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ABSTRACT

INTEGRATED ROUTING MODELS FOR ENHANCED
PRODUCT AND SERVICE DELIVERY

SEPTEMBER 2018

MOHAMMAD REIHANEH

B.Sc., APPLIED MATH, FERDOWSI UNIVERSITY OF MASHHAD

M.Sc., IE, ISFAHAN UNIVERSITY OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ahmed Ghoniem

Logistics constitutes a key function of modern-day supply chains and an indis-

pensable prerequisite for the support and growth of conventional brick-and-mortar

and online businesses. Whether for procurement or delivery purposes, manufacturers

and service providers seek efficient and reliable logistical services. A 2014 Bloomberg

survey reports that 73% of supply chain managers are experiencing a shift in their

attitude towards transportation services; a function they now view as a key element of

their business strategy. The advent of new mobile technologies and online platforms,

the use of intermodal logistics, and the multiplication of customer-selected delivery

options continue to prompt the development of large-scale complex transportation

models. The scope of such models can address a single tier of the supply chain or

lie at the interface of two tiers when this integration is necessary to reveal important

managerial tradeoffs. Such problems require cutting-edge optimization techniques
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and powerful computing platforms. Given the scale and recurrence of logistical oper-

ations, data-driven optimized policies can achieve multi-million dollar savings in cost

and significant improvement in service level. This dissertation develops, in its three

essays, specialized algorithms for solving two integrated routing problems that have

applications in bi-level transportation.

Essay One proposes an exact branch-cut-and-price algorithm for the generalized

vehicle routing problem (GVRP) which has applications in maritime transportation,

survivable telecommunication network design, and health-care logistics. Decomposi-

tion techniques are used to reformulate the GVRP as a set-partitioning model which

prompts the development of a column generation approach. A specialized dynamic

programming algorithm is proposed for solving the pricing sub-problem. The per-

formance of the proposed algorithm is significantly improved by enforcing a set of

rounded capacity valid inequalities. Computational results show that the proposed

algorithm compares favorably against the state-of-the-art exact algorithm for the

GVRP and closes 8 out of 9 previously open GVRP instances in the literature.

Essay Two investigates a variant of the Vehicle Routing-Allocation Problem that

arises in the distribution of pallets of goods by a food bank to a network of relatively

distant nonprofit organizations. Vehicles are routed to selected intermediate deliv-

ery sites to which the nonprofit organizations travel to collect their demand. The

logistical cost is shared and the objective is to minimize a weighted average of the

food bank vehicle routing cost and the travel cost of the nonprofit organizations. We

develop an efficient multi-start heuristic that iteratively constructs initial solutions to

this problem and subsequently explores their neighborhoods via local improvement

and perturbation schemes. In our experience, the proposed heuristic substantially

outperforms alternative optimization-based heuristics in the literature in terms of the

solution quality and computational efficiency and consistently yields solutions with

an optimality gap of 0.5% on average.

v



Essay Three develops an effective branch-and-price algorithm for the aforemen-

tioned food bank vehicle routing problem. The pricing subproblem is solved, exactly

or heuristically, using a specialized labeling type dynamic programming (DP) algo-

rithm. The computational efficacy of this DP approach stems primarily from the

inclusion of preprocessing routines that enhance the label extension scheme by itera-

tively eliminating dominated (partial) solutions. The proposed exact DP algorithm,

and five proposed heuristic variants, significantly reduce the computational time asso-

ciated with the solution of the pricing subproblem (as opposed to solving the latter as

a mixed-integer model with CPLEX). The resulting speedup enables the implemen-

tation of a branch-and-price algorithm that greatly outperforms the use of CPLEX

over a test-bed of 60 problem instances.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Logistics is broadly defined as the activities required for the movement and han-

dling of goods and materials, from inputs through production to consumers and waste

disposal. The performance of the logistics system has a major impact on cost struc-

tures, revenues and service quality. Transportation is the most important component

of logistics system. In fact, transportation comprises one third to two third of lo-

gistics costs. In the United States, companies spend more than $800 billion each

year on transportation. It is therefore no surprise when a 2014 Bloomberg survey

reports that 73% of supply chain managers are undergoing a shift in their attitude

toward transportation and recognizing transportation as a real point of competitive

differentiation. Considering the high transportation costs, a very small improvement

in transportation operations can sometimes lead to millions of dollars costs saving for

organizations. To achieve such improvements, transportation must be optimized and

this is achieved by means of mathematical programming algorithms and optimization

techniques. In this chapter we first in section 1.1 briefly review the history of logis-

tics. Section 1.2 highlights the importance of transportation. Section 1.3, provides a

brief literature review on integrated routing problems; the class of problems that are

closely related to the applications we study in this research. Section 1.4 summarizes

the organization of the dissertation.
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1.1. Logistics and Supply Chain

Logistics was initially used in handling military activities. In military science,

logistics is concerned with maintaining army supply lines while disrupting those of

the enemy. The birth of military logistics can be traced back to the war times of

Greek and Roman empires, where there were officers titled ”Logistikas” with the

responsibility of providing services related to supply and distribution of resources.

Such services were crucial and could simply change the outcome of war because an

armed force without resources and transportation is defenseless. Military logistics was

greatly improved during the World War II and advanced implementations of logistics

were developed.

Despite the long history of military logistics, it took a long time for organiza-

tions to recognize the crucial role of logistics in business. In 1962 Drucker described

the logistics as ”the most sadly neglected, most promising area of businesses”. In

1970s logistics started gaining more and more attention among researchers and or-

ganizations. This was mostly due to the rise in petroleum price in 1973 which made

logistics a very important segment of business accounting for 15-20 percent of costs

of organizations.

1.2. Importance of Transportation

Transportation system is the most important economic activity among the com-

ponents of business logistics systems which comprises around one third to two thirds

of the expenses of enterprises logistics costs. In order for organizations to fully bene-

fit from advantages of logistics, a well-developed transportation system is necessary.

Nowadays, transportation is considered by organizations to be a competitive differ-

entiator that can help companies to outpace their competition. As such, demand for

advanced transportation optimization systems for reaching a cost efficient transporta-

tion system in on the rise. Transportation optimization can be separated into two

2



categories, namely, strategic and tactical transportation optimization. At the strate-

gic level, companies make strategic decisions like ”desired service level”, ”addition of

new products”, ”outsourcing the transportation”, ”budgeting needs”, etc. Tactical

transportation optimization, is a process that runs daily and make use of specialized

mathematical programming algorithms to find the most cost efficient ways for running

the transportation related operations, given a set of constraints, e.g. ”costs”, ”equip-

ment availability”, ”desired service level”, etc. This study focuses on transportation

optimization at tactical level and investigates two integrated routing problems that

have several applications in bi-level transportation. In the next section, we briefly

review the literature of problems closely related to our study.

1.3. Literature Review

There is a rich body of literature concerning transportation optimization, from

classic Traveling salesman Problem to modern routing applications like Electric Ve-

hicle routing problem or Vehicle Routing with Drones. The problems discussed in

the present study fall under the umbrella of the vehicle routing-allocation problem

(VRAP). Vehicle routing-allocation problems (VRAP) are concerned with the effec-

tive delivery of goods and services and arise in a broad spectrum of applications,

including the planning of bus stops (Schittekat et al. 2013), the location of post

boxes (Labbé and Laporte 1986), and the training of military units (Nagy and Salhi

2007). As discussed in Beasley and Nascimento (1996), the VRAP is concerned with

vehicle routing problems (VRP) where a subset of customers may be directly visited

(as in a classical VRP), whereas some other customers may not be visited at all or

may be allocated to another customer location that is included in a tour. In the

latter cases, a penalty is incurred for not serving a customer or for requiring them

to travel to a neighboring location to receive service. Figure 1.1 illustrates a general

multi-vehicle VRAP where six customers are directly included in the tours, four are

3



Figure 1.1: General multi-vehicle VRAP

isolated (not served), and the remainder of the customers have to travel to a neigh-

boring customer location that is included in a tour. In the following, we briefly review

the literature of the VRAP and highlight the modelling commonalities between the

VRAP in general, the specific VRAP variants we examine, and other relevant models,

such as the median cycle problem or the capacitated m-ring-star problem. Sections

1.3.1 and 1.3.2 discuss two VRAP variants examined in this study.

Beasley and Nascimento (1996) focus on the single-vehicle VRAP (SVRAP) as

defined above. The authors discuss how the SVRAP subsumes and generalizes many

problems in the literature that are discussed under various assumptions, including

the classical traveling salesman problem (TSP), the covering tour problem, the cov-

ering salesman problem (Gendreau et al. 1997), and a variant of the prize collecting

TSP. In an early study, Labbé and Laporte (1986) consider an SVRAP setting for the

location of post boxes, which they refer to as a location-allocation-routing problem.

In this context, a subset of post box locations is selected and included in vehicle

tours and customers are assigned to nearby post boxes. A mixed-integer program
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(MIP) is formulated with the objective of balancing the post collection effort (rout-

ing cost) and customer convenience (customer allocation cost) and is tackled using a

heuristic. Likewise, Akinc and Srikanth (1992) investigate a similar SVRAP in the

context of routing a mobile service facility. The authors develop a Lagrangian-based

branch-and-bound algorithm that produces encouraging results for randomly gener-

ated problem instances with up to 100 customers. Considering the SVRAP in Beasley

and Nascimento (1996), Vogt et al. (2007) propose a tabu search which is compared

against other heuristic techniques in the literature.

A body of works has emerged over the last decade on the so-called median cycle

problem (MCP), also known as the ring-star problem (RSP). The MCP is a variant

of the SVRAP where customers cannot be left out without service; they are either

directly visited or assigned to a neighboring customer location that lies on a tour. The

total routing cost plus assignment cost is often minimized and, in certain cases, the

routing cost is minimized, while enforcing an upper bound on the total assignment

cost (Peréz et al. 2003, Renaud et al. 2004). In particular, Renaud et al. (2004)

devise two heuristics for the MCP – a multistart greedy heuristic and an evolutionary

algorithm. Further, Labbé et al. (2005) develop an MIP formulation for which classes

of valid inequalities are derived and embedded within a branch-and-cut algorithm.

The proposed methodology is tested using TSP Library instances and a case study

related to the city of Milan. The MCP is further generalized in a multi-vehicle variant,

the capacitated m-ring-star problem (CmRSP) (e.g., Baldacci et al. 2007, Naji-Azimi

et al. 2010, Hoshino and de Souza 2012).

Another related problem is the covering salesman problem (CSP). In CSP, each

customer can cover a subset of customers that are within its pre specified covering

radius. The goal is to construct a minimum cost Hamiltonian cycle over a subset of

vertices such that all the customers are either located on the constructed cycle or are

covered by at least one of the visited customers. Current and Schilling (1989) first
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introduced CSP and referred to its application in rural healthcare delivery problem.

State of the art heuristic algorithm for CSP is ant colony optimization algorithm

proposed by Salari et al. (2015). Central to the efficacy of this algorithm is a dynamic

programming based heuristic that simultaneously revises the decisions about visited

customers and their sequence.

Covering tour problem (CTP) is a generalization of CSP where the set of vertices

is divided into three groups, namely, the set of vertices that must be visited, the set

of vertices that must be covered and the set of vertices that must be either visited or

covered. Gendreau et al. (1997) proposed a heuristic and an exact branch-and-cut

algorithm for CTP.

1.3.1 Generalized Vehicle Routing Problem

The Generalized Vehicle Routing Problem (GVRP) deals with delivering goods

to a single location (e.g., ports) from every cluster of customers. The underlying

assumption is that a second-tier delivery would subsequently take place from these

designated locations to every other customer in their respective clusters (Reihaneh

and Ghoniem 2018).

The GVRP has several applications in bi-level distribution problems. For example,

it arises in maritime transportation (Bektas et. al. 2011) when ports are clustered

into several demand regions and vessels are routed to supply exactly one port in every

region. In such applications, it is assumed that goods supplied to a selected port will

subsequently be distributed during a second phase to other ports in the region, though

the second-tier distribution operations are not directly accounted for in the GVRP

itself. Bektas et al. (2011) also discussed applications in health-care logistics, urban

waste collection and the design of survivable telecommunication networks. Baldacci

et al. (2010) also discussed how such problems as the TSP with profits, the VRP
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with selective backhauls, and the covering VRP, among others, can be modeled as a

GVRP.

The Generalized Traveling Salesman Problem (GTSP) is a special case of the

GVRP with only one vehicle. The state-of-the-art exact solution approach for the

GTSP is a branch-and-cut (BC) algorithm by Fischetti et al. (1997). Reihaneh and

Karapetyan (2012) and Karapetyan and Gutin (2012) proposed heuristic approaches

for the GTSP and overviewed the extant literature for this problem. While there exists

a rich body of works on the GTSP, the GVRP has received limited attention in the

literature. Ghiani and Improta (2000) proposed a transformation of the GVRP into

an arc-routing problem and demonstrated their methodology using one illustrative

example. The state-of the-art exact algorithm for the GVRP is a BC algorithm

by Bektas et al. (2011). In addition to the well-known capacity cuts and valid

inequalities automatically generated by CPLEX (e.g., Gomory cuts, disjunctive cuts,

etc.), the authors also proposed so-called “same vertex” inequalities with the objective

of prohibiting the formation of disconnective solutions (a solution that visits more

than one node from a cluster).

1.3.2 Vehicle Routing with Demand Allocation Problems

Motivated by food bank operations, Ghoniem et al. (2013) and Solak et al. (2012)

consider a single-depot, multi-vehicle VRAP with the requirement that all customers

be allocated to a subset of selected drop sites. In Ghoniem et al. (2013), a relax-and-

fix heuristic (Wolsey 1998) with symmetry-defeating constraints (Sherali and Smith

2001) and a column generation (CG) approach that is accelerated using the comple-

mentary column generation feature by Ghoniem and Sherali (2009). Over problem

instances with up to 10 candidate drop sites and 50 customers, the CG approach pro-

duced better results with optimality gaps of about 4%. However, the computational

effort required to solve the pricing subproblem using CPLEX became relatively in-
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tense, with an accompanying long CG tailing-off effect. Solak et al. (2012) compared

the performance of CPLEX against three heuristics within a time limit of one CPU

hour for instances having up to 25 candidate sites and 50 customers. CPLEX pro-

duced solutions having an optimality gap of 12.8% at an average, whereas a sequential

heuristic worsened the results by CPLEX by nearly 4%. In contrast, a logic-based

Benders decomposition approach (Hooker and Ottoson 2003) slightly improved the

results of CPLEX by 0.6% and a classical Benders decomposition achieved a 3.6%

reduction in the objective value at an average. One major disadvantge, however, is

that solutions still exhibited a relatively large optimality gap after a computational

time of one CPU hour. Similarly, the planning of school bus stops and routes con-

stitutes another application for the single-depot, multi-vehicle VRDAP where the

decision-maker specifies bus stops, assigns students (or, more generally, passengers)

to convenient stops, and determines bus routes. Schittekat et al. (2013) propose

an MIP model and a metaheuristic approach that yields good quality solutions to

instances with up to 800 students and 80 bus stops.

Murty and Djang (1999) tackle a challenging multi-depot, multi-vehicle VRDAP

variant that arises in scheduling training programs for National Guard Units (NGUs).

The problem aims at locating home bases for mobile trainers, secondary locations to

which the trainers will travel to provide training, and the allocation of NGUs to nearby

home bases or secondary sites for training purposes. The objective is to minimize the

routing cost for mobile trainers and the travel cost for the NGUs. Although the

authors employ a sequential heuristic, their solution is reported to achieve a 70%

savings in total mileage over a benchmark solution developed by the army.

1.4. Organization of Dissertation

This dissertation is organized as follows. In Chapter 2, we develop a branch-and-

cut-and-price algorithm for the generalized vehicle routing problem. A specialized
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dynamic programming algorithm is proposed for solving the pricing sub-problem.

Also, the performance of the proposed algorithm is significantly improved by intro-

ducing set of valid inequalities and also by designing a heuristic algorithm which seeks

near optimal primal bounds for the problem. Computational results show that the

proposed algorithm compares very well against the state of the art exact algorithm

for GVRP and closes 8 out of 9 previously open GVRP instances in the literature.

Chapter 3 studies vehicle routing with demand allocation (VRDAP), a varia-

tion of VRP that has application in food bank distribution planning. A dynamic

programming-based branch-and-price (BP) algorithm is developed for VRDAP. The

proposed algorithm is demonstrated to greatly outperform the use of commercial

branch-and-bound/cut solvers such as CPLEX. The methodology and computational

results in this study also substantially improve on recent works in the context of

food bank operations where this VRAP is tackled via optimization-based heuristics.

Central to the efficacy of the proposed BP algorithm is the development of a spe-

cialized dynamic programming procedure that extends works on elementary shortest

problems with resource constraints in order to solve the more complex single-vehicle

VRAP that underlies the pricing subproblem.

Chapter 4 develops a branch-and-price algorithm for the aforementioned food bank

routing problem. Using Dantzig-Wolf decomposition the problem is reformulated

as a set-partitioning model and is solved using the column generation technique.

The pricing subproblem is solved using a labeling type dynamic programming (DP)

algorithm. The computational efficiency of the proposed algorithm is significantly

improved by developing five heuristic variants of the DP algorithm. The resulting

speedup enables the implementation of a branch-and-price algorithm that greatly

outperforms the use of CPLEX over a test-bed of 60 problem instances.

Chapter 5 concludes the dissertation by summarizing our findings and discusses

directions for future research.
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CHAPTER 2

A BRANCH-AND-CUT-AND-PRICE ALGORITHM FOR
THE GENERALIZED VEHICLE ROUTING PROBLEM

This chapter investigates the Generalized Vehicle Routing Problem (GVRP) – an

integrated routing problem in which customers are partitioned into mutually exclusive

clusters and demand of each cluster of can be dropped off at any of its customers. In

GVRP, the decision-maker seeks to determine minimum cost routes using a limited

number of vehicles such that every cluster is visited by exactly one route and within

any cluster a single customer is visited, subject to vehicle capacity constraints. We

develop a branch-and-cut-and-price algorithm for the GVRP. The pricing subprob-

lem is solved using a specialized dynamic programming algorithm. Computational

results show that the proposed algorithm compares favorably against a state-of-the-

art branch-and-cut algorithm and solves to optimality eight previously open GVRP

instances in the literature.

2.1. Introduction and Motivation

The Generalized Vehicle Routing Problem (GVRP) deals with delivering goods

to a single location (e.g., ports) from every cluster of customers. The underlying

assumption is that a second-tier delivery would subsequently take place from these

designated locations to every other customer in their respective clusters (Reihaneh

and Ghoniem 2018). The GVRP involves a central depot, denoted by 0, and a set

of customers N = {1, . . . , n} that are partitioned into m mutually exclusive clusters

H = {C1 . . . , Cm} (i.e.,
m⋃
k=1

Ck = N and Ck1 ∩ Ck2 = ∅, ∀k1 6= k2 ∈ {1, . . . ,m}).
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Each cluster C has a demand, denoted by qc, that is fullfilled by one of w identical

vehicles having a capacity Q. A feasible route starts at the depot, visits exactly

one customer from a subset of clusters such that the aggregate demand of these

clusters does not violate the vehicle capacity, and returns to the depot. Denote by

E = {{i, j}|i, j ∈ N∪{0}, i < j} the set of edges in the network and let di,j be the cost

associated with edge {i, j} ∈ E. The decision-maker seeks a minimum cost solution

such that exactly one customer in any cluster is visited by exactly one vehicle, no

more than w routes are constructed, and vehicle capacity constraints are satisfied.

This chapter proposes a branch-and-cut-and-price (BCP) algorithm for the GVRP

that compares favorably against the state-of-the-art BC algorithm (Bektas et al.

2011). The solution scheme is driven by the addition of rounded capacity cuts to the

master program and the development of a specially-tailored dynamic programming

(DP) approach to solve the column generation pricing subproblem. Although our

computational study indicates that no algorithm systematically dominates the other

over classical benchmark instances, the proposed BCP enabled optimal solutions to

eight benchmark instances that were previously open in the literature.

The remainder of this chapter is organized as follows. In section 2.2, the key ele-

ments of the BCP algorithm are presented. First, the problem is formulated as a set

partitioning formulation to which cuts are appended. Second, the branching mech-

anism and the heuristic employed for obtaining primal bounds are briefly discussed.

In Section 2.3, the DP approach for solving the pricing subproblem is presented in

detail. Our computational study in Section 2.4 compares our BCP algorithm against

the BC algorithm using classical benchmark instances and instances constructed us-

ing a random clustering scheme. Section 2.5 concludes the chapter with a summary

of our findings.
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2.2. Branch-and-Cut-and-Price Algorithm

The GVRP is modeled as a set partitioning formulation in Section 2.2.1. Rounded

capacity inequalities that can strengthen the underlying set partitioning formulation

are discussed in Section 2.2.2. Section 2.2.3 presents our branching scheme and a

heuristic approach that is employed in order to generate upper (primal) bounds.

2.2.1 Set Partitioning Formulation

Let < be the set of all feasible routes for a GVRP instance and <c be the set of

all routes that include cluster C. For any route r ∈ < and cluster C, we introduce

the coefficient αrc which takes a value of 1 if r visits C and αrc = 0 otherwise. Let ρr

be the cost associated with route r ∈ <. The GVRP can be modeled as the following

set partitioning formulation, denoted by SPP, where the binary variable zr indicates

whether route r is selected in the solution or not:

SPP: Minimize
∑
r∈<

ρrzr (2.1a)

subject to
∑
r∈<

αrczr = 1 ∀ C ∈ {C1, . . . , Cm} (2.1b)

∑
r∈<

zr ≤ w (2.1c)

z binary. (2.1d)

The objective function (2.1a) minimizes the routing cost. Constraint (2.1b) ensures

that every cluster is served by exactly one vehicle route, thereby achieving a parti-

tioning scheme for clusters. Constraint (2.1c) enforces an upper bound on the number

of routes (vehicles). While each column in SPP only represents the set of clusters

visited by a vehicle tour, the specific customer visited in each of these clusters and

the sequence in which they are visited is captured in the cost of the column.
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Because Model SPP typically involves an exponential number of feasible routes, it

is not practical to generate the entire set < and column generation (CG) approaches

offer a judicious alternative. In this context, Model SPP serves as a master program

(MP). The linear programming (LP) relaxation of the MP is solved by initializing a

restricted master program (RMP) with a limited set of columns, <̂, and by iteratively

solving a pricing subproblem in order to identify promising columns (having a negative

reduced cost) to be added to <̂. This process continues until no additional worthwhile

columns can be constructed by solving the pricing subproblem. The resulting LP

solution of the RMP yields a lower bound (LB) for the optimal objective value of the

MP. If the LP solution turns out to be binary-valued, it is indeed optimal. Otherwise,

rounds of valid inequalities are iteratively added to the RMP in order to strengthen

the obtained lower bound, as discussed next in Section 2.2.2. If no additional cuts

are identified for inclusion in the RMP formulation and the LP solution of the RMP

is still fractional, branching takes place as discussed in Section 2.2.3.

2.2.2 Valid Inequalities for Master Program

We enforce rounded capacity inequalities in the proposed BCP algorithm in order

to strengthen the LB associated with the RMP. Capacity inequalities for the GVRP

impose a minimum number of vehicles that are needed for any subset of clusters.

Recall that H = {C1, . . . , Cm} and let H
′

= {C0, C1, . . . , Cm} where C0 = {0} is a

fictitious cluster containing the depot only. For any Ci and Cj in H
′
, i < j, we define

super-edge E{Ci,Cj} to capture the existence of at least one edge between Ci and Cj.

Let Ψ = {S ⊆ H : |S| ≥ 2} and δ(S), for any S ∈ Ψ, be the set of all super-edges

that have one end in S and the other in H
′ \ S. A lower bound on the number of

vehicles required to serve S ∈ Ψ is k(S) = dq(S)/Qe, where q(S) is the total demand

of all clusters in S. The flow along any edge e ∈ E is represented by a binary variable

ye which equals 1 if and only if edge e is visited in the GVRP solution. For any
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super-edge E{Ci,Cj}, we define xij to be the summation of the flows over all the edges

between Ci and Cj. In other words, xij is summation of flow of all the edges that

have one end in Ci and the other end in Cj. The rounded capacity inequality can be

stated as follows:

∑
{Ci,Cj}∈δ(S)

xi,j ≥ 2k(S), ∀S ∈ Ψ. (2.2)

This inequality can be reformulated in the context of Model SPP as follows:

∑
r∈<(S)

γr(S)zr ≥ 2k(S), ∀S ∈ Ψ, (2.3)

where <(S) is the set of all the routes in < that visit at least one cluster in S.

Moreover, the parameter γr(S) =
∑

{Ci,Cj}∈δ(S)

ηri,j where ηri,j is defined as follows:

• If r visits only the depot (i.e. C0) and a single cluster Cj ∈ H, ηr0,j = 2 and

ηr0,h = 0, ∀Ch ∈ H \ {Cj}.

