
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

October 2018 

THE BALANCE BETWEEN DIPOLE-DIPOLE INTERACTIONS AND THE BALANCE BETWEEN DIPOLE-DIPOLE INTERACTIONS AND 

STERIC EXCLUSION ON ORDERING IN CATIONIC POLYMERS STERIC EXCLUSION ON ORDERING IN CATIONIC POLYMERS 

Chinomso Nwosu 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Physical Chemistry Commons, and the Polymer Chemistry Commons 

Recommended Citation Recommended Citation 
Nwosu, Chinomso, "THE BALANCE BETWEEN DIPOLE-DIPOLE INTERACTIONS AND STERIC EXCLUSION 
ON ORDERING IN CATIONIC POLYMERS" (2018). Doctoral Dissertations. 1375. 
https://scholarworks.umass.edu/dissertations_2/1375 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/140?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1375?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 

THE BALANCE BETWEEN DIPOLE-DIPOLE INTERACTIONS AND STERIC 

EXCLUSION ON ORDERING IN CATIONIC POLYMERS 

 

A Dissertation Presented  

By 

CHINOMSO T. NWOSU 

 

 

 

 

 

 

 

Submitted to the Graduate School of the University of Massachusetts Amherst in partial 

fulfillment of the requirements for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

SEPTEMBER 2018 

 

 

 

Polymer Science and Engineering 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©Copyright by Chinomso T. Nwosu 2018 

All Rights Reserved 



 

THE BALANCE BETWEEN DIPOLE-DIPOLE INTERACTIONS AND STERIC 

EXCLUSION ON ORDERING IN CATIONIC POLYMERS. 

 

A Dissertation Presented  

By 

CHINOMSO T. NWOSU 

 

 

Approved as to style and content by: 

 

---------------------------------------- 

E. Bryan Coughlin 

 

---------------------------------------- 

Greg Grason, Member 

 

-------------------------------------- 

Sarah Perry, Outside Member 

 

 

---------------------------------------------- 

E. Bryan Coughlin, Department Chair 

Polymer Science and Engineering 



 

DEDICATION 

 

 

 

 

 

 

To the Beautiful Journey and her Perfect Painting 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

ACKNOWLEDGEMENTS 

 

I am thankful to my advisor, Prof. E. Bryan Coughlin, for his mentorship and support. Most 

importantly, he has always being available to talk to, not just about science, but student and career 

life in general. By extension, I will like to thank the whole Coughlin group members past and 

present: Dr. Hussain Tas, Dr. WenXu Zhang, and Dr. Patrick Homyak, Dr. Bryan Cromer, Jo, 

Rohit, Josh, Yifeng, Ria, Hyuen and Christian to mention just a few. I would not have asked for a 

better group. 

I will also like to thank other members of my thesis committee, Prof. Grason and Prof. Perry for 

all their advice and availability through this program. I appreciate Prof. Hsu, Prof. Carter, and Prof. 

McCarthy for allowing me to make use of their group equipment and also for their encouraging 

quips on occasions that I have ran into them. 

Special thanks to U.S. Army for providing the funding for this work. Also want to thank the Prof. 

Andrew Herring and his group for helping me with Electrochemical Impedance Spectroscopy 

characterization. Special thanks to Samuel Galito, Ye, and Tara, Himanshu and Ashley. In fact, I 

will like to thank the MURI team as a whole. Moreover, I am thankful to Soenke and the Argonne 

National Laboratory, Advanced Photon Source. 

Many thanks to Prof. Muthukumar and Russell for their commitment to improving my 

understanding of polymer physics. Dr. Wieguo for introducing me to solid-state NMR. And also 

Emeritus Prof. Vim de Jeu for his precious suggestions.   

I will also like to thank the Class of 2013, especially Ben, Di and Cristiam, for their friendship and 

support throughout this program.  



vi 

 

Also, I am thankful to Lisa, Jessica, and Maria for their ardent commitment to graduate students. 

I also want to thank my friends, Kachi, Kennedy, Damola, Niyi, Yetunde, Ziwen, and others who 

are not mentioned here for their support both socially and academically.  

I am immensely thankful to my parents Festus and Ijeoma Nwosu for all their many love and 

sacrifice. My siblings Dimma, Eze, Uche, and Amara deserve honorable mention as well.  

Finally, I am unreservedly grateful to my family: Ebru and Ijeoma II. You’ve been like a light that 

shines in a dark place - the morning stars that rise in my heart. 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

ABSTRACT 

THE BALANCE BETWEEN DIPOLE-DIPOLE INTERACTIONS AND STERIC 

EXCLUSION ON ORDERING IN CATIONIC POLYMERS. 

SEPTEMBER 2018 

CHINOMSO NWOSU 

B.Eng., FEDERAL UNIVERSITY OF TECHNOLOGY OWERRI 

M.S., GRENOBLE INSTITUTE OF TECHNOLOGY 

M.S., TECHNICAL UNIVERSITY OF DARMSTADT 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Prof. E. Bryan Coughlin 

 

Structure-property correlations in charged polymers is an interesting facet of polymer science. 

Understanding the effects of intermolecular forces on the morphologies of polymers can lead to 

the design of membranes with desired structures to improve properties, for example ion 

conductivity. In random, comb-shaped polycations, competing intermolecular forces result in two 

different short-range orderings. Side-chain steric repulsion results in backbone-backbone 

morphology characterized by periodic spacing between polymer backbones. However, dipole - 

dipole attraction in these polycations can facilitate the formation of ionomer cluster morphology 

characterized by a spacing between clustered dipoles. Although both of these short-range orderings 

have disparate origins, their similar dimensions when characterized by X-ray scattering can lead 

to a misattribution of one morphology for the other. To investigate this interplay between side-

chain sterics and dipole-dipole attraction in polycations, random copolymers, and terpolymer of 



viii 

 

poly(4-vinylpyridine) (P4VP), polyisoprene (PI), and polystyrene (PS) were synthesized and fully 

quaternized with 1-alkylhalides.  X-ray scattering show that in samples having 2 carbons on its 

pendant side-chain dipole-dipole attraction facilitates the formation of ionomer cluster 

morphology. Whereas samples with 4, or more carbons, on their pendant side-chains were 

dominated by side-chain sterics resulting in backbone-backbone morphology. Copolymers with 

polyisoprene, having flexible backbones, favored the formation of ionomer cluster morphology.  

An “In-Line” Dipole Model was developed to predict the separation between polymer backbones 

at which both ionomer cluster and backbone-backbone morphologies could coexist. The pendant 

polyisoprene units in the random copolymers of the fully quaternized P4VP and PI were 

crosslinked into robust anion exchange membranes (AEMs). Ionic conductivities for AEMs with 

coexistent morphologies were exceptionally high. To utilize these highly conducting AEM 

morphologies for fuel cell applications, stable quaternary ammonium monomers were designed, 

synthesized, and characterized. The monomers, norbonenepropoxy-6-azonia-spiro(5,5)undecane, 

and norbonenehexoxy-6-azonia-spiro(5,5)undecane, were readily polymerized into solvent 

processable AEMs. Random and block copolymerization of the stable quaternary ammonium 

monomers with norbornenemethylbenzylether were performed. The resultant copolymers were 

solvent processed into flexible anion conducting membranes. In the random copolymers, the 

competition between electrostatics and sterics facilitated the formation of coexistent morphologies 

resulting in high ionic conductivities in these membranes. In the block copolymers, electrostatics 

facilitated the formation of a continuous ionic phase even at low ionic volume fractions. This 

percolated phase in the block copolymers resulted in excellent bromide conductivity.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The global energy crisis has led to the increased interest in alternative forms of energy. A thriving 

part of these investigations is the use of fuel cell technology. Fuel cells have higher efficiency and 

lower adverse environmental impact in comparison to the use of fossil fuels.1–3 They have been 

successfully commercialized as a source of alternative energy and are being used in a range of 

applications.4–8 A leading candidate for portable applications is the Proton Exchange Membrane 

Fuel Cells (PEMFCs). They rely on noble metal catalysts to function, and given the scarcity of 

noble metals, the cost of PEMFCs is understandably high. There are also longevity and fueling 

issues which has prevented wider adoption.9 An alternative to proton transport is hydroxide 

transport in Hydroxide Exchange Membrane Fuel Cells (HEMFCs). Liquid electrolytes are used 

in these hydroxide-based fuel cells.9 Hydroxide Exchange Membrane Fuel Cells (HEMFCs) have 

the advantage of a more facile oxygen reduction reaction since the operating medium is alkaline 

rather than the acidic environment for PEMFCs. Thus, HEMFCs can function without the use of 

noble metal catalysts. The absence of noble metals as an integral part of their operation makes 

them more affordable in comparison to PEMFCs. Another advantage of the alkaline medium is 

the efficient electro-oxidation of non-conventional fuels like sodium borohydride.9 Furthermore, 

the electro-osmotic drag in HEMFCs opposes fuel crossover since the hydroxide ions travel in 

opposite direction to the direction in which the fuel is injected. Consequently, fuels with higher 

energy density than hydrogen or methanol can be used.  
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A major challenge of HEMFCs, however, is the high purity of oxygen gas required to prevent the 

formation of carbonate salts from CO2 that is present in air when air is used as an oxygen source.9–

11 To prevent these complications, polymers are generally preferred for use as separator 

membranes. In these membrane systems, the cation moiety is fixed to the polymer structure as this 

then prevents the formation of carbonate precipitates. These systems are generally known as Anion 

Exchange Membranes (AEMs). However, they suffer from low ion conduction, poor chemical 

stability in alkaline medium, and insufficient mechanical properties. As in most polymers in which 

structure is invariably tied to properties, mechanical and conductivity properties have been 

reported to be dependent on the morphology of anion exchange membranes.4,12–15 Consequently, 

it is of importance to perform fundamental studies on the structure-property relationships in AEMs. 

It is also imperative to study the intermolecular forces that govern the formation of these 

morphologies.  

Polyelectrolytes, like other polymers, have a tendency to form interesting microstructures and 

some of these structures have been fully assessed in the literature.16–19 One of the signature 

morphologies of polyelectrolytes is the clustering of dipoles, especially, in random copolymer 

systems of an  ionic and non-ionic polymer.19–24 These randomly charged polycations or 

polyanions form what is known as an ionomer cluster morphology. According to Hsu and Gierke, 

this morphology consists of clustered ions randomly distributed in a hydrophobic matrix.19–21,25,26  
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Figure 1.1. Schematic representation of a) dipole-dipole interaction resulting in ionomer cluster 

morphology, and b) X-ray scattering spectrum of an ionomer cluster morphology.  

The average separation between these clusters can be directly measured using small angle X-ray 

scattering. The typical spacing within clusters in this microstructure is on the order of a few 

nanometers, however, this is also the length scale of the separation between alkylated polymer 

chains.27–30 When pendant side-chains are introduced to polymer backbones (as in a comb-shaped 

polymer), a characteristic feature, the spacing between adjacent polymer backbones, can be 

measured by X-ray scattering. This periodic spacing in the polymer is due to the backbone-

backbone morphology of these comb-shaped polymers. The spacing between backbones in these 

polymers increases with increasing length of side-chains.  

The formation of ionomer cluster morphology results from the clustering of dipoles and the 

aggregation of the clustered dipoles into a larger collection of dipoles (multipoles). The spacing 

between the polymer backbones forms by an opposite principle, steric exclusion preventing 

polymer backbones from aggregating. Hence, in a polyelectrolyte system with the possibility of 

forming ionomer cluster and backbone-backbone morphology, some fundamental questions arise. 

Which of these two kinds of morphology will be the most favorable to be formed by a charged, 

random, comb-shaped polymer? Will the formation of the backbone-backbone morphology be 

a) 

b) 
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more favorable for a randomly charged comb-shaped polymer, or will the comb-shaped polymer 

preferentially form an ionomer cluster morphology? Can both morphologies (ionomers and 

backbone-backbone) coexist in a random, charged, comb-shaped polymer, or will the “driving 

forces” for the formation of both morphologies perfectly counterbalance each other; thereby, 

leading to the disappearance of any type of short-range ordering in the random, charged, comb-

shaped polymer? Can we introduce a theoretical model that can explain the preference of a 

morphology in a model system?  

A study of these competing morphologies (ionomers cluster and backbone-backbone morphology) 

which have similar length scales, arising from different physical origins, have not received much 

attention in the literature. As a matter of fact, there have been mischaracterizations of the scattering 

peak for backbone-backbone morphology that were erroneously attributed to the  ionomer cluster 

morphology.15,31,32 This dissertation offers a  model that can explain the intermolecular origins of 

these two morphologies  to further the understanding of both short and long-range ordering in 

anion exchange membranes. This dissertation also offers a study of the effect of dipole interactions 

beyond short and long-range ordering and how these interactions can lead to the formation of semi-

crystalline morphology in comb-shaped homopolymers and block copolymers.  

Anion exchange membranes are usually comprised of quaternary ammoniums (QAs). Quaternary 

ammoniums are notoriously unstable in alkaline medium.9,33–51 Improving the chemical stability 

of the AEMs is of paramount importance to the furtherance of fuel cell science, especially, if AEMs 

are to compete as viable alternatives to proton exchange membranes. The motivation to synthesize 

stable QAs has led to an array of alkaline exchange membrane designs. However, until recently, 

only few studies on the design and synthesis of chemically stable QAs for anion exchange 

membranes have been reported. This is in part because studies comparing the chemical stability of 
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various monomer analogues of AEMs has been few in the literature.11 Recently, Kreuer and 

Marino showed that Azo Spirocyclic Undecane-type (ASU-type) molecules show remarkable 

stability in very harsh alkaline environments.11 Synthesizing these ASU-type monomers and then 

incorporating them into polymers have been a challenge for fuel cell scientists. Most ASU-type 

membranes have been prepared from the post modifications of polymers in which a precise control 

of the morphology and the corresponding property relationships are rarely studied.52–60 A 

component of this dissertation will focus on designing ASU-type monomers that can be readily 

polymerized. The resultant polymers should be solvent processable into anion exchange 

membranes. These monomers will be designed to harness the effect of balancing dipole-dipole 

interactions and sterics on their morphologies. The morphology-conductivity relationships of these 

ASU-type AEMs will then be evaluated.  

In Chapter 2, a model polymer, poly(4-vinylpyridine) was synthesized and quaternized. Poly(4-

vinylpyridine) can be readily quaternized, transforming it into a charged, comb-shaped polymer. 

The transformation in the morphology of the polymer with extent of conversion (quaternization） 

was studied by both fourier transform infra-red spectroscopy and wide-angle X-ray scattering. The 

effect of hydration on the morphology of fully quaternized P4VP was evaluated. Morphology-

ionic conductivity relations in fully quaternized P4VP were also evaluated. 

In Chapter 3, block copolymers of poly(4-vinylpyridine) (P4VP) and polystyrene, PS, were 

synthesized and quaternized. The morphological changes associated with the block copolymer 

after quaternization was evaluated by X-ray scattering. The formation of a backbone-backbone 

substructure within a microphase separation between the ionic and the non-ionic block 

superstructure was investigated.  
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In Chapter 4, random copolymers of poly(4-vinylpyridine) (P4VP), and polyisoprene (PI), were 

synthesized and quaternized with 1-alkylhalides. A terpolymer of poly(4-vinylpyridine) and 

polyisoprene, with polystyrene (to introduce some stiffness into the P4VP-r-PI random copolymer) 

was synthesized and quaternized by 1-alkylhalides. Finally, a random copolymer of poly(4-

vinylpyridine), P4VP, and polystyrene, PS, (a relatively stiffer polymer than both P4VP-r-PI and 

P4VP-r-PI-r-PS) was synthesized and quaternized with 1-alkylhalides. The In-Line Dipole Model, 

and its consequence on polymer morphology will also be introduced. Competition between dipole-

dipole interaction and backbone-backbone sterics in P4VP-r-PI, P4VP-r-PI-r-PS, and P4VP-r-PS, 

and their resulting effect on the polymer morphology was analyzed in the light of the In-Line 

Dipole model. 

In Chapter 5, the random copolymers of P4VP-r-PI quaternized by 1-alkylbromides were 

crosslinked by dithiol in the presence of UV-A light. The morphology-water uptake relationships 

were evaluated as well as the morphology-conductivity relationships.  

In Chapter 6, the serendipitous discovery of semi-crystallinity in the atactic polymers of poly(4-

vinylpyridine) quaternized by methyliodide, ethyliodide and ethylbromide were investigated by 

X-ray scattering, Differential Scanning Calorimetry (DSC) and Polarized Optical Microscopy 

(POM). This semi-crystallinity phenomenon was further evaluated in a block copolymer of poly(4-

vinylpyridine) and polystyrene.    

In Chapter 7, the design, synthesis and characterization of various ASU-type monomers was 

performed. Chemical stability tests were performed on two ASU-type monomers: 

norbornenepropoxy-6-azonia-spiro(5,5)undecane (NPS5) and norbornenehexoxy-6-azonia-

spiro(5,5)undecane (NHS5). Homopolymerization of these ASU-monomers (NPS5 and NHS5) 
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was performed. The resultant homopolymers of poly(norbornenepropoxy-6-azonia-

spiro(5,5)undecane), PNPS5, and poly(norbornenehexoxy-6-azonia-spiro(5,5)undecane), PNHS5, 

were characterized by X-ray scattering. Other ASU-type norbornene based monomers were 

synthesized and characterized as well.  

In Chapter 8, random copolymers of poly(norbornenepropoxy-6-azonia-spiro(5,5)undecane), 

PNPS5, with polynorbornene, PNOR,  were synthesized. Random copolymers of 

poly(norbornenehexoxy-6-azonia-spiro(5,5)undecane), PNHS5, with polynorbornene, PNOR, 

were also synthesized. The morphology of these random copolymers was characterized by X-ray 

scattering. Block copolymers of poly(norbornenepropoxy-6-azonia-spiro(5,5)undecane), PNPS5, 

with polynorbornenedimethyldichloride, PNDMDC, were synthesized. Block copolymers of 

poly(norbornenehexoxy-6-azonia-spiro(5,5)undecane), PNHS5, with 

polynorbornenedimethyldichloride, PNDMDC, were also synthesized. Morphologies of these 

block copolymers were evaluated by X-ray scattering and Transmission Electron Microscopy 

(TEM).  

In Chapter 9, random copolymers of poly(norbornenepropoxy-6-azonia-spiro(5,5)undecane), 

PNPS5, with poly(norbornenemethylbenzylether), PNMBzE, (PNPS5-r-PNMBzE) were 

synthesized. Random copolymers of poly(norbornenehexoxy-6-azonia-spiro(5,5)undecane), 

PNHS5, with poly(norbornenemethylbenzylether), PNMBzE, (PNHS5-r-PNMBzE), were  also 

synthesized. The morphologies of these random copolymers were characterized by X-ray 

scattering and TEM. Ionic conductivity of these membranes was evaluated by Electrochemical 

Impedance Spectroscopy (EIS). Morphology-conductivity relationships of these random 

copolymers were discussed. Block copolymers of PNPS5 with PNMBzE (PNPS5-b-PNMBzE) 

were synthesized. Block copolymers of PNHS5 with PNMBzE (PNHS5-b-PNMBzE) were also 
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be synthesized. Morphologies of these block copolymers were evaluated by X-ray scattering and 

TEM. Ionic conductivity measurements of these block copolymers were performed by EIS 

measurements. Morphology-conductivity relationships were discussed.  

This dissertation investigates the morphology of randomly, charged, comb-like polymers. Findings 

in this dissertation show that highly conducting ionic membranes can be prepared by understanding 

the forces driving the clustering of ions in random copolymers and the sterics that can mitigate 

against this clustering, thereby, increasing ionic conductivity. This blueprint for decreasing 

clustering is important if anion exchange membranes are to be an attractive alternative to proton 

exchange membranes for fuel cell applications. The In-Line Dipole model also presents a pathway 

to understanding the electrostatic interactions in polymer systems. More importantly, the dipole-

dipole interaction presented in this model can be incorporated into other self-consistent liquid state 

theories to further expand on the understanding of the roles of electrostatics and sterics in dictating 

the morphologies of charged polymer systems. Experimental results obtained in this work can be 

further analyzed and compared with simulation results of ionomer cluster models in which the 

driving forces in these simulations are consistent with the driving forces for ionic clustering 

presented in the In-Line Dipole model.  This can shed more light on the kinetics of ionic cluster 

formation which was not considered in the development of the In-Line Dipole model.  

This dissertation also builds on the work by Marino and Kreuer by synthesizing novel alkaline 

stable monomers. Membranes synthesized from the copolymerization of these alkaline stable 

monomers with other norbornene-based monomers were flexible and solvent processable. These 

membranes had exceptionally high bromide conductivities at relatively low ion exchange capacity. 

Fuel cell tests on these membranes and how their performance compares to other anion exchange 

membranes and proton exchange membranes is clearly warranted. The Azo Spirocyclic Undecane-
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type salts also described in this dissertation can be affixed to other polymer backbones, not just 

norbornene-based polymers, with functional halide groups that can undergo Williamson ether 

synthesis. 
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PART I: 

BACKBONE-BACKBONE MORPHOLOGY IN QUATERNIZED P4VP 

HOMOPOLYMERS AND BLOCK COPOLYMERS 
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CHAPTER 2 

EFFECT OF SIDE-CHAIN LENGTH AND EXTENT OF QUATERNIZATION ON 

MORPHOLOGY-PROPERTY RELATIONSHIPS IN QUARTERNIZED P4VP 

2.1 Introduction 

In the middle of the 20th century, Rehberg and Fisher successfully synthesized polymers with 

attached side-chains by polymerizing n-alkyl acrylates.1 Spurred by a desire to study the 

crystallization of these side-chains on atactic backbones, and their crystallization process as an 

analogue to liquid crystals, these comb-like polymers became an interesting field of polymer 

physics.2-4 As a consequence, different polymer backbones with varying number of carbons on the 

pendant side-chains were synthesized; poly (vinyl n-alkyl ethers and esters),5 poly (n-acyl 

styrenes),6 poly (α-olefins),7,8 polymaloamides,9 poly (n-alkyl methacrylates),10 and recently poly 

(n-alkyl imidazolium)11 ionic liquids and poly (3 n-alkyl thiophenes)12 semiconductors. The 

literature is replete with reports of alkylated polymer backbones with interesting physical 

properties especially the characteristic feature size observed in their X-ray scattering spectra. It 

took another 20 years after Fisher’s revolutionary work for Corradini to explain the significant 

change in microstructure when side-chains are attached to polymer backbones.7 

In amorphous linear polymers, short-range ordering of polymer segments is determined by the 

intermolecular interaction between adjacent polymer segments. However, an amorphous comb-

shaped polymer segment is comprised of the polymer backbone and pendant side-chains. The 

interaction between pendant side-chains on adjacent polymer segments in addition to the 

intermolecular interactions between the polymer backbones dictate the short-range ordering of 

amorphous comb-shaped polymer segments.13 The sterics stemming from the pendant side-chains 
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leads to increased separation between the polymer backbones with increasing length of the pendant 

side-chains.13 Owing to the electron density contrast between the polymer backbone and the 

pendant side-chains, the spacing between adjacent polymer backbones in comb-shaped polymers 

(backbone-backbone correlations) can be evaluated by X-ray scattering.  

Figure 2.1. X-ray scattering data of poly (α-olefins) with attached side-chains (1) polyethylene; (2) 

polypropylene; (3) poly (1-butene); (4) poly (1-pentene); (5) poly (1-hexene); (6) poly(1-

decene).7,8,19 

From Figure 2.1, two peaks can be observed in all of the scattering spectra except for polyethylene 

and polypropylene where only one peak is observed. The same peak, the peak at higher angles, is 

actually present in longer side-chain polyolefins. The peak corresponds to a distance between non-

bonded atoms in the first coordination sphere of the polymer chain.13 This peak has been suggested 

to be characteristic of organic compounds and can be observed in polymers as well as n-paraffins.14 

Plate and Shibav, performed electron diffraction experiments, and observed periodic spacings of 

1.5 and 2.5 Å. 3,15,16 The 1.5 Å – spacing is the bond length between two carbon atoms while 2.5 

Å is the distance between three carbon atoms in a trans configuration. The observed peak in the 

WAXS spectra, being larger than 1.5 and 2.5 Å was suggested to be the closest distance between 
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non-covalently bonded carbon atoms. These non-covalently bonded carbon atoms are held in this 

periodic position (~4.5 - 5 Å) by van der Waals interactions. In their studies, they concluded that 

the van der Waal’s (VDW) distance does not depend on the number of carbons on the polymer 

side chains ranging from butyl to octadecyl side-chains for poly (n – alkyl methacrylates). 

However, other researchers observed a slight increase in VDW spacing with increasing number of 

carbons in the side-chains for poly (n – cycloalkyl methacrylates) and poly (n – alkyl acrylates).10 

In Figure 2.1, a second peak at lower angles which has a larger spacing in comparison to the van 

der Waal’s peak, the LVDW peak, can be observed for poly (1-butene) to poly (1-decene). This 

peak has been shown to increase linearly with an increase in the number of carbons on the side-

chains.18-24

 

 

Figure 2.2. a) Parallel bundles of polymer chains b) cross-section of polymer chains in a square 

lattice, d) cross-section of a comb-shaped polymer in a square lattice.   
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If we assume that comb-shaped polymers are arranged as rigid rods in a square lattice. With 

increasing length of the pendant side-chains, the backbone-backbone spacing of these comb-

shaped polymers increases. The density of the polymer rods without side-chains is given by 

𝜌𝐵 ∝
𝑚

𝐿𝑂
2                                           2.1 

Where m is the molar mass of the polymer repeat unit and Lo is the area of the square lattice. 𝐿𝑂 

is twice the polymer backbone diameter, A. Upon the attachment of side-chains, the new density 

of the comb polymer is given by 

𝜌𝐴 ∝
𝑚 + 𝑛𝑏

𝐿2
                                 2.2 

Where n is the number of carbons on the pendant side-chains, b is molar mass of the methylene 

group, and L is the new length of the square lattice. L is twice the backbone-backbone spacing dB. 

If there are negligible differences between the polymer densities of the polymer main chains with 

or without pendant side-chains, then   

𝜌𝐴 = 𝜌𝐵                                         2.3 

Hence  

𝑚 + 𝑛𝑏

𝑑𝐵
2 =  

𝑚

𝐴2
                              2.4 

𝑑𝐵 =  𝐴(1 +
𝑏

𝑚
𝑛)

1
2                    2.5 

Since the molar mass of the methylene group is generally less than the molar mass of the polymer 

repeat unit, for the case in which 
𝑏

𝑚
𝑛 < 1,  
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𝑑𝐵~ 𝐴 (1 +
𝑏

𝑚
𝑛 −

1

8
(

𝑏

𝑚
𝑛)

2

+
1

16
(

𝑏

𝑚
𝑛)

3

… . . )      2.6 

Ignoring higher powers of 
𝑏

𝑚
𝑛,  

𝑑𝐵 =  𝐴 + 𝜆𝑛                               2.7 

Where A is the diameter of the polymer main chain, and 𝜆 is the increase in the backbone-backbone 

spacing with increasing pendant side-chain and will depend on the rigidity, the diameter and the 

repeat unit molecular weight of the polymer backbone. This relationship is consistent with 

experimental observations in all comb-shaped polymer series.5-19 

However, for cases in which 
𝑏

𝑚
𝑛 > 1, at higher values of n, from this model, we expect  

𝑑𝐵
2 =  𝐴2 + 𝜆′𝑛                2.8 

Plate and Shibaev has reported a deviation from linearity between dB and n at high values of n, 

which is consistent with the prediction of this model.13 Experimental data showed that the pendant 

side-chains will most likely assume an all trans configuration,10-11, 19although it has been suggested 

they may exhibit Gaussian character.25-26 

This model is not absolute but has inherent limitations because these are not crystalline rather 

amorphous polymers with short-range ordering. This model assumes that these rigid rods are 

arranged with high orientational and positional ordering relative to each other. However, we are 

considering amorphous comb-shaped polymers and such orientational ordering of polymers 

segments is not characteristic of amorphous polymers. Moreover, comb-shaped polymer chains 

are not hard cylinders, thus, some degree of interdigitation between extended pendant side-chains 

on adjacent comb polymers is expected. Notwithstanding, this model presents an opportunity to 
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describe the conformational state of the polymer backbone and its pendant side-chains in an 

amorphous comb-shaped polymer.  

 Another interesting aspect of the SAXS spectra is the intensity of the LVDW peak relative to the 

VDW. This short-range backbone-backbone periodic spacing arises from parallel bundles of the 

polymer backbone segments, both intra and inter polymer chains.28-30 In the SAXS spectra, 

intensity of the backbone-backbone spacing peak relative to the VDW may suggest the 

concentration of these parallel bundles in the polymer melt. Miller and Boyer affirmed this school 

of thought,10 though Hiller et al. suggested that this is may be due to density fluctuations within 

the polymer melt and might not necessarily correlate with the fraction of spacing between 

backbones in the melt.25  

The effect of the mole fraction of the side-chain repeat unit on the backbone-backbone spacing has 

not received much attention in the literature. Possibly because the comb-shaped polymers are 

formed directly from their corresponding monomers, and often times, not copolymerized with their 

un-functionalized counterparts.10,3 Poly(4-vinylpyridine) can be alkylated by quaternization. The 

process of quaternization converts pyridine units to alkylated pyridinium units (i.e. pyridine groups 

with side-chains and charges, See Scheme 2.1). Thus, the extent of conversion of quaternized 

P4VP is the mole fraction of alkylated/comb-shaped P4VP. Consequently, by monitoring the 

conversion during quaternization, the effect of conversion (which is the mole fraction of alkylated 

pyridinium units) on the backbone-backbone spacing can be probed. The backbone-backbone 

spacing at a given alkylated pyridinium conversion is the backbone-backbone spacing of the mole 

fraction of alkylated pyridinium units in the polymer. Furthermore, ionomer formation has been 

observed for other solid polyelectrolytes like polystyrene sulfonate-ran-polystyrene (PSS-r-PS).26-

30 The process of quaternization also yields poly(4-vinylpyridine)-ran-(n-
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alkyl4vinylpyridiniumbromide) (P4VP-r-P4VP_CnBr) at various extent of conversion which may 

exhibit ionomer morphology.  

Hence research questions for which answers are sought are the following: 

• What role does conversion play in chain spacing? 

• Does it have any effect on the spacing between non-bonded atoms? 

• Do ionomers form the same way they do in PSS-r-PS? 

• Is there a possible model to explain the reason this chain spacing forms? 

• Is there a relationship between intensity and number of carbons on the pendant side-chains 

as Miller et al. have suggested? 

2.2 Materials and Methods 

The monomer, 4VP (96%) was obtained from Alfar Aesar and was passed through a column of 

basic alumina. N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)] nitroxide (SG1) was 

obtained from Arkema and used as obtained. The following quaternizing agents were used as 

obtained: bromoethane (99%) and 1-bromopropane (98%) (purchased from T.C.I), 1-

bromopentane (purchased from Sigma-Aldrich), 1-bromobutane (98%), 1-bromohexane (99%), 1-

bromoheptane (98%), 1-bromooctane (98%), 1-bromononane (99%), 1-bromodecane (98%), 1-

bromoundecane (98%), and 1-bromododecane (98%) were all purchased from Alfa Aesar.  
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Scheme 2.1. Synthesis of poly(4-vinylpyridine) by nitroxide mediated polymerization. 

 

2.2.1 Synthesis of Poly(4-vinylpyridine) 

Poly(4-vinylpyridine) (P4VP) was synthesized by Nitroxide Mediated Polymerization (NMP). For 

the polymerization, 1.3 g (3.39 mmoles) of SG1 was mixed with 50 g (0.476 moles) of vinyl 

pyridine, in 60 wt% of dimethyl formamide (DMF). Polymerization was performed at 120 ˚C for 

20 h. The resulting viscous liquid after polymerization was quenched in ice and precipitated twice 

from dichloromethane into diethyl ether to give a pink precipitate. Poly(4-vinylpyridine) (P4VP) 

was then dried for 48 h at room temperature in vacuum.  

2.2.2 Characterization of P4VP 

Number average molecular weight, Mn, was determined using a Gel Permeation Chromatography 

(GPC) in DMF at a flow rate of 1.0 mL/min using a refractive index detector on an Agilent 

Technologies 1260 Infinity system. The chemical composition of P4VP was determined using a 

Bruker 500 Fourier-Transform Nuclear Magnetic Resonance (FT-NMR). Results from DMF GPC 

show a number average molecular weight, Mn, of 26 Kg/mol and Ð of 1.21 relative to narrow 
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PMMA standards. NMR data showed the expected spectra for P4VP without any residual 

monomer.   

2.2.3 Quaternization and Quaternization Conditions 

A solution of 1.0 M quaternizing agent (1-ethylbromide – 1-dodecylbromide) was prepared in 

DMF. A fivefold excess of the prepared solution was used for quaternization of P4VP at 60 ˚C. 

Aliquots of butyl – decyl alkylated P4VP were precipitated into diethyl ether after 1, 6, 12, 24, 48, 

75, 100, 150, 175, and 210 h. The sample was then dried at 60 ˚C in an oven for 48 h.  

 

 

 

Scheme 2.2 Quaternization of P4VP with 1-alkylbromide. 

2.2.4 Sample Preparation 

Quaternized samples were drop cast from methanol for P4VP_C2Br to P4VP_C5Br and 

chloroform for P4VP_C6Br to P4VP_C12Br on a Teflon® sheet.  

2.2.5 Characterization of P4VP by FTIR 

PerkinElmer Spectrum 100 FTIR with a universal ATR was used to characterize the extent of 

quaternization. Film samples were mounted on the ATR crystal and secured by the sample holder.  
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2.2.6 Characterization of Samples by WAXS/MAXS  

Ganesha SAXS Measurement: Wide-angle X-ray scattering (WAXS) and Medium-angle X-ray 

scattering (MAXS) measurements were performed in transmission geometry on Molmex Scientific 

Ganesha SAXS Lab. A double aperture for the Cu-Kα radiation (λ = 1.54 Å), which was the X-

ray source, was used. Silver behenate was used as the standard for the momentum transfer 

calibration. Data collection was performed with a typical exposure time of two minutes. Depending 

on the signal-to-noise ratio, data collection could be longer. Azimuthal averaging of the obtained 

isotropic 2-D pattern was performed to obtain the intensity against wave vector plot.  

Synchrotron SAXS Measurement: SAXS measurements were performed at the Advanced Photon 

Source Argonne National Laboratory on beamline 12 ID-B.31 Data was collected from the X-ray 

beam at a wavelength of 1 Å and an energy of 12 KeV of the incident radiation. A Q range of 

0.005 to 0.5 Å was possible from the resulting apparatus. During the course of the experiment, a 

2-dimensional image was obtained which was converted into I(Q) against Q by circular averaging. 

The intensity obtained was in absolute scale. For each experiment sequence data was collected for 

a set of three samples and a Kapton background. The background would be subtracted from the 

obtained data. A typical exposure time of 5 seconds was used. Heating and humidification of the 

system was performed in a custom-made oven.31 The humidity was controlled by heated streams 

of water-saturated nitrogen and dry nitrogen gas. SAXS data was collected first at room 

temperature and then dried for 40 mins at 60°C before collecting the first data set. The sample was 

then gradually humidified from 0 - 25% RH and the humidity was maintained for 20 minutes, after 

which SAXS measurements were performed. Then the RH was increased to 50, 75, and 95% and 

was maintained for 20 minutes before collection of scattering data. A dynamic analysis was also 
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performed on some of the samples. In the dynamic humidification a sequence of scattering data 

was collected as the RH was changed from 0 – 95% during SAXS measurements.  

2.2.7 Characterization of Samples by Electrochemical Impedance Spectroscopy 

Impedance data was collected over the frequency range, 10 – 10 KHz by a four-electrode test cell 

connected to a BioLogic VMP3 multichannel potentiostat. The TestEquity chamber in which 

experiments were made ensured a proper control of temperature and relative humidity. 

Measurements were performed through a temperature range of 40 – 90 °C by 10 °C  step and 95% 

RH. The membrane resistance was obtained from the frequency intercept of the Nyquist plot. Ionic 

conductivity was obtained by measuring the in-plane resistance of the sample. The resistance is 

then converted to conductivity using the equation 

𝜎 =
𝑑

𝑅𝑤𝑡
                                       (2.9) 

Where d is the distance between the electrodes, t is the thickness of the sample and w is the width 

of the membrane defined by the four-electrodes of the test cell.1,2  

2.3 Results and Discussion 

2.3.1 Extent of Quaternization and Morphological Transformation 

Figure 2.3a show the changes in the FTIR spectra with quaternization. As reported in the literature, 

the disappearance of the peak characteristic of the C=N aromatic vibration of P4VP can be used 

to monitor the progress of quaternization.32-35 The aromatic peaks in the range of 3021 – 3099 cm-

1 were used for normalization of the intensities of the quaternized samples. The reduction in the 
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intensity of the 1414 cm-1 peak as shown was used to quantify the amount of pyridine groups 

converted to pyridinium during the reaction.  
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Figure 2.3. (a) The FTIR spectra of P4VP quaternization by 1-nonylbromide, (b) the SAXS spectra 

at different extent of conversion for P4VP-r-P4VP_C9Br. 

The conversion of the pyridine to pyridinium follows a complicated second order reaction scheme 

heavily dependent on the electrostatic interactions present in the polymer chain as the reaction 

approach higher conversion. 36,37 From the graph (Figure 2.4) we see that there is first an abrupt 

increase in the conversion of pyridine to pyridinium initially followed by a more moderate 

a b 
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conversion with time. This exponential-like kinetics has been observed in the quaternization of 

P4VP with alkyl halides.37  

 

 

Figure 2.4. Extent of conversion against time for P4VP-r-P4VP_CnBr for n = 4 – 10. 

Accompanying the chemical change is a physical transformation of P4VP-r-P4VP_C9Br evident 

by the appearance of some changes in the WAXS spectra. As can be observed in Figure 2.3b, the 

WAXS data reveals two peaks for all samples. The first peak at very low Q is due to the van der 

Waal’s (VDW) spacing of non-bonded atoms which is a characteristic feature of organic 

compounds.13 Upon the onset of quaternization, at approximately 30% conversion, this peak shift 

to lower Q values. This suggest tighter packing in the randomly quaternized polymer. The position 

of the peak remained constant through the course of quaternization. For the 100% quaternized 
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samples, the VDW spacing increased with increasing number of carbons on the side-chains from 

3 – 12 after an initial decrease from the pristine sample (see Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

Figure 2.5. The WAXS spectra of P4VP_CnBr series. 

Although an increase in VDW peak with number of carbons on the side-chains has been noted in 

different alkylated polymers,10 the abrupt drop in the value of the spacing corresponding to the 
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A second peak at slightly lower Q, the LVDW peak, corresponds to the spacing between two 

adjacent polyelectrolyte backbones. The same peak has been reported in other polymers with side-

chains.6-8  

The backbone-backbone spacing increases linearly increasing number of carbons on the pendant 

side-chain for the fully quaternized P4VP. See Figure 2.6a. Extrapolating the linear relationship 

between the backbone-backbone spacing and number of carbons to zero the number of carbons on 

the backbone gives the size of the P4VP chain diameter. This size which is about ~9 Å is equivalent 

to the backbone-backbone spacing of the pristine, unquaternized P4VP backbone-backbone 

spacing of about 8.7 Å. The extrapolated backbone-backbone spacing being equivalent to the 

pristine backbone-backbone spacing/diameter of the unquaternized P4VP, suggests an alternating 

repeat unit arrangement of the pendant side-chains on the polymer chain. Corroborating this 

alternating arrangement is the addition of a 2 Å spacing per added methylene group on the side-

chains of P4VP_CnBr. Assuming an all trans configuration, the chain spacing should theoretically 

increase by 2.56 Å per methylene group on the side-chains in an alternating arrangement of 

pendant side-chains. However, in these systems, the pendant side-chains are rarely arranged in all 

trans configuration.13,15 A slope of ~2.00 Å per methylene at full quaternization has also been 

reported in the literature for other comb-shaped polymer series.10-11 
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Figure 2.6. a) Relationship between VDW spacing and number of carbons, b) linear behavior of 

backbone spacing as a function of the number of carbons at 100% quaternization 

2.3.2 Effect of Conversion on Backbone-Backbone Spacing 

There appears to be a relationship between the disappearance of the C=N stretching (based on 

reaction kinetics) as seen by FTIR and the continuous morphological transformation as 

quaternization progresses as can be seen by WAXS. Figure 2.3b shows P4VP being quaternized 

by bromononane as a function of the extent of conversion. After 30% conversion, there are three 

peaks that can be observed from the WAXS spectra: The VDW (which has decreased in 

comparison to P4VP), the pristine LVDW, and a new LVDW due to the quaternization with 

bromononane. As more pyridine groups are converted to nonyl pyridinium bromide, the intrinsic 

polymer chain spacing (pristine LVDW) disappears and the new chain spacing becomes 

prominent. Interestingly, this ‘new’ backbone/chain spacing begins to move to lower Q values 

(higher chain spacing) with increasing conversion. Since the backbone-backbone spacing is an 

average of the total distance between the polymer chains, as the longer nonyl side-chain replaces 
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other P4VP having the intrinsic backbone-backbone spacing, the resultant chain spacing of the 

random copolymer, P4VP-r-P4VP_C9Br increases. Thus, a fundamental relationship could be 

proposed to exist between pyridine conversion and chain spacing. 

Experimentally, the spacing between adjacent polymer chains is dependent on the extent of 

quaternization 𝜆
𝑓[𝑁]+ , the number of carbon on the side-chains 𝑛, and the backbone diameter (A) 

according to the expression,  

𝒅𝑩 =  𝑨 + 𝝀
𝒇[𝑵]+ × 𝒏                              (2.10) 

Surprisingly, at conversions from ~50 – 100% (obtained from FTIR), the intrinsic backbone 

diameter (the intercept of the plot of backbone spacing against the number of carbons) decreased 

from ~11 to 9 Å at 100% conversion. This phenomenon is intriguing because the chain diameter 

(backbone-backbone spacing of the pristine P4VP) is expected to be the same irrespective of the 

length of the side-chains and should most likely be constant even if the concentration of the 

pendant side-chains is not the same. Nevertheless, it has been reported that the diameter of the 

backbone varies for the same comb-shaped polymer system depending on the number of data 

points used to extrapolate the graph to the intercept of the backbone spacing.5,8 

There was also a deviation from a linear relationship between backbone-backbone spacing and 

number of carbons at high number of carbons (n = 11 and 12) as predicted by the square lattice 

model presented above.  
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Table 2.1. The changes in both the slope and the P4VP diameter with the number of carbons on 

the pendant side-chain for a given extent of conversion.  

Conversion (%) 𝜆
𝑓[𝑁]+  (Å/Carbon) 𝑨(Å) 

53±6 1.16 11.3 

70±3.5 1.47 9.89 

90±2.5 1.60 10.1 

95±2 1.92 8.99 

100 2.00 8.96 

 

The slope from equation (1) is proportional to the extent of quaternization 𝑓[𝑁]+
 obtained by FTIR. 

From FTIR values obtained,  

𝝀
𝒇[𝑵]+ ~𝟐𝒇[𝑵]+

                                          (2.11) 

𝒅𝑩 =  𝑨 
𝒇[𝑵]+

,𝒏𝒄
+ 𝟐𝒇[𝑵]+

𝒏                   (2.12) 

From equation (2.5), the chain spacing/backbone-backbone spacing is both linear with respect to 

the conversion at a fixed carbon length (see Figure 2.7b) and linear in with respect to the number 

of carbons at a given extent of conversion (see Figure 2.7a). An obvious corollary of this 

expression is that one can estimate the backbone spacing of polymers with side chains in a random 

copolymer provided that the molar fraction of the side-chain unit is known. Thus, this could be a 

characterization tool for comb-shaped polymer.  
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Figure 2.7. Backbone spacing as a function of a) the number of carbons at different conversions, 

b) extent of conversion at different number of carbons.  

We can also simplify the relationship between backbone-backbone spacing and conversion for a 

given quaternizing agent. For a certain quaternizing agent, with increasing conversion, the 

backbone-backbone spacing increased for all the studied samples.   
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Table 2.2. The changes in both the slope and the P4VP diameter with the extent of conversion at 

a given number of carbon on pendant side-chain. 

Number of Carbons (𝑛) 𝑄𝑛𝑐
(Å/%) 𝐴′(Å) 

4 5.2 11.7 

5 4.1 14.6 

6 4.0 16.8 

7 6.6 16.0 

8 9.7 15.1 

9 11.7 15.0 

10 11.3 17.0 

 

A simplified linear relationship between the backbone-backbone spacing and conversion can be 

inferred from the experimental data.  

𝑑𝐵 =  𝐴′ + 𝑄𝑛𝑐
× 𝑓[𝑁]+

                        (2.13) 

 

Increase in backbone-backbone spacing per conversion, 𝑄𝑛𝑐
, increases with the number of carbons 

on the quaternizing agent. However, this linearization of the extent of conversion with backbone-

backbone spacing at a given number of carbon is a simplification of the changes in backbone-

backbone spacing with increasing conversion of 4-vinyl pyridine units to n-alkyl 4-vinylpyridinium 

bromide. This is evident in the large variance in the values of 𝐴′ at 0% conversion of 4-vinyl pyridine 

units to n-alkyl 4-vinylpyridinium bromide for quaternization with different 1-alkylbromides. Ideally, at 

0% quaternization, the value of 𝐴′ should be constant and approach ~ 9 Å which is the backbone-backbone 

spacing of the unquaternized polymer.  
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2.3.3 Relative Intensity of Scattering 
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Figure 2.8. a) Intensity of LVDW peak relative to VDW peak for P4VP fully quaternized with 1-

alkylbromide, b) intensity of LVDW peak relative to VDW peak at different extent of 

quaternization for P4VP-r-P4VP_C9Br. 

In Figure 2.8a, it is evident that the intensity of scattering for quaternized samples increases with 

increasing number of carbons on the side-chains relative to the VDW peak. This increase in 

intensity with increasing side-chain length has been also been reported in the literature for some 

comb-shaped polymers.38 Also, Figure 2.8b shows the increase in intensity of the LVDW peak 

with extent of quaternization relative to the VDW peak. The ratio of the intensity of LVDW 

relative to VDW can be used to infer the degree of ordering in the system.10,25 Figure 2.8a and 

Figure 2.8b, suggests that both an increase in the number of carbons on the side-chains and extent 

of conversion during quaternization increases the quantity of backbone-backbone correlations in 

the polyelectrolyte. Thus, the concentration of backbone-backbone correlations increases with the 

a) b) 
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backbone-backbone spacing which is the one common variable in both Figure 2.8a and Figure 

2.8b. 

