
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

October 2018 

Collider tests of fundamental symmetries and neutrino properties Collider tests of fundamental symmetries and neutrino properties 

Haolin Li 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Elementary Particles and Fields and String Theory Commons 

Recommended Citation Recommended Citation 
Li, Haolin, "Collider tests of fundamental symmetries and neutrino properties" (2018). Doctoral 
Dissertations. 1366. 
https://scholarworks.umass.edu/dissertations_2/1366 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1366?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


COLLIDER TESTS OF FUNDAMENTAL SYMMETRIES
AND NEUTRINO PROPERTIES

A Dissertation Presented

by

HAO-LIN LI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2018

Department of Physics



c© Copyright by Hao-Lin Li 2018

All Rights Reserved



COLLIDER TESTS OF FUNDAMENTAL SYMMETRIES
AND NEUTRINO PROPERTIES

A Dissertation Presented

by

HAO-LIN LI

Approved as to style and content by:

Michael J. Ramsey-Musolf, Chair

Stephane Willocq, Member

Patrick I. Draper, Member

Daniel Q. Wang, Member

Menon Narayanan, Department Chair
Department of Physics



DEDICATION

This thesis is dedicated to my parents.



ACKNOWLEDGMENTS

I would thank my advisor Professor Michael Ramsey-Musolf for giving me oppor-

tunities to work on various projects and enlightening me when I was in trouble and

teaching me the philosophy to do physics. I would thank the committee member,

Professor Stephane Willocq, for help me a lot when I had questions in the experiment

aspect. I would thank the Professor Patrick Draper and Professor Daniel Wang for

giving me valuable advise on my talk and thesis. I would thank Jiang-Hao Yu, Hiren

Patel, Kaori Fuyuto, Aniket Joglekar, who are always patient for my questions. I

would thank Huai-Ke Guo who support me through the hard time. I would thank

Joseph Babcock, Ben Brau and Peter Winslow helping me on using titan cluster.

Finally, I would thank my parents for supporting me since I was born.

v



ABSTRACT

COLLIDER TESTS OF FUNDAMENTAL SYMMETRIES
AND NEUTRINO PROPERTIES

SEPTEMBER 2018

HAO-LIN LI

B.S., NANKAI UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael J. Ramsey-Musolf

The CP parity of the Higgs boson and the details of the electroweak symmetry

breaking are the two crucial ingredients to understand the matter-antimatter asym-

metry in our universe. Electroweak baryogenesis is an intriguing solution to the

puzzle of this unexplained observed asymmetry because of its testability at present

and near future collider experiments. The possibilities of testing CP phase in the

Two-Higgs-Doublets Models (2HDMs) and the generation of a strong first-order elec-

troweak phase transition (SFOEWPT) in the real singlet model at the future high

luminosity LHC are studied. In addition to the specific extensions to the Standard

Model (SM), I also study the sensitivity of the future 100 TeV collider in probing

the Wilson coefficients of the dimension 6 operators related to the Higgs sector using

the effective field theory (EFT) approach. The observed non-zero neutrino mass is

another phenomenon that the SM fails to explain. The Left-Right Symmetric Model

(LRSM) proposes a natural explanation of the smallness of the neutrino mass and its

vi



connection to the high scale spontaneous parity violation. I study the prospects of

searching the heavy right-handed neutrinos and measuring the mixing between the

light and heavy neutrinos in the framework of the minimal LRSM at the future 100

TeV hadron collider.
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INTRODUCTION

The discovery of the new Higgs-like particle at the LHC [8, 58] leads us to a new

era of particle physics. The standard model (SM) physics is extremely successful

in explaining the relation between the electromagnetic and weak interactions, the

property of asymptotic freedom in the QCD, the CP violation in the meson system,

etc. Nevertheless, there are still many phenomena that the SM fails to explain. Why

are there dark matter and dark energy in our universe? Why is matter more than

antimatter in our universe? Why do neutrinos have masses? All these evidences

indicate the existence of new physics beyond the SM.

The present measurement of the baryon asymmetry of the universe (BAU) is given

by the results of the Planck experiments [16] and the Big-Ban Nucleosynthesis (BBN)

[213]:

YB =
nB
s

= (8.59± 0.11)× 10−11 (1)

where nB and s are the baryon number and entropy density respectively. The elec-

troweak baryogenesis (EWBG) is one of the appealing solutions to this problem be-

cause of its testability at TeV collider experiment. The Sakharov conditions [228]

demonstrate three requirements for a successful electroweak baryogenesis: baryon

number violation, C and CP violation and the departure from the thermal equilib-

rium which may processes through a strong first order electroweak phase transition

(SFOEWPT). It is well known that the first requirement is satisfied by the elec-

troweak sphaleron process in the SM [195, 179]. However, the CP violation effect

in the SM is too feeble [132, 161, 133]and the Higgs mass is too heavy to produce

a SFOWEPT [47, 170]. Due to these shortcomings of the SM, new physics models
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are proposed to compensate for the insufficient CP violation effect in the SM and

to make the electroweak phase transition first-order and strong. These new physics

model usually predict new particles with certain interactions with SM particles. In

this case, the LHC becomes an excellent machine to test these new physics models

by searching for new particles predicted in those models. In the meantime, one can

also combine the experimental results from both the high energy searches and the low

energy precision measurements to constrain a specific new physics model. Two of my

projects related to this topic are: studying the prospective sensitivity of the future

high luminosity LHC in constraining the CP violation in the scalar sector in Two-

Higgs-Doublet Models (2HDMs) by searching a heavy Higgs decaying to the SM-like

Higgs and a Z boson and testing the parameter space that gives the SFOEWPT in

the singlet extended SM (xSM) through searching a resonant di-Higgs signal with 4

b quark final state.

Current measurements of the newly discovered scalar particle reveal that it closely

resembles the SM Higgs boson and no significant deviation has been found [13]. There-

fore, one should try to classify the small deviations from the SM predictions in a

systematic way. The standard model effective field theory (SMEFT) provides a gen-

eral way to write down the higher dimensional non-renormalizable operators that are

consistent with the SM symmetries, which translate the small deviations from the SM

predictions into the constraints on the Wilson coefficients of those non-renormalizable

operators. In this thesis, I study the prospective constraints on the Wilson coefficients

of the dimension 6 operators that related to the modification of the di-Higgs produc-

tion rate relative to the SM by searching a non-resonant di-Higgs signal with the bbγγ

final state in the future 100 TeV collider.

Neutrino oscillation experiments have confirmed that neutrinos have masses. The

origin and the smallness of neutrino masses remain as a mystery that cannot be ex-

plained by the SM. Several mechanisms have been proposed to solve this problem,
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among which the seesaw mechanisms are popular candidates as it simultaneously ex-

plain the origin and smallness of neutrino masses. In different types of seesaw models,

the neutrino could be a Majorana fermion, which is closely related to the lepton num-

ber violation and can be tested by neutrinoless double-beta decay experiments (0νββ).