• If r visits C0 and at least two other clusters, ηri,j = 1 if Ci and Cj immediately

follow each other in r and otherwise ηrij = 0.

To illustrate, assume that S = {C1, C2} and consider routes r1 and r2 as depicted

in Figure 2.1. Because only the sequence of clusters in a route is relevant here, we

have not explicitly depicted customers within each clusters. Route r1 only visits

cluster C1 and therefore, ηr10,1 = 2. Since E{C0,C1} ∈ δ(S), γr1(S) = 2. In route r2,

ηr20,1 = ηr21,2 = ηr22,3 = ηr20,3 = 1. Also, E{C0,C1} and E{C2,C3} belong to δ(S). Therefore,

γr2(S) = 2.

To circumvent the generation of an exponential number of rounded capacity in-

equalities, a separation routine examines the LP relaxation solution of the RMP in

order to identify violated capacity inequalities in an iterative fashion. We used in our

implementation the separation routines made available in the CVRPSEP package by
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Figure 2.1: For cutset S = {1, 2}, γr1(S) = 2 and γr2(S) = 2

Lysgaard et al. (2004). We also considered enforcing weak subset-row inequalities

as introduced by Baldacci et al. (2011). However, our preliminary computational

results suggest that these were not found to improve the quality of the lower bounds

obtained by our BCP algorithm for the tested benchmark instances and are, there-

fore, not included in our presentation or final results. The mere inclusion of capacity

inequalities yielded relatively tight lower bounds at the root of the BCP algorithm,

resulting in an optimal solution at the root node itself for many benchmark instances.

2.2.3 Branching Strategy and Primal Bounds

The proposed BCP algorithm employs a best first branching strategy using the

super-edge flow variables, i.e., the xij variables. First, the flow along any super-edge is

computed from the LP solution of the RMP at hand. The super-edge E{Ci,Cj} having

a most fractional flow, that is, a flow value closest to 0.5, is selected for branching.

Two new child nodes are generated where in one child node, clusters Ci and Cj should

be visited immediately after each other. In the other child node, clusters Ci and Cj

cannot be visited immediately after each other in any route.

Upper bounds are calculated by adapting the heuristic of De Franceschi et al.

(2006). A GTSP local search called Cluster Optimization(CO) (Renaud and Boctor

1998) is also used to enhance the heuristic solution. Furthermore, all the routes in
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up to 20 best solutions found by the heuristic are used in order to initialize the set

of columns in the RMP.

2.3. Solving the Pricing Subproblem

The pricing subproblem of GVRP is NP-Hard because it generalizes the pric-

ing subproblem of the capacitated VRP (CVRP) which is known to be NP-hard

(Desrochers et al. 1992). We first derive some preliminary observations and results

in Section 2.3.1 which serve as a cornerstone for the DP algorithm that we develop

in Section 2.3.2 for solving the pricing subproblem.

2.3.1 Preliminaries

This section introduces some preliminary results that enable the computation of a

shortest cost associated with an ordered sequence of clusters to be visited in a route.

This concept forms a foundational block for the development of the DP algorithm.

Arc Cost Transformation. For any node v ∈ N , we define a scalar λv that affects

the cost of all its incident arcs. Specifically, the value λv is respectively added to

and subtracted from the cost of all arcs leaving and entering v. Accordingly, the

modified cost of arc (i, j), denoted by d̄i,j, is defined as follows: d̄i,j = di,j + λi − λj,

where dij is the original cost of (i, j). Considering the illustrative example in Figure

2.2, customers are represented by small letters (a,. . .,e) and the numbers next to

them specify their associated λ values. The original symmetric arc costs are also

represented in Figure 2.2. Upon applying the arc cost transformation scheme using

these λ values, we obtain the following modified costs: d̄a,c = 30 + 10− 5 = 35, d̄c,a =

30 + 5− 10 = 25, d̄b,e = d̄e,b = 15, d̄b,d = 10 + 0− 15 = −5, d̄d,b = 10 + 15− 0 = 25.
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Figure 2.2: An illustrative example

Proposition 1. Applying the arc cost transformation scheme does not change the

cost of any feasible solution for the GVRP.

Proof. Any GVRP route r that enters a customer node v must also leave it.

Therefore, for any node v in r, its λv value gets added to and substracted from the

cost of r, resulting in no change in the cost of any GVRP solution. �

Connective Move for a Pair of Clusters. We define the minimum arc cost

from cluster A to cluster B as d̄A,B = min{d̄u,v|u ∈ A, v ∈ B}. In Figure 2.2,

d̄A,B = d̄b,d = 10 + 0 − 15 = −5, d̄B,A = d̄e,b = 15. Similarly, for a cluster A and a

node v /∈ A, we define d̄A,v and d̄v,A, where node v is viewed as a singleton cluster {v}.

A connective move from cluster A to B, denoted by CM(A,B), considers d̄A,B as the

length of the arc between the two clusters and adjusts the λv value for any v ∈ B

such that d̄A,v = d̄A,B. In other words, arc costs are modified such that the minimum

arc cost from cluster A to any customer v ∈ B equals the minimum arc cost between

the two clusters. For instance, consider the GVRP instance represented in Figure 2.4

with an associated cost matrix in Figure 2.3. First, we conduct a connective move

from the depot to cluster A. Noting that d̄0,A = 30, we obtain λa = 35 − 30 = 5

and λb = 30 − 30 = 0. Applying these λ values will result in the graph in Figure

2.5. Next, we consider the connective move from A to B. Because d̄A,B = 10, we
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Figure 2.3: Cost matrix

Figure 2.4: A GVRP instance

obtain λc = 20− 10, λd = 10− 10 and λe = 40− 10. Figure 2.6 shows the graph after

applying λ values.

Let r = (0, C1, · · · , Ck, 0) be a sequence of clusters in a GVRP route. We define

TSP (r) to be the optimal TSP tour that visits the clusters according to r. In other

Figure 2.5: The GVRP instance after CM(0, A)
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Figure 2.6: The GVRP instance after CM(A,B)

Figure 2.7: The GVRP instance after CM(r)

words, TSP (r) is the optimal selection of customers from clusters when visited in the

same order as dictated by r. In the previous example, TSP (r) = (0, a, c, g, 0).

Connective Moves for an Ordered Sequence of Clusters. For a sequence

starting and ending at node 0 and comprising an ordered sequence of clusters r =

(0, C1, · · · , Ck, 0), Procedure CM(r) (Algorithm 1) performs connective moves on con-

secutive elements of this sequence and computes d̄CM(r) = d̄0,C1 +
∑k−1

i=1 d̄Ci,Ci+1
+d̄Ck,0.

Proposition 2 shows that d̄CM(r) is the cost of TSP (r). Considering the GVRP in-

stance in Figure 2.3, Figures 2.4-2.7 display how Procedure CM(r) performs connec-

tive moves for r = (0, A,B,C, 0). In this example, d̄CM(r) = 30 + 10 + 30 + 50.

Proposition 2. The d̄CM(r) computed in Algorithm 1 is the cost of TSP (r).

Proof. Based on Proposition 1, the arc cost transformation using the λ values

in the course of Procedure CM(r) is conducted without loss of optimality. Further,

because each step of Procedure CM(r) considers the length of the shortest arc be-

tween consecutive clusters, d̄CM(r) is a lower bound on the value of TSP (r). Using

the following backtracking technique, we find a feasible TSP tour whose length is
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Algorithm 1 Procedure CM(r)

1: Comment: Let C0 and Ck+1 both represent depot(C0 = Ck+1 = {0})
2: Input: r = (0, C1, . . . , Ck, 0)
3: λv = 0 ∀v ∈ N
4: d̄CM(r) ← 0
5: for i = 0 to k do
6: Compute d̄Ci,Ci+1

, the minimum arc cost from Ci to Ci+1

7: d̄CM(r) ← d̄CM(r) + d̄Ci,Ci+1

8: Perform CM(Ci, Ci+1)
9: end for

d̄CM(r). We start by letting T = (0). Then, let vk be a customer in Ck for which

d̄vk,0 = d̄Ck,0 and update T = (vk, 0). By design of CM(r), for any customer in Ck

(including vk), there is a vk−1 ∈ Ck−1 for which d̄vk−1,vk = d̄Ck−1,Ck . We thus up-

date T = (vk−1, vk, 0). This process is repeated until we obtain the following tour

T = (0, v1, · · · , vk, 0) whose cost equals dCM(r) because the shortest arcs have been

used between consecutive clusters. Therefore, T is a tour whose length equals the

lower bound on TSP (r) and, therefore, constitutes an optimal tour for the inputted

sequence of clusters. �

Should ties present themselves, Algorithm 1 breaks them arbitrarily. To illustrate

Algorithm 1, consider the GVRP instance in Figure 2.3 and the sequence of ordered

clusters r = (0, A,B,C, 0). After performing Procedure CM(r) (as depicted in Figure

2.7) and, starting with T = (0), we note that d̄g,0 = d̄C,0. The partial tour is therefore

updated to T = (g, 0). For cluster B, d̄c,g = d̄B,C and hence, T = (c, g, 0). Following

the same logic, node a is selected from cluster A (T = (a, c, g, 0)) and finally a

complete minimal cost tour T = (0, a, c, g, 0) is obtained.

2.3.2 An Exact Dynamic Programming Algorithm

This section proposes a dynamic programming (DP) algorithm for the CG pricing

subproblem using the preliminary results and observations in Section 2.3.1. The
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objective of the pricing subproblem is to construct routes having a minimum reduced

cost. If the minimum reduced cost is negative, the columns associated with such

routes (and possibly several other routes having a negative reduced cost) are added

to the RMP. Otherwise, the CG procedure terminates with an optimal LP solution

for the master program. Let πC be the dual variable associated with cluster C in

Constraint (2.1b), πC0 be the dual variable for the depot cluster C0 = {0} associated

with Constraint (2.1c), and βS be the dual variable associated with the capacity cut

(2.3) defined for set S. In order to embed the dual values into arc costs, we update

the original cost matrix as follows:

di,j ← di,j −
1

2
(πσ(i) + πσ(j))−

∑
S|Eσ(i),σ(j)∈δ(S)

βS ∀{i, j} ∈ E (2.4)

where σ(i) is the cluster to which customer i belongs and σ(0) = C0 for the depot.

In the proposed DP algorithm, each path is represented by a label denoted by L =

{P`, Z`, Q`,Λ`,Π`} where P` is an ordered set representing the partial path associated

with L that starts from the depot and sequentially visits a subset of clusters; Z` is

the cost associated with L; Q` is the total demand of all clusters visited by P`; Λ`

stores the λ values of the customers in the last cluster visited by P`; and Π` is set of

unreachable clusters, i.e., all the clusters that L cannot be extended to. Each cluster

is associated with all labels that end at this cluster (i.e., their P` sets end with this

cluster). Each time a cluster is treated all its labels that were not treated yet are

extended to reachable clusters.

The proposed algorithm starts at the depot with the initial label L = {0, 0, 0, ∅}.

This label is then extended to all clusters, creating a new label (partial path) for each

one of them. The newly generated labels are then iteratively extended to other reach-

able clusters, constructing more partial paths, until no label is available for extension.

Let L = {P`, Z`, Q`,Λ`,Π`} be a label with P` = (0, C1, . . . , Ck). When extending
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L to a cluster X, we first verify whether such an extension is feasible or not. An

extension is deemed feasible if the new label does not violate the vehicle capacity

constraint, i.e., Q` + qX ≤ Q, and cluster X is not currently unreachable for L, i.e.,

X /∈ Π`. If this extension is indeed feasible, a new label T = {Pt, Zt, Qt,Λt,Πt} is

created by appending X to the partial path. That is, we let Pt = (0, C1, . . . , Ck, X)

and Qt = Q` + dX . The connective move CM(Ck, X) is performed in order to set

the values in Λt, i.e., the λ values associated with the customers in the last cluster

of T . The label cost is set to Zt = Z` + d̄Ck,X , where d̄Ck,X is the shortest cost arc

between clusters Ck and X computed using the λ values. Note that the cost of label

T is computed by performing connective moves on Pt, which is similar to computing

d̄CM(r) in Algorithm 1. In fact, Z` + d̄X,0 is the cost of shortest TSP tour that starts

from the depot, sequentially visits clusters of Pt, and returns to depot. We next

establish the employed dominance rule and discuss how the set of unreachable nodes,

Πt, is determined.

Dominance rule. There is an exponential number of labels that can be feasibly

generated during the DP algorithm. However, since only one or a few of these labels

are optimal, it is crucial to curtail the proliferation of labels by detecting, as early as

possible, dominated ones. A label is deemed to be dominated if it cannot yield an

optimal solution for the pricing subproblem. To this end, we employ the following

dominance rule. Let L∗ and L
′

be two labels both visiting cluster X as their last

cluster. If X has only one customer i, then L∗ dominates L
′
if the following conditions

are met:

(i) Q∗` ≤ Q
′

`

(ii) Π∗` ⊆ Π
′

`

(iii) Z∗` + λ∗i ≤ Z
′

` + λ
′
i
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where, λ∗i and λ
′
i are λ values associated with customer i in labels L∗ and L

′
, respec-

tively. If X has multiple customers, the above conditions result in deletion of i from

X in L
′
. If during the process of checking the dominance rule for L

′
and other labels,

all customers in X in label L
′

are deleted, L
′

can be deleted as a dominated label.

Otherwise, the deleted customers will not be considered when extending X in L
′

to

a cluster, say Y . Such deletions of customers in X typically result in greater values

for d̄X,Y and Z
′

and, as a consequence, increase the possibility of identifying dom-

inated labels. We next provide a formal proof for the aforementioned dominance rule.

Proposition 3. Let L∗ and L
′

be two labels both ending at cluster X and satisfying

Conditions (i) and (ii). Any customer i ∈ X for which Z
′

` − Z∗` ≥ λ∗i − λ
′
i can be

removed from the last cluster of L
′
.

Proof. Let P`′ = (0, C
′
1, C

′
2 . . . , X) be the partial path associated with L

′
. Also, let

P̄ = (Y, C̄1, C̄2, . . . , 0) be the partial path that would result in an optimal completion

of P`′ , denoted by P̂ = (0, C
′
1, . . . , X, Y, C̄1, . . . , 0). If an optimal TSP tour associated

with P̂ does not visit i from X, then i can be removed from X in L
′
. Now assume

that this TSP tour visits customer i ∈ X then customer j in cluster Y . Because

Conditions (i) and (ii) hold, P̄ can also be appended to the partial path P`∗ of label

L∗. Before extending P`∗ with P̄ , all customers are removed from clusters X and Y

except customers i ∈ X and j ∈ Y , respectively. Upon extending P̄ to L∗, note that

d̄∗i,j = di,j + λ∗i ≤ di,j + λ
′
i + Z

′ − Z∗, where d̄∗ and d̄
′

are costs computed based on

Λ∗` and Λ
′

`, respectively. With di,j + λ
′
i = d̄

′
i,j, we conclude that d̄∗i,j + Z∗` ≤ d̄

′
i,j + Z

′

`.

In other words, the cost of extending label L∗ with cluster Y is smaller than or equal

to that for extending L
′

with Y . Since cluster Y has only customer, j, λ∗j = λ
′
j = 0

and, hence, the cost of appending the remaining clusters in P̄ to L
′

or L∗ is the same.

Therefore, if customer i were visited in cluster X in L
′
, then an optimal extension of

label L
′

would be dominated. Therefore, customer i can be removed from X in L
′
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without loss of optimality. �

Unreachable Clusters. Let L be a label with an associated partial path P` =

(0, C1, . . . , C`). The set Π` of unreachable clusters for L can be defined in a variety

of ways. For example, Π` could include all clusters already visited by P`. Although

this definition of Π` ensures the construction of optimal elementary shortest paths, it

results in a slower convergence of the DP algorithm. Alternatively, one could simply

set Π` = {C`}, thereby forbidding only the last cluster in label L. The consequent

dominance rule results in a more computationally efficient DP algorithm, but allows

the formation of cycles in optimal solutions of the DP algorithm. This, in turn,

would result in weaker lower bounds for the set partitioning formulation (Model

SPP). However, several techniques have been proposed in order to tighten the lower

bound, with an added computational expense in solving the DP algorithm. To this

end, the definition of the set Π` of unreachable nodes ought to be refined. Ideally,

Π` should include the minimum number of clusters that can prevent the formation

of cycles. In our implementation, we compute elementary paths by employing the

algorithm of Martinelli et al. (2014) which takes advantage of the concept of state-

space-relaxation of Righini and Salani (2008) and ng-sets of Baldacci et al. (2011).

The notion of completion bounds is also used to speed up the algorithm (Baldacci et

al. 2011, Martinelli et al. 2014). For each cluster C, we let NC be the set of clusters

that can be remembered by C and define Π` as follows:

Π` =

{
Ci ∈ P` \ {C`} : Ci ∈

⋂̀
s=i+1

NCs

}
∪ {C`} (2.5)

In order to obtain shortest elementary paths, NC of clusters are updated iter-

atively. First, the DP algorithm is solved with NC = ∅ for any cluster C. If an

optimal solution of the DP algorithm has cycles, then for each cycle denoted by

C = {X, . . . , X}, the repeated cluster X is added to NC for all C ∈ C. After updating
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NC for all clusters, the DP algorithm is solved iteratively until an optimal elementary

shortest path is obtained.

2.3.3 Heuristic Dynamic Programming Schemes

Solving the pricing subproblem using the DP algorithm can be computationally

onerous for certain problem instances. The computational burden can be deemed to

be unjustified, noting that many of the hard-to-construct columns will not ultimately

be included in an optimal LP solution of the RMP. This is specially true at the initial

iterations of the CG procedure. The computational efficiency of the BCP algorithm

can, therefore, be improved by using a heuristic variant of the DP algorithm to solve

the CG pricing subproblem. If the heuristic DP fails to produce a column having a

negative reduced cost, one can then resort to using the exact DP algorithm. Such

alternations between using heuristic and exact DP algorithm for solving the subprob-

lem has been reported to be computationally beneficial in a variety of applications

(e.g., Dell’Amico et al. 2006, Martinelli et al. 2014; Ghoniem et al. 2015).

To accelerate the solution of the pricing subproblem, two heuristic variants of

the DP algorithm, denoted by H1 and H2, are proposed. For Heuristic H1, at each

iteration of the CG procedure, Condition (ii) of the dominance rule (in Section 2.3.2)

is relaxed. For Heuristic H2, instead of extending a label to all other clusters (as in

the exact DP), it is only extended to 50% of these clusters, focusing on the nearest

ones only. The average cost of all the edges between two clusters is used to measure

the nearness of two clusters. If Heuristic H1 fails to construct a column having a

negative reduced cost, Heuristic H2 is invoked. If Heuristic H2 fails, the exact DP

algorithm is invoked. Up to 40 columns having the most negative reduced costs are

added to the RMP.
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2.4. Computational Study

In this section, we examine the computational performance of the proposed BCP

algorithm and compare it against the BC algorithm by Bektas et al. (2011). The

proposed algorithm was implemented in C# under visual studio. All runs were per-

formed on a PC with Intel Core i7-2600 3.40 GHz CPU and 12 GB RAM. Following

Bektas et al. (2011), a time limit of 7200 CPU seconds was imposed on all runs.

In our computational study, two types of instances are considered which are respec-

tively referred to as base benchmark instances and instances with randomly generated

clusters, as described in Section 2.4.1. Results for these two types of instances are

reported and discussed in Sections 2.4.2 and 2.4.3, respectively.

2.4.1 Problem Instances

Base benchmark instances and instances with random clustering have been con-

structed as follows:

• Base Benchmark Instances. The benchmark instances in Bektas et al.

(2011) were constructed from CVRP instances using the clustering technique

in Fischetti et al. (1997). Specifically, three sets are considered – Sets A, B,

and P – from the CVRP-library, with a number of vertices ranging from 16

to 101. The name of each instance follows the format X-nY-kZ-CΩ-VΦ, where

X specifies the set, Y the number of vertices, Z the number of vehicles in the

original CVRP instance, Ω the number of clusters, and Φ the number of vehicles

in the GVRP instance. For any CVRP instance with n vertices, a GVRP in-

stance was constructed with m = dn/θe clusters, where θ = 2 and θ = 3. First,

m customers, as distant from one another, are selected as the center of the m

clusters. Each remaining customer is then assigned to its “nearest” cluster such

that the cost between the customer and the cluster center is minimal. Demand

of each cluster C is calculated as qc = 1
m

∑
i∈C ωi, where ωi is the demand of
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customer i in the original CVRP instance. Finally, a bin-packing problems is

solved to determine the number of vehicles in the GVRP instance.

• Instances with Random Clustering. In order to investigate the effect of

clustering on the difficulty of instances for their BC algorithm, Bektas et al.

(2011) also generated instances where customers are randomly assigned to clus-

ters without proximity or cost considerations. In generating such instances,

Bektas et al. (2011) only considered instances with n ≤ 45 and θ = 2. However,

because these instances are not publicly available, we independently generated

similar instances following the aforementioned scheme for Sets A, B, and P with

n ≤ 45 and with θ = 2 and θ = 3.

2.4.2 Results for Benchmark Instances

Tables 2.1 and 2.2 compare the results of the proposed BCP algorithm for θ = 2

and θ = 3, respectively, against those reported by Bektas et al. (2011) for their BC

algorithm. In both tables, column UB provides the best (possibly optimal) solution

found within the pre-specified time limit of 7200 CPU seconds. Column LB-0 reports

the lower bound at the root node of both algorithms (after adding cuts). Columns

BB and CPU respectively report the number of branch-and-bound nodes explored

and the CPU time in seconds.

Because the two algorithms were implemented under different computing plat-

forms, our discussion cannot involve an instance-by-instance comparison of CPU

times. Rather, it focuses on the relative efficiency with which either methodology

solved to optimality certain subsets of instances. In our discussion, we deem an in-

stance to be challenging for a particular methodology if it requires over 600 CPU

seconds.

Results for θ = 2
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The BCP algorithm solved to optimality 5 instances that were previously open in

the literature. All of these instances were solved within about 370 CPU seconds and

one of them in particular, Instance P-n55-k15-C28-V8, was solved at the root node of

the BCP algorithm within 2 CPU seconds. It, however, failed to solve to optimality 3

instances that were solved by the BC algorithm. Only one instance (A-n80-k10-C40-

V5) remains unsolved using either methodology. The following detailed observations

are made for Sets A, B, and P:

• Except for Instance A-n80-k10-C40-V5, the BCP algorithm solved all instances

of Set A within 364 CPU seconds. On the other hand, the BC algorithm failed

to solve 2 instances in this set (A-n63-k9-C21-V3 and A-n80-k10-C40-V5) and

required a substantial computational effort (over 600 CPU seconds) for 4 other

instances.

• Both the BC and BCP algorithms solved all instances in set B to optimality

within 2 CPU hours. Except for Instance B-n50-k8-C25-V5, the BC algorithm

solved all instances of set B within 249 CPU seconds. On the other hand,

instances of Set B were relatively more challenging for the BCP algorithm as it

solved 5 of them to optimality in over 600 CPU seconds.

• For set P, the results are also mixed. The BC algorithm failed to solve 4

instances, namely, P-n50-k8-C25-V4, P-n55-k15-C28-V8, P-n60-k10-C30-V5, P-

n60-k15-C30-V8, which the BCP algorithm could solve to optimality within 373

CPU seconds. There are 3 other instances that required over 600 CPU seconds

for the BC algorithm, but were solved to optimality with the BCP algorithm

within 141 CPU seconds. Furthermore, the BCP algorithm failed to solve 3

instances of set P, namely, P-n101-k4-C51-V2, P-n76-k4-C38-V2, and P-n76-

k5-C38-V3, whereas the BC algorithm solved them within 169 CPU seconds.
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The root node lower bound obtained by the BCP algorithm is systematically tighter

than those reported for the BC algorithm. For 59% of instances, the lower bound

obtained by the BCP algorithm is optimal. Moreover, the average duality gap at the

root node of the BCP algorithm is 0.3%, compared to 2.64% for the BC algorithm.

Results for θ = 3

For θ = 3, the BCP algorithm has solved to optimality 3 instances that were

previously open in the literature. On the other hand, it failed to solve 3 instances

that were solved to optimality by the BC algorithm. A summary of our observations

for Sets A, B, and P follows.

• All the instances of set A are solved by the BCP algorithm within 356 CPU

seconds, whereas the BC algorithm failed to solve 2 of these instances, namely,

A-n63-k9-C21-V3 and A-n80-k10-C27-V4, with 2 CPU hours. Further, the BC

algorithm solved 3 other instances in Set A in more than 600 CPU seconds.

• All instances in Set B are equally easy for both algorithms and were all solved

to optimally under 472 CPU seconds.

• For Set P, the results are again mixed. The BCP algorithm failed to solve 2

instances, namely, P-n76-k4-C26-V2 and P-n76-k5-C26-V2, within the allocated

time limit, whereas the BC algorithm solved them within 122 CPU seconds. The

BCP algorithm also failed to solve Instance P-n101-k4-C34-V2 was solved by the

BC algorithm within 6582 CPU seconds. On the other hand, the BC algorithm

failed to solve Instance P-n60-k15-C20-V5 within 2 CPU hours, whereas the

BCP algorithm solved it at the root node within 1.7 CPU seconds.