 

Figure 2.9. a) Relative intensity against number of carbons at different extent of conversions, b) 

relative intensity against conversion at different number of carbons on the pendant side-chain. 

The relative intensity (R.I) obtained from the ratio of the LVDW to the VDW peak is a measure 

of the quantity of backbone-backbone correlations in the P4VP_CnBr series. At a fixed number of 

carbons on the pendant side-chain, the R.I has a power law relationship with the extent of 

conversion. Power law exponent is approximately 3 (see Figure 2.9a). At a fixed conversion, the 

R.I has a power law relationship with the extent of conversion. The power law exponent in this 

case is also approximately 3 (see Figure 2.9b). Both an increasing extent of conversion at a fixed 

number of carbons and an increasing number of carbons at a fixed extent of conversion increases 
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the length of the pendant side chain (see equations (2.12) and (2.13)). Increase in the length of 

pendant side-chains have been known to increase the rigidity of comb-shaped polymer chains. 

With increasing rigidity of the polymer chains the polymer chains behave essentially as rigid rods. 

These rods have higher persistence length along the polymer chains and this increases the 

likelihood of a polymer segment to have backbone-backbone correlations with nearby polymer 

segments thereby increasing the concentration of backbone-backbone correlations in P4VP_CnBr. 

Although it is expected that with increasing length of the pendant side-chains, the free volume of 

the polymer increases thereby increasing the flexibility of the main chain, however, the interactions 

of interdigitated side-chains on adjacent polymer chains will increase the orientational ordering of 

the pendant side-chains. Thus, increasing the segmental anisotropy of the comb-shaped polymer 

backbones owing to the rigidity imposed on these polymer segments by the interacting pendant 

side-chains. Consequently, aligning the polymer backbones since the orientational ordering of the 

pendant side-chains exceeds the conformational ordering of the gaussian polymer chains.13 

Increasing the length of the pendant side-chains leads to a decrease in the flexibility of the polymer 

backbones in comb-shaped polymers. Some comb-shaped polymers have been known to exhibit 

“crystal-like” rigidity and anisotropy with increasing length of their pendant side-chains.13 

Tsevtkov et al. have also shown that the persistence length and the segmental anisotropy for comb-

shaped poly(n-alkyl acrylates) increases with increasing number of carbons on their pendant side-

chains.13 
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2.3.4 Humidification of Quaternized Polymer 

 

 

Figure 2.10. Quaternized P4VP samples before humidification (top) after humidification (bottom).  

The SAXS spectra of quaternized samples under humidification shows that there is an increase in 

the backbone spacing due to swelling. Results are summarized in the Table 2.3 below.  
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Table 2.3. Change in backbone-backbone spacing with humidity. 

Samples 𝒅𝑩_RH_00%(Å) 𝒅𝑩_RH_95%(Å) % Increase 

P4VP_C6Br 19.7 20.4 3.6 

P4VP_C8Br 23.7 24.5 3.4 

P4VP_C10Br 28.8 29.8 3.8 

P4VP_C12Br 30.9 33.1 7.8 

P4VP_C12I 30.2 31.8 5.6 

 

With increasing number of carbons on the side-chain, the charge concentration in the system 

reduces. This can be quantified by the number of charges in mmoles per gram of sample as the ion 

exchange capacity.  

𝐼𝐸𝐶 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖𝑜𝑛𝑠 (𝑚𝑚𝑜𝑙𝑒𝑠)

1 𝑔𝑟𝑎𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔)
              (2.14) 

Generally, more charges in the sample is supposed to lead to higher moisture absorption, however, 

the trend observed was in the opposite direction. An increase in backbone spacing can be observed 

to increase with increasing number of carbons on the side-chains.  

Also, of interest is the response of the counterion to swelling. Iodide and bromide counterions did 

have different swelling responses to the humidification of the system at the same side-chain length. 

This is not surprising since bromide is more kosmotropic than iodide in the Hofmeister series.38 

Bromide salts can take up more water in comparison to iodide salts. Bromide salts can also more 
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readily dissociate in the presence of water in comparison to iodide salts.39 Hence, at high 

humidification, bromide counterions can dissociate from the polycation, thereby exposing the 

pyridinium cation on one polymer backbone to another pyridinium cation on an adjacent backbone. 

This can result in cation-cation repulsion thereby increasing the backbone-backbone spacing of 

the polymer. Alternatively, the difference in the swelling between P4VP_C12I and P4VP_C12Br 

may arise from the difference in backbone-backbone spacing, P4VP_C12I (30 Å) and 

P4VP_C12Br (31 Å). The shorter backbone-backbone spacing of P4VP_C12I in comparison to 

P4VP_C12Br may have resulted from the stronger dipole moment of the dipoles in the former in 

comparison to the dipole moment in the latter. Larger ions have larger dipole moment. The larger 

the dipole moment, the stronger the dipole-dipole interaction between dipoles on adjacent 

backbones. This could lead to more compact backbones in P4VP_C12I in comparison to 

P4VP_C12Br. The larger the backbone-backbone spacing, the more water molecules the chain 

spacing could accommodate, thus, causing more local hydration in these polymers than in those 

samples with smaller backbone-backbone spacing. This could lead to more swelling in polymers 

with larger spacing. As can be seen from Table 2.3, the larger the chain spacing, the higher the 

percent increase in the chain spacing at 95% RH for all samples irrespective of counterion type.   
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Figure 2.11. Depiction of the effect of humidification on backbone spacing. With increasing 

humidification, the backbone-backbone spacing between adjacent polymer chains increases. 

The swelling of the sample does not just lead to chain extension as expected for polyelectrolytes 

in polar solvent, however, swelling also increases the backbone-backbone spacing between 

adjacent polyelectrolyte chains (see Figure 2.11). It is imperative to note that these feature peaks 

due to backbone-backbone spacing are not ionomer cluster peaks even though they like ionomer 

cluster peaks shift to lower Q values on humidification. Although ionomer domain sizes have been 

observed to increase with increasing humidification, this characteristic feature size (backbone-

backbone spacing) are not the so-called ionomer spacing. However, their response during 

humidification is similar to that of ionomers.30 
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2.3.5 Conducting Properties of Quaternized Polymers 

 

Figure 2.12. Plot of conductivity against inverse temperature at a) An RH of 65% b) An RH of 

95%.  

At 65% RH, conductivity decreased with increasing spacer (i.e lower IEC). This is evident from 

the drop in the conductivity plot from P4VP_C2Br to P4VP_C4Br. However, on increasing the 

number of carbons on the alkyl spacer there is an increase in the degree of order and consequently 

the conductivity. Strangely, P4VP_C5Br appears to have better conducting properties in 

comparison to P4VP_C6Br. In summary, the mobility of counterions at 65% RH is largely order-

driven, though there is an appreciable dependence on the IEC.  

However, at 95% RH., conductivity is dependent on IEC especially for systems with high moisture 

absorption. Since P4VP_C2Br, P4VP_C3Br and P4VP_C4Br are soluble in water, at high 

humidification, they become solvated leading to very high bromide conductivity; an order of 

magnitude higher than at 65% RH. At 95%, the conducting properties of all samples increased in 
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comparison to the bromide conductivities of the same samples at 65% RH at lower temperatures. 

Although humidification at 95% RH should decrease order in P4VP_C2Br and P4VP_C4B since 

both become solvated at high humidity, high counterion mobility in the presence of very humid 

conditions overcompensated for the decrease in order by a corresponding increase in the 

conductivity of ions. Furthermore, from the SAXS data, Figure 2.10, P4VP_C6Br and 

P4VP_C10Br maintained their backbone-backbone ordering at high humidification. However, at 

95% RH, their conductive properties increased at lower temperatures in comparison to their 

conductive properties at 65% RH. Consequently, the conductive properties of P4VP_C6Br and 

P4VP_C10Br increased with increasing humidification at low temperatures. For P4VP_C5Br, 

there was an appreciable increase in the conductivity values at 95% RH in comparison to 65% RH. 

Thus, for all the studied sample series, conductivity at 95% RH is largely humidity-driven.  

 

 

 

 

 

 

 

 



47 

 

Table 2.4. Summary of theoretical and titrated IEC values, and activation energy values of bromide 

conductivity in P4VP_CnBr series at 65% and 95% RH. 

Sample Theoretical IEC 

(mmoles/g) 

Experimental IEC 

(mmoles/g) 

Activation energy (RH 

65%) kJ/mol 

Activation energy 

(RH. 95%) kJ/mol 

P4VP_C2Br 4.67 - 43.8 64.2 

P4VP_C3Br 4.39 - - - 

P4VP_C4Br 4.13 - 44.8 64.1 

P4VP_C5Br 3.91 3.85±0.09 39.1 64.3 

P4VP_C6Br 3.70 3.70±0.06 48.6 23.2 

P4VP_C7Br 3.52 3.51±0.06 - - 

P4VP_C8Br 3.36 3.28±0.04 - - 

P4VP_C9Br 3.21 3.12±0.01 - - 

P4VP_C10Br 3.07 3.02±0.04 41.9 20.5 

P4VP_C12Br 2.83 2.65±0.01 - - 

 

This difference in the mode of ion transport at 65 and 95% RH is evident in the different slopes of 

the graph (i.e the activation energy) at these conditions. All samples measured had almost the same 

activation energy at 65% RH (as can be seen by the parallel nature of the data points), indicating 

possibly that the transport of Br- follow the same dynamics.  At an RH of 95%, it can be observed 
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that there are two classes of activation energy values. Materials with poor moisture absorbing 

properties (samples with low IEC) have lower activation energy compared to their activation 

energy at 65% RH while those with higher moisture absorbing properties (samples with high IEC) 

have higher activation energy in comparison to their values at 65% RH. These differences in the 

activation energies at different RH for low and high IEC samples suggest that there are different 

mechanisms for bromide conductivity in these samples.  

2.4 Conclusion  

The extent of quaternization of P4VP could be studied with FTIR as well as WAXS. The backbone 

spacing obtained does increase linearly with increasing side-chains of the quaternization agent. 

Backbone-backbone spacing and the relative intensity of the LVDW peak to VDW peak can be 

used to monitor the extent of quaternization. Relative intensity increases with increasing backbone 

spacing. Backbone-backbone spacing increases the rigidity of the comb-shaped polymer. With 

increasing rigidity of the polymer, the persistence length of the polymer increases, thereby, 

increasing the quantity of short-range ordering resulting from correlations between backbones of 

polymer segments and their nearest neighbors. Furthermore, we see that the mode of conductivity 

depends on the backbone morphology. At 65% RH, the conductivity seems to be dependent on the 

degree of backbone order, with high ordering, evidenced from the relative intensities of those 

polycations, increasing the mobility of dipoles. However, at 95% RH, the conductivity is heavily 

dependent on the moisture absorption of the polyelectrolyte. 

Another interesting finding is that the spacing between the backbones changes on increasing 

humidification. Traditionally, it has been well-known that polymers when swelling may have an 

increase in the radius of gyration, however for P4VP_CnBr/I, swelling also increases the 
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separation between the chains almost by a factor of approximately 1 – 2 Å. Surprisingly, the longer 

the side-chains, the more increase in the chain spacing. This increase occurs though the 

P4VP_CnBr/I with larger n should be more hydrophobic. This phenomenon should be further 

investigated. Furthermore, like ionomer peaks, the characteristic feature size observed in SAXS 

spectra increases with humidification little wonder it may be confused for ionomers in the 

literature. However, unlike ionomers these feature sizes increase with increasing concentration of 

the ionic fraction.  

No ionomer cluster morphology was observed in the random copolymer of P4VP and quaternized 

P4VP. This is possibly because typical ionomer cluster morphology formation in PS-r-PSS were 

formed at low mol% of PSS, typically about 7 – 10 mol%.40 In the case of random copolymer of 

P4VP and quaternized P4VP, after 1 hour of quatenization, the mol% of the quaternized P4VP in 

P4VP-r-P4VP_CnBr was above 30% for all the 1-alkylbromide except for 1-Heptylbromide which 

had an extent of conversion of about 25%.  
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CHAPTER 3 

STRUCTURE-WITHIN-STRUCTURE: MORPHOLOGICAL PROPERTIES OF PS-b-

P4VP_CnBr 

3.1 Introduction 

Block copolymers will always play a role in the morphological features of polymers and 

polyelectrolytes are no exemption. It has been posited that due to the ability to have different 

blocks with unique properties, the overall feature of these block-co-polyelectrolytes will be more 

mechanically robust than their random counterparts.1–4 Besides their good structure and 

mechanical robustness, block copolymers also have been known to control the moisture content, 

and in some cases, conductivity in anionic exchange membranes.5,6 

Due to the additional presence of electrostatic interactions, the χ parameter of block copolymers 

can skew the traditional block copolymer phase diagrams giving rise to unique morphological 

features that may improve conductivity and mechanical properties.7 While most block copolymer 

polyelectrolytes focus on the interesting morphologies that can be obtained from the different 

blocks, the study of backbone-backbone spacing within a block is scarce in the literature.1-6  

A common model system, PS-b-P4VP, which has been well studied is the template for 

investigating this phenomenon of intra block ordering. It is well known in the literature that 

complexing P4VP with pentadecylphenol (PDP), can provide structure-within-structure 

morphologies.8–10 The block copolymer forms all the traditional phase separation morphologies 

consistent with their varying volume fraction while substructures within superstructures are 

formed in the P4VP domain. Ruokolainen et al. were one of the first to investigate these systems 

using hydrogen bonding to bind PDP to the pyridine group. They noticed an ODT of 60 °C for 1:1 
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ratio of PS-b-P4VP and PDP when the substructure arising from PDP was analyzed by an X-ray 

scattering equipment coupled with a heating device. They also found that thermal treatment of 

these polymers changes the morphologies of these systems and the obtained morphological 

structures depend on the weight fraction of the PDP in the sample.8 

  

Figure 3.1. Morphologies obtained from PS-b-P4VP(PDP) indicating interesting morphological 

features difficult to obtain using the classic phase diagram.8 b) Accessible morphology as a 

function of the weight fraction of PDP.[Images taken from Ref 8,9]  

As can be seen from Figure 3.1, interesting structures have been obtained by hydrogen bonding. 

Furthermore, ionic bonding by treating the 4VP with a strong acid to give a quasi-proton 

conducting membrane gave rise to interesting morphologies as well.7 However, studies on 

quaternized P4VP block copolymer and their structure-within-structure in a block copolymer have 

not received a lot of attention in the literature. The morphology of these quaternized P4VP block 

copolymers will be studied by both small-angle X-ray scattering (SAXS) and anomalous small-

angle X-ray scattering (ASAXS). 
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3.1.1 ASAXS and the Degree of Ordering in Quaternized P4VP 

To study concentration of counterions of polyelectrolytes, a technique that is sensitive to that 

counterion must be employed. Condensing counterions in dilute polyelectrolyte solutions has been 

studied using techniques like osmotic pressure and conductivity to contrast between free and 

uncondensed counterions. In solid state, the concentration of counterions in polyelectrolytes can 

be studied by scattering techniques that are sensitive to the counterions. Small angle X-ray 

Scattering (SAXS) has been extensively used to study phase separation in block copolymers by 

taking advantage of scattering contrasts provided by the microphase separated blocks. X-ray 

scattering depends on the number of electrons in a scattering entity. In block copolymers in which 

one block has atoms with large atomic number, this large atomic number atom can provide contrast 

to probe the morphology of the block copolymer. The concentration of this atom in the polymer 

can be estimated by directly probing the atom with the large atomic number. By changing the 

energy of the incident photons, it is possible to study the distribution of a specific atom or 

counterion in space. Small-angle X-ray scattering performed at incident energy close to the K-

edge of the species of interest (like counterions) is known as anomalous small-angle X-ray 

scattering (ASAXS). At resonance between the incident photon and an electron in the K-shell, the 

electron can be ejected from inner shell of the species of interest. An electron at higher energy 

level drops into the empty inner K-shell orbital (see Figure 3.2). During this transition from higher 

energy to lower energy levels, energy is given out in form of photons. These photons are known 

as dispersion X-rays, and on detection gives information about the spatial orientation, arrangement, 

and quantity of the species of interest/counterions in the systems.  
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Figure 3.2. Schematic representation of the origin of ASAXS. 

The scattering intensities of the macroion and counterion can be distinguished and separated. This 

is not possible in SAXS because the scattering intensities of all species present in the system are 

superimposed and cannot be easily isolated. Sturmann in 1985 had predicted that this can be useful 

in the field of polymer science.11 However, in the decade following his prediction, ASAXS 

remained sparingly used for structural characterization of polymers. Most recently, there is a 

resurgence in its use as an important polymer characterization tool.12–18  

In the literature, ASAXS has been used to study not just the spatial distribution of counterions but 

also their concentration in polyelectrolyte solutions.14 There has also been reports of its use to 

study condensed counterions.14,18,19 However, the application of this technique to study the 

distribution of counterions in solid polyelectrolytes remains relatively sparse. In this project we 

report the ordering and distribution of counterions in solid polyelectrolytes using SAXS. We 

corroborate our findings by studying directly the anomalous dispersion counterion X-rays using 

ASAXS. We use ASAXS to probe the relative quantity of periodically arranged backbones by 

probing the bromide counterions at the base of the pendant side-chains. We also compare this 



57 

 

parallelly arranged backbones obtained in the block copolymer with the relative quantity obtained 

by using the ratio of the backbone-backbone (LVDW) peak to the amorphous halo (VDW peak). 

See Chapter 2.  

This project aims to answer the following questions: 

• Can there be formation of structure-within-structure when a pendant side-chain is 

covalently bound to the 4VP in PS-b-P4VP and not just by hydrogen bonding? 

• What types of structures are formed? 

• Do these structures depend on the number of carbons on the pendant side-chain? 

• How does the concentration of periodically spaced backbones obtained from ASAXS 

compare to those obtained by the ratio of LVDW to VDW in the homopolymer? 

3.2 Materials and Methods 

Styrene (98%) and 4VP (96%) were obtained from Alfar Aesar and was passed through a basic 

alumina column. N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)] nitroxide (SG1) was 

obtained from Arkema and used as obtained. 1-bromopentane (purchased from Sigma-Aldrich), 

1-bromobutane (98%), 1-bromohexane (99%), were all purchased from Alfa Aesar 
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3.2.1 Synthesis of PS-b-P4VP  

 

Scheme 3.1. Synthesis of PS-b-P4VP by nitroxide mediated polymerization. 

In a round bottom flask, 17.5 g of styrene was polymerized with 160 mg of SG1 initiator; a molar 

equivalence of 400:1, [styrene]:[SG1]. Polymerization was performed in 70 wt% dimethyl 

formamide (DMF) at 120°C for 13 h.  The resulting polystyrene (PS) sample was quenched in ice 

and precipitated thrice in hexanes from dichloromethane. Using PS-SG1 as microinitiator, 6 g and 

7.5 g was used to polymerize 7.1 g (360:1, [4VP]:[PS]I) and 2.4 g of 4VP  (96:1, [4VP:PS]II) 

respectively for 12 hours. The mixture was quenched in ice and precipitated twice from 

dichloromethane; first in methanol and then diethyl ether.  

3.2.2 Quaternization of P4VP-b-PS by 1-Alkylbromides 

A solution of 1.0 M quaternizing agent (1-butylbromide, 1-pentylbromide, and 1-hexylbromide) 

was prepared in DMF. An excess amount of the prepared solution was added to a solution of 100 

mg of P4VP-b-PS in 1.5 ml of DMF. After 240 h, the solution was precipitated into diethyl ether 

to give an off-white colored powder. After filtration, the powder was dried in vacuum at room 

temperature. 
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3.2.3 Characterization of PS-b-P4VP by 1H NMR and GPC 

Number average molecular weight, Mn, was determined using a Gel Permeation Chromatography 

(GPC) in DMF at a flow rate of 1.0 mL/min using a refractive index detector on an Agilent 

Technologies 1260 Infinity system. The chemical composition of PS-b-P4VP was determined 

using a Bruker 500 Fourier-Transform Nuclear Magnetic Resonance (FT-NMR). Results are 

summarized in Table 3.1.  

3.2.4 Characterization of PS-b-P4VP by FTIR 

PerkinElmer Spectrum 100 FTIR with a universal ATR was used to characterize the extent of 

quaternization. Film samples were mounted on the ATR crystal and secured by the sample holder.  

3.2.5 Characterization of PS-b-P4VP by WAXS/SAXS  

Synchrotron SAXS and ASAXS Measurement: SAXS measurements were performed at the 

Advanced Photon Source Argonne National Laboratory on beamline 12 ID-B. Data was collected 

from the X-ray beam at a wavelength of 1 Å and an energy of 12 KeV of the incident radiation. A 

Q range of 0.005 to 0.5 Å was possible from the resulting apparatus. During the course of the 

experiment, a 2-dimensional image was obtained which was converted into I(Q) against Q by 

circular averaging. The intensity obtained was in absolute scale. For each experiment sequence 

data was collected for a set of three samples and a Kapton background. The background would be 

subtracted from the obtained membrane data. A typical exposure time of 5 seconds was used. 

Heating and humidification of the system was performed in a custom-made oven.3,6,20,21 The 

humidity was controlled by heated streams of water-saturated nitrogen and dry nitrogen gas. SAXS 

data was collected first at room temperature and then dried for 40 mins at 60°C before collecting 

the first data set. The sample was then gradually humidified from 0 - 25% RH and the humidity 
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was maintained for 20 minutes, after which SAXS measurements were performed at 25% RH. 

Then the RH was increased to 50, 75, and 95% and was maintained for 20 minutes before 

collection of scattering data. A dynamic analysis was also performed on some of the samples. In 

the dynamic humidification a sequence of scattering data was collected as the RH was changed 

from 75-95%.  

3.3 Results and Discussion 

Characterization of the block copolymerization products by 1H NMR (see Figure 3.3) showed that 

the ratio of PS to P4VP in the block copolymers were approximately equal to the monomer feed 

ratio of styrene to 4VP. The ratio of the PS to the P4VP blocks were determined by the integration 

of the two protons (2H) aromatic peaks of P4VP and the three protons (3H) aromatic peaks of PS. 

This confirms that the block copolymers, PS-b-P4VP(1:1) and PS-b-P4VP(3:1), were successfully 

synthesized by nitroxide mediated polymerization (NMP).  



61 

 

 

Figure 3.3. The 1H NMR spectra of PS-b-P4VP(3:1) top and PS-b-P4VP(1:1) bottom. 

The GPC chromatogram of the PS homopolymer, and block copolymers are presented in Figure 

3.4. The determined values of the dispersity from the chromatogram show relatively narrow 

dispersities of the block copolymers. Summary of the results are presented in the table below.  
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Figure 3.4. The GPC profile of PS-b-P4VP(1:1) and PS-b-P4VP(3:1) block copolymers. 

Table 3.1. Summary of molecular weight properties of PS-b-P4VP block copolymers. 

Sample Feed ratio 

Styrene:4VP 

NMR ratio Target Mw 

(Kg/mol) 

GPC Mw 

(Kg/mol) 

Ɖ 

PS-b-P4VP (1:1) 1:1 0.46:0.54 80 98 1.25 

PS-b-P4VP (3:1) 3:1 0.75:0.25 53 68 1.17 
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3.3.1 FTIR Characterization of Complete Quaternization 
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Figure 3.5. The FTIR spectra confirming the complete quaternization of PS-b-P4VP(1:1) and PS-

b-P4VP(3:1). 

Using FTIR, see Figure 3.5, the complete quaternization of the samples was confirmed with the 

disappearance of the pyridine peak at the 1414 cm-1 wavenumbers and the simultaneous 

appearance of the 1640 cm-1 pyridinium peak, as described for P4VP homopolymers in Chapter 2.  
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Figure 3.6. The SAXS profile of quaternized PS-b-P4VP(3:1) an RH of 00% (top), and an RH of 

86 or 95% (bottom) . 
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From the above figure, a lamellar morphology was obtained for all samples. This is unexpected 

because the volume fraction of P4VP increased from approximately 0.25 in PS-b-P4VP(3:1) to 

approximately 0.5 in PS-b-P4VP(1:1). Furthermore, by quaternizing the P4VP, counterion and 

pendant side-chains are introduced into the P4VP domain, consequently decreasing the volume 

fraction of the PS-block in the block copolymer. The morphology of the block copolymer is 

therefore expected to change from PS-b-P4VP(3:1) to PS-b-P4VP(1:1) after quaternization. By 

observing similar morphology for all the studied samples, the X-ray scattering data suggest that 

these membranes may be kinetically trapped in a lamellar morphology since the samples were not 

thermally annealed. For PS-b-P4VP(3:1), the effect of quaternization gradually increased the size 

of the domain when compared to the pristine polymer. See Figure 3.6. This may be due to 

increasing molar volume of the quaternized P4VP chain in the block copolymer since 

quaternization increases the molecular weight of the quaternized repeat unit. However in the case 

of PS-b-P4VP(1:1), see Figure 3.7, the domain size decreased from the pristine sample, 47 nm to 

39 nm for PS-b-P4VP(1:1)_C5Br, and then increased again to 45 nm for PS-b-P4VP(1:1)_C6Br. 

This trend was unexpected. However, since the quaternized block copolymers were not thermally 

annealed, the obtained domain spacing may not be the thermally equilibrated domain spacing.  
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Figure 3.7. The SAXS profile of quaternized PS-b-P4VP(1:1) RH of 00% (top) RH of 95% 

(bottom). 
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Furthermore, as can be seen from Figure 3.6 and Figure 3.7, although there is observed swelling 

in all quaternized systems (PS-b-P4VP(1:1)_CnBr and PS-b-P4VP(3:1)_CnBr), they nevertheless 

maintained the same lamellar structure even after humidification to 95% RH. Coughlin et al. have 

reported that they noticed no swelling when polystyrene-b-poly(vinyl benzyl trimethylammonium 

tetrafluoroborate) were humidified under the same conditions.3 This domain size swelling may be 

because of the density profile across the boundary of adjacent blocks. This boundary is comprised 

of quaternized P4VP and PS chains. The breadth of this region may get narrow as we humidify the 

system as predicted by Helfand.22 This is because the χ parameter of the humidified PS-b-

P4VP(1:1)_CnBr will change with increasing moisture content. However, Halfand had predicted 

that the breadth of this interface should not depend on molecular weight, which was not the case 

in the studied block copolymers.  

Swelling increased with increasing hydrophilic content and increasing number of carbons on the 

pendant side-chain. In the case of PS-b-P4VP(1:1) quaternized by 1-alkylbromides, we do see 

higher swelling of the P4VP domains in comparison to that of the PS-b-P4VP(3:1). The observed 

swelling may be due to the higher volume fraction of the pyridinium block which increases the 

IEC. of PS-b-P4VP(1:1) in comparison to PS-b-P4VP(3:1). Quantitative results are summarized 

in Table 3.2.  
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Table 3.2. Changes in both domain size and backbone-backbone spacing upon humidification.  

Samples Domain Spacing Backbone-backbone spacing 

 (nm) 

00%RH 

 (nm) 

90%RH 

% Inc.  (Å) 

00%RH 

 (Å) 

90%RH 

% Dec. 

PS-b-P4VP(3:1)_C4Br 28.5 29.8 4.5 17.0 16.6 2.3 

PS-b-P4VP(3:1)_C5Br 29.1 30.1 3.5 19.2 18.8 2.1 

PS-b-P4VP(3:1)_C6Br 33.9 34.7 2.3 21.1 19.7 6.6 

PS-b-P4VP(1:1)_C4Br 78.1 85.6 9.6 16.5 17.0 -3.0 

PS-b-P4VP(1:1)_C5Br 39.3 41.9 6.6 19.0 18.6 2.1 

PS-b-P4VP(1:1)_C6Br 44.9 49.0 9.2 21.1 19.7 6.6 

 

 Interestingly, from the SAXS measurement we also see a marked peak in the region of higher Q 

value. Since block copolymers do not usually form ionomers, this feature does not indicate the 

presence of ionic clusters in the P4VP domains. This feature, however, is the backbone spacing 

observed in the homopolymer. This peak therefore suggests that there is order within the 

microphase order of the PS and P4VP blocks. Since only one peak appears like in the case of the 

P4VP_C6Br and P4VP_C5Br homopolymers, it is difficult to conclude whether we have a 

cylinder-in-lamellar morphology or a lamellar-in-lamellar morphology. However, it is obvious that 

a structure-within-structure was formed in these polymer systems by quaternizing the P4VP block 

of a P4VP-b-PS block copolymer.  
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As already noted, humidification did increase the size of the parent domains. It also affected the 

arrangement of the backbone-backbone spacing, albeit in the opposite direction to that observed 

in their homopolymer counterpart. The peak moved to lower Q values and became narrower. This 

suggests that humidification compresses the backbones, thereby, decreasing the spacing between 

the backbones. This is possibly due to the confinement of the polyelectrolyte domains between 

incompressible blocks of PS. Consequently, any increase in the water concentration within the 

quaternized P4VP block compress the polymer chains within this block sandwiched between hard 

PS blocks. See Figure 3.8.  

 

Figure 3.8. Schematic of humidification effect on the cylindrical diameter of the polymer chain.  
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Figure 3.9. The SAXS profile of quaternized PS-b-P4VP(1:1)_C6Br showing the effect of 

humidification on the intra chain spacing.  

From Figure 3.9, the decrease in the backbone-backbone spacing only appears at high RH. This is 

of importance because a noticeable change in the backbone-backbone spacing can be seen. It has 

been observed that at higher temperatures the structure within the parent structure might disappear 

due to the ODT.8,9 By analogy, humidification is supposed to solvate the polymer thereby causing 

some degree of local disorder transition within the quaternized P4VP backbone. This RH in which 

there is a shift in backbone-backbone ordering can be seen as a kind of order to disorder relative 

humidity or ‘ODRH’. However, in these polyelectrolytes, with increasing humidification, the 

backbone-backbone spacing becomes more distinct as is evident from the above figure. The 

backbone-backbone peak actually moved to higher order. Since scattering experiments were not 

performed on the soaked samples (which are technically 100% RH) it is difficult to ascertain 

whether there can be an ODRH for a soaked PS-b-P4VP_CnBr. However, the dynamic 

humidification experiments did show that there was a move from order to higher order at about 75 

- 95% RH. 
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Furthermore, a second order peak seems to have appeared at the onset of the 75 – 95% 

humidification and disappeared at the end of the process (Figure 3.10).  Is there a morphological 

transition associated with this change or is this second peak due to increased scattering intensity? 

The ratio Q2 to Q1 is 1.46 approximately √2 for the observed peaks suggesting a cylindrical 

arrangement of the backbones in the 1-butylbromide quaternized P4VP block.  

 

 

Figure 3.10. The SAXS profile of PS-b-P4VP(1:1)_C6Br at 0% RH (top),  the SAXS profile of 

PS-b-P4VP(1:1)_C6Br at 95% RH (bottom). With the blue arrow showing the second order peak. 
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If the block is not well structured (i.e. relatively amorphous), then the block copolymer behaves 

like its homopolymer counterpart during humidification. The backbone-backbone spacing 

increases with humidification. PS-b-P4VP(4:1)_C4Br is a case in point. Although it can form a 

well-structured morphology as can be seen in PS-b-P4VP(4:1)_C5Br and PS-b-P4VP(4:1)_C6Br, 

however, when cast from a micellar solution the sample does not show highly ordered phase 

separation (see Figure 3.11). The hydrophilic regions are not clearly defined in the matrix. Thus, 

the chain spacing will tend to become larger without confinement regions that will inhibit them. 

Given that the backbones will always want to go far apart so as to increase their entropy. The 

SAXS profile in Figure 3.11 show that the changes in backbone spacing begin at 25% RH unlike 

in the well-structured blocks with changes starting at 75% RH albeit in the opposite direction. 

From the same figure, an increase in intensity can also be observed which suggest that more of the 

backbones become ordered in this process. In all the systems studied with increasing 

humidification, the intensity of the superstructures decreased.  
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Figure 3.11. The SAXS profile of quaternized PS-b-P4VP(1:1)_C4Br showing that the effect of 

humidification becomes apparent for the chain spacing only at very high RH.  

3.3.2 ASAXS and Relative Intensity in Quaternized P4VP 

 

Figure 3.12. The ASAXS profile for PS-b-P4VP(3:1)_C6Br at different photon energies. 
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Photon energies ranging from 13.3 – 13.8 KeV were incident on the PS-b-P4VP(3:1)_C6Br to 

determine the photon energy that could produce the highest signal to noise ratio. This range of 

energies were also chosen to determine the photon energy that can provide the most information 

on the nature of ordering in the quaternized block copolymer for the Q values ranging from 1 – 

0.06 Å-1. The ASAXS spectra is presented in Figure 3.12. It is evident from the spectra that with 

increasing photon energy, the information of the membrane that can be obtained at higher Q values 

is lost. The absolute intensity of the backbone-backbone spacing peak decreases with increasing 

energy of the photons. Also, the intensity of the scattering resulting from microphase separation 

of the PS and P4VP_C6Br blocks decreased with increasing energy of the incident photons. With 

increasing energy of the incident photons, higher order reflections of the block copolymer structure 

are lost.  Surprisingly, at a photon energy of 13.462 KeV, the third order peak arising from the 

block copolymer structure is lost. This photon energy is closer to the theoretical binding energy of 

bromine, 13.474 KeV, and thus expected to give the most information on the spatial distribution 

of bromide ions in the membrane. However, it does not provide adequate information of the 

membrane at higher Q values in which backbone-backbone spacing ordering is present. Thus, 

scattering intensity of the backbone-backbone spacing peak which correlates to the concentration 

of bromide counterions on periodically spaced polymer backbones at higher photon energy may 

be underestimated. For the analysis of the relative quantity of bromide counterions that are ordered 

between adjacent polymer backbones in these membranes, ASAXS was performed by photons 

having 13.800 and 13.300 KeV energy.  
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Figure 3.13. The ASAXS profile for PS-b-P4VP(3:1)_C4Br, PS-b-P4VP(3:1)_C5Br, and PS-b-

P4VP(3:1)_C6Br at 13.3 and 13.8 KeV.  

As expected, the intensities of the backbone-backbone peak increased with increasing number of 

carbons on the pendant side-chain. This is consistent with what have been observed in the 

quaternized P4VP homopolymer. This suggests that with increasing backbone-backbone spacing, 

more backbones in the polymer assumes a parallel arrangement. A ratio of the absolute intensities 

of the backbone-backbone spacing peak for PS-b-P4VP(1:1)_C4Br, PS-b-P4VP(1:1)_C5Br, and 

PS-b-P4VP(1:1)_C6Br can be determined form the ASAXS spectra presented in Figure 3.13. To 

make a comparison of the intensities of the backbone-backbone spacing peak in the block 

copolymers and the backbone-backbone spacing peak in the homopolymer, the intensity of the 

block copolymers relative to PS-b-P4VP(3:1)_C4Br and the intensity of the quaternized 

homopolymers relative to P4VP_C4Br were calculated.  A tabular summary of the relative 

intensities by ASAXS and that determined by the backbone-backbone spacing peak (LVDW peak) 

to the amorphous halo (VDW peak) is presented in Table 3.3. 
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Table 3.3. Comparison of the relative peak intensities of the LVDW peak obtained from ASAXS 

and the ratio of LVDW to VDW  

 ASAXS  LVDW/VDW 

PS-b-P4VP(3:1)_C4Br 1 P4VP_C4Br 1 

PS-b-P4VP(3:1)_C5Br 1.3 P4VP_C5B 1.6 

PS-b-P4VP(3:1)_C6Br 2.0 P4VP_C6Br 3.7 

 

It is evident from the relative intensities derived from ASAXS and LVDW/VDW that the 

LVDW/VDW overestimates the quantity of backbone-backbone spacing in the homopolymer or 

that the ASAXS relative intensity underestimates the backbone-backbone spacing in the block 

copolymer. The lower relative intensity values obtained for ASAXS may have resulted from the 

variation of the intensity of the backbone-backbone peak intensity with photon energy of the 

incident radiation.  

3.4 Conclusion  

The domain sizes changed with different quaternizing agent for PS-b-P4VP(1:1)_CnBr and PS-b-

P4VP(3:1)_CnBr. While in the former, a decrease in the domain size from the pristine to PS-b-

P4VP(3:1)_C5Br was observed, the latter increased. However, in both quaternized systems (PS-

b-P4VP(1:1)_CnBr and PS-b-P4VP(3:1)_CnBr), the longer the side-chain the larger the domains 

size. Structure-within-structure can be found for PS-b-P4VP_ CnBr in which n=4-6. The specific 

morphology (cylinderical or lamellar) is difficult to ascertain from SAXS because only one peak 
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was observed. This structure-within-structure has a different response than the parent morphology 

during humidification. While the parent morphology shows an expansion in size, the chain spacing 

decreases. However, when the parent morphology is not well-structured, the behavior of the chain 

spacing during humidification is similar to the amorphous quaternized homopolymer. It increases 

in size. Anomalous small-angle X-ray scattering show that the quantity of the backbone-backbone 

spacing in PS-b-P4VP(3:1)_C6Br increased with increasing number of carbons on the pendant 

side-chains.  
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PART II: 

ELECTROSTATIC INTERACTIONS AND STERICS IN P4VP-BASED POLYMERS. 
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CHAPTER 4 

THE MISNOMER OF THE IONOMER: EFFECT OF PENDANT SIDE-CHAIN 

STERICS ON SHORT RANGE ORDERING IN P4VP RANDOM COPOLYMERS 

4.1 Introduction 

Due to the ubiquitous application of charged polymers in polymer science, the study of their 

structure-property relationships has received considerable attention in the literature.1–7 

Understanding the correlation between structure and polyelectrolyte properties could be used to 

design better ion conducting and mechanically robust polyelectrolyte membranes.7 However, 

studies that focus on the role of intermolecular forces in the formation of a particular structure are 

scarce in the literature.  

Random polyelectrolytes form interesting short-range, ordered morphologies. A characteristic 

short-range ordering in random polyelectrolyte, is the ordering of ionic clusters in a hydrophobic 

matrix.3,4,8–11 These ionic clusters have characteristic spacing between 2 – 10 nm that can be 

observed by wide-angle X-ray scattering (WAXS) and medium-angle X-ray scattering (MAXS).4 

Polymers that form this type of morphology are known as ionomers generally having 10 mol% or 

less ionic content.12,13 Nevertheless, ionomer cluster morphology have been observed in random 

copolymers with 30 – 50 mol% ion content.10,13,14 The ionomer cluster morphology is a 

consequence of dipole-dipole attraction. As a result, dipoles can attract other dipoles to form an 

aggregation of dipoles (dipole clusters). These aggregates can attract other dipoles to form larger 

clusters. 9,10 

Another short-range ordering that can be observed in WAXS for random polyelectrolytes is the 

periodic spacing between adjacent polymer backbones. Polyelectrolytes with pendant side-chains, 
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for example, poly (1-n-alkyl-3-vinylimidazoliumbromide), show this kind of morphology.15 The 

characteristic spacing obtained from the backbone–backbone morphology has similar dimensions 

to the cluster–cluster spacing present in the ionomer cluster morphology. However, this short-

range order is a consequence of the separation between adjacent polymer backbones. The length 

of the pendant side-chains dictate the spacing between adjacent backbones by sterically repelling 

other pendant side-chains on adjacent polymer backbones.16 The spacing between adjacent 

backbones, the so-called backbone-backbone spacing, increases with increasing length of the 

pendant side-chains and was first observed in non-polyelectrolyte comb-shaped polymers.17–19  

While ionomer cluster morphology, formed by the clustering of dipoles, is driven by dipole-dipole 

attraction; backbone-backbone morphology, formed by the separation of adjacent polymer 

backbones, is driven by sterics between pendant side-chains. The ionomer cluster and the 

backbone-backbone morphologies result from fundamentally different origins. However, the 

morphologies associated with the dominance of electrostatic attraction, or sterics, could be 

mischaracterized one for the other because of their similar spacing dimension. This misnomer of 

the ionomer cluster morphology attribution can be found in recent literature where groups working 

on anion exchange membranes have misattributed an X-ray scattering peak resulting from 

backbone-backbone morphology to ionomer cluster morphology.20–22  

Polymers with pendant side-chains16,18,19,23 and ionomers4,10,12–14,24 have been studied 

independently and extensively in the literature. However, a study on these morphologies 

competing, or coexisting, in a copolyelectrolyte system has received little attention in the literature.  

Quaternization of poly(4-vinylpyridine) (P4VP)-based copolymers with 1-alkylbromides provides 

an avenue to investigate the direct interplay between dipole attraction, due to charges,  and 
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adjustable pendant side-chain sterics, The length of the pendant side-chain can be controlled by 

varying the number of carbons on the alkyl group of the quaternizing agent (1-alkylbromide). 25,26 

Consequently, the competition between the morphologies due to dipole-dipole attraction (ionomer 

cluster morphology) and pendant side-chain sterics (backbone-backbone morphology), and the 

possibility that both morphologies can coexist could be studied.  Ionomer cluster morphology has 

been predicted and observed in random copolymers with 50 mol% charge content.10,27,28 

Backbone-backbone morphology has also been observed in random copolymers with about 40 

mol% of repeat units with pendant side-chains.29,30 In this study, poly(4-vinylpyridine), P4VP, 

random copolymers and terpolymer of 4-vinyl pyridine were prepared with isoprene (P4VP-r-PI), 

styrene (P4VP-r-PS), and a mixture of isoprene and styrene (P4VP-r-PI-r-PS), each with 40 mol% 

4VP content. The homopolymer, random copolymers, and terpolymer were fully quaternized with 

various 1-alkylbromides, and the relationships between ionomer cluster and backbone-backbone 

morphologies were evaluated by WAXS.  To study the effect of counter ions on the short-range 

ordering of the P4VP-r-PI, P4VP-r-PI-r-PS, and P4VP-r-PS, the random copolymers and 

terpolymer were also quaternized by 1-alkyliodides. The number of carbons on the quaternizing 

agent, n, ranges from 1 – 12. The morphology of the resultant polymers, P4VP-r-PI_CnI, P4VP-

r-PI-r-PS_CnI, and P4VP-r-PS_CnI was evaluated by WAXS. 

4.1.1 Theoretical Background: The “In-line” Dipole Model 

Building on the phenomenological argument put forth by Colby,13,14 on the formation of ionomer 

morphology, a characteristic spacing below which dipole-dipole attraction energy is dominant can 

be estimated. The thermal energy,  𝐾𝐵𝑇 , where 𝐾𝐵 is the Boltzmann’s constant, and T is 

temperature, is a measure of the reach of dipole-dipole attraction energy. Since dipole-dipole 

interactions are distance dependent, on equating the dipole-dipole interaction energy to 𝐾𝐵𝑇, a 
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limiting length below which dipolar attractions are dominant and beyond which 𝐾𝐵𝑇 is dominant 

can be defined. The limiting length is analogous to the Bjerrum length of free ions. See Figure 4.1.   

 

Figure 4.1. Schematic representation of the Bjerrum length. 

Colby defined the reach of dipole-dipole interaction energy by equating the rotational dipole-

dipole interaction (Keesom Energy) to 𝐾𝐵𝑇.13 The derivation of Keesom energy assumes that the 

interaction of rotating dipoles is less than 𝐾𝐵𝑇. Thus, as acknowledged by Colby, the Keesom 

length obtained from equating the Keesom energy to 𝐾𝐵𝑇 should be used to show the “trend” of 

the dipole-dipole interactions in their system.13 This Keesom length does not strictly define a 

circumference, respective to a reference dipole, within which another dipole is attracted and forms 

a cluster or beyond which there is no clustering.13 A schematic representation of this model is 

shown in Figure 4.2.  
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Figure 4.2. Schematic representation of the Colby rotational dipole model. 

In our model, we define the reach of dipole-dipole interaction energy by equating the fixed dipole-

dipole interaction energy to 𝐾𝐵𝑇. This interaction energy, at length scale of molecular separation, 

is equal to, or greater than, 𝐾𝐵𝑇. Thus, the fixed dipole-dipole interaction energy can facilitate the 

binding of dipoles in liquids and solids at ambient temperature.31 Since the dipole moment is 

orientation dependent, to quantify the interaction energy of fixed dipoles, we assume that the 

prevalent orientation of interacting dipoles on adjacent polymer backbones is the “in-line” 

orientation. This orientation maximizes the dipole-dipole interaction energy, thus, resulting in the 

lowest energy state of the system.31 The dipole-dipole interaction energy, 𝐹𝐷𝐴, for fixed dipoles in 

this orientation is given by:  
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𝐹𝐷𝐴 =  −2
𝜌1𝜌2

4𝜋𝜀𝑜𝜀𝑝𝑑3
                                       (4.1) 

Where 𝜌1 𝑎𝑛𝑑 𝜌2 are dipole moments of the two dipoles on adjacent backbones, 𝜀𝑜  is the 

permittivity of free space, 𝜀𝑝 is the dielectric constant of the polymer matrix, 𝑑 is the distance 

between the two dipoles on adjacent polymer backbones. On equating the dipole-dipole attraction 

energy with the thermal energy, 𝐾𝐵𝑇, we can determine the distance, 𝑑𝐿. Below  𝑑𝐿 the dipole-

dipole attraction dominates. Beyond 𝑑𝐿, the fixed dipole-dipole attraction is weak relative to 𝐾𝐵𝑇, 

and the dipoles interact by Keesom energy. Here we term 𝑑𝐿 the limiting length. 

−2
𝜌1𝜌2

4𝜋𝜀𝑜𝜀𝑝𝑑𝐿
3 + 𝐾𝐵𝑇 = 0                              (4.2) 

Hence, 𝑑𝐿 can be calculated as follows: 

𝑑𝐿 = (2
𝜌1𝜌2

4𝜋𝜀𝑜𝜀𝑝𝐾𝐵𝑇
)

1
3

                                   (4.3) 
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Figure 4.3. Schematic representation of the In-Line Dipole Model. 