On the other hand, in a certain model, one is also possible to constrain or measure

neutrino masses at collider experiments. The Left-Right Symmetric Model is such a

model that relates the smallness of neutrino masses to the high-scale restoration of

the parity symmetry. It enables us to take advantage of highly boosted decay prod-

ucts of the heavy right-handed WR boson in the model to scrutinize the the origin of

neutrino masses in the future 100TeV collider.

Now I will briefly summarize the results of these four projects.

In the CPV 2HDMs project discussed in Chapter 5, we base on the previous

works Ref. [163] and Ref. [61] to study the prospects of testing the CP violation

in 2HDMs with the future High-Luminosity (HL) LHC and electric dipole moment

(EDM) experiments. We point out that in the zero or small deviation from the

alignment limit, the search for a most CP even Higgs h2 decaying to a Z boson and a

SM-like Higgs is directly sensitive to the magnitude of the CP violation effect in the

scalar potential. In addition, a positive result from the future collider experiments will

indicate an observation of non-zero EDMs. A positive result from EDM experiments

with a null result from the future collider will immediately falsify the CPV 2HDMs.

On the other hand, if the deviation from the alignment limit is large, then one may

not directly draw a conclusion on the CP violation from a positive collider result,

because in this case the most CP odd Higgs h3 will decay to the Zh final state even if

CP is conserved. Therefore, additional CP properties of the discovered particle need

to be investigated.

In the xSM project discussed in Chapter 6, we estimate the future sensitivity of

the HL LHC in searching a resonant heavy scalar S decaying to a pair of SM-like Higgs
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with the 4b final state. Eleven benchmark points with the largest di-Higgs signal rate

and simultaneously giving a SFOEWPT are studied. We found that, comparing with

previous studies of bbττ [208], bbγγ [181], 4τ [181] and bbWW [160] final states at HL

LHC, the 4b final state gives comparable sensitivities with the bbγγ and 4τ channel

and better signal significance than bbWW channel for a mass of the heavy scalar less

than 500 GeV, while for the heavy scalar mass larger than 500 GeV, the 4b channel

is better than bbγγ and 4τ channel but is not competitive with bbWW channel.

In the EFT di-Higgs project 7, we derive the Wilson coefficients of the 6 dimen-

sion six operators related to our di-Higgs study for the scalar extensions that can

generate these operators at tree level and investigate the reach of the future 100 TeV

collider on the UV parameters in each model by searching a di-Higgs signal with the

bbγγ final state. We point out that for the triplet and quadruplet models, due to

the correlation between the strongly constrained Wilson coefficients of the custodial

violation operator |H†DµH|2 and that of the operator (H†H)3, the modification of

the di-Higgs signal rate is not large enough to be distinguishable from the SM. We

also find that with a 30 ab−1 integrated luminosity the theoretical uncertainties on

the production cross-section will be important to distinguish the new physics signal

from the SM one.

In the LRSM project discussed in Chapter 8, we study the prospects of measuring

neutrino Dirac masses by searching a resonant production of theWR boson decaying to

a positron e+ and a lightest heavy neutrino N1, with N1 decaying purely leptonically

to e+µ−ν. The similar purely leptonic final state has been studied in the fermion

singlet extension to the SM with Type-I seesaw in Ref. [164]. we first investigate this

channel in measuring neutrino Dirac masses in the framework of the LRSM and point

out their advantage comparing with the traditional semi-leptonic channels [118, 150].

This thesis is organized as follows. In Chapter 1, I review the electroweak sector

in the SM. In Chapter 2, I introduce the effective field theory framework which will
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be used in Chapter 7. In Chapter 3, I discuss the general collider phenomenology

related to the di-Higgs production. In Chapter 4, I review several seesaw mechanisms

that generate small neutrino masses. In Chapter 5, I discuss in details the future

collider constraints on CP violation 2HDMs. In Chapter 6, I present the results for

the possibility of testing the generation of a SFOEWPT in Singlet xSM the di-Higgs

4b channel in the HL LHC. In Chapter 7, The results of the study of the various

scalar extensions to the SM using the di-Higgs channel in the future 100TeV collider

are demonstrated. In Chapter 8, I give the detailed analysis of the reach of future

collider in constraining the Yukawa couplings between the heavy and light neutrinos

in the LRSM.
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CHAPTER 1

THE ELECTROWEAK SECTOR IN THE STANDARD
MODEL

The Standard Model (SM) is a gauge theory based on the gauge group structure:

SU(3)c × SU(2)L ×U(1)Y. The SU(3)c part describes the strong interaction between

quarks and gluon. The SU(2)L × U(1)Y part describes the so-called electroweak

interaction, which is spontaneously broken to the U(1)em by Brout-Englert-Higgs

(BEH) mechanism [112, 155, 156, 157, 178]. In this chapter, I mainly focus on the

electroweak sector and discuss the details of the formulation of the theory and BEH

mechanism.

1.1 Electroweak Lagrangian

The SM includes three generations of left-handed and right-handed leptons and

quarks. They are denoted as:

LL =


 νiL

eiL


 , QL =


 uiL

diL


 (1.1)

eR = {eiR}, uR = {uiR}, dR = {diR}, (1.2)

where LL and QL are doublets of the left-handed lepton and quark fields in the

fundamental representation of the SU(2)L gauge group. This is the origin of the

subscript L of the SU(2)L. The eR, uR, and dR are right-handed fields of charged

leptons, up type quarks and down type quarks respectively. They are singlets under

the SU(2)L gauge group. The index i represents the generation of quarks and leptons,
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which ranges from 1 to 3. The left-handed and right-handed fields are defined by the

projections of the four components of the Dirac spinors ψ: ψR,L = (1 ± γ5)ψ. The

charge assignments for these fields are summarized in Table. 1.1.

Field SU(3)c SU(2)L U(1)Y

LL 1 2 -1/2
QL 3 2 1/6
eR 1 1 -1
uR 3 1 2/3
dR 3 1 -1/3

Table 1.1: Charge assignments for the SM fermion fields. For the SU(3)c and SU(2)L

the 3 and 2 represent the fundamental representations of the corresponding groups
respectively, while 1 represents the singlet representation of the corresponding groups.

The principle of gauge invariance introduces gauge fields for each symmetry group.

They are denoted as Ga
µ for SU(3)c, W

i
µ for SU(2)L and Bµ for U(1)Y, where the index

a ranges from 1 to 8 and the index i ranges from 1 to 3 corresponding to the number

of the generators of SU(3) and SU(2) group respectively. Under a infinitesimal gauge

transformation, the gauge fields transform in the following way:

Bµ → Bµ +
1

g′
∂µθ1,

W i
µ → W i

µ +
1

g
∂µθ

i
2 + εijkθj2W

k
µ ,

Ga
µ → Ga

µ +
1

gs
∂µθ

a
3 + fabcθb3G

c
µ, (1.3)

where θ1, θi2 and θa3 are small parameters that parametrize the U(1)Y, SU(2)L and

SU(3)c transformations. g′, g and gs are the corresponding coupling constants for

each group. The εijk and fabc are structure constants of SU(2) and SU(3) group that

satisfy:

[T i, T j] = iεijkT k, [T aC , T
b
C ] = ifabcT c, (1.4)
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where T i = 1/2 σi with σi Pauli matrices, the generators of the SU(2) group, and T aC

are Gell-Mann matrices, the generator of the SU(3) group.