The BCP algorithm exhibits an average duality gap of 0.26% at the root node, en-

abling optimal solutions to 64% of the instances at the root node itself. In contrast,
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the average duality gap at root node of the BC algorithm is 4.47% and only 15% of

the instances were solved at the root node itself.

It is apparent from the aforementioned observations that the two methodologies

“complement” one another from a computational viewpoint. Many instances that

were difficult for one algorithm (i.e., requiring a substantial computational effort)

were solved by the other in only a few CPU seconds. In particular, for instances that

were formerly solved in a split of one CPU second by the BC algorithm of Bektas et al.

(2011), casting the problem as a set partitioning formulation that is solved by a BCP

algorithm may not be worthwhile. It has been pointed by Fukasawa et al. (2006)

and Baldacci et al. (2008) that the tighter lower bounds obtained by solving set

partitioning reformulations may not be worth the inherent computational effort that

accompanies column generation techniques. This is especially the case for instances

that present a high level of degeneracy, causing a slowdown in the CG procedure. For

such instances, the BC algorithm is found to perform better. Conversely, the benefit

of employing the BCP and generating tighter root-node dual bounds is realized for

the instances that were more challenging to the BC algorithm.

2.4.3 Results for Instances with Random Clustering

Table 2.3 compares the performance of the BCP algorithm against the BC algo-

rithm for instances with random clustering using θ = 2. Table 2.4 presents only the

performance of the BCP algorithm for θ = 3 as such results were not reported by

Bektas et al. (2011). In these two tables, we report the average performance over Sets

A, B, and P. We also report, under Column #Opt, the number of instances that were

solved to optimality within 7200 CPU seconds time limit. Since the random instances

of Bektas et al. (2011) are not publicly available, we generated, for every instance,

three randomly clustered instances and reported average performances. As pointed

out by Bektas et al. (2011), it is apparent from results in Table 2.3 that instances

with random clustering are significantly more difficult for the BC algorithm than the
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Table 2.1: Computational results for θ = 2

Branch-and-Cut Branch-and-Cut-and-Price
Instance UB LB-0 BB CPU UB LB-0 BB CPU
A-n32-k5-C16-V2 519 474.00 1847 113.2 519 516.67 3 38.6
A-n33-k5-C17-V3 451 437.69 38 1.6 451 451.00 1 3.3
A-n33-k6-C17-V3 465 462.12 5 0.7 465 465.00 1 1.4
A-n34-k5-C17-V3 489 486.36 5 0.8 489 489.00 1 3.6
A-n36-k5-C18-V2 505 480.21 612 31.5 505 505.00 1 21.4
A-n37-k5-C19-V3 432 430.40 1 0.8 432 432.00 1 23.5
A-n37-k6-C19-V3 584 559.04 264 28.2 584 584.00 1 6.4
A-n38-k5-C19-V3 476 463.22 27 3.0 476 476.00 1 5.5
A-n39-k5-C20-V3 557 530.58 544 45.6 544 544.00 1 11.5
A-n39-k6-C20-V3 544 525.80 42 4.9 608 608.00 1 6.8
A-n44-k6-C22-V3 608 572.33 210 23.2 608 608.00 1 6.9
A-n45-k6-C23-V4 613 595.67 112 6.8 613 608.40 9 35.4
A-n45-k7-C23-V4 674 630.86 3184 1465.2 674 663.21 53 141.2
A-n46-k7-C23-V4 593 573.95 43 10.2 593 591.58 3 28.9
A-n48-k7-C24-V4 667 630.35 1829 299.8 667 654.12 69 147.1
A-n53-k7-C27-V4 603 589.48 40 15.9 603 603.00 1 69.1
A-n54-k7-C27-V4 690 665.31 372 68.3 690 690.00 1 35.9
A-n55-k9-C28-V5 699 668.04 577 82.6 699 699.00 1 13.2
A-n60-k9-C30-V5 769 750.75 215 75.6 769 769.00 1 48.2
A-n61-k9-C31-V5 638 621.03 243 43.7 638 635.50 5 56.5
A-n62-k8-C31-V4 740 722.34 210 122.7 740 740.00 1 181.2
A-n63-k10-C32-V5 801 759.56 5430 4355.2 801 794.04 29 215.9
A-n63-k9-C32-V5 - 864.77 4749 7200.1 912 907.00 11 274.5
A-n64-k9-C32-V5 763 733.94 1831 1204.3 763 763.00 1 333.2
A-n65-k9-C33-V5 682 665.09 54 29.0 682 681.22 3 82.5
A-n69-k9-C35-V5 680 648.02 2569 817.9 680 672.49 29 363.6
A-n80-k10-C40-V5 998 916.09 4487 7200.0 997 984.22 1 7200.0
B-n31-k5-C16-V3 441 441.00 0 0.1 441 441.00 1 3.0
B-n34-k5-C17-V3 472 472.00 0 0.1 472 472.00 1 15.4
B-n35-k5-C18-V3 626 626.00 0 0.1 626 626.00 1 33.2
B-n38-k6-C19-V3 451 450.82 3 0.7 451 451.00 1 20.1
B-n39-k5-C20-V3 357 356.50 2 0.2 357 357.00 1 72.9
B-n41-k6-C21-V3 481 472.19 79 2.6 481 481.00 1 14.3
B-n43-k6-C22-V3 483 472.11 82 9.2 483 481.86 3 91.3
B-n44-k7-C22-V4 540 537.08 17 3.3 540 540.00 1 26.3
B-n45-k5-C23-V3 497 496.62 5 0.6 497 497.00 1 183.3
B-n45-k6-C23-V4 478 466.72 717 53.7 478 474.50 23 194.7
B-n50-k7-C25-V4 449 446.29 23 0.6 449 449.00 1 109.9
B-n50-k8-C25-V5 916 890.86 7180 3249.2 916 912.14 11 94.4
B-n51-k7-C26-V4 651 650.51 4 0.4 651 651.00 1 141.3
B-n52-k7-C26-V4 450 450.00 0 0.1 450 450.00 1 277.1
B-n56-k7-C28-V4 486 483.44 18 3.0 486 486.00 1 389.5
B-n57-k7-C29-V4 751 748.43 21 1.8 751 751.00 1 370.2
B-n57-k9-C29-V5 942 933.43 115 22.0 942 942.00 1 53.8
B-n63-k10-C32-V5 816 806.70 75 12.2 816 809.00 19 635.4
B-n64-k9-C32-V5 509 507.80 3 0.8 509 509.00 1 837.8
B-n66-k9-C33-V5 808 802.43 34 14.4 808 808.00 1 395.1
B-n67-k10-C34-V5 673 663.37 229 35.8 673 667.11 41 790.7
B-n68-k9-C34-V5 704 700.92 27 9.2 704 704.00 1 1395.9
B-n78-k10-C39-V5 803 791.44 570 248.2 803 803.00 1 726.6
P-n101-k4-C51-V2 455 442.87 647 169.2 470 - 1 7200.0
P-n16-k8-C8-V5 239 239.00 0 0.0 239 239.00 1 0.2
P-n19-k2-C10-V2 147 147.00 0 0.0 147 147.00 1 0.7
P-n20-k2-C10-V2 154 154.00 0 0.0 154 154.00 1 1.2
P-n21-k2-C11-V2 160 160.00 0 0.0 160 160.00 1 3.7
P-n22-k2-C11-V2 162 160.65 3 0.1 162 162.00 1 4.4
P-n22-k8-C11-V5 314 314.00 0 0.0 314 313.00 3 0.0
P-n23-k8-C12-V5 312 303.10 17 0.8 312 312.00 1 0.0
P-n40-k5-C20-V3 294 284.32 29 2.1 294 294.00 1 31.4
P-n45-k5-C23-V3 337 330.84 16 2.2 337 337.00 1 103.9
P-n50-k10-C25-V5 410 377.97 2715 1162.9 410 407.36 9 16.5
P-n50-k7-C25-V4 353 337.11 387 26.7 353 350.49 13 75.2
P-n50-k8-C25-V4 - 342.80 9514 7200.1 392 386.00 17 101.1
P-n51-k10-C26-V6 427 405.14 213 38.8 427 427.00 1 1.6
P-n55-k10-C28-V5 415 387.72 4623 1536.7 415 411.94 13 79.3
P-n55-k15-C28-V8 - 508.65 4537 7200.1 555 555.00 1 1.4
P-n55-k7-C28-V4 361 342.69 967 125.2 361 355.44 21 173.5
P-n55-k8-C28-V4 361 347.79 359 38.9 361 359.22 13 134.6
P-n60-k10-C30-V5 - 406.04 7048 7200.1 445 434.91 139 372.2
P-n60-k15-C30-V8 - 522.22 5122 7200.2 565 564.75 3 4.3
P-n65-k10-C33-V5 487 461.28 2951 1805.5 487 485.22 7 140.3
P-n70-k10-C35-V5 485 468.80 405 175.8 485 485.00 1 71.1
P-n76-k4-C38-V2 383 374.86 108 25.8 411 - 1 7200.0
P-n76-k5-C38-V3 405 396.56 108 16.2 409 - 1 7200.0
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Table 2.2: Computational results for θ = 3

Branch-and-Cut Branch-and-Cut-and-Price
Instance UB LB-0 BB CPU UB LB-0 BB CPU
A-n32-k5-C11-V2 386 380.33 5 0.1 386 382.33 3 1.4
A-n33-k5-C11-V2 315 306.80 7 0.5 315 315.00 1 0.7
A-n33-k6-C11-V2 370 355.12 23 1.2 370 370.00 1 0.2
A-n34-k5-C12-V2 419 408.14 26 1.7 419 415.50 5 1.9
A-n36-k5-C12-V2 396 367.30 81 1.3 396 385.63 17 15.5
A-n37-k5-C13-V2 347 344.43 3 0.7 347 347.00 1 16.0
A-n37-k6-C13-V2 431 390.83 309 19.4 431 431.00 1 0.8
A-n38-k5-C13-V2 367 362.94 3 0.7 367 367.00 1 0.5
A-n39-k5-C13-V2 364 331.71 150 4.6 403 403.00 1 3.9
A-n39-k6-C13-V2 403 388.92 5 1.2 403 403.00 1 2.0
A-n44-k6-C15-V2 503 448.92 2019 323.7 503 503.00 1 2.3
A-n45-k6-C15-V3 474 449.68 46 2.9 474 474.00 1 2.6
A-n45-k7-C15-V3 475 451.43 69 7.4 475 475.00 1 3.1
A-n46-k7-C16-V3 462 424.22 349 22.7 462 461.50 5 11.0
A-n48-k7-C16-V3 451 421.72 304 19.0 451 451.00 1 7.0
A-n53-k7-C18-V3 440 417.52 85 5.9 440 440.00 1 46.2
A-n54-k7-C18-V3 482 441.93 430 57.4 482 482.00 1 10.7
A-n55-k9-C19-V3 473 453.69 72 14.1 473 473.00 1 5.5
A-n60-k9-C20-V3 595 543.49 2884 885.2 595 593.50 3 40.5
A-n61-k9-C21-V4 473 445.40 160 14.5 473 473.00 1 8.0
A-n62-k8-C21-V3 596 556.00 2532 859.6 596 594.77 3 57.5
A-n63-k10-C21-V4 593 550.22 1541 279.7 593 592.32 5 13.8
A-n63-k9-C21-V3 - 578.91 8483 7200.1 642 636.33 9 67.4
A-n64-k9-C22-V3 536 516.09 79 22.4 536 536.00 1 146.7
A-n65-k9-C22-V3 500 465.19 174 21.9 500 500.00 1 9.9
A-n69-k9-C23-V3 520 464.76 10201 4752.4 520 520.00 1 20.6
A-n80-k10-C27-V4 - 629.97 4813 7200.1 710 709.27 3 355.3
B-n31-k5-C11-V2 356 355.92 2 0.2 356 354.50 7 1.8
B-n34-k5-C12-V2 369 369.00 0 0.0 369 369.00 1 3.8
B-n35-k5-C12-V2 501 500.74 1 0.2 501 501.00 1 1.6
B-n38-k6-C13-V2 370 362.76 33 1.3 370 370.00 1 1.1
B-n39-k5-C13-V2 280 280.00 0 0.0 280 280.00 1 26.4
B-n41-k6-C14-V2 407 402.72 14 1.0 407 407.00 1 7.9
B-n43-k6-C15-V2 343 343.00 0 0.6 343 343.00 1 7.5
B-n44-k7-C15-V3 395 388.43 41 1.5 395 394.33 5 7.5
B-n45-k5-C15-V2 410 409.25 6 0.9 410 410.00 1 25.5
B-n45-k6-C15-V2 336 332.35 24 4.8 336 336.00 1 5.5
B-n50-k7-C17-V3 393 393.00 0 0.2 393 393.00 1 32.7
B-n50-k8-C17-V3 598 581.34 250 29.4 598 598.00 1 8.0
B-n51-k7-C17-V3 511 510.87 4 0.4 511 511.00 1 10.8
B-n52-k7-C18-V3 359 359.00 0 0.0 359 359.00 1 20.8
B-n56-k7-C19-V3 356 342.98 656 23.5 356 355.50 7 317.4
B-n57-k7-C19-V3 558 558.00 0 0.9 558 558.00 1 42.1
B-n57-k9-C19-V3 681 664.30 2699 471.6 558 558.00 1 42.8
B-n63-k10-C21-V3 599 591.23 65 11.3 599 599.00 1 15.0
B-n64-k9-C22-V4 452 448.37 26 2.4 452 452.00 1 17.7
B-n66-k9-C22-V3 609 585.52 1063 103.5 609 593.00 77 445.4
B-n67-k10-C23-V4 558 551.24 72 7.2 558 551.00 43 96.3
B-n68-k9-C23-V3 523 507.79 1250 110.0 523 523.00 1 98.4
B-n78-k10-C26-V4 606 601.06 11 8.5 606 606.00 1 32.8
P-n101-k4-C34-V2 370 344.87 13879 6581.8 402 - 1 7200.0
P-n16-k8-C6-V4 170 170.00 0 0.0 170 170.00 1 0.2
P-n19-k2-C7-V1 111 111.00 0 0.0 111 111.00 1 0.1
P-n20-k2-C7-V1 117 113.81 7 0.2 117 117.00 1 0.2
P-n21-k2-C7-V1 117 115.69 1 0.2 117 117.00 1 0.2
P-n22-k2-C8-V1 111 111.00 0 0.1 111 111.00 1 0.6
P-n22-k8-C8-V4 249 249.00 0 0.1 249 249.00 1 0.0
P-n23-k8-C8-V3 174 174.00 0 0.1 174 174.00 1 0.0
P-n40-k5-C14-V2 213 208.35 12 1.1 213 212.00 3 10.3
P-n45-k5-C15-V2 238 210.76 230 11.1 238 237.67 3 16.8
P-n50-k10-C17-V4 292 277.41 40 5.0 292 292.00 1 0.8
P-n50-k7-C17-V3 261 246.92 110 6.4 261 259.00 9 57.7
P-n50-k8-C17-V3 262 248.55 53 7.4 262 262.00 1 1.3
P-n51-k10-C17-V4 309 272.36 1483 117.6 309 305.50 11 5.3
P-n55-k10-C19-V4 301 280.48 217 18.1 301 301.00 1 4.1
P-n55-k15-C19-V6 378 350.60 195 36.0 378 378.00 1 0.1
P-n55-k7-C19-V3 271 243.81 819 78.2 271 267.00 15 92.4
P-n55-k8-C19-V3 274 247.11 580 53.6 274 271.29 13 75.3
P-n60-k10-C20-V4 325 298.82 227 282.7 325 320.67 27 24.9
P-n60-k15-C20-V5 - 337.95 11507 7200.0 382 381.55 3 1.7
P-n65-k10-C22-V4 372 338.33 4237 1028.2 372 369.39 7 25.5
P-n70-k10-C24-V4 385 354.46 5541 1468.3 385 382.52 17 87.0
P-n76-k4-C26-V2 309 287.90 840 122.5 309 - 1 7200.0
P-n76-k5-C26-V2 309 287.03 561 90.1 309 - 1 7200.0
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Table 2.3: Effect of random clustering on difficulty of instances for θ = 2

Branch-and-Cut Branch-and-Cut-and-Price

Base Random Base Random
Type CPU BB #Opt CPU BB #Opt CPU BB #Opt CPU BB #Opt
A 132.7 530.1 13/13 487.9 1504.9 13/13 23.5 5.8 13/13 176.6 18.7 13/13
B 7.1 90.5 10/10 5653.1 10175.4 2/10 23.5 5.8 10/10 1111.3 10.3 8/10
P 0.6 7.2 9/9 1.5 21.4 9/9 22.9 1.2 9/9 62.9 3.0 9/9

Table 2.4: Effect of random clustering on difficulty of instances for θ = 3

Branch-and-Cut-and-Price

Base Random
Type CPU BB #Opt CPU BB #Opt
A 3.9 2.7 13/13 73.0 4.5 13/13
B 8.9 2.0 10/10 256.9 2.6 10/10
P 8.9 2.0 9/9 46.3 2.1 9/9

base benchmark instances generated using the clustering technique of Fischetti et al.

(1997). It is particularly noteworthy for instances in set B. Whereas these instances

were easy for the BC algorithm (see Tables 2.1 and 2.2), the BC algorithm could

solve to optimality only 2/10 of the randomly generated ones. Instances with random

clustering are also more challenging for the BCP algorithm, though one could argue

that there is a less marked difficulty for the latter. In fact, the BCP had greater

success with instances in Set B and solved 8/10 instances to optimality. For instances

constructed with θ = 3, the results in Table 2.4 highlight the difficulty caused by

randomly clustering customers. However, all such instances were solved to optimality

using the BCP algorithm, despite the relative CPU time increase compared to their

base counterparts.
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2.5. Conclusion

This chapter develops an exact solution approach to the GVRP, a variant of the

vehicle routing problem where customers are partitioned into clusters and exactly one

customer in each cluster must be visited by a single route, subject to route capacity

constraints. The proposed branch-and-cut-and-price algorithm yields promising com-

putational results for benchmark instances. In particular, it has solved to optimality

eight instances from the literature that were otherwise open to date. The algorithm

employs, at its heart, a dynamic programming-based approach to solve the column

generation pricing subproblem.

The computational performance of the branch-and-cut-and-price algorithm has

been compared against that of a state-of-the-art branch-and-cut algorithm (Bektas

et al. 2011). In our experience, no algorithm consistently outperformed the other

over the considered testbed of benchmark instances, which comprised instances where

customers are clustered either based on proximity considerations or using a random

clustering scheme. What is perhaps more remarkable is that the two algorithms

tend to “complement one another” computationally in the sense that many instances

that were harder to solve using the branch-and-cut algorithm were efficiently solved

using the proposed branch-and-cut-and-price algorithm, and vice versa. Further, for

instances with random customer clustering, the proposed branch-and-cut-and-price

algorithm was found to perform overall better than the branch-and-cut algorithm.

Whereas the incorporation of rounded capacity inequalities was found to be most

useful for the branch-and-cut-and-price algorithm, it would be worthwhile to further

identify other computationally beneficial types of cuts that can enhance both branch-

and-cut and branch-and-cut-and-price algorithms. The single instance that remains

unsolved by these two methodologies to date, namely Instance A-n80-k10-C40-V5,

can serve as a motivation for such future developments.
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CHAPTER 3

A MULTI-START OPTIMIZATION-BASED HEURISTIC
FOR A FOOD BANK DISTRIBUTION PROBLEM

In this chapter, we investigate a variant of the Vehicle Routing-Allocation Problem

that arises in the distribution of pallets of goods by a food bank to a network of

relatively distant nonprofit organizations. Vehicles are routed to selected intermediate

delivery sites to which the nonprofit organizations travel to collect their demand. The

logistical cost is shared and the objective is to minimize a weighted average of the

food bank vehicle routing cost and the travel cost of the nonprofit organizations. We

develop an efficient multi-start heuristic that iteratively constructs initial solutions to

this problem and subsequently explores their neighborhoods via local improvement

and perturbation schemes. In our experience, the proposed heuristic substantially

outperforms alternative optimization-based heuristics in the literature in terms of the

solution quality and computational efficiency and consistently yields solutions with

an optimality gap of 0.5% on average.

3.1. Introduction and Motivation

“We have the means; We have the capacity to eliminate hunger from the
face of the earth in our lifetime. We need only the will.” (John F. Kennedy,
1963)

Poverty, hunger, malnutrition, and disease are linked in a vicious cycle that con-

tinues to affect millions of lives worldwide. While there is enough food to entirely

sustain the world population, over 800 million people have inadequate access to food
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and are undernourished (Uvin 1994; Soubbotina 2004). Although more severe in

developing nations, the devastating effect of hunger causes great societal concern in

high-income nations as well (Feeding America 2015). The British Medical Journal

indicated in 2013 that hunger in the United Kingdom had reached a state of “public

health emergency.” Likewise, recent statistics suggest that 17.6 million households –

nearly 1 in 7 people – in the USA are food insecure (World Hunger 2015). Food banks

and other nonprofit organizations play an important role in collecting and distributing

goods to needy individuals directly or via local agencies that serve local communities.

This can include a large network of shelters, food pantries, and soup kitchens that

are supported by food banks. Due to the recurrent demand by these local agencies

and their geographical spread, food bank delivery operations need efficient planning

in order to reduce the associated logistical cost. We consider in particular the Vehicle

Routing with Demand Allocation Problem (VRDAP) introduced in Ghoniem et al.

(2013) in the context of food bank distribution operations.

Ghoniem et al. (2013) compared two optimization-based techniques for the VR-

DAP: (i) A relax-and-fix heuristic with symmetry-defeating constraints and (ii) a

column generation (CG) heuristic with a compalmentary column generation feature

(Ghoniem and Sherali, 2009). However, the CG approach exhibited a well-known

tailing-off effect and both methodologies became computationally onerous for in-

stances involving up to 10 delivery sites and 50 customers. Further, Solak et al.

(2014) tackled instances of the VDRAP with up to 25 delivery sites and 50 customers

using a classical Benders decomposition heuristic and a logic-based Benders decompo-

sition. Similarly, although the reported results compared favorably against CPLEX

within a time limit of one CPU hour, both Benders decomposition approaches exhib-

ited a slow convergence.

The objective of this chapter is to develop an optimization-based heuristic that

overcomes the limitations of CG and Benders decomposition approaches by improving
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upon the solution quality and significantly reducing the computational effort. Solving

the VRDAP involves the optimization of the following intertwined decisions: (i) Se-

lecting a subset of delivery sites from a set of candidate locations; (ii) assigning every

customer to a selected delivery site; and (iii) routing vehicles to supply customers at

their designated delivery sites. The integrated nature of the problem makes two-step

heuristics (of the type assign customers first, route second) particularly ineffective.

In fact, an enhancement in the customer assignment cost is often accompanied by

an increase in the routing cost, and vice versa. Consequently, this also limits the

applicability of classical VRP heuristics to the VRDAP. Although optimization de-

composition techniques based on CG or Benders decomposition capture the integrated

nature of the problem, their slow convergence constitutes a disadvantage.

This chapter proposes a multi-start heuristic for VRDAP that yields near-optimal

solutions (with a 0.5% optimality gap on average) within a few CPU seconds, as

opposed to one CPU hour for decomposition-based heuristics in the literature. The

heuristic overcomes the challenge posed by this integrated problem by coordinating

two complementary subproblems and iteratively exploring better routing and cus-

tomer assignment decisions. At each start of the heuristic, a new allocation of cus-

tomers to delivery sites is enforced, thereby reducing the problem to a capacitated

VRP (CVRP) which is subsequently solved using a CVRP heuristic.

The remainder of this chapter is organized as follows. Section 3.2 presents the

overall heuristic and the initialization procedure it employs. Local search and pertur-

bation procedures that enable the exploration of solution neighborhoods are described

in Section 3.3. Computational results are discussed in Section 3.4 and Section 3.5

concludes this chapter with a summary of our findings.
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3.2. Multi-Start Heuristic

In this section, we introduce our notation along with a formal problem statement.

This is followed by an overall description of the proposed heuristic and a detailed

description of the initialization procedure.

3.2.1 Notation and Problem Statement

We consider a set V of identical vehicles having a capacity of Q (pallets). All

the vehicles are initially located at a central depot, denoted by node 0. Any vehicle

tour starts at the depot, sequentially visits a subset of delivery sites selected from a

set of candidate locations, S, where it delivers a load of food pallets, and returns to

the depot. Following Ghoniem et al. (2013) and Solak et al. (2014), it is assumed

that during any planning instance any delivery site can be used at most once. That

is, it can be included in no more than one vehicle tour. Because delivery sites are

not owned by the food bank, but rather by retailers or religious organizations that

give access to their parking lots for charitable purposes, this assumption limits and

balances the use of these facilities. Each customer k ∈ K expresses a demand of dk

pallets which must be picked up from a designated delivery site. The VRDAP aims

at constructing a maximum of |V | tours that minimize the weighted average of the

vehicle routing and customer assignment/travel costs. Our notation is summarized

as follows:

• S: Set of candidate delivery sites.