A schematic representation of the In-Line dipole model is represented in Figure 4.3. Since the 

dipoles in quaternized P4VP-based polymers are situated on the backbones at the base of the 

pendant side-chains, then the reach of the dipole-dipole attraction of dipoles on adjacent backbones 

can be directly estimated by varying the dimension of the backbone-backbone spacing. 

Consequently, three morphological regimes with respect to the relationship between backbone-

backbone spacing and 𝑑𝐿 can be expected: 
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First Regime: The backbone-backbone spacing is less than 𝑑𝐿. A dipole on the backbone can feel 

the attraction from another dipole on an adjacent backbone. These dipoles are likely to aggregate 

to form dipole clusters. Consequently, the polymer system will be dominated by ionomer cluster 

morphology. 

Second Regime: The backbone-backbone spacing is approximately equal to 𝑑𝐿. The dipole-dipole 

interaction between dipoles on adjacent backbones are partially weak relative to the thermal 

energy. The polymer can form both ionomer cluster and backbone-backbone morphologies leading 

to a coexistence of both morphologies. 

Third Regime: The backbone-backbone spacing is greater than 𝑑𝐿. The dipole-dipole attraction 

between dipoles on adjacent backbones is very weak relative to the thermal energy because these 

dipoles are far enough from each other. In this regime, the morphology is dominated by backbone-

backbone morphology. 

4.2 Materials and Methods 

Styrene (98%) and 4-vinylpyridine (96%) were both obtained from Alfar Aesar and passed through 

a basic alumina column. Isoprene (97%) was procured from Acros Organics and was distilled. The 

initiator, N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]nitroxide (SG1), was kindly 

provided by Arkema and used as obtained. N,N-dimethylformamide (99%) was purchased from 

Fisher Scientific. Pyridine (99%) purchased from Acros Organics was used as received.  The 

following quaternizing agents were used as obtained: bromoethane (99%) and 1-bromopropane 

(98%) (purchased from T.C.I), 1-bromopentane (purchased from Sigma-Aldrich), 1-bromobutane 

(98%), 1-bromohexane (99%), 1-bromoheptane (98%), 1-bromooctane (98%), 1-bromononane 
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(99%), 1-bromodecane (98%), 1-bromoundecane (98%), and 1-bromododecane (98%) were all 

purchased from Alfa Aesar.  

4.2.1 Synthesis and Quaternization of P4VP, P4VP-r-PI, P4VP-r-PI-r-PS, and P4VP-r-PS 

4.2.1.1 Synthesis of P4VP: Poly(4-vinylpyridine) homopolymer, P4VP, was prepared as follows: 

120 mg (0.31 mmoles) of SG1 was added to a solution of 10.5 g (0.1 moles) 4-vinylpyridine (4VP) 

in 10 ml of N,N-Dimethylformamide (DMF). After degassing by three freeze-pump-thaw cycles, 

polymerization was performed at 110 ˚C for 18 hours. The resulting viscous liquid was quenched 

in ice and precipitated twice from dichloromethane into diethyl ether. The product was dried in 

vacuum at room temperature for 24 h.  

4.2.1.2 Synthesis of P4VP-r-PI: Random copolymer, P4VP-r-PI, was prepared as follows: 42 mg 

(0.105 mmoles) of SG1 was added to 10.5 g (0.1 moles) of 4VP and 10.2 (0.15 moles) of isoprene 

in a Schlenk flask. To the mixture was added 10 ml of pyridine as solvent. After degassing by three 

freeze-pump-thaw cycles, polymerization was performed at 120 ˚C for 48 hours. The resulting 

viscous liquid was quenched in ice and precipitated thrice from dichloromethane in a mixture of 

hexanes and diethyl ether (1:1). The product was dried in vacuum at room temperature for 48 h.  

4.2.1.3 Synthesis of P4VP-r-PI-r-PS: Random terpolymer, P4VP-r-PI-r-PS, was prepared as 

follows: 40 mg (0.104 mmoles) of SG1 was added to 7.8 g (0.074 moles) of 4VP, 5 g (0.074 moles) 

of isoprene and 3.9 g (0.037 moles) of styrene in a Schlenk flask. To the mixture was added 10.5 

ml of pyridine as solvent. After degassing by three freeze-pump-thaw cycles, polymerization was 

performed at 120 ̊ C for 48 hours. The resulting viscous liquid was quenched in ice and precipitated 

thrice from dichloromethane in a mixture of hexanes and diethyl ether (1:1). The product was dried 

in vacuum at room temperature for 48 h.  
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Scheme 4.1. Synthesis of P4VP-r-PI-r-PS by nitroxide mediated polymerization. 

4.2.1.4 Synthesis of P4VP-r-PS: Random copolymer P4VP-r-PS was prepared as follows: 46 mg 

(0.12 mmoles) of SG1 was added to 6 g (0.057 moles) of 4VP and 9 g (0.086 moles) of styrene in 

a Schlenk flask. To the mixture was added 16 ml of DMF as solvent. After degassing by three 

freeze-pump-thaw cycles, polymerization was performed at 110 ˚C for 6 h. The resulting viscous 

liquid was quenched in ice and precipitated thrice from dichloromethane in a mixture of hexanes 

and diethyl ether (1:1). The product was dried in vacuum at room temperature for 48 h.  

4.2.1.5 Quaternization of P4VP: A solution of 1.0 M quaternizing agent (propyl to 

dodecylbromide) was prepared in DMF. 20 ml of the solution was added to a solution of 200 mg 

of P4VP in DMF at 60 °C. After 10 d, the solution was precipitated into diethyl ether to give an 

off-white powder. After filtration, the product, P4VP_CnBr, was dried in vacuum at room 

temperature for 24 h. 

4.2.1.6 Quaternization of P4VP-r-PI by 1-Alkylbromide: The random copolymer, P4VP-r-PI, 

was quaternized by ethylbromide, 1-propylbromide, 1-butylbromide, 1-pentylbromide, 1-

hexylbromide, and 1-octylbromide. In a typical quaternization protocol, 20 ml of a 1.0 M solution 

of the quaternizing agent in DMF was added to a solution of 300 mg of polymer in DMF at 60 °C 
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for 10 d. At the end of the reaction, the solution was precipitated into diethyl ether to give a brown 

solid. The product, P4VP-r-PI_CnBr, was dried in vacuum at room temperature for 1 d. 

4.2.1.7 Quaternization of P4VP-r-PI-r-PS by 1-Alkylbromide: The random terpolymer, P4VP-

r-PI-r-PS, was quaternized by ethylbromide, 1-propylbromide, 1-butylbromide, 1-pentylbromide, 

1-hexylbromide, and 1-octylbromide. In a typical quaternization protocol, 20 ml of a 1.0 M 

solution of the quaternizing agent in DMF was added to a solution of 300 mg of polymer in DMF 

at 60 °C for 10 d. At the end of the reaction, the solution was precipitated into diethyl ether to give 

a brown solid. The product, P4VP-r-PI-r-PS_CnBr, was dried in vacuum at room temperature for 

24 h. 

4.2.1.8 Quaternization of P4VP-r-PS by 1-Alkylbromide: The random copolymer, P4VP-r-PS, 

was quaternized by by ethylbromide, 1-propylbromide, 1-butylbromide, 1-pentylbromide, 1-

hexylbromide, and 1-octylbromide. In a typical quaternization protocol, 20 ml of a 1.0 M solution 

of the quaternizing agent in DMF was added to a solution of 300 mg of polymer in DMF at 60 °C 

for 10 d. At the end of the reaction, the solution was precipitated into diethyl ether to give a light 

brown powder. The product, P4VP-r-PS_CnBr, was dried in vacuum at room temperature for 1 d. 

4.2.1.9 Quaternization of P4VP-r-PI by 1-Alkyliodide: The random copolymer, P4VP-r-PI, was 

quaternized by methyliodide, ethyliodide, 1-propyliodide, 1-hexyliodide, and 1-dodecyliodide. In 

a typical quaternization protocol, 20 ml of a 1.0 M solution of the quaternizing agent in DMF was 

added to a solution of 300 mg of polymer in DMF at 60 °C for 10 d. At the end of the reaction, the 

solution was precipitated into diethyl ether to give a brown solid. The product, P4VP-r-PI_CnI, 

was dried in vacuum at room temperature for 1 d. 
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4.2.1.10 Quaternization of P4VP-r-PI-r-PS by 1-Alkyliodide: The random terpolymer, P4VP-

r-PI-r-PS, was quaternized by methyliodide, ethyliodide, 1-propyliodide, and 1-hexyliodide. In a 

typical quaternization protocol, 20 ml of a 1.0 M solution of the quaternizing agent in DMF was 

added to a solution of 300 mg of polymer in DMF at 60 °C for 10 d. At the end of the reaction, the 

solution was precipitated into diethyl ether to give a brown solid. The product, P4VP-r-PI-r-

PS_CnI, was dried in vacuum at room temperature for 24 h. 

4.2.1.11 Quaternization of P4VP-r-PS by 1-Alkyliodide: The random copolymer, P4VP-r-PS, 

was quaternized by methyliodide, ethyliodide, 1-propyliodide, and 1-hexyliodide. In a typical 

quaternization protocol, 20 ml of a 1.0 M solution of the quaternizing agent in DMF was added to 

a solution of 300 mg of polymer in DMF at 60 °C for 10 d. At the end of the reaction, the solution 

was precipitated into diethyl ether to give a light brown powder. The product, P4VP-r-PS_CnI, 

was dried in vacuum at room temperature for 1 d. 

4.2.2 Characterization of P4VP-based Polymers 

Number average molecular weights, Mn, was determined using Gel Permeation Chromatography 

(GPC) in DMF at a flow rate of 1.0 mL/min using a refractive index detector on an Agilent 

Technologies 1260 Infinity system. The chemical compositions of (P4VP-r-PI), (P4VP-r-PI-r-PS), 

and (P4VP-r-PS) were determined using a Bruker 500 Fourier-Transform Nuclear Magnetic 

Resonance (FT-NMR). Quaternized samples of (P4VP-r-PI), (P4VP-r-PI-r-PS), and (P4VP-r-PS) 

were drop cast from methanol on a Teflon® sheet. Characterization was performed on the resulting 

films. PerkinElmer Spectrum 100 FTIR with a universal ATR was used to confirm the complete 

quaternization of the 4-Vinylpyridine units in the homopolymer, copolymers, and terpolymer.  



94 

 

Wide-angle X-ray scattering (WAXS) measurements were performed in transmission geometry on 

Molmex Scientific Ganesha SAXS Lab. A double aperture for the Cu-Kα radiation (λ = 1.54 Å), 

which was the X-ray source, was used. Silver behenate was used as the standard for the momentum 

transfer calibration. Data was collected for 180 seconds. Depending on the signal-to-noise ratio, 

data collection could be longer. Azimuthal averaging of the obtained isotropic 2-D pattern was 

performed to obtain the intensity versus wave vector plot. 

4.3 Results and Discussion 

The homopolymer of 4-vinylpyridine, poly(4-vinylpyridine) (P4VP) was synthesized by nitroxide 

mediated polymerization (NMP). Characterization of P4VP by 1H NMR confirms the successful 

synthesis of the homopolymer (see Figure 4.4). 

 

 

Figure 4.4. The 1H NMR spectrum of P4VP. 
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The molecular weight and dispersity of P4VP was determined by DMF-GPC. See Figure 4.5. The 

GPC chromatogram confirm the successful synthesis of P4VP. The target molecular weight of the 

homopolymer was approximately equal to the molecular weight determined by GPC.  
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Figure 4.5. The GPC chromatogram of P4VP. 

A summary of the molecular weights, and dispersity for P4VP is presented in Table 4.1.  

Table 4.1. Summary of molecular weight, dispersity, and composition of P4VP. 

 

 

  Feed ratio 

(4VP:isoprene:styrene) 

NMR ratio 

 (4VP:isoprene:styrene) 

Target 

Mn(Kg/mol) 

GPC Mn 

(Kg/mol) 

Ɖ 

P4VP 2:0:0 2:0:0 30 35 1.5 
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4.3.1 Characterization of Quaternized P4VP, P4VP-r-PI, P4VP-r-PI-r-PS, and P4VP-r-PS 

The 4VP units in all prepared samples were fully quaternized by 1-alkylbromides (CnBr) with 

varying number of carbons, n. The homopolymer, P4VP, was quaternized by a solution of 1.0 M, 

propyl – dodecyl bromides (n = 3 – 12) in DMF at 60 °C. The copolymers (P4VP-r-PI, and P4VP-

r-PS) and terpolymer (P4VP-r-PI-r-PS) were quaternized by reaction with a solution of 1.0 M 

ethyl, propyl, butyl, pentyl, hexyl, and octyl bromide (n = 2-6, and 8) in DMF at 60 °C.  

The complete quaternization of the 4VP units in the homopolymer, P4VP, and its subsequent 

transformation to poly (1-n-alkyl-4vinyllpyridiniumbromide) (P4VP_CnBr) can be confirmed by 

ATR-FTIR. Figure 4.6 shows the disappearance of the 1414 cm-1 stretch which is the stretching 

vibration of the C=N aromatic ring and the subsequent emergence of the pyridinium vibration at 

1640 cm-1.32 These changes in the FTIR spectra (see Figure 4.6) have been used previously to 

confirm the complete quaternization of poly(4-vinylpyridine). 25,26,33–38 

 

 

 

 

 

 

 

Figure 4.6. FTIR spectra showing the complete quaternization of P4VP by 1-hexylbromide. 
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In a similar fashion, after the quaternization of the copolymers P4VP-r-PI, P4VP-r-PS, and the 

terpolymer P4VP-r-PI-r-PS by 1-alkylbromides with varying number of carbons in the alkyl 

group, n, ranging from 2 – 8, the complete quaternization of their respective products P4VP-r-

PI_CnBr, P4VP-r-PI-r-PS_CnBr, and P4VP-r-PS_CnBr was confirmed by ATR-FTIR. 

4.3.2 Short-Range Ordering in P4VP_CnBr Series 

   

  

 

 

 

 

 

 

 

 

 

Figure 4.7. a) The WAXS spectra of the P4VP_CnBr series, b) relative intensities of feature peaks 

in the P4VP_CnBr series. 
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X-ray scattering experiments were performed on the completely quaternized homopolymer 

(P4VP_CnBr). The obtained WAXS spectra (see Figure 4.7a) show two distinct peaks for all 

quaternized polymers. The spacing correlated to the peak at high Q is the so-called van der Waal’s 

distance (VDW) between non-bonded atoms in the polymer. This VDW peak, also known as the 

amorphous halo, is ubiquitous in amorphous polymers.18,19 Upon quaternization, the VDW spacing 

decreased from its value in the pristine polymer. This indicates tighter packing of polymer chains.39 

Given that a decrease in VDW spacing have not been observed in non-charged, comb-shaped 

polymers,18,19 this decrease in VDW spacing from the unquaternized (P4VP) to the quaternized 

polymer series (P4VP_CnBr) may have resulted from the introduction of bromide counter ions. 

For the quaternized sample series, P4VP_CnBr, the VDW spacing increased with increasing 

number of carbons on the pendant side-chains from 4.00 Å for P4VP_C3Br to 4.34 Å for 

P4VP_C12Br. An increase in the VDW spacing with increasing number of carbons on the pendant 

side-chains has also been reported in poly(n – cycloalkylmethacrylates) and poly(n – 

alkylacrylates).19 The intensity of the VDW peak has been used to correlate the fraction of other 

observed features in WAXS. For instance, the intensities of crystalline or ionomer peaks relative 

to the VDW peak intensity has been used to estimate the fraction of these morphological features 

in a polymer.14,19,40 

A second peak with Q values lower than the VDW peak, the LVDW peak, can also be observed 

in the WAXS spectra of the quaternized samples (see Figure 4.7a). The characteristic spacing 

derived from the LVDW peak is the backbone-backbone spacing, 𝑑𝐵, between adjacent polymer 

segments. There was a linear increase in 𝑑𝐵 with increasing number of carbons on the pendant the 

side-chains. This linear relationship has also been observed in comb-shaped polymers; poly(n-

alkylvinylesters),16 poly(α-olefins),16 poly(n-fluorofumarates),41 poly(n-alkylfluoroacrylate),41  
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poly(n-alkylfluoromethacrylate),41 poly(n-alkylmethacrylates),17,19 poly(n-

cycloalkylmethacrylates),19 poly(n-alkylacrylates),17,19 poly(1-n-alkyl-3-vinylimidazolium 

bromide)15 and poly(3-n-alkylthiophenes).42 Pendant side-chains in comb-shaped polymers have 

been posited to be in an all trans configuration with some degree of interdigitation.16 The linear 

increase of 𝑑𝐵with number of carbons on the side-chain show a slope of 2.0 Å/methylene unit. The 

same slope has been observed in other comb-shaped polyelectrolytes,15 and non-

polyelectrolytes.16–18  

The intensity of the LVDW peak increases with increasing number of carbons on the pendant side-

chain. The intensity of the LVDW peak relative to VDW has been used to correlate the fraction of 

backbone-backbone spacing in the polymer.19 The increase in the intensity of the LVDW peak with 

increasing number of carbons on the pendant side-chains relative to the VDW peak (see Figure 

4.7b) suggests that the fraction of periodically spaced polymer segments also increases with 

increasing number of carbons on the side-chain. 

4.3.3 Short-Range Ordering in P4VP-r-PI_CnBr and P4VP-r-PI_CnI Series 

The copolymer of 4-vinylpyridine and isoprene, P4VP-r-PI, was synthesized by Nitroxide 

Mediated Polymerization (NMP). Characterization of P4VP-r-PI by 1H NMR confirms the 

successful synthesis of the copolymer (see Figure 4.8). The compositions of 4-vinylpyridine and 

isoprene in the copolymer were determined by comparing the integrals of the aromatic protons of 

poly(4-vinylpyridine) and the vinyl protons of polyisoprene. 
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Figure 4.8. The 1H NMR spectrum of P4VP-r-PI.  

 

The integral value of the vinyl peak has contributions from the isomers of polyisoprene, 1H from 

the 1,4 isomer (-C=CH-), 2H from the 1,2 isomer (-C=CH2), and 1H from the 3,4 isomer (-C=CH-

). A random copolymer synthesized using SG1 by Nitroxide Mediated Polymerization (NMP) is 

generally comprised of 93 %, 1 %, and 6 %, of 1,4 isomer, 1,2 isomer, and 3,4 isomer respectively. 
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Figure 4.9. The GPC chromatogram of P4VP-r-PI. 

The molecular weight and dispersity of the copolymer, P4VP-r-PI, was determined by DMF-GPC 

(see Figure 4.9). The GPC chromatogram confirm the successful synthesis of P4VP-r-PI. The 

target molecular weight was lower than the molecular weight determined by GPC. This difference 

in the target and determined molecular weights could have arisen from the solubility of the 

copolymer in the eluent. Polyisoprene homopolymer is insoluble in DMF.  

A summary of the molecular weights, copolymer feed and target compositions, and dispersity for 

P4VP-r-PI is presented in Table 4.2.  
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Table 4.2. Summary of molecular weight, dispersity, and composition of P4VP-r-PI. 

 

 

Since the comonomer ratios in the feed and the synthesized copolymer determined by NMR are 

the same, the copolymer P4VP-r-PI can be said to show random character. Furthermore, the 

reactivity ratios of 4VP (0.39) and isoprene (1.06) in P4VP-r-PI confirm the random character of 

the copolymer.43 

The 4VP units in P4VP-r-PI, were completely quaternized by 1-alkylbromides with varying 

number of carbons in the alkyl group, ranging from 2 - 8. Characterization of the resultant sample 

series, P4VP-r-PI_CnBr, by FTIR-ATR confirmed the complete disappearance of the C=N 

aromatic ring stretching vibration at 1414 cm-1  and the appearance of the pyridinium vibration at 

1640 cm-1.36–38 The FTIR spectra of P4VP-r-PI quaternized by 1-alkylbromides is presented in 

Figure 4.10a. 

 

  Feed ratio 

(4VP:isoprene:styrene) 

NMR ratio 

 (4VP:isoprene:styrene) 

Target 

Mn(Kg/mol) 

GPC Mn 

(Kg/mol) 

Ɖ 

P4VP-r-PI 2:3:0 2:3:0 191 30 1.8 
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Figure 4.10. The FTIR spectra for the a) P4VP-r-PI_CnBr and b) P4VP-r-PI_CnI series. 

To evaluate the effect of counter ions on the short-range ordering, the 4VP units in P4VP-r-PI, 

were also completely quaternized by 1-alkyliodides with varying number of carbons in the alkyl 

group, ranging from 1 - 12. Characterization of the resultant sample series, P4VP-r-PI_CnBr, by 

FTIR-ATR confirmed the complete disappearance of the C=N aromatic ring stretching vibration 

at 1414 cm-1  and the appearance of the pyridinium vibration at 1640 cm-1.36–38 The FTIR spectra 

confirming the complete quaternization of P4VP-r-PI by 1-alkyliodides is presented in Figure 

4.10b. 
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Figure 4.11. a) The WAXS spectra of the P4VP-r-PI_CnBr series, b) relative intensities of feature 

peaks in the P4VP-r-PI_CnBr series. 

In the P4VP-r-PI_CnBr series, the WAXS spectra (See Figure 4.11a) show the VDW peak at 

higher Q values as in the P4VP_CnBr series. As in the homopolymers series, upon quaternization, 

the VDW peak moves to higher Q values (VDW spacing decreases) suggesting a more compact 

arrangement of polymer chains. For the quaternized P4VP-r-PI series, P4VP-r-PI_C2Br to P4VP-

r-PI_C8Br, the VDW spacing increased with increasing number of carbons. Also noticeable in the 

WAXS spectra of the P4VP-r-PI_CnBr series is the emergence of a LVDW peak next to the VDW 

from P4VP-r-PI_C4Br to P4VP-r-PI_C8Br. The LVDW peak correlates to the backbone-

backbone spacing, 𝑑𝐵, that have been observed in the P4VP_CnBr series. However, the values of 

𝑑𝐵 in the P4VP-r-PI_CnBr series was smaller than the 𝑑𝐵 values at a given number of carbons in 
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the quaternized homopolymer. Changes in the values of 𝑑𝐵 in P4VP_CnBr and P4VP-r-PI_CnBr 

series, for a given number of carbons on the pendant side-chain, is due to the difference in the mole 

fractions of the pendant side-chain monomer units in the quaternized homopolymer and random 

copolymer. The larger the fraction of the pendant side-chain unit, the greater the 𝑑𝐵.17,23,39,44 A 

characteristic feature of 𝑑𝐵 is its linear correlation with number of carbons as can be observed in 

the P4VP_CnBr series. Accordingly, from P4VP-r-PI_C4Br to P4VP-r-PI_C8Br, 𝑑𝐵 increased 

linearly with increasing number of carbons on the pendant side-chain with a slope of 1.8 

Å/methylene unit.  The spacing between ionic clusters in random copolymers does not show such 

linearity with increasing hydrophobic content.8–10 

The introduction of isoprene as a comonomer into the poly(4-vinylpyridine) backbone facilitates 

the formation of dipole clusters. The WAXS spectra for P4VP-r-PI_C2Br and P4VP-r-PI_C3Br 

(see Figure 4.11a) show an “ionomer peak” at lower Q values which correlates to the average 

cluster-cluster spacing.40,45,46 The spacing between clusters in these systems was larger than their 

equivalent backbone-backbone spacing in the homopolymer. Furthermore, the cluster-cluster 

distance increased with increasing number of side-chain carbons. The increase in cluster-cluster 

spacing with decreasing ion content have been observed in other ionomer-based systems.47,48  

The formation of dipole clusters in P4VP-r-PI_CnBr series requires that the separation between 

dipoles on the polymer backbone is less than 𝑑𝐿, thus, shorter pendant side-chains. However, with 

longer pendant side-chains due to sterics the spacing between dipoles on the polymer backbone 

becomes greater than 𝑑𝐿, thus, decreasing the likelihood for ion clustering. As predicted by the 

“In-Line” Dipole Model, three regimes could be observed from the WAXS spectra of P4VP-r-

PI_CnBr. In the first regime, P4VP-r-PI_C2Br to P4VP-r-PI_C3Br, an ionomer cluster 

morphology can be observed. The absence of backbone-backbone spacing suggests that the 
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backbone-backbone spacing is less than the characteristic spacing ( 𝑑𝐵 < 𝑑𝐿). Consequently, an 

ionomer cluster morphology is dominant in this regime. From P4VP-r-PI_C2Br to P4VP-r-

PI_C3Br, the intensity of the ionomer peaks relative to the VDW peak decreased. The difference 

in the relative ionomer peak intensities suggest that even below 𝑑𝐿 side-chain sterics still have an 

effect on the population of ionomer clusters in the system. Given that 𝑑𝐵  spacing of P4VP-r-

PI_C3Br should be greater than 𝑑𝐵 of P4VP-r-PI_C2Br, it follows that dipoles are more likely to 

cluster and form ionomer cluster morphology in P4VP-r-PI_C2Br than P4VP-r-PI_C3Br. A 

second regime, the coexistence regime, can be observed in P4VP-r-PI_C4Br (𝑑𝐵 = 14.5 Å). The 

WAXS spectra of P4VP-r-PI_C4Br show neither a distinct ionomer or LVDW peak, but a broad 

feature, which suggests a co-existence or overlap of these two morphologies in the copolymer. In 

this regime, the value of 𝑑𝐵~ 𝑑𝐿. A coexistence of the backbone-backbone spacing and cluster-

cluster spacing features have also been reported recently by Zhang et al.14 A third regime can be 

observed from P4VP-r-PI_C5Br to P4VP-r-PI_C8Br, (𝑑𝐵 = 17 – 21 Å). In this regime 𝑑𝐵 >  𝑑𝐿. 

The dipoles near the polymer backbones are “shielded” from each other due to the long pendant 

side-chains, and backbone-backbone morphology is dominant. As with the homopolymer, the peak 

intensity of the LVDW relative to the VDW, also increased with increasing number of carbons on 

the pendant side-chain. As the relative intensity of the LVDW peak increases, that of the ionomer 

peak relative to VDW decreases and gradually disappears. See Figure 4.11b.  
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Figure 4.12. Schematics of the three regimes in random, charged, comb-shaped copolymers. 

Using equation (4.3), we can estimate the approximate equilibrium spacing between backbones 

for which these regimes may be found. Since the dipole moments of two interacting dipoles in this 

medium is the same and is approximately 9.1 D for methylpyrdiniumalkylbromide,49 and assuming 

that the matrix, polyisoprene, acts as a continuum with a dielectric constant of about 2.4-2.6,50,51 

then at room temperature (T = 298 K) the characteristic spacing at which dipole-dipole attraction 

equals the thermal energy, 𝑑𝐶, is approximately 12 Å. For 𝑑𝐵 < 12 Å, dipole-dipole interactions 

are dominant and facilitate the formation of dipole clusters. When 𝑑𝐵 > 12 Å the side-chain sterics 

“shields” the dipole-dipole attraction from dipoles on adjacent backbones, consequently, 

backbone-backbone morphology is dominant. For 𝑑𝐵~ 12 Å, a coexistence of both morphologies 

is possible. In the case of P4VP-r-PI_CnBr, the coexistence morphology was observed for 𝑑𝐵 = 

14.5 Å, which is slightly higher than the equilibrium distance predicted by this model. However, 

the diminished ionomer peak intensity of P4VP-r-PI_C3Br in comparison to P4VP-r-PI_C2Br 

suggests that some degree of coexistence may yet be present even though it was not obvious in 
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WAXS. The morphological regimes predicted by the model are consistent with experimental 

results.  
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Figure 4.13. The WAXS spectra of the P4VP-r-PI_CnI series. 

Characterization of the P4VP-r-PI_CnI series by X-ray scattering is presented in Figure 4.13. The 

spectra show the ubiquitous VDW peak at high values of Q for all samples. Unlike the P4VP-r-

PI_CnBr series, upon quaternization of P4VP-r-PI by 1-alkyliodides, the VDW peak remained 

constant for all the quaternized samples. A constant VDW spacing with increasing number of 

carbons on the pendant side-chain have also been observed in other comb-shaped polymers. 
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The X-ray scattering profiles of P4VP-r-PI_C6I and P4VP-r-PI_C12I show an LVDW peak at 

smaller Q values. This peak correlate to the backbone-backbone spacing between polymer chains. 

Like in the P4VP-r-PI_CnBr series, the backbone-backbone spacing increased with increasing 

number of carbons on the pendant side-chains. The backbone-backbone spacing in P4VP-r-PI_C6I 

was slightly less than the backbone-backbone spacing in P4VP-r-PI_C6Br. This decrease in 

backbone-backbone spacing with increasing counter ion size may have resulted from the 

differences in the dipole moment of the respective dipoles. The dipole moment is the product of 

the elementary charge, q, and the distance between the center of the ions in the dipole. 

Consequently, larger ions will have larger dipole moment. Iodide counter ions are larger than 

bromide counter ions, thus the dipole moment of the alkylpyridiniumiodide would be larger than 

the dipole moment of the alkylpyridiniumbromide. The dipole-dipole attraction between adjacent 

backbones with iodide counter ions will be stronger than those with bromide counter ions with 

similar number of carbons on the pendant side-chains. This will lead to a shorter backbone-

backbone spacing, more compact backbones, in charged comb-shaped polymers having iodide 

counter ions in comparison to charged comb-shaped polymers with bromide counter ions.  

The X-ray scattering profiles of P4VP-r-PI_C1I and P4VP-r-PI_C2I show an ionomer peak. This 

is consistent with the tendency of P4VP-r-PI quaternized by 1-alkylhalides with low number of 

carbons in the alkyl groups to form ionomer cluster morphology as was observed in P4VP-r-

PI_C2Br and P4VP-r-PI_C3Br. The domain spacing of the clusters in P4VP-r-PI_C1I and P4VP-

r-PI_C2I increased with increasing number of carbons. The same trend was observed in the 

ionomer cluster morphology of the P4VP-r-PI_CnBr series. The cluster-cluster spacing dimension 

for P4VP-r-PI_C2I was equivalent with the cluster-cluster spacing dimension of P4VP-r-PI_C2Br. 

This suggests that counter ion had minimal effect on the dimension of the cluster-cluster spacing. 
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The WAXS spectrum of P4VP-r-PI_C3Br, although shows an ionomer peak, also show an 

inflexion feature between the VDW and the ionomer peak. However, the WAXS spectrum of 

P4VP-r-PI_C3I show a broad ionomer-like peak with no such inflexion between the ionomer and 

the VDW peak. The ionomer peak intensities of the P4VP-r-PI_CnI series relative to the VDW 

peak decreases with increasing number of carbons on the pendant side-chain similar to the trend 

observed in P4VP-r-PI_CnBr series.  

Given that the dipole moment of the dipoles in P4VP-r-PI_CnI series would be higher than the 

dipoles in P4VP-r-PI_CnBr series, the limiting length obtained from equation (4.3) would be 

higher in P4VP-r-PI_CnI series in comparison to P4VP-r-PI_CnBr series. The difference in the 

dipole moment in P4VP-r-PI_CnI series and P4VP-r-PI_CnBr series will also result in shorter 

backbone-backbone spacing in the P4VP-r-PI_CnI series in comparison to the backbone-backbone 

spacing in P4VP-r-PI_CnBr series. Thus, the transition to a backbone-backbone dominant 

morphology was observed at a higher number of carbons on the pendant side-chain in P4VP-r-

PI_CnI series compared to P4VP-r-PI_CnBr series.  

4.3.4 Short-Range Ordering in P4VP-r-PI-r-PS_CnBr and P4VP-r-PI-r-PS_CnI Series 

The terpolymer of 4-vinylpyridine, isoprene, and styrene (P4VP-r-PI-r-PS) was synthesized by 

Nitroxide Mediated Polymerization (NMP). Characterization of P4VP-r-PI-r-PS by 1H NMR 

confirms the successful synthesis of the copolymer (see Figure 4.14). The compositions of 4-

vinylpyridine, isoprene, and styrene in the copolymer were determined by comparing the integrals 

of the aromatic protons of poly(4-vinylpyridine), the vinyl protons of polyisoprene, and the 

aromatic protons of the polyisoprene. 
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Figure 4.14. 1H NMR spectrum of P4VP-r-PI-r-PS. 

 

The integral value of the vinyl peak has contributions from the isomers of polyisoprene, 1H from 

the 1,4 isomer (-C=CH-), 2H from the 1,2 isomer (-C=CH2), and 1H from the 3,4 isomer (-C=CH-

). A random copolymer synthesized using SG1 by Nitroxide Mediated Polymerization (NMP) is 

generally comprised of 93 %, 1 %, and 6 %, of 1,4 isomer, 1,2 isomer, and 3,4 isomer respectively. 

 

2 aromatic pyridine protons 

2 aromatic pyridine protons + 

5 aromatic styrene protons 

vinyl isoprene protons 
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Figure 4.15. The GPC chromatogram for P4VP-r-PI-r-PS. 

The molecular weight and dispersity of the copolymer, P4VP-r-PI-r-PS, was determined by DMF-

GPC (see Figure 4.15). The GPC chromatogram confirm the successful synthesis of P4VP-r-PI-r-

PS. The target molecular weight was lower than the molecular weight determined by GPC. This 

difference between the target and determined molecular weights could have arisen from the 

solubility of the copolymer in the eluent. Polyisoprene homopolymer is insoluble in DMF. 

Polystyrene does not have an extended chain conformation in DMF.  

A summary of the molecular weights, copolymer feed and target compositions, and dispersity for 

P4VP-r-PI-r-PS is presented in Table 4.3.  
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Table 4.3. Summary of molecular weight, dispersity, and composition of P4VP-r-PI-r-PS. 

 

Since the commoner ratios in the feed and the synthesized polymer determined by NMR are the 

same, the terpolymers P4VP-r-PI-r-PS can be said to show random character.  

The 4VP units in the terpolymer, P4VP-r-PI-r-PS, were completely quaternized with various 1-

alkylbromides with varying number of carbons in the alkyl group, ranging from 2 – 8. 

Characterization of the resultant sample series, P4VP-r-PI-r-PS_CnBr, by FTIR-ATR again 

confirmed the complete disappearance of the C=N aromatic ring stretching vibration at 1414 cm-1  

and the appearance of the pyridinium vibration at 1640 cm-1.36–38 The FTIR spectra of P4VP-r-PI-

r-PS quaternized by 1-alkylbromides is presented in Figure 4.15a. 

  Feed ratio 

(4VP:isoprene:styrene) 

NMR ratio 

 (4VP:isoprene:styrene) 

Target 

Mn(Kg/mol) 

GPC Mn 

(Kg/mol) 

Ɖ 

P4VP-r-PI-r-PS 2:2:1 2:2:1 150 40 1.6 
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Figure 4.16. The FTIR spectra for the a) P4VP-r-PI-r-PS_CnBr and b) P4VP-r-PI-r-PS_CnI series. 

To evaluate the effect of counter ions on the short-range ordering, the 4VP units in P4VP-r-PI-r-

PS, were also completely quaternized by 1-alkylIodides with varying number of carbons in the 

alkyl group, ranging from 1 - 6. Characterization of the resultant sample series, P4VP-r-PI-r-PS 

_CnBr, by FTIR-ATR confirmed the complete disappearance of the C=N aromatic ring stretching 

vibration at 1414 cm-1  and the appearance of the pyridinium vibration at 1640 cm-1.36–38 The FTIR 

spectra confirming the complete quaternization of P4VP-r-PI-r-PS by 1-alkyIodides is presented 

in Figure 4.16b. 

 

a b 
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Figure 4.17. a) The WAXS spectra of the P4VP-r-PI-r-PS_CnBr series, b) relative intensities of 

feature peaks in the P4VP-r-PI-r-PS_CnBr series.    

The effect of quaternization on the short-range ordering of P4VP-r-PI-r-PS_CnBr series can be 

observed from the WAXS spectra (see Figure 4.17a). The VDW peak, present in both P4VP_CnBr 

and P4VP-r-PI_CnBr series, can be observed at large Q values in the terpolymer. The value of the 

VDW spacing in the quaternized polymer series, P4VP-r-PI-r-PS _CnBr decreased in comparison 

to the value of the VDW spacing of the pristine terpolymer P4VP-r-PI-r-PS. For the quaternized 

series, P4VP-r-PI-r-PS_CnBr, the VDW spacing increased with increasing number of carbons on 

the pendant side-chains. A similar trend was observed in the P4VP_CnBr and P4VP-r-PI_CnBr 

series. The LVDW peak, arising from backbone-backbone spacing, can also be observed at lower 

Q values next to the VDW peak from P4VP-r-PI-r-PS_C3Br to P4VP-r-PI-r-PS_C8Br while 
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ionomer peaks can be observed at even lower Q values next to VDW peak in P4VP-r-PI-r-

PS_C2Br and P4VP-r-PI-r-PS_C3Br. Three morphological regimes can also be observed for this 

series. The first regime is observed in P4VP-r-PI-r-PS_C2Br, where  𝑑𝐵 < 𝑑𝐿 , dipole-dipole 

attraction is dominant. This dipole-dipole attraction facilitates dipole cluster formation. A second 

regime can be observed in P4VP-r-PI-r-PS_C3Br, (𝑑𝐵 = 12.5 Å). Next to the VDW peak, two 

feature peaks are evident, an ionomer peak and an emerging LVDW peak. Thus, a backbone-

backbone morphology and ionomer cluster morphology coexist. In this regime, the dipole-dipole 

attractive potential is balanced by the thermal energy. Hence,  𝑑𝐵~𝑑𝐿. The calculated value of 𝑑𝐵 

for which coexistence should occur, 12 Å, fits well with the data obtained from scattering 12.5 Å. 

The third regime ranges from P4VP-r-PI-r-PS_C4Br to P4VP-r-PI-r-PS_C8Br (𝑑𝐵 = 14.7 – 21 

Å). In this regime 𝑑𝐵 > 𝑑𝐿 . Dipole-dipole interaction between dipoles on adjacent polymer 

backbones are “shielded” and the backbone-backbone morphology is dominant. The value of 𝑑𝐵  

in P4VP-r-PI-r-PS_CnBr series increased linearly with increasing number of carbons as in the 

cases of P4VP_CnBr and P4VP-r-PI_CnBr series. The value of 𝑑𝐵 for a given number of carbons 

on the pendant side-chain was similar to the corresponding 𝑑𝐵  value in the P4VP-r-PI_CnBr 

series. Accordingly, the slope of the linear increase in 𝑑𝐵 with number of carbons on the pendant 

side-chains in P4VP-r-PI-r-PS_CnBr and P4VP-r-PI_CnBr were similar. Like the P4VP-r-

PI_CnBr series, the intensity of ionomer peaks relative to its corresponding VDW peak decreased 

with increasing number of carbons on the pendant side-chains in the P4VP-r-PI-r-PS_CnBr series 

(see Figure 4.17b). This suggests a decrease in dominance of ionomer morphology. Conversely, 

the intensity of the LVDW peak increased with increasing number of carbons on the pendant side-

chain.  
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Unlike the P4VP-r-PI_CnBr series, the LVDW peak of P4VP-r-PI-r-PS_CnBr series became 

distinct at P4VP-r-PI-r-PS_C4Br. Given that the dielectric constants of polyisoprene and 

polystyrene have similar values, this change in the onset of backbone-backbone morphology may 

be attributed to the rigidity of the styrene comonomer. This suggests that the onset of the third 

regime has a dependence on the styrene comonomer content.  
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Figure 4.18. The WAXS spectra of the P4VP-r-PI-r-PS_CnI series. 

The X-ray scattering data for the P4VP-r-PI-r-PS_CnI series is shown in Figure 4.18. The 

scattering profiles show the VDW peak at large Q values for all the studied samples. Similar to the 

P4VP-r-PI_CnI series, the VDW spacing did not change on quaternization. At smaller Q values, 
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an LVDW peak could be observed in P4VP-r-PI-r-PS_C6I. This peak correlates to the backbone-

backbone spacing in comb-shaped polymers. The value of the backbone-backbone spacing in 

P4VP-r-PI-r-PS_C6I was slightly lower than the value of the backbone-backbone spacing in 

P4VP-r-PI-r-PS_C6Br. This may have resulted from the stronger dipole-dipole attraction between 

adjacent backbones in P4VP-r-PI-r-PS_CnI series in comparison to P4VP-r-PI-r-PS_CnBr series. 

The strong dipole-dipole attraction in the P4VP-r-PI-r-PS_CnI series stems from the high dipole 

moment of alkylpyridiniumiodide. The same trend was observed in P4VP-r-PI_C6I and P4VP-r-

PI_C6Br. However, the backbone-backbone spacing dimension in P4VP-r-PI-r-PS_C6I was 

similar to the backbone-backbone spacing in P4VP-r-PI_C6I. The same trend was observed for 

the backbone-backbone spacing dimension in the P4VP-r-PI_CnBr series and P4VP-r-PI-r-

PS_CnBr series at a certain number of carbons on the pendant side-chains.  

The X-ray scattering profiles of P4VP-r-PI-r-PS_C1I and P4VP-r-PI-r-PS_C2I show ionomer 

peaks at lower Q values. This ionomer peak correlates to the cluster-cluster spacing between dipole 

clusters in an ionomer cluster morphology. The dimensions of the cluster-cluster spacing for 

P4VP-r-PI-r-PS_C1I and P4VP-r-PI-r-PS_C2I were equivalent to the dimensions of the cluster-

cluster spacing for P4VP-r-PI_C1I and P4VP-r-PI_C2I respectively. Like the backbone-backbone 

spacing, the cluster-cluster dimension is independent of the component of the copolymer. 

Furthermore, the cluster-cluster dimension in P4VP-r-PI-r-PS_C2I was equivalent to the cluster-

cluster dimension in P4VP-r-PI-r-PS_C2Br. The cluster-cluster spacing is the distance between 

nearest clusters that are randomly distributed in a hydrophobic matrix. Thus, this distance will 

depend on the concentration of clusters which in turn depends on the concentration of dipoles. 

Consequently, the size of the ions in the dipoles or the strength of the dipole interaction will have 

minimal effect on the distribution of these clusters. The cluster-cluster spacing is unlike the 
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backbone-backbone spacing that is affected by the counter ion size. The relative intensity of the 

ionomer peaks decreases with increasing number of carbons on the pendant side-chains in the 

P4VP-r-PI-r-PS_CnI series and then disappears. The same trend has been observed in P4VP-r-

PI_CnBr, P4VP-r-PI_CI, and P4VP-r-PI-r-PS_CnBr series. 

The WAXS spectra for P4VP-r-PI-r-PS_C3I show no distinct ionomer or LVDW peak. This might 

be have resulted from a perfect balance between the driving forces for ionomer cluster morphology 

and backbone-backbone morphology resulting in the elimination of short-range ordering.  

The larger limiting length and the shorter backbone-backbone spacing in P4VP-r-PI-r-PS_CnI 

series suggests a delayed onset of the backbone-backbone morphology in comparison to the P4VP-

r-PI-r-PS_CnBr series. The delay in the onset of the backbone-backbone spacing can be observed 

when the WAXS spectra of P4VP-r-PI-r-PS_C3I and P4VP-r-PI-r-PS_C3Br are compared (see 

Figure 4.17a and Figure 4.18). In P4VP-r-PI-r-PS_C3Br, a backbone-backbone spacing could be 

observed between the ionomer peak and the VDW peak. However, in the X-ray scattering profile 

of P4VP-r-PI-r-PS_C3I, only a plateau could be observed without any backbone-backbone 

spacing. This confirms that the size of the counter ion can delay the onset of the backbone-

backbone morphology.  

Unlike the P4VP-r-PI_CnI series, the ionomer peak of P4VP-r-PI-r-PS_CnI series completely 

disappeared at P4VP-r-PI-r-PS_C3I. The total disappearance of the ionomer peak is dependent on 

the copolymer type. Rigid copolymers like polystyrene facilitate the disappearance of the ionomer 

cluster morphology. 
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4.3.5 Short-Range Ordering in P4VP-r-PS_CnBr and P4VP-r-PS_CnI Series 

The copolymer of 4-vinylpyridine and styrene, P4VP-r-PS, was synthesized by Nitroxide 

Mediated Polymerization (NMP). Characterization of P4VP-r-PS by 1H NMR confirms the 

successful synthesis of the copolymer (see Figure 4.19). The compositions of poly(4-inylpyridine) 

and polystyrene in the copolymer were determined by comparing the integrals of the aromatic 

protons of poly(4-vinylpyridine) and the aromatic protons of polystyrene. 

 

 

 

Figure 4.19. The 1H NMR spectrum of P4VP-r-PS. 

Since the commoner ratios in the feed and the synthesized polymer determined by NMR are the 

same, the copolymers P4VP-r-PS can be said to show random character. Furthermore, the 

reactivity ratios of 4VP (0.86) and styrene (0.66) in P4VP-r-PS, confirm the random character of 

these polymers.43  

2 aromatic styrene protons 

CD2Cl2 
2 aromatic pyridine protons 
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Figure 4.20. The GPC chromatogram of P4VP-r-PS. 

The molecular weight and dispersity of the copolymer, P4VP-r-PS, was determined by DMF-GPC 

(see Figure 4.20). The GPC chromatogram confirm the successful synthesis of P4VP-r-PS. The 

target molecular weight was lower than the molecular weight determined by GPC. This difference 

in the target and the GPC determined molecular weights could have arisen from the solubility of 

the copolymer in the eluent. Polystyrene does not show extended chain conformation in DMF.  

A summary of the molecular weights, copolymer feed and target compositions, and dispersity for 

P4VP-r-PS is presented in Table 4.4.  
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Table 4.4. Summary of molecular weight, dispersity, and composition of P4VP-r-PS 

 

 

The 4VP units in the copolymer, P4VP-r-PS, were completely quaternized with 1-alkylbromides 

having varying number of carbons on the alkyl group, ranging from 2 - 8. Characterization of the 

resulting P4VP-r-PS_CnBr by FTIR-ATR confirm the complete disappearance of the C=N 

aromatic ring stretching vibration at 1414 cm-1 and the appearance of the pyridinium vibration at 

1640 cm-1.36–38 The FTIR spectra confirming the complete quaternization of P4VP-r-PS by 1-

alkybromides is presented in Figure 4.21a. 

The 4VP units in P4VP-r-PS, were completely quaternized by 1-alkylIodides with varying number 

of carbons in the alkyl group, ranging from 1 - 6. Characterization of the resultant sample series, 

P4VP-r-PI_CnBr, by FTIR-ATR confirmed the complete disappearance of the C=N aromatic ring 

stretching vibration at 1414 cm-1  and the appearance of the pyridinium vibration at 1640 cm-1.36–

38 The FTIR spectra confirming the complete quaternization of P4VP-r-PS by 1-alkyIodides is 

presented in Figure 4.21b.  