Fermions transform in the following ways:

LL →
(
1 + ig′YLθ1 + igT jθj2

)
LL

Ql →
(
1 + ig′YQθ1 + igT jθj2 + igsT

a
Cθ

a
3

)
QL (1.5)

eR → (1 + ig′Yeθ1) eR (1.6)

uR → (1 + ig′Yuθ1 + +igsT
a
Cθ

a
3)uR (1.7)

dR → (1 + ig′Ydθ1 + +igsT
a
Cθ

a
3) dR, (1.8)

where YL,Q,e,u,d are hypercharges of the U(1)Y group listed in the fourth column in

Table.1.1. By introducing the covariant derivative Dµ:

Dµ = ∂µ − ig′Y Bµ − igT iW i
µ − igsT aCGa

µ. (1.9)

One can find that /Dψ = γµDµψ transforms the same way as the corresponding

fermion field.

Now we arrive at the stage to write down the Lagrangian of the kinetic terms of

the gauge fields and fermion fields.

Lfermion =
∑

ψ=LL,QL,eR,uR,dR

ψ̄i /Dψ (1.10)

Lgauge = −1

4
BµνB

µν − 1

4
W i
µνW

i,µν − 1

4
Ga
µνG

a,µν , (1.11)

where the field strength tensors Bµν , W
i
µν and Ga

µν are:

Bµν = ∂µBν − ∂νBµ, (1.12)

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν , i, j, k = 1, 2, 3, (1.13)

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν , a, b, c = 1, ..., 8. (1.14)
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It is easy to verify that the above Lagrangian is manifestly gauge invariant. However,

the above Lagrangian cannot give rise to the masses of fermions and gauge bosons.

The inclusion of the mass term of either fermion fields and gauge fields will break

the gauge symmetry. In this sense, one needs a “mechanism” to explain the observed

non-zero masses of fermions and gauge bosons.

1.2 Brout-Englert-Higgs (BEH) mechanism

To Explain the observed masses of fermions and gauge bosons, a SU(2)L scalar

doublet H, called “Higgs field”, is introduced. It has hypercharge YH = 1/2 and

is a singlet under SU(3)c. Now one can write down the gauge invariant Lagrangian

involving the Higgs field:

LYukawa = −Y eL̄LHeR − Y uQ̄LH̃uR − Y dQ̄LHdR + h.c., (1.15)

LHiggs = (DµH)†(DµH)− V (H), (1.16)

V (H) = µ2(H†H) +
λ

4
(H†H)2, (1.17)

where H̃ ≡ iσ2H∗, and the ∗ represents the complex conjugate transformation and

Y e,u,d represents general 3× 3 complex Yukawa matrix.

Let us first focus on the Lagrangian terms purely involving the Higgs field LHiggs.

The stability restrict λ > 0. If µ2 > 0, then the ground state of the Higgs fields is

trivially at 〈H〉 = 0. This just gives several new scalar particles and does not give

us anything interesting. However, if µ2 < 0, then one can find that the ground state

which minimizes the Higgs potential V (H) gives rise to:

〈H†H〉 = v2/2, v = 2

√
−µ2

λ
, (1.18)

where the angle bracket in the above equations represents the vacuum expectation

value (vev). The Eq. 1.18 shows that only the magnitude of the of the vacuum

9



expectation value of the Higgs fields is determined, the direction of the vev in the

SU(2)L isospin space is not determined. The different vacua of the Higgs fields are

related by a SU(2)L transformation. As long as one specific a vacuum direction is

chosen by nature, a SU(2)L transformation will no longer preserve the vacuum. We

call the symmetry is “spontaneously broken” where the Lagrangian satisfies the given

symmetry while the vacuum state does not. We can choose the vacuum of the Higgs

field to be real and in the lower component as we will see later this choice is consistent

with the definition of the U(1)em charge. In this case, we can parametrize the Higgs

doublet as

H = exp

(
2i
πaτa

v

) 0

v+h√
2

 , (1.19)

where the vev of h to be zero. We can use the SU(2)L gauge transformation to absorb

three πa fields such that H = (0, (v + h)/
√

2)T . This gauge is called the unitary

gauge. We now plug H into the LHiggs, and find that the kinetic term |DµH|2 will

generate the masses of the gauge bosons:

|DµH|2 ⊃ g2v
2

8

[
(W 1

µ)2 + (W 2
µ)2 +

(
g′

g
Bµ −W 2

µ

)2
]
. (1.20)

One found that Bµ and W 3
µ are mixed with each other. Hence, we can diagonalize

the mass matrix with a rotation angle θw, and define a massless photon field Aµ and

a massive gauge boson field Zµ:

Aµ ≡ sin θwW
3
µ + cos θwBµ (1.21)

Zµ ≡ cos θwW
3
µ − sin θwBµ, (1.22)

with
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tan θw =
g′

g
. (1.23)

The SU(2)L gauge bosons W i
µ transform in the adjoint representation, so the interac-

tion between the photon Aµ and W i
µ are determined by the commutator:

g[Aµ,W
i
νT

i] = g sin θwW
3
µW

i
µ[T 3, T i]. (1.24)

We define coupling constant for U(1)em to be e = g sin θw, and T± = 1/
√

2(T 1± iT 2)

with W±
µ = 1/

√
2(W 1

µ ± iW 2
µ) to be charge and mass eigenstate of W boson since

[T 3, T±] = ±T±. Now the kinetic terms for the physical gauge bosons become:

Lk−g = −1

4
F 2
µν −

1

4
Z2
µν +

1

2
m2
ZZ

µZµ

−1

2
W ∗µνWµν +m2

WW
+
µ W

−,µ, (1.25)

where

mZ =
gv

2 cos θw
, mW =

vg

2
(1.26)

Zµν = ∂µZν − ∂νZµ (1.27)

Wµν = ∂µW
−
ν − ∂νW−

µ (1.28)

Fµν = ∂µAν − ∂νAµ, (1.29)

and we have the tree level relation between mZ and mW :

mZ =
mW

cos θw
. (1.30)

We can now write the covariant derivative in Eq. 1.9 in terms of gauge bosons mass

eigenstates:
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Dµ = ∂µ − ieAµ(T 3 + Y 1)− ieZµ(cot θwT
3 − tan θwY 1)

−i e√
2 sin θw

(W+
µ T

+ +W−
µ T

−)− igsT aCGa
µ. (1.31)

From the above equation, one can immediately read out the definition of the electric

charge:

Q = T 3 + Y, (1.32)

under which the second component of the Higgs doublet is neutral and is invariant

under the U(1)em transformation.