• N ≡ S ∪ {0}: Set of delivery sites and central depot.

• K: Set of customers.

• V : Set of vehicle tours.

• A: Set of all arcs (i, j), i, j ∈ N, i 6= j, that can be included in a vehicle tour.
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• cij: Cost of arc (i, j) ∈ A.

• fkj: Cost for customer k to travel to delivery site j, ∀k ∈ K, j ∈ N .

• dk: Demand of customer ∀k ∈ K.

• Q: Vehicle capacity.

We also assign a weight of λ and (1 - λ) for the vehicle routing and customer as-

signment costs, respectively, where λ ∈ [0, 1]. To place equal or greater emphasis on

either cost, every instance in our computational study is run using λ = 0.25, 0.5, or

0.75.

3.2.2 Overall Algorithm

To overcome the challenges posed by the interdependence of vehicle routing and

customer assignment decisions in the VRDAP a multi-start scheme is employed along

with local search procedures and perturbation mechanisms which enable a good explo-

ration of the feasible space and solution neighborhoods. The proposed heuristic rests

on the following two observations: (i) Under fixed routing decisions, it is possible to

obtain a solution completion by optimally assigning customers to delivery sites along

the pre-specified routes using a generalized assignment problem and (ii) conversely,

under a given assignment of customers to chosen delivery sites, the problem reduces

to a CVRP which can be solved to optimality or heuristically.

The overall scheme of the heuristic is provided in Algorithm 2. First, an initial

solution, denoted by π̄, is constructed. Thereafter, in each iteration in the main

loop of Algorithm 2 (lines 5-28), a new starting solution is initiated using Procedure

Start(π̄) by making random alterations to the initial solution π̄. The resulting solu-

tion πo is subsequently refined in the inner loop of Algorithm 2 (lines 9-22) using a se-

ries of local improvement and perturbation procedures, denoted by Cvrp(π), Gap(π)

and SiteRemoval(π). Procedure Cvrp(π) targets routing decision improvements,
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Algorithm 2 multi-start heuristic for vrdap
1: Comment: ω(π) is the cost of solution π
2: idleo ← 0; idle∗ ← 0
3: Construct an initial solution π̄ using Procedure Initialize()
4: π∗ ← π̄
5: while idle∗ < ∆∗ do
6: Create an altered starting solution πo by invoking Procedure Start(π̄)
7: π ← πo

8: idleo ← 0
9: while idleo < ∆o do
10: Refine routing decisions using the probabilistic Procedure Cvrp(π)
11: Refine customer assignment decisions using Procedure Gap(π)
12: Delete subset of delivery sites and re-allocate customers using Procedure SiteRemoval(π)
13: idleo ← idleo + 1
14: if ω(π) < ω(πo) then
15: idleo ← 0
16: πo ← π
17: end if
18: if idleo 6= 0 and idleo mod ξ = 0 then
19: π ← πo

20: Perturb solution randomly using Procedure Perturb(π) to escape local optima
21: end if
22: end while
23: idle∗ ← idle∗ + 1
24: if ω(πo) < ω(π∗) then
25: idle∗ ← 0
26: π∗ ← πo

27: end if
28: end while

under fixed customer assignments to delivery sites. Conversely, Procedure Gap(π)

seeks to refine customer-delivery site assignments by solving a generalized assignment

problem, under fixed routing decisions. At last, Procedure SiteRemoval(π) consid-

ers the removal of a subset of delivery sites and the re-allocation of their associated

customers. Moreover, a perturbation scheme is triggered at the end of the inner loop

in order to escape from local optima if the solution at hand did not improve over

multiple consecutive iterations. Further, if the algorithm stops if it fails to iden-

tify an improved solution over ∆∗ consecutive iterations/starts. In what follows, the

initialization procedure is discussed in Section 3.2.3 and the local improvement and

perturbation schemes are presented in Section 3.3.

3.2.3 Initialization Procedure

The first step in Algorithm 1 is to construct an initial solution. This is achieved

using Procedure Initialize() which operates in three steps. First, customers are

assigned to delivery sites using a generalized assignment problem (GAP) in a manner

that minimizes the overall customer travel cost, subject to a capacity constraint for
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any delivery site. The latter capacity constraint is implied by the vehicle capacity Q;

if a delivery site were assigned a total demand that exceeds Q, no vehicle would be

able to serve it, resulting in infeasibility. Second, under fixed customer assignment

decisions, a solution completion in the routing decisions can be obtained by solving

the corresponding CVRP heuristically. If the second step failed, a recovery step is

triggered whereby routes from the second step are fixed and customer assignments

are optimized accordingly. The three steps are detailed next.

3.2.3.1 Customer Assignment

Formally, let tks be a binary variable such that tks = 1 if and only if customer k

is assigned to delivery site s with an associated travel cost fks. An optimized assign-

ment of customers to delivery sites is obtained by solving the following generalized

assignment problem, denoted by Model GAP1:

GAP1: Minimize
∑
k∈K

∑
s∈S

fkstks (3.1a)

subject to
∑
s∈S

tks = 1 ∀k ∈ K (3.1b)

∑
k∈K

tks dk ≤ Q ∀s ∈ S (3.1c)

t binary. (3.1d)

The objective function (A.1) minimizes the total customer travel cost. Constraint

(A.2) ensures that every customer is assigned to exactly one delivery site. Constraint

(A.3) guarantees that the total customer demand allocated to any delivery site does

not exceed the vehicle capacity Q. Constraint (A.4) specifies that the t-variables

are binary. If GAP is infeasible for a given instance, it is concluded that this in-

stance itself is infeasible and the algorithm terminates. Furthermore, despite the
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NP-hardness of GAP in general, Model GAP1 solves in a split of a second for all

instances in our testbed using CPLEX 12.6. In the event some problem instances

involved computationally challenging GAPs, one could consider solving them using

the branch-and-price algorithm of Savelsbergh (1997) or a competitive heuristic.

3.2.3.2 Vehicle Routing

Upon fixing customer assignments to delivery sites in the previous step, the prob-

lem reduces to a CVRP problem in which the demand of each delivery site is the total

demand of customers assigned to it. Specifically, we solve a CVRP over the set of all

delivery sites that have at least one assigned customer, denoted by S+. The purpose

of this step is to partition the sites in S+ into no more than |V | vehicle routes. Any

route starts at the depot and sites from S+ are iteratively added to it. To illustrate,

let r = (0, ..., v) be a partial route at hand and S̃+ be the set of all sites in S+ that

can be individually added to r without violating the vehicle capacity. If S̃+ is empty,

we follow the above procedure with a new route. Otherwise, we select from S̃+ a site

that is closest to the last site in the partial route (node v). Such a node is removed

from S+ and added to r. This algorithm terminates successfully when S+ is empty

(and no more than |V | routes have been formed). Otherwise, if certain delivery sites

could not be successfully assigned to any of the |V | routes, the next step is invoked.

3.2.3.3 Solution Recovery

If the previous step failed, a solution recovery strategy is triggered to ensure that

all delivery sites in S+ are used and all the customers are assigned without violating

the capacity of vehicles. To this end, we first consider a demand of 0 for the delivery

sites of S+ and insert them in their minimum cost insertion point in the |V | tours at

hand. This provides a partitioning of all the sites in S+ into |V | routes. The routes

are fixed and all customers are assigned anew to the existing tours in a manner

that minimizes their total travel cost, subject to route capacity constraints, using a
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generalized assignment problem (similar to the one presented earlier in this section).

Note that if the problem instance at hand is feasible, then solving this generalized

assignment problem will necessarily yield an initial feasible solution. Otherwise, if

the solution recovery step fails, the problem instance itself must be infeasible and the

overall algorithm breaks.

3.3. Local Improvement & Perturbation Schemes

In this section, we describe the local improvement and perturbation schemes that

contribute to intensifying and diversifying the search in the proposed multi-start

heuristic.

3.3.1 Procedure Start

Because the initial customer assignment decisions may not guarantee global opti-

mality, the proposed algorithm iteratively alters the initial solution. Specifically, the

customer assignment decisions are altered and a new routing completion is sought.

At each start of Algorithm 1 (line 6), an altered customer assignment is considered

and is further refined in the inner loop of Algorithm 1 (lines 9-22), thereby ensuring

a diverse exploration of the feasible space.

Procedure Start(π̄) is grounded in the initial solution π̄ obtained from Procedure

Initialize(). Note that because the initial solution is based on solving a generalized

assignment problem (Model GAP1) that minimizes the total travel cost of customers

to delivery sites, it tends to include numerous delivery sites in π̄. Therefore, in each

start, procedure Start(π̄) randomly removes ψ delivery sites from π̄. The parameter

ψ itself is randomly selected with equal probability from the set Z = {0, 1, . . . κ∗|S+|},

where S+ is the set of all delivery sites visited by the solution π̄ and κ ∈ (0, 1] is an

algorithm parameter (that we set to 0.25 in our computational study). In each of the

ψ iterations, one delivery site s− is randomly removed from S+ using the following

scheme:
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• with probability of 0.25, s− is the delivery site in S+ with lowest aggregate

demand (ties are broken arbitrarily).

• with probability of 0.25, s− is the delivery site in S+ with second lowest aggre-

gate demand.

• with probability of 0.5, s− is the delivery site with ith lowest aggregate demand

where i is randomly selected from {3, 4, . . . , ψ + 2}.

After ψ iterations, the remaining delivery sites of S+ are used to form an initial

solution which will be further improved in the inner loop of algorithm. Using the

revised/reduced set S+, a solution is constructed following the scheme of Procedure

Initialize(). Specifically, a generalized assignment problem (Model GAP1) is solved

whereby the assignment of customers to delivery sites out of the set S+ is discouraged

using a large penalty.

3.3.2 CVRP Heuristic

Procedure Cvrp(π) improves the routing decision of the VRDAP solution at hand,

π, by fixing the customer assignments and solving the resulting CVRP problem. Each

delivery site s ∈ S can be viewed as a “CVRP customer” having the aggregate demand

of its assigned customers. When distances satisfy the triangle inequality, as in our

instances, delivery sites with zero demand can be removed from the resulting CVRP

problem. This CVRP problem is solved following the heuristic of De Franceschi et al.

(2006). An integer programming-based (IP) refinement procedure lies at the heart of

this heuristic and involves the following three main steps:

• Solution destruction. Let R = (0, s1, . . . , s|R|, 0) be a route in π that starts

and ends at depot (node 0). With probability of 0.5, we extract all the delivery

sites si for which i is not a divisor of 3 (i.e. (s1, s2, s4, s5, s7 . . . ). Otherwise,

with probability of 0.5, all delivery sites si for which imod 3 6= 1 are extracted
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from R (i.e. s2, s3, s5, s6, s8, . . . ). This procedure is applied to all the routes of

π and any two consecutive remaining delivery sites are connected to each other

resulting in a destructed solution.

• Column generation. The purpose of this step is to construct sequences of

delivery sites that can be inserted in the destructed solution. For this purpose,

we define an insertion point p as an edge newly formed in π due to extraction

of delivery sites. The set of extracted delivery sites associated with insertion

point p is called op. For each insertion point p, we define set σp which contains

members of op as well as the µ nearest delivery sites to members of op that are

also extracted from π. Then, we define Hp as the set of all subsets of σp that

have cardinality of one, two, or three. For each member of Hp, we construct

a sequence of the associated delivery sites that would result in a minimum

insertion cost if inserted in p.

• Reallocation IP model. The purpose of this step is to repair the destruc-

ted solution by inserting the selected sequences generated in previous step into

insertion points. To this end, an IP model is solved with the objective of mini-

mizing the insertion cost of inserted sequences while assuring that the resulting

solution is a feasible CVRP solution. Note that the resulting IP model is al-

ways feasible and its optimal solution is at least as good as π because one of the

generated sequences of each insertion point p is the sequence of delivery sites

that was originally extracted from it.

3.3.3 Procedure GAP: Optimal Assignment of Customers to Routes

Procedure Gap(π) considers an input solution π comprising R = {r1, ..., r|R|}

fixed routes and seeks an optimized assignment of customers to these routes. To

this end, a generalized assignment problem similar to Model GAP1 is solved whereby

each customer must be assigned to one of the existing |R| routes, subject to vehicle

45



capacity constraints. Here, the cost of assigning a customer k to a route r equals

min{fks|s ∈ r}. This generalized assignment problem was solved to optimality for

instances in our testbed in a fraction of one CPU second, often at the root-node of

the B&B/C algorithm of CPLEX 12.6 and, hence, causes no computational burden

in our experience.

3.3.4 Delivery Site Removal

Procedure SiteRemoval(π), delineated in Algorithm 3, seeks to improve an

input solution π by deleting certain delivery sites and reallocating their customers. For

each site s visited by π, we define rss as the estimated savings resulting from removing

s from π and connecting its predecessor and successor. The estimated increase in

assignment cost due to the reallocation of customers of s to other sites is denoted

by acs. Denoting by Ks the customers assigned to s, we let acs =
∑
k∈Ks

(fk,śk − fk,s),

where śk is the delivery site in π which is nearest to customer k. The total estimated

savings for the removal of s is defined as tss = (λ)rss − (1 − λ)acs. Procedure

SiteRemoval(π) uses this metric to assess the potential savings due to site removals.

It first identifies a site s∗ that has the largest ts value and has not yet been considered

for removal (ηs∗ = False). If s∗ has a promising estimated savings, we delete it from

the solution and resolve a generalized assignment problem in order to re-assign the

customers in Ks∗ in the updated solution. If this results in a better solution, it is saved

and the algorithm proceeds to the next iteration. Otherwise, the previous solution is

restored and s∗ will not be considered for removal in the next iterations (by setting

ηs∗ ← True).

Because tss is only an estimated savings, the removal of s is deemed promising if

tss ≥ 0 or when it is negative, but its absolute value is small enough compared to

the cost of solution π, denoted by ω(π) (i.e., |(λ)rss−(1−λ)acs|
ω(π)

< ε where ε is a small

scalar that is set to 0.02 in our computational study). If s is the only site in a route

and its removal makes the solution infeasible, it is not considered for removal. The
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Algorithm 3 Delivery site removal procedure

1: Input: Solution π
2: Comment: S+

π : Set of sites visited by π.
3: ηs ← False ∀s ∈ S+

4: π̄ ← π
5: for all s ∈ S+ do
6: rss ← Estimated saving in routing cost due to the deletion of s
7: acs ← Estimated increase in assignment cost due to the deletion of s
8: end for
9: s∗ ← arg max {(λ) rss − (1− λ) acs| s ∈ S+

π AND ηs = False}
10: while ((λ)rss∗ − (1− λ)acs∗ ≥ 0) OR ( |(λ)rss∗−(1−λ)acs∗ |

ω(π)
< ε) do

11: Extract s∗ from π̄
12: Solve Gap(π̄) to assign customers to the new solution
13: if ω(π̄) < ω(π) then
14: Remove site s∗: S+

π ← S+
π \ {s∗}

15: Update the solution: π ← π̄
16: else
17: Restore previous solution: π̄ ← π
18: Discard s∗ in future iterations: ηs∗ ← True
19: end if
20: s∗ ← arg max {(λ)rss − (1− λ)acs| s ∈ S+

π AND ηs = False}
21: end while

algorithm terminates when there is no site that has a promising ts value and has not

been checked for removal yet.

3.3.5 Solution Perturbation

After each ξ iterations of the inner loop, Procedure Perturb(π) is invoked with

the objective of altering the solution at hand, thereby escaping local optima and

ensuring a more diversified exploration of the feasible space. Procedure Perturb(π)

consists of two steps. In the first step, ρ sites are removed from the current solution

π. This task is similar to Procedure SiteRemoval(π) except that selected sites are

removed even if their removal negatively affected the quality of the solution. In the

second step, several delivery sites are inserted in the solution. Specially, let So be the

set of all delivery sites not visited by routes in the current solution π (including sites

removed in the first step). In the second step, ρ + γ sites in So are inserted in the

solution π based on their estimated cost savings.
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For each site s ∈ So, let βs be the routing cost resulting from inserting s in π

in a way that incurs a minimum routing cost. Also, let αs be the estimated savings

in assignment cost due to the insertion of s. For each k ∈ K, let sk be the delivery

site in π to which k is assigned and K̄s be the set of customers that are closer to s

than its currently assigned site sk. Accordingly, αs is estimated as
∑

k∈K̄s(fk,sk−fk,s)

and the net estimated cost savings of inserting s ∈ So is τs = αs − βs. In each of

the ρ iterations, a delivery site s∗ ∈ So having the largest τs∗ value is inserted in the

current solution at its best insertion point. As a consequence, s∗ is removed from So

and a generalized assignment problem is solved in order to assign customers to the

new solution before proceeding to the next iteration. The remaining γ delivery sites

are added as follows. In each iteration if τs∗ ≥ 0, the delivery site s∗ is inserted as

described above. Otherwise, the delivery site selection is performed probabilistically

where the probability of selecting s ∈ So equals −1/τs∑
v∈So

−1/τv
.

3.4. Computational Study

In this section, we assess the computational efficacy of the proposed heuristic and

the quality of the solutions it generates. Our heuristic solutions are compared against

the solutions obtained by solving the MIP model in the Ghoniem et al. (2013) with

a time limit of 3600 CPU seconds. Due to the probabilistic nature of the heuristic,

we report its average performance over five independent runs. The heuristic was

implemented in C# under Visual Studio and all runs were performed on a Windows

7 professional 64-bit operating system with an Intel Core i7-2600 CPU with 3.40 GHz

and 12 GB RAM desktop.

3.4.1 Description of Testbed & Algorithmic Settings

We consider two sets of instances, namely Set A and Set B, comprising 100 ran-

domly generated instances. For each instance, three runs are performed with λ =

0.25, 0.5, or 0.75, respectively, where λ and (1-λ) designate the relative weight as-
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sociated with the routing cost and the customer assignment cost. The size of an

instance is characterized by two of its primary parameters: The number of delivery

sites, |S|, and the number of customers |K|. Set A comprises 40 instances with the

following instance sizes: |S| = 10 or 25 and |K| = 20, 30, 40, or 50. Set B comprises

60 instances with |S| = 35, 40 or 50 and |K| ranging from 40 to 90. For each of the

resulting 20 (|S|, |K|) combinations, five distinct instances were constructed using the

data generation scheme in Ghoniem et al. (2013) and Solak et al. (2014) as follows.

The coordinates of customers and delivery sites were randomly generated using a uni-

form distribution in a two-dimensional Euclidean space where customers and delivery

sites are 25 to 75 miles away from the food bank depot located at the origin. The

demand of each customer is randomly generated between 1 and 5 pallets with the

following probabilities: P (“dk = 1”) = 0.5, P (“dk = 2”) = 0.2, P (“dk = 3”) = 0.1,

P (“dk = 4”) = 0.1, and P (“dk = 5”) = 0.1. Each vehicle has a capacity Q = 25

(pallets) and the total number of vehicles considered is
⌈
(
∑|K|

k=1 dk)/Q
⌉

+ 2.

Table 3.1 summarizes key parameter values in our heuristic that are obtained after

extensive computational experiments:

• ∆∗ is the maximum number of idle iterations in the main loop of Algorithm 1

(Section 3.2.2).

• ∆o is the maximum number of idle iterations in the inner loop of Algorithm 1.

• µ is the number of nearest delivery sites considered in the variable generation

scheme of Procedure Cvrp(π).

• κ is used to specify the number of extracted delivery sites in Procedure Start

(Section 3.3.1).

• ε is a tolerance value that determines whether a site can be removed in Procedure

SiteRemoval (Section 3.3.4).
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• ξ is the frequency at which the solution is perturbed in Algorithm 1.

• ρ and γ specify the number of delivery sites that are removed or added in

Procedure Perturb (Section 3.3.5).

Table 3.1: Parameter values in the proposed heuristic

∆∗ ∆o µ κ ε ξ ρ γ

3 7 d|S| ∗ 0.4e 0.25 0.02 2 d|S| ∗ 0.1e+ 2 d|S| ∗ 0.1e+ 2

3.4.2 Discussion of Results

The baseline performance of the heuristic is first discussed under equal objective

weights λ = 0.5 for the vehicle routing cost and the customer travel cost. Thereafter,

greater emphasis is placed on either of the two costs with λ = 0.25 or 0.75.

3.4.2.1 Baseline Heuristic Performance

Tables 3.2 and 3.3 report the results obtained for the proposed heuristic with

λ = 0.5 for instances in Set A and Set B, respectively. In Table 3.2, the first two

columns specify the instance size and number, respectively. Columns 3-5 report the

best feasible solution found by CPLEX within a time limit of one CPU hour, the solver

optimality gap at termination, and the CPU time (in seconds). Columns 6-9 report

the following for the proposed heuristic: (i) The best solution found over 5 runs; (ii)

Gap-UB, the gap between the average heuristic solution over five runs and the best

incumbent solution found by CPLEX whereby a negative value indicates a savings

achieved by our heuristic over CPLEX; (iii) Gap-LB, the gap between the average

heuristic solution and the lower bound obtained using the column generation scheme

in Ghoniem et al. (2013); and (iv) the CPU time (in seconds). For instances of Set B,

Gap-LB is not reported since computing the aforementioned column generation-based

lower bound was computationally impractical. For such instances, we compare the
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average heuristic solution over five runs to (i) the CPLEX incumbent (Gap-UB) and

(ii) the best heuristic solution obtained (Dev.%) to demonstrate the computational

consistency of the heuristic.

Table 3.2: Heuristic performance for Set A, λ = 0.5

CPLEX Heuristic
(|S|, |K|) Inst. UB relGap% CPU Best Gap-UB% † Gap-LB% ‡ CPU
(10, 20) 1 422 0.0 81.4 422 0.00 0.00 4.4

2 409 0.0 2.5 409 0.00 0.00 1.8
3 380 0.0 415.1 380 0.05 0.98 10.7
4 459.5 0.0 277.1 459.5 0.00 0.00 1.7
5 389.5 0.0 99.2 389.5 0.00 0.00 2.0

(10, 30) 1 534 0.0 355.1 534 0.00 0.09 3.5
2 553 0.0 17.3 553 0.00 0.00 1.8
3 490.5 0.0 1164.9 490.5 0.57 0.62 6.7
4 642 0.0 3121.3 642 0.00 0.00 9.1
5 567.5 5.7 3600.0 567.5 0.00 1.98 5.4

(10, 40) 1 731 4.4 3600.0 731 0.00 0.00 7.5
2 732.5 0.0 2084.0 732.5 0.00 0.32 3.6
3 793.5 5.9 3600.0 793.5 0.00 0.12 4.6
4 690.5 6.4 3600.0 690.5 0.93 1.72 12.6
5 737.5 7.1 3600.0 737.5 0.00 0.00 3.1

(10, 50) 1 1014.5 14.6 3600.0 996.5 -1.77 0.43 7.1
2 914 0.0 2063.6 914 0.00 0.29 7.1
3 790.5 15.7 3600.0 769.5 -2.66 0.00 4.3
4 895.5 11.6 3600.0 894.5 -0.11 0.03 10.4
5 863 8.8 3600.0 863 0.00 0.00 8.3

(25, 20) 1 340 20.7 3600.0 340 0.00 0.00 6.4
2 336 22.7 3600.0 334 -0.60 0.00 11.1
3 383 23.0 3600.0 383.5 0.68 0.99 15.5
4 342.5 21.4 3600.0 341.5 -0.29 0.74 9.7
5 337.5 20.5 3600.0 337.5 0.56 0.56 7.5

(25, 30) 1 447 16.7 3600.0 447 0.83 0.88 29.1
2 455 27.8 3600.0 448.5 -1.43 0.08 21.2
3 485.5 20.2 3600.0 482 -0.33 0.39 21.5
4 527 25.7 3600.0 527 0.00 0.00 15.1
5 574.5 43.8 3600.0 491 -14.26 0.70 30.2

(25, 40) 1 623.5 30.9 3600.0 537 -13.87 0.00 15.0
2 815.5 48.5 3600.0 597 -26.52 0.49 39.9
3 738.5 46.1 3600.0 580.5 -20.14 1.74 40.6
4 730.5 32.2 3600.0 626 -14.22 0.50 46.7
5 651.5 30.5 3600.0 593 -8.95 0.48 41.3

(25, 50) 1 996.5 49.0 3600.0 736 -26.13 0.20 46.9
2 1053 50.2 3600.0 733 -30.37 0.03 75.6
3 805.5 42.2 3600.0 661.5 -17.88 0.74 29.2
4 842 44.0 3600.0 701 -16.75 0.72 42.7
5 976 52.9 3600.0 721 -25.72 4.04 53.1

†Gap-UB: Gap between average heuristic solution and cplex incumbent after 1 CPU hour.
‡Gap-LB: Gap between average heuristic solution and CG-based LB.