 

  Feed ratio 

(4VP:isoprene:styrene) 

NMR ratio 

 (4VP:isoprene:styrene) 

Target 

Mn(Kg/mol) 

GPC Mn 

(Kg/mol) 

Ɖ 

P4VP-r-PS 2:0:3 2:0:3 190 100 1.2 
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Figure 4.21. The FTIR spectra for a) P4VP-r-PS_CnBr and b) P4VP-r-PS_CnI series. 

On completely replacing the isoprene content by styrene, P4VP-r-PS, the interplay between the 

backbone-backbone morphology and ionomer morphologies were probed by WAXS (see Figure 

4.22). The WAXS spectra of the P4VP-r-PS_CnBr series show the VDW peak at high Q values. 

Upon quaternization, the VDW peak shifts to higher Q values (smaller dimensions) in comparison 

to the pristine P4VP-r-PS. Similar trends have been observed in P4VP_CnBr, P4VP-r-PI_CnBr, 

P4VP-r-PI-r-PS_CnBr. Next to the VDW peak, for samples P4VP-r-PS_C3Br to P4VP-r-

PS_C8Br is the LVDW peak that correlates to 𝑑𝐵 of P4VP-r-PS_CnBr (n = 2 – 8) and an ionomer 

peak for P4VP-r-PS_C2Br.  
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Figure 4.22. WAXS spectra of P4VP-r-PS_CnBr series.  

Unlike the P4VP-r-PI_CnBr and P4VP-r-PS-r-PS_CnBr series, the P4VP-r-PS_CnBr series has 

two morphology regimes. The first regime, a coexistence regime, can be observed in P4VP-r-PS. 

In this regime, a broad ionomer peak and an emerging LDVW peak can be observed on the WAXS 

spectra. The measured value of 𝑑𝐵, for coexistence, 11.0 Å, is slightly lower than that predicted 

by the model, 12.0 Å. In the second regime, P4VP-r-PS_C3Br to P4VP-r-PS_C8Br (𝑑𝐵 = 12.7 – 

21 Å), 𝑑𝐵 > 𝑑𝐿 .  Consequently, backbone-backbone spacing morphology is dominant. By 

completely replacing the isoprene comonomer (P4VP-r-PI-r-PS_CnBr series) with styrene (P4VP-

r-PS_CnBr series), backbone-backbone spacing morphology can be observed even at P4VP-r-

PS_C2Br next to the VDW peak. This further confirms that the onset of a morphology regime 

depends not just on the side-chain sterics but the comonomer type (see Figure 4.23). By increasing 
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the concentration of styrene across the series, the polymer becomes dominated by backbone-

backbone morphology. This finding shows that changing the comonomer type or side-chain length 

can be used to transition from one morphology regime to another. 

 

 

 

 

 

 

Figure 4.23. Summary of the different morphological regimes across the studied series with 

increasing styrene content. 

While according to equation (4.3), the coexistence regime for P4VP-r-PI_CnBr, P4VP-r-PI-r-

PS_CnBr, and P4VP-r-PS_CnBr (since the matrix in all these series have similar dielectric 

constants) is predicted to exist when 𝑑𝐵 ~ 12 Å. However, coexistence regimes were observed at 

11 Å for P4VP-r-PS_CnBr series, 12.5 Å for P4VP-r-PI-r-PS_CnBr_CnBr series, and 14.5 Å 

P4VP-r-PI_CnBr. Although the “In-Line” Dipole Model is a simplification of the interplay 

between dipoles and pendant side-chain sterics, nevertheless, the 𝑑𝐿 predicted by this model can 

be used to estimate the approximate onset/end of a morphology regime. This model can also be 

used to predict the effect of the concentration of 4VP comonomer on the random copolymer 

morphology. Random copolymers, for example P4VP-r-PI, with high 4VP mole fraction have 

longer backbone-backbone spacing for a given number of carbon on the pendant side-chain in 
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comparison to random copolymers with low 4VP content. Consequently, in P4VP-r-PI_CnBr with 

higher 4VP mole fraction, the dominance of the backbone-backbone over ionomer cluster 

morphology will commence at a relatively shorter pendant side-chain in comparison to a P4VP-r-

PI_CnBr with low 4VP mole fraction.  
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Figure 4.24. The WAXS spectra of the P4VP-r-PS_CnI series. 

The scattering profiles of the P4VP-r-PS_CnI series are presented in Figure 4.23. The ubiquitous 

VDW peak can be observed in all polymer samples at Q values. The VDW spacing remained 

unchanged for both quaternized and unquaternized P4VP-r-PS. The same trend was observed in 

P4VP-r-PI and P4VP-r-PI-r-PS upon quaternization with 1-alkyliodides. This is unlike P4VP-r-
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PS_CnBr that show a change in the VDW spacing between the quaternized and unquaternized 

samples. 

The scattering profiles of P4VP-r-PS_C3I and P4VP-r-PS_C6I show an LVDW peak at lower Q 

values. This peak correlate to the backbone-backbone spacing in comb-shaped polymers. The 

backbone-backbone spacing dimension of P4VP-r-PS_C3I was similar to the dimension of P4VP-

r-PS_C3Br. However, the dimension of P4VP-r-PS_C6I was slightly smaller than the dimension 

of P4VP-r-PS_C6Br. The same trend has been observed when comparing the backbone-backbone 

spacing between P4VP-r-PI_C6I and P4VP-r-PI_C6Br. This change in backbone-backbone 

spacing dimension at equivalent number of carbons on the pendant side-chains results from the 

stronger dipole-dipole interaction in charged comb-shaped polymers with iodide counter ions in 

comparison to the dipole-dipole interaction in charged comb-shaped polymers with bromide 

counter ions.  

An ionomer peak can be observed in the WAXS spectra of P4VP-r-PI_C1I at larger Q values. This 

peak correlate to the spacing between clusters in an ionomer cluster morphology. However, unlike 

the P4VP-r-PI_C2I and P4VP-r-PI-r-PS_C2I that show ionomer peak, P4VP-r-PS_C2I show no 

ionomer peak but a plateau. This suggests that there is no short-range ordering in P4VP-r-PS_C2I. 

The same featureless peak was observed in P4VP-r-PI-r-PS_C3I. Where a coexistence of both 

morphologies is observed in P4VP-r-PI-r-PS_CnBr and P4VP-r-PS_CnBr series a complete 

elimination of both morphologies is observed in their iodide counterpart.  

The In-Line Dipole Model predicts a larger limiting length for the P4VP-r-PS_CnI series due to 

the large dipole-dipole moment of alkylpyridinium iodide. Thus, according to this model, the onset 

of the backbone-backbone morphology will be delayed to a longer pendant side-chain in P4VP-r-
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PS_CnI series in comparison to P4VP-r-PS_CnBr series. An evaluation of the X-ray scattering 

spectra of P4VP-r-PS_C2I and P4VP-r-PS_C2Br seem to confirm this prediction. The WAXS 

spectra of P4VP-r-PS_C2Br show an LVDW peak suggesting the onset of backbone-backbone 

morphology while the WAXS P4VP-r-PS_C2I show no LVDW peak. Although the large size of 

the iodide counter ion suggests the corresponding large dipole moment will facilitate the formation 

of ionomer cluster morphology, however, scattering data show that iodide counter ion tend to 

suppress the formation of backbone-backbone morphology and not necessarily facilitate the 

formation of ionomer morphology.  

Interestingly though, the comonomer type had little to do with the dimension between backbones 

or dipole clusters. A tabular summary of observed characteristic spacing (cluster-cluster and 

backbone-backbone spacing) against number of carbons on pendant side-chains for all the studied 

series is presented in Table 4.4. As discussed already, there is a variation of both cluster-cluster 

and backbone-backbone spacing dimensions with number of carbons on the pendant side-chain in 

all the series studied. However, there was minimal variation in any characteristic spacing (cluster-

cluster and backbone-backbone spacing) across different series for a given number of carbons on 

the pendant side-chain. While the comonomer type may favor dipole clustering to backbone-

backbone spacing for a certain number of carbon and vice-versa, it does not necessarily dictate the 

characteristic dimensions associated with each type of short-range order. 
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Table 4.5. Summary of the characteristic dimensions of the morphologies determined from WAXS 

in the studied series. 

CnBr P4VP 

dB(Å) 

P4VP-r-PI P4VP-r-PI-r-PS P4VP-r-PS 

dI(Å) dB(Å) dI(Å) dB(Å) dI(Å) dB(Å) 

C2Br - 36.1  36.5  37 11.0 

C3Br 15 42.5 - 43.1 12.5 - 12.7 

C4Br 17 - 14.5 - 14.5 - 15.0 

C5Br 19 - 16.6 - 17 - 16.5 

C6Br 21 - 18.8 - 18.4 - 18.4 

C7Br 23 - - - - - - 

C8Br 24 - 21.0 - 21.5 - 20.9 

C9Br 27 - - - 

C10Br 29 - - - 

C11Br 30 - - - 

C12Br 31 - - - 

C1I - 33.9 - 32.9 - 31.3 - 

C2I - 36.9 - 36.8 - - 
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C3I - 41.9 - - - 13.2 

C6I - - 17.6 - 17.8 - 17.6 

C12I - - 26.7 - - 

 

4.4 Conclusion 

In charged, random, comb-shaped copolymers and terpolymers, both ionomer and backbone-

backbone morphologies can be observed. The backbone-backbone spacing dimension increases 

with increasing number of carbons on the pendant side-chain. The dimensions corresponding to 

the backbone-backbone or cluster-cluster spacing are similar. However, the backbone-backbone 

spacing and cluster-cluster spacing are characteristic of two distinct morphologies. In principle, 

the short-range ordering in backbone-backbone morphology and ionomer cluster morphology have 

different origins. While the former is fostered by sterics between pendant side-chains on the 

polymer backbones, the latter is facilitated by electrostatic attraction between dipoles on the 

backbone of the polymer. Caution is advised when evaluating X-ray scattering data to avoid 

attributing one feature for the other. The “In-Line” Dipole Model predicts a stratification of 

morphology regimes by defining a limiting length,  𝑑𝐿, which balances the attractive dipole-dipole 

energy with the thermal energy. Since the dipoles are situated on the polymer backbones, the 

backbone-backbone spacing 𝑑𝐵 is the spacing between dipoles. When 𝑑𝐵 <  𝑑𝐿, ionomer cluster 

morphology is dominant. When 𝑑𝐵 >  𝑑𝐿 , backbone-backbone morphology is dominant, and 

when 𝑑𝐵~ 𝑑𝐿, a coexistence of both morphologies can be observed. Furthermore, the non-polar 

component of the random copolyelectrolytes also determines the onset of the dominance of 

backbone-backbone morphology or the end of the dominance of ionomer cluster morphology. 
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Copolymers with isoprene, having flexible backbones, for example P4VP-r-PI_CnBr series, 

facilitate the formation of ionomer cluster morphology and delay the onset of the transition to 

backbone-backbone morphology. Backbone-backbone morphology becomes dominant at P4VP-

r-PI_C5Br. Upon the introduction of styrene, for the terpolymer (P4VP-r-PI-r-PS_CnBr series), 

the backbones become relatively rigid in comparison to P4VP-r-PI_CnBr series. Backbone-

backbone morphology becomes dominant at P4VP-r-PI-r-PS_C4Br. When isoprene comonomer 

content is completely replaced with styrene, (P4VP-r-PS_CnBr series), the copolymer, having 

rigid backbones, disfavors the formation of ionomer cluster morphology. Backbone-backbone 

morphology becomes dominant at P4VP-r-PS_C3Br.  

Iodide counter ion, though not affecting the cluster-cluster dimension, affects the dimensions of 

the backbone-backbone spacing. No coexistence of ionomer and LVDW peak was observed in all 

the series with iodide counter ion. Featureless spectra were observed in the transition from ionomer 

cluster morphology to backbone-backbone morphology for P4VP-r-PI-r-PS_C3I and P4VP-r-

PS_C2I. 
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CHAPTER 5 

OPTIMIZATION OF IONIC CONDUCTIVITY THROUGH THE COEXISTENCE OF 

IONOMER CLUSTER AND BACKBONE-BACKBONE MORPHOLOGIES IN AEMs 

5.1 Introduction 

The use of fuel cells as alternative means of harvesting energy has rightfully attracted much 

research interest.1–11 Besides having higher efficiency in comparison to traditional sources of 

energy utilization like the combustion of fossil fuel, the by-product from the fuel cell redox 

reaction, when hydrogen gas is used as a fuel, is water unlike the CO2 released by the combustion 

of fossil fuel. Fuel cells show great promise for use in portable, mobile, and stationary 

applications.12,13 Polymer based fuel cells are particularly attractive because they are solid and 

flexible, and thus, can be readily made into the shape of the appliance for which they are to be 

used.  

Proton exchange membranes (PEMs), based on perfluoro sulfonic acid polymer membranes, like 

Nafion®, has been used for commercial and industrial fuel cell applications.7,14–17 However, proton 

exchange membrane fuel cells (PEMFCs) require noble metals as catalysts in their membrane 

electrode assembly for the oxidation of hydrogen gas at the anode. This increases the cost of 

PEMFCs devices and discourages their use as an alternative source of energy. To make fuel cells 

competitive with more established energy sources the cost-factor must be considered. Fuel cells 

based on Anion exchange membranes (AEMs), are noble metal-free, cost-effective alternative to 

PEMFCs. Like PEMs, they are polymer-based. But unlike PEMs, the anion is the principal 

conducting species not a proton. The diffusion rate of protons is at least twice larger than that for 

anions.3 Therefore, AEMs generally have lower conductivities in comparison to PEMs. To design 
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high ion conducting AEMs, it is generally required that anion exchange membrane have high 

concentration of charge (high ion exchange capacities (IEC.)).11 The ion exchange capacity is 

defined as the amount in moles of ions in one gram of dry membrane. Anion exchange membranes 

with high IEC generally have poor mechanical properties. This is because high IEC membranes 

swell excessively in humidified environment, which compromises their mechanical integrity.18 

To improve mechanical properties of AEMs are generally copolymerized with a hydrophobic 

monomer. Coughlin et al. copolymerized 4-vinylbenzylchloride with isoprene.4,19 The resulting 

random copolymer was quaternized with trimethylamine and crosslinked to obtain mechanically 

robust, ion conducting, anion exchange membranes. However, an inevitable consequence of this 

type of randomly copolymerized AEMs is the formation of ionomer cluster morphology.6,20 

Ionomer cluster morphology has also been observed in PEMs of random copolymers of a 

proton/cation monomer and a hydrophobic comonomer.21–24 Ionomer cluster morphology results 

from strong dipole-dipole attraction between dipoles in these random membranes. This attraction 

leads to the clustering of dipoles. Clustered dipoles in turn attract other dipoles or dipole clusters 

to form larger-sized clusters. These clusters will continue to grow until they are stabilized by the 

overall entropy of the system. The random distribution of these clusters in a hydrophobic matrix 

results in a characteristic cluster – cluster separation between 2 – 10 nm.25 This separation between 

clusters can be probed by wide-angle X-ray scattering (WAXS). To facilitate the transport of ions 

from cluster to cluster across a membrane with ionomer cluster morphology, the clusters must 

form a network of interconnected water channels. A percolated network of these water channels 

results in better conductive performance. However, the clustering of ions decreases ionic 

conductivity of ion exchange membranes. Because, the ions are clustered, their mobility from one 

cluster to another, which constitutes ion conductivity, is dependent on the separation between the 
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clusters. Smaller separation of conducting ions (counter ions) results in better conductive 

performance because the activation barrier of ions hoping from one cluster to another is decreased. 

This can be achieved by eradicating clusters. Thus, conductivity of AEMs can be improved if 

cluster free-membranes with percolated water channels.25  

From the preceding chapter, we have shown that the strength of dipole-dipole interaction in 

random anion exchange membranes can be mitigated by pendant side-chains sterics. The sterics 

between pendant side-chains on adjacent polymer backbones results in a characteristic separation 

between polymer backbones.26–28 As a result, backbone-backbone spacing morphology is formed. 

Because dipoles are situated near polymer backbones, a direct competition between the attractive 

dipole-dipole interactions and the pendant side-chain sterics results in the transition from ionomer 

cluster morphology to backbone-backbone spacing morphology with increasing number of 

carbons on the pendant side-chains. Consequently, the ionomer cluster morphology of the 

membrane can be replaced by a backbone-backbone spacing morphology with unclustered dipoles 

by controlling the number of carbons on the pendant side-chains. To obtain high conductivity, 

constructing a morphology that retains some ionomer cluster morphology with its network of water 

channels and a high proportion of unclustered dipoles is necessary. This morphology can be 

obtained by a combination of the sterics between pendant side-chains, and electrostatic attraction 

between dipoles.  

In the previous chapter, Chapter 4, we have designed and synthesized pol(4-vinylpyridine)-r-

polyisoprene polymer (P4VP-r-PI). The random copolymer was then quaternized with 1-

alkylbromides (CnBr) having varying number of carbons n = 2,3,4,5,6, and 8. In this work, we 

crosslink the pendant dienes of the polyisoprene units in P4VP-r-PI_CnBr by thiolene chemistry 

to obtain mechanically robust, water-insoluble ionic conducting membranes. The effect of 
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crosslinking on the membrane morphology was characterized by wide-angle X-ray scattering 

(WAXS) and medium-angle X-ray scattering (MAXS). The bromide conductivity determined by 

electrochemical impedance spectroscopy was correlated to the morphology of the anion exchange 

membranes. We also studied the water uptake behavior of the membranes with dynamic vapor 

sorption (DVS) and the relationships between the water uptake behavior and the morphology of 

the anion exchange membranes.  

5.2 Materials and Methods 

The monomer, 4-vinylpyridine (96%), was obtained from Alfar Aesar and passed through a basic 

alumina column. Isoprene (97%) was procured from Acros Organics and was distilled. The 

initiator, N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]nitroxide (SG1), was kindly 

provided by Arkema and used as obtained. N,N-dimethylformamide (99%) was purchased from 

Fisher Scientific. Pyridine (99%) purchased from Acros Organics was used as received.  The 

following quaternizing agents were used as obtained: bromoethane (99%) and 1-bromopropane 

(98%) (purchased from T.C.I), 1-bromopentane (purchased from Sigma-Aldrich), 1-bromobutane 

(98%), 1-bromohexane (99%), 1-bromoheptane (98%), 1-bromooctane (98%), 1-bromononane 

(99%), 1-bromodecane (98%), 1-bromoundecane (98%), and 1-bromododecane (98%)  were all 

purchased from Alfa Aesar.  

5.2.1 Synthesis of P4VP-r-PI: Random copolymer, P4VP-r-PI, was prepared as follows: 42 mg 

(0.105 mmoles) of SG1 was added to 10.5 g (0.1 moles) of 4VP and 10.2 (0.15 moles) of isoprene 

in a Schlenk flask. To the mixture was added 10 ml of pyridine as solvent. After degassing by three 

freeze-pump-thaw cycles, polymerization was performed at 120 ˚C for 48 hours. The resulting 
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viscous liquid was quenched in ice and precipitated thrice from dichloromethane in a mixture of 

hexanes and diethyl ether (1:1). The product was dried in vacuum at room temperature for 48 h. 

5.2.2 Quaternization of P4VP-r-PI: The random copolymer, P4VP-r-PI, was quaternized by 

ethylbromide, 1-propylbromide, 1-butylbromide, 1-pentylbromide, 1-hexylbromide, and 1-

octylbromide. In a typical quaternization protocol, 20 ml of a 1.0 M solution of the quaternizing 

agent in DMF was added to a solution of 300 mg of polymer in DMF at 60 °C for 10 d. At the end 

of the reaction, the solution was precipitated into diethyl ether to give a brown solid. The product, 

P4VP-r-PI_CnBr, was dried in vacuum at room temperature for 24 h. 

5.2.3 Crosslinking of P4VP-r-PI_CnBr: Based on 1H NMR data obtained for P4VP-r-PI_CnBr, 

the pendant vinyl group is assumed to be approximately 10 mol % of the isoprene component. In 

a typical crosslinking protocol, 100 mg (0.054 mmoles of vinyl group) of P4VP-r-PI_C3Br is 

dissolved in methanol. About 3.03 mg (0.0135 mmoles) of photoinitiator and 23 µL (0.11 mmoles) 

of 1,10 decanedithiol is added to the solution. The solution is stirred and then cast in the dark on 

Teflon® sheet. The dried film was then crosslinked by exposure to UV radiation. After treatment 

with UV, the resulting crosslinked anion exchange membranes, XP4VP-r-PI_CnBr, was insoluble 

in both methanol and water. 
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Scheme 5.1. Crosslinking of Quaternized P4VP-r-PI (P4VP-r-PI_CnBr). 

5.2.4 Titration of XP4VP-r-PI_CnBr: The change in IEC of the crosslinked polymers was 

characterized by Mohr’s titration. In a typical titration protocol, 70 mg of crosslinked membrane 

was dried overnight in vacuum. The membrane was then immersed in 20 ml of 0.2 M aqueous 

solution of NaNO3. After 24 hours, the solution was removed and a second 20 ml of the same 

NaNO3 with the same molarity was added to the membrane to ensure the complete exchange of 

anions. The 40 ml solution was then titrated against 0.1 M aqueous solution of AgNO3. 

Approximately 2 ml of 0.25 M aqueous solution of K2CrO4 as indicator was added to the NaNO3/ 

NaBr before titration. The IEC of XP4VP-r-PI_CnBr was calculated from the quantity of AgNO3 

that reacted during the titration.  
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5.2.5 Characterization of XP4VP-r-PI_CnBr Series 

Number average molecular weight, Mn, was determined using a gel permeation chromatography 

(GPC) in DMF at a flow rate of 1.0 mL/min using a refractive index detector on an Agilent 

Technologies 1260 Infinity system. The chemical composition P4VP-r-PI was determined using a 

Bruker 500 fourier-transform nuclear magnetic resonance (FT-NMR). Quaternized samples, 

P4VP-r-PI_CnBr, were drop cast from methanol on Teflon® sheet. Characterization was 

performed on the resulting films. PerkinElmer Spectrum 100 FTIR with a universal ATR was used 

to characterize the extent of quaternization. Film samples were mounted on the ATR crystal and 

secured by the sample holder. Crosslinking of the film was performed via ultraviolet (UV) 

radiation sourced from an Oriel Flood Exposure System Model. The instrument had a power of 

500 W and an irradiation wavelength of 365 nm. Samples were exposed to UV for 20 minutes. 

Impedance data was collected over the frequency range, 1Hz – 10 KHz by a four-electrode test 

cell connected to a BioLogic VMP3 multichannel potentiostat. The TestEquity chamber in which 

experiments were made ensured a proper control of temperature and relative humidity. 

Measurements were performed through a temperature range of 40 – 90 °C by 10 °C step and 95% 

RH. The membrane resistance was obtained from the frequency intercept of the Nyquist plot. Ionic 

conductivity was obtained by measuring the in-plane resistance of the sample. The resistance is 

then converted to conductivity using the equation 

𝜎 =
𝑑

𝑅𝑤𝑡
                                                (5.1) 

Where d is the distance between the electrodes, t is the thickness of the sample and w is the width 

of the membrane defined by the four-electrodes of the test cell.4,29  
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Wide-angle X-ray scattering (WAXS) and medium-angle X-ray scattering (MAXS) measurements 

were performed in transmission geometry on Molmex Scientific Ganesha SAXS Lab. A double 

aperture for the Cu-Kα radiation (λ = 1.54 Å), which was the X-ray source, was used. Silver 

behenate was used as the standard for the momentum transfer calibration. Data was collected for 

180 seconds. Depending on the signal-to-noise ratio, data collection could be longer. Azimuthal 

averaging of the obtained isotropic 2-D pattern was performed to obtain the intensity against wave 

vector plot. 

Scattering results are reported in Figure 5.1. The WAXS spectra show two peaks for XP4VP-r-

PI_CnBr series. The peak at lower Q values is the amorphous halo also known as the van der 

Waal’s peak. It is the van der Waal’s distance between non-bonded atoms. The  

5.3 Results and Discussion 

5.3.1 Characterization of XP4VP-r-PI_CnBr by WAXS 

Figure 5.1 show the superimposition of X-ray scattering data collected over both the WAXS 

regime (Q ranging from 0.1 – 2 Å-1) and the MAXS regime (Q ranging from 0.01 – 0.7 Å-1). While 

the WAXS spectra capture the short-range ordering and their corresponding spacing, the MAXS 

regime probes relatively longer-range ordering and their corresponding spacing. The WAXS 

spectra show a peak at higher Q values, the van der Waal’s (VDW) peak. This peak can be 

observed for all the studied samples of XP4VP-r-PI_CnBr series. The VDW peak correlates to the 

closest distance (VDW spacing) between non-bonded atoms.27 It is also referred to as the 

amorphous halo, and it is ubiquitous in amorphous polymers. The intensity of the VDW peak has 

been used to estimate the relative quantity of backbone-backbone correlations (parallelly arranged 

backbones) in a polymer.30 There was no change in the VDW spacing before, and after crosslinking 
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for a membrane with a given number of carbon on its pendant side-chain. This suggests that 

crosslinking had no effect on the VDW spacing.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Combined MAXS and WAXS scattering profiles for the XP4VP-r-PI_CnBr series. 

The WAXS spectra also show, to the left of the VDW peak (at lower Q values), a peak 

corresponding to larger spacing, the LVDW peak. This peak was observed for the crosslinked 

membranes: XP4VP-r-PI_C3Br to XP4VP-r-PI_C8Br. This peak corresponds to the backbone-

backbone spacing between two adjacent polymer backbones.26,27,31–33 The backbone-backbone 

spacing increases with increasing number of carbons on the pendant side-chains. The LVDW peak 

has been observed in the X-ray scattering spectra of other comb-shaped polymers. There were no 

0.1 1

Q(Å
-1
)

 XP4VP-r-PI

 XP4VP-r-PI_C2Br

 XP4VP-r-PI_C3Br

In
te

n
s
it
y
 (

A
.U

.)

 XP4VP-r-PI_C4Br

 XP4VP-r-PI_C5Br

 XP4VP-r-PI_C6Br

 XP4VP-r-PI_C8Br



147 

 

differences between the backbone-backbone spacing before and after crosslinking of P4VP-r-

PI_CnBr. This suggest that crosslinking between the pendant side-chains of adjacent backbones 

had minimal effect on the value of the backbone-backbone spacing. Although crosslinking did not 

change the backbone-backbone spacing, it however influenced the LVDW feature in the WAXS 

spectra of the membranes.  
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Figure 5.2. Wide-angle X-ray scattering (WAXS) a) spectra before crosslinking, b) after 

crosslinking. 

This effect can be observed in the WAXS spectra of XP4VP-r-PI_C4Br (see Figure 5.2). Before 

crosslinking, P4VP-r-PI_C4Br WAXS spectra show a broad peak (which suggests an overlap 

a) b) 
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between backbone-backbone spacing and cluster-cluster spacing peaks). After crosslinking, 

XP4VP-r-PI_C4Br WAXS spectra show a distinct, LVDW peak, with a distinct backbone-

backbone spacing. This deconvolution of an overlapping ionomer and LVDW peak may have been 

due to the introduction of hydrophobic crosslinkers which decreases the concentration of the 

overall charges in the crosslinked polymer. Consequently, increasing the spacing between ionic 

clusters. Thus, shifting the ionomer peak to lower Q values. The ratio of the LVDW to VDW, 

which correlates the quantity of parallel arranged adjacent backbones in the polymer, show that as 

the number of carbons on the pendant side-chain increases, the fraction of backbone-backbone 

correlation in the polymer increases. And like in the P4VP-r-PI_CnBr series, as the ratio of the 

LVDW to VDW increases, the ionomer cluster peak intensity decreases and then disappears.  
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 Figure 5.3. a) Characteristic spacing in XP4VP-r-PI_CnBr versus number of carbons, b) effect of 

crosslinking on relative of intensity of backbone – backbone spacing.  

a) 
b) 
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The WAXS spectra of the crosslinked membranes show an upturn at lower Q values (see Figure 

5.2). This upturn suggests a structure beyond the WAXS region. Medium Angle X-ray scattering 

was performed on XP4VP-r-PI_CnBr series to evaluate any morphological features beyond 

WAXS region. As can be seen from the MAXS spectra (see Figure 5.1), the addition of 

hydrophobic crosslinkers increases the spacing between ionic clusters due to an increase in the 

hydrophobic content of the polymer. Unlike the backbone-backbone spacing which increased with 

increasing number of carbons on the pendant side-chains; the cluster-cluster spacing increased 

with increasing number of carbons before plateauing at higher number of carbons on the pendant 

side-chains. Also, with increasing number of carbons on the pendant side-chain the cluster-cluster 

spacing of the membranes also increases.  

An excess of dithiol crosslinker (1,10 decanedithiol) was used for crosslinking of the membranes. 

The crosslinker has a high boiling point (172 °C at 0.5 mm of Hg), therefore, a substantial quantity 

of these dithiol crosslinkers remained in the quaternized polymer after the solvent (methanol) from 

which these membranes were cast has vaporized. These crosslinkers act as plasticizers. The 

plasticizing effect of these crosslinkers was evident in the tackiness of the polymer membranes 

after drying the cast membranes for three days at room temperature. This tackiness suggests that 

the polymer backbones are less rigid, and increase the propensity of the polymer membranes to 

form an ionomer cluster morphology. Thus, resulting in the formation of ionomer cluster 

morphology even when there are 6 carbons in the pendant side-chain (an expanded coexistence 

window). In Chapter 4, a comparison of the P4VP-r-PI_CnBr and P4VP-r-PI-r-PS_CnBr series, 

also showed that the coexistence window expanded with increasing flexibility of the copolymer. 

In P4VP-r-PI_CnBr, an expanded coexistence window can be observed at 3 – 4 carbons on the 
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pendant side-chain. However, the more rigid P4VP-r-PI-r-PS_CnBr series showed a coexistence 

at 3 carbons on the pendant side-chain. 

In the previous chapter, we have shown that with increasing backbone stiffness of the copolymer, 

backbone-backbone morphology becomes dominant. Even though crosslinking has been known to 

increase the Tg of crosslinked polymers, however, the plasticization by excess crosslinkers had the 

opposite effect, thereby, increasing the likelihood for the formation of ionomer cluster 

morphology. Upon irradiation by UV-A light, the membrane becomes crosslinked, thus, “setting” 

the membrane morphology. Although these crosslinkers increase the tendency for the membrane 

to form an ionomer morphology, they do not inhibit the ability of XP4VP-r-PI_CnBr to form 

backbone-backbone morphology. The coexistence regime can be observed using a combination of 

MAXS and WAXS from XP4VP-r-PI_C3Br to XP4VP-r-PI_C6Br. Thus, by chemically 

modifying the copolymer, coexistence between ionomer cluster morphology and backbone-

backbone morphology can be expanded in a random, charged, comb-shaped polymer. 

The In-Line Dipole Model defines a definite backbone-backbone spacing at which coexistence of 

ionomer cluster morphology and backbone-backbone morphology should occur. However, this 

model assumes that the backbones are stiff, thus, it more accurately predicts the coexistence point 

for polymers with stiffer backbones as observed in Chapter 4. For polymers with more flexible 

backbones or plasticized matrices, the In-Line Dipole Model can be modified to include a 

dimensionless flexibility parameter, 𝑓,  that expands the coexistence regime (see equation (5.2)).  

For rigid backbones, 𝑓 is unity. 

𝑑𝐿 = (2
𝜌1𝜌2

4𝜋𝜀𝑜𝜀𝑝𝐾𝐵𝑇𝑓
)

1
3

                       (5.2) 
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5.3.2 Water-Uptake Measurements of the Crosslinked and Uncrosslinked Membranes  
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Figure 5.4. Water uptake data for a) P4VP-r-PI_CnBr series and b) XP4VP-r-PI_CnBr series. 

Water uptake results are presented in Figure 5.4. In all cases, after crosslinking the water uptake 

decreased. However, crosslinking did not significantly affect the number of water molecules per 

a) 

b) 
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ion (λ ~7 - 10, at 95 % RH) since crosslinking decreases the concentration of charges in the 

membranes. A range of λ = 7 – 10, at ~ 95 % RH, for IECs 2.1 – 2.6 mmol/g have also been 

reported for anion exchange membranes (AEMs) with ionomer cluster morphology.6  

As can be seen in Figure 5.5, λ, also known as the degree of humidification, increased with 

increasing number of carbons on the side-chain before decreasing. In ionic membranes, λ have 

been observed to be dependent on the membrane morphology.34,35 It has been reported by Weiber 

and Jannasch that ionic clustering decreased the λ of AEMs in comparison to membranes with 

randomly distributed unclustered ions.6 Unlike isolated, clustered dipoles, which form a quasi-

phase separated morphology with the hydrophobic matrix, unclustered dipoles form a one-

phase/continuous/percolated, hydrophilic phase in the membrane. This morphological difference 

results in higher degree of humidification for the unclustered dipoles in comparison to the clustered 

dipoles. Kim et al. also reported that membranes with clusters have lower λ in comparison to 

membranes with unclustered dipoles.36  
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Figure 5.5. a) Water uptake per cation versus relative humidity, b) water uptake per cation versus 

number of carbons at 95 % relative humidity. 

On the other hand, Li et al. have reported that increasing the backbone-backbone spacing decreases 

λ of anion exchange membranes. 34,35 For membranes to take up more water molecules, the dipoles 

must be within some distance of each other. This can enable water molecules between dipoles to 

overlap and thus increase the tendency of the overlapping water molecules to take up more water 

molecules. Dipoles on the polymer backbone take up water molecules on humidification, however, 

with increasing spacing between the backbones, these dipoles become further away from each 

other. The dipoles become isolated. Thus, decreasing the λ of the dipoles. See Figure 5.5. 

a) b) 
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Figure 5.6. Schematic showing overlapping water molecules of dipoles on polymer backbones at 

shorter pendant side-chains. 

Since clustering of ions decreases with increasing length of pendant side-chains, the degree of 

ionic clustering decreases from XP4VP-r-PI_C2Br (which shows no backbone-backbone 

morphology) to XP4VP-r-PI_C6Br (which show a coexistence of ionomer cluster and backbone-

backbone morphology). Consequently, λ increased from XP4VP-r-PI_C2Br to XP4VP-r-

PI_C5Br. However, the introduction of longer pendant side-chains (XP4VP-r-PI_C6Br), although 

decreasing the tendency for ions to cluster, increases the spacing between dipoles. This increase 

in backbone-backbone spacing, according to Li et al. would decrease the λ of the membrane. This 

can be seen in the decrease in λ from XP4VP-r-PI_C5Br to XP4VP-r-PI_C6Br. See Figure 5.5b. 

Overall, λ increases with decreasing quantity of ionomer clusters in ionomer cluster morphology, 

but also decreases with increasing backbone-backbone spacing. Given that ionomer cluster 

morphology decreases with increasing backbone-backbone spacing, it follows that for XP4VP-r-
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PI_CnBr series, an increase in λ with decreasing ionomer cluster morphology will peak followed 

by a decrease in λ with increasing backbone-backbone spacing.  

5.3.2 Electrochemical Impedance Spectroscopy Measurements of XP4VP-r-PI_CnBr  

Conductivity measurements of the XP4VP-r-PI_CnBr series were performed in the Br- form rather 

than the OH- form to decrease the effect of degradation on the structure-conductivity correlation 

of the series. 37,38 
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Figure 5.7. a) Conductivity of XP4VP-r-PI_CnBr series, b) conductivity data for XP4VP-r-

PI_CnBr series at 80 °C at 65% and 95% RH. 

The titrated IEC. of XP4VP-r-PI_CnBr series is approximately 2.0 mmol/g. Thus, significant 

changes in the conductivity of the XP4VP-r-PI_CnBr series is posited to arise from subtle 

differences in morphology due to the variation in the length of the pendant side-chain. From the 

a) 
b) 
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conductivity results (see Figure 5.7), samples with 2 – 3 carbons on the pendant side-chains had 

better conductivity than those with 5 – 6 carbons. Membranes with ionic clusters have water 

channels connecting these isolated clusters (dumbbell structure of clusters and water channel). 

These water channels act as conduits for ion transport, and facilitate the mobility of counter ions 

in ion exchange membranes.6,20,25 However, the clustering of ions decreases the ionic conductivity 

of the counter ions. Firstly, geometric constraints limit the quantity of charges that can pass through 

the water channels from one cluster to another cluster. Secondly, clustering separates counter ions. 

The spacing between randomly distributed unclustered ions in a membrane is less than the spacing 

between randomly distributed ionic clusters in a membrane at the same ionic concentration. 

Conductivity of counter ions depends on the hopping of counter ions from one cluster to another 

or from one unclustered dipole to another.25,39,40 The higher the cluster-cluster distance the more 

the energy barrier to the movement of counter ions from one cluster to another cluster.25 

Unclustered dipoles having smaller spacing result in a low energy barrier. This leads to higher 

ionic conductivity. Finally, conductivity is dependent on the concentration of mobile counter ions 

and not just concentration of counter ions. The clustering of ions decreases the concentration of 

mobile counter ions in the media. Clustered ions are arranged in a lattice-like substructure within 

a randomly distributed cluster-matrix superstructure. The ions in the clusters are bound together 

by Coulomb forces. The lattice energy of a cluster, which is approximately the Bonne – Lande 

lattice energy, is proportional to the coordination number of the ions (Madulung constant) and the 

number of ions in the cluster. Consequently, it will take a high degree of humidification and an 

elevated temperature to dissociate the ions in a cluster in comparison to unclustered dipoles. This 

is corroborated by SANS, and SAXS experiments which show the presence of ionic clusters even 

in highly humidified membranes.25,36 Besides, from the water uptake measurement for XP4VP-r-
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PI_CnBr series, the λ for ionic clusters is less than that for unclustered dipoles. This further 

suggests that the concentration of free counter ions in unclustered dipoles randomly distributed in 

a membrane would be higher than that in ionic clusters.  

While ionic clusters provide water channels that improve conductivity, the clusters themselves are 

a barrier to improved conductivity. Elimination of clusters would therefore decrease the energy 

barrier impeding transport of counter ions from one point to another across the polymer membrane. 

Cluster-free membranes would have increased ionic conductivity.  

 

Figure 5.8. A scheme showing the different transport modes in the XP4VP-r-PI_CnBr series.  

According to Balsara and Beers, conductivity in polyelectrolytes can be improved by eradicating 

ionic clusters.25 Jannasch and Weiber have reported that the elimination of clusters increased the 

conductivity in anion exchange membranes with high IECs.6 Hickner and Chen also reported that 

decreasing the degree of order in random quaternary ammonium functionalized poly- (arylene 

ether ketone)s increased conductivity.20 
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Table 5.1. Summary of theoretical and titrated IEC of the polymer membranes 

 

The competition between backbone-backbone morphology and ionic clustering results in the 

decrease in the concentration of ionic clusters when pendant side-chains with higher number of 

carbons is introduced. This decrease in the degree of clustering may have resulted in the higher 

conductivity of XP4VP-r-PI_C3Br in comparison to XP4VP-r-PI_C2Br. However, while side-

chains tend to disfavor ionic cluster formation, the longer pendant side-chains introduces another 

kind of counter ion separation. Replacing one form of Br- - Br- separation (cluster-cluster 

separation) by another (backbone-backbone spacing) could explain the decrease in conductivity 

from XP4VP-r-PI_C3Br to XP4VP-r-PI_C6Br. Cruz et al. have shown that the conductivity of 

ionic membranes decreases with increasing backbone-backbone spacing of poly (1-n-alkyl-3-

vinylimidazoliumbromide).28 Furthermore, the large cluster-cluster spacing in XP4VP-r-PI_C5Br  

and XP4VP-r-PI_C6Br may have further contributed to the decrease in its conductivity in 

 
IECTH (mmol/g) IECTIT (mmol/g) 

 

λU 

 

λX 

XP4VP-r-PI_C8Br 1.95 1.96±0.03 - - 

XP4VP-r-PI _C6Br 2.07 2.03±0.03 5.7±𝟎. 𝟎𝟓 6.7±𝟎. 𝟎𝟒 

XP4VP-r-PI_C5Br 2.13 2.10±0.03 - - 

XP4VP-r-PI_C4Br 2.15 2.04±0.02 7.6±𝟎. 𝟐𝟎 7.7±𝟎. 𝟓𝟎 

XP4VP-r-PI_C3Br 2.25 2.10±0.04 6.6±𝟎. 𝟒𝟎 7.7±𝟎. 𝟎𝟔 

XP4VP-r-PI_C2Br 2.34 1.96±0.01 7.3±𝟎. 𝟏𝟎 6.1±𝟎. 𝟎𝟐 

XP4VP-r-PI - - - - 

IECTH the IEC from the NMR, IECTIT is the titrated IEC, λU and λX are λ for the uncrosslinked and crosslinked 

respectively measured at 60 °C.   
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comparison to XP4VP-r-PI_C3Br. Larger cluster-cluster spacing in ionomer clusters have been 

known to hamper conductivity.4  

In comparison to other Br- conductivity measurements found in the literature, XP4VP-r-PI_CnBr 

series had high Br- conductivity.6,19,20 Conductivity of XP4VP-r-PI_C3Br from 40 – 80 °C (60 – 

85 mS/cm) was about twice the conductivity values reported by both the Jannasch (20 – 44 mS/cm) 

and Hickner (20 – 59 mS/cm) groups even though those membranes had IECs > 2.5 mmol/g with 

similar λ values.6,20 The improved conductivity of XP4VP-r-PI_CnBr series as a whole might be 

due to the synergistic effect of ionic clustering and backbone-backbone spacing.  While the former 

preserves water channels, the later ensures that more unclustered dipoles are more homogeneously 

distributed in the matrix and readily available for conductivity. The exceptionally high 

conductivity of XP4VP-r-PI_C3Br may be due to this phenomenon. 

5.4 Conclusion 

Mechanically robust, water insoluble anion exchange membranes were prepared. Morphological 

characterizations of these membranes show ionomer cluster morphology for XP4VP-r-PI_C2Br, 

and coexistence of ionomer cluster and backbone-backbone morphologies for XP4VP-r-PI_C3Br 

to XP4VP-r-PI_C6Br and a backbone-backbone morphology for XP4VP-r-PI_C8Br. The X-ray 

scattering spectra for the XP4VP-r-PI_CnBr series show that the concentration of backbone-

backbone correlations increases with increasing number of carbons on the pendant side-chain. The 

larger window of coexistence may have resulted from the plasticizing effect the 1,10 decanedithiol 

had on the polyisoprene matrix. Dynamic vapor sorption measurements show that with increasing 

quantity of parallel arranged backbones the degree of humidification, λ, increases (XP4VP-r-

PI_C3Br to XP4VP-r-PI_C5Br). However, for membranes with high number of carbons on the 
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pendant side-chains (XP4VP-r-PI_C6Br), although they had comparatively higher concentration 

of periodically ordered backbones, the large backbone-backbone spacing between these parallel 

arranged backbones decrease the water uptake of the membrane. The bromide conductivity of the 

XP4VP-r-PI_CnBr series were exceptionally high. Conductivity increased with increasing number 

of carbons on the pendant side-chain. This is because with increasing number of carbons on the 

pendant side-chains, the concentration of unclustered dipoles increases. However, for membranes 

with high number of carbons on the pendant side-chain (XP4VP-r-PI_C6Br), the cluster-cluster 

spacing between the bromide counter ions is replaced with backbone-backbone spacing. Resulting 

in lower ionic conductivity.   
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CHAPTER 6 

ELECTROSTATIC FORCES-INDUCED SEMI-CRYSTALLINITY IN QUATERNIZED 

HOMOPOLYMERS AND BLOCK COPOLYMERS OF P4VP 

6.1 Introduction 

The obvious correlation between the structure of polymer membranes and their properties have 

been an attractive part of polymer science.1–14 The inter-play of intermolecular forces can be used 

to design new polymer structures with interesting property correlations.15 However, understanding 

intermolecular forces that produce such structures in polymers has been scarce in the literature. In 

this work, utilizing electrostatic attractive and steric forces at the intermolecular level, we were 

able to design a new class of atactic semi-crystalline polyelectrolytes whose structure can be 

precisely controlled by the chemistry of post-polymerization modification of the polymer.  

The formation of crystalline features in polymers is dependent on the ease of chain packing. 

Accordingly, vinyl polymers with stereo-regular pendant groups (isotactic and syndiotactic) are 

semi-crystalline. Atactic polymers do not form crystalline domains because of the stereo-

irregularity of the pendant group arrangement on the polymer backbone. Nevertheless, atactic 

polyvinylalcohol (PVOH) is an exception. Synthesized from the hydrolysis of polyvinylacetate 

(PVA), the semi-crystalline nature of PVOH stems from the hydrogen bonding between the 

pendant hydroxyl groups.16–18  However, similar semi-crystalline features has not been reported in 

other atactic polymers, not even those with hydroxyl groups.19–27  

Hydrogen bonding is a type of dipole-dipole interaction.1,28,29 Thus, in theory, strong dipole-dipole 

interaction between pendant groups in an atactic vinyl polymer backbone could give rise to a semi-

crystalline structure. Charged species in random vinyl polyelectrolytes interact by dipole-dipole 
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interactions. Dipole-dipole interactions in these materials facilitates the clustering of dipoles. This 

results in a distribution of dipole clusters in the polymer matrix. 12,30–34 However, to the best of our 

knowledge, there has been no report suggesting that dipole-dipole interactions have produced a 

semi-crystalline feature in solid polyelectrolytes. As a result, most solid polyelectrolytes are 

amorphous. The lack of semi-crystalline character in solid polyelectrolytes may be because the 

dipole-dipole attraction needed to produce semi-crystalline features can be decreased by steric 

repulsion of pendant groups between polymer backbones. This effect can be observed in random 

polyelectrolytes with pendant side-chains. Longer side-chains will increase the spacing between 

polymer backbones, thus, diametrically reducing the strength of the interaction of dipoles situated 

on the backbones. This can prevent the formation of ionomer morphology.   

To study the direct effect of side-chain length on dipole-dipole interaction, poly(4-vinylpyridine), 

due to its availability and ease of quaternization, was chosen as the platform polymer. Upon 

quaternization, both pendant side-chain and dipoles can be introduced into the polymer. 