Now let us discuss the masses of fermion fields. Plugging H as its vacuum expecta-

tion value into the Lagrangian in Eq. 1.15 one can obtain the fermion mass matrices.

Here we only focus on the quark sector:

Lq−m = − v√
2

[d̄LY
ddR + ūLY

uuR] + h.c. , (1.33)

where we have suppressed the flavor index. One can use a bi-unitary diagonalization

to obtain the mass eigenstates of quark fields. The idea is following, though the

Yukawa matrices Y are arbitrary 3 × 3 complex matrices, Y Y † are Hermitian and

have real eigenvalues. So we have:

Y dY d† = UdM
2
dU

d†, Y uY u† = UuM
2
uU

u†. (1.34)

Then we can use the singular value decomposition (SVD) to decompose Y d and Y u:

Y d = UdMdK
†
d, Y u = UuMuK

†
u, (1.35)
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where Ud,u and Kd,u are all unitary matrices. we can now define mass eigenstates of

quarks as umL,R and dmL,R:

umL = U †uuL, u
m
R = K†uuR, d

m
L = U †ddL, d

m
R = K†ddR. (1.36)

Now the Lq−m becomes diagonal:

Lq−m = −mu
i ū

i
Lu

i
R −md

i d̄
i
Ld

i
R + h.c. , (1.37)

where mu,d
i are the diagonal elements of v/

√
2Mu,d. We have already omitted the

superscript m for each fermion spinor in the above equation and from now on all the

fermion spinors represent their mass eigenstates. Up to now, the Lagrangian has a

U(1)6 symmetry parametrized by six phases δ1
i and δ2

i under which

diL → eiδ
1
i diL, diR → eiδ

1
i diR, uiL → eiδ

2
i uiL, uiR → eiδ

2
i uiR. (1.38)

These phases can be used to absorb the phases in the CKM matrix as we will see

below. Expanding the covariant derivative in Eq. 1.10, we find the interactions for

the neutral current and the charged current are:

Lneutral =
2e

sin 2θw

[
q̄L(T 3 − sin2 θwQ)/ZqL − sin2 θwQq̄R /ZqR

]
+ eQq̄ /Aq (1.39)

Lcharged =
e√

2 sin θw
ūiL( /W

+
)V ijdjL + h.c. (1.40)

where Q and T3 are the corresponding electric charge and the weak isospin for quark

fields, V ij is the CKM matrix defined by V ≡ U †uUd. The indices i and j are quark

flavor indices which can be set to {1, 2, 3} corresponding to {u, c, t} for up-type quarks

and {d, s, b} for down-type quarks. One can observe from the above equations that

neutral currents mediated by Z bosons and photons do not change the flavor of quarks
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while charged currents have the feature of changing the quark flavors. In principle,

the CKM matrix is a complex 3×3 unitary matrix with nine real degrees of freedom:

3 rotation angles and 6 phases. However, when taking into account the rephasing

degrees of freedoms of six quarks, 5 complex phases can be absorbed, leaving only 3

rotation angles and 1 complex phase. It is this complex phase that triggers the CP

violation in the SM through the weak interaction.

1.3 Custodial Symmetry and Electroweak Precision Test

As one can observe from Eq. 1.30 that, at tree level, the mass ratio of W boson

to Z bosons is simply cos θw. We define the ρ-parameter:

ρ ≡ m2
W

m2
Z cos2 θw

. (1.41)

At tree level ρ0 = 1 is guaranteed by a symmetry called the “Custodial Symmetry”.

To see on earth what this symmetry is, let us first focus on the terms from the Higgs

potential. If one parametrize the Higgs field linearly as:

H =
1√
2

 h3 + ih4

h1 + ih2

 , (1.42)

then the Higgs potential V (H) becomes:

V (H) = λ(H†H − v2

2
)2 =

λ

2
(h2

1 + h2
2 + h2

3 + h2
4 − v2)2. (1.43)

The Higgs potential above actually possesses a larger global SO(4) symmetry, which is

homomorphic to SU(2)×SU(2). In just a moment, we will demonstrate this two SU(2)

can be associated to the SU(2)L × SU(2)R symmetry in the zero quark mass limit in

QCD. When H gets a vev, for example, 〈h1〉 = v and 〈h2〉 = 〈h3〉 = 〈h4〉 = 0, then the
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ground state actually still has a residual SO(3) symmetry: a 3D rotational symmetry

in the 4D Higgs field components spaces that preserve 〈h1〉 = v. Since SO(3) is

homomorphic to SU(2), it is this residual SU(2) symmetry called the Custodial SU(2).

Let us now consider the fact that the SM is a gauge theory with Yukawa interac-

tions between fermions and Higgs fields and find out what effects break the custodial

symmetry. To proceed, we write the Higgs field in terms of 2 doublets such that the

SU(2)× SU(2) symmetry in the potential is more transparent:

Σ =
(
H, H̃

)
. (1.44)

In the meantime, we define the left and right quark fields in two doublets:

QL =

 uiL

diL

 , QR =

 uiR

diR

 . (1.45)

The kinetic terms for the Higgs field and the Yukawa interactions for quark fields can

be written as:

LLR =
1

2
Tr
[
DµΣ(DµΣ)†

]
− µ2

2
Tr
[
ΣΣ†

]
− λ

8
Tr
[
ΣΣ†

]2
− 1√

2
(Q̄LΣYQR + h.c.), (1.46)

where Y = diag(Y u, Y d), and the covariant derivative of the Σ field is:

DµΣ = ∂µΣ + igW a
µT

aΣ + ig′BµΣT 3. (1.47)

The above equations illustrate that when g′ = 0 and Y u = Y d, the Lagrangian obtains

a SU(2)L × SU(2)R symmetry, under which:

Σ→ LΣR†, QL → LQL, QR → RQR. (1.48)
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After the electroweak symmetry breaking, the Σ gets a vev: diag(v, v), which is

invariant under a SU(2)V symmetry where R = L. This is exactly the custodial

symmetry we are discussing. Meanwhile, we can easily find out the two sources of

the custodial symmetry breaking in the SM: the non-vanishing U(1)Y coupling and

the fact that Y u 6= Y d. Since Yukawa couplings are generally small in the standard

model except for the top quark, the correction to the ρ parameter is dominant by the

loop involving the third generation quarks. At one loop level the correction to ρ in

the SM is defined by ∆ρSM = ρ− 1 , which is equal to:

∆ρSM =
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

, (1.49)

where ΠWW (0) and ΠZZ(0) are the vacuum polarization functions for W and Z bosons

at zero momentum. Often, one can absorb ∆ρSM from the SM into the definition of

the ρ (ρ→ ρ−∆ρSM) such that by definition ρ = 1 in the SM.