For instances in Set A, CPLEX solved only 11/40 instances to optimality within

one CPU hour. For |S| = 10, the heuristic solution was obtained in 5.8 CPU sec-

onds with an optimality gap of 0.33% on average. The average heuristic solution was

at least as good as the incumbent of CPLEX in 17/20 instances and outperformed

CPLEX for 3/20 instances. For |S| = 25, the heuristic required about 30 CPU sec-

onds on average and outperformed CPLEX in 15/20 instances with an accompanying
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Table 3.3: Heuristic performance for Set B, λ = 0.5

CPLEX Heuristic Performance
(|S|, |K|) Inst. UB relGap% CPU Best Average Gap-UB% † Dev.% ‡ CPU
(35, 40) 1 589.5 31.05 3600.0 552.00 552.00 -6.36 0.00 44.4

2 662 39.86 3600.0 541.50 546.67 -17.42 0.95 43.4
3 687.5 47.3 3600.0 543.00 544.67 -20.78 0.31 43.1
4 756 47.87 3600.0 568.00 572.00 -24.34 0.70 50.4
5 655.5 39.56 3600.0 566.00 566.00 -13.65 0.00 46.6

(35, 50) 1 868 47.78 3600.0 636.00 636.00 -26.73 0.00 68.6
2 737 37.7 3600.0 629.50 629.50 -14.59 0.00 48.2
3 889 47.4 3600.0 674.50 676.33 -23.92 0.27 57.9
4 764.5 48.88 3600.0 610.00 613.17 -19.80 0.52 55.1
5 790 51.74 3600.0 634.50 636.67 -19.41 0.34 46.7

(35, 60) 1 806.5 43.91 3600.0 687.00 688.33 -14.65 0.19 75.8
2 1140.5 55.76 3600.0 741.50 744.50 -34.72 0.40 60.4
3 952 47.84 3600.0 696.00 698.67 -26.61 0.38 58.6
4 1227.5 60.38 3600.0 737.50 740.17 -39.70 0.36 60.0
5 1166.5 54.84 3600.0 795.50 798.50 -31.55 0.38 85.7

(35, 70) 1 1443.5 58.18 3600.0 859.00 864.17 -40.13 0.60 86.4
2 1238.5 54.13 3600.0 823.00 829.67 -33.01 0.81 77.9
3 1215 56.86 3600.0 758.50 764.33 -37.09 0.77 72.5
4 1563 64.1 3600.0 830.00 843.33 -46.04 1.61 77.7
5 1586.5 64.76 3600.0 801.00 807.67 -49.09 0.83 64.7

(40, 50) 1 826 47.97 3600.0 615.00 615.00 -25.54 0.00 58.7
2 669.5 40.84 3600.0 600.50 605.67 -9.53 0.86 62.2
3 894 54.12 3600.0 577.00 577.00 -35.46 0.00 43.5
4 834.5 50.64 3600.0 638.00 639.67 -23.35 0.26 66.9
5 1482.5 71.76 3600.0 652.50 652.50 -55.99 0.00 53.2

(40, 60) 1 1104 56.9 3600.0 736.00 741.63 -32.82 0.77 76.3
2 1316.5 66.17 3600.0 692.50 698.50 -46.94 0.87 72.5
3 1547.5 69.01 3600.0 688.50 690.17 -55.40 0.24 50.9
4 1324.5 62.51 3600.0 792.00 800.67 -39.55 1.09 56.6
5 1193.5 58.96 3600.0 752.00 759.50 -36.36 1.00 79.3

(40, 70) 1 1255.5 57.02 3600.0 812.00 819.33 -34.74 0.90 75.5
2 1435 63.19 3600.0 832.50 839.83 -41.48 0.88 74.3
3 1392 60.28 3600.0 823.00 826.00 -40.66 0.36 96.2
4 1213.5 59.8 3600.0 758.50 758.50 -37.49 0.00 91.7
5 1279 60.52 3600.0 795.00 798.33 -37.58 0.42 83.1

(40, 80) 1 1773.5 65.09 3600.0 955.00 955.00 -46.15 0.00 94.4
2 2535.5 77.27 3600.0 908.00 911.50 -64.05 0.39 113.6
3 2295 73.72 3600.0 948.00 953.00 -58.47 0.53 97.2
4 2042 72.97 3600.0 882.50 894.83 -56.18 1.40 81.5
5 1439.5 61.7 3600.0 904.40 909.47 -36.82 0.56 107.2

(50, 60) 1 1292.5 67.38 3600.0 655.00 658.67 -49.04 0.56 70.5
2 1356.5 67.31 3600.0 682.50 698.00 -48.54 2.27 52.0
3 1680 75.16 3600.0 684.00 687.33 -59.09 0.49 87.4
4 1541.5 72 3600.0 663.00 663.00 -56.99 0.00 73.3
5 1781.5 74.44 3600.0 746.50 751.67 -57.81 0.69 78.6

(50, 70) 1 2638 82.04 3600.0 746.00 755.33 -71.37 1.25 78.1
2 1487.5 67.45 3600.0 795.00 801.83 -46.10 0.86 73.5
3 1412 62.77 3600.0 800.00 806.83 -42.86 0.85 94.5
4 1785 74.31 3600.0 761.00 768.50 -56.95 0.99 83.6
5 1578 70.06 3600.0 774.50 780.83 -50.52 0.82 102.6

(50, 80) 1 2546.5 78.68 3600.0 872.00 872.00 -65.76 0.00 87.6
2 1885.5 71.52 3600.0 861.00 866.50 -54.04 0.64 123.2
3 1945 71.59 3600.0 926.50 928.17 -52.28 0.18 126.9
4 3007.5 83.15 3600.0 860.50 862.83 -71.31 0.27 102.1
5 2025 74.71 3600.0 865.50 868.50 -57.11 0.35 102.7

(50, 90) 1 2363 75.22 3600.0 962.00 964.67 -59.18 0.28 93.7
2 2587.5 75.16 3600.0 1028.50 1035.67 -59.97 0.70 145.2
3 3136.5 80.95 3600.0 965.00 968.50 -69.12 0.36 150.3
4 2797.5 80.19 3600.0 963.00 964.67 -65.52 0.17 137.4
5 3008.5 76.62 3600.0 1034.50 1048.40 -65.15 1.34 144.3

†Gap-UB: Gap between average heuristic solution and cplex incumbent after 1 CPU hour.
†Dev.: Deviation of average heuristic solution from best heuristic solution.
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objective value reduction of 14.5% and an optimality gap of 0.66% on average. It is

noteworthy that for similar instances, the CG scheme in Ghoniem et al. (2013) and

the Benders decomposition heuristic in Solak et al. (2014) techniques exhibited an

optimality gap between 4-9% within a time limit of one CPU hour.

CPLEX failed to solve any instance in Set B within one CPU hour. For all the

instances in this set, the average solution constructed by our heuristic was found

to significantly outperform the incumbent solution identified by CPLEX during the

time limit of CPU hour. For |S| = 35, the heuristic consumed 61.2 CPU seconds on

average and reduced the objective value of the CPLEX incumbent by 6% to 49%. In

doing so, the heuristic solutions were remarkably consistent over 5 independent runs,

yielding a deviation of 0.47% between the best and the average heuristic solutions

obtained. Likewise, for |S| = 40, the heuristic converged in 76 CPU seconds on aver-

age and produced consistent solutions with a 0.53% deviation between the best and

the average solutions. The average heuristic objective value reduced the incumbent

objective of CPLEX by 9% to 64%. At last, for |S| = 50, the heuristic yielded so-

lutions within 100 seconds on average with a 0.65% deviation between the best and

the average solutions and an objective value reduction ranging between 42% and 71%

over the incumbent objective value of CPLEX. In our experience, the first primal

bounds identified by CPLEX during the branch-and-bound/cut process are typically

poor for Set B instances and although they improve gradually over one CPU hour,

the incumbent solution remains poor and is clearly outperformed by the heuristic.

3.4.2.2 Sensitivity with Respect to Objective Weights

We also assessed the robustness of the heuristic with respect to different objective

weights for the routing vs. the customer assignment costs over instances in Sets A

and B. We set λ = 0.75, which places greater emphasis on the routing cost, and

λ = 0.25 which enforces greater importance to the customer assignment cost.
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Table 3.4: Heuristic performance for Set A, λ = 0.75

CPLEX Heuristic
(|S|, |K|) Inst. UB relGap% CPU Best Gap-UB% † Gap-LB% ‡ CPU
(10, 20) 1 316.75 0 14.7 316.75 0.00 0.00 2.9

2 317.75 0 9.6 317.75 0.00 0.00 1.9
3 303 0 17.0 303 0.00 0.00 2.0
4 365.5 0 22.4 365.5 0.00 0.00 2.7
5 372.5 0 220.2 372.5 0.00 0.00 2.7

(10, 30) 1 429.5 0 451.1 429.5 0.00 0.00 6.0
2 439 0 169.6 439 0.00 0.00 1.9
3 430.25 0 1760.3 430.25 0.00 0.00 2.3
4 471.25 0 3525.5 471.25 0.00 0.00 4.8
5 505.5 17.03 3600.0 509.75 0.84 1.15 3.8

(10, 40) 1 594.5 15.62 3600.0 591.25 -0.33 0.43 9.6
2 565.5 4.8 3600.0 565.5 1.54 1.67 3.9
3 625 13.86 3600.0 625 0.00 0.01 4.7
4 583.5 14.1 3600.0 579.75 -0.64 0.00 6.3
5 570.25 19.53 3600.0 568 -0.39 0.00 2.4

(10, 50) 1 872.75 33.26 3600.0 826.25 -5.16 0.40 14.3
2 741.5 10.86 3600.0 712.25 -3.94 0.00 10.2
3 702.5 33.79 3600.0 649 -7.62 0.00 6.6
4 813 36.1 3600.0 696.5 -12.63 1.98 8.1
5 767 30.17 3600.0 692.25 -9.75 0.00 8.5

(25, 20) 1 288.5 33.49 3600.0 277.25 -3.33 0.60 5.7
2 269.5 31.35 3600.0 269.5 0.00 0.00 4.8
3 316.25 34.4 3600.0 307.5 -2.77 0.00 7.2
4 293 38.05 3600.0 289 -1.37 0.00 8.5
5 286.75 29.43 3600.0 286.75 0.00 0.00 4.5

(25, 30) 1 401 32.14 3600.0 390 -2.74 0.00 13.2
2 444 48.29 3600.0 418.75 -5.69 0.14 10.1
3 409.5 32.42 3600.0 403 -1.59 0.49 15.2
4 523.75 49.94 3600.0 440.25 -15.94 0.26 11.6
5 532.75 58.64 3600.0 431.25 -18.98 0.09 9.8

(25, 40) 1 554.25 43.96 3600.0 486.25 -12.27 1.60 17.2
2 638 54.93 3600.0 530 -16.93 0.09 22.4
3 616 55.03 3600.0 526.5 -14.20 0.88 30.0
4 581.5 42.54 3600.0 516.25 -11.22 0.00 8.2
5 591.75 49.41 3600.0 493.5 -16.60 0.00 14.4

(25, 50) 1 786.25 56.95 3600.0 653.25 -16.92 0.40 16.3
2 958.75 65.09 3600.0 629 -34.34 0.49 30.6
3 776.25 58.77 3600.0 599.5 -22.77 0.58 39.0
4 797.25 60.56 3600.0 637.75 -20.01 0.43 32.4
5 1008.25 67.7 3600.0 648.25 -35.71 0.50 34.1

†Gap-UB: Gap between average heuristic solution and cplex incumbent after 1 CPU hour.
‡Gap-LB: Gap between average heuristic solution and CG-based LB.
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Table 3.5: Heuristic performance for Set B, λ = 0.75

CPLEX Heuristic Performance
(|S|, |K|) Inst. UB relGap% CPU Best Avg Gap-UB% † Dev.% ‡ CPU
(35, 40) 1 564.25 52.57 3600.0 467.25 469.80 -16.74 0.55 41.5

2 619.5 55.29 3600.0 488 491.35 -20.69 0.69 51.1
3 572.25 56.21 3600.0 470 470.00 -17.87 0.00 47.0
4 718.5 65.08 3600.0 496.5 496.50 -30.90 0.00 41.1
5 770.25 66.74 3600.0 491.5 494.10 -35.85 0.53 49.2

(35, 50) 1 739.25 59.29 3600.0 510 513.40 -30.55 0.67 40.0
2 661 54.55 3600.0 567 570.65 -13.67 0.64 42.5
3 830.5 67.77 3600.0 593.75 606.10 -27.02 2.08 61.7
4 1033.75 75.03 3600.0 589.75 594.10 -42.53 0.74 47.5
5 1157.5 70.69 3600.0 627.5 630.70 -45.51 0.51 44.0

(35, 60) 1 1158.75 73.51 3600.0 647.5 652.60 -43.68 0.79 62.3
2 1154.5 69.99 3600.0 647.25 654.00 -43.35 1.04 64.1
3 822.5 58.52 3600.0 614.5 621.25 -24.47 1.10 51.0
4 1007.75 67.39 3600.0 673 678.40 -32.68 0.80 52.8
5 1016 66.42 3600.0 687 690.55 -32.03 0.52 47.2

(35, 70) 1 1244.5 67.89 3600.0 752 758.20 -39.08 0.82 70.1
2 1085.25 64.7 3600.0 723.75 729.70 -32.76 0.82 59.9
3 983.5 64.81 3600.0 745.5 750.25 -23.72 0.64 100.8
4 1016 62.15 3600.0 750 754.40 -25.75 0.59 59.2
5 1056.5 63.37 3600.0 728 732.55 -30.66 0.62 53.8

(40, 50) 1 869.75 67.99 3600.0 510 510.33 -41.32 0.07 41.5
2 839.75 68.36 3600.0 566 566.00 -32.60 0.00 53.7
3 1021.25 73.59 3600.0 499.25 499.25 -51.11 0.00 47.5
4 837.5 68.06 3600.0 570 573.67 -31.50 0.64 48.5
5 1141.75 76.79 3600.0 603 604.75 -47.03 0.29 49.7

(40, 60) 1 1004.75 67.61 3600.0 624.25 627.58 -37.54 0.53 69.5
2 1123 71.69 3600.0 677 677.00 -39.72 0.00 61.0
3 1177.25 72.63 3600.0 631 631.00 -46.40 0.00 74.2
4 840.75 61.84 3600.0 683.5 685.83 -18.43 0.34 53.1
5 1108.25 71.36 3600.0 691.5 692.33 -37.53 0.12 62.2

(40, 70) 1 1218.25 69.41 3600.0 752.75 754.75 -38.05 0.27 81.5
2 1407 74.93 3600.0 723.5 725.92 -48.41 0.33 59.8
3 1284.25 71.5 3600.0 717 726.33 -43.44 1.30 80.8
4 1258.25 73.73 3600.0 735.5 747.25 -40.61 1.60 88.4
5 1113.75 68.73 3600.0 749.5 750.92 -32.58 0.19 103.1

(40, 80) 1 1313.5 68.83 3600.0 834.5 843.42 -35.79 1.07 130.6
2 1378 73.5 3600.0 844.5 847.83 -38.47 0.39 111.9
3 1869.75 79.31 3600.0 880.75 883.00 -52.77 0.26 118.0
4 1258.5 70.7 3600.0 853.25 854.58 -32.10 0.16 118.5
5 1309.5 70.83 3600.0 859.5 862.67 -34.12 0.37 115.3

(50, 60) 1 1054 71.77 3600.0 631.25 635.00 -39.75 0.59 55.2
2 1195.75 75.48 3600.0 631.5 631.50 -47.19 0.00 58.6
3 1265.5 78.1 3600.0 643.25 652.00 -48.48 1.36 55.1
4 1329 78.35 3600.0 615 616.25 -53.63 0.20 72.0
5 1274.25 76.46 3600.0 684 689.25 -45.91 0.77 59.4

(50, 70) 1 1503.5 77.63 3600.0 727.25 730.67 -51.40 0.47 66.4
2 1312.75 75.09 3600.0 720 730.08 -44.39 1.40 66.3
3 1767.25 79.92 3600.0 728.25 730.25 -58.68 0.27 61.4
4 1292.25 76.48 3600.0 735.5 742.25 -42.56 0.92 59.6
5 1448.25 78.18 3600.0 766.25 768.25 -46.95 0.26 64.8

(50, 80) 1 1681.25 78.77 3600.0 833.25 836.83 -50.23 0.43 63.9
2 1274.25 71.67 3600.0 826.5 829.00 -34.94 0.30 92.5
3 1618.25 77.82 3600.0 874.5 879.33 -45.66 0.55 123.4
4 1549.75 78.87 3600.0 839.5 840.58 -45.76 0.13 80.2
5 1530.5 79.11 3600.0 840.75 844.08 -44.85 0.40 103.3

(50, 90) 1 1947.75 82.08 3600.0 907 907.00 -53.43 0.00 122.4
2 2081.75 82.7 3600.0 944.5 946.17 -54.55 0.18 160.0
3 1869.5 79.93 3600.0 949.5 950.83 -49.14 0.14 198.9
4 1800 80.06 3600.0 933.5 937.58 -47.91 0.44 104.4
5 1827 74.31 3600.0 961 970.33 -46.89 0.97 118.6

†Gap-UB: Gap between average heuristic solution and cplex incumbent after 1 CPU hour.
†Dev.: Deviation of average heuristic solution from best heuristic solution.
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Table 3.6: Heuristic performance for Set A, λ = 0.25

CPLEX Heuristic
(|S|, |K|) Inst. UB relGap% CPU Best Gap-UB% † Gap-LB% ‡ CPU
(10, 20) 1 462.75 0 7.1 462.75 0.00 0.05 3.6

2 448.25 0 1.2 448.25 0.00 0.00 1.9
3 381.25 0 102.5 381.25 0.00 0.36 1.9
4 493.25 0 67.7 493.25 0.00 0.00 1.6
5 376.5 0 212.7 376.5 0.00 0.00 2.1

(10, 30) 1 586.5 0 297.8 586.5 0.00 0.00 2.7
2 630 0 8.1 630 0.00 0.00 2.1
3 503.75 0.15 3600.0 504.5 0.15 0.15 2.7
4 750.75 1.58 3600.0 750.75 0.17 1.20 9.6
5 576.5 5.97 3600.0 576.5 0.00 0.04 7.3

(10, 40) 1 850.25 3.56 3600.0 850.25 0.00 0.00 7.0
2 856.75 0 633.3 856.75 0.00 0.00 3.1
3 923.75 5.07 3600.0 923.75 0.00 0.12 5.2
4 730.25 5.64 3600.0 731.25 0.14 1.26 6.5
5 855.5 5.91 3600.0 855.5 0.00 0.00 2.3

(10, 50) 1 1177.25 8.68 3600.0 1134 -3.67 0.01 3.2
2 1077.75 0 1866.1 1077.75 0.00 0.00 7.5
3 876.25 7.89 3600.0 856.25 -2.28 0.41 2.6
4 1055 5.54 3600.0 1048 -0.66 0.44 7.6
5 999.25 2.55 3600.0 995.5 -0.38 0.00 5.7

(25, 20) 1 328.25 4.41 3600.0 328.25 0.00 0.00 11.8
2 306.25 5.42 3600.0 306.25 0.03 0.03 15.3
3 366.5 9.75 3600.0 366.5 0.00 0.00 10.7
4 314.75 6.58 3600.0 314.75 0.41 0.41 16.2
5 310 8.34 3600.0 310 0.00 0.00 6.5

(25, 30) 1 427.75 9.77 3600.0 421.75 -0.95 0.92 22.6
2 413.75 10.19 3600.0 413.75 0.00 0.00 10.2
3 473.75 9.27 3600.0 470.75 -0.28 0.35 20.7
4 523 10.76 3600.0 518.25 -0.91 0.16 13.8
5 448.5 20.61 3600.0 435.75 -2.84 0.00 12.5

(25, 40) 1 591.25 21.58 3600.0 513.25 -13.19 0.00 24.2
2 606 19.9 3600.0 567.25 -6.39 0.00 19.5
3 634 28.32 3600.0 547 -12.37 3.38 38.7
4 705.75 17.53 3600.0 643.75 -8.78 0.64 33.5
5 624 15.61 3600.0 586.75 -5.68 0.51 33.2

(25, 50) 1 794.25 23.3 3600.0 715.75 -9.88 0.00 33.9
2 880 22.78 3600.0 779.5 -11.24 0.36 64.5
3 766.5 28.88 3600.0 633.5 -17.35 0.34 40.9
4 791.25 28.34 3600.0 682.75 -13.71 0.51 36.4
5 955.75 43.49 3600.0 670.25 -29.66 1.63 44.7

†Gap-UB: Gap between average heuristic solution and cplex incumbent after 1 CPU hour.
‡Gap-LB: Gap between average heuristic solution and CG-based LB.
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Table 3.7: Heuristic performance for Set B, λ = 0.25

CPLEX Heuristic Performance
(|S|, |K|) Inst. UB relGap% CPU Best Average Gap-UB% † Dev.% ‡ CPU
(35, 40) 1 519.25 15.28 3600 498 500.17 -3.68 0.44 43.7

2 564.5 21.08 3600 507.5 508.00 -10.01 0.10 43.4
3 567.75 27.8 3600 488.25 488.58 -13.94 0.07 50.5
4 617 25.2 3600 534.5 534.50 -13.37 0.00 45.1
5 655.5 29.19 3600 535.5 535.50 -18.31 0.00 43.5

(35, 50) 1 717.25 28.75 3600 598.25 599.42 -16.43 0.20 50.4
2 662 21.93 3600 592 592.00 -10.57 0.00 40.9
3 1119.75 50.48 3600 645.5 649.33 -42.01 0.59 52.9
4 621.25 26.32 3600 549 554.08 -10.81 0.93 52.1
5 664.75 36.31 3600 534.25 535.08 -19.51 0.16 43.8

(35, 60) 1 713.5 25.77 3600 642.75 642.75 -9.92 0.00 48.8
2 852 28.3 3600 706.75 710.25 -16.64 0.50 55.2
3 832.25 33.45 3600 640 640.08 -23.09 0.01 46.9
4 829.25 31.46 3600 691.5 693.33 -16.39 0.27 62.4
5 1404 53.62 3600 780 789.67 -43.76 1.24 63.9

(35, 70) 1 935.25 25.13 3600 826.5 826.50 -11.63 0.00 59.2
2 1921.75 66.73 3600 776 777.08 -59.56 0.14 72.0
3 1121 46.39 3600 718.75 718.75 -35.88 0.00 46.7
4 1959.75 66.1 3600 793.25 797.92 -59.28 0.59 55.1
5 1732.25 63.24 3600 746 746.00 -56.93 0.00 48.7

(40, 50) 1 679.75 28.16 3600 568.75 569.25 -16.26 0.09 69.1
2 649.5 30.67 3600 530 532.33 -18.04 0.44 48.4
3 653.25 27.09 3600 550.25 550.42 -15.74 0.03 49.7
4 655.25 27.02 3600 579 579.83 -11.51 0.14 50.8
5 828.75 37.86 3600 617.5 619.58 -25.24 0.34 52.0

(40, 60) 1 1615.5 65.09 3600 679.25 683.08 -57.72 0.56 77.1
2 813.5 34.89 3600 631 635.00 -21.94 0.63 59.0
3 800.75 32.02 3600 637.75 641.92 -19.84 0.65 51.8
4 1841.75 66.83 3600 738.25 740.92 -59.77 0.36 65.3
5 2077.5 71.89 3600 718.25 718.50 -65.42 0.03 67.1

(40, 70) 1 1665.25 63.83 3600 735.5 738.67 -55.64 0.43 62.3
2 1636.5 62.57 3600 757.5 758.50 -53.65 0.13 63.8
3 1435.25 54.6 3600 781.25 782.83 -45.46 0.20 68.1
4 1449.25 60.06 3600 713.25 714.25 -50.72 0.14 63.3
5 1302 56.1 3600 714 719.50 -44.74 0.77 50.8

(40, 80) 1 2229.25 67.38 3600 875.25 882.92 -60.39 0.88 87.0
2 2043.75 64.25 3600 856.75 861.25 -57.86 0.53 105.9
3 1872.25 60.34 3600 905.25 907.00 -51.56 0.19 88.2
4 2262.75 71.02 3600 810 819.33 -63.79 1.15 79.9
5 1417.25 55.4 3600 799 799.83 -43.56 0.10 77.3

(50, 60) 1 1189.5 61.98 3600 556.75 557.42 -53.14 0.12 83.1
2 1795.25 72.74 3600 623.5 623.50 -65.27 0.00 78.2
3 842 40.31 3600 617 617.00 -26.72 0.00 75.6
4 725.75 30.83 3600 600.5 600.67 -17.24 0.03 68.3
5 2535 78.71 3600 686.5 687.33 -72.89 0.12 83.8

(50, 70) 1 2017.75 74.46 3600 642.5 649.17 -67.83 1.04 118.3
2 2496 77.49 3600 711.25 717.25 -71.26 0.84 70.7
3 2465.25 74.69 3600 763.25 764.17 -69.00 0.12 82.0
4 2573 78.39 3600 692.5 697.00 -72.91 0.65 147.3
5 2152.25 74.12 3600 699.25 701.67 -67.40 0.35 87.4

(50, 80) 1 2756.25 77.09 3600 789 792.17 -71.26 0.40 92.1
2 1835 66.41 3600 788 790.92 -56.90 0.37 90.7
3 2877 77.24 3600 835.25 840.08 -70.80 0.58 108.1
4 3129 80.28 3600 777 778.00 -75.14 0.13 80.4
5 2959.5 79.33 3600 770.25 773.83 -73.85 0.47 68.5

(50, 90) 1 2245.5 69.05 3600 876.75 881.00 -60.77 0.48 105.1
2 3641 78.97 3600 952 958.17 -73.68 0.65 94.7
3 3143.5 77.51 3600 878.5 878.50 -72.05 0.00 91.1
4 3676.75 81.39 3600 871.5 876.67 -76.16 0.59 99.4
5 3466.5 75 3600 960.25 964.08 -72.19 0.40 89.2

†Gap-UB: Gap between average heuristic solution and cplex incumbent after 1 CPU hour.
†Dev.: Deviation of average heuristic solution from best heuristic solution.
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For λ = 0.75, the results reported in Table 3.4 indicate that CPLEX successfully

solved 9/40 instances in Set A to optimality within one CPU hour. In contrast, the

average CPU time of the heuristic for |S| = 10 and |S| = 25 is 5.27 and 16.7 seconds,

respectively. For |S| = 10, the heuristic solution was at least as good as the incumbent

solution of CPLEX in 18/20 instances and strictly outperformed CPLEX in 8/20

instances with a cost reduction of 5% on average. For |S| = 25, the heuristic solution

was at least as good as the CPLEX solution in all 20 instances and improved upon

the CPLEX solution in 18/20 instances with a cost reduction of 14.1% on average.