In Chapter 4, poly(4-vinylpyridine), P4VP, was prepared by the polymerization of 4-vinylpyridine, 

4VP, by Nitroxide Mediated Polymerization, at 110 ˚C, for 3 hours. Characterization of the 

resultant polymer, P4VP, by 1H NMR and DMF GPC showed that the polymer had a molecular 

weight of 33000 g/mol and a Ð of 1.5. The subsequent product, poly(4-vinylpyridine), P4VP, was 

successfully quaternized in DMF by n-alkylbromides (CnBr) (where n is the number of carbons 

on the alkylbromides). The quaternizing agents ethylbromide, 1-propylbromide, 1-butylbromide, 

1-pentylbromide, 1-hexylbromide, 1-heptylbromide, 1-octylbromide, 1-nonylbromide, 1-

decylbromide, 1-undecylbromide, and 1-dodecylbromide (that is n values ranging from 2 – 12). 

Characterization of the quaternized P4VP by X-ray scattering (WAXS) show backbone-backbone 

spacing for all quaternized polymers except the ethylbromide quaternized sample which 
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surprisingly showed semi-crystalline peaks. The long-range ordering in this polymer was 

attributed to the short side-chain which exposes the adjacent backbones to strong dipole-dipole 

interaction. It is more particularly interesting because the pristine homopolymer is atactic, 

therefore, this polymer P4VP_C2Br is also atactic. This is analogous to the semi-crystallinity in 

PVOH. This interesting result spurred us to quaternize P4VP homopolymer with methyl and ethyl 

iodides. We hypothesized that P4VP quaternized by these alkyl iodides would show similar semi-

crystallinity to P4VP_C2Br due to the short pendant side-chains of the 1-alkyliodide quaternized 

samples.  

6.1.1 Quaternization of P4VP by MethylIodide and EthylIodide 

In a typical quaternization protocol, in a 50 ml centrifuge vial equipped with a stirrer, 300 mg of 

P4VP was dissolved in 15 ml of DMF. To the solution was added 4 molar equivalent amount of 

1.0 M ethyliodide in DMF at 60 ˚C. There was an initial precipitation of the polymer in the vial 

after 2 hours. About 3 ml of methanol was then added to the mixture to give a clear solution. After 

10 days, the solution was then precipitated in diethylether. The product, P4VP_C2Br, was dried in 

vacuum at room temperature for 2 days.  
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6.2 Results and Discussion 

6.2.1 Characterization of Quaternized Samples by FTIR 

The quaternized polymers, P4VP_C2Br to P4VP_C12Br was characterized by ATR-FTIR by 

monitoring the disappearance of the C=N aromatic pyridine vibration at 1414 cm-1 and the 

appearance of 1640 cm-1 associated with the pyridinium vibration.35–41See Figure 6.1. 
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Figure 6.1. Characterization of P4VP, P4VP_C1I, P4VP_C2I, P4VP_C2Br, and P4VP_C3Br by 

FTIR confirming complete quaternization. 

The WAXS spectra show two peaks for P4VP_C3Br (see Figure 6.2). The peak at larger Q values 

is the van der Waal’s (VDW) distance between non-bonded atoms. This feature size, also known 
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as the amorphous halo, is characteristic of all amorphous polymers.9,34 On quaternization the VDW 

shifts to lower Q values suggesting compact packing of the polymer chains.42 The VDW distance 

increased with increasing number of carbons on the pendant side-chains. This suggests less 

compact packing with increasing length of the side-chain. Another peak larger than VDW peak, 

the LVDW peak, can be observed at lower Q values. This peak represents the backbone-backbone 

spacing between adjacent polymer chains. The backbone-backbone spacing increases linearly with 

increasing number of carbons on the pendant side-chains and has been observed in different comb-

shaped polymer series.12,33,43–46Also see Chapter 4. This backbone-backbone morphology suggests 

that for P4VP_C3Br to P4VP_C12Br regime the sterics between pendant side-chain is dominant. 

The dipoles in the quaternized samples are situated near the backbone of the polymers. The dipole 

attractive potential,  𝐹𝐷−𝐴 , is dependent on the separation between adjacent dipoles. With 

increasing number of carbons on the pendant side-chain, the sterics between side-chains results in 

increasing spacing between dipoles on adjacent backbones. The strength of 𝐹𝐷−𝐴 between dipoles 

on adjacent polymer backbones decreases. Thus, the dominance of the backbone-backbone 

morphology is dependent on the sterics of the pendant side-chains. 
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Figure 6.2. The WAXS spectra of P4VP, P4VP_C1I, P4VP_C2I, P4VP_C2Br, and P4VP_C3Br. 

Also evident in Figure 6.2 is the semi-crystalline peaks in P4VP_C1I, P4VP_C2I and P4VP_C2Br. 

For samples with 2 or less carbons on the pendant side-chain (P4VP_C1I, P4VP_C2I and 

P4VP_C2Br), there is strong dipole-dipole attraction between the dipoles on adjacent polymer 

backbones. This interaction between polymer backbones facilitates the alignment of polymer 

chains, thereby, resulting in a semi-crystalline structure thus confirming our hypothesis. 

Furthermore, the ubiquitous amorphous halo peak disappears corroborating the semi-crystalline 

morphology of these samples.   

The peaks in the WAXS spectra for the ethyl quaternized samples appear to be similar. These 

peaks are however different from the methyl quaternized P4VP. This suggests that the type of unit 
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structure is strongly dependent on the number of carbons on the pendant side-chains and less on 

the type of counterions. Some of the peaks in the WAXS spectra of P4VP_C2Br appear to be split. 

This suggests that there might be two or more unit cells in the polymer crystal structure. The semi-

crystalline polymer may be polymorphic; being of similar structure but having different lattice 

parameters. The full indexing of the WAXS reflections of P4VP_C1I, P4VP_C2I, and P4VP_C2Br 

remains an open question for future investigators. 
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Figure 6.3. WAXS spectra of P4VP_C2Br on heating (left) and WAXS spectra of P4VP_C2Br on 

reheating (right). 

The response of the semi-crystalline structure of P4VP_C2Br to heating was investigated. The 

heating, cooling, and reheating scattering data are presented in Figure 6.3. On heating from 25 – 
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75 °C, the WAXS spectra showed no noticeable changes in the relative peak intensities. However, 

from 100 – 140 °C, there were some changes in peak intensities. Peaks at 1.474 and 1.507 Å-1, at 

100 °C, merged into a single peak at 140 °C. There was also a decrease in the intensity of the peak 

at 1.955 Å-1and a corresponding increase in 1.206 Å-1 relative to 1.804 Å-1. Furthermore, the 

intensity of the broad amorphous halo background relative to the Kapton peak increased with 

increasing temperature. At 160 °C, all traces of semi-crystallinity disappear, and the scattering 

result shows an amorphous halo. The sample, P4VP_C2Br, has melted.  

On cooling rapidly to 100 °C, the crystalline peaks reappear. In comparison to the peaks at 100 °C 

before melting, the peaks at 0.871 and 0.899 Å-1 were conspicuously absent. The intensity of peaks 

1.210, 1.719, and 1.785 Å-1 decreased while that of 2.120 Å-1 increased relative to 1.253 Å-1. The 

sample was then heated isothermally for 30 minutes at 100 °C. The structure of the sample after 

this treatment was similar to its pre-melt structure. This behavior of polymers having different 

diffraction peaks with respect to different recrystallization conditions, like temperature, is typical 

for polymorphous polymers.47 The WAXS spectrum at 140 °C before and after melting have the 

same peak positions on the Q-axis but different intensities relative to one another. The heating and 

reheating experiments show that the melting-solidification transitions of P4VP_C2Br, like other 

semi-crystalline polymers, is reversible.  

A characteristic feature of semi-crystalline polymers is their melting and recrystallization 

temperatures. The results obtained by DSC, (see Figure 6.4) show that P4VP_C1I, P4VP _C2Br 

and P4VP _C2I all have melting and recrystallization temperatures while P4VP, P4VP_C3Br show 

no such thermal profile. This confirms that with increasing number of carbons on the pendant side-

chain of the polymer, the semi-crystalline character of the series disappears and the quaternized 

polymers revert to the amorphous structure typical of atactic backbones. 
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Figure 6.4. The DSC spectra of P4VP, P4VP_C1I, P4VP_C2I, P4VP_C2Br, and P4VP_C3Br 

A tabular summary of the thermal characterization of P4VP, P4VP_C1I, P4VP_C2I, P4VP_C2Br, 

and P4VP_C3Br by differential scanning calorimetry (DSC) is presented in Table 6.1. The 

samples, P4VP_C1I and P4VP_C2Br, show evidence of polymorphism. Both samples had two 

melting endotherms, while only P4VP_C1I show two recrystallization exotherms. The melting 

endotherm of P4VP_C2I was about the same as P4VP_C2Br, 130 °C. This may be due to the 

similarity in their microstructure as observed by WAXS. The higher melting point of the methyl 

quaternized P4VP in comparison to the ethyl quaternized P4VP may be due to the effect of side-
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chain length on the strength of the dipole – dipole attraction. Longer pendant side-chains results 

in weaker dipole-dipole interaction and possibly lower melting temperature.  

Table 6.1. Summary of the thermal properties of P4VP, P4VP_C1I, P4VP_C2I, P4VP_C2Br and 

P4VP_C3Br. 

 

 

 

 

 

These atactic semi-crystalline polymers, however, had lower melting temperature in comparison 

to atactic semi-crystalline PVOH (~200 °C).16,48 

 

 

 

 

 

 

 

 
Tg(°C) Tm1(°C) Tm2(°C) Tc2(°C) Tc1(°C) 

P4VP_C3Br 153 - - - - 

P4VP_C2Br - 114 130 108 - 

P4VP_C2I 43 - 130 120 - 

P4VP_CI - 142 57 120 51 

P4VP 145 - - - - 



176 

 

 

 

 

 

 

 

 

Figure 6.5. Polarized optical microscopy image of P4VP_C2Br. 

Optical microscopy analysis was performed on sample to observe the effect of crystallinity on the 

microstructure of these semi-crystalline polyelectrolytes. The samples, P4VP_C1I, P4VP_C2I, 

and P4VP_C2Br, were heated to temperatures just above their melting points and allowed to 

solidify at room temperature. The results for the optical microscopy imaging of P4VP_C1I, 

P4VP_C2I, and P4VP_C2Br are presented in Figure 6.5, Figure 6.6 and Figure 6.7 respectively. 

Optical images show that like PVOH and other semi-crystalline polymers, P4VP_C2Br and 

P4VP_C2I formed spherulites on recrystallization.49–51 The spherulite image obtained for 

P4VP_C2Br appeared blurry. However, that of P4VP_C2I show crisp microstructural features. 

The samples, P4VP_C2Br and P4VP_C2I have spherulites of similar orders of magnitude with an 

average size of 700 ± 200 μm.  
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Figure 6.6. Polarized optical microscopy image of P4VP_C2I 

The POM image of the methyl quaternized sample, P4VP_C1I, shows a long threadlike core 

feature (shish) with numerous short threadlike features branching out of the core (kebab). This 

morphology, the so-called shish-kebab structure, has been observed in semi-crystalline 

polymers.52–54 However, shish-kebab feature, are commonly obtained by shearing molten 

polymers, and have rarely been observed in quiescent melts.55–59 Given that shish-kebab 

morphology occurs only after coil-stretch transition in semi-crystalline polymers,60–64 the shish-

kebab structure of P4VP_C1I suggests that the polymer chains were in a stretched rather than 

coiled configuration in the melt. This is rather interesting, because charged polymers are rod-like 

(stretched) in dilute – semi-dilute regions but follow Gaussian statistics in the bulk.65–67 The shish-
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kebab structure of P4VP_C1I suggests that it has a rod-like/stretched chain conformation even in 

the bulk.  

 

 

 

 

 

 

 

 

 

Figure 6.7. Polarized optical microscopy image of P4VP_C1I 

The shish–kebab structure of P4VP_C1I show a shish–shish spacing of about 50 – 150 μm. There 

were first (parent) and second (daughter)-generation kebab structures with different periodicities. 

The first generation kebabs grow out of the shish structure, while the second generation kebab 

structures grow out of the first generation kebab.54 The first generation kebab structures, aligned 

at about 90° from the shish, have periodicities of about 10 – 20 μm. The second-generation kebab 

structures, aligned at about 90° from the first-generation kebab, have periodicities of about 2 – 5 

μm. However in some cases, the kebabs were aligned at steeper angles from their shish or parent 
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kebab. Finally, the microstructure of P4VP_C1I also shows the formation of some dendritic 

features.  

6.3 Semi-Crystallinity in P4VP_C2Br Block Copolymer 

In Chapter 3, block copolymers of poly(4-vinylpyridine), P4VP, and polystyrene, PS, were 

synthesized and quaternized by 1-alkylhalides. Characterization of the quaternized block 

copolymer by X-ray scattering show evidence of phase separation of the ionic and non-ionic block 

into ordered structures. Scattering measurements of the same block copolymers at high Q values 

also show that the backbone-backbone morphology, a consequence of the pendant side-chain 

sterics, is present within the microphase-separated ionic domain. We can therefore hypothesize 

that if a block copolymer of P4VP and PS were to be quaternized by ethylbromide, the P4VP_C2Br 

block will show evidence of long-range ordering (semi-crystallinity), like the P4VP_C2Br 

homopolymer, when evaluated by WAXS. To verify this hypothesis, a block copolymer of PS and 

P4VP was synthesized. The block copolymer was then quaternized with 1-alkylbromide with the 

number of carbons on the alkyl group ranging from 2 – 8. The ratio of the PS block to the P4VP 

block in the synthesized copolymer was 60:40. The same ratio of PS to P4VP was synthesized for 

the study of the PS-r-P4VP random copolymer in Chapter 4.  

6.3.1 Synthesis of PS-b-P4VP  

In a round bottom flask equipped with a magnetic stirrer, 17.5 g (0.166 moles) of styrene was 

polymerized with 160 mg (0.417 mmoles) of SG1 initiator; a molar equivalence of 400:1, 

[styrene]:[SG1]. Polymerization was performed in 70 wt% dimethyl formamide (DMF) at110 °C 

for 13 h.  The resulting polystyrene (PS) sample was quenched in ice and precipitated thrice in 

hexanes from dichloromethane. In a round bottom flask equipped with a magnetic stirrer, 10 g of 
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PS-SG1, which is a microinitiator, was used to polymerize 6.8 g (0.0647 moles) of 4VP in 30 ml 

of DMF at 115 °C for 20 h. The mixture was quenched in ice and precipitated twice from 

dichloromethane; first in methanol and then diethyl ether.  

6.3.2 Quaternization by 1-Alkylbromides 

A solution of 1.0 M quaternizing agent (ethylbromide, propylbromide, butylbromide, 

pentylbromide, hexylbromide, and octylbromide) was prepared in DMF. An excess amount of the 

prepared solution was added to a solution of 100 mg of P4VP-b-PS in 3.5 ml of DMF. After 240 

h, the solution was precipitated into diethyl ether to give an off-white colored powder. After 

filtration, the powder was dried in vacuum at room temperature. 

From Figure 6.8, it obvious that the block copolymer PS-b-P4VP(3:2) was successfully 

synthesized by nitroxide mediated polymerization (NMP). The integral of the 2 aromatic protons 

of P4VP and the integral of 2 aromatic protons of PS and the other 2 aromatic protons of P4VP 

were used to calculate the ratio of both blocks in the polymer. The ratio of PS and P4VP in 

determined from the 1H NMR of the block copolymer was the same with the ratio of both blocks 

in the target block copolymer. This further confirms the successful synthesis of our choice block 

copolymer.  
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Figure 6.8. The 1H NMR spectrum for PS-b-P4VP. 

The GPC chromatograms of the PS homopolymer and block copolymer are presented in Figure 

6.9. The determined values of the dispersity from the chromatograms show relatively narrow 

dispersity for the homopolymer and block copolymer.  
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Figure 6.9. The GPC chromatograms for the homopolymer (red trace) and block copolymer (black 

trace).  

A tabular summary of the 1H NMR and GPC characterizations are presented in Table 6.2.  

Table 6.2. Summary of the 1H NMR and GPC characterizations of PS-b-P4VP. 

Sample Target ratio (%) 

(Styrene:4VP) 

1H NMR ratio (%) 

(Styrene:4VP) 

Mn (Kg/mol) Ð 

PS 100:0 100:0 22 1.17 

PS-b-P4VP 60:40 60:40 43 1.20 

 

Using FTIR, complete quaternization of the PS-b-P4VP quaternized by 1-alkylbromide was 

confirmed like in the homopolymer with the disappearance of the pyridinium peak at the 1414 cm-
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1 wavenumbers and the simultaneous appearance of the 1640 cm-1 peak as described for P4VP 

homopolymers.  
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Figure 6.10. The MAXS and WAXS spectra for PS-b-P4VP_CnBr series. 
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X-ray scattering of the block copolymer show that upon quaternization, the polymer transitioned 

from lamellar to cylindrical morphology. See Figure 6.10. The quaternized block copolymer series 

maintained this morphology with increasing number of carbons on the pendant side-chain. The 

domain spacing of the block copolymer also increased with increasing number of carbons.  

Figure 6.10 also show that, at high Q values, the morphology of the chain arrangement varied with 

increasing number of carbons on the pendant side-chain. From these scattering data (see the 

WAXS spectrum), the appearance of a semi-crystalline structure for PS-b-P4VP_C2Br in between 

the amorphous structures of PS-b-P4VP and PS-b-P4VP_C3Br is evident. For samples PS-b-

P4VP_C3Br to PS-b-P4VP_C8Br, the substructure morphology of the chains within the phase 

separated ionic domain is characterized by the backbone-backbone short-range order. The periodic 

spacing of this short-range order, as expected, increased with increasing number of carbons on the 

pendant side-chain. Thus, there are three morphology regimes for the PS-b-P4VP_CnBr series 

with increasing number of carbons on the pendant side-chains. First, is the amorphous regime of 

the unquarternized polymer, PS-b-P4VP. Secondly, there is a window of semi-crystallinity 

observed for PS-b-P4VP_C2Br. Finally, a third regime, the backbone-backbone morphology 

amorphous regime. The same variation of morphology regimes with increasing number of carbons 

on the pendant side-chain has been observed in the quaternized and unquaternized P4VP 

homopolymer.  

Although PS-b-P4VP_C2Br show a cylindrical morphology at lower Q values, the continuous and 

non-continuous phase of this morphology cannot be determined from the MAXS spectra. If the 

P4VP_C2Br block is the non-continuous phase, the formation of semi-crystallinity in the block 

copolymer suggests that confinement of the ionic block within a rigid non-ionic matrix did not 

affect the semi-crystallinity of the P4VP_C2Br block in the PS-b-P4VP_C2Br block copolymer. 
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However, if the ionic block is the continuous phase, which is most likely due to theoretical and 

experimental results on ionic block copolymers (see Chapter 8 and Chapter 9), the formation of 

semi-crystallinity in the PS-b-P4VP_C2Br suggests that cylinders of PS blocks hexagonally 

arranged in the ionic matrix did not impede the crystallization of the P4VP_C2Br block in the PS-

b-P4VP_C2Br block copolymer.  

Characterization of the block copolymer, PS-b-P4VP_C2Br by optical microscopy shows 

birefringence in the melt crystallized polymer film which suggests evidence of semi-crystallinity 

in one of the blocks. See Figure 6.11. The spherulite or shish-kebab patterns that were observed in 

the quaternized homopolymers were absent in the block copolymer image. Instead, the polarized 

optical microscopy image of show bundles of thin fiber-like structures propagating and 

intertwining through the film. 
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Figure 6.11. Polarized optical microscopy image of PS-b-P4VP_C2Br. 

6.4 Conclusion 

In summary, dipole-dipole interaction between dipoles on the backbone of quaternized P4VP 

transformed the atactic amorphous polymer to a semi-crystalline polymer. With increasing 

separation between polymer backbones, the polymer reverts to an amorphous microstructure. For 

shorter pendant side-chains, methyl and ethyl, the dipole-dipole interaction between adjacent 

backbones is stronger than the side-chain steric repulsion between them, thus, the quaternized 

polymers are semi-crystalline. For longer pendant side-chains, propyl – dodecyl, the steric-

repulsion is stronger than the dipole-dipole interaction, the quaternized polymers are amorphous. 

Scattering experiments confirm that methyl and ethyl quaternized P4VP show Bragg diffraction 



187 

 

peaks, while propyl quaternized P4VP show scattering spectra reminiscent of the pristine P4VP. 

Furthermore, DSC spectra show both melting endotherms and recrystallization exotherms for 

P4VP_C1I, P4VP_C2I, and P4VP_C2Br. Thus, confirming their semi-crystallinity. Finally, 

images obtain from polarized optical microscopy also confirm the semi-crystallinity of the methyl 

and ethyl quaternized P4VP. Polarized optical microscopy images show that P4VP_C1I nucleate 

and grow into shish-kebab microstructure on recrystallization from a quiescent melt, while 

P4VP_C2I and P4VP_C2Br nucleate and grow into spherulitic microstructures. Block copolymer 

of PS-b-P4VP also show the same evidence of semi-crystallinity in the ethylbromide quaternized 

sample when characterized by WAXS.  
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PART III: 

SYNTHESIS AND CHARACTERIZATION OF ALKALINE-STABLE AZO-

SPIROCYCLIC UNDECANE-TYPE POLYMERS FOR ANION EXCHANGE 

MEMBRANES 
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CHAPTER 7 

SYNTHESIS AND CHARACTERIZATION OF CHEMICALLY STABLE ASU-TYPE 

MONOMERS AND HOMOPOLYMERS  

7.1 Introduction 

From the previous projects (see Chapter 2, Chapter 3, Chapter 4, Chapter 5, and Chapter 6), 

fundamental studies on poly(n-alkyl 4-vinylpyridinium halides) show the importance of 

intermolecular forces in the physics of polyelectrolyte morphologies, and the consequence on the 

conducting properties of AEMs. However, one of the fundamental challenges with AEMs is their 

chemical instability. In alkaline media, cationic centers of anionic exchange membranes, 

especially quaternary ammoniums, are susceptible to chemical degradation.1–4 These degradation 

reactions reduce the quantity of ions in the system. Thus, adversely affect conducting performance 

in AEMs. Two facile degradation pathways for quaternary ammoniums are β–hydrogen 

elimination (Hofmann Elimination) and neuclophilic substitution (see Scheme 7.1) However, other 

mechanisms for quaternary ammonium (QA) degradation like ortho substitution and Stevens 

rearrangement, can also occur.4–7  
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Scheme 7.1. Schematic of nucleophilic substitution and Hofmann elimination of quaternary 

ammoniums. 

Degradation by means of nucleophilic substitution can occur in all quaternary ammonium 

molecules provided the cationic center is readily accessible by the nucleophile. On the other hand, 

an elimination reaction with a faster rate constant can only occur in molecules with a β-hydrogen. 

Most research in the literature has therefore rightly focused on quaternary ammonium compounds 

that do not undergo Hofmann elimination. Benzyl trimethyl ammonium (BMA) has been the prime 

candidate for use in AEMs.8–10 However, the use of benzylic cations has its own challenges. The 

electron-withdrawing benzyl group increases the susceptibility of the cation to nucleophilic 

substitution. Furthermore, the aromatic group can stabilize degradation intermediates by 

resonance, thereby furthering their instability in aggressive alkaline medium.4,11 This is well 

evidenced by results that show tetramethyl ammonium, N+(CH3)4, with a half-life sixteen times 

that of BMA.4  

Since deterring elimination reactions from occurring does not increase the chemical stability of 

QAs, an alternative approach might be to reduce the rate of degradation altogether instead of 

eliminating possible degradation pathways. Hofmann elimination reaction being an E2 elimination 
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reaction is stereospecific.  It can occur when the β-proton and the cation are in a syn-periplanar or 

anti-periplanar orientation.  

N
+

H

H
N

+

 

Scheme 7.2. Depiction of anti-periplanar (left), syn-periplanar (right) orientations. 

Although there is a possibility of a syn-elimination, which occurs when the β-proton is in a cis 

position with the cation, the preferred elimination route occurs in molecules with a 180° dihedral 

angle between the β-hydrogen and the cation (i.e. an anti-periplanar position). It has been 

suggested that the staggered configuration of the anti-periplanar orientation may be responsible 

for their increased susceptibility to elimination.11 The staggered conformation, is the more 

energetically favorable conformation. Thus, the transition states of a staggered conformation may 

have lower energy than other non-staggered conformations. This increases the propensity of anti-

periplanar molecules to undergo an elimination reaction. Consequently, fuel cell membrane 

researchers have attempted to increase the resistance of QAs to nucleophilic attack by designing 

molecules in which the β-hydrogen is in a non-anti-periplanar position to the cation. Nevertheless, 

only a few QAs with these structures has been synthesized and studied. A study of 1,4 diazabicyclo 

[2,2,2] octane (DABCO) show poor stability even though there are β-protons locked in a non-anti-

periplanar position. The possible reasons for its poor stability may be due to its high ring strain 

and the proximity of the second nitrogen to the QA.4 

Marino and Kreuer, in their seminal work, examined other QAs with β-protons locked in both a 

non-anti-periplanar and anti-periplanar position.4 They found that dimethyl pyrrolidinium 
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performed better than benzyl trimethly ammonium (BMA) salt in a 6 M sodium hydroxide aqueous 

solution at 160 °C. The pipyridinium counterpart with lower ring strain, albeit with two β-protons 

in an anti-periplanar position, showed better stability results under the same testing conditions. 

Reducing susceptibility to nucleophilic substitution by replacing the methylene groups by another 

6 membered ring (i.e. 6-azonia-spiro[5,5] undecane ‘ASU’) showed increased stability even 

though the number of anti-periplanar β-protons is now increased to 4. This suggests that ring strain 

was as much an important a factor as the orientation of the β-proton in space.4,11,12 They predicted 

that polymer molecules based on this structure will be stable for use as anion exchange membranes.  

Although some studies have appeared in the literature most recently on ASU-type molecules (i.e. 

double cyclic structure with ammonium bridging the two rings), most of this work focuses on post 

polymer modification. Morphology and composition of the hydrophilic content is difficult to 

control in these cases.13–21 In addition to not easily been solvent processable due to post-

polymerization modifications, these studies rarely perform chemical stability tests on their 

membranes. Furthermore, few studies in the literature have focused on the competition between 

ring strain in these ASU – type molecules and their β-protons.  

In this project, synthesis of novel ASU-type monomers and their corresponding polymers will be 

investigated. Stability tests on these monomers will be performed to assay the chemical stability. 

Other ASU-style monomers with varying number of carbons from the backbones will also be 

synthesized and polymerized. The morphology of ASU-type monomers will be probed by X-ray 

scattering.  
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7.2 Materials, Methods, Results, and Discussion 

Dicyclopentadiene (97%), dibromohexane (95%), dibromopentane (98%), dibromobutane (98%), 

were procured from TCI Chemicals. 4-hydroxypiperidine (98%), 3-bromopyridine (98%) were 

purchased from Matrix Scientific. Cis 1,4 dichlorobutene (95%) was purchased from Alfa Aesar. 

Norbornene (99%), 4-vinylbenzylchloride (96%), piperidine (99%), sodium hydride (60 wt% in 

mineral oil) and Grubbs’ II catalysts were purchased from Sigma Aldrich. The monomer 4-

vinylbenzylchloride was passed through basic alumina. All other chemicals were used as obtained. 

7.2.1 Design and Synthesis of 6-Azonia-spiro[5,4]decene chloride 

The designed monomer, 6-Azonia-spiro[5,4]decene chloride, has two features of interest. A 

chemically stable azo-type cation and a cyclic double bond that can be polymerized by ring-

opening metathesis polymerization to give anion exchange membranes.  

 

Scheme 7.3. Synthesis of 6-Azonia-spiro[5,4]decene chloride. 

7.2.2 Synthesis of 6-Azonia-spiro[5,4]decene chloride 

A mixture of 0.625 g (5 mmoles) of Cis-1,4 dichlorobut-2-ene and 0.84 g (6 mmoles) of K2CO3 

and 10 ml of anhydrous acetonitrile was charged into a two-neck round bottom flask equipped 

with a stirrer. The mixture was heated to reflux. A solution of 0.425 g (5 mmoles) of piperidine in 

2 ml of anhydrous acetonitrile was added by syringe and needle into the reflux mixture. The 

mixture was refluxed for 18 h. The reaction was then rotovapped to give a brown solid. This solid 
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was then dissolved in 10 ml of ethanol to filter off the excess K2CO3. The solvent was then 

concentrated on a roto-evaporator. The concentrated solution was precipitated into diethyl ether to 

give a light brown solid. The solid was washed thrice in diethyl ether and then dried overnight in 

vacuum at room temperature for 24 h to give 0.63 g (72 % yield) of the product.  

A similar method was used to synthesize 6-azonia-spiro[5,5]undecane.4 

Characterization of the product by 1H NMR confirm the successful synthesis of 6-azonia-

spiro[5,4]decene. The protons of 6-azonia-spiro[5,4]decene and their corresponding peaks on the 

1H NMR spectrum are shown in Figure 7.1.  

 

Figure 7.1. The 1H NMR spectrum for 6-azonia-spiro[5,4]decene chloride.  
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7.2.3 Homopolymerization of 6-azonia-spiro[5,4]decene chloride 

A solution of 200 mg of azospirocyclic[5,4]decene chloride in 1 ml methanol was charged into a 

20 ml scintillation vial equipped with a stirrer. To the solution was added a solution of 2 mg of 

Grubb’s 1st generation catalyst. After 30 mins the reaction was quenched with 1 ml of divinyl 

ether. The reaction mixture was then precipitated into diethyl ether. Characterization of the 

precipitate by 1H NMR show that azospirocyclic[5,4]decene chloride did not homopolymerize. 

This line of research was not further explored.  

7.2.4 Design and Synthesis of 4-Vinylbenzoxy-6-azonia-spiro[5,5]undecane bromide 

The design of the monomer 4-vinylbenzoxy-6-azonia-spiro[5,5]undecane bromide was then 

pursued. Two features in the monomer are of interest. A chemically stable azo-type cation attached 

to a radical, cationic, or anionic polymerizable vinyl benzylic head. See Scheme 7.4 and Scheme 

7.5.  

7.2.5 Synthesis of 4-Hydroxy-6-azonia-spiro[5,5]undecane 

 

Scheme 7.4. Synthesis of 4-hydroxy-6-azonia-spiro[5,5]undecane. 

In a two-neck round bottom flask, 21 g (0.152 moles) of potassium carbonate was charged into a 

solution of 27.6 g (0.124 moles) of 1,5 dibromopentane in 300 ml of acetonitrile equipped with a 

magnetic stirrer. The mixture was heated to reflux. After 10 minutes, a solution of 10.1 g (0.1 

moles) of 4-hydroxypiperidine in 50 ml of acetonitrile was added to the mixture. After 20 h the 
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reaction bath was gradually cooled to room temperature. The reaction mixture was then rotovapped 

to remove the solvent leaving a yellow like solid which was dissolved in 300 ml of ethanol and the 

excess potassium carbonate was removed by filtration. The solution was then partially evaporated 

to obtain a concentrated solution that was precipitated into diethyl ether. Afterwards, the yellowish 

solid was filtered and washed in DCM thrice. The solid was then dried in vacuo at room 

temperature to afford 18.3 g (73% yield) of an off-white solid. A similar method was used to 

synthesize 6-azonia-spiro[5,5]undecane.4 

Characterization of the product by 1H NMR confirm the successful synthesis of 4-hydroxy-6-

azonia-spiro[5,5]undecane. The protons of 4-hydroxy-6-azonia-spiro[5,5]undecane and their 

corresponding peaks on the 1H NMR spectrum are shown in Figure 7.2.  

 

Figure 7.2. The 1HNMR spectrum of 4-hydroxy-6-azonia-spiro[5,5]undecane. 
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The product, 4-hydroxy-6-azonia-spiro[5,5]undecane, was further characterized by TOF-Mass 

Spectrometer. From the chromatogram of 4-hydroxy-6-azonia-spiro[5,5]undecane, shown in 

Figure 7.3, a spectral line on the molecular weight to charge ratio of 170 g/mol.C corresponds to 

the molecular weight of  4-hydroxy-6-azonia-spiro[5,5]undecane without the bromide counterion. 

Two spectral lines on 419 and 421 g/mol.C resulting from the two isotopes of bromine (79 and 81 

g/mol) are visible on the spectra at higher m/z ratios. These spectral lines corresponds to two 4-

hydroxy-6-azonia-spiro[5,5]undecane and one bromide (with its two isotopes) counterion. These 

results confirm that 4-hydroxy-6-azonia-spiro[5,5]undecane was successfully synthesized.  
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Figure 7.3. The TOF-Mass spectrometer chromatogram of 4-hydroxy-6-azonia-

spiro[5,5]undecane. 
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7.2.6 Synthesis of 4-Vinylbenzoxy-6-azonia-spiro[5,5]undecane chloride 

 

Scheme 7.5. Synthesis of 4-vinylbenzoxy-6-azonia-spiro[5,5]undecane chloride. 

In a round bottom flask, 5.6 g (22.4 mmoles) of 4-hydroxy-6-azonia-spiro[5,5]undecane was 

dissolved in 60 ml of anhydrous DMSO. The solution was gradually added to another round 

bottom flask containing 1.79 g (44.8 mmoles) of sodium hydride equipped with a magnetic stirrer. 

The reaction proceeded at room temperature for 1 h. Afterwards, 17 g (112 mmoles) of 4-

vinylbenzylchloride was gradually added into the reaction mixture. The color of the mixture 

changed from white to light brown. The reaction was allowed to proceed for 20 h. Thereafter, the 

mixture was vacuum filtered to remove unreacted sodium hydride. The filtrate was a viscous clear 

yellow liquid. The filtrate was then precipitated into diethyl ether to give an off-white solid. The 

off-white solid was then washed with diethyl ether and dried in vacuum to afford 4.39 g (61% 

yield) of desired product.  

Characterization of the product by 1H NMR confirm the successful synthesis of 4-vinylbenzoxy-

6-azonia-spiro[5,5]undecane chloride. The protons of 4-vinylbenzoxy-6-azonia-
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spiro[5,5]undecane chloride and their corresponding peaks on the 1H NMR spectrum are shown in 

Figure 7.4.  

 

Figure 7.4. The 1H NMR spectrum of 4-vinylbenzoxy-6-azonia-spiro[5,5]undecane chloride. 

7.2.7 Homopolymerization of 4-Vinylbenzoxy-6-azonia-spiro[5,5]undecane chloride 

 1.075 g (3.35 mmoles) of 4-vinylbenzoxy6-azonia-spiro[5,5]undecane chloride was dissolved in 

15 ml of pyridine in a Schlenk tube equipped with a stirrer. 5 mg (0.0130 mmoles) of SG1 was 

added to the solution mixture at 125 °C. After 24 h, the reaction was quenched in ice and then 

precipitated into diethyl ether. Characterization by 1H NMR show that 4-vinylbenzoxy-6-azonia-

spiro[5,5]undecane bromide did not homopolymerize. 
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Although the attempt to radically polymerize 4-vinylbenzoxy-6-azonia-spiro[5,5]undecane 

chloride was discontinued, an attempt to affix the salt, 4-hydroxy-6-azonia-spiro[5,5]undecane, by 

Williamson’s ether synthesis unto a polymerizable backbone was continued.  

7.2.8 Design and Synthesis of Norobornenedimethyl-6-azonia-spiro[5,4] bromide 

Norbornene-based monomers can be polymerized via Ring-Opening Metathesis Polymerization 

(ROMP). Ring-opening metathesis polymerization chemistry has been shown to be very efficient 

in polymerizing norbornene based monomers giving a high monomer conversion.22–28 This is 

important in these systems because separation of monomers, which are solids at room temperature, 

from polymers might be difficult. Additionally, ring-opening metathesis polymerization of 

norbornene-based monomers can be performed at room temperature and also at relatively shorter 

time periods.29–34 

The monomer norobornenedimethyl-6-azonia-spiro[5,4] bromide was designed and synthetic 

procedures are shown in  in Scheme 7.6 and Scheme 7.7 to synthesize the norbornene-based 

monomer.  

 

7.2.9 Synthesis of Norbornenedimethyldichloride  

 

Scheme 7.6. Synthesis of norbornenedimethyldichloride (NDMDC). 
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In a round bottom flask, 7 g (0.053 moles) of dicyclopentadiene was dissolved in 20 g (0.16 moles) 

of cis1,4dichlorobutene. The solution was charged into a Schlenk tube equipped with a magnetic 

stirrer and trace amount of hydroquinone, 50 mg (0.45 mmoles). The mixture was placed in an oil 

bath with a temperature of 185°C and allowed to proceed for 18 h. Fractional distillation was 

performed on the mixture to remove excess cis 1,4 dichlorobutene (40°C, 200 mTorr) and 10.9 g 

(54% yield) of desired product, norbornenediemethyldichloride (70 °C, 150 mTorr).  

Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenedimethyldichloride. The protons of norbornenedimethyldichloride and their 

corresponding peaks on the 1H NMR spectrum are shown in Figure 7.5.  

Figure 7.5. The 1H NMR of norbornenedimethyldichloride. 
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7.2.10 Synthesis of Norobornenedimethyl-6-azonia-spiro[5,4]decane chloride  

A mixture of 4.8 g (0.025 moles) of norobornenedimethyldichloride and 4.2 g (0.3 moles) of 

potassium carbonate and 0.44 g (0.0026 moles) of potassium iodide, and 80 ml of anhydrous 

acetonitrile was charged into a two-neck flask equipped with a stirrer. The mixture was heated to 

reflux. A solution of 2.14 g (0.025 moles) of piperidine in 15 ml of anhydrous acetonitrile was 

added by syringe into the reflux mixture. The mixture was refluxed for 18 h. The reaction was then 

rotovapped to give a light brown solid. This solid was then dissolved in 100 ml of ethanol to filter 

off the unreacted potassium carbonate. The solvent was then concentrated by rotovapping. The 

concentrated solution could not be precipitated into diethyl ether. Characterization of the resultant 

reaction mixture show that there was no reaction between norobornenedimethyldichloride and 

pyridine.  Norobornenedimethyl-6-Azonia-spiro[5,4] chloride could not be synthesized. 

 

 

 

Scheme 7.7. Synthesis of norobornenedimethyl-6-azonia-spiro[5,4]decane chloride. 

Alternatively, an attempt was made to synthesize norbornenedimethoxydi-6-azonia-

spiro[5,5]undecane chloride from the reaction of norbornenedimethyldichloride and hydroxyl 

group in 4-hydroxy-6-azonia-spiro[5,5]undecane. 
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7.2.11 Synthesis of Norbornenedimethoxydi-6-azonia-spiro[5,5]undecane chloride.  

A solution of 1.6 g (0.0064 moles) of 6-azonia-spiro[5,5]undecane in 60 ml of DMSO was charged 

into a round bottom flask equipped with a stirrer. To the solution, 0.31 g (0.0128 moles) of sodium 

hydride was gradually added at room temperature. After 1 h, 2.45 g (0.0128 moles) of 

norbornenedimethyldichloride was added to the reaction mixture. The reaction proceeded for 20 

h. Afterwards, the reaction mixture was filtered. The filtrate was precipitated into diethyl. 

Characterization of the resultant solid show that there was no reaction between 

norbornenedimethyldichloride and 4-hydroxy-6-azonia-spiro[5,5]undecane bromide.  

Norbornenedimethoxydi-6-azonia-spiro[5,5]undecane chloride could not be synthesized.  

 

Scheme 7.8. Synthesis of norbornenedimethoxydi-6-azonia-spiro[5,5]undecane chloride. 

7.2.12 Inertness of Norbornenedimethyldichloride to Halogen Exchange and Nucleophilic 

Substitution 

Norbornenedimethyl dichloride is inert to ether synthesis and the Finkelstein reaction. The 

inertness of the chloride to reaction seem to have resulted from the steric hinderance of the exo 

bridge that makes it impossible for a nucleophile to attack from the backside of the chlorides in a 

conventional SN2 reaction.  
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7.2.13 Synthesis of Norbornene Propoxy Spirocyclic Salt 

A new design was adopted for the preparation of the monomer norbornenepropoxy-6-azonia-

spiro[5,5]undecane. Two features in the monomer are of interest. A chemically stable azo-type 

cation attached to a norbornene head. The norbornene head can be polymerized by ring-opening 

metathesis polymerization to give anion exchange membranes. See Scheme 7.9 and Scheme 7.10 

for the synthetic outline of norbornenepropoxy-6-azonia-spiro[5,5]undecane.  

7.2.14 Synthesis of Norbornenepropylbromide  

 

Scheme 7.9. Synthesis of norbornenepropylbromide. 

In a round bottom flask, 20 g (0.134 moles) of 5-bromo-1-pentene was mixed with 5.9 g of 

dicyclopentadiene (0.045 moles). The mixture was charged into a Schlenk tube equipped with a 

magnetic stirrer. Catalytic amount, 16 mg (0.15 mmoles), of Hydroquinone was added to the 

reaction mixture. The tube was then placed in an oil bath at a temperature of 185 °C. After 20 h, 

the reaction was gradually cooled to room temperature. There was a change in color of the reaction 

mixture from a colorless solution to dark brown. Fractional vacuum distillation was performed at 

27 – 40 °C, 300 mTorr to remove the excess reactant (5-bromo-1-pentene), and then distilled at 58 

– 60 °C, 50 mTorr to obtain 11.6 g (61% yield) of norbornenepropylbromide colorless oil.  
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Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenepropylbromide. The protons of norbornenepropylbromide and their corresponding 

peaks on the 1H NMR spectrum are shown in Figure 7.6.  

 

Figure 7.6. The 1H NMR spectrum of norbornenepropylbromide.  

7.2.15 Synthesis of Norbornenepropoxy-6-azonia-spiro[5,5]undecane (NPS5) 

In a round bottom flask, 3.1 g (12.4 mmoles) of 4-hydroxy-6-azonia-spiro[5,5]undecane was 

dissolved in 50 ml of anhydrous DMSO. The solution was gradually added to another round 

bottom flask containing 1 g (24 mmoles) of sodium hydride equipped with a magnetic stirrer. The 

reaction proceeded at room temperature for 1 h. Afterwards, 5.1 g (23.7 mmoles) of norbornene 
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propyl bromide dispersed in 5 ml anhydrous DMSO was gradually added into the reaction mixture. 

The color of the mixture changes from white to light brown. The reaction was allowed to proceed 

for 20 h. Thereafter, the mixture was vacuum filtered to remove unreacted sodium hydride. The 

filtrate was a viscous clear brown liquid. The filtrate was then precipitated into diethyl ether to 

give a white solid. After filtration, the white solid was then washed with diethyl ether again and 

dried. The white solid was then dissolved in 200 ml of hot acetone to filter-off unreacted 4-

hydroxy-6-azonia-spiro[5,5]undecane and sodium bromide. The product was then recrystallized 

from acetone by cooling the solution to 4 ºC. After filtration, the crystals were then washed with 

diethyl ether and dried in vacuum to afford 4.4 g (92% yield) of desired product.  

 

Scheme 7.10. Synthesis of norbornenepropoxy-6-azonia-spiro[5,5]undecane (NPS5). 

Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenepropoxy-6-azonia-spiro[5,5]undecane. The protons of norbornenepropoxy-6-azonia-

spiro[5,5]undecane and their corresponding peaks on the 1H NMR spectrum are shown in Figure 

7.7.  
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Figure 7.7. The 1H NMR spectrum of norbornenepropoxy-6-azonia-spiro[5,5]undecane (NPS5).  

The product, norbornenepropoxy-6-azonia-spiro[5,5]undecane, was further characterized by TOF-

Mass Spectrometer. The product, norborneneproproxy-6-azonia-spiro[5,5]decane, was further 

characterized by TOF-Mass spectrometer. From the chromatogram of norbornenepropoxy-6-

azonia-spiro[5,5]decane, shown in Figure 7.8, a spectral line on the molecular weight to charge 

ratio of 304 g/mol.C corresponds to the molecular weight of  norbornenepropoxy-6-azonia-

spiro[5,5]decane without the bromide counterion. Two spectral lines on 687 and 689 g/mol.C 

resulting from the two isotopes of bromine (79 and 81 g/mol) are visible on the spectra at higher 

m/z ratios. These spectral lines corresponds to two norbornenepropoxy-6-azonia-spiro[5,5]decane 
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and one bromide (with its two isotopes) counterion. These results confirm that 

norbornenepropoxy-6-azonia-spiro[5,5]decane was successfully synthesized.  

 

 

Figure 7.8. The TOF-Mass spectrometer chromatogram of norbornenepropoxy-6-azonia-

spiro[5,5]undecane (NPS5). 

7.2.16 Homopolymerization of NPS5 

In a 20 ml scintillating vial, 300 mg (0.78 mmoles) of NPS5 in 5 ml of DMF was charged into a 

solution of 3 mg (0.0035 mmoles) of Grubbs’ II catalyst in 0.5 ml of DCM equipped with a 
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magnetic stirrer. The reaction proceeded for 24 h and afterwards precipitated in diethyl ether to 

afford 261 mg (87% yield) of polymer.  

Characterization of the product by 1H NMR confirm the successful synthesis of 

polynorbornenepropoxy-6-azonia-spiro[5,5]undecane. The protons of polynorbornenepropoxy-6-

azonia-spiro[5,5]undecane and their corresponding peaks on the 1H NMR spectrum are shown in 

Figure 7.9.  

