. In CrossCloud, 2016.

[43] S&P Dow Jones. Index Mathematics Methodology, 2014.

[44] Sunirmal Khatua and Nandini Mukherjee. Application-centric Resource Provisioning
for Amazon EC2 Spot Instances. In EuroPar, August 2013.

[45] Cinar Kilcioglu, Justin Rao, Aadharsh Kannan, and Preston McAfee. Usage patterns
and the economics of the public cloud. In WWW, 2017.

[46] Frederic Lardinois. Spotinst, which helps you buy AWS spot instances, raises $2m
Series A. TechCrunch, March 8th 2016.

[47] Cynthia Lee and Allan Snavely. Precise and Realistic Utility Functions for User Centric
Performance Analysis of Schedulers. In HPDC, June 2007.

[48] Qianlin Liang, Cheng Wang, and Bhuvan Urgaonkar. Spot Characterization: What
are the Right Features to Model? In SAC, June 2016.

127

[49] Aniruddha Marathe, Rachel Harris, David Lowenthal, Bronis de Supinski, Barry Roun-
tree, and Martin Schulz. Exploiting Redundancy for Cost-effective, Time-constrained
Execution of HPC Applications. In HPDC, June 2014.

[50] Michele Mazzucco and Marlon Dumas. Achieving Performance and Availability Guar-
antees with Spot Instances. In HPCC, September 2011.

[51] Ishai Menache, Ohad Shamir, and Navendu Jain. On-demand, Spot, or Both: Dynamic
Resource Allocation for Executing Batch Jobs in the Cloud. In ICAC, 2014.

[52] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239), 2014.

[53] Paul Nash. Extending per second billing in google cloud. https://cloudplatform.

googleblog.com/2017/09/extending-per-second-billing-in-google.html,
2017.

[54] Jordan Novet. Amazon pays $20M-$50M for ClusterK, the startup that can run apps
on AWS at 10% of the regular price, April 29th 2015.

[55] Bureau of Labor Statistics. The Consumer Price Index. https://www.bls.gov/opub/
hom/pdf/homch17.pdf, 2015.

[56] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The Design and Im-
plementation of Zap: A System for Migrating Computing Environments. In OSDI,
December 2002.

[57] Xue Ouyang, David Irwin, and Prashant Shenoy. SpotLight: An Information Service
for the Cloud. In ICDCS, June 2016.

[58] David Pellerin, Dougal Ballantyne, and Adam Boeglin. An Introduction to High Per-
formance Computing on AWS. Amazon Whitepaper, September 2015.

[59] Florentina Popovici and John Wilkes. Profitable services in an uncertain world. In SC,
November 2005.

[60] Tipu Qureshi. Cost-effective Batch Processing with Amazon EC2 Spot. AWS Compute
Blog, August 2015.

[61] Charles Reiss, John Wilkes, and Joseph Hellerstein. Google Cluster-usage Traces:
Format + Schema. Technical report, Google Inc., November 2011.

[62] Mohammad Shahrad, Cristian Klein, Liang Zheng, Mung Chiang, Erik Elmroth, and
David Wentzlaff. Incentivizing self-capping to increase cloud utilization. In SoCC,
September 2017.

[63] Mohammad Shahrad and David Wentzlaff. Availability knob: Flexible user-defined
availability in the cloud. In SoCC, October 2016.

[64] Yizhou Shan, Sumukh Hallymysore, Yutong Huang, Yilun Chen, and Yiying Zhang.
Disaggregated Operating System. In SoCC, 2017.

[65] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy. Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers. In EuroSys, April 2016.

128

https://cloudplatform.googleblog.com/2017/09/extending-per-second-billing-in-google.html
https://cloudplatform.googleblog.com/2017/09/extending-per-second-billing-in-google.html
https://www.bls.gov/opub/hom/pdf/homch17.pdf
https://www.bls.gov/opub/hom/pdf/homch17.pdf

[66] Prateek Sharma, David Irwin, and Prashant Shenoy. How Not to Bid the Cloud. In
HotCloud, June 2016.

[67] Prateek Sharma, David Irwin, and Prashant Shenoy. Portfolio-driven Resource Man-
agement for Transient Cloud Servers. In SIGMETRICS, June 2017.

[68] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant Shenoy.
SpotCheck: Designing a Derivative IaaS Cloud on the Spot Market. In EuroSys, April
2015.

[69] William Sharpe. The Sharpe Ratio. The Journal of Portfolio Management, 21(1),
1994.

[70] Supreeth Shastri and David Irwin. HotSpot: Automated Server Hopping in Cloud Spot
Markets. In SoCC, September 2017.

[71] Supreeth Shastri and David Irwin. Towards Index-based Global Trading in Cloud
Markets. In HotCloud, June 2017.

[72] Supreeth Shastri and David Irwin. Cloud index tracking: Enabling predictable costs
in cloud spot markets. In SoCC, October 2018.

[73] Supreeth Shastri, Amr Rizk, and David Irwin. Transient Guarantees: Maximizing the
Value of Idle Cloud Capacity. In SC, November 2016.

[74] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robert van Renesse,
and Hakim Weatherspoon. Follow the Sun through the Clouds: Application Migration
for Geographically Shifting Workloads. In SoCC, October 2016.

[75] Jeffrey Shneidman, Chaki Ng, David Parkes, Alvin AuYoung, Alex Snoeren, Amin
Vahdat, and Brent Chun. Why Markets Could (but don’t currently) Solve Resource
Allocation Problems in Systems. In HotOS, June 2005.