The heuristic results also substantially outperform the CG results in Ghoniem et al.

(2013) which achieved an optimality gap between 5-6% on average for comparable

instances with λ = 0.75.

According to Table 3.5, for Set B and λ = 0.75, CPLEX failed to solve all instances

within one hour and produced incumbent solutions that are significantly outperformed

by our heuristic solutions. For |S| = 35, the heuristic terminated in 54.3 CPU seconds

on average and yielded a deviation of 0.71% between the best and average heuristic

solution. Similar observations can be made for |S| = 40 and |S| = 50. The objective

value reduction achieved by the heuristic over the incumbent by CPLEX ranged from

13% to 54%.

Tables 3.6 and 3.7 report our results for Set A and B respectively with λ = 0.25.

Whereas CPLEX solved 9/20 instances to optimality within the specified time limit,

the proposed heuristic provided overall higher quality solutions in significantly shorter

CPU times. For example, with |S| = 25, the heuristic solution improved upon the

CPLEX solution in 14/20 instances with a cost reduction of 9.52% on average. For

Set B, CPLEX could not solve any instances to optimality within one CPU hour.

For these instances, the average heuristic solution is significantly better than the

primal bounds identified by CPLEX. The heuristic converged in 51.3, 66.8 and 90.7

CPU seconds for |S| = 35, 40, and 50, with an accompanying deviation of 0.26%,
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0.39%, and 0.37% between the best and average heuristic solutions, for instances

with |S| = 35, 40, and 50, respectively. The objective value reduction achieved by the

heuristic over the CPLEX incumbent ranged from 3% to a substantial 76% over Set

B instances.

In summary, for instances in Set A, the heuristic is robust with respect to differ-

ent weights for routing and customer assignment costs. For instances in Set B, no

conclusion can be made, because no reliable primal or dual bounds are available for

assessing the performance of the heuristic. However, the heuristic produced consistent

solutions over 5 independent runs, exhibiting deviation below 1% between the best

and the average heuristic solutions, for λ = 0.25, 0.5, and 0.75. However, it seems

that this deviation is noticeably lower for λ = 0.25 (greater emphasis on customer

assignment cost) in which case the heuristic escapes local optima more effectively.

This will be noted in next section as well when we discuss the impact of perturbation

mechanisms on the quality of the heuristic solution.

3.4.2.3 Comparative Analysis of Different Algorithmic Schemes

This section investigates the impact of key algorithmic components of Algorithm

1 on the performance of the proposed heuristic. To this end, we examine the perfor-

mance of the following three variants of Algorithm 1: (i) Variant A in which Procedure

Cvrp(π) (line 10 of Algorithm 1) is eliminated; (ii) Variant B in which Procedure

SiteRemoval(π) (line 12 of Algorithm 1) is eliminated; and (iii) Variant C in which

Procedure Perturb(π) (line 20 of Algorithm 1) is eliminated. Note that we did not

consider elimination of Procedure Gap(π), because it is necessary for assigning cus-

tomers to delivery sites in different parts of the heuristic. All the variants are tested

for all the instances with |S| = 25 and |S| = 50. For each instance, the gap between

the solution of each variant and the base heuristic solution is computed. The average

gap value over the five instances for each (|S|, |K|) combination is reported in Table

3.8. Our main observations are summarized next:
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• Variant A: For all λ values, Procedure Cvrp(π) has a noticeable impact on the

solution quality of heuristic. However, as we increase the weight of routing cost,

the impact of Procedure Cvrp(π) decreases. For example, for |S| = 50 and for

λ = 0.25, the average gap between solution of Variant A and base heuristic is

2.99%. As we increase λ, this gap reduces to 1.33% and 0.73% for λ = .5 and

0.75, respectively. In fact, for larger λ values, greater emphasis is placed on

the routing cost which, in turn, limits the use of delivery sites. On the other

hand, giving more importance to customer assignment cost (by reducing λ)

encourages the use of a greater number of delivery sites in order to reduce the

assignment cost. Consequently, when a larger number of delivery sites is used

in the solution, there is a greater need for adjusting routing decisions and using

the local search Cvrp(π) has a more noticeable impact.

• Variant B: The exclusion of Procedure SiteRemoval(π) has worsened the

performance of heuristic for all λ values. However, its impact is more significant

as we increase the value of λ. In fact, as we increase the value of λ, the number of

delivery sites in optimal or near-optimal solutions of a given instance decreases

and, hence, the ability to remove inferior delivery sites becomes more important.

• Variant C: Procedure Perturb(π) also plays an important role in the quality

of solutions. Its impact increases as more weight is assigned to the routing cost

(increase in the λ value). As pointed out in Section 5.2.2, the heuristic solutions

exhibit less variation for lower λ values. When λ = 0.25 the heuristic has less

trouble escaping local optima.

3.5. Conclusion

This chapter proposes a multi-start heuristic for a vehicle routing with demand

allocation problem that arises in the distribution of pallets of goods by food banks.
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Table 3.8: Comparative Analysis of Different Algorithmic Schemes

λ = .25 λ = 0.5 λ = 0.75
(|S|, |K|) Variant A Variant B Variant C Variant A Variant B Variant C Variant A Variant B Variant C
(25, 20) 0.91 0.69 1.23 0.78 4.24 2.25 0.41 32.58 2.70
(25, 30) 1.03 0.27 0.35 0.81 3.15 0.77 0.78 23.02 4.17
(25, 40) 1.89 0.55 0.85 0.69 4.21 0.95 0.54 23.94 1.59
(25, 50) 2.41 0.32 0.67 0.86 2.63 0.85 0.31 17.98 0.61
(50, 60) 2.53 0.50 0.69 0.58 2.13 0.89 0.48 20.21 0.88
(50, 70) 2.82 0.34 0.74 1.22 2.53 1.03 0.60 17.69 1.40
(50, 80) 2.83 0.29 0.45 1.74 2.50 1.14 0.70 16.28 2.08
(50, 90) 3.78 0.35 0.60 1.78 2.02 1.40 1.12 16.68 2.61

The objective is to minimize an average weighted vehicle routing and customer travel

costs. We generated two sets of instances, Set A and Set B, comprising 100 instances.

For each instance in our computational study, three different objective weights were

considered, placing equal or greater emphasis on either the vehicle routing cost or

the customer travel cost. In no more than 70 CPU seconds, the proposed multi-start

heuristic consistently yielded solutions within 0.5% of optimality for instances of Set

A in our testbed for which a lower bound was computed by column generation tech-

niques. For larger instances in Set B, although the heuristic could not be compared

to a lower bound, heuristic solutions substantially outperformed the best incumbent

solution identified by CPLEX within one CPU hour. These encouraging results com-

pare favorably and outperform the column generation approach in Ghoniem et al.

(2013) and the Benders decomposition heuristic in Solak et al. (2014) which required

one CPU hour for comparable instances and resulted in significantly higher optimality

gaps (between 4-9%).

The superior performance of the proposed heuristic is grounded in its ability to di-

versify the search by altering the initial solution at each start of the algorithm and to

intensify the neighborhood exploration using a series of local improvement schemes.

Our computational findings demonstrate the efficacy of optimization-based heuristics

that involve fast neighborhood explorations in order to address this type of vehicle

routing-allocation problems. Such approaches provide a computationally attractive

alternative to classical column generation and Benders decomposition techniques that
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exhibit slow convergence patterns. We recommend for future research the investiga-

tion of a multi-period variant of this vehicle routing with demand allocation problem

with fixed delivery points to be determined for time-varying customer demands.
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CHAPTER 4

A BRANCH-AND-PRICE ALGORITHM FOR A
VEHICLE ROUTING-ALLOCATION PROBLEM

In this chapter, we investigate the vehicle routing with demand allocation problem

where the decision-maker jointly optimizes the location of delivery sites, the assign-

ment of customers to (preferably convenient) delivery sites, and the routing of vehicles

operated from a central depot to serve customers at their designated sites. We pro-

pose an effective branch-and-price (B&P) algorithm that is demonstrated to greatly

outperform the use of commercial branch-and-bound/cut solvers such as CPLEX.

Central to the efficacy of the proposed B&P algorithm is the development of a spe-

cialized dynamic programming procedure that extends works on elementary shortest

path problems with resource constraints in order to solve the more complex column

generation pricing subproblem. Our computational study demonstrates the efficacy

of the proposed approach using a set of 60 problem instances. Moreover, the pro-

posed methodology has the merit of providing optimal solutions in run times that are

significantly shorter than those reported for decomposition-based heuristics in the

literature.

4.1. Introduction and Motivation

This chapter addresses the Vehicle Routing with Demand Allocation Problem

(VRDAP) that arises in food bank distribution planning, as investigated in Ghoniem

et al. (2013) and Solak et al. (2014). The decision-maker seeks to jointly optimize the

selection of delivery sites from a set of candidate locations, to assign geographically
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Figure 4.1: Network structure of the VRAP variant under investigation

dispersed customers to (preferably convenient) delivery sites, and to route a fleet of

vehicles from a central depot owned by a food bank in order to deliver goods or ser-

vices to customers at their designated sites. In this context, delivery sites are typically

parking lots owned by large retailers or religious establishments that consent to their

use and their access is restricted to at most one delivery tour. As a consequence,

vehicle routes are disjoint and delivery sites are implicitly capacitated, because their

allocated customer demand cannot exceed the capacity of delivery vehicles. As illus-

trated in Figure 4.1, both customers and vehicles travel to meet at delivery sites and

it is desirable to minimize the total distance traveled by vehicles and customers. This

integrated problem is NP-hard and poses significant computational challenges. In

fact, when customers are feasibly assigned to pre-selected delivery sites, the problem

reduces to the classical capacitated VRP.

This chapter contributes to enhancing the tractability of this problem by devel-

oping a specialized branch-and-price (B&P) algorithm that substantially and con-

sistently outperforms CPLEX on all tested problem instances. Second, it provides
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optimal solutions in significantly shorter run times than a column generation heuris-

tic (Ghoniem et al. 2013) and a Benders decomposition heuristic (Solak et al. 2014)

which exhibit 4-9% optimality gaps over instances having up to 25 delivery sites and

50 customers. Third, from a heuristic point of view, the root-node solutions of the

proposed B&P algorithm exhibit excellent optimality gaps (below 1% on average) in

run times that are much shorter than those for the aforementioned decomposition-

based heuristics in the literature. From a methodological point of view, the column

generation pricing subproblem is solved with a specialized dynamic programming

(DP) algorithm that extends works on elementary shortest path problems with re-

source constraints (ESPPRC) in order to solve the pricing subproblem. In fact, the

pricing subproblem involves a single-vehicle VRDAP with prize-collecting considera-

tions and jointly optimizes the selection of delivery sites, the assignment of customers

to delivery sites, and the routing of delivery vehicles. To the best of our knowledge,

this is the first DP algorithm that extends works on the ESPPRC to account for

these additional decisions. This chapter also explores heuristic variants of the DP

algorithm that greatly contribute to accelerating the construction of new attractive

columns, whereas the more computationally involved exact DP algorithm is invoked

with parsimony, mostly to achieve LP optimality at a given node of the B&P tree.

The remainder of this chapter is organized as follows. Section 4.2 discusses the

overall design of the branch-and-price algorithm by presenting a set partitioning for-

mulation of the problem, a mixed-integer programming model for the pricing sub-

problem, and the chosen branching strategy. We then elaborate in Section 4.3 on

solving the pricing subproblem using exact and heuristic DP procedures. Section 4.4

discusses our computational results and demonstrates the efficacy of the proposed

methodology. Section 4.5 concludes the chapter with a summary of our findings and

recommends directions for future research.
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4.2. Branch-and-Price Algorithm

We present a branch-and-price (BP) algorithm for the VRDAP. We first formulate

the VRDAP as a set partitioning model which serves as a master program (MP) in

Section 4.2.1. The master program involves an exponential number of columns, each

associated with a feasible route, which could be onerous to generate and solve using

commercial solvers. Instead, a BP algorithm (Algorithm 1) is developed to solve the

MP to optimality. To this end, the underlying LP relaxation of the MP is solved by

column generation technique (Algorithm 2) and branching is performed on fractional

LP solutions. Next, we briefly discuss the general framework of the proposed BP

algorithm.

Algorithm 1 starts by generating an initial solution using a heuristic proposed

in section 4.2.2. The constructed solution is considered as the current best solution

(upper bound) (line 3). The LP relaxation of the MP is solved by CG, yielding a

lower bound, at the root node of the BP tree (line 5). If the gap between the lower

and upper bounds equals zero, the problem has been solved to optimality and the

BP algorithm stops. Otherwise, branching is performed on fractional solutions on

routing or assignment arcs using a best-first strategy as described in section 4.2.4.

In the CG procedure (Algorithm 2), the continuous restricted master program

(RMP) is solved using CPLEX; the associated dual values are then used in the pricing

subproblem presented in section 4.2.3, for which we have devised exact and heuris-

tic dynamic programming (DP) algorithms. For computational efficiency, the CG

approach first invokes several heuristic versions of the DP algorithm, as detailed in

section 4.3.3, and adds a set of routes with the most negative reduced cost to the

RMP. If all the heuristic DPs fail to construct a column having a negative reduced

cost, then the exact DP of section 4.3.1 is solved instead as a last resort. If the exact

DP also fails to find a column having a negative reduced cost, then the CG terminates

and the continuous RMP is solved to optimality.

66



Algorithm 4 BP Algorithm

1: Comment: Let ∆ be the list of all the open nodes of BP
2: Comment: Let δlb be the solution of LP relaxation of node δ computed using CG.
3: Best ← The constructed initial solution
4: Construct root node δ̄ and initialize its RMP using the routes of Best
5: Compute δ̄lb using CG procedure (Algorithm 2)
6: ∆← {δ̄}
7: while ∆ 6= ∅ do
8: δ ← The node in ∆ with the minimum lower bound
9: ∆← ∆ \ δ
10: if δlb is better than Best then
11: if δlb is feasible (integral) then
12: Best ← δlb
13: else
14: Construct δ1 and δ2; the nodes obtained from branching on δ
15: Compute δ1

lb and δ2
lb using CG procedure (Algorithm 2)

16: ∆← ∆ ∪ {δ1, δ2}
17: end if
18: end if
19: end while

Algorithm 5 Column Generation (CG)

1: while true do
2: Solve the LP relaxation of RMP using CPLEX
3: Try to find promising columns using heuristic DPs of section 4.3.3
4: if A heuristic found columns with negative reduced cost then
5: Add up to 20 of the columns with most negative cost to RMP
6: else
7: Call Exact DP of section 4.3.1
8: if Columns with negative reduced cost were found then
9: Add up to 20 of the columns with most negative cost to RMP
10: else
11: Solution of RMP is the optimal solution of LP relaxation of MP
12: Terminate the algorithm
13: end if
14: end if
15: end while
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4.2.1 Problem Statement and Set Partitioning Formulation

We consider a VRDAP involving a central depot, a set of delivery sites, S, and

a set of customers, K. We denote by V the maximum number of vehicles/tours

of capacity Q that can be used for delivery purposes. Any tour commences at the

central depot, sequentially visits a subset of delivery sites in order to supply goods to

customers, and ends at the central depot. Any delivery site is accessed by at most one

tour and, therefore, all tours are assumed to be disjoint. Each customer k ∈ K has a

demand dk that is allocated to some delivery site that lies on a tour. Let N = S∪{0}

be the set of delivery sites augmented with node 0 that represents the central depot.

Also, let E = {(i, j), i, j ∈ N, i 6= j} and E
′

= {(k, j), k ∈ K, j ∈ S} be the set of

routing and assignment arcs, respectively. We define cij as the cost of arc (i, j) ∈ E

and fkj as the cost of assigning customer k to site j, where (k, j) ∈ E ′ .

The VRDAP can be modeled as a 0-1 MIP (as in the Appendix A) or equivalently

as a set partitioning model with packing constraints that lends itself to column gen-

eration (CG) approaches. We denote by H the set of all columns that correspond to

feasible tours where the total customer demand assigned to any delivery site does not

exceed the tour capacity. For each such tour h ∈ H, let P h and Qh be 0-1 vectors

that respectively list customers and delivery sites that are associated with tour h and

let ρh be the total vehicle routing and customer travel cost incurred in tour h. Using

a binary variable zh that indicates whether tour h is selected or not, the following

master program (MP) is formulated:

MP: Minimize
∑
h∈H

ρhzh (4.1a)

subject to
∑
h∈H

P h
k zh = 1 ∀k = 1, . . . , |K| (4.1b)

∑
h∈H

Qh
i zh ≤ 1 ∀i = 1, . . . , |S| (4.1c)

∑
h∈H

zh = |V | (4.1d)
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z binary. (4.1e)

The objective function (4.1a) minimizes the total vehicle and customer travel cost.

Constraint (4.1b) ensures that every customer is served by exactly one vehicle tour,

thereby achieving a partitioning scheme for customers. Constraint (4.1c) guarantees

that any delivery site is visited by at most one vehicle tour. Constraint (4.1d) imposes

that |V | tours are used, where |V | is the maximum number of vehicle tours possible.

We state this constraint as an equality to avoid branching on the number of vehicles

used and allow the inclusion of dummy, vacuous tours from the central depot to itself

with a zero cost, should the actual number of tours used be below |V |.

4.2.2 Initial Solution

This section briefly describes a heuristic that is used for obtaining an initial solu-

tion for the VRDAP. The heuristic solves a generalized assignment problem to find

a minimum cost assignment of customers to delivery sites, while ensuring that the

aggregate demand assigned to each site does not exceed the vehicle capacity. Next,

routes are constructed using a nearest neighbor procedure. Let S+ be the set of all

delivery sites having at least one customer assigned to them. Starting from the de-

pot, the vehicle travels to the nearest delivery site in S+ such that its inclusion in

the route does not violate the vehicle capacity. The newly visited delivery site is then

removed from S+. This procedure iterates until no delivery site can be feasibly added

to the route or S+ = ∅. This procedure fails to generate a feasible solution if all

vehicles have been used, but unassigned delivery sites remain. In this case, ignoring

vehicle capacity considerations, the remaining delivery sites are inserted in a route in

a manner that results in a minimum insertion cost. All customers are reassigned to

the routes by solving a second generalized assignment problem where the assignment

cost of each customer k to a route r is the distance between k and its nearest delivery
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site in r. If the problem instance at hand is feasible, then this latter step must yield

a feasible solution, which is then improved using CVRP local search procedures.

4.2.3 Pricing Subproblem

The CG pricing subproblem constructs a feasible VRDAP route with a minimum

reduced cost, using the dual values obtained from the LP solution of the RMP. If the

constructed route has negative reduced cost, its corresponding column is added to

the RMP. Otherwise, the LP procedure terminates with an optimal solution to the

continuous relaxation of the MP. To introduce the CG pricing subproblem, consider

the following notation:

• xi ∈ {0, 1}: xi = 1 if and only if site i is selected in the constructed column,

∀i ∈ S.

• yk ∈ {0, 1} : yk = 1 if and only if customer k is selected in the constructed

column, ∀k ∈ K.

• eij ∈ {0, 1} : eij = 1 if arc (i, j) is included in the constructed route, ∀(i, j) ∈ E.

• sik ∈ {0, 1} : sik = 1 if customer k is assigned to node i, ∀i ∈ S, k ∈ K.

• qi : Total deliveries made upon serving site i, ∀i ∈ S.

• µ : Vector of dual variables associated with Constraint (4.1b). Let µ = µ̄ be

specific values associated with these dual variables.

• π : Vector of dual variables associated with Constraint (4.1c). Likewise, let

π = π̄ be specific values for these dual variables.

• π0: Dual variable associated with Constraint (4.1d), with π̄0 being a specific

value assumed by this variable.
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The pricing subproblem, denoted by SP(µ̄, π̄, π̄0), is formulated as the following 0-1

MIP:

SP(µ̄, π̄, π̄0): Min
∑

(i,j)∈E

cijeij +
∑
i∈S

∑
k∈K

fiksik −
∑
i∈S

π̄ixi −
∑
k∈K

µ̄kyk − π̄0 (4.2a)

subject to
∑
j∈S

e0j = 1 (4.2b)

∑
j∈N−{i}

eij = xi, ∀i ∈ S (4.2c)

∑
i∈N−{j}

eji −
∑

i∈N−{j}

eij = 0, ∀j ∈ N (4.2d)

qj ≥ qi +
∑
k∈K

dksjk − 2Q(1− eij) +Qeij, ∀i, j ∈ S|i 6= j (4.2e)

sik ≤ xi, ∀i ∈ S, k ∈ K (4.2f)

xi ≤
∑
k∈K

sik, ∀i ∈ S (4.2g)

∑
i∈S

sik = yk, ∀k ∈ K (4.2h)

∑
k∈K

dksik ≤ qi ≤ Qxi, ∀i ∈ S (4.2i)

x, y, e, s ∈ {0, 1}, q ≥ 0. (4.2j)

The objective function (4.2a) minimizes the reduced cost of the constructed col-

umn. Constraints (4.2b) and (4.2c) respectively ensure that the central depot and any

selected delivery site must have exactly one successor. Flow balance constraints are

introduced in (4.2d). Constraint (4.2e) enforces subtour elimination constraints using

the cumulative delivery made upon a visiting a particular delivery site. Constraint

(4.2f) precludes the assignment of customers to a delivery site, unless the latter is

selected, whereas Constraint (4.2g) requires at least one customer to be assigned to

a selected delivery site. Constraint (4.2h) guarantees that any selected customer is
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assigned to exactly one delivery site. Constraint (4.2i) relates the cumulative delivery

made upon visiting delivery site i to the total demand assigned to this site (as a lower

bound) and to the total vehicle tour capacity (as an upper bound).

The pricing subproblem is NP-hard and computationally challenging for mid-sized

problem instances solved using CPLEX. In fact, even if optimal customer assignments

to delivery sites were a priori pre-specified, the subproblem would reduce to a prize-

collecting TSP which is also known to be NP-hard. It is, therefore, crucial to seek

an alternative solution methodology to the pricing subproblem in order to enable the

development of effective branch-and-price algorithms for the VRDAP, as discussed in

Section 4.

4.2.4 Branching Strategy

A best-first strategy is adopted in exploring the search tree and branching is

conducted over routing and assignment arcs. Specifically, for each B&P tree node

having a fractional solution, we first compute the flow of all routing arcs (arcs (i, j) ∈

E). The arc (i, j) having a most fractional flow (nearer to 0.5) is selected for branching

and two new child nodes are generated accordingly by introducing arc (i, j) in one

child and forbidding it in the other. If no routing arcs with fractional flow are found,

the branching scheme uses customer assignment arcs (arcs (k, j) ∈ E ′). Similarly, a

most fractional arc (k, j) is detected and two child nodes are created; in one child

node, we assign customer k to site j, whereas in the other, the assignment of k to j

is forbidden.