 

Figure 7.9. The 1H NMR spectrum of polynorbornenepropoxy-6-azonia-spiro[5,5]undecane 

(PNPS5). 
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7.2.17 Design and Synthesis of Norbornenehexoxy-6-azonia-spiro[5,5]undecane 

In the previous chapter, we have explored the effect of pendant side-chain sterics on the clustering 

of dipoles. The longer the pendant side-chain, the less likely is it for ionic clusters to form in 

randomly charged comb-shaped polymers. The elimination, or reduction, in the quantity of clusters 

increases the conductivity of anion exchange membranes. To increase the number of carbons on 

the pendant side-chain, a new monomer was designed, norbornenehexoxy-6-azonia-

spiro[5,5]undecane. Instead of norbornenepropylbromide, norbornenehexylbromide was 

synthesized as a precursor. While the polymer synthesized from norbornenepropylbromide 

precursor has 3 carbons on the pendant side-chain between the norbornene backbone and the 6-

azonia-spiro[5,5]undecane; the polymer that will be synthesized from norbornenehexylbromide 

will have 6 carbons on the pendant side-chain between the norbornene backbone and the 6-azonia-

spiro[5,5]undecane. The same spirocyclic salt, 4-hydroxy-6-azonia-spiro[5,5]undecane, used in 

the synthesis of norbornenepropoxy-6-azonia-spiro[5,5]undecane will be used in the synthesis of 

norbornenehexoxy-6-azonia-spiro[5,5]undecane. See Scheme 7.11 and Scheme 7.12 for the 

synthetic outlines of norbornenehexoxy-6-azonia-spiro[5,5]undecane. 

7.2.18 Synthesis of Norbornenehexylbromide 

In a scintillation vial, 10 g (0.052 moles) of 8-bromo-1-octene was mixed with 2.34 g of 

dicyclopentadiene (0.018 moles). The mixture was charged into a Schlenk tube equipped with a 

magnetic stirrer. Trace amount, 21 mg (0.19 mmoles), of hydroquinone was added to the reaction 

mixture. The tube was then placed in an oil bath at a temperature of 185 °C. After 20 h, the reaction 

was gradually cooled to room temperature. There was a change in color of the reaction mixture 

from a colorless solution to light brown. Vacuum distillation was performed at 60 °C, 300 mTorr 
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to remove the excess reactant. Flash chromatography of the residue was performed in hexanes to 

afford 5.2 g (57% yield) of a colorless oil of norbornenehexylbromide.  

 

 

 

 

Scheme 7.11. Synthesis of norbornenehexylbromide 

Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenehexylbromide. The protons of norbornenehexylbromide and their corresponding peaks 

on the 1H NMR spectrum are shown in Figure 7.10.  



221 

 

 

Figure 7.10. The 1H NMR spectra for norbornenehexylbromide. 

7.2.19 Synthesis of Norbornenehexoxy-6-azonia-spiro[5,5]undecane (NHS5) 

In a round bottom flask, 1.15 g (4.6 mmoles) of 4-hydroxy-6-azonia-spiro[5,5]undecane was 

dissolved in 50 ml of anhydrous DMSO. The solution was gradually added to 0.35 g (9 mmoles) 

of sodium hydride in another round bottom flask equipped with a magnetic stirrer. The reaction 

proceeded at room temperature for 1 h. Afterwards, 1.96 g (9 mmoles) of norbornenehexylbromide 

dispersed in 5 ml anhydrous DMSO was gradually added into the reaction mixture. The color of 

the mixture changes from white to light brown. The reaction was allowed to proceed for 20 h. 

Thereafter, the mixture was vacuum filtered to remove unreacted sodium hydride. The filtrate was 

a viscous clear brown liquid. The filtrate was then precipitated into diethyl ether to give a white 
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solid. After filtration, the white solid was then washed in diethyl ether again and dried. The white 

solid was then dissolved in 100 ml of hot acetone to filter-off unreacted 4-hydroxy-6-azonia-

spiro[5,5]undecane and sodium bromide. The product was then recrystallized from acetone by 

cooling the solution to 4 ºC. After filtration, the crystals were then washed in diethyl ether and 

dried in vacuum to afford 1.86 g (95% yield) of desired product. 

 

Scheme 7.12. Synthesis of norbornenehexoxy-6-azonia-spiro[5,5]undecane (NHS5). 

Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenehexoxy-6-azonia-spiro[5,5]undecane. The protons of norbornenehexoxy-6-azonia-

spiro[5,5]undecane and their corresponding peaks on the 1H NMR spectrum are shown in Figure 

7.11.  
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Figure 7.11. The 1H NMR spectrum of norbornenehexoxy-6-azonia-spiro[5,5]undecane (NPS5). 

The product, norbornenehexoxy-6-azonia-spiro[5,5]undecane, was further characterized by TOF-

Mass Spectrometer. The product, norbornenehexoxy-6-azonia-spiro[5,5]decane, was further 

characterized by TOF-Mass Spectrometer. From the chromatogram of norbornenehexoxy-6-

azonia-spiro[5,5]decane, shown in Figure 7.12, a spectral line on the molecular weight to charge 

ratio of 346 g/mol.C corresponds to the molecular weight of  norbornenehexoxy-6-azonia-

spiro[5,5]decane without the bromide counterion. These results confirm that norbornenehexoxy-

6-azonia-spiro[5,5]decane was successfully synthesized.  
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Figure 7.12. The TOF-Mass spectrometer chromatogram of norbornenehexoxy-6-azonia-

spiro[5,5]undecane (NHS5). 

7.2.20 Homopolymerization of Norbornenehexoxy-6-azonia-spiro[5,5]undecane (NHS5) 

In a 20 ml scintillation vial, 200 mg (0.45 mmoles) of NHS5 in 5 ml of DMF was charged into a 

solution of 3 mg (0.0035 mmoles) of Grubbs’ II catalyst in 0.5 ml of DCM equipped with a 

magnetic stirrer. The reaction proceeded for 24 h and afterwards precipitated in diethyl ether to 

afford 168 mg (84% yield) of polymer.  
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Characterization of the product by 1H NMR confirm the successful synthesis of 

polynorbornenehexoxy-6-azonia-spiro[5,5]undecane. The protons of polynorbornenehexoxy-6-

azonia-spiro[5,5]undecane and their corresponding peaks on the 1H NMR spectrum are shown in 

Figure 7.13.  

 

Figure 7.13. The 1H NMR spectrum of polynorbornenehexoxy-6-azonia-spiro[5,5]undecane 

(PNHS5). 
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7.2.21 Characterization of PNPS5 and PNHS5 by MAXS and WAXS  

Medium-angle X-ray scattering (MAXS) and Wide-angle X-ray scattering (WAXS) 

measurements were performed in transmission geometry on Molmex Scientific Ganesha SAXS 

Lab. A double aperture for the Cu-Kα radiation (λ = 1.54 Å), which was the X-ray source, was 

used. Silver behenate was used as the standard for the momentum transfer calibration. Data 

collection was performed with a typical exposure time of two minutes. Depending on the signal-

to-noise ratio, data collection could be longer. Azimuthal averaging of the obtained isotropic 2-D 

pattern was performed to obtain the intensity against wave vector plot. 

7.2.22 Results and Discussion for Homopolymer Characterization 

From the MAXS spectra, see Figure 7.14, a peak at higher Q values is evident for both 

homopolymers. With increasing number of carbons on the pendant side-chain connecting the 

polymer backbone to the spirocyclic salt, the scattering peak moves to lower Q values. This peak 

is the backbone-backbone spacing in both PNPS5 and PNHS5 homopolymers. This spacing result 

from the comb-like shape of the homopolymers. The effect of backbone-backbone spacing has 

been discussed in the study of quaternized P4VP and the same effect can be observed in these 

homopolymers.  

The scattering data also show a slope of 3 at lower Q values for both PNPS5 and PNHS5. A 

scattering slope of 3 for colloids suggests a lamellar arrangement pattern. A similar X-ray 

scattering slope in these homopolymers suggest that the backbone-backbone arrangement in 

PNPS5 and PNHS5 are arranged in a lamellar pattern.   
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Figure 7.14. The Scattering profiles of PNPS5 and PNHS5 MAXS (right) and WAXS (left). 

A cursory count of the number of carbons away from the norbornene backbones show that these 

chain spacing increases with increasing number of backbone carbons. polynorbornenepropoxy-6-

azonia-spiro[5,5]undecane is approximately 9 carbons away from the backbone with a spacing of 

2.7 nm while PNPS5 is approximately 12 carbons away with a backbone spacing of 3.2 nm. The 

increase in the backbone-backbone spacing with increasing number of carbons on the pendant 

side-chains is common in comb-shaped polymers.35 However, most comb-shaped polymers 
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studied in the literature do not have cyclic pendant groups. The MAXS spectra for PNPS5 and 

PNHS5 show that the relationship between the backbone-backbone spacing and number of carbons 

on the pendant group in comb-shaped polymers with cyclic side-groups is comparable to the 

relationship between backbone-backbone spacing and number of carbons on the pendant group in 

comb-shaped polymers with linear side-chains.  

The scattering data show two peaks for PNHS5.  This suggests that the degree of ordering in 

PNHS5 is higher than that in PNPS5. The increase in the degree of ordering with increasing 

number of carbons on the pendant side-chain was observed in P4VP_CnBr. The ratio of the peak 

at higher reflection to the primary peak in PNHS5 is approximately 2. This confirms a layered 

arrangement of the backbones in PNHS5. Given that the only difference between PNPS5 and 

PNHS5 is the addition of 3 carbons on the pendant side-chain connecting the backbone to the 

spirocyclic salt, the arrangement of backbones in PNSP5 should be similar to the arrangement of 

backbones in PNHS5. The backbones in PNPS5 would have a lamellar arrangement.  
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Figure 7.15. Depiction of backbone-backbone arrangement in PNHS5.  
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It is important to note that these are not ionomer peaks as ionomer peaks are generally found in 

the X-ray scattering of random copolymers in which the mole fraction of the ionic component does 

not exceed 0.5.8 Ionomers generally have two regions, multiplet/cluster and matrix regions. In this 

case we have a one component system. A single component system like PNPS5 and PNHS5 does 

not have ionic and non-ionic copolymers that can facilitate an ionomer type phase separation. 

Thus, there are no clusters of ions in a hydrophobic matrix. The observed scattering peak is not 

due to ‘two regions’ but a consequence of the periodic spacing between the backbones of the 

polymers.  

The effect of the backbone length on the morphology of PNPS5 and PNHS5 copolymers and the 

subsequent effect on conductivity will be investigated in the next chapter. Since conductivity is 

dependent on water uptake, the interaction of PNPS5 and PNHS5 and water is interesting. Both 

homopolymers are soluble in water. By comparing these ASU-type homopolymers with poly(n-

alkyl4vinylpyridiniumbromide) homopolymers, P4VP_CnBr, it is evident that the structure of 

these homopolymers and not just their charge concentration affect their solubility. In the 

P4VP_CnBr series, samples having 5 or more carbons on the pendant side-chain are insoluble in 

water even though these samples have higher IECs than PNPS5 (2.6 mmoles/g) and PNHS5 (2.3 

mmoles/g). The difference in the resistance of the pyridiniumbromide-based homopolymers and 

ASU-type homopolymers to solvation in water may be influenced by their short-range ordering. 

The backbone-backbone spacing in PNPS5 and PNHS5 is larger than the backbone-backbone 

spacing in P4VP_C5Br. However, the spacing between the dipoles in PNPS5 and PNHS5, 

although the same, is different from the spacing between the dipoles in P4VP_C5Br. The spacing 

between the dipoles in P4VP_C5Br is equivalent to the spacing between the backbones, however, 

the spacing between the dipoles in PNPS5 and PNHS5 is the spacing between the centers of two 
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spirocyclic groups on adjacent backbones. The smaller the spacing between dipoles, the more 

likely is it for dipoles to accrue water molecules, thereby, solvating the polymer membrane. The 

more isolated the dipoles are, the more likely is it for the membrane to be insoluble in water even 

if the membrane has a higher IEC. The same trend was observed in the water uptake of XP4VP-r-

PS_CnBr series studied in Chapter 5. Due to the solubility of PNPS5 and PNHS5 in water, PNPS5 

and PNHS5 will be copolymerized with a hydrophobic copolymer that can provide mechanical 

integrity in a humidified environment. 

7.2.23 Chemical Stability Norbornenepropoxy-6-azonia-spiro[5,5]undecane (NPS5) 

To assay the chemical stability of norbornenepropoxy-6-azonia-spiro[5,5]undecane in an alkaline 

environment, 200 mg of the monomer was dissolved in a 2 M solution of KOH in a mixture of 

methanol and water (9:1) was charged into a 20 ml plastic bottle equipped with a stirrer. The plastic 

bottle was sealed and placed in an oil bath at 80 °C. Aliquots were taken at 2, 4, 9, and 15 days 

and characterized by 1H NMR to monitor the degradation of the monomer.  

The 1H NMR spectra show that the peak of the alpha proton of the secondary carbon in the ether 

linkage degraded slightly over the course of two weeks. The results obtained by Marino and Kreuer 

show that the salt, 6-azonia-spiro[5,5]undecane, was very stable in alkaline conditions. Concerns 

about the ability of the monomer, norbornenepropoxy-6-azonia-spiro[5,5]undecane, to withstand 

degradation in aggressive alkaline medium has centered around the alpha proton of the secondary 

carbon in the ether linkage in NPS5. The intensity of the peak arising from the alpha proton of the 

secondary carbon in the ether linkage show that the ether in norbornenepropoxy-6-azonia-

spiro[5,5]undecane degraded by 1.5 % over the course of the experiment. Further analysis of the 

alpha protons in proximity to the ammonium cation show no degradation for the 15 days the 
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monomer was studied. These results suggest that polymers obtained from the ring-opening 

metathesis polymerization of norbornenepropoxy-6-azonia-spiro[5,5]undecane would be 

chemically stable in aggressive alkaline media.  

 

Figure 7.16. The 1H NMR spectra showing the degradation of NPS5 in alkaline medium. 
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Figure 7.17. Degradation of the alpha proton of the secondary carbon in the ether linkage of NPS5 

in alkaline medium.  

Similar degradation rate for the alpha proton of the secondary carbon in the ether linkage in NPS5 

monomer was observed in norbornenehexoxy-6-azonia-spiro[5,5]undecane. See Figure 7.18. 

 



234 

 

  

 

Figure 7.18. The 1H NMR spectra showing the degradation of NHS5 in alkaline medium. 

Having this robust synthetic platform motivated us to synthesize other azo-type norbornene 

monomers based on (6-azonia-spiro[5,4]decane and 6-azonia-spiro[5,6]dodecane) were designed 

and synthesized. 
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7.2.24 Synthesis of 4-Hydroxy-6-azonia-spiro[5,4]decane 

 

Scheme 7.14. Synthesis of 4-hydroxy-6-azonia-spiro[5,4]decane. 

In a two-neck round bottom flask, 21 g (0.152 moles) of potassium carbonate was charged into a 

solution of 26 g (0.124 moles) of 1,4 dibromobutane in 300 ml of acetonitrile. The mixture was 

heated to reflux. After 10 minutes, a solution of 10.1 g (0.1 moles) of 4-hydroxypiperidine in 50 

ml of acetonitrile was added to the mixture. After 20 h the reaction bath was gradually cooled to 

room temperature. The reaction mixture was then rotovapped to remove the solvent leaving an off-

white solid which was re-dissolved in 300 ml of ethanol to filter-off the unreacted potassium 

carbonate. The solution was then partially evaporated to obtain a concentrated solution that was 

precipitated into diethyl ether. Afterwards, the yellowish was filtered and washed thrice in DCM. 

The solid was then dried in vacuo at room temperature to afford 16.9 g (72% yield) of an off-white 

solid.  

Characterization of the product by 1H NMR confirm the successful synthesis of 4-hydroxy-6-

azonia-spiro[5,4]decane. The protons of 4-hydroxy-6-azonia-spiro[5,4]decane and their 

corresponding peaks on the 1H NMR spectrum are shown in Figure 7.19.  
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Figure 7.19. The 1H NMR spectrum 4-hydroxy-6-azonia-spiro[5,4]decane. 

The product, 4-hydroxy-6-azonia-spiro[5,4]decane, was further characterized by TOF-mass 

spectrometer. From the chromatogram of 4-hydroxy-6-azonia-spiro[5,4]decane, shown in Figure 

7.20, a spectral line on the molecular weight to charge ratio of 156 g/mol.C corresponds to the 

molecular weight of  4-hydroxy-6-azonia-spiro[5,4]decane without the bromide counterion. Two 

spectral lines on 393 and 391 g/mol.C resulting from the two isotopes of bromine (79 and 81 g/mol) 

are visible on the spectra at higher m/z ratios. These spectral lines corresponds to two 4-hydroxy-

6-azonia-spiro[5,4]decane and one bromide counterion. These results confirm that 4-hydroxy-6-

azonia-spiro[5,4]decane was successfully synthesized.  
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Figure 7.20. The TOF-mass spectrometer chromatogram of 6-azonia-spiro[5,4]decane 

7.2.25 Synthesis of Norbornenepropoxy-6-azonia-spiro[5,4]decane (NPS4) 

 

Scheme 7.15. Synthesis of norbornenepropoxy-6-azonia-spiro[5,4]decane (NPS4). 
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In a round bottom flask, 3.0 g (12.2 mmoles) of 4-hydroxy-6-azonia-spiro[5,4]decane was 

dissolved in 30 ml of anhydrous DMSO. The solution was gradually added to another round 

bottom flask containing 1.02 g (25.5 mmoles) of sodium hydride equipped with a magnetic stirrer. 

The reaction proceeded at room temperature for 1 h. Afterwards, 5.44 g (25.4 mmoles) of 

norbornenepropylbromide dispersed in 30 ml anhydrous DMSO was gradually added into the 

reaction mixture. The color of the mixture changes from white to light brown. The reaction was 

allowed to proceed for 20 h. Thereafter, the mixture was vacuum filtered to remove unreacted 

sodium hydride. The filtrate was a viscous clear brown liquid. The filtrate was then precipitated 

into diethyl ether to give a white solid. After filtration, the white solid was then washed with diethyl 

ether again and dried. The white solid was then dissolved in 200 ml of hot acetone to filter-off 

unreacted 4-hydroxy-6-azonia-spiro[5,4]decane and sodium bromide. The product was then 

recrystallized from acetone by cooling the solution to 4 ºC. After filtration, the crystals were then 

washed with diethyl ether and dried in vacuum to afford 3.5 g (77% yield) of the product.  

Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenpropoxy-6-azonia-spiro[5,4]decane. The protons of norbornenpropoxy-6-azonia-

spiro[5,4]decane and their corresponding peaks on the 1H NMR spectrum are shown in Figure 

7.21.  
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Figure 7.21. The 1H NMR spectrum of norbornenepropoxy-6-azonia-spiro[5,4]decane. 

The product, norbornenepropoxy-6-azonia-spiro[5,4]decane, was further characterized by TOF-

mass spectrometer. From the chromatogram of norbornenepropoxy-6-azonia-spiro[5,4]decane, 

shown in Figure 7.22, a spectral line on the molecular weight to charge ratio of 290 g/mol.C 

corresponds to the molecular weight of  norbornenepropoxy-6-azonia-spiro[5,4]decane without 

the bromide counterion. Two spectral lines on 659 and 661 g/mol.C resulting from the two isotopes 

of bromine (79 and 81 g/mol) are visible on the spectra at higher m/z ratios. These spectral lines 

corresponds to two norbornenepropoxy-6-azonia-spiro[5,4]decane and one bromide (with its two 

isotopes) counterion. These results confirm that norbornenepropoxy-6-azonia-spiro[5,4]decane 

was successfully synthesized.  
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Figure 7.22. The TOF-mass spectrometer chromatogram of norbornenepropoxy-6-azonia-

spiro[5,4]decane (NPS4). 
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7.2.26 Synthesis of Norbornenehexoxy-6-azonia-spiro[5,4]decane (NHS4) 

 

Scheme 7.16. Synthesis of norbornenehexoxy-6-azonia-spiro[5,4]decane (NHS4). 

In a round bottom flask, 2.0 g (8.5 mmoles) of 4-hydroxy-6-azonia-spiro[5,4]decane was dissolved 

in 30 ml of anhydrous DMSO. The solution was gradually added to another round bottom flask 

containing 0.68 g (17.0 mmoles) of sodium hydride equipped with a magnetic stirrer. The reaction 

proceeded at room temperature for 1 h. Afterwards, 4.4 g (17.2 mmoles) of 

norbornenehexylbromide dispersed in 30 ml anhydrous DMSO was gradually added into the 

reaction mixture. The color of the mixture changes from white to light brown. The reaction was 

allowed to proceed for 20 h. Thereafter, the mixture was vacuum filtered to remove unreacted 

sodium hydride. The filtrate was a viscous clear brown liquid. The filtrate was then precipitated 

into diethyl ether to give a white solid. After filtration, the white solid was then washed with diethyl 

ether again and dried. The white solid was then dissolved in 200 ml of hot acetone to filter-off 

unreacted 4-hydroxy-6-azonia-spiro[5,4]decane and sodium bromide. The product was then 

recrystallized from acetone by cooling the solution to 4 ºC. After filtration, the crystals were then 

washed with diethyl ether and dried in vacuum to afford 2.1 g (60% yield) of desired product. 
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Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenehexoxy-6-azonia-spiro[5,4]decane. The protons of norbornenehexoxy-6-azonia-

spiro[5,4]decane and their corresponding peaks on the 1H NMR spectrum are represented in Figure 

7.23.  

 

 

Figure 7.23. The 1H NMR spectrum norbornenehexoxy-6-azonia-spiro[5,4]decane.  

The product, norbornenehexoxy-6-azonia-spiro[5,4]decane, was further characterized by TOF-

mass spectrometer. From the chromatogram of norbornenehexoxy-6-azonia-spiro[5,4]decane, 

shown in Figure 7.24, a spectral line on the molecular weight to charge ratio of 332 g/mol.C 
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corresponds to the molecular weight of  norbornenehexoxy-6-azonia-spiro[5,4]decane without the 

bromide counterion. These results confirm that norbornenehexoxy-6-azonia-spiro[5,4]decane was 

successfully synthesized.  

 

Figure 7.24. The TOF-mass spectrometer chromatogram of norbornenepropoxy-6-azonia-

spiro[5,4]decane (NPS4). 
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7.2.27 Synthesis of 4-Hydroxy-6-azonia-spiro[5,6]dodecane 

 

Scheme 7.17. Synthesis of 4-hydroxy-6-azonia-spiro[5,6]dodecane. 

In a two-neck round bottom flask, 21 g (0.152 moles) of potassium carbonate was charged into a 

solution of 29.16 g (0.120 moles) of 1,6 dibromohexane in 300 ml of ethanol. The mixture was 

heated to reflux. After 10 minutes, a solution of 10.1 g (0.1 moles) of 4-hydroxypiperidine in 50 

ml of ethanol was added to the mixture. The reaction proceeded for 20 h after which it was cooled 

to room temperature. Excess potassium carbonate was removed by filtration. The solution was 

then partially evaporated to obtain a concentrated solution that was precipitated into diethyl ether. 

Afterwards, the yellowish solid formed was filtered and washed in dichloromethane thrice. The 

solid was then dried in vacuo at room temperature to afford 19.6 g (74% yield) of an off-white 

solid.  

Characterization of the product by 1H NMR confirm the successful synthesis of 4-hydroxy-6-

azonia-spiro[5,6]dodecane. The protons of and their corresponding peaks on the 1H NMR 

spectrum are represented in Figure 7.25.  
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Figure 7.25. The 1H NMR spectrum of 4-hydroxy-6-azonia-spiro[5,6]dodecane. 

The product, 4-hydroxy-6-azonia-spiro[5,6]dodecane, was further characterized by TOF-mass 

spectrometer. From the chromatogram of 4-hydroxy-6-azonia-spiro[5,6]dodecane, shown in 

Figure 7.26, a spectral line on the molecular weight to charge ratio of 184 g/mol.C corresponds to 

the molecular weight of  4-hydroxy-6-azonia-spiro[5,6]dodecane without the bromide counterion. 

Two spectral lines on 447 and 449 g/mol.C  resulting from the two isotopes of bromine (79 and 81 

g/mol) are visible on the spectra at higher m/z ratios. These spectral lines corresponds to two 4-

hydroxy-6-azonia-spiro[5,6]dodecane and one bromide (with its two isotopes) counterion. These 

results confirm that 4-hydroxy-6-azonia-spiro[5,6]dodecane was successfully synthesized.  
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Figure 7.26. The TOF-mass spectrometer chromatogram of 4-hydroxy-6-azonia-

spiro[5,6]dodecane. 
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7.2.28 Synthesis of Norbornenepropoxy-6-azonia-spiro[5,6]dodecane (NPS6) 

 

Scheme 7.18. Synthesis of norbornenepropoxy-6-azonia-spiro[5,6]dodecane (NPS6). 

In a round bottom flask, 3.75 g (14.2 mmoles) of 4-hydroxy-6-azonia-spiro[5,6]dodecane was 

dissolved in 50 ml of anhydrous DMF. The solution was gradually added to 1.14 g (28.5 mmoles) 

of sodium hydride in another round bottom flask equipped with a magnetic stirrer. The reaction 

proceeded at room temperature for 1 h. Afterwards, 3.75 g (17.6 mmoles) of 

norbornenepropylbromide dispersed in 30 ml anhydrous DMF was gradually added into the 

reaction mixture. The color of the mixture changes from white to light brown. The reaction was 

allowed to proceed for 20 h. Thereafter, the mixture was vacuum filtered to remove unreacted 

sodium hydride. The filtrate was a viscous clear brown liquid. The filtrate was then precipitated 

into diethyl ether to give a white solid. After filtration, the white solid was then washed in diethyl 

ether again and dried. The white solid was then dissolved in 100 ml of hot acetone to filter-off 

unreacted 4-propoxy-6-azonia-spiro[5,6]dodecane and sodium bromide. The product was then 

recrystallized from acetone by cooling the solution to 4ºC. After filtration, the crystals were then 

washed in diethyl ether and dried in vacuum to afford 3.4 g (60% yield) of desired product. 
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Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenepropoxy-6-azonia-spiro[5,6]dodecane. The protons of norbornenepropoxy-6-azonia-

spiro[5,6]dodecane and their corresponding peaks on the 1H NMR spectrum are represented in 

Figure 7.27.  

 

Figure 7.27. The 1H NMR spectrum of norbornepropoxy-6-azonia-spiro[5,6]dodecane. 
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7.2.29 Synthesis of Norbornenehexoxy-6-azonia-spiro[5,6]dodecane (NHS6) 

 

Scheme 7.19. Synthesis of norbornenehexoxy-6-azonia-spiro[5,6]dodecane (NHS6). 

In a round bottom flask, 4.0 g (15.2 mmoles) of 4-hydroxy-6-azonia-spiro[5,6]dodecane was 

dissolved in 50 ml of anhydrous DMF. The solution was gradually added to 1.2 g (30 mmoles) of 

sodium hydride in another round bottom flask equipped with a magnetic stirrer. The reaction 

proceeded at room temperature for 1 h. Afterwards, 8 g (31.3 mmoles) of norbornenehexylbromide 

dispersed in 30 ml anhydrous DMF was gradually added into the reaction mixture. The color of 

the mixture changes from white to light brown. The reaction was allowed to proceed for 20 h. 

Thereafter, the mixture was vacuum filtered to remove unreacted sodium hydride. The filtrate was 

a viscous clear brown liquid. The filtrate was then precipitated into diethyl ether to give a white 

solid. After filtration, the white solid was then washed in diethyl ether again and dried. The white 

solid was then dissolved in 100 ml of hot acetone to filter-off unreacted 6-azonia-

spiro[5,6]dodecane and sodium bromide. The product was then recrystallized from acetone by 



250 

 

cooling the solution to 4 ºC. After filtration, the crystals were then washed in diethyl ether and 

dried in vacuum to afford 5.7 g (86 % yield) of desired product. 

Characterization of the product by 1H NMR confirm the successful synthesis of 

norbornenehexoxy-6-azonia-spiro[5,6]dodecane. The protons of norbornenehexoxy-6-azonia-

spiro[5,6]dodecane and their corresponding peaks on the 1H NMR spectrum are represented in 

Figure 7.28.  

 

Figure 7.28. The 1H NMR spectrum of norbornehexoxy-6-azonia-spiro[5,6]dodecane. 
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Interestingly, the monomers NPS6 and NHS6 were insoluble in water and so were there polymers. 

The addition of one carbon atom to the base ring of the NPS5 and NHS5 structure increased its 

hydrophobicity.  

7.3 Conclusion 

The following ASU-type salts, 4-hydroxy-6-azonia-spiro[5,4]decane, 4-hydroxy-6-azonia-

spiro[5,5]undecane, and 4-hydroxy-6-azonia-spiro[5,6]dodecane were successfully synthesized. 

The norbornene-based monomers, norbornepropoxy-6-azonia-spiro[5,4]decane (NPS4) and 

norbornehexoxy-6-azonia-spiro[5,4]decane (NHS4), were synthesized from 4-hydroxy-6-azonia-

spiro[5,4]decane. The norbornene-based monomers, norbornepropoxy-6-azonia-

spiro[5,5]undecane (NPS5) and norbornehexoxy-6-azonia-spiro[5,5]undecane (NHS5), were 

synthesized from 4-hydroxy-6-azonia-spiro[5,5]undecane. The norbornene-based monomers, 

norbornepropoxy-6-azonia-spiro[5,6]dodecane (NPS6) and norbornehexoxy-6-azonia-

spiro[5,6]dodecane (NHS6), were synthesized from 4-hydroxy-6-azonia-spiro[5,6]dodecane. 

Preliminary degradation studies on NPS5 and NHS5 confirm the stability of the ether linkage in 

NPS5 and NHS5. The monomers, NPS5 and PNHS5, were successfully polymerized by ring-

opening metathesis polymerization. The X-ray scattering profile of these homopolymers show a 

scattering peak indicative of backbone-backbone ordering. And as in the case of P4VP_CnBr, the 

spacing and intensity corresponding to these peaks increased with increasing number of carbons 

on the side-chain.  
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CHAPTER 8 

SYNTHESIS AND CHARACTERIZATION OF RANDOM COPOLYMERS OF NPS5 

AND NHS5 WITH NOR AND BLOCK COPOLYMERS OF NPS5 AND NHS5 WITH 

NDMDC 

8.1 Random Copolymer Synthesis and Characterization 

8.1.1 Introduction 

Although the syntheses of the homopolymers PNPS5 and PNHS5 (see Chapter 7) have been 

successful, they can be of little to no use if the homopolymers lack mechanical integrity in polar 

solvents. These homopolymers are soluble in water and methanol. Hydrophilic monomers and 

hydrophobic monomers have been copolymerized to improve the resistance of their corresponding 

hydrophilic polymers to polar solvents. This will improve the mechanical properties of these 

hydrophilic in a humidified environment.1–10  

Random copolymers are also of interest to study because of their morphology. It is well 

documented in the literature that these copolymers form ionic clusters that are randomly distributed 

within a hydrophobic polymer matrix.1-3 These clusters act as fillers in the matrix thereby 

providing improved mechanical properties otherwise absent in non-polyelectrolyte copolymers. 

Experimental and theoretical motivations also motivate the  study of the competing parameters for 

ionomer formation since the theory of this polymer morphology, though abundantly discussed in 

the literature, remains a puzzle to polymer physicists.1,3,11,12 From the previous chapters, especially 

Chapter 4 and Chapter 5, we have discussed the role backbone-backbone spacing and electrostatic 

interaction has on the formation of ionomer cluster morphology. Unlike the P4VP-r-PI_CnBr 

series, in which spacing between dipoles on adjacent backbones increase with increasing number 
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of carbons on the pendant side-chain, the spacing between dipoles on adjacent backbones in 

PNPS5 and PNHS5 did not change with increasing number of carbons on the pendant side-chain. 

It will be thus interesting to study how the spacing between the dipoles in PNPS5 and PNHS5 

affect the formation of ionomer clusters when NPS5 and NHS5 are randomly copolymerized with 

a hydrophobic comonomer. Furthermore, ionomers are also reported to form water channels in 

their hydrated states for effective charge transport thus possibly having better ion conductivity than 

their homocopolymer counterpart.13 This project would therefore explore the following questions: 

▪ Can NPS5 and NHS5 be copolymerized with a hydrophobic monomer to give a random 

copolymer? 

▪ Is there a change in the mechanical properties, namely solubility of the copolymer, in polar 

solvent? 

▪ Do these random copolymers form ionomer clusters? 

▪ Is there a transition from backbone-backbone spacing morphology to ionic clusters when 

probed by SAXS? 

8.1.2 Materials and Methods 

8.1.2.1 Random Copolymerization of NPS5 and Norbornene (NOR) 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 200 mg (0.52 mmoles) of NPS5 in 5 

ml of DMF was mixed with a solution of 49 mg (0.52 mmoles) of norbornene (NOR) in 0.5 ml 

DCM. A solution of 3 mg (0.0035 mmoles) of Grubbs’ II catalyst in 0.5 ml of DCM was charged 

into the monomer mixture. The reaction was allowed to proceed for 24 h. The reaction mixture 

was then precipitated in diethyl ether to afford 199 mg (80% yield) of polymer.  
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Scheme 8.1. Synthesis of PNOR-r-PNPS5. 

8.1.2.2 Random Copolymerization of NHS5 and Norbornene (NOR) 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 100 mg (0.23 mmoles) of NHS5 in 5 

ml of DMF was mixed with a solution of 135 mg (1.44 mmoles) of norbornene (NOR) in 2 ml 

DCM. A solution of 3 mg (0.0035 mmoles) of Grubbs’ II catalyst in 0.5 ml of DCM was charged 

into the monomer mixture. The reaction was allowed to proceed for 24 h. The reaction mixture 

was then precipitated in diethyl ether to afford 180 mg (77% yield) of polymer.  
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Scheme 8.2. Synthesis of PNOR-r-PNHS5. 

8.1.2.3 Characterization of PNOR-r-PNPS5 and PNOR-r-PNHS5 by 1H NMR 

The chemical composition of PNOR-r-PNPS5 and PNOR-r-PNHS5 was determined using a 

Bruker 500 Fourier-transform nuclear magnetic resonance (FT-NMR). 

8.1.2.4 Characterization of PNOR-r-PNPS5 and PNOR-r-PNHS5 by MAXS  

Ganesha SAXS Measurement: medium-angle X-ray scattering (MAXS) measurements were 

performed in transmission geometry on Molmex Scientific Ganesha SAXS Lab. A double aperture 

for the Cu-Kα radiation (λ = 1.54 Å), which was the X-ray source, was used. Silver behenate was 

used as the standard for the momentum transfer calibration. Data collection was performed with a 

typical exposure time of two minutes. Depending on the signal-to-noise ratio, data collection could 

be longer. Azimuthal averaging of the obtained isotropic 2-D pattern was performed to obtain the 

intensity against wave vector plot. 
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8.1.2.5 Sample Preparation 

In a 5 ml scintillation vial, 100 mg of PNOR-r-PNPS5 was dissolved in 1.5 ml of methanol and 

was solution cast on a Teflon® plate. After 24 h a thin film with a thickness of about 200 µm was 

obtained.  

 

 

 

 

 

 

Figure 8.1. A picture of PNOR-r-PNPS5 random copolymer.  

8.1.3 Results and Discussion 

The 1H NMR results confirm the successful random copolymerization of NPS5 and norbornene 

(NOR). Composition of NPS5 and NOR in PNOR-r-PNPS5 as calculated from NMR was different 

from the feed ratio composition of the monomers. The 1H NMR results also confirm the successful 

random copolymerization of NHS5 and norbornene (NOR). The NMR composition for PNPS5 

and PNOR were calculated from the vinyl peak for both PNOR and PNPS5 and the alpha proton 

on the secondary carbon in the ether linkage in PNPS5. See Figure 8.2.  
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Figure 8.2. The 1H NMR spectrum of PNOR-r-PNPS5(60:40)_1.91. 

As regards the nomenclature of PNOR-r-PNPS5(60:40)_1.91, in the parenthesis is the mol% of 

PNPS5 and PNOR in the copolymer determined from the 1H NMR, and 1.91 is the IEC calculated 

from the mol% determined from 1H NMR.  A better control of polymer composition relative to 

monomer feed ratio was observed for the PNHS5-r-PNOR series in comparison to the PNPS5-r-

PNOR series.  

The NMR composition for PNHS5 and PNOR were calculated from the vinyl peak for both PNOR 

and PNHS5 and the alpha proton on the secondary carbon in the ether linkage in PNPS5. See 

Figure 8.3.  
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Figure 8.3. The 1H NMR spectrum of PNOR-r-PNHS5(76:24)_1.38. 

A tabular summary of the target composition, NMR composition, target IEC, NMR IEC, and the 

MAXS d-spacing for PNPS5-r-PNOR is presented in Table 8.1.  
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Table 8.1. Summary of NMR and SAXS characterization of PNOR-r-PNPS5 at varying 

compositions. 

Sample Target 

Composition 

NOR:NPS5 

NMR 

Nor:NPS5 

IEC 

projected 

IEC 

NMR(mmol/g) 

d- spacing 

(Å) 

Solubility 

in Water 

PNOR-r-NPS5_1.04 90:10 86:14 1.00 1.04 42 No 

PNOR-r-NPS5_1.91 75:25 60:40 1.50 1.91 62 Partially 

PNOR-r-NPS5_2.56 60:40 6:94 1.91 2.56 44 Yes 

PNPS5_2.60 0:100 0:100 2.60 2.60 27 Yes 

 

Random copolymerization of PNPS5 and PNHS5 with PNOR decreased the solubility of the 

resultant random copolymer. For the PNOR-r-PNPS5 series at about 40 mol % PNPS5 the polymer 

becomes insoluble in water. However, random copolymers with 40 mol% was soluble in methanol. 

At 80 mol% of the PNPS5 component, the random copolymer was insoluble in both methanol and 

water. In the PNOR-r-PNHS5 series, solubility also decreased with increasing hydrophobic 

content. At 76 mol% of PNHS5, the polymer is still partially insoluble in methanol.  

A tabular summary of the target composition, NMR composition, target IEC, NMR IEC, and the 

MAXS d-spacing for PNPS5-r-PNOR is presented in Table 8.2.  
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Table 8.2. Summary of NMR and SAXS characterization of PNOR-r-PNHS5 at varying 

compositions. 

Sample Target 

Composition 

(NOR:NHS5) 

NMR composition 

(NOR:NHS5) 

 

Target 

IEC 

(mmol/g) 

NMR IEC 

(mmol/g) 

d- 

Spacing (Å) 

PNOR-r-PNHS5_1.25 86:14 76:24 1.0 1.38 75 

PNOR-r-PNHS5_1.56 72:28 68:32 1.50 1.61 59 

PNOR-r-PNHS5_1.90 61:39 60:40 1.74 1.76 49 

PNOR-r-PNHS5_1.87 44:56 40:60 2.0 2.04 41 

PNHS5_2.34 0:100 35:65 2.34 2.34 34 

 

From the SAXS profile of both PNOR-r-PNPS5 and PNOR-r-PNHS5 (see Figure 8.4), there is a 

scattering peak whose corresponding dimension increases with increasing polynorbornene (non-

ionic) concentration. This suggests that these random copolymers form ionomers. From the study 

of P4VP-r-PI_CnBr, at high concentration of the alkyl pyridinium unit (~ 40 mol%) and higher 

values of n (i.e n > 3), SAXS spectra show backbone-backbone spacing (see Chapter 4). Samples 

of PNOR-r-PNPS5 and PNOR-r-PNHS5 have ionic content ranging from (30-100 mol%). The 

homopolymers, PNPS5 and PNHS5 have side-chain lengths of approximately 9 and approximately 

12 carbons away from the backbone respectively; thus, random copolymers with high 

concentration of PNPS5 and PNHS5 should show backbone-backbone spacing. The scattering data 
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for PNOR-r-PNPS5(86:14)_1.04 and PNOR-r-PNHS5(76:24)_1.38 show a broad ionomer peak. 

For the PNOR-r-PNHS5 series, a peak whose appearance and shape is similar to the backbone-

backbone peak in the homopolymer can be observed for PNOR-r-PNHS5(68:32)_1.61, PNOR-r-

PNHS5(60:40)_1.76, and PNOR-r-PNHS5(40:60)_2.04. A clear indication that the scattering 

peak observed in PNOR-r-PNHS5(68:32)_1.61, PNOR-r-PNHS5(60:40)_1.76, and PNOR-r-

PNHS5(40:60)_2.04 are not due to ionomer cluster morphology is that the spacing corresponding 

to these peaks decreases with increasing hydrophobic content. This behavior is not typical for 

ionomer cluster morphology in which the spacing increases with increasing concentration of the 

non-ionic component.6,7 At about 32 mol% of PNHS5, the series has transitioned to a backbone-

backbone dominant morphology. 

 

 

 

 

 

 

 

 

 

Figure 8.4. The SAXS profile of the a) PNOR-r-PNPS5 and b) PNOR-r-PNHS5 series. 
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The decrease in the backbone-backbone spacing for the PNOR-r-PNHS5 series with increasing 

ionic content may be due to the fixed distance between dipoles on adjacent polymer backbones. 

With increasing concentration of PNHS5, the concentration of charges per backbones increases 

consequently the dipole attraction between adjacent backbones becomes stronger. This will lead 

to decreasing backbone-backbone spacing with increasing concentration of the charged copolymer 

component in the random copolymer.  This behavior is unlike the backbone-backbone spacing 

behavior evident during the quaternization of P4VP-r-P4VP_CnBr series. In these random 

copolymer systems, the spacing between backbones increased with increasing conversion of the 

4-vinylpyridine unit to 4-vinyl pyridinium bromide unit for all the studied samples. In these 

systems, P4VP-r-P4VP_CnBr, the dipoles are situated near the backbone of the polymers, hence 

steric effects will dominate the interaction between tails of the pendant side-chains on adjacent 

backbones. As the concentration of pendant side-chains on the backbones increases, the steric 

repulsive effects between these pendant side-chains on the backbones also increases, consequently 

increasing the spacing between the backbones. In the PNOR-r-PNPS5 and PNOR-r-PNHS5 series 

however, the dipoles are situated away from the backbones towards the tail of the pendant side-

group. Thus, with increasing concentration of PNPS5 and PNHS5, the dipolar attraction between 

dipoles on adjacent polymer backbones increases, decreasing the effective backbone-backbone 

spacing between adjacent polymers in these random copolymers.  

In the studied P4VP-r-PI_CnBr series, P4VP-r-PI-r-PS_CnBr series, and P4VP-r-PS_CnBr series, 

the transition from ionomer cluster morphology to backbone-backbone morphology is dependent 

on the length of the pendant side-chain. The further the dipoles are separated from the backbones, 

the less likely is the randomly charged comb-like polymer to form ionomer cluster morphology. 

This is the pendant side-chain steric effect. However, in the PNOR-r-PNHS5 series, the transition 
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from ionomers cluster morphology to backbone-backbone morphology is dependent on the large 

concentration of the PNHS5 component. With decreasing concentration of the non-ionic 

copolymer, the random copolymer cannot form a hydrophobic matrix in which ionic clusters can 

be evenly distributed. This is effect, the matrix effect, is further analyzed in Chapter 9.   

Backbone-backbone spacing exists in the PNPS5 and PNHS5 because of steric repulsion similar 

to that observed in P4VP_CnBr. In their random copolymer counterpart (PNOR-r-

PNPS5(86:14)_1.04 and PNOR-r-PNHS5(76:24)_1.38), clustering of ions give rise to ionomer 

peaks. Thus, as in P4VP-r-PI_CnBr and P4VP-r-PI-r-PS_CnBr, there will be a competition 

between dipole forces and sterics in these copolymers. However, no coexistence peaks were 

observed for these copolymers. This suggests that clustering of ions and backbone-backbone 

spacing may be mutually exclusive.   

8.1.4 Summary  

Characterization of the synthesized random copolymers of PNOR-r-PNPS5 and PNOR-r-PNHS5 

by 1H NMR confirm that these homopolymers were successfully synthesized by ring-opening 

metathesis chemistry. All the random copolymers of PNOR-r-PNPS5 and PNOR-r-PNHS5 are 

were solvent processable. With decreasing concentration of PNPS5 in the PNOR-r-PNPS5 series, 

the corresponding polymer became less soluble in water and methanol. These random copolymers 

are solvent processable. The same solvent processable behavior was observed in the PNOR-r-

PNHS5 series. X-ray scattering data for PNOR-r-PNHS5 show ionomer morphology at lower ionic 

concentration (PNOR-r-PNHS5(76:24)_1.38) and a transition to backbone-backbone spacing at 

higher ionic concentration (PNOR-r-PNHS5(32:68)_1.61). Unlike in P4VP-r-P4VP_CnBr, where 

the increase in the concentration of the ionic component increases the backbone-backbone spacing; 



269 

 

in the PNOR-r-PNHS5 series, backbone-backbone spacing decreased with increasing 

concentration of PNHS5. This may have resulted from the position of the dipoles in both polymers. 

In P4VP-r-P4VP_CnBr, the dipoles are situated near the backbone, while they are situated near 

the tail of the pendant side-chain in PNOR-r-PNHS5 series. Finally, the transition from ionomer 

cluster to backbone-backbone morphology in P4VP-r-PI_CnBr depended on the length of the side-

chain, however, in PNOR-r-PNHS5 series, this morphological transition was dependent on the 

concentration of the PNHS5 in the random copolymer. 

 

8.2 Block Copolymer Synthesis and Characterization 

8.2.1 Introduction 

Block copolymers have been well known to have interesting morphological features as a result of 

nanoscale phase separation of the different blocks. In the literature, block copolymers of 

polyelectrolytes have been shown to produce high conductivity.8,14,15 A possible reason for this 

improved conductivity may arise from the ability of the ionic blocks, through electrostatic 

interactions, to skew the traditional block copolymer phase diagram. In some block copolymers, 

electrostatic interactions may lead to phase-inversion. Thus, the minor ionic block may become 

the major phase, and the major hydrophobic block the minor phase. A beneficial consequence of 

this phase-inversion may be unimpeded ionic conduction.1,15  

Polyelectrolyte block copolymers also have superior mechanical properties than the homopolymer 

of the polyelectrolyte. Improved mechanical properties arise from a robust block, especially 

hydrophobic, which will provide the membrane with mechanical integrity. Furthermore, unlike 
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random copolymers, block copolymers of hydrophobic and hydrophilic sections are generally 

insoluble in polar solvents.8,15–18 

The morphology of block copolymers is always an interesting aspect of polymer physics. In the 

literature, different length scale ordering can exist for different block copolymers, and this can 

have a profound impact on some properties of these polymers. These block copolymers can find 

use in bandgap switching, proton conduction, and for optical or electrical purposes.19–24  

 

Figure 8.5. Depiction of structure-within-structure arrangement in block copolymers. [Image taken 

from Ref 25].25 

Studying varying length-scales of order in block copolymers is rare in the literature even more rare 

in block polyelectrolytes. From the homopolymer morphology of PNPS5 and PNHS5, it is evident 
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that the backbones of these block copolymers have a periodic arrangement. Since it is possible to 

obtain different morphologies by a structure-within-structure arrangement, this can lead to 

optimization of structure-property relationships.7,10,11 This is particularly useful for AEMs. With 

an array of morphological possibilities at different length scales, the effect of these morphologies 

on a particular property, e.g. conductivity, can be investigated.  