[76] Yang Song, Murtaza Zafer, and Kang-Won Lee. Optimal Bidding in Spot Instance
Market. In Infocom, March 2012.

[77] Ian Stoica, Hussein Abdel-Wahab, and Alex Pothen. A microeconomic scheduler for
parallel computers. In Workshop on Job Scheduling Strategies for Parallel Processing
(JSPP), April 1995.

[78] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and Prashant Shenoy.
SpotOn: A Batch Computing Service for the Spot Market. In SoCC, August 2015.

[79] Supreeth Subramanya, Amr Rizk, and David Irwin. Cloud Spot Markets are Not
Sustainable: The Case for Transient Guarantees. In HotCloud, June 2016.

[80] Ivan Sutherland. A Futures Market in Computer Time. CACM, 11(6), June 1968.

[81] ShaoJie Tang, Jing Yuan, and Xiang-Yang Li. Towards Optimal Bidding Strategy for
Amazon EC2 Cloud Spot Instance. In CLOUD, June 2012.

[82] Adel Toosi, Ruppa Thulasiramy, and Rajkumar Buyya. Financial Option Market
Model for Federated Cloud Environments. In UCC, November 2012.

129

[83] Tiffany Trader. Amazon Web Services Spotlights HPC Options. HPCWire, August
2015.

[84] William Voorsluys and Rajkumar Buyya. Reliable Provisioning of Spot Instances for
Compute-Intensive Applications. In AINA, 2012.

[85] Carl Waldspurger, Tad Hogg, Bernardo Huberman, Jeffrey Kephart, and Scott Stor-
netta. Spawn: A Distributed Computational Economy. IEEE Transactions on Software
Engineering, 18(2):103–117, February 1992.

[86] Kevin Walsh and Emin Gun Sirer. Experience with an Object Reputation System for
Peer-to-Peer Filesharing. In NSDI, May 2006.

[87] Cheng Wang, Qianlin Liang, and Bhuvan Urgaonkar. An Empirical Analysis of Amazon
EC2 Spot Instance Features Affecting Cost-effective Resource Procurement. In ICPE,
April 2017.

[88] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta, George Kesidis, and Qianlin Liang.
Exploiting Spot and Burstable Instances for Improving the Cost-efficacy of In-Memory
Caches on the Public Cloud. In EuroSys, April 2017.

[89] Josh Whitney and Delforge Pierre. Data Center Efficiency Assessment. Technical
report, Natural Resource Defense Council, August 2014.

[90] John Wilkes. Utility Functions, Prices, and Negotiation. Technical report, Hewlett-
Packard, July 2008.

[91] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. The Xen-Blanket: Virtualize
Once, Run Everywhere. In EuroSys, 2012.

[92] Rich Wolski and John Brevik. Providing Statistical Reliability Guarantees in the AWS
Spot Tier. In HPC, April 2016.

[93] Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard. Probabilistic guarantees of
execution duration for amazon spot instances. In SC, 2017.

[94] Zichen Xu, Christopher Stewart, Nan Deng, and Xiaorui Wang. Blending On-Demand
and Spot Instances to Lower Costs for In-Memory Storage. In International Conference
on Computer Communications (Infocom), July 2016.

[95] Sangho Yi, Derrick Kondo, and Artur Andrzejak. Reducing Costs of Spot Instances
via Checkpointing in the Amazon Elastic Compute Cloud. In CLOUD, July 2010.

[96] Murtaza Zafer, Yang Song, and Kang-Won Lee. Optimal Bids for Spot VMs in a Cloud
for Deadline Constrained Jobs. In CLOUD, 2012.

[97] Sharrukh Zaman and Daniel Grosu. Efficient Bidding for Virtual Machine Instances
in Clouds. In CLOUD, July 2011.

[98] Liang Zheng, Carlee Joe-Wong, Christopher Brinton, Chee Tan, Sangtae Ha, and Mung
Chiang. On the viability of a cloud virtual service provider. ACM SIGMETRICS
Performance Evaluation Review, 44(1), 2016.

[99] Liang Zheng, Carlee Joe-Wong, Chee Tan, Mung Chiang, and Xinyu Wang. How to
Bid the Cloud. In SIGCOMM, August 2015.

130

	System Support for Managing Risk in Cloud Computing Platforms
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	The State of Cloud Computing
	Limitations of Current Systems
	Managing Risks in the Cloud
	Summary of Contributions
	Dissertation Outline

	Background
	IaaS Cloud Server Contracts
	Implicit Risks in Cloud Contracts
	Case Study: Transient Cloud Computing
	Motivation

	Mitigating Revocation Risk with Insurance
	SpotOn Overview
	Modeling Fault-tolerance Overhead
	Cost-aware Insurance Policy
	Implementation
	Evaluation
	Related Work
	Conclusion

	Reducing Price Risk through Active Trading
	The Importance of Price Risk
	Active Trading by Server Hopping
	HotSpot Design
	Implementation
	Evaluation
	Related Work
	Conclusion

	Eliminating Uncertainty Risk by Index-tracking
	Understanding Uncertainty
	Market Index for the Cloud
	Design of Index-tracking
	Implementation
	Evaluation
	Related Work
	Other Applications: Mitigating Spatial Price Risk
	Conclusion

	Minimizing Valuation Risk via Asset Pricing
	Idle Cloud Pricing in the Wild
	Transient Server Characteristics
	Transient Guarantees
	Implementation
	Evaluation
	Related Work
	Conclusion

	Conclusions
	Summary of Contributions
	Directions for Future Research

	Bibliography