4.3. Dynamic Programming Algorithm for the Pricing Sub-

problem

We propose in this section a specialized DP algorithm for the CG pricing sub-

problem. In Section 4.3.1, we first delineate the overall DP algorithm. Thereafter,

we present in Section 4.3.2 a label extension scheme and a label dominance proce-
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Table 4.1: Original customer assignment cost matrix (f)



1 2 3 4 5 6
a 5 10 20 30 60 50
b 12 5 10 20 50 40
c 25 20 5 20 55 45
d 20 5 10 15 35 30
e 35 30 10 15 45 45
f 40 30 20 5 40 45
g 40 25 20 5 25 30
h 35 20 30 20 10 10
i 30 15 25 25 15 8
j 45 35 45 40 10 5
k 40 30 50 45 15 5



Table 4.2: Original routing cost matrix (c)



0 1 2 3 4 5 6
0 − 10 10 25 35 25 15
1 10 − 12 20 35 35 30
2 10 12 − 15 20 30 20
3 25 20 15 − 12 40 35
4 35 35 20 12 − 30 35
5 25 35 30 40 30 − 12
6 15 30 20 35 35 12 −



dure. Various heuristic implementations of the proposed DP algorithm are discussed

in Section 4.3.3. Throughout this section, we consider a VRDAP instance with a set

of 6 candidate delivery sites S = {1, 2, . . . , 6} and 11 customers K = {a, b, . . . , k}.

The vehicle capacity is Q = 8 and an equal demand of 1 is considered for all cus-

tomers. The assignment and routing cost matrices are given in Tables 4.1 and 4.2,

respectively.

4.3.1 Overall Exact DP Approach

The elementary shortest path problem with resource constraints (ESPPRC) arises

in the pricing subproblems of the VRP with time-windows and the capacitated VRP,

among others. Although the ESPPRC itself is NP-hard in the presence of negative

cost cycles (Dror 1994), DP algorithms as in Feillet et al. (2004) and similar works
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provide an exact solution method to such problems. A key difficulty is to ensure the

elementariness of the constructed shortest path, i.e., the requirement that any node be

visited at most once. If this requirement is relaxed, the problem reduces to a shortest

path problem with resource constraints (SPPRC) and can be solved using pseudo-

polynomial algorithms. However, this computational convenience comes at the ex-

pense of producing weaker lower bounds. Several papers develop cycle-elimination

approaches to overcome this drawback. For example, Christofides et al. (1981) pro-

pose a method to eliminate cycles of length two, whereas Irnich and Villeneuve (2006)

investigate the elimination of k-cycles (with k ≥ 2). The computational burden asso-

ciated with the elimination of cycles of size four or more is, however, not accompanied

by a commensurate improvement in the lower bounds (Fukasawa et al. 2006). Re-

cently, Martinelli et al. (2014) enhanced the use of ng-routes, originally proposed by

Baldacci et al. (2011), by exploring a decremental state-space relaxation technique

(see also Boland et al. 2006 and Righini and Salani 2008 for related works). In our

experience, however, a specialized labeling type DP algorithm using an adaptation

of the work by Feillet et al. (2004), as detailed next, has been found to be more

advantageous for the VRDAP than adapting these more recent approaches.

The ESPPRC for VRDAP is defined over the network G = (N ∪K, E∪E ′) where

N ∪K form a set of nodes comprising the depot, delivery sites and customers, and

where E = {(i, j)| i 6= j ∈ N}, and E
′
= {(k, j)| k ∈ K, j ∈ S} constitute arcs. Recall

that each customer k ∈ K has a demand dk and the original costs of arcs (i, j) ∈ E

and (k, j) ∈ E ′ are cij and fkj, respectively. To incorporate the dual values associated

with Constraints (2.1b)-(2.1d), respectively denoted by π̄, µ̄, and π̄0, we define the

following new arc costs:

wij = cij − (π̄i + π̄j)/2, ∀(i, j) ∈ E (4.3a)

wkj = fkj − µ̄k, ∀(k, j) ∈ E ′ . (4.3b)
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Figure 4.2: Solid lines represent routing and assignment decisions made thus far in
subproblem

Because any delivery site i along the constructed route has one incoming and one

outgoing arc, the contribution of π̄i is split in half between these two arcs in (4.3a).

In this manner, the contribution of π̄0 (associated with constraint (2.1d)) is also

incorporated in the cost of arcs entering and leaving the depot (node 0). In our

illustrative example, Tables 4.5 and 4.6 respectively show the updated assignment

and routing cost matrices after incorporating dual values given in Tables 4.3 and 4.4

into original cost matrices. Figure 4.2 shows the associated network of this instance

along with some customer assignment arcs and their associated costs. The objective

of the subproblem is to find the minimum cost feasible tour in this network (using

the updated cost matrices in Tables 4.5 and 4.6).

The DP algorithm for ESPPRC employs the notion of labels in order to identify

distinct paths that are extended to particular nodes in the network. Starting at
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Table 4.3: Dual values associated with constraints (4.1b)

µ̄a µ̄b µ̄c µ̄d µ̄e µ̄f µ̄g µ̄h µ̄i µ̄j µ̄k

50 30 40 25 30 35 25 10 0 5 10

Table 4.4: Dual values associated with constraints (4.1c); π̄0 is the dual value of (4.1d)

π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

15 5 10 0 15 0 0

Table 4.5: Assignment cost matrix after applying dual values



1 2 3 4 5 6
a −45 −40 −30 −20 10 0
b −18 −25 −20 −10 20 10
c −15 −20 −35 −20 15 5
d −5 −20 −15 −10 10 5
e 5 0 −20 −15 15 15
f 5 −5 −15 −30 5 10
g 15 0 −5 −20 0 5
h 25 10 20 10 0 0
i 30 15 25 25 15 8
j 40 30 40 35 5 0
k 30 20 40 35 5 −5



Table 4.6: Routing cost matrix after applying dual values



0 1 2 3 4 5 6
0 − 0 −2.5 17.5 20 17.5 7.5
1 0 − 4.5 17.5 25 32.5 27.5
2 −2.5 4.5 − 10 7.5 25 15
3 17.5 17.5 10 − 4.5 40 35
4 20 25 7.5 4.5 − 22.5 27.5
5 17.5 32.5 25 40 22.5 − 12
6 7.5 27.5 15 35 27.5 12 −
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node 0 (the depot), labels are iteratively extended to non-visited nodes, provided

that this path extension is feasible (with regard to the tour capacity, Q) and yields

a non-dominated label (where cost considerations relate to the reduced cost of the

constructed column). As paths get extended, new delivery sites and customers are

added. It is important to dynamically monitor the residual capacity of a label to

ensure feasibility and its updated cost to detect sub-optimality using dominance rules.

This curtails the proliferation of unattractive labels and accelerates the convergence

to an optimal solution.

First, the algorithm employs a preprocessing routine that eliminates delivery sites

and customers that would have a non-negative contribution to the reduced cost,

thereby yielding suboptimal solutions to the pricing subproblem. To this end, in lieu

of the original sets of sites (S) and customers (K), we operate over the following

reduced subsets SR and KR:

• SR = {s ∈ S : −π̄s +
∑

k∈K min{0, wks} < 0};

• KR = {k ∈ K : mins∈S wks < 0}.

In our illustrative example, the best contribution of delivery site 5 is 0 (π̄5 = 0,

wk5 ≥ 0 ∀k ∈ K) and hence it is not included in SR. For customer i, wis ≥ 0 ∀s ∈ S

and, therefore, assigning it to any delivery site would not improve the solution cost.

Similarly, customers h and j are removed and KR = {a, b, c, d, e, f, g, k}.

Each label, denoted by L = (P`, A`, C`, Q`), comprises the following elements: (i)

P` = (0, v1, . . . , v`) an ordered set of delivery sites visited; (ii) A` = (∅, a1, . . . , a`)

an ordered set of clustered customers respectively associated with each delivery site

included in the label (e.g., ai is the set of customers assigned to delivery site vi);

(iii) C` = w0,v1 +
`−1∑
i=1

wvi,vi+1
+

∑̀
i=1

∑
k∈ai

wk,vi , cost of the path; and (iv) Q` =
∑̀
i=1

∑
k∈ai

dk,

the total customer demand assigned to this label. Note that, in order for label L

to represent a feasible elementary shortest path the following conditions must hold:
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Algorithm 6 ESPPRC-VRDAP

1: Hv = ∅ ∀v ∈ S
2: H0 = H̄0 = {((0), (∅), 0, 0)}
3: Γ = {0}
4: while Γ 6= ∅ do
5: Select a site u from Γ and Γ← Γ \ {u}
6: for all v ∈ SR do
7: Fv = ∅
8: for all L ∈ H̄u | v /∈ (σ` ∪ σ̃`) do
9: Fv ← Fv∪ get-labels(L, v)
10: end for
11: Fv ← add(Hv, Fv)
12: if Fv 6= ∅ then
13: Hv ← Hv ∪ Fv
14: H̄v ← Fv ∪ H̄v

15: Γ← Γ ∪ {v}
16: end if
17: end for
18: H̄u ← ∅
19: end while

Q` ≤ Q (capacity is not violated), ∩`i=1ai = ∅ (assigned customers form disjoint

subsets), and any delivery site along the path P` is visited exactly once. Further, let

σ` and χ` be the sets of sites and customers that are already visited by L, respectively.

Let σ̃` and χ̃` respectively be the sets of sites and customers that, although not

included in L, should not be considered for inclusion in any future extension of this

label because they would yield dominated labels (These sets are computed in an

algorithm that we refer to as get-labels in Section 4.3.2.)

In our illustrative example, let L1 be the label corresponding to a partial solution

constructed by extending the depot (0) to delivery site 2 and assigning to it the subset

of customers {a, b}. In Figure 4.2, the solid lines represent the arcs included in this

label. For label L1, P`1 = (0, 2), A`1 = (∅, {a, b}), C`1 = −67.5, Q`1 = 2, σ`1 = {2},

χ`1 = {a, b}.

Algorithm 1 espprc-vrdap finds an optimal elementary shortest path starting

and ending at the depot (node 0) and passing through selected delivery sites. The
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optimal solution corresponds to a label L∗ with a minimum cost C`∗ + wv`∗ ,0. To

discuss the DP algorithm, the following notation is introduced:

• Hv: Current set of non-dominated labels L such that the last delivery site along

the path is v.

• Fv: Set of all labels newly extended to v.

• H̄v: Set of labels in Hv that are not extended yet. This is an auxiliary set that

is used in Algorithm 1 as discussed next.

• Γ: Set of all sites v for which there is at least one label that is not extended yet

(H̄v 6= ∅).

Algorithm 1 espprc-vrdap first creates an initial label at the depot (i.e., node

0) which is added to the set Γ of active sites that have at least one label that is

yet to be extended. Having selected a site u in Γ (using the while statement), the

algorithm loops over all delivery sites v ∈ SR and considers extending any label L

in the set H̄u to include node v, provided that this extension is feasible, i.e., v /∈ σ`,

and is not readily known to yield a dominated label, i.e., v /∈ σ̃`. The details of the

path extension scheme (get-labels) are discussed in Section 4.3.2. This results in

a set of labels newly extended to site v, denoted by Fv. The function add (line 11)

applies dominance rules for the stored set of non-dominated labels for v, Hv, and the

newly extended labels to v, Fv. As a result, presently dominated labels in Hv and

Fv are eliminated, set H̄v is updated, and delivery site v is added to Γ as an active

site which should be considered for future label extension. This iterative procedure

continues until the set Γ is exhausted and an optimal solution is obtained. Appendix

C illustrates some steps of Algorithm 3 over a numerical example.
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4.3.2 Path Extension Scheme

A key element of the DP algorithm is the path extension scheme which is referred

to as get-labels(L, v`) in Algorithm 1 espprc-vrdap. This creates all the feasible

labels that can be extended from label L by adding a new delivery site v` to the

route and assigning to it a subset of customers. Recall that KR is the reduced set of

customers after preprocessing. Let K
′

= KR \ χ`, where χ` is the set of customers

already assigned to `. The function get-labels finds all the subsets of K
′
having an

aggregate demand that does not exceed the residual capacity of vehicle, (i.e. Q−Ql).

A new label is created by assigning the customers in each subset to v`.

The number of feasible subsets generated from K
′

can be prohibitively large and

it is important to reduce the size of K
′

by removing customers that would yield a

dominated label, if they were assigned to site v`. We propose three rules for detecting

such customers that greatly contribute to the efficacy of the algorithm.

• Rule 1: Eliminating Unattractive Customers for v`

Consider K
′
= KR \χ` and S

′
= SR \ (σ`∪ σ̃`). All customers k ∈ K ′ such that

wk,v` ≥ 0 are removed from K
′
, because their assignment to v` would worsen

the solution. Further, for any customer k ∈ K ′ , if there exists a site vi ∈ σ` such

that wk,v` ≥ wk,vi , then customer k is removed from K
′
. In fact, if we assigned

k to v`, the resulting label would be dominated by a similar label in which k is

removed from v` and assigned to vi.

To illustrate, consider extending L1 in our example to delivery site 3. Customer

k is removed from K
′

since wk,3 = 40. Also, note that wd,3 > wd,2 therefore,

customer d is also removed from K
′
, reducing the set of remaining customers

K
′

to {c, e, f, g}.
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• Rule 2: Using Unassigned Customers for which v` is Closest

Let Ψ be the subset of customers in K
′

such that their closest delivery site in

S
′
, in the sense of the f -values, is v`. Observe that any customer in Ψ, if it

is not assigned to v` itself, it will never be assigned to any future delivery site

that is added to L after v`. (Otherwise, the resulting label would be dominated

by a similar label with the only difference that this customer is assigned to v`.)

Also, let Ω be the set of all customers o ∈ Ψ for which there exists a customer

k included in label L such that k is assigned to vi, dk ≥ do, and wk,vi ≥ wo,v` .

If o ∈ Ω is not assigned to v`, then o will never be assigned to any label L′ that

stems from L. Furthermore, by removing k from site vi and assigning o to v`

instead, we can construct a better label. As a result, for the new label L′ to be

non-dominated, assign all customers in Ω to v` and remove all the members of

Ω from K
′

and Ψ. Note, of course, that if the inclusion of Ω was not feasible

due to the tour capacity, this label would be dominated and should not be given

further consideration.

To illustrate using our example, site 3 in the partial path is the closest site of

customers c and e. Therefore, Ψ = {c, e}. Therefore, these customers would

be either assigned to site 3 or not at all in any future extension of L1. Also,

noting that dc ≤ db and wc,3 ≤ wb,2, customer c has a better contribution to the

solution and has a smaller demand than customer b. Therefore, Ω = {c} and

customer c is assigned to site 3 and K
′
= {e, f, g}, Ψ = {f}.

• Rule 3: Identifying So-Called Inferior Customers

A customer k ∈ K ′ is deemed to be inferior to o ∈ Ψ, if dk ≥ do and wk,v` ≥

wo,v` . If customer o is not assigned to v`, then none of its inferior customers can

be assigned to v` (otherwise, this would result in a dominated label). In the
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next step of get-labels, inferior customers are determined for every o ∈ Ψ.

This information helps reduce the number of feasible customer subsets to be

created in order to extend the label, as discussed next. For example, among

remaining customers of K
′
, f and g are inferior to e. Therefore, if e is not

assigned to site 3, neither of f and g can be assigned to it.

4.3.2.1 Creating Feasible Customer Subsets

Because all customers in Ω were assigned to v` at an earlier point, note that the

residual capacity is Q − (Q` +
∑

k∈Ω dk). We then determine all subsets of K
′

such

that their aggregate demand does not exceed Q−(Q`+
∑

k∈Ω dk). Furthermore, when

computing feasible subsets of K
′
, if o ∈ Ψ is not in a subset, then none of its inferior

customers can be included in this subset as well. For our example, K
′

= {e, f, g},

Ψ = {e}, Ω = {c}. For each of the customers subsets {c} , {c, e}, {c, e, f}, {c, e, g},

{c, e, f, g} a new label is created. Note that c must be assigned to 3 and customers

f and g are inferior to e. Before using Rules 1-3, K
′

had 6 members, resulting in

64 possible customer subsets; that is, the application of these rules precluded the

generation of 59 dominated labels.

For each resulting subset of customers a`, a new label L′ is created by extending

L to v` and assigning to v` customers of a` along with customers in Ω. The attributes

of label L′ are specified as follows:

• With P` = (0, v1, . . . , u) being the sequence of sites visited by L, the partial

path associated with L′ is P`′ = (0, v1, . . . , u, v`).

• With A` = (∅, a1, . . . , au) being the ordered set of clustered customers assigned

to sites in P`, we set A`′ = (∅, a1, . . . , au, a` ∪ Ω) for label L′ .
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• The set of delivery sites and customers visited by L′ are σ`′ = σ` ∪ {v`} and

χ`′ = χ` ∪ (a` ∪ Ω), respectively.

• The cost of the new label is C`′ = C` + wu,vl +
∑

k∈a`∪Ω

wk,v` and its consumed

capacity is Q`′ = Q` +
∑

k∈a`∪Ω

dk.

The final step of function get-labels is to update σ̃`′ which is the set of sites in

SR that although not included in L′ , should not be considered for the extension of

this label because they would yield dominated labels. In fact, for customer k already

assigned to a site s, any site s̄ that is closer to k than s (i.e. wk,s̄ < wk,s), is a member

of σ̃`′ . The reason is that any future extension of L′ that visits s̄, is dominated by

a similar label in which instead of s, k is assigned to s̄. In our example, let L2 be a

label obtained from extending L1 to site 3 and assigning to site 3 customers {c, e, g}.

For this label, σ̃`2 = {1, 4}. In fact, visiting site 1 in any future extension of L2 would

make the assignment of customer a to site 2 a suboptimal decision and, hence, the

resulting label would be dominated. The same logic applies to site 4; its inclusion in

any future extension would make the assignment of customer g to site 3 suboptimal.

At last, we construct χ̃`′ , the set of customers that although not assigned to

any site yet, should not be considered for assignment in any future extension of L′

because they would yield dominated labels. Recall that Ψ is the set of customers

such that their assignment to any site after v` would result in a dominated label. Let

ς = Ψ \ (a` ∪Ω) and add ς to χ̃`′ (χ̃`′ ← χ̃`′ ∪ ς). For example, in label L2, χ̃`1 = {d}

since d is not assigned to its closest site (i.e., site 2), it cannot be assigned to any other

site in future extensions of L2. Note that, although Rule 1 detects such customers

and avoids their inclusion in future extensions, the set χ̃` is used to strengthen the

dominance rule presented next.
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4.3.2.2 Dominance Rule

In Algorithm 1 espprc-vrdap, the function add(Hv, Fv) removes all dominated

labels in Hv (previously extended labels to site v) and Fv (recently extended labels

to site v) and returns all non-dominated labels in Fv. As such, ∀L∗ 6= L ∈ Fv, L∗ is

said to dominate L if the following conditions hold: (i) C`∗ ≤ C`; (ii) Q`∗ ≤ Q`; (iii)

σ`∗ ⊆ σ` ∪ σ̃`; and (iv) χ`∗ ⊆ χ` ∪ χ̃`. Dominated labels are removed from Fv and Hv

by applying Algorithm 7.

Algorithm 7 dominance(L∗,L) – Checks if L∗ dominates L
1: if C`∗ > C` or Q`∗ > Q` then
2: return FALSE
3: end if
4: if (σ`∗ ⊆ σ` ∪ σ̃`) AND (χ`∗ ⊆ χ` ∪ χ̃`) then
5: return TRUE
6: else
7: return FALSE
8: end if

4.3.3 Heuristic DP Procedures

In this section, we propose six heuristic versions of the DP algorithm (Algorithm

1 espprc-vrdap) which, in our experience, play an important role in identifying

near-optimal solutions to the pricing subproblem in short CPU times. This, in turn,

significantly accelerates the overall B&P algorithm. Our strategy has been to invoke

these heuristic variants, until no column with a negative reduced cost is found. In the

latter case, we resort to using the exact DP approach to either reveal such a column,

when it exists, or to establish LP optimality at a node of the B&P tree. The names of

the heuristic DP variants presented next follow this logic: (i) (R) refers to a relaxed

dominance rule, as opposed to (NR), not relaxed; and (ii) (EZ) refers to a simplified

(easy) generation of customer subsets to be appended to a delivery site, whereas (H)

refers to an exhaustive (hard) enumeration of such subsets.
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H1-R: In Heuristic H1-R, any customer k ∈ KR is assigned to its nearest delivery site

and the pricing subproblem reduces to that of a capacitated VRP (CVRP). We use a

relaxed (heuristic) dominance rule whereby a label L∗ dominates L′ , if C`∗ ≤ C`′ and

Q`∗ ≤ Q`′ (i.e., we do not check the second condition in Algorithm 7 dominance).

H1-NR: Heuristic H1-NR is similar to Heuristic H1-R except that it employs the

exact dominance rule in Algorithm 7.

H2-R: In Heuristic H2-R, we use the relaxed dominance rule as in Heuristic H1-R,

but with a different customer assignment scheme. Let v be a delivery site that is

considered for inclusion in a label and to which we would like to assign customers,

subject to a residual capacity q̄` = Q−Q`. Instead of calling get-labels, Heuristic

H2-R proceeds as follows. First, let K
′

= KR \ χ`. Then, we remove any customer

k ∈ K ′ such that v is not amongst its first ε nearest sites. We also use Rules 1-3 of

function get-labels to further reduce K
′
. For each customer k ∈ K ′ , we compute

wk,v/dk which can be seen as the reduction in cost, for any one unit of increase in

vehicle load, after assigning k to v. Heuristic H2-R uses this quantity as a measure

of attractiveness of assigning k to v. Let {k[1], k[2], . . . , k[|K′ |]} be the set of all cus-

tomers in K
′

sorted in the ascending order of their wk,v/dk values. The first label

is constructed by assigning the most attractive customer k[1] to v . Then, another

label is constructed by assigning first two most attractive customers {k[1], k[2]}. This

is continued until ith label is constructed by assigning {k[1], ..., k[i]} to v and adding

k[i+1] to this set will violate vehicle capacity (i = argmin{h |
∑h

j=1 dv[j] > q̄`}).

H2-NR/EZ: Heuristic H2-NR/EZ employs the customer assignment scheme in Heuris-

tic H2-R, but with the exact dominance rule.
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H2-NR/H: Heuristic H2-NR/H is similar to H2-R: First, the set {k[1], k[2], . . . k[i−1]}

is determined, but all its customer subsets are then generated and considered for

potential assignment to site v (as opposed to considering i − 1 sets only, i.e. {k[1]},

{k[1], k[2]}, . . . , {k[1], k[2], . . . k[i−1]}). The exact dominance rule is also employed here.

HR: In lieu of using sets SR and KR defined in Section 4.1, Heuristic HR considers,

for any site s, the subset of customers for which site s is among their ϑ nearest de-

livery sites.

In our implementation, we trigger the aforementioned heuristics in the following

order. First, we activate Heuristic HR. Then, we call Heuristic H1-R to solve the

subproblem; if it fails to find an attractive column, Heuristic H1-NR is invoked.

Again, if the latter fails, Heuristics H2-R, H2-NR/EZ and H2-NR/H are sequentially

triggered in turn, as necessary. If any of these heuristics is successful, in addition

to the best column it finds, we consider adding up to 20 columns with the most

negative reduced costs (as available) to the RMP. However, when all heuristics fail

to find a column with a negative reduced cost, Heuristic HR is deactivated and the

heuristics are triggered with an exact reduction scheme. If they fail again, the exact

DP (Algorithm 6) is invoked in which case either an attractive column is found or LP

optimality is proven (at the current B&P tree node).

4.4. Computational results

In this section, we evaluate the computational performance of the B&P algorithm,

which we implemented using C# under Visual Studio, and compare it against solv-

ing the original MIP model using the branch-and-cut algorithm of CPLEX 12.5. All

runs were performed with a time limit of 3600 CPU seconds on a Windows 7 profes-

sional 64-bit operating system with an Intel Core i7-2600 CPU with 3.40 GHz and
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12 GB RAM desktop. We also compare the overall performance of the exact solution

of the B&P algorithm and its root-node incumbent integer solution against solutions

produced using the CG approach in Ghoniem et al. (2013) and the Benders decompo-

sition approach in Solak et al. (2014). This numerical comparison is possible noting

that the aforementioned approaches were tested by the authors using comparable

hardware/software settings.

4.4.1 Description of Problem Instances

Our test-bed comprises 60 challenging problem instances that were randomly gen-

erated using the data generation scheme in Ghoniem et al. (2013) where instances

are based on the operations of a food bank in the Southeastern US. Instances were

generated with the following characteristics:

• Number of delivery sites and customers: |S| = 10, 20, or 25 and |K| = 20, 30,

40, or 50. For each (|S|, |K|) combination, five instances are reported, resulting

in a total of 60 instances.

• Customer and delivery site locations: The coordinates of customers and delivery

sites were randomly generated using a uniform distribution in a two-dimensional

Euclidean space where the distance between the central depot, which serves as

the origin, and customers/delivery sites varies between 25 to 75 miles. (It

is assumed that customers that are within 25 miles from the depot follow a

different delivery pattern and may directly collect their demand from the depot.)