Although norbornene can theoretically form a block copolymer with many norbornene based 

monomers, the reaction must be performed at very low temperatures. Furthermore, even at low 

temperatures, PNOR as the first block has a relatively broad dispersity. Grubbs and Choi suggested 

different monomers that should be good starting monomers for block copolymer synthesis using 

ring-opening metathesis chemistry.26 Most monomers shown in that study have a certain degree of 

symmetry. However, norbornenedimethyl dichloride was conspicuously absent in that study.  

Norbornenedimethyl dichloride is relatively easy to synthesize. The synthesis is based on Diels-

Alder chemistry of dicyclopentadiene and cis1,4,dichlorobut-2-ene.27 It is relatively cheaper in 

comparison to norbornene dimethanol which is a precursor to norbornenedibenzyldiether. It is also 

soluble in DMF as are NPS5 and NHS5. A common solvent for the first and second block is an 

important consideration for the synthesis of block copolymers. The choice for this monomer also 

has a curious note. This monomer has not been well utilized for ROMP and thus it presents an 

academic motivation. Finally, the monomer is relatively stable and does not undergo Fickelstein 

reactions most probably because of its exo form being favored in its synthesis.   

This project will seek answers to the following questions: 

• Can NPS5 and NHS5 be copolymerized with a norbornenedimethyldichloride (NDMDC) 

monomer to give a block copolymer? 



272 

 

• Do the resultant polymers from the block copolymerization form morphologies 

characteristics of block copolymers? 

• What role does the chain spacing have on the block morphology? Can both order types 

coexist or are they mutually exclusive? 

To perform block copolymer synthesis, Grubbs’ generation III catalyst was synthesized from 

Grubbs’ generation II catalyst. The synthetic procedure has been reported in the literature.16 

8.2.2 Materials and Methods 

8.2.2.1 Synthesis of Grubbs’ III catalyst 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 500 mg (0.59 mmoles) of Grubbs’ 2 

was dissolved in 1 ml (10 mmoles) of 3-bromopyridine and stirred for 30 minutes in the glove box. 

The solution was precipitated in hexanes. Excess 3-bromopyridine in hexanes was cannulated out 

of the reaction mixture under nitrogen. The desired green Grubbs’ III catalyst was dried in vacuum 

at room temperature to afford 363 mg (61% yield) of product.  

8.2.2.1 Synthesis of Norbornenedimethyldichloride 

In a round bottom flask, 7 g (0.037 moles) of dicyclopentadiene was dissolved in 20 g (0.11 moles) 

of cis1,4-dichlorobutene. The solution was charged into a Schlenk tube equipped with a magnetic 

stirrer and trace amount of hydroquinone, 50 mg (0.45 mmoles). The mixture was placed in an oil 

bath with a temperature of 185°C and allowed to proceed for 18 h. Fractional distillation was 

performed on the mixture to remove excess cis 1,4 dichlorobutene (40°C, 200 mTorr) and 5.46 g 

(54% yield) of desired product, norbornenediemethyl dichloride (70°C, 150 mTorr).  
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Scheme 8.3. Synthesis of Norbornenedimethyldichloride (NDMDC). 

8.2.2.2 Synthesis of Block Copolymer 

 

Scheme 8.4. Synthesis of PNDMDC-b-PNPS5. 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 75 mg (0.39 mmoles) of NDMDC in 

0.5 ml of DCM was charged into a solution of 1 mg (0.001 mmoles) of Grubbs’ III catalyst in 1 

ml DCM. After 1 min, 100 mg (0.26 mmoles) of NPS5 in 5 ml of DMF was added to the reaction 

mixture. After 20 mins, the reaction is quenched by adding excess ethyl vinyl ether. The polymer 

was then precipitated in diethyl ether to afford 136 mg (77% yield) of polymer.  
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Scheme 8.5. Synthesis of PNDMDC-b-PNHS5. 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 85 mg (0.45 mmoles) of NDMDC in 

0.5 ml of DCM was charged into a solution of 1 mg (0.001 mmoles) of Grubbs’ III catalyst in 1 

ml DCM. After 1 min, 150 mg (0.35 mmoles) of NHS5 in 5 ml of DMF was added to the reaction 

mixture. After 20 mins, the reaction is quenched by adding excess ethyl vinyl ether. The polymer 

was then precipitated in diethyl ether to afford 186 mg (79% yield) of polymer.  
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8.2.2.3 Characterization of PNDMDC-b-PNPS5 and PNDMDC-b-PNHS5 by 1H NMR 

The chemical composition of PNDMDC-b-PNPS5 and PNDMDC-b-PNHS5 was determined 

using a Bruker 500 Fourier-Transform Nuclear Magnetic Resonance (FT-NMR). 

8.2.2.4 Characterization of PNDMDC-b-PNPS5 and PNDMDC-b-PNHS5 by MAXS  

Ganesha SAXS Measurement: Medium-angle X-ray scattering (MAXS) measurements were 

performed in transmission geometry on Molmex Scientific Ganesha SAXS Lab. A double aperture 

for the Cu-Kα radiation (λ = 1.54 Å), which was the X-ray source, was used. Silver behenate was 

used as the standard for the momentum transfer calibration. Data collection was performed with a 

typical exposure time of two minutes. Depending on the signal-to-noise ratio, data collection could 

be longer. Azimuthal averaging of the obtained isotropic 2-D pattern was performed to obtain the 

intensity against wave vector plot. 

8.2.2.5 Preparation of Polymer Samples: 

Due to the nature of the monomers in the block copolymer, the polymers are solvent processable 

only from DMF, however the right balance of dichloromethane and methanol also presents a viable 

option to casting these films. Films were cast on Teflon® sheet.  
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Figure 8.6. A picture of a PNDMDC-b-PNPS5 film. 

8.2.3 Results and Discussion 

Characterization of the NDMDC monomer by 1H NMR confirm the successful synthesis of 

norbornenedimethyldichloride. The protons of norbornenedimethyldichloride and their 

corresponding peaks on the 1H NMR spectrum are represented in Figure 8.7.  
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Figure 8.7. The 1H NMR spectrum of norbornenedimethyldichloride. 

The 1H NMR characterization of the product of the homopolymerization of 

norbornenedimethyldichloride confirm the successful synthesis of 

poly(norbornenedimethyldichloride), PNDMDC. The protons of PNDMDC and their 

corresponding peaks on the 1H NMR spectrum are represented in Figure 8.8. 
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Figure 8.8. The 1H NMR spectrum of poly(norbornenedimethyldichloride). 
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 Figure 8.9. The GPC chromatogram of PNDMDC.  
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The GPC trace for the first block, PNDMDC, is shown in Figure 8.9. The shoulder peak is due to 

secondary metathesis. The analysis of this GPC chromatogram, by PMMA standards, show that 

PNDMDC has a number average molecular weight of 33 Kg/mol with a dispersity of 1.15. This 

relatively narrow dispersity of the first block is indicative of a potential to synthesize block 

copolymers using PNDMDC as the first block. Due to the composition of the block copolymer, 

(PNPS5-b-PNDMDC), could not be characterized by GPC after the addition of NPS5 or NHS5 

blocks. Although both blocks are soluble in DMF, attempts to characterize even PNPS5 or PNHS5 

homopolymers by DMF GPC were unsuccessful.   

It is obvious from the 1H NMR that block copolymers could be synthesized by ROMP using 

NDMDC as one block. Again, as in the random copolymer series, 1H NMR data for the PNHS5 

block copolymers showed better agreement between the target and the 1H NMR composition in 

comparison to the PNPS5 block copolymers. Unlike in the PNOR-r-PNPS5 in which the 

distinctive tertiary ether peak from the copolymer could be used to obtain the composition of the 

respective polymers in the block copolymer, the alpha proton of the secondary carbon in the ether 

linkage is always non-distinct in the 1H NMR spectrum of the block copolymers. Fortuitously, in 

the 1H NMR spectra of PNDMDC-r-PNPS5, the vinyl peak of PNDMDC does not overlap with 

the vinyl peak of PNPS5 or PNHS5 unlike in the 1H NMR spectra of PNOR-r-PNPS5. Thus, the 

composition of PNPS5 and PNDMDC in the copolymer can be computed from the integral of the 

vinyl peaks due to the respective blocks. See Figure 8.10.  
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Figure 8.10. The 1H NMR spectrum of PNDMDC-b-PNPS5(56:44)_1.60.  

Table 8.3. Summary of NMR and SAXS characterization of PNDMDC-b-PNPS5 at varying 

compositions. 

Sample Feed ratio 

(NDMDC:NPS5) 

NMR ratio 

(NDMDC:NPS5) 

IECfeed 

(mmol/g) 

IECNMR 

(mmol/g) 

d- 

spacing(nm) 

PNDMDC-b-PNPS5_0.9 80:20 79:21 0.9 0.9 35 

PNDMDC-b-PNPS5_1.56 60:40 57:43 1.50 1.56 31 

PNDMDC-b-PNPS5_1.60 50:50 56:44 1.74 1.60 33 

PNDMDC-b-PNPS5_2.0 40:60 38:62 1.96 2.0 31 

PNDMDC-b-PNPS5_2.50 20:80 8:92 2.32 2.50 24 

 



281 

 

Table 8.4. Summary of NMR and SAXS characterization of the PNDMDC-b-PNHS5 at varying 

compositions. 

Sample Target 

Composition 

(NDMDC:NHS5) 

 

NMR Composition 

(NDMDC:NHS5) 

Target IEC 

(mmol/g) 

NMR IEC 

(mmol/g) 

d- 

spacing 

(Å) 

PNDMDC-b-PNHS5 _1.25 66:34 66:34 1.25 1.25 28 

PNDMDC-b-PNHS5 _1.56 56:44 53:47 1.50 1.56 22 

PNDMDC-b-PNHS5 _1.90 43:57 34:66 1.75 1.90 18 

PNDMDC-b-PNHS5 _1.87 40:60 36:64 1.80 1.87 20 

PNDMDC-b-PNHS5 _1.89 28:72 35:65 2.0 1.89 20 

 

The composition of PNHS5 and PNDMDC in the copolymer can be computed from the integral 

of the vinyl peaks due to the respective blocks. See Figure 8.11.  
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Figure 8.11. The 1H NMR spectrum of PNDMDC-b-PNHS5(56:44)_1.56.  

Corroborating evidences to the successful block copolymerization of NHS5 and NPS5 with 

NDMDC are the SAXS data for this block copolymers. The scattering spectra obtained from SAXS 

does not show very good phase separation between the ionic and non-ionic block in the PNDMDC-

b-PNPS5 series. See Figure 8.12. However, scattering profiles of PNDMDC-b-PNHS5 series, see 

Figure 8.12, show distinctive peaks indicative of strong microphase separation between the ionic 

and non-ionic blocks. The SAXS data for the PNDMDC-b-PNPS5 series also show the 

arrangement of backbones as substructure within a microphase separated superstructure at higher 

values of Q. The morphology of the backbones, whether lamellar or cylindrical, within the ionic 

block could not be determined given that only one scattering peak could be observed in the 
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scattering data. The X-ray scattering peak indicative of a structure-within-structure for PNDMDC-

b-PNHS5 also show a higher order peak closer to the primary peak. The ratio of this peak to the 

primary peak 2 as in the PNHS5 homopolymer. Thus, the structure-within-structure maintains a 

lamellar morphology within the parent morphology that is possibly cylindrical or lamellar.  
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Figure 8.12. The SAXS profile for the PNDMDC-b-PNPS5 series .  
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Figure 8.13. The SAXS profile for the PNDMDC-b-PNHS5 series. 

It is also apparent from the SAXS data shown (see Figure 8.12 and Figure 8.13) that the domain 

size increased with increasing hydrophobic content for both PNDMDC-b-PNPS5 and PNDMDC-

b-PNHS5. This appears counterintuitive because the hydrophilic domain has the side-chain and 

the bulky ASU group. It has been reported for PS-b-P4VP(PDP) system, that with increasing 
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P4VP(PDP) content, domain sizes of quaternized systems increases.23 This phenomenon in which 

the domain spacing of the block copolymer decrease with increasing ionic content has been 

observed by Yuan.28 It is possible that the domain size obtained from the scattering data is the size 

of the diameter of the cylinder and not the distance between cylinders in a hexagonal morphology. 

It thus makes sense that with decreasing hydrophobic content, the size of this cylinder will 

decrease.  

 

 

 

 

 

 

 

Figure 8.14. TEM micrographs showing the formation of cylindrical domains in a) PNDMDC-b-

PNPS5(53:47)_1.60 and b) PNDMDC-b-PNPS5(40:60)_2.0.  

From Figure 8.14, the TEM for PNDMDC-b-PNPS5 show ordered morphology brought about by 

a good phase separation. Although the χ parameter of this system is not known, the high 

electrostatic interactions between the NPS5 blocks may have helped to introduce stronger phase 

separation even though the SAXS data does not show intense scattering peaks. Furthermore, the 

TEM micrograph confirms that the primary chlorides of PNDMDC are not susceptible to halogen 
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exchange chemistry. If they are not inert, then there will be no contrast in the block copolymer 

resulting from the bromide counterion in this TEM micrographs.  

Although this is a dark field image, the micrographs show that the PNDMDC block forms the 

minority phase in both block copolymers. This is the case even when it has the higher concentration 

in the block copolymer. This behavior has been predicted in ionic block copolymers by Olivera de 

la Cruz.15  

Obtained block copolymers show better mechanical properties because all samples prepared are 

found to be insoluble in both water and methanol for the same IEC value in their random 

copolymer counterpart. However, due to the extremely fragile nature of the polymers, arising from 

the high Tg of PNDMDC (114 °C), further studies on these block copolymers were discontinued.  

8.2.4 Summary 

Block copolymers of PNDMDC-b-PNPS5 and PNDMDC-b-PNHS5 were successfully 

synthesized. The blocks do show microphase separation and also chain spacing within the parent 

domain as seen in PS-b-P4VP_CnBr. The size of the block domains do increase with increasing 

hydrophobic content which seem counterintuitive and would demand further inquiry. Also, TEM 

micrographs suggest that there was no halide exchange between the blocks of the copolymers.   
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CHAPTER 9 

SYNTHESIS AND CHARACTERIZATION OF RANDOM AND BLOCK COPOLYMER 

OF NPS5 AND NHS5 WITH NMBzE 

9.1 Introduction 

One of the advantages of the use of solid electrolytes for anion exchange membranes is their 

robustness and flexibility in applications where the membranes may be subject to mechanical 

stress. The glass transition temperature, Tg, of these membranes should be high enough to impart 

mechanical fidelity in the membranes but also lower than the membrane operating temperature to 

avoid membranes fracture on mild contact.1 Given that the operating temperatures of the 

membrane range from 30 – 90 °C, and these devices will most times be operated at room 

temperature, polymers with glass transition temperatures higher than room temperature may not 

suitable for application in anion exchange membranes. Poly(norbornenedimethyldichloride), 

PNDMDC, has a Tg of 114 °C. Membranes prepared from the copolymerization of NPS5/NHS5 

and norbornenedimethyl dichloride (NDMDC) were found to be fragile and brittle. This made it 

difficult to perform conductivity tests on random and block copolymers of NPS5/NHS5 and 

NDMDC.   

Some norbornene-based polymers with pendant ether linkages have glass transition temperatures 

that are lower than room temperature, and are suitable for preparing robust, flexible films. The 

polymer, poly(norbornenedimethyl dibenzylether), synthesized from the ring-opening metathesis 

polymerization of norbornenedimethyl dibenzylether, has a low Tg (-1 °C). Yuan and Coughlin 

reported that anion exchange membranes prepared from the copolymerization of 

norbornenedimethyldibenzylether and norbornene-based cobaltocenium chloride monomer were 
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robust and flexible.2 However, norbornenedimethyldibenzylether is usually synthesized from 

norbornenedimethyl alcohol which is not readily available.  

An alternative norbornene-based compound with pendant ether linkages, norbornenemethyl 

benzylether, can be readily synthesized from norbornenemethanol. Norbornenemethanol can be 

readily synthesized from the reduction of 5-norbornene-2-carboxyaldehyde which is commercially 

available. Furthermore, unlike norbornenedimethyldibenzyl ether, which has double pendant 

methylbenzylethers, norbornenemethylbenzylether, with a single methylbenzylether, should have 

a relatively lower Tg. Thus, membranes formed from the copolymerization of 

norbornenemethylbenzylether and NPS5 or NHS5 should be both robust and flexible, and 

consequently, their bromide ion conductivities could be measured. 

In this chapter, random copolymers of NPS5 and NMBzE (PNPS5-r-PNMBzE) were synthesized 

by ROMP chemistry. Random copolymers of NHS5 and NMBzE (PNHS5-r-PNMBzE) were also 

synthesized ROMP chemistry. Random copolymers of ionic and non-ionic components provide a 

platform to study interesting morphologies of these charged and non-charged copolymers. In 

Chapter 4, Chapter 5, and Chapter 8, we have looked at the formation of ionomer cluster 

morphology and backbone-backbone morphology. Morphology-conductivity correlations have 

also been studied in Chapter 5. Results show that transition from an ionomer cluster morphology 

to a coexistence of both ionomer cluster and backbone-backbone morphology increased the 

conductivity of the material. This phenomenon warrants further investigations in random 

copolymers of PNPS5 and PNHS5 with a hydrophobic copolymer. 

In this chapter, random copolymer series of PNPS5 and PNHS5 with PNMBzE were studied. The 

different morphologies (ionomer cluster, coexistence of ionomer cluster and backbone-backbone 
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morphology, and backbone-backbone morphology) for random copolymers of the PNPS5-r-

PNMBzE and the PNHS5-r-PNMBzE series were evaluated by medium-angle X-ray scattering 

(MAXS). The morphologies were also evaluated by transmission electron microscopy (TEM). The 

bromide conductivities of the random copolymers were studied by electrochemical impedance 

spectroscopy (EIS). Relationships between morphologies and conductivities of these random 

copolymers were evaluated. 

In the second part of this chapter, we synthesized random copolymers of NPS5 and NMBzE 

(PNPS5-b-PNMBzE) by ROMP chemistry. Random copolymers of NHS5 and NMBzE (PNHS5-

b-PNMBzE) were also synthesized ROMP chemistry. The block copolymer morphologies were 

probed by extreme small-angle X-ray scattering (ESAXS). The substructure within a super 

structure were also probed by MAXS. The morphologies of the samples were also evaluated by 

TEM. Bromide conductivity of the block copolymers made from alkaline stable monomers were 

evaluated by EIS. Finally, the conductivities of these samples were interpreted in the light of their 

morphologies.  

9.2 Materials and Methods 

Sodium borohydride (98%), 5-norbornene-2-carboxyaldehyde (95%), cis 1,4 dichlorobutene 

(95%) was purchased from Alfa Aesar. Dicyclopentadiene (97%), dibromopentane (98%), 

benzylbromide (98%) were procured from TCI Chemicals. 4-hydroxypiperidine (98%), 3-

bromopyridine (98%) were purchased from Matrix Scientific. Norbornene (99%), sodium hydride 

(60 wt% in mineral oil) and Grubbs’ II catalysts were purchased from Sigma Aldrich. 
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9.2.1 Synthesis of Norborne Propoxy Spirocyclic Salt 

9.2.1.1 Synthesis of Norbonenepropylbromide 

 In a round bottom flask, 20 g (0.134 moles) of 5-bromo-1-pentene was mixed with 5.9 g of 

dicyclopentadiene (0.045 moles). The solution was charged into a Schlenk tube equipped with a 

magnetic stirrer and containing 16 mg (0.15 mmoles) of hydroquinone. The tube was then placed 

in an oil bath at a temperature of 185 °C. After 20 h, the reaction was gradually cooled to room 

temperature. There was a change in color of the reaction mixture from a colorless solution to dark 

brown. Fractional vacuum distillation was performed at 27 – 40 °C, 300 mTorr to remove the 

excess reactant (5-bromo-1-pentene), and then at 58 – 60°C, 50 mTorr to obtain 11.5 g (60% yield) 

of norbornenepropylbromide colorless oil. See Chapter 7 for 1H NMR spectrum of 

norbornenepropylbromide.  

 

Scheme 9.1. Synthesis of norbornenepropylbromide. 

92.1.2 Synthesis of Norbonenehexylbromide 

 In a round bottom flask, 10 g (0.052 moles) of 8-bromo-1-octene was mixed with 2.34 g of 

dicyclopentadiene (0.018 moles). The solution was charged into a Schlenk tube equipped with a 

stirrer and 21 mg (0.19 mmoles) of hydroquinone. The tube was then placed in an oil bath at a 

temperature of 185 °C. After 20 h, the reaction was gradually cooled to room temperature. There 
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was a change in color of the reaction mixture from a colorless solution to light brown. Vacuum 

distillation was performed at 60°C, 300 mTorr to remove the excess reactant. Flash 

chromatography of the residue was performed in hexanes to afford 5.3 g (58% yield) of a colorless 

oil of norbornenehexylbromide. See Chapter 7 for 1H NMR spectrum of norbornenehexylbromide. 

 

 

Scheme 9.2. Synthesis of Norbornenehexylbromide 

9.2.1.3 Synthesis of 4-Hydroxy-6-azonia-spiro[5,5]undecane 

In a round bottom flask, 21 g (0.152 moles) of potassium carbonate was charged into a solution of 

27.6 g (0.124 moles) of 1,5 dibromopentane in 300 ml of acetonitrile in a round bottom flask at 

reflux. After 10 minutes, a solution of 10.1 g (0.1 moles) of 4-hydroxypiperidine in 50 ml of 

acetonitrile was added. After 20 h the reaction bath was gradually cooled to room temperature. 

The reaction mixture was then rotovapped to remove the solvent leaving a yellow like solid which 

was dissolved in 300 ml of ethanol and the excess potassium carbonate was removed by filtration. 

The solution was then partially evaporated to obtain a concentrated solution that was precipitated 

into diethyl ether. Afterwards, the yellowish solid was filtered and washed in dichloromethane 

thrice. The solid was then dried in vacuo at room temperature to afford 18.3 g (73% yield) of an 
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off-white solid. See Chapter 7 for 1H NMR spectrum and ESI-TOFMass spectrometer 

chromatogram of 4-hydroxy-6-azonia-spiro[5,5]undecane. 

9.2.1.4 Synthesis of Norbonenepropoxy-6-azonia-spiro[5,5]undecane (NPS5)  

In a round bottom flask, 3.1 g (12.4 mmoles) of 4-hydroxy-6-azonia-spiro[5,5]undecane was 

dissolved in 50 ml of anhydrous DMSO. The solution was gradually added to a round bottom flask 

containing 1 g (25 mmoles) of sodium hydride equipped with a magnetic stirrer. After 1 h, 5.1 g 

(23.8 mmoles) of norbonenepropylbromide dispersed in 5 ml anhydrous DMSO was gradually 

added into the reaction mixture. The color of the mixture changes from white to light brown. The 

reaction was allowed to proceed for 20 h. Thereafter, the mixture was vacuum filtered to remove 

unreacted sodium hydride. The filtrate was a viscous clear brown liquid. The filtrate was then 

precipitated into diethyl ether to give a white solid. After filtration, the white solid was then washed 

with diethyl ether again and dried. The white solid was then dissolved in 200 ml of hot acetone to 

filter-off unreacted 4-hydroxy-6-azonia-spiro[5,5]undecane and sodium bromide. The product was 

then recrystallized from acetone by cooling the solution to 4 ºC. After filtration, the crystals were 

then washed with diethyl ether and dried in vacuum to afford 4.4 g (92% yield) of desired product. 

See Chapter 7 for 1H NMR spectrum and ESI-TOF Mass spectrometer chromatogram of 

norbonenepropoxy-6-azonia-spiro[5,5]undecane (NPS5).  

9.2.1.5 Synthesis of Norbonenehexoxy-6-azonia-spiro[5,5]undecane (NHS5) 

In a round bottom flask, 1.15 g (4.6 mmoles) of 4-hydroxy-6-azonia-spiro[5,5]undecane was 

dissolved in 50 ml of anhydrous DMSO. The solution was gradually added to 0.35 g (9 mmoles) 

of sodium hydride equipped with a magnetic stirrer. After 1 hour, 1.96 g (7.7 mmoles) of 

norbonenehexylbromide dispersed in 5 ml anhydrous DMSO was gradually added into the reaction 
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mixture. The color of the mixture changes from white to light brown. The reaction was allowed to 

proceed for 20 h. Thereafter, the mixture was vacuum filtered to remove unreacted sodium hydride. 

The filtrate was a viscous clear brown liquid. The filtrate was then precipitated into diethyl ether 

to give a white solid. After filtration, the white solid was then washed in diethyl ether again and 

dried. The white solid was then dissolved in 100 ml of hot acetone to filter-off unreacted 4-

hydroxy-6-azonia-spiro[5,5]undecane and sodium bromide. The product was then recrystallized 

from acetone by cooling the solution to 4ºC. After filtration, the crystals were then washed in 

diethyl ether and dried in vacuum to afford 1.86 g (95% yield) of desired product. See Chapter 7 

for 1H NMR spectrum and ESI-TOFMass spectrometer chromatogram of norbonenehexoxy-6-

azonia-spiro[5,5]undecane (NPS5). 

9.2.2 Synthesis of Norbornenemethanol  

In a round bottom flask, 20 g (0.165 moles) 5-norbornene-2-carboxyaldehyde was dissolved in 80 

ml of methanol. A suspension of 7 g of sodium borohydride (0.18 moles) in 25 ml aqueous solution 

of 4 M potassium hydroxide was added dropwise to the solution of 5-norbornene-2-

carboxyaldehyde in methanol at 0 °C for 30 mins. Afterwards, 20 ml of H2SO4 (40 % by volume 

in water) was added dropwise to the reaction mixture. The mixture was then rotovapped to remove 

excess methanol. The organic layer formed on the aqueous layer was extracted by washing with 

50 ml of diethylether three times. The organic extract was washed with 50 ml of saturated solution 

of NaHCO3 three times. The organic (yellowish viscous liquid) was further dissolved in 50 ml of 

diethylether and then dried over anhydrous Na2SO4. The solution was filtered off and then 

concentrated by rotovapping. The viscous oil was finally passed through column using a mixture 

of hexane (95%) and ethylacetate (5%) as the eluent. The filtered solution was then concentrated 

in vacuum to afford 16.5 g (84 % yield) of organic oil.  
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Scheme 9.3. Synthesis of Norbornenemethylbenzylether (NMBzE). 

9.2.3 Synthesis of Norbornenemethylbenzylether  

The procedure for the synthesis of norbornenemethylbenzylether was as follow: To 14 g (0.11 

moles) of norbonenemethanol in 30 ml anhydrous acetonitrile was added 11 g (0.46 moles) of 

sodium hydride at 0 °C. The reaction mixture was stirred for 1 h. Afterwards, 13.8 g (0.08 moles) 

of benzylbromide was added to the mixture. The reaction was quenched after 1 hour with 50 ml 

of 0.5 M aqueous hydrochloric acid. The mixture was washed with 75 ml of diethylether thrice to 

extract the organic layer. The organic layer was vacuum distilled at 60 ˚C and 55 mTorr. The 

organic oil was further purified by flash chromatography using a 90:10 mixture of hexanes and 

ethylacetate. The product was rotavapped and concentrated in vacuo to afford 14.1 g (84% yield) 

of norbornenemethylbenzyl ether.   

9.2.4 Synthesis of Polynorbornenemethylbenzylether 

To 150 mg (0.7 mmoles) of the monomer, NMBzE, equipped with a stirrer 0.5 ml of DCM was 

added. A solution of 1 mg (0.001 mmoles) of Grubbs’ III catalyst in 1 ml of DCM was charged 

into the monomer solution. After 1 min, the reaction was quenched by adding 1 ml of ethylvinyl 
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ether. The polymer was then precipitated in methanol to afford 130 mg (87% yield) of 

polynorbornenemethylbenzyl ether (PNMBzE).  

9.2.5 Synthesis of PNPS5-r-PNMBzE 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 204 mg (0.95 mmoles) of NMBzE 

and 50 mg (0.13 mmoles) of NPS5 were dissolved in a mixture of 4 ml of DCM and 2.5 ml. A 

solution of 1 mg (0.001 mmoles) of Grubbs’ III catalyst in 1 ml of DCM was charged into the 

monomer mixture solution. After 24 hours, the reaction was quenched by adding 2 ml of 

ethylvinylether. The polymer was then precipitated in diethyl ether to afford 193 mg (76% yield) 

of PNPS5-r-PNMBzE.  

 

Scheme 9.4. Synthesis of PNPS5-r-PNMBzE. 

9.2.6 Synthesis of PNHS5-r-PNMBzE 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 212 mg (0.99 mmoles) of NMBzE, 

and 50 mg (0.117 mmoles) of NPS5 were dissolved in a mixture of 4 ml of DCM and 1.5 ml of 

DMF. A solution of 1 mg (0.001 mmoles) of Grubb’s III catalyst in 1 ml of DCM was charged 

into the monomer mixture solution. After 24 hours, the reaction was quenched by adding 2 ml of 
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ethylvinylether. The polymer was then precipitated in diethyl ether to afford 216 mg (82% yield) 

of PNHS5-r-PNMBzE. 

 

 

 

Scheme 9.5. Synthesis of PHPS5-r-PNMBzE 

9.2.7 Synthesis of PNPS5-b-PNMBzE 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 235 mg (0.95) of the monomer, 

NMBzE, in 0.5 ml of DCM. (Approximately 15% more of NMBzE was used in the synthesis of 

the block copolymer in comparison to the random copolymer for the same target IEC because 

some fraction of PNMBzE undergo secondary metathesis resulting in dead chains). A solution of 

1 mg (0.001 mmoles) of Grubbs’ III catalyst in 1 ml of DCM was charged into the monomer 

solution. After 1 min, a solution of 50 mg (0.13 mmole) of NPS5 dissolved in 6 ml of a mixture of 

DCM and DMF (1:2) was added to the reaction. The reaction was quenched after 10 mins by 
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adding 1 ml of ethylvinyl ether. The polymer was then precipitated first in tetrahydrofuran and 

then methanol to afford 156 mg (55% yield) of PNPS5-b-PNMBzE. 

 

Scheme 9.6. Synthesis of PNPS5-b-PNMBzE. 

9.2.8 Synthesis of PNHS5-b-PNMBzE 

In a 20 ml scintillation vial equipped with a magnetic stirrer, 246 mg (0.99 mmole) of the 

monomer, NMBzE, in 0.5 ml of DCM. (Approximately 15% more of NMBzE was used in the 

synthesis of the block copolymer in comparison to the random copolymer for the same target IEC 

because some fraction of PNMBzE undergo secondary metathesis resulting in dead chains). A 

solution of 1 mg (0.001 mmoles) of Grubbs’ III catalyst in 1 ml of DCM was charged into the 

monomer solution. After 1 min, a solution of 50 mg (0.117 mmoles) of NHS5 dissolved in 6 ml of 

a mixture of DCM and DMF (1:2) was added to the reaction. The reaction was quenched after 10 

mins by adding 1 ml of ethylvinyl ether. The polymer was then precipitated first in tetrahydrofuran 

and then methanol to afford 171 mg (58% yield) of PNPS5-b-PNMBzE. 
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Scheme 9.7. Synthesis of PNHS5-b-PNMBzE. 

9.2.9 Characterization of Random and Block Copolymers 

Number average molecular weight, Mn, was determined using a gel permeation chromatography 

(GPC) in DMF at a flow rate of 1.0 mL/min using a refractive index detector on an Agilent 

Technologies 1260 Infinity system. The chemical composition P4VP-r-PI was determined using a 

Bruker 500 Fourier-transform nuclear magnetic resonance spectroscopy (FT-NMR). Quaternized 

samples, P4VP-r-PI_CnBr, were drop cast from methanol on Teflon® sheet. Characterization was 

performed on the resulting films. PerkinElmer Spectrum 100 FTIR with a universal ATR was used 
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to characterize the extent of quaternization. Film samples were mounted on the ATR crystal and 

secured by the sample holder. Impedance data was collected over the frequency range, 1Hz – 10 

KHz by a four-electrode test cell connected to a BioLogic VMP3 multichannel potentiostat. The 

TestEquity chamber in which experiments were made ensured a proper control of temperature and 

relative humidity. Measurements were performed through a temperature range of 40 – 90 °C by 

10 °C step and 95% RH. The membrane resistance was obtained from the frequency intercept of 

the Nyquist plot. Ionic conductivity was obtained by measuring the in-plane resistance of the 

sample. The resistance is then converted to conductivity using the equation 

𝜎 =
𝑑

𝑅𝑤𝑡
                                                           (8.1) 

Where d is the distance between the electrodes, t is the thickness of the sample and w is the width 

of the membrane defined by the four-electrodes of the test cell.3,4  

Wide-angle X-ray scattering (WAXS), medium-angle X-ray scattering (MAXS), and extreme 

small-angle X-ray scattering (ESAXS) measurements were performed in transmission geometry 

on Molmex Scientific Ganesha SAXS Lab. A double aperture for the Cu-Kα radiation (λ = 1.54 

Å), which was the X-ray source, was used. Silver behenate was used as the standard for the 

momentum transfer calibration. Data was collected for 180 seconds. Depending on the signal-to-

noise ratio, data collection could be longer. Azimuthal averaging of the obtained isotropic 2-D 

pattern was performed to obtain the intensity against wave vector plot. 

To obtain transmission electron microscopy micrographs, samples were first michrotomed over 

water using an RJ Ultra-Michrotome A. Samples were cut to 40 nm film thickness and collected 

on copper grids. There was no carbon film on the copper grid.   



304 

 

Transmission electron microscopy characterization was performed on the microtomed samples by 

the TEM JEOL 2000. The micrographs were taken in a dark field mode.  

9.2.10 Determination of Membrane Density 

The density of the polymer sample was determined as follows: 10 ml of methanol was added to 1 

mg of PNMBzE film in a measuring cylinder. Water was then gradually added to the measuring 

cylinder until the PNMBzE film begins to travel upwards due to the increase in the density of the 

methanol-water mixture. When the film is positioned at the center of the filled cylinder, the density 

of the methanol-water mixture was determined from the volume and mass of the mixture. This is 

approximately the density of the PNMBzE film. For PNPS5 and PNHS5 homopolymers, a mixture 

of benzylbromide (specific gravity = 1.44) and tetrahydrofuran (specific gravity = 0.889) was used.  

 

9.3 Results and Discussion for PNPS5-r-PNMBzE and PNHS5-r-PNMBzE 

Characterization of the norbornenemethanol by 1H NMR confirm the successful synthesis of the 

monomer. The protons norbornenemethanol and their corresponding exo peaks on the 1H NMR 

spectrum are shown in Figure 9.1.  
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Figure 9.1. The 1H NMR spectrum of norbornenemethanol. 

Characterization of the norbornenemethylbenzyl ether by 1H NMR confirm the successful 

synthesis of the monomer. The protons norbornenemethylbenzylether and their corresponding exo 

peaks on the 1H NMR spectrum are shown in Figure 9.2.  
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Figure 9.2. The 1H NMR spectrum of norbornenemethylbenzylether. 

 

The successful polymerization of NMBzE monomer to PNMBzE homopolymer, was confirmed 

by 1H NMR. In the 1H NMR spectrum (see Figure 9.3) only the exo peaks are labelled.  
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Figure 9.3. The 1H NMR spectrum of PNMBzE. 

The molecular weight of PNMBzE was characterized by THF GPC using PS standards. In Figure 

9.4, the GPC chromatogram for PNMBzE shows a shoulder peak resulting from secondary 

metathesis during the ring-opening polymerization of NMBzE. A molecular weight of 280 Kg/mol 

and a dispersity of 1.11 were determined for PNMBzE from the GPC trace. 
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Figure 9.4. The GPC chromatogram of PNMBzE. 

Characterization of PNMBzE by DSC shows that the homopolymer has a glass transition 

temperature of -7 °C. Since the Tg of PNMBzE is less than room temperature, films of the 

homopolymer prepared from DCM were robust and flexible. This suggests that PNMBzE should 

be a good copolymer substitute for the rigid PNDC. Thus, the anion exchange membranes prepared 

from the copolymerization of NPS5/NHS5 and NMBzE should be flexible, robust, and show good 

mechanical fidelity. 

Random copolymers of NPS5 and NMBzE were successfully synthesized. Five different samples 

of PNPS5-r-PNMBzE with varying concentrations of NPS5 ranging from 15 – 52 mol% were 

prepared. The composition of the synthesized random copolymers was determined by 1H NMR 

using the ratio of the combined vinyl protons of PNPS5 and PNMBzE, and the aromatic protons 

of PNMBzE. See Figure 9.5.   
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Figure 9.5. Determination of the composition of PNPS5-r-PNMBzE by 1H NMR 

A tabular summary of the feed composition, target IEC., sample composition determined by 1H 

NMR, and sample IEC determined from 1H NMR composition is presented in Table 9.1.  

Table 9.1. Comparison of the feed composition and target IEC. and the 1H NMR composition and 

1H NMR IEC. of the PNPS5-r-PNMBzE series. 

Sample name Feed comp% Target IEC. NMR comp% NMR IEC. 

PNPS5-r-PNMBzE_0.62 12:88 0.50 15:85 0.62 

PNPS5-r-PNMBzE_1.07 26:74 1.00 28:72 1.07 

PNPS5-r-PNMBzE_1.50 43:57 1.50 43:57 1.50 

PNPS5-r-PNMBzE_1.72 53:47 1.75 52:48 1.72 

PNPS5-r-PNMBzE_2.60 100:0 2.60 100:0 2.60 

 

4 aromatic protons of  

PNMBzE 

 

2 vinyl protons of PNPS5 and   

2 vinyl protons of PNMBzE 
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The composition of PNPS5 and PNMBzE in the random polymers determined by 1H NMR is 

similar to the feed ratio of the monomers (NPS5 and NMBzE). This suggests that the samples have 

random character.  

Random copolymers of NHS5 and NMBzE were successfully synthesized. Four different samples 

of PNHS5-r-PNMBzE with varying concentrations of NHS5 ranging from 12 – 57 mol% and the 

homopolymer, PNHS5, were prepared. The composition of the polymer was determined by 1H 

NMR using the ratio of the combined vinyl protons of PNHS5 and PNMBzE, and the aromatic 

proton of PNMBzE. See Figure 9.6.   
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Figure 9.6. Determination of the composition of PNHS5-r-PNMBzE by 1H NMR. 
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A tabular summary of the feed composition, target IEC, sample composition determined by 1H 

NMR, and sample IEC determined from 1H NMR composition is presented in Table 9.2.  

Table 9.2. Comparison of the feed composition and target IEC. and the 1H NMR composition and 

1H NMR IEC. of the PNHS5-r-PNMBzE series. 

Sample name Feed comp (%) Target IEC NMR comp (%) NMR IEC 

PNHS5-r-PNMBZE_0.50 12:88 0.50 12:88 0.5 

PNHS5-r-PNMBZE_0.94 27:73 1.00 25:75 0.94 

PNHS5-r-PNMBZE_1.48 47:53 1.50 46:54 1.48 

PNHS5-r-PNMBZE_1.70 60:40 1.75 57:43 1.70 

PNHS5-r-PNMBZE_2.34 100:0 2.35 100:0 2.35 

 

The composition of PNHS5 and PNMBzE in the random polymers determined by 1H NMR is 

similar to the feed ratio of the monomers (NHS5 and NMBzE). This suggests that PNHS5-r-

PNMBzE samples have random character.  
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9.3.1 Morphology of Random Copolymers of NPS5, NPMBzE and NHS5, NPMBzE 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7. X-ray scattering data for PNPS5-r-PNMBzE. 

Medium angle X-ray scattering of PNPS5-r-PNMBzE are presented in Figure 9.7. From the 

scattering data, the homopolymer of PNPS5 show a backbone-backbone spacing peak. This peak 

correlates to the periodic spacing between the backbones of the homopolymer. The backbone-

backbone spacing results from the sterics of the pendant side-chains and increases with increasing 

length of the pendant side-chain (see Figure 9.8).  
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Figure 9.8. Depiction of backbone-backbone spacing in PNPS5. 

However, for PNPS5-r-PNMBzE_0.62(15:85), the peak at lower Q values is the ionomer cluster 

peak that correlates to the cluster-cluster spacing between clustered dipoles in the hydrophobic 

matrix. The clustering of dipoles is due to dipole-dipole attraction between dipoles in the random 

copolymer.5–7 Increasing the concentration of charges decreases the distance between these dipole 
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clusters. See Figure 9.9. This is consistent with the shift to higher Q values of the scattering peak 

in PNPS5-r-PNMBzE_1.07(28:72) in comparison to PNPS5-r-PNMBzE_0.62(15:85). Further 

decrease in the cluster-cluster spacing can be observed in PNPS5-r-PNMBzE_1.50(43:57) as the 

scattering peak shifts to higher Q values. However, the scattering peak observed for PNPS5-r-

PNMBzE_1.72(52:48) is similar to the scattering peak observed in the PNPS5 spectrum which is 

the backbone-backbone peak.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9.9. a) Variation of the characteristic spacing with mol% of NPS5, b) depiction of the 

transition from ionic cluster to ionic matrix/percolating structure.  
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The assignation of the scattering peak for PNPS5-r-PNMBzE_1.72(52:48) to correlate with 

backbone-backbone spacing rather than cluster-cluster spacing is due to the gaussian character of 

the peak. Ionomer clusters are usually poorly defined.8–10 Theoretical evaluation of clusters show 

that clusters could range from a few dipoles to tens of dipoles.11,12 Like in micellization in which 

a portion of the surfactant do not aggregate to form micelles; in charged random copolymers, a 

significant number of dipoles in charged random copolymers do not participate in the formation 

of dipole clusters. This contributes to a less defined cluster-cluster distance and consequently less 

defined ionomer cluster morphology. Thus, X-ray scattering peaks correlating to cluster-cluster 

spacing in ionomer morphology are usually broad. However, for backbone-backbone morphology 

the backbone-backbone spacing are well-defined. Backbone-backbone spacing is determined by 

the length of the pendant side-chain on the monomer. Thus, the X-ray scattering peaks correlating 

backbone-backbone spacing are usually sharp and narrow.13–15 As a matter of fact, longer pendant 

side-chains have crystalline-like peaks and at times show higher order peaks. In the case of NPS5, 

all the monomers have the same length of pendant side-chains, thus resulting in a well-defined 

backbone-backbone spacing in the homopolymers. The scattering peak for PNPS5-r-

PNMBzE_1.72(52:48) is narrower in comparison to the scattering peaks of PNPS5-r-

PNMBzE_0.62(15:85), PNPS5-r-PNMBzE_1.07(28:72), and PNPS5-r-PNMBzE_1.50(43:57) 

and slightly broader than the scattering peak for PNPS5-r-PNMBzE_2.6(100:0). This peak shape 

suggests that the morphology of PNPS5-r-PNMBzE_1.72(52:48) would be dominated by 

backbone-backbone spacing with some degree of dipole clustering. Thus, PNPS5-r-

PNMBzE_1.72(52:48) is thought to have a coexistence of both morphologies. 
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Figure 9.10. Schematic representation of the Matrix Effect. 

Ionomer morphology is formed from the clustering of dipoles. On clustering of the dipoles, the 

hydrophobic copolymers form the matrix of the morphology with the dipole clusters randomly 

distributed in the hydrophobic matrix. With increasing concentration of the charged copolymer, 

the formation of ionomer cluster morphology becomes untenable because there are less 

hydrophobic copolymers to form the matrix.  Furthermore, the driving force for cluster formation 

is the dipole-dipole interaction that depends on the effective dielectric constant of the medium. 

With increasing concentration of dipoles, the number of dipoles not participating in the formation 

of ionomer cluster increases. These unclustered dipoles will increase the dielectric constant of the 

medium, thus decreasing the strength of the dipole-dipole attraction. Consequently, the formation 

of dipole clusters will be unfeasible in materials with high concentration of dipoles. Ionomer 

cluster morphology is almost non-existent in homopolymer polyelectrolytes. By increasing the 
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concentration of ionic content, the dipoles transition from clusters to matrix (percolating phase). 

See Figure 9.9b. However, inverse ionomer cluster morphology may form. At high concentration 

of the ionic copolymer, hydrophobic copolymers, which are in small quantity, could interact by 

van der Waal’s attraction and form hydrophobic clusters in a sea of ionic matrix. This will lead to 

an inverse ionomer cluster morphology. The formation of this morphology would be facilitated by 

the immiscibility of the ionic and non-ionic copolymers.  

Ionomer cluster morphology has been observed in polyelectrolytes with about 50 mol% of charged 

comonomers.6,16,17 The concentration at which the dipoles in a charged random copolymer 

morphology transitions from an ionomer cluster morphology to forming the matrix (a matrix of 

the dipoles morphology) will vary from charged monomer to charged monomer. Monomers with 

longer pendant side-chains in which sterics is dominant may disfavor the formation of dipole 

clusters. In this case, the transition from ionomer cluster morphology to a matrix of dipole 

morphology will occur at a relatively lower concentration of the charged monomer in comparison 

to monomers whose shorter pendant side-chain have minimal sterics.  
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Figure 9.11. Transmission electron microscopy micrograph of PNPS5-r-PNMBzE_1.07(28:72).  

The morphology of PNPS5-r-PNMBzE_1.07(28:72) and PNPS5-r-PNMBzE_1.72(52:48) were 

probed by transmission electron microscopy (TEM). The image was captured in darkfield mode. 

The contrast of the image results entirely from the bromide counterion. Black clusters and black 

matrices results from PNPS5 copolymer. White clusters and white matrices arising from PNMBzE 

copolymer. The obtained image for PNPS5-r-PNMBzE_1.07(28:72), presented in Figure 9.11, 

show PNPS5 (black) clusters in a PNMBzE (white) matrix and PNMBzE (white) clusters in a 

PNPS5 (black) matrix. The scattering data show the ionomer cluster morphology feature for 
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PNPS5-r-PNMBzE_1.07(28:72) which is consistent with the TEM image. A 5 nm cluster-cluster 

spacing can be determined from the TEM image which is also the approximate value of that 

observed in the scattering data. The TEM image for PNPS5-r-PNMBzE_1.07(28:72) also show 

the formation of tubular/vermicular structures of the PNMBzE copolymer in a PNPS5 matrix. 