The observable ρ discussed above is one of a set of parameters that measures the

level of the deviation from the SM using electroweak precision data (EWPD). Similar

to the ρ parameter, Peskin and Takeuchi proposed a set of oblique parameters S, T

and U [214] to characterize deviations from the SM using the EWPD such as the

electron magnetic dipole moment, the lifetime of the muon, the Z and W pole masses

and the polarization asymmetry in the Z boson production etc.. They are defined as:

T ≡ 1

αe

(
Πnew
WW (0)

m2
W

− Πnew
ZZ (0)

m2
Z

)
=
ρ− 1

αe
, (1.50)

S ≡ 4c2s2

αe

[
Πnew
ZZ (m2

Z)

m2
Z

− c2 − s2

cs

Πnew
Zγ (m2

Z)

m2
Z

− Πnew(m2
Z)

m2
Z

]
, (1.51)

U ≡ 4s2

αe

[
Πnew
WW (m2

W )− Πnew
WW (0)

m2
W

− c

s

Πnew
Zγ (m2

Z)

m2
Z

−
Πnew
γγ (m2

Z)

m2
Z

]
− S, (1.52)

where c = cos θw, s = sin θw, αe = αe(mZ), the new in the superscripts of the Π

functions represents that only new physics contributions are taken into account. In
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the SM, S = T = U = 0 by definition. The current global fit results by Gfitter

group and related details are in Ref [30]. With mt = 173GeV and mh = 125GeV we

obtain: S = 0.05± 0.11, T = 0.09± 0.13 and U = 0.01± 0.11, and the 2D global fit

in the S − T plane with U a free parameter is given in Fig. 1.1. Practically, S and

S

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5

T

0.5−

0.4−
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0
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0.2
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=173 GeV)
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ref

Fit contours for free U (SM
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SM Prediction
 0.24 GeV± = 125.14 HM
 0.91 GeV± = 173.34 tm
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B

N
o
v
 ’1

4

Figure 1.1: The 68%, 95%, and 99% confidence level contours in the TS-plane. with
Mh = 125 GeV and mt = 173 GeV. The result is given by Giffter group [1]

T will generally give stronger constraints than U . Since T is equivalent with the ρ

parameter, it measures the level of the custodial symmetry breaking. On the other

hand, the S parameter will get corrections if a new SU(2)L doublet presents in the

new physics model even if there is no new source of the custodial symmetry breaking

in it i.e. T = 0.

Oblique parameters serve as stringent constraints on the new physics model. We

will use the current experimental results mentioned above to constrain the parameter

space of new physics models in Chapter 5, 7, and 6.

17



CHAPTER 2

STANDARD MODEL EFFECTIVE FIELD THEORY

Engineers building the bridge and skyscrapers do not need to know how nuclear

interact with each other, chemist do not need to know how quantum electrodynamic

works to study how organic molecules synthesize. It is interesting to notice that there

are different languages to describe the nature of the world at different scales. For

the particle physicist, this fact even becomes one of the most important philosophy

in doing research. The fact that the physics law in the large distance is usually

independent of fine details in the short distance enables us to use the “Effective Field

Theory” (EFT) approach to study the physics phenomena at a certain scale. The

words “Effective” has already illustrated the fact that the theory or the model is not

a “complete” one but instead an appropriate one. This kind of theories isolate a set

of the most important effects in the problems and are able to give accurate enough

solutions and predictions.

There are generally two categoriesof approaches for a particle physicist to use

EFT. The first one is the “top-down” EFT, it assumes that the high energy theory is

already known and the low energy EFT is derived by integrating out the heavy degrees

of freedoms. At first glance it seems that you gain nothing from this approach because

you have already known everything, why not just use the original theory to study the

problem without loss of any information but instead use an approximate one. The

reason is that in the regimes of the perturbation theory it is usually harder to compute

the physical observables from the full theory, while the EFT approach gives you a

convenient way to organize your calculation. One example of this usage is the QCD
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correction to the weak interaction at the low energy scale. [136, 130, 23] Another

situation that one needs a “top-down” EFT is that you have a strong dynamics is

present in the full theory at the low energy scale, and you are not able to use the

degrees of freedom in the full theory to compute low energy observables perturbatively.

In this case it is easier to use the EFT with new degrees of freedom, usually the

composite states, in the low energy regime to give predictive results. The example

for this is the chiral perturbation theory. [194]

The second one is “bottom-up” EFT, this is a more intuitive way to use EFT,

it assumes that the UV completion is unknown, the only information accessible is

the low energy degrees of freedom and symmetries. In this sense, whatever UV

completions exist, they must obey the same symmetries and have the same effective

degrees of freedom in the low energy. Hence, I can systematically parametrize the

UV effects by writing down non-renormalizable terms in the Lagrangian with the low

energy degrees of freedom that satisfy the observed low energy symmetries. These

non-renormalizable Lagrangian terms are classified by the order of suppression of the

scales of the high energy theory and the number of loops in the diagrams that generate

certain terms. The example for this is the SM EFT. [52, 147, 137, 145, 151]

In this chapter, I will first discuss the general idea of the effective field theory

including the concepts of running and matching, then introduce a specific form of

effective field theory, the standard model effective field theory (SMEFT) that will be

used in Chapter 5, 7, and 6.

2.1 EFT: General Idea

First of all, I explain the meaning of the “Integrated out” and the processes of

matching and running. I start with a UV theory containing heavy degrees of freedom

χ with mass scale M and the light degrees of freedom φ. In a mass independent

renormalization scheme, formally, the matching at the renormalization scale µ = M
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means equating the effective action of the effective field theory without the heavy

degrees of freedom χ to the effective action of the full theory with the path integral

of the heavy degrees of freedom completed:

eiSeff [φ] =

∫
DχeiS[φ,χ], (2.1)

I can proceed with this formal path integral by expanding the heavy field χ around

its classical solution:

χ = χc + η with
δS

δχc
= 0, (2.2)

where η is the quantum fluctuation around the classical solution and δS/δχc = 0 is

just the classical equation of motion (EOM) of the field χ. Now I can perform the

path integral:

eiSeff [φ](µ) =

∫
DχeiS[φ,χ](µ)

=

∫
Dηei(S[φ,χc]+

1
2
η δ

2S

δχ2
c
η+...)