• Customer demand: The demand of each customer, measured in pallets, was

randomly generated between 1 and 5 pallets with the following probabilities:

“P (dk = 1)” = 0.5, “P (dk = 2)” = 0.2, “P (dk = 3)” = 0.1, “P (dk = 4)” = 0.1,

and “P (dk = 5)” = 0.1.

• The vehicle capacity is set to Q = 25 (pallets).
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• The number of vehicle tours considered, |V |: Noting that m =
⌈
(
∑|K|

k=1 dk)/Q
⌉

is a lower bound on the number of vehicle tours needed for serving the total

demand, we set |V | = m+ 2 in our test-bed.

4.4.2 Performance of B&P Algorithm vs. CPLEX

Table 4.7 reports our computational results for solving the base MIP formulation

(in Appendix A) using CPLEX 12.5 vs. solving the set partitioning reformulation

using our proposed B&P algorithm. Columns 1 and 2 respectively specify the size

of the instance, (|S|, |K|), and its reference. For CPLEX, Columns 3-5 respectively

report the objective value obtained by the solver, be it optimal or just an upper bound,

the CPU time in seconds, and the solver optimality gap at termination if an instance

is not solved within a time limit of 3600 CPU seconds. The remainder of Table 4.7

relates to the B&P algorithm. Columns 6-9 focus on the root-node performance of

the B&P algorithm and report the following: (i) The lower bound (LB) achieved by

column generation; (ii) upper bound (UB) corresponding to the best integer solution

identified at the root-node by solving the RMP as a 0-1 problem using CPLEX; (iii)

the optimality gap (%) at the root-node comparing the aforementioned UB and LB;

and (iv) the CPU time (s) consumed at the root-node. Columns 10-14 summarize

the overall performance of the B&P algorithm with respect to the following: (i) The

optimal objective value or the upper bound obtained when an instance is not solved to

provable optimality within 3600 CPU seconds; (ii) the optimality gap at termination

or within a time limit of 3600 CPU seconds; (iii) total CPU time (s); (iv) number

of B&P nodes explored; and (v) the relative computational savings (in CPU time)

achieved by the B&P algorithm over the B&B/C algorithm in CPLEX.

The results in Table 4.7 reflect the computational challenges posed by this VRDAP

and the substantial CPU time savings achieved by the proposed DP-based branch-

and-price algorithm over a commercial solver such as CPLEX. In fact, CPLEX failed
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to solve the MIP model in Appendix A for 48/60 instances to provable optimality

within one CPU hour and terminated with optimality gaps ranging from 4.4% to

over 52% and averaging 25% over these instances. In contrast, the B&P algorithm

produced an optimal solution for 56/60 instances in our test-bed and yielded an

optimality gap of about 2% on average for the 4/60 instances it did not solve to

provable optimality within one CPU hour. Of the 56/60 instances it solved to provable

optimality, the B&P algorithm solved 23 instances at the root-node itself. Moreover,

even for the smaller instances that CPLEX solved within one CPU hour, the B&P

algorithm achieved remarkable savings in CPU time. Over our entire test-bed, the

B&P algorithm achieved computational savings in CPU time over CPLEX ranging

from 16% to nearly 100% and averaging 86%. Instance 5, with (|S|, |K|) = (25, 20),

is quite striking: CPLEX exhibited an optimality gap of 20.5% after one CPU hour,

whereas the B&P algorithm produced an optimal solution at its root-node in 1.8 CPU

second. With regard to the inadequacy of CPLEX for these instances, we note the

following:

• For instances with a smaller number of customers, e.g. (|S|, |K|) = (20, 20) or

(|S|, |K|) = (25, 20), CPLEX often reported a large optimality gap, although

its incumbent solution is observed to be either optimal or near-optimal when

compared against the B&P algorithm results. This is indicative of the weakness

of the LP relaxation of the base MIP formulation for this problem. As such,

CPLEX is expending a great deal of effort to close the gap between its weak LP

bounds and its optimal/near-optimal MIP incumbent solution. This drawback

is, of course, circumvented in the B&P algorithm, as column generation LP

bounds are usually very strong.

• As the number of customers increases, the performance of CPLEX deterio-

rates. In addition to the aforementioned weakness of the LP relaxation, the

solver experiences difficulties in identifying high quality MIP solutions within
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one CPU hour (see for example, the results of CPLEX for instances with

(|S|, |K|) = (20, 50) or (|S|, |K|) = (25, 50)).

4.4.2.1 Usefulness of DP Variants

In Table 4.8, we detail for each instance the total number of subproblems solved

by DP and the associated total CPU time. We also provide a specific breakdown

for these two metrics across the five heuristic DP variants (H1-R, H1-NR, H2-R, H2-

NR/EZ, or H2-NR/H), as described in Section 4.3.3, and the exact DP algorithm.

The results highlight the relative and collective benefit of the five DP heuristics for

the B&P algorithm. In summary, averaging the results in Table 4.8 over the entire

test-bed, we note the following:

• Heuristic H1-R (with a relaxed dominance rule) solved 51% of the subproblems

in only 3.2% of the total CPU time devoted to solving the subproblems.

• Heuristic H1-NR (with an exact dominance rule) solved 20% of the subproblems

in about 0.1% of the total CPU time.

• Heuristic H2-R (with a relaxed dominance rule) solved 20% of the subproblems

in about 35.2% of the total CPU time.

• Heuristic H2-NR/EZ (with an exact dominance rule and an “easy” customer

assignment) solved 5% of the subproblems in 30% of the total CPU time.

• Heuristic H2-NR/H (with an exact dominance rule and a more elaborate cus-

tomer assignment scheme) solved 3% of the subproblems in 5.6% of the total

time.

• The exact DP algorithm solved 1% of the subproblems in about 25.9% of the

total CPU time.
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That is, in only 1% of the subproblems did the B&P algorithm require the use of

the exact DP algorithm. This usually served the purpose of identifying a new attrac-

tive column that was beyond the reach of the DP heuristics or establishing the LP

optimality of the RMP at a given node of the B&P tree.

4.4.3 Comparison of Root-Node B&P Solution with Decomposition Heuris-

tics

To complete our computational discussion, we compare the root-node B&P solu-

tions against the results in both Ghoniem et al. (2013) and Solak et al. (2014), bearing

in mind that these references used comparable hardware/software settings. For ex-

ample, the column generation heuristic in Ghoniem et al. (2013) produced solutions

within 4% optimal in over 900 CPU seconds for instances where (|S|, |K|) = (10, 50).

In contrast, using comparable instances, the root-node solutions of our B&P algorithm

exhibited an optimality gap of 0.3% and were obtained in about 15 CPU seconds on

average. This striking difference is entirely attributed to solving the pricing subprob-

lem using our DP algorithms in lieu of CPLEX. As is typical of CG approaches, the

solver often experienced numerical difficulties in solving the subproblem (spending

excessive amounts of time to generate a particular new column) and experienced a

long tailing-off effect that is largely circumvented using the proposed DP approaches.

Solak et al. (2014) focused on instances where (|S|, |K|) = (25, 50) and found

a Benders decomposition approach to yield better results over using CPLEX with a

time limit of one CPU hour. However, the Benders decomposition approach produced

solutions in nearly 2400 CPU seconds with an average optimality gap of about 8-

9%. In contrast, over comparable instances, our B&P root node solutions exhibit an

optimality gap of 2% on average and are obtained within about 160 CPU seconds.

Furthermore, the overall branch-and-price algorithm itself produced global opti-

mal solutions in CPU times that are significantly shorter than those reported in the

aforementioned two references. It is our conclusion that the proposed B&P algo-
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rithm offers an attractive solution methodology that outperforms not only CPLEX,

but also certain heuristic decomposition approaches for this vehicle routing-allocation

problem.

4.5. Conclusions

This chapter develops an effective branch-and-price algorithm for the vehicle rout-

ing with demand allocation problem (VRDAP), where the pricing subproblem is

solved, exactly or heuristically, using a specialized labeling type, dynamic program-

ming (DP) algorithm. The computational efficacy of this DP approach stems pri-

marily from the inclusion of preprocessing routines that enhance the label extension

scheme by iteratively eliminating dominated (partial) solutions. The proposed exact

DP algorithm, and five proposed heuristic variants, significantly reduce the compu-

tational effort associated with the solution of the pricing subproblem (as opposed to

solving the latter as an MIP with CPLEX). The resulting speed up enabled the im-

plementation of a B&P algorithm that greatly outperformed the use of CPLEX over

a test-bed of 60 problem instances, with up to 25 delivery sites and 50 customers.

In our computational study, the heuristic DP algorithms were sequentially trig-

gered to solve the pricing subproblem and the exact DP was invoked only when all

heuristics variants have failed to produce a column with a negative reduced cost. In

our experience, the heuristic DP algorithms largely contributed to producing attrac-

tive columns at a moderate computational expense, whereas the more time-consuming

exact DP algorithm was invoked to solve only 1% of the subproblems, often to achieve

LP optimality at a given node of the B&P tree. The proposed DP-based B&P al-

gorithm achieved a substantial 86% savings in CPU time on average over CPLEX.

Moreover, the B&P algorithm solved 56/60 instances to optimality within a time limit

of 1 CPU hour (compared to 12/60 instances solved to optimality by CPLEX). For
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the 4/60 instances that were not solved to optimality, the B&P algorithm produced

solutions having an optimality gap of 2% on average.

We recommend for future investigation the exploration of variable neighborhood

search heuristics to solve the pricing subproblem within a B&P algorithm or as a

stand-alone heuristic approach for the VRDAP itself. It may be worthwhile to also

explore the impact of allowing multiple vehicle tours to access the same delivery site

(as opposed to having node-disjoint routes), time-windows for deliveries, or multiple

depots to serve customers.
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CHAPTER 5

CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

This dissertation contributes to the literature on routing problems in general and

bi-level transportation, in particular. The first essay proposes an exact algorithm for

the generalized vehicle routing problem (GVRP). The remainder of the dissertation

investigates, heuristically in Chapter 3 and via an exact branch-and-price algorithm

in Chapter 4, a Vehicle Routing with Demand Allocation Problem (VRDAP) that

arises in food bank pallet distribution problem.

5.1. Summary of Findings

The first essay develops a branch-cut-and-price (BCP) algorithm for the GVRP.

The problem is first formulated as a set-partitioning model in which capacity cuts

were enforced in order to strengthen its underlying relaxation and the associated

lower bound. The columns generation pricing subproblem was solved using a special-

ized dynamic programming algorithm that constitutes the kernel of our contribution.

Further, an effective heuristic was developed with the purpose of generating high

quality feasible solutions and, thus, relatively tight primal bounds for the BCP algo-

rithm. The proposed BCP algorithm compares favorably against the state of the art

exact algorithm for GVRP. Although it does not computationally outperform it for

all benchmark instances in the literature, our algorithm provably solved to optimal-

ity 8 out of 9 open instances in the literature. Furthermore, for instances generated

with random clustering (as opposed to proximity based clustering), the BCP algo-
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rithm performs significantly better than the branch-and-cut algorithm of Bektas et

al. (2011).

Motivated by pallet distribution problems for food banks, the Second Essay pro-

poses a multi-start optimization-based heuristic for the VRDAP. Central to the suc-

cess of our methodology is the combined benefit of local search optimization-based

routines that enable improvements in the routing as well as the customer assignment

decisions, while avoiding more computationally taxing decomposition techniques in

the spirit of column generation or Benders decomposition. Whereas these local search

routines ensure intensification and solution refinement in certain areas of the feasible

space, a perturbation mechanism is introduced in the algorithm in order to escape

from local optima and to shift the search to diverse areas of the feasible space. For

each of the 100 randomly generated instances in our testbed, three different objec-

tive weights were considered, placing equal or greater emphasis on either the vehicle

routing cost or the customer travel cost. The proposed heuristic substantially out-

performs the best incumbent solution identified by CPLEX within one CPU hour.

It also greatly outperforms two decomposition heuristics in the literature in terms

of solution quality and CPU time. At last, the impact of key components of the

proposed heuristic on the performance of the algorithm is investigated in terms of

the value of the heuristic solution accruing from its inclusion. This assessment of

different algorithmic features can in our opinion guide the customization of solution

methodologies for similar bi-level logistical and routing problems.

Essay Three develops a branch-and-price algorithm for the aforementioned food

bank routing problem. The proposed column generation approach is grounded in

solving the pricing subproblem using a labeling type dynamic programming (DP)

algorithm. The specially-tailored DP algorithm, the manner in which a label tracks

both routing and customer assignment decisions, and the devised dominance rules

form our contribution and have enabled the algorithm to obtain the optimal solution
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of numerous instances in our testbed for this challenging problem. The computational

efficiency of the proposed algorithm is further improved by developing five heuristic

variants of the DP algorithm. The resulting speedup enables the implementation

of a branch-and-price algorithm that greatly outperforms the use of CPLEX over a

test-bed of 60 problem instances.

5.2. Directions for Future Research

We recommend for future research studying a new variant of the GVRP problem

investigated in Essay One. In this variant, each node can only supply a fraction of

the demand of its corresponding cluster. As such, routes may need to visit several

nodes from each cluster. This new variant of GVRP has several potential applications.

Especially, it can be used to optimize the routes that are used for picking up items that

are dispersed among different locations of the a warehouse (which is the warehousing

technique currently being used by the Prime Now service of Amazon).

As discussed in Essay Two, the VRAP problem lacks any local search heuristic

that can explore a neighborhood by making simultaneous adjustments in routing and

assignment decisions. As an extension for Essay Two, we recommend developing a

specialized optimization based local search heuristic that enables us to tackle such

difficulty. Such procedure revises the routing and assignment decisions by solving an

integer linear programming model.

We would also like to study VRAP in the context of drone delivery where delivery

sites are drone stations and the objective is to minimize the vehicle routing cost while

assuring that customers are served by drone/vehicle during a specific time windows.
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APPENDIX A

MIP FORMULATION FOR THE VRDAP

Using the notation introduced in Chapter 3, the VRDAP problem is modeled as

a 0-1 MIP (Ghoniem et al. 2013) using the following decision variables:

• sik ∈ {0, 1}: sik = 1⇔ customer k is assigned to site i, ∀i ∈ S, k ∈ K.

• evij ∈ {0, 1}: evij = 1⇔ arc (i, j) is included in vehicle tour v, ∀v ∈ V, (i, j) ∈ E.

• θvik ∈ {0, 1} : θvik = 1 ⇔ site i is visited by vehicle tour v and customer k is

assigned to site i, ∀v ∈ V, i ∈ S, k ∈ K.

• qvi : Total cumulative deliveries made upon serving site i in vehicle tour v, ∀v ∈

V, i ∈ S.
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Min
∑
v∈V

∑
(i,j)∈E

cij e
v
ij +

∑
i∈S

∑
k∈K

fik sik (A.1)

subject to
∑
v∈V

∑
i∈N−{j}

evij ≤ 1 ∀j ∈ S (A.2)

∑
j∈S

ev0j ≤ 1 ∀v ∈ V (A.3)

∑
i∈N−{j}

evij −
∑

i∈N−{j}

evji = 0 ∀v ∈ V, j ∈ N (A.4)

qvj ≥ qvi +
∑
k∈K

dksjk − 2Q(1− evij) +Qevji ∀v ∈ V, i 6= j ∈ S (A.5)

θvik ≥ sik +
∑

j∈N−{i}

evij − 1 ∀v ∈ V, i ∈ S, k ∈ K (A.6)

θvik ≤
∑

j∈N−{i}

evij ∀v ∈ V, i ∈ S, k ∈ K (A.7)

θvik ≤ sik ∀v ∈ V, i ∈ S, k ∈ K (A.8)

qvi ≤ Q
∑

j∈N−{i}

evij ∀v ∈ V, i ∈ S (A.9)

∑
k∈K

dkθ
v
ik ≤ qvi ∀v ∈ V, i ∈ S (A.10)

∑
v∈V

∑
i∈S

θvik = 1 ∀k ∈ K (A.11)

e, s binary, θ, q ≥ 0. (A.12)

The objective function (A.1) minimizes the total routing and customer travel cost.

Constraint (A.2) ensures that any delivery site is visited at most once. Constraint

(A.3) requires any vehicle tour to have at most one arc leaving the central depot (node

0). Constraint (A.4) enforces flow balance for the central depot and any delivery

site. Constraint (A.5) captures cumulative deliveries along a vehicle tour and serves

as lifted Miller-Tucker-Zemlin subtour elimination constraints. Constraints (A.6)-

(A.8) ensure that θvik assumes a value of 1 if and only if delivery site i is visited by

vehicle v and customer k is assigned to delivery site i. Constraint (A.9) establishes
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an upper bound on the cumulative delivery made upon visiting any delivery site i.

Constraint (A.10) requires the cumulative delivery made upon serving site i by the

relevant vehicle tour to be at least the demand allocated to i itself. Constraint (A.11)

ensures that every customer is assigned to exactly one delivery site and one vehicle

tour. Constraint (A.12) introduces logical binary and nonnegativity restrictions on

decision variables.
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APPENDIX B

NOTATIONS

Summary of the notation used in Chapter 4.

• KR: reduced set of customers after preprocessing procedure.

• SR: reduced set of delivery sites after preprocessing procedure.

• Label L: any partial solution of pricing subproblem is represented by a label

such as L.

• P` = (0, v1, . . . , v`): an ordered set of delivery sites visited by L.

• A`: an ordered set of clustered customers respectively associated with each

delivery site of P`.

• C`: total cost of L.

• Q`: total demand of all customers included in L.

• σ`: set of sites visited by L.

• χ`: set of customers served in L.

• σ̃` : Set of sites that if visited in any future extension of L, would yield a

dominated solution.

• χ̃`: set of customers that if included in any future extension of L would result

in a dominated label.
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• K ′ : when extending label L to site v, K
′

is the set of customers that can be

assigned to v. (initially, K
′
= KR \ χ`. Then, it is reduced using rules (1)-(3)).

• Ψ: when extending L to site v, Ψ is the subset of customers in K
′

that their

closest delivery site is v.

• Ω: when extending L to site v, Ω ⊆ Ψ is the set of customers that must be

assigned to v, otherwise, the label L will become a dominated label.
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APPENDIX C

NUMERICAL EXAMPLE FOR THE DP ALGORITHM
INTRODUCED IN CHAPTER 4

Using the example discussed in Chapter 4, we illustrate several steps of the DP

algorithm (Algorithm 6) and procedure get-labels. For the sake of brevity, we

present the extension of only a few labels (among many labels) generated in each

iteration. Recall that our example involves a set of delivery sites, S = {1, 2, . . . , 6},

and a set of customers, K = {a, b, . . . , k}. The assignment and routing cost matrices

are given in Tables 4.1 and 4.2. Incorporating the dual values into the original cost

matrices results in the updated matrices in Tables 4.5 and 4.6. The capacity of vehicle

Q = 8 and all customers have unit demands. By preprocessing, these sets of sites and

customers respectively reduce to SR = {1, 2, 3, 4, 6} andKR = {a, b, c, d, e, f, g, k}. At

last, each label is denoted by L = (P`, A`, C`, Q`) (see Appendix B for a summary of

notations). Also, recall that procedure get-labels(L, v`) constructs all the customer

subsets that can be feasibly assigned to v`. Many of these feasible customer subsets,

however, would result in dominated labels. Procedure get-labels uses three rules

to detect such dominated subsets. For clarity in the exposition, these three rules are

briefly reviewed:

• Rule 1: Eliminating Unattractive Customers for v`

Consider K
′
= KR \χ` and S

′
= SR \ (σ`∪ σ̃`). All customers k ∈ K ′ such that

wk,v` ≥ 0 are removed from K
′
, because their assignment to v` would worsen

the solution. Further, for any customer k ∈ K
′
, if there exists a site vi ∈ σ`

such that wk,v` ≥ wk,vi , then customer k is removed from K
′
.
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• Rule 2: Using Unassigned Customers for which v` is Closest

Let Ψ be the subset of customers in K
′

such that their closest delivery site in

S
′
, in the sense of the f -values, is v`. Observe that any customer in Ψ, if it

is not assigned to v` itself, it will never be assigned to any future delivery site

that is added to L after v`. Also, let Ω be the set of all customers o ∈ Ψ for

which there exists a customer k included in label L such that k is assigned to

vi, dk ≥ do, and wk,vi ≥ wo,v` . If o ∈ Ω is not assigned to v`, then o will never

be assigned to any label L′ that stems from L. Furthermore, by removing k

from site vi and assigning o to v` instead, we can construct a better label. As

a result, for the new label L′ to be non-dominated, assign all customers in Ω

to v` and remove all the members of Ω from K
′

and Ψ. Note, of course, that if

the inclusion of Ω was not feasible due to the tour capacity, this label would be

dominated and should not be given further consideration.

• Rule 3: Identifying So-Called Inferior Customers

A customer k ∈ K ′ is deemed to be inferior to o ∈ Ψ, if dk ≥ do and wk,v` ≥

wo,v` . If customer o is not assigned to v`, then none of its inferior customers can

be assigned to v` (otherwise, this would result in a dominated label).

Algorithm 6 starts at the depot by creating an initial label L0 = {((0), (∅), 0, 0)}

and setting Γ = {0} (lines 2-3). The while loop removes the depot from Γ and ex-

tends its only label to delivery sites of SR. Starting from delivery site 1, procedure

get-labels(L0, 1) constructs all the non-dominated labels that can be obtained by

extending label L0 to delivery site 1 and assigning to it a feasible subset of cus-

tomers in KR. According to Rule 1, assigning all the customers {e, f, g, k} to site

1 would result in a dominated label, thus, K
′

= {a, b, c, d}. In Rule 2, Ψ = {a}

and Ω = ∅. Rule 3 detects all the customers {b, c, d} inferior to a ∈ Ψ. In other

words, if a is not assigned to site 1, no other customer can be assigned to it as
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well. Therefore, get-labels(L0, 1) considers the following subsets of customers:

{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d} and {a, b, c, d}. Total of 8 new la-

bels are generated, each having one of these subsets assigned to site 1. Since delivery

site 1 has some new labels that are not extended yet, Γ = {1}.

Similarly, several new labels are generated for delivery site 2. Rule 1 reduces KR to

K
′
= {a, b, c, d, f}. According to Rule 2, Ψ = {b, d},Ω = ∅. Rule 3 detects customer

f to be inferior to both b and d. Also, c and d are both inferior to b. Therefore, 13 la-

bels are generated by assigning each of the following subsets to site 2: {a}, {b}, {a, b},

{b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {b, d, f}, {a, b, c, d}, {a, b, d, f}, {b, c, d, f} and

{a, b, c, d, f}. Due to the introduction of new labels for site 2, Γ = {1, 2}. The for

loop (line 6) is repeated for sites 3, 4 and 6 and creates several new labels for all of

them. After the first iteration of while loop, Γ = {1, 2, 3, 4, 6}.

The second iteration of while loop starts by selecting delivery site 1 from Γ and

extending its labels that are not extended before. For the sake of brevity, here we do

the extensions for only 2 out of 8 labels generated in the previous iteration.

For label L1 = ((0, 1), (∅, {a, d}),−50, 2), σ`1 = {0, 1} and σ̄`1 = {2, 3, 4}. Note

that, extending L1 to any delivery site in σ̄`1 would result in a dominated label

(removing customer d from site 1 and assigning it to the visited site from σ̄`1 creates

a better label). Therefore, L1 is only extended to delivery site 6 by calling procedure

get-labels(L1, 6). Rule 1, rules out all the remaining customers except k. Only

one new label ((0, 1, 6), (∅, {a, d}, {k}),−27.5, 3) is generated.

The same happens when extending L2 = ((0, 1), (∅, {a, c}),−60, 2) to delivery site

6. σ`2 = {0, 1} and σ̄`2 = {2, 3, 4}. The only label generated by get-labels(L2, 6)

is ((0, 1, 6), (∅, {a, c}, {k}),−37.5, 3). Following the same steps, other 6 labels are

extended to other delivery sites, generating several new labels. In the next iterations

of while loop, the non-extended labels of other members of Γ are extended as above.
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As a final example, we consider an iteration of while loop where label L3 =

((0, 2, 3), (∅, {a, b}, {c}),−92.5, 3). For this label, σ`3 = {0, 2, 3} and σ̄`3 = {1}.

Therefore, L3 is only extended to sites 4 and 6. For the delivery site 4, Rule 1 detects

assignment of customers k, d, e to site 4 a dominated decision. Among the remaining

customers, i.e. f and g, Rule 3 detects g to be inferior to f . Therefore, only the

following two new labels are generated: ((0, 2, 3, 4), (∅, {a, b}, {c}, {f}),−118, 4) and

((0, 2, 3, 4), (∅, {a, b}, {c}, {g, f}),−138, 5). Similarly, the procedure get-labels(L3, 6)

only considers the assignment of customer k as a non-dominated decision. Therefore,

only one label ((0, 2, 3, 6), (∅, {a, b}, {c}, {k}),−60.5, 4) is generated by this proce-

dure.
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