Suggesting that even at concentrations as low as 28 mol% of NPS5, there is some degree of 

transition from ionomer cluster to a matrix of dipole morphology. The formation of a quasi-matrix 

by PNPS5 could also lead to some form of inverse ionomer cluster morphology. Although the 

transition from cluster to matrix is dependent on the mol% of NPS5 in the random copolymer, it 

is also dependent on the length of the pendant side-chain. Pendant side-chain sterics tend to stifle 

the formation of ionomer cluster morphology (see Chapter 4). For ionomer cluster morphology to 

form, polymer chains are sometimes stretched to accommodate the clustering of dipoles. The 

opposite is the case for the formation of backbone-backbone morphology in which backbones are 

parallel to one another. The presence of pendant side-chains in PNPS5 which facilitates the 

formation of backbone-backbone morphology may have disfavored the formation of ionomer 

cluster morphology in PNPS5-r-PNMBzE_1.07(28:72), thereby, facilitating the transition from 

ionomer cluster to a matrix of dipole morphology. Consequently, resulting in a coexistence of both 

clustering and inverse-matrix morphology of PNPS5 in PNPS5-r-PNMBzE_1.07(28:72). The 

presence of both ionomer cluster and inverse ionomer cluster morphology could improve ionic 

conductivity of PNPS5-r-PNMBzE_1.07(28:72). As already noted from the seminal work of 

Balsara and Beers, decreasing or eliminating dipole clusters in a random copolyelectrolyte will 

lead to an increase in conductivity.16   
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Figure 9.12. Transmission electron microscopy micrograph of PNPS5-r-PNMBzE_1.72(52:48). 

The TEM image for PNPS5-r-PNMBzE_1.72(52:48), presented in Figure 9.12, shows larger 

aggregates of approximately 50 nm between aggregates-aggregate spacing. Domain spacing this 

large have also been reported for ionomers characterized by TEM. Interestingly though, both 

PNPS5 and PNMBzE form matrices and aggregates. However, in the X-ray scattering data, only 

backbone-backbone spacing was observed. Upon magnifying the TEM image for PNPS5-r-

PNMBzE_1.72(52:48), it is evident that the interpenetration of PNMBZE matrix through PNPS5 

matrix may have resulted from hierarchical structures. The PNMBzE (white) aggregates are 

comprised of a PNMBzE matrix (white background) with PNPS5 clusters (black dots) forming an 
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ionomer cluster morphology. The PNPS5 (black) aggregates are comprised of a PNPS5 matrix 

(black background) with PNMBzE cluster (white dots) forming an inverse ionomer cluster 

morphology. See Figure 9.13.  

 

Figure 9.13. Magnified TEM micrograph of PNPS5-r-PNMBzE_1.72(52:48). 

However, these structures within the aggregates may have also resulted from optical bias that may 

occur during magnification of the images. The average cluster-cluster spacing in both PNPS5 

aggregates and PNMBzE aggregates, after magnifying the image, is approximately 3 nm.  
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Figure 9.14. X-ray scattering data for the PNHS5-r-PNMBzE series.  

The scattering results for the PNHS5-r-PNMBzE series presented in Figure 9.14 show similar 

trend to the results of the PNPS5-r-PNMBzE series. The scattering data for the PNHS5 

homopolymer show a scattering peak at Q = 0.1856 Å-1 and a higher order peak at Q = 0.3654 Å-

1. Arrows showing peak positions of the backbone-backbone spacing primary and secondary 

peaks. The primary peak correlates to the backbone-backbone spacing of polymer segments. The 

ratio of the primary peak to the second order peak is 1:2 and suggests that the backbones are 

arranged in a lamellar manner in the polymer. The presence of the second order peak in PNHS5 
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homopolymer, which is absent in the PNPS homopolymer, suggest that homopolymer has a large 

quantity of polymer backbones arranged in parallel bundles in comparison to the PNPS5 

homopolymer. The backbone-backbone spacing for the PNHS5 homopolymer is 32 Å; while the 

backbone-backbone spacing for the PNPS5 homopolymer is 28 Å. This difference in backbone-

backbone spacing results from the difference in the number of carbons on the pendant side-chains 

connecting the norbornene backbone to the azo-spirocyclic salt moiety. For NHS5, there are six 

carbons on the pendant side-chain, while for NPS5, there are three carbons on the pendant side-

chain.    

For PNHS5-r-PNMBzE_0.5(12:88), a scattering peak correlating to cluster-cluster spacing in 

ionomer cluster morphology can be observed at relatively higher Q in comparison to the PNHS5 

homopolymer.  By increasing the concentration of the NHS5 comonomer to 25 mol%, the 

scattering data for PNHS5-r-PNMBzE_0.94(25:75) show a decreased cluster-cluster spacing in 

comparison to PNHS5-r-PNMBzE_0.5(12:88). Increasing the concentration of the ionic 

component in random copolymers results in a decrease in the cluster-cluster spacing. The same 

trend was observed in PNPS5-r-PNMBzE series. However, for PNHS5-r-PNMBzE_1.48(46:54), 

the scattering data show two peaks similar to the peaks observed in the PNHS5 homopolymer. 

This suggest that at approximately 46 mol% of NHS5, the morphology of PNHS5-r-PNMBZE 

transitions from ionomer cluster morphology to backbone-backbone morphology (matrix of dipole 

morphology). For the PNPS5-r-PNMBZE series, X-ray scattering data show that the transition 

from ionomer cluster morphology to backbone-backbone morphology occurred at approximately 

53 mol% NPS5. This suggest that the length of the pendant side-chain contributed to this transition 

as has been observed in P4VP-based copolymer series. For the samples, PNHS5-r-

PNMBzE_1.48(46:54), PNHS5-r-PNMBzE_1.70(57:43), and the PNHS5 homopolymer, the 
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backbone-backbone spacing decreased with increasing mol% of NHS5 in the random copolymer. 

This is due to the increase in the dipole-dipole attraction between parallelly arranged dipoles on 

adjacent polymer backbones (see Figure 9.15).  

 

 

 

 

 

 

 

 

 

 

 

Figure 9.15. a) Variation of the characteristic spacing with mol% of NHS5, b) schematic 

representation of the transition from ionic cluster to ionic matrix/percolating structure. 

 The scattering spectra of PNHS5-r-PNMBzE_1.48(46:54) show a plateau (broad peak feature) to 

the left (lower Q values) of the backbone-backbone peak. This peak may have resulted from the 

presence of ionomer cluster morphology coexisting with the backbone-backbone morphologies. 
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X-ray scattering data for the PNPS5-r-PNMBzE samples suggest that coexistence of backbone-

backbone and ionomer cluster morphologies occurs in PNPS5-r-PNMBzE_1.72(52:48). However, 

Figure 9.11 TEM micrograph show that a coexistence of both backbone-backbone and ionomer 

cluster morphology is present even in PNPS5-r-PNMBzE_1.07(28:72).   Thus, the coexistence of 

both backbone-backbone and ionomer cluster morphologies in PNHS5-r-PNMBzE samples may 

have even been present in PNHS5-r-PNMBzE even at NHS5 concentrations < 46 mol%.  

9.3.2 Conductivity of Random Copolymers of NPS5, NPMBzE and NHS5, NPMBzE 

Conductivity measurements performed at 65% relative humidity (RH.) are presented in Figure 

9.16. The conductivity results show that conductivity increased with increasing mol% of NPS5 

(IEC.) for PNPS5-r-PNMBzE samples. The conductivity of PNHS5-r-PNMBzE also increased 

with increasing mol% of NHS5 and peak conductivities were observed at 80 ˚C for all samples 

followed by an unexpected decrease in the conductivity at 90 ˚C. This decrease may have arisen 

from the inelastic collision of bromide ions with each other at high temperature. At high 

temperature, counterions gain sufficient energy which increases their mobility. However, this also 

increases the probability of counterions colliding into one another. On collision, these counterions 

lose some of their kinetic energy, and thus, their mobility decreases. This conductivity behavior at 

elevated temperature has been observed in the conduction of electrons in metals. Thus, we can 

define two conducting regimes for these random copolymers. A first regime in which bromide 

counterions display ionic conducting behavior similar to the ionic conductivity of anion exchange 

membranes. A second regime at elevated temperature in which the conductivity of the bromide 

counterion is maximum so that any increase in temperature results in a drop in ionic conductivity 

similar to the electrical conductivity of electrons in metals.  
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Figure 9.16. Conductivity of a) PNPS5-r-PNMBzE and b) PNHS5-r-PNMBzE samples. 

Conductivity measurements of both sample series were performed at 65% RH.  

The conductivity values of PNHS5-r-PNMBzE samples outperformed PNPS5-r-PNMBzE 

samples. The conductivity values of PNHS5-r-PNMBzE was three times the conductivity of 

PNPS5-r-PNMBzE at similar IEC. values. This high ionic conductivity performance of PNHS5-

r-PNMBzE may be due to their morphologies. The longer pendant side-chain of PNHS5 decreases 

the propensity for clustering in PNHS5-r-PNMBzE. Thus, the population of clusters in PNHS5-r-

PNMBzE series will be less than that in PNPS5-r-PNMBzE series even at similar IEC. This 

decrease in the propensity to form ionomer cluster morphology is most visible in the scattering 

spectra of PNPS5-r-PNMBzE series and PNHS5-r-PNMBzE series. While backbone-backbone 

morphology was observed in 46 mol% of NHS5 in PNHS5-r-PNMBzE series, backbone-backbone 

morphology was observed in 52 mol% of NPS5 in the random copolymer. The tendency to disperse 

bromide counterions by forming a matrix of dipoles morphology/backbone-backbone morphology 

could explain the relatively high conductivity values measured for PNHS5-r-PNMBzE series at 

65 % RH.  

a) b) 
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The conductivity data for PNPS5-r-PNMBzE_1.07(28:72) and PNHS5-r-PNMBzE_0.94(25:75) 

at 95% RH is shown in Figure 9.17. The data for PNHS5-r-PNMBzE_0.94(25:75) show an 

unexpected drop in conductivity at 90 °C, after a peak conductivity at 80 °C. The data for PNPS5-

r-PNMBZE_1.07(28:72) show no such decrease but a steady increase in conductivity with 

increasing temperature. 
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Figure 9.17. Conductivity of PNPS5-r-PNMBzE_1.07(28:72) and PNHS5-r-

PNMBzE_0.94(25:75) at 95% RH.  

At 95 % RH, the conductivity of the bromide counterion is facilitated by water molecules therefore 

the dependence on membrane morphology is decreased. Nevertheless, the conductivity values of 

PNHS5-r-PNMBzE_0.94(25:75) from 30 – 80 °C were higher than the conductivity values of 

PNPS5-r-PNMBzE_1.07(28:72) in the same temperature range. The same trend was observed in 

their conductivities at 65% RH. Conductivity values for PNPS5-r-PNMBzE_1.07(28:72) and 

PNHS5-r-PNMBzE_0.94(25:75) were exceptionally high given the low IEC. (approximately 1 
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mmol/g) of the samples. For both samples, three conductivity dependent temperature regimes can 

be defined. A first regime from 30 – 40 °C that show a steep rise in conductivity of both samples. 

A second regime from 40 – 80 °C that show a moderate increase in conductivity with increasing 

temperature for both samples. Finally, a third regime that show a steep increase in conductivity for 

PNPS5-r-PNMBzE_1.07(28:72) and a steep decrease in conductivity for PNHS5-r-

PNMBzE_0.94(25:75). Peak bromide conductivities of 71 mS/cm at 90 °C and 36 mS/cm at 80 

°C were recorded for PNPS5-r-PNMBzE_1.07(28:72) and PNHS5-r-PNMBzE_0.94(25:75) 

respectively. This may have resulted from the decreased dipole clustering in both samples due to 

the pendant side-chains that decreases tendency for dipole cluster formation. The higher 

conductivity of PNHS5-r-PNMBzE_0.94(25:75) in comparison to PNPS5-r-

PNMBzE_1.07(28:72) may be due to the longer pendant-side chain in the PNHS5 copolymer.   

9.4 Results and Discussion for PNPS5-b-PNMBzE and PNHS5-b-PNMBzE 

Block copolymers of NPS5 and NMBzE were successfully synthesized. Four different samples of 

PNPS5-b-PNMBzE with varying concentrations of NPS5 ranging from 16 – 51 mol% and the 

PNPS5 homopolymer were prepared. The composition of the block copolymers was determined 

by 1H NMR using the ratio of the combined vinyl protons of PNPS5 and PNMBzE, and the 

aromatic proton of PNMBzE. These protons have been used in the determination of the 

compositions of NPS5 and NPMBzE in the random copolymer (see Figure 9.5). The composition 

of NPS5 and NMBzE in PNPS5-b-PNMBzE determined by 1H NMR are similar to their target 

compositions confirming the successful application of ring-opening metathesis polymerization 

chemistry in the synthesis of PNPS5-b-PNMBzE for anion exchange membranes. 
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A tabular summary of the feed composition, target IEC., sample composition determined by 1H 

NMR, and sample IEC determined from 1H NMR composition is presented in Table 9.3.  

Table 9.3. Comparison of the feed composition and target IEC. and the 1H NMR composition and 

1H NMR IEC. of the PNPS5-b-PNMBzE series. 

Sample Feed comp% Target IEC. NMR comp% NMR IEC 

PNPS5-b-PNMBzE_0.66 12:88 0.50 16:84 0.66 

PNPS5-b-PNMBzE_1.10 26:74 1.00 29:71 1.10 

PNPS5-b-PNMBzE_1.45 43:57 1.50 41:59 1.45 

PNPS5-b-PNMBzE_1.70 53:47 1.75 51:49 1.70 

PNPS5-b-PNMBzE_2.60 100:0 2.60 100:0 2.60 

  

The density of the homopolymer, PNPS5, was determined experimentally to be 1.16 g/cm3. The 

density was used to calculate the volume fractions of PNPS5 and PNMBzE in PNPS5-b-PNMBzE. 

To minimize confusion between volume fractions and mol% in PNPS5-b-PNMBzE and PNPS5-

r-PNMBzE, the volume fractions are represented as bold fractions in the text while the mol% are 

expressed as plain percentages.  

Block copolymers of NHS5 and NMBzE were successfully synthesized. Four different samples of 

PNHS5-b-PNMBzE with varying concentrations of NPS5 ranging from 13 – 47 mol% were 

prepared. The composition of the block copolymers was determined by 1H NMR using the ratio 

of the combined vinyl protons of PNHS5 and PNMBzE, and the aromatic proton of PNMBzE. 

These protons have been used in the determination of the compositions of NPS5 and NPMBzE in 
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the random copolymer (see Figure 9.6). The composition of NHS5 and NMBzE in PNHS5-b-

PNMBzE determined by 1H NMR are similar to their target compositions confirming the 

successful application of ring-opening metathesis polymerization chemistry in the synthesis of 

PNPS5-b-PNMBzE for anion exchange membranes.  

A tabular summary of the feed composition, target IEC., sample composition determined by 1H 

NMR, and sample IEC determined from 1H NMR composition is presented in Table 9.4. 

Table 9.4. Comparison of the feed composition and target IEC. and the 1H NMR composition and 

1H NMR IEC. of the PNHS5-b-PNMBzE series. 

Sample Feed comp% Target IEC NMR comp% NMR IEC 

PNHS5-b-PNMBzE_0.54 12:88 0.50 13:87 0.54 

PNHS5-b-PNMBzE_1.02 27:73 1.00 28:72 1.02 

PNHS5-b-PNMBzE_1.43 47:53 1.50 44:56 1.43 

PNHS5-b-PNMBzE_1.50 60:40 1.75 47:53 1.50 

PNHS5-b-PNMBzE_2.60 100:0 2.35 100:0 2.35 

 

The density of the homopolymer, PNHS5, was determined experimentally to be 1.17 g/cm3. The 

density was used to calculate the volume fractions of PNHS5 and PNMBzE in PNHS5-b-

PNMBzE.  
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9.4.1 Morphology of Block Copolymers of NPS5, NPMBzE and NHS5, NPMBzE 

 Figure 9.18 show the X-ray scattering for PNPS5-b-PNMBzE block copolymers. All the samples 

show a hexagonal morphology with the domain spacing increasing with increasing volume fraction 

of the PNPS5 block. Arrows show the peak positions indicative of ordering resulting from the 

block copolymer microphase separation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9.18. Extreme small-angle X-ray scattering data (ESAXS) for the PNPS5-b-PNMBzE 

series except PNPS5-b-PNMBzE_2.6(0.1:0.0) whose data was collected in the MAXS Q range. 
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Phase separation in block copolymers is governed by the product of Flory-Huggins interaction 

parameter,χ and the molecular weight of the block copolymers, N. In symmetric, non-charged, 

block copolymers, at a constant value of χN, the range of the volume fraction of PNPS5 (0.21 – 

0.60) in PNPS5-b-PNMBzE should show a transition from hexagonal to lamellar to inverse 

hexagonal morphologies with a constant domain spacing. The block copolymers, PNPS5-b-

PNMBzE_0.66(0.21:0.79), PNPS5-b-PNMBzE_1.10(0.37:0.63), PNPS5-b-

PNMBzE_1.5(0.5:0.5), and PNPS5-b-PNMBzE_1.7(0.60:0.40) had similar values of N, and by 

extension similar values of χN. However, the morphologies observed in PNPS5-b-PNMBzE 

samples and the domain size variation across the series did not conform to the conventional 

morphologies and domain sizes of a symmetric, non-charged, block copolymer.   The presence of 

charges on one of the blocks distorts the conventional block copolymer phase diagram. This 

distortion of the block copolymer phase diagram “traps” PNPS5-b-PNMBZE samples with 

varying volume fraction of PNPS5 in a hexagonal-type morphology. This phenomenon of block 

copolymers having an ionic block showing one morphology type across a range of volume 

fractions has been reported in by Yuan and Coughlin.2 A decrease in the X-ray scattering domain 

spacing with increasing volume fraction of the non-ionic block has also been reported by the 

aforementioned researchers. A plot of the change in domain spacing with varying volume fraction 

is presented in Figure 9.19.  
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Figure 9.19. Variation of domain spacing with volume fraction in PNPS5-b-PNMBzE. 

Medium-angle X-ray scattering (MAXS) for PNPS5-b-PNMBzE show a peak that corresponds to 

the backbone-backbone spacing between polymer chains of PNPS5. The same peak can be 

observed in PNPS5 homopolymer. See Figure 9.20.  
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Figure 9.20. Medium-angle X-ray scattering, MAXS, for the PNPS5-b-PNMBzE series 

This structure, due to backbone-backbone correlations in the ionic domain exists within the phase 

separated domains of PNPS5 and PNMBzE blocks (see Figure 9.21). The PNPS5 and PNMBzE 

blocks phase separates due to the differences in the Flory-Huggins interaction parameter,χ, 

however, within the PNPS5 block, there is short-range ordering arising from the correlation 

between polymer backbones. A structure-within-structure morphology.  
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Figure 9.21. Depiction of polymer chain arrangement in PNPS5-b-PNMBzE. 

Unlike in PNPS5-r-PNMBzE, in which the backbone-backbone spacing decreases with increasing 

mol% of NPS5, the backbone-backbone spacing was constant in the PNPS5-b-PNMBzE samples. 

This confirms that there was no variation in the concentration of NPS5 in the ionic block across 

the series. The parallel arrangement of counterions along the pendant side-chains of the parallelly 

arranged polymer backbones can facilitate the mobility of counterions through the percolating 

phase, thus, resulting in highly conducting membranes. 
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Figure 9.22. Transmission electron micrographs of micrographs of a) PNPS5-b-

PNMBzE_0.66(0.21:0.79), b) PNPS5-b-PNMBzE_1.10(0.37:0.63), c)PNPS5-b-

PNMBzE_1.5(0.5:0.5), and d)PNPS5-b-PNMBzE_1.7(0.60:0.40). 

  

  

d ~ 130 nm d ~ 85 nm  

d ~ 70 nm d ~ 40 nm 

a) b) 

c) d) 



337 

 

Characterization of PNPS5-b-PNMBzE samples by TEM (see Figure 9.22) confirm that all 

samples show a hexagonal type morphology, albeit, an inverse hexagonal morphology. The 

observed characteristic spacing arising from the primary peak of the X-ray scattering spectra 

correlates to the average diameter of the cylinder. The images collected in dark field mode show a 

dark matrix (PNPS5 block) with light hexagonally packed cylinders (PNMBzE block). The PNPS5 

block forms the matrix even at low volume fraction, 0.21 for PNPS5-b-PNMBzE_0.66(0.21:0.79). 

This behavior is due to a combination of the strong electrostatic cohesion between charges and 

counterion entropy in the NPS5 block. Although electrostatic cohesion and counterion entropy 

appear to act counter to each other, however, a synergy of these thermodynamic parameters acts 

to distort the phase diagram and produce percolating/continuous phase from the ionic block with 

a lower volume fraction.18 The electrostatic cohesion, defined as the degree to which Columbic 

interaction surpasses the thermal energy, KBT, can skew the phase diagram. Increases in counterion 

entropy lowers the free energy of the system. For counterions to maximize their entropy, they must 

not be confined within a non-continuous phase, thus, ionic blocks usually endeavor to form a 

continuous domain. Consequently, ionic blocks with minority volume fraction forming a 

continuous phase is energetically favorable for the ionic block copolymer. On forming a 

percolating/continuous phase even at low volume fraction, the hydrophobic phase forms 

hexagonally packed cylinders. These cylinders formed from the high-volume fraction hydrophobic 

block will have large diameters. The diameter of this hydrophobic cylinder will decrease with 

decreasing volume fraction of the non-ionic block. The diameter of the hydrophobic cylinders 

obtained from TEM was similar to the domain spacing obtained from the scattering data for 

PNPS5-b-PNMBzE samples.   
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Figure 9.23. Depiction of the modified phase diagram for the PNPS5-b-PNMBzE series 

superimposed upon the phase diagram of a conventional, symmetric, non-charged block 

copolymer. 

We can modify the block copolymer phase diagram to reflect the experimental findings from the 

characterization of PNPS5-b-PNMBzE. This modified phase diagram is presented in Figure 9.23. 

The strong electrostatic cohesion parameter, Γ, skews the phase diagram to favor the formation of 

a continuous phase at low volume fraction of the ionic component. In the modified phase diagram, 

PNPS5-b-PNMBzE with volume fraction of NPS5 ranging from 0.21 to 0.60 form inverse 

hexagonal morphologies at a constant χN. The χN value for PNPS5-b-PNMBzE_0.66(0.21:0.79), 

PNPS5-b-PNMBzE_1.10(0.37:0.63), PNPS5-b-PNMBzE_1.5(0.5:0.5), and PNPS5-b-
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PNMBzE_1.7(0.60:0.40) is approximately constant. On the schematic representation of the 

modified phase diagram, the hexagonal, the lamellar, and the inverse hexagonal morphologies are 

represented by H, L, and I-H respectively. The “chimney” shape of the modified diagram has been 

predicted by Olivera de la Cruz in block copolyelectrolytes.18  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.24. Extreme small-angle X-ray scattering data (ESAXS) for the PNHS5-b-PNMBzE 

series except PNHS5-b-PNMBzE_2.34(0.1:0.0) whose data was collected in the MAXS Q range 
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X-ray scattering data for the PNHS5-b-PNMBzE samples is shown in Figure 9.24. The scattering 

spectra for the PNHS5-b-PNMBzE samples with volume fraction of PNHS5 ranging from 0.19 – 

0.58 also show hexagonal-type morphologies similar to those that have been observed in the 

PNPS5-b-PNMBzE samples. Like in the case of the PNPS5-b-PNMBzE samples, the domain 

spacing of the PNHS5-b-PNMBzE samples, obtained from the scattering data, also decreased with 

increasing volume fraction of the ionic block. This suggests that the PNHS5-b-PNMBzE samples, 

like the PNPS5-b-PNMBzE samples, form an inverse hexagonal morphology. This also suggests 

that the PNHS5 block forms the continuous phase even at low volume fraction while the PNMBzE 

block forms the cylinders which are packed in a hexagonal pattern. Upon decreasing volume 

fraction of the PNMBzE block, the domain spacing (which is equivalent to the diameter of the 

cylinders formed by the PNMBzE block) also decreases. This behavior is typical of inverse 

hexagonal morphologies of block polyelectrolytes like the PNPS5-b-PNMBzE samples. The 

dimensions of the domain spacing (the diameter of the hexagonally packed cylinders) obtained for 

the PNHS5-b-PNMBzE samples were equivalent to those measured for PNPS5-b-PNMBzE at 

approximately similar volume fractions (see Figure 9.25).  
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Figure 9.25. Variation of domain spacing with volume fraction in the PNPS5-b-PNMBzE and the 

PNHS5-b-PNMBzE series. 

Furthermore, probing the PNHS5-b-PNMBzE samples by MAXS reveal similar structure-within-

structure observed in PNHS5-b-PNMBzE. This further confirms the block character of the 

samples. This parallel arrangement of counterions could have beneficial consequence for ionic 

conductivity of these membranes. 

9.4.2 Conductivity of Block Copolymers of NPS5, NPMBzE and NHS5, NPMBzE 

The conductivity of PNPS5-b-PNMBzE_0.66(0.21:0.79) and PNPS5-b-

PNMBzE_1.10(0.37:0.63) at 95 %RH are presented in Figure 9.26. The conductivities increased 

with increasing temperature. The conductivity of PNPS5-b-PNMBzE_1.10(0.37:0.63) was 

exceptionally high. In the morphology of PNPS5-b-PNMBzE_1.10(0.37:0.63), as seen from TEM 

micrographs, the ionic block forms a continuous phase with the non-ionic component forming the 

cylinders. This continuous phase facilitates the untrammeled mobility of bromide counterions 
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through the membrane. A comparison of the conductivity of PNPS5-b-PNMBzE_1.10(0.37:0.63) 

and PNPS5-b-PNMBzE_0.66(0.21:0.79), show that the sample with higher IEC. had higher 

conductivity. The high conductivity of PNPS5-b-PNMBzE_1.10(0.37:0.63) in comparison to 

PNPS5-b-PNMBzE_0.66(0.21:0.79) may have been further fostered by subtle differences in the 

morphologies of the membranes. The TEM micrographs of PNPS5-b-PNMBzE_0.66(0.21:0.79) 

and PNPS5-b-PNMBzE_1.10(0.37:0.63) show that the ionic phase is the continuous phase in both 

samples. However, the hydrophobic cylinders in PNPS5-b-PNMBzE_0.66(0.21:0.79) are larger 

compared to those in PNPS5-b-PNMBzE_1.10(0.37:0.63) and in some cases impinge on one 

another. This can result in blockades by the non-ionic block in the continuous ionic phase. 

Consequently, this could decrease the mobility of the counterion, and thus, the membrane 

conductivity. Higher conductivity can therefore be expected in PNPS5-b-PNMBzE_1.5(0.5:0.5), 

and PNPS5-b-PNMBzE_1.7(0.60:0.40) due to the small diameter of their hydrophobic cylinders; 

however, the formation of an ionic (hydrophilic) continuous phase which can excessively swell on 

humidification results in poor mechanical fidelity of the membranes. Consequently, we were 

unable to perform conductivity tests for PNPS5-b-PNMBzE_1.5(0.5:0.5), and PNPS5-b-

PNMBzE_1.7(0.60:0.40) at 95% RH.  

Comparing the conductivity of both the block and random copolymers of NPS5 and NMBzE show 

that the block copolymer had higher conductivity across the measured temperature range (30 – 80 

°C). The higher conductivity of PNPS5-b-PNMBzE_1.10(0.37:0.63) may have resulted from the 

continuous phase of its ionic domain, whereas, PNPS5-r-PNMBzE_1.07(28:72) had a coexistence 

of continuous and clustered ionic phases.  
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Figure 9.26. Conductivity at 95% RH of a) PNPS5-b-PNMBzE and b) PNHS5-b-PNMBzE series. 

For NHS5 block copolymers, the conductivity of PNHS5-b-PNMBzE_0.54(0.19:0.81) and 

PNHS5-b-PNMBzE_1.0(0.38:0.62), increased with increasing temperature. The conductivity of 

PNHS5-b-PNMBzE_0.54(0.19:0.81) was exceptionally high, given its low IEC. The sample, 

PNHS5-b-PNMBzE_1.0(0.38:0.62), also showed high conductivity at lower temperatures and 

average conductivity values at high temperature. The effect of side-chain on the conductivity of 

block copolymers can be observed when PNHS5-b-PNMBzE_0.54(0.19:0.81) is compared to 

PNPS5-b-PNMBzE_0.66(0.21:0.79). The former had a higher conductivity. The longer the side-

chain, the more the effect of sterics in facilitating backbones of polymer chains to arrange in 

parallel bundles. Thus, due to the longer length of the pendant side-chains of PNHS5-b-

PNMBzE_0.54(0.19:0.81), in comparison to PNPS5-b-PNMBzE_0.66(0.21:0.79), the former will 

have a larger quantity of backbones arranged parallelly to one another. Parallel arrangement of 

ions can readily facilitate the transport of bromide counterions along the polymer chain of the ionic 

domain in PNHS5-b-PNMBzE_0.54(0.19:0.81). Resulting in increased ionic conductivity of 

PNHS5-b-PNMBzE_0.54(0.19:0.81) in comparison to PNPS5-b-PNMBzE_0.66(0.21:0.79).  
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However, in comparison to PNPS5-b-PNMBzE_1.10(0.37:0.63), PNHS5-b-

PNMBzE_1.0(0.38:0.62) had low conductivity. This result, although unexpected may be due to 

the relatively low activation energy of PNHS5-b-PNMBzE_1.0(0.38:0.62) (26.5± 1.5 KJ/mol) in 

comparison to PNPS5-b-PNMBzE_1.10(0.37:0.63) (49.7± 4.3 KJ/mol). Lower activation energy 

suggests that the barrier to counterion mobility is too high that counterions cannot move or very 

low that there is no barrier to counterion mobility. In the case of the later, the mobility of 

counterions are maximum that little to no improvement in conductivity can be achieved in 

increasing the temperature of the system. However, in systems with higher activation energy, there 

will be a substantial increase in conductivity with temperature, which we see in PNPS5-b-

PNMBzE_1.10(0.37:0.63). At 30 °C, PNHS5-b-PNMBzE_1.0(0.38:0.62) had a conductivity of 

5.5±0.5 mS/cm which is about twice the conductivity of PNPS5-b-PNMBzE_1.10(0.37:0.63), 

3.25±0.05 mS/cm. This is a very high bromide conductivity at that temperature for a sample with 

an IEC of about 1 g/mmol. No other studied sample had conductivity that high at that temperature 

(30 °C) at 95% RH. While PNHS5-b-PNMBzE_1.0(0.38:0.62) had little increase in conductivity 

from 30 – 40 °C, PNPS5-b-PNMBzE_1.10(0.37:0.63) showed a very steep rise in conductivity.  

9.5 Conclusion 

Flexible random copolymers of PNPS5-r-PNMBzE and PNHS5-r-PNMBzE were successfully 

synthesized by ring-opening metathesis polymerization. X-ray scattering performed on these 

samples show ionomer morphology at low concentration of the ionic component. However, at 

higher concentration of PNPS5 in the PNPS5-r-PNMBzE random copolymers, the morphology 

transitions from a random distribution of ionic clusters to a backbone-backbone morphology. 

Transmission electron microscopy micrographs of seem to corroborate the scattering data.  

Characterization of structure-property correlations in these polymers show that the structure of the 
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random copolymer significantly influences the conductivity of the random copolymer. 

Exceptionally high conductivity was obtained for both PNPS5-r-PNMBzE and PNHS5-r-

PNMBzE at 65% relative humidity. The conductivity properties of PNHS5-r-PNMBzE was 

significantly higher than the conductivity of PNPS5-r-PNMBzE. This is may have resulted from 

the degree of ionomer clustering in both series. In PNHS5-r-PNMBzE, due to the longer pendant 

side-chain connecting the polymer backbone to the spirocyclic salt, the concentration of ionomer 

clusters in the polymer will be considerably less in comparison to the concentration of ionomer 

clusters PNPS5-r-PNMBzE samples. This morphology-conductivity relationship is also evident 

when comparing conductivity between PNPS5-r-PNMBzE and PNHS5-r-PNMBzE at 95% 

relative humidity.   

Flexible block copolymers of PNPS5-b-PNMBzE and PNHS5-b-PNMBzE were also successfully 

synthesized by ring-opening metathesis polymerization. Characterization of the samples in both 

series by X-ray scattering show evidence of microphase separation in the block copolymers. The 

block copolymers show cylindrical morphology with large domain sizes. The domain sizes 

decrease with decreasing concentration of the hydrophobic block, PNMBzE. For both series, 

PNPS5-b-PNMBzE and PNHS5-b-PNMBzE, scattering data show a substructure of backbone-

backbone spacing within a superstructure of phase-separated ionic and non-ionic block. 

Transmission electron microscopy micrograph confirm the cylindrical morphology, showing the 

ionic block forming the continuous phase at all volume fractions ranging from 0.2 – 0.6. The block 

copolymers show excellent conductivity at relatively low IEC.  
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CHAPTER 10 

SUMMARY AND OUTLOOK 

With the increasing global demand for energy, there are justifiable reasons for alternative energy 

to be pursued. Fuel cell technology, and more importantly, anion exchange membranes give 

reasons to be optimistic about finding solutions to the global energy challenge. Two major 

disadvantages hinder the commercialization of anion exchange membrane fuel cells (AEMFCs), 

one is the lack of membrane stability in alkaline environments, and the other is a poor 

understanding of structure-property relationships for the optimization of both mechanical 

properties and ion conductivity. Throughout this dissertation, we have made considerable progress 

in answering some of the basic questions on the morphology of alkaline exchange membrane 

(AEMs), and in synthesizing alkaline stable membranes.  

It is a misconception that all small-angle scattering peaks present in randomly charged polycations 

corresponds to the presence of an ionomer cluster morphology.  Caution must be taken when 

interpreting scattering data. X-ray scattering features arising from backbone-backbone 

morphology and ionomer cluster morphology can both be observed in a randomly charged, comb-

shaped polycation, and possibly, in other random polyelectrolyte systems. In these random, 

charged, comb-shaped polycations, backbone-backbone morphology may exist, and even compete 

with, or, in some instances, exclude the formation of ionomer cluster morphology. The steric 

exclusion that leads to the backbone-backbone spacing feature in X-ray scattering is posited to 

arise from the exclusion of a pendant side-chain by another pendant side-chain on an adjacent 

polymer backbone from occupying the same space. Thus, with increasing number of carbons on 

the pendant side-chains, the backbone-backbone spacing will increase. This is due to the sterics of 



350 

 

the pendant side-chains on adjacent backbones excluding each other from occupying the same 

space.  With increasing concentration of the pendant side-chain, there are more pendant side-chains 

between adjacent polymer backbones excluded by each other. Consequently, increasing the 

backbone-backbone spacing. Experimental evidence has been presented in this dissertation to 

suggest that there is a linear relationship between the backbone spacing of the polymer and the 

concentration of the pendant side-chains on the polymer backbone. The origin of this ordering is 

different from that of the ionomer cluster morphology that depends on the attraction between 

adjacent polymer dipoles. The In-Line Dipole Model was developed to relate the dipole-dipole 

interactions and pendant side-chain sterics at KBT. By equating the dipole-dipole interaction that 

results in the lowest energy state of the dipoles to KBT a limiting length, dL, that defines the limit 

of the dipole-dipole interaction can be obtained.  

To study the interplay between this exclusion of pendant side-chains that leads to backbone-

backbone morphology and dipole-dipole attraction that facilitates the clustering of dipoles thereby 

resulting in an ionomer cluster morphology, a randomly charged comb-shaped model polymer was 

studied. The random copolymer, P4VP-r-PI, whose synthesis, to the best of our knowledge, has 

not been reported in the literature, was synthesized for this purpose. Characterization of the 1-

alkylhalide quaternized P4VP-r-PI by X-ray scattering showed that samples with longer pendant 

side-chains, with their corresponding backbone-backbone spacing larger than dL, were less likely 

to form ionomer cluster morphology. However, samples with shorter pendant side-chains, in which 

corresponding backbone-backbone spacing would be less than dL were more likely to form the 

ionomer cluster morphology. The same trend was observed in the X-ray scattering characterization 

of P4VP-r-PS and P4VP-r-PI-r-PS after quaternization by various 1-alkylhalides. The iodide 

quaternized samples had smaller backbone-backbone spacing in comparison to the bromide 
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quaternized samples at the same number of carbons on the pendant side-chains. This may have 

resulted from the large dipole moment of the iodide quaternized samples since the iodide 

counterion is larger than the bromide.  

Since longer pendant side-chains decrease the likelihood for ionomer cluster morphology and 

given that ionomer cluster morphology negatively affects counterion conductivity, we were able 

to optimize the conductivity of the quaternized and crosslinked P4VP-r-PI polymers. A peak 

bromide conductivity of 110 mS/cm at 95 % RH at 90 °C was measured for XP4VP-r-PI_C3Br. 

This is the highest bromide conductivity recorded for any anion exchange membrane, to the best 

of our knowledge. This finding has broader ramifications in the design of anion exchange 

membranes for fuel cell applications, and by extension, polyelectrolytes for battery applications.  

The effect of the competition between electrostatics and sterics extends beyond short-range 

ordering in amorphous structures. Upon quaternization of P4VP by 1-alkylhalide with 1 or 2 

carbons on the alkyl group, the resulting polymers, P4VP_C1I, P4VP_C2I, and P4VP_C2Br, 

showed evidence of semi-crystallinity when characterized by wide-angle X-ray scattering. 

Analysis of these polymers by DSC show reproducible melting endotherms and recrystallization 

exotherms which further confirms their semi-crystallinity. Further characterization of P4VP_C1I, 

P4VP_C2I, and P4VP_C2Br by OPM confirm the semi-crystalline structure of these samples. 

Characterization of P4VP_C2I, and P4VP_C2Br on cooling from the melt by POM show 

nucleation and then growth into a spherulite microstructure, while characterization of P4VP_C1I 

on cooling from the melt by POM show the so-called shish-kebab structure on nucleation and 

growth. The semi-crystallinity of P4VP_C1I, P4VP_C2I, and P4VP_C2Br is an exciting finding 

given that these quaternized P4VP homopolymers are atactic. Evidences of semi-crystallinity in 

quaternized P4VP samples disappear when the number of carbons on the pendant side chains, n, 



352 

 

is greater than 2. This semi-crystallinity of ethylbromide quaternized P4VP can also be found in a 

block copolymer of PS and P4VP_C2Br. These results present interesting future areas of research 

on the balance between electrostatically driven semi-crystallinity in quaternized P4VP and the 

opposing effects of sterics as the side-chains get longer. Characterization of the ionic conductivity 

of these membranes, especially at temperatures just below, and above, their melting points, will 

provide an avenue to compare the conductivity of these polymers in the solid and molten states. 

Large differences in conductivity before, and after, melting could be used to design materials for 

temperature sensing applications.  

Synthesizing membranes that could be robust in alkaline environments is of keen interest to 

scientists and engineers developing anion exchange membranes. In this dissertation, we have 

designed, and synthesized stable monomers based on the ASU-type cations: Norbronenepropoxy-

6-azonia-spiro(5,5)undecane (NPS5) and norbronenehexoxy-6-azonia-spiro(5,5)undecane 

(NHS5). Degradation studies conducted on these monomers as analyzed by 1H NMR spectroscopy 

show that both NPS5 and NHS5 are very stable in alkaline medium. These monomers were readily 

polymerized by ring-opening metathesis polymerization into anion exchange membranes. Random 

copolymerization of the monomers, NPS5 and NHS5, with norbornene show that the formation of 

ionomer cluster morphology or backbone-backbone morphology depends on the concentration of 

the ionic component. Random copolymers of NHS5 and NPS5 with norbornenemethylbenzylether, 

NMBzE, also show concentration dependence on the transition from ionomer cluster morphology 

to backbone-backbone morphology. However, since PNHS5 has longer pendant side-chains in 

comparison to PNPS5, the transition from ionomer morphology to backbone-backbone 

morphology occurred at a relatively lower concentration of PNHS5 in PNHS5-r-PNMBzE in 

comparison to PNPS5 in PNPS5-r-PNMBzE.  Thus, a combination of pendant side-chain (steric 
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effect) and concentration (matrix effect) facilitates this transition of between the two 

morphologies. Electrochemical Impedance Spectroscopy (EIS) measurements show high bromide 

conductivity in these samples at relatively low IEC. However, because of sterics effects on the 

formation of ionomer cluster morphology, the PNHS5-r-PNMBzE series had higher bromide 

conductivity in comparison to PNPS5-r-PNMBzE. The monomers, NPS5 and NHS5, were 

sequentially polymerized with NMBzE to synthesize block copolymers that were fabricated into 

robust anion exchange membranes. X-ray characterization of the block copolymer series of 

PNPS5-b-PNMBzE and PHPS5-b-PNMBzE show two morphology length scales.  A larger length 

scale ordering corresponding to the microphase separation of the ionic and non-ionic blocks. At 

this length scale, all the characterized polymers showed a cylindrical morphology. A smaller length 

scale ordering corresponding to the backbone-backbone spacing within the ionic domain. The 

scattering spectra of PNPS5-b-PNMBzE and PNHS5-b-PNMBzE show that ionic and non-ionic 

blocks are phase separated into a cylindrical morphology. Transmission electron microscopy 

confirms the cylindrical morphology of the PNPS and PNMBZE block copolymers with the ionic 

block forming the continuous phase even at low volume fractions. Conductivity measurements 

show very high conductivity of both PNPS5-b-PNMBzE and PHPS5-b-PNMBzE series.  The 

morphology-mechanical properties relationships of these membranes are important aspects of the 

PNPS5-r-PNMBzE series and the PHPS5-r-PNMBzE series that must be explored further. 

Morphology-mechanical properties relationships must also be explored for the PNPS5-b-

PNMBzE series and the PHPS5-b-PNMBzE series. 

Synthesis of stable anion exchange membranes is a great step forward in the search for alkaline 

exchange membranes with relative chemical stability that can mimic that of Nafion® while not 

compromising conductivity properties. An interesting component of the investigations presented 
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in this dissertation on the synthesis of stable AEMs is that the chemistry techniques used in these 

synthetic procedures are common, the materials are easily accessible, and the synthetic yields of 

these monomers and their polymers are good.  

Over all, the findings in this dissertation can be divided into three parts: (i) addressing the 

morphology-conductivity challenges in AEMs (ii) addressing the challenges in synthesizing 

alkaline-stable AEMs, and finally (iii) utilizing the combined findings in (i) and (ii) to design 

highly stable and highly ion conducting AEMs. Initial results on the ionic conductivity of these 

ASU-type anion exchange membranes provide cause for cautious optimism for the future of anion 

exchange membranes and the discovery of solutions to the global energy problem in general. These 

findings also provide templates for future investigations into chemical stabilities and morphology-

conductivity optimizations in other azonia spirocyclic undecane-type anion exchange membranes.  

 

<The End> 
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Figure 1. FTIR spectra of P4VP quternization with time by 1-butyllbromide (left) and 1-

pentylbromide (right). 
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Figure 2. FTIR spectra of P4VP quternization with time by 1-hexylbromide (left) and 1-

heptylbromide (right). 
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Figure 3. FTIR spectra of P4VP quternization with time by 1-octylbromide (left) and 1-

decylbromide (right). 

 

 

 

 

 



358 

 

APPENDIX B 

X-RAY SCATTERING SPECTRA 
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Figure 1. SAXS spectra of P4VP quternization with time by 1-butylbromide (left) and 1-

pentylbromide (right). 
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Figure 2. SAXS spectra of P4VP quternization with time by 1-hexylbromide (left) and 1-

heptylbromide (right). 
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Figure 3. SAXS spectra of P4VP quternization with time by 1-octylbromide (left) and 1-

dodecylbromide (right). 
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Figure 4. SAXS spectra of P4VP_C12Br in an environment with changing relative humidity 

(RH). 
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Figure 5. SAXS spectra of P4VP_C12I in an environment with changing relative humidity (RH). 
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Figure 6. SAXS spectra of P4VP-r-PI_C2Br in an environment with changing relative humidity 

(RH). 
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Figure 7. SAXS spectra of XP4VP-r-PI_C2Br in an environment with changing relative 

humidity (RH). 
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Figure 8. SAXS spectra of XP4VP-r-PI_C4Br in an environment with changing relative 

humidity (RH). 
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Figure 9. SAXS spectra of XP4VP-r-PI_C6Br in an environment with changing relative 

humidity (RH). 
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APPENDIX C 

NMR CHARACTERIZATION SPECTRA 

 

Figure 1. 1H NMR spectra of the PNPS5-b-PNMBzE series. 
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Figure 2. 1H NMR spectra of the PNPS5-r-PNMBzE series. 
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Figure 3. 1H NMR spectra of the PNHS5-r-PNMBzE series. 
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Figure 4. 1H NMR spectra of the PNHS5-b-PNMBzE series. 
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Figure 5. 1H NMR spectrum of P4VP quaternized by 1-ethylbromide in methanol (top), and in 

DMF (bottom). Solvent peaks are marked by the star.  

It is important to note that, P4VP quarternized by ethylhalide in methanol do not show evidence 

of crystallinity except when quarternized in DMF. The 1H NMR spectra for P4VP quarternized by 

ethylbromide in methanol and DMF differ by a single peak (see arrow) which may be the reason 

for the visible crystalline peaks in the WAXS of P4VP_C2Br. This may be an impurity of sorts, 

and if so, suggests that alkylhalides can react with DMF in the presence of P4VP. More studies on 

the chemistry of this reaction is therefore warranted.  
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APPENDIX D 

DSC CHARACTERIZATION SPECTRA  

-20 0 20 40 60 80 100 120 140 160

-1

0

1

2
H

e
a

t 
F

lo
w

 (
m

W
)

Temperature (C)

 PNDMDC

 

Figure 1. DSC spectrum of PNDMC. 
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Figure 2. DSC spectrum of PNMBzE. 
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Figure 3. DSC spectrum of PNPS5. 
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