= const× eiS[φ,χc]

[
det

(
−δ

2S

δχ2
c

)]1/2

. (2.3)

The ... represents higher order expansions, and one can identify that:

Seff [φ](µ = M) = S[φ, χc(φ)](µ = M) +
i

2
Tr log

(
−δ

2S

δχ2
c

)
+ ... (2.4)

The first term on the right-hand side is the tree level matching. It represents to

replace the field χ in the original Lagrangian with the solution of the classical EOM

of χ in terms of the field φ. The second term on the right-hand side corresponds to

the one-loop correction. The details of the treatment of these matching procedure in

practice can be found in Ref. [151].
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After this formal “Integrate out” procedure one can obtain nonlocal expressions

for the effective Lagrangian. The idea follows is expanding these nonlocal terms in the

momentum space of the order p/M and truncating them to any finite order to obtain

the local Lagrangian. In this sense, one can express the local effective Lagrangian at

the renormalization scale µ = M as:

Leff (M) = Lfull[φ](M) +
∑ 1

Mdi−4
ci(M)Oi (2.5)

where the Lfull[φ](M) represents the terms in the original UV Lagrangian that only

contain the field φ i.e. the kinetic terms of φ and the interaction terms only involving

φ, di is the dimension of the operator Oi, ci(M) is the Wilson coefficient related to

the corresponding operator at the renormalization scale µ = M . In my thesis, I only

utilize the tree level matching piece.

As one can see from Eq.2.3 and 2.4, the matching is performed at the scale of the

heavy particle mass. If one would like to compute observables at some lower scale, one

may need to take into account the renormalization group equation (RGE) correction

and run the Wilson coefficients to the lower scale to resum the large logarithm effect.

At one loop level, The RGE equations are generally written as:

dci(µ)

d log µ
=
∑
i

1

16π2
γijcj (2.6)

where γij is the matrix of anomalous dimension. Whether to perform the RGE

correction strongly depends on the scale of the new physics and the level of precision

that the calculation needed. For example, one matches the SM EFT at GUT scale

and try to calculate the electroweak precision observable near the Z boson mass scale,

then one would need to investigate the RGE corrections carefully. If one assumes the

new physics scale is around several TeV, then in general one only needs to consider

the RGE corrections for ci originated from cj if ci is not generated at tree level and
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cj is generated at tree level. [151] Theoretically, the RGE running is a consecutive

matching procedure from the scale µ to µ− dµ.

2.2 The SM EFT

In this section, I introduce a specific type of EFT which I will use in the Chapter. 5

and 7, the SM EFT. I will introduce a complete set of dimension six operators that

satisfy the SM gauge symmetries and assuming no lepton and baryon number viola-

tion (the only dimension five operator turns out to be lepton number violation and

generates Majorana masses for neutrinos). Historically, a complete set of dimension

six operators that obey the SM symmetry was first lists in Ref. [52] where there are

80 operators. However, Ref. [145] pointed out that only 59 of them are independent,

the rest of them can be translated into these 59 by integrating by parts, equation of

motions and group identities. This is the first time that people find out a complete

basis of dimension six operators without redundancy in the SM EFT, and we call

this basis the “Warsaw basis”. Several other complete bases are introduced for cer-

tain phenomenological concerns, one of the popular basis is “SILH” [109, 110] which

concerns the UV completion involving a strong dynamics while the low energy theory

still respects linearly realized EW symmetry. Another popular basis is “HISZ” [148],

which maximizes the use of the bosonic operators.

In the “Warsaw basis”, there are 10 categories of the operators:

1. X3, the operators contain three gauge field strength tensors

QG fabcGaν
µ G

bρ
ν G

cµ
ρ (2.7)

QG̃ fabcG̃aν
µ G

bρ
ν G

cµ
ρ (2.8)

QW εijkW iν
µ W

jρ
ν W

kµ
ρ (2.9)

QW̃ εijkW̃ iν
µ W

jρ
ν W

kµ
ρ . (2.10)
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2. ϕ6 and ϕ4D2, the operators only contain Higgs doublet.

Qϕ (ϕ†ϕ)3 (2.11)

Qϕ� (ϕ†ϕ)�(ϕ†ϕ) (2.12)

QϕD

(
ϕ†Dµϕ

)? (
ϕ†Dµϕ

)
. (2.13)

3. ψ2ϕ3, the operators contain 2 fermions and 3 Higgs doublets

Qeϕ (ϕ†ϕ)(l̄perϕ) (2.14)

Quϕ (ϕ†ϕ)(q̄purϕ̃) (2.15)

Qdϕ (ϕ†ϕ)(q̄pdrϕ) . (2.16)

4. X2ϕ2, the operators contain 2 gauge field strength tensors and 2 Higgs doublets

QϕG ϕ†ϕGA
µνG

Aµν (2.17)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν (2.18)

QϕW ϕ†ϕW I
µνW

Iµν (2.19)

QϕW̃ ϕ†ϕ W̃ I
µνW

Iµν (2.20)

QϕB ϕ†ϕBµνB
µν (2.21)

QϕB̃ ϕ†ϕ B̃µνB
µν (2.22)

QϕWB ϕ†σIϕW I
µνB

µν (2.23)

QϕW̃B ϕ†σIϕ W̃ I
µνB

µν . (2.24)

5. ψ2Xϕ, the operators contain 2 fermion fields, 1 Gauge field and 1 Higgs doublet.
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QeW (l̄pσ
µνer)σ

IϕW I
µν (2.25)

QeB (l̄pσ
µνer)ϕBµν (2.26)

QuG (q̄pσ
µνT aur)ϕ̃ G

a
µν (2.27)

QuW (q̄pσ
µνur)σ

Iϕ̃W I
µν (2.28)

QuB (q̄pσ
µνur)ϕ̃ Bµν (2.29)

QdG (q̄pσ
µνT adr)ϕG

a
µν (2.30)

QdW (q̄pσ
µνdr)σ

IϕW I
µν (2.31)

QdB (q̄pσ
µνdr)ϕBµν . (2.32)

6. ψ2φ2D, the operators contain 2 fermion fields, 2 Higgs doublets and 1 covariant

derivative.

Q
(1)
ϕl (ϕ†i

↔
Dµ ϕ)(l̄pγ

µlr) (2.33)

Q
(3)
ϕl (ϕ†i

↔
D I
µ ϕ)(l̄pσ

Iγµlr) (2.34)

Qϕe (ϕ†i
↔
Dµ ϕ)(ēpγ

µer) (2.35)

Q(1)
ϕq (ϕ†i

↔
Dµ ϕ)(q̄pγ

µqr) (2.36)

Q(1)
ϕq (ϕ†i

↔
Dµ ϕ)(q̄pγ

µqr) (2.37)

Q(3)
ϕq (ϕ†i

↔
D I
µ ϕ)(q̄pσ

Iγµqr) (2.38)

Qϕu (ϕ†i
↔
Dµ ϕ)(ūpγ

µur) (2.39)

Qϕd (ϕ†i
↔
Dµ ϕ)(d̄pγ

µdr) (2.40)

Qϕud i(ϕ̃†Dµϕ)(ūpγ
µdr) (2.41)

. (2.42)

7. (L̄L)(L̄L), the four fermion operators that only involving the left handed fields.
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Qll (l̄pγµlr)(l̄sγ
µlt) (2.43)

Q(1)
qq (q̄pγµqr)(q̄sγ

µqt) (2.44)

Q(3)
qq (q̄pγµσ

Iqr)(q̄sγ
µσIqt) (2.45)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) (2.46)

Q
(3)
lq (l̄pγµσ

I lr)(q̄sγ
µσIqt) . (2.47)

8. (R̄R)(R̄R), the four fermion operators that only involving the right handed

fields.

Qee (ēpγµer)(ēsγ
µet) (2.48)

Quu (ūpγµur)(ūsγ
µut) (2.49)

Qdd (d̄pγµdr)(d̄sγ
µdt) (2.50)

Qeu (ēpγµer)(ūsγ
µut) (2.51)

Qed (ēpγµer)(d̄sγ
µdt) (2.52)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) (2.53)

Q
(8)
ud (ūpγµT

aur)(d̄sγ
µT adt) . (2.54)

9. (L̄L)(R̄R), the four fermion operators with right handed and the left handed

vector currents.
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Qle (l̄pγµlr)(ēsγ
µet) (2.55)

Qlu (l̄pγµlr)(ūsγ
µut) (2.56)

Qld (l̄pγµlr)(d̄sγ
µdt) (2.57)

Qqe (q̄pγµqr)(ēsγ
µet) (2.58)

Q(1)
qu (q̄pγµqr)(ūsγ

µut) (2.59)

Q(8)
qu (q̄pγµT

aqr)(ūsγ
µT aut) (2.60)

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt) (2.61)

Q
(8)
qd (q̄pγµT

aqr)(d̄sγ
µT adt). (2.62)

10. (L̄R)(L̄R) and (L̄R)(R̄L) the four fermion operators with the scalar and tensor

interactions.

Qledq (l̄jper)(d̄sq
j
t ) (2.63)

Q
(1)
quqd (q̄jpur)εjk(q̄

k
sdt) (2.64)

Q
(8)
quqd (q̄jpT

aur)εjk(q̄
k
sT

adt) (2.65)

Q
(1)
lequ (l̄jper)εjk(q̄

k
sut) (2.66)

Q
(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) . (2.67)

For the covariant derivatives with double arrow, we define:

ϕ†i
↔
Dµ ϕ ≡ iϕ†

(
Dµ −

←
Dµ

)
ϕ and ϕ†i

↔
D I
µ ϕ ≡ iϕ†

(
σIDµ −

←
Dµσ

I
)
ϕ, (2.68)

where the index I associated with σ is the index of the SU(2) generators, the index a

associated with T is the index of the SU(3) generators, the indices prst are the flavor

indices of the corresponding fermion fields, the q and l are the left-handed quark and

lepton doublets, e, d, u are the right-handed singlets of leptons, up type and down

type quarks.
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In the Chapter 5, we will use the operator in Eq. 2.8 which gives the Weinberg three

Gluon operator, and the operators in Eq. 2.25-Eq. 2.32 that generate quark chromo

electric dipole moments and ordinary fermion electric dipole moments to study the

constraint on the CPV2HDM parameter space from low energy EDM experiments. In

the Chapter 7, I will estimate the sensitivity of the di-Higgs channel in the future 100

TeV collider to the Wilson coefficients of the operators in Eq. 2.11-Eq. 2.16 generated

from different scalar extensions to the SM.
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CHAPTER 3

DIHIGGS PRODUCTION IN PP COLLIDER

The Higgs pair production channel is one of the most important channels to test

the Higgs mechanism and the electroweak symmetry breaking in the SM at proton-

proton colliders. One of the reasons this channel is so interesting is that it is sensitive

to the trilinear Higgs coupling at tree level. In the meantime, this channel also

provides a portal to study various beyond standard model physics. A recent review

of the di-Higgs search at the LHC and beyond can be found in Ref. [245]. In this

chapter, we will first discuss the influence of BSM physics to this channel.

3.1 Di-Higgs production in the SM

In the SM, one can expand the Higgs potential in Eq. 1.17 in the unitary gauge

in terms of the Higgs mass and the vev of the Higgs field:

V (h) = V0 +
1

2
m2
hh

2 +
m2
h

2v2
vh3 +

m2
h

8v2
h4. (3.1)

One can find that the trilinear Higgs coupling λHHH is determined by the Higgs mass

and vev, which is a unique feature of the spontaneous electroweak symmetry breaking

in the SM.

The di-Higgs production in the SM at pp collider is dominant by the gluon fusion

mode [32]. Two Feynman diagrams related to this production are shown in Fig. 3.1.

The loop is dominant by the top quark contribution, and the sub-dominant contri-

bution from the bottom quark gives about 1% correction. Loops with other light
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(a) Triangle diagram (b) Box diagram

Figure 3.1: Feynman diagrams for di-Higgs production in SM

fermions are suppressed by their small Yukawa couplings. The amplitude of these

two diagrams can be written as:

Mhh = −GFαsŝδ
ab

2
√

2π
εaµ(p1)εbµ(p2)

[(
3m2

H

ŝ−m2
H

F4 + F�

)
Aµν +G�B

µν

]
, (3.2)

where αs is the strong coupling constant, GF is the Fermi constant, εµ(p1) and εµ(p2)

are the wave functions of the gluon field, ŝ is the center of mass energy of the gluon

system, a and b are the SU(3)C indices in the adjoint representation, the F4, F� and

G� are loop functions that can be found in Ref. [215]. The Lorentz structures Aµν

and Bµν are defined as:

Aµν = gµν − pν1p
µ
2

p1 · p2

, (3.3)

Bµν = gµν +
p2

3p
ν
1p
µ
2

p2
Tp1 · p2

− 2p2 · p3p
ν
1p
µ
3

p2
Tp1 · p2

− 2p1 · p3p
µ
2p

ν
3

p2
Tp1 · p2

+
2pµ3p

ν
3

p2
T

. (3.4)

Taking into account the relations:

AµνA
µν = BµνB

µν = 2 AµνB
µν = 0, (3.5)

the amplitude square after summing over the final states and averaging over the initial

states is given by:

|M |
2

hh =
1

4
· 1

64
· 8 · 2 · G

2
Fα

2
s ŝ

2

8π2

(∣∣∣∣ 3m2
h

ŝ−m2
h

F4 + F�

∣∣∣∣2 + |G�|2
)
. (3.6)
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In the above equation, the first factor 1/4 is coming from the spin average of the two

incoming gluons, the second factor 1/64 is coming from the color average of the two

incoming gluons, the third factor 8 is coming from the contraction of two δab, the

fourth factor 2 is coming from the contraction of the Lorentz structures A and B.

Now let us take a closer look at each term inside the bracket in Eq. 3.6. In the

heavy quark limit, the form factors have the following scaling properties:

F4 =
2

3
+O(ŝ/m2

t ) (3.7)

F� = −2

3
+O(ŝ/m2

t ) (3.8)

G� = O(ŝ/m2
t ). (3.9)

Therefore, the value in the parenthesis in Eq. 3.6 is mainly determined by the values

of F4 and F� when the center of mass energy is small. Another important feature

is that the signs of F4 and F� are different, which leads to the cancellation effect.

This is exactly the origin of the difficulties of the observation of the di-Higgs signal

if the SM is true. However, this cancellation effect also provides a good chance to

discover the new physics that can significantly change the interference structure of

the di-Higgs production amplitude.

Fig. 3.2a shows the contributions from each pieces inside the bracket in the Eq. 3.6

when the center of mass scattering angle θ = π/2. The blue and green curves represent

the real and imaginary parts of
3m2

h

ŝ−m2
h
F4, the red and magenta curves show the real

and imaginary parts of F�, the purple and yellow curves show the real and imaginary

parts of G�, the cyan and brown curves represent the real and imaginary parts of

the addition of F� and F4 terms, the black curve represents the module square of

the total amplitude. The horizontal axis represents the value of the invariant mass

of the di-Higgs system i.e., ŝ. The vertical axis represents the numerical value of the

corresponding quantities. Numerically, one can find that the amplitude of the di-
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Higgs process is dominant by Re[F�] in the relatively lower di-Higgs invariant mass

region (Mhh . 500GeV) and by Im[F�] in the higher di-Higgs invariant mass region

(Mhh & 500GeV). The cancellation effect mainly comes from the addition of Re[F�]

and Re[F4] in the low di-Higgs invariant mass region. The strongest cancellation

happens when the trilinear Higgs coupling is 2.45 times its SM value, λhhh = 2.45λSM ,

the corresponding contributions of each term in this case can be seen in Fig. 3.2b.

After obtaining the amplitude, one can calculate the parton level differential cross-

section in the center of mass frame of the incoming gluon system:

dσ̂

d cos θ
=

2π

2Ea2Eb|va − vb|
|pc|

(2π)44Ecm

1

2
|M |

2

hh

=
G2
Fα

2
s

√
(2m2

h − ŝ)2 − 4m4
h

1024(2π)3

(∣∣∣∣ 3m2
h

ŝ−m2
h

F4 + F�

∣∣∣∣2 + |G�|2
)
. (3.10)

where Ea,b are the energy of the incoming gluons, |pc| is the magnitude of the three

momentum of the out-going Higgs. The factor 1/2 in front of the |M |hh in the first

line comes from the nature of two identical particles in the final state. Usually in the

literature one would convert the dependence on θ to the dependence on t̂ which is

defined by t̂ = (pa + pc)
2. The relation between θ and t̂ is:

t̂ = (pa + pc)
2 = m2

h −
1

2
(s− cos θ

√
s(s− 4m2

h)), (3.11)

with the definition of θ in Fig. 3.3. Then the partonic differential cross-section with

respect to t̂ can be written as:

dσ̂(ŝ)

dt̂
=

G2
Fα

2
s

512(2π)3

(∣∣∣∣ 3m2
H

ŝ−m2
H

F4 + F�

∣∣∣∣2 + |G�|2
)
. (3.12)

The partonic cross-section for a given partonic center of mass energy ŝ is given by

integrating with dt̂:
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Figure 3.2: The contribution of the each terms in the parentheis in the Eq. 3.6. The
color scheme is denoted in legend on the right of the plots. The upper plot shows the
SM case. The lower plot represents the case where λhhh = 2.45λSM , which gives the
strongest cancellation in the production cross-section.
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Figure 3.3: The definition of the kinematic variables in the gluon fusion di-Higgs
production process.

σ̂(ŝ) =

∫ t̂max

t̂min

dt̂
dσ̂(ŝ)

dt̂
. (3.13)

To obtain the cross-section in the pp collider, one need to convolute the partonic

cross-section with the parton luminosity [222]:

σ(pp→ hh) =

∫ 1

τ0

dτ
Lgg
dτ

σ̂(τ) with τ = ŝ/s (3.14)

where τ is the ratio of the partonic center of mass energy and the proton center of

mass energy, and the parton luminosity for gluons in proton dLgg
dτ

is defined by:

dLgg
dτ

=

∫ 1

τ

dx
1

x
f (p)
g (x, µ)f (p)

g (τ/x), (3.15)

where fpg (x, µ) is the parton distribution function of gluon with factorization scale µ,

which characterize the probability of finding a gluon with an energy fraction of
√
x

with respect to the proton energy. Fig. 3.4 shows the parton luminosity of two gluons

for different center of mass energy of the proton proton beam [222] using CTEQ6L1

leading order parton distribution function [220]. The production cross-section for
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Figure 3.4: The typical gluon-gluon parton luminosity in the pp system with different
center of mass energies.

the di-Higgs channel in the pp collider as a function of the rescaled trilinear Higgs

couplings is shown in the Fig. 3.5 in Ref [35]. The NNLO K-factor is defined by the

ratio between the NNLO cross-section and LO cross-section [101, 94, 140].

In the meantime, various combinations of the final states of di-Higgs decay prod-

ucts also have been investigated both theoretically (bbττ [104, 208], bbWW [211],

bbγγ [32, 40], bbbb [119, 183] ) and experimentally [11, 203]. The decay branch-

ing ratios of the Higgs pair with different combinations of final states are shown in

Fig. 3.6.[203]. As one can see from Fig. 3.6, the bbbb final state has the largest branch-

ing ratio. However, this channel also suffers from extensive multi-jet backgrounds,
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which will significantly reduce the signal sensitivity. The most sensitive channel turns

out to be bbγγ, which uses one Higgs decaying to two b quarks to enhance the total

signal rate, and simultaneously takes advantage of the very well reconstructed Higgs

mass from the Higgs to di-photon decay to eliminate majority of backgrounds.

3.2 Di-Higgs production Beyond SM

Beyond the SM, there are various ways to modify the di-Higgs production cross-

section in the pp collider. We will discuss two scenarios. Firstly, the correction

is dominated by the resonant production of new scalar particles; secondly, the new

resonance is too heavy to produce in the collider, and the corrections are induced by

the modification of various couplings and the diagrams with new topologies.

In Chapter 6, we will use the result for the resonant production to study the

process pp→ S → hh in the singlet model, where S is the heavy Higgs. In Chapter 7,

we will use the result for the non-resonant production to estimate the reach of the

future 100 TeV collider in testing different scalar extensions in the SMEFT framework.

3.2.1 resonant production

New scalars in the physics models can enhance the di-Higgs signal when the in-

variant mass of the di-Higgs system is near one of new scalar masses provided that

this new scalar interacts with the SM Higgs and is heavier than two times of the SM

Higgs mass. Lots of scalar extensions to the SM can provide this kind of signature,

for example, the xSM [104] and 2HDMs [208]. Regarding to the di-Higgs decay final

states, the bbWW [160] and bbbb channels are believed to be most sensitive to the

LHC search for a relatively larger resonance mass (roughly larger than 500 GeV)

due to the advantage of the resonant peak, while for the smaller resonance mass

bbγγ [160] is still the most sensitive channel. With the narrow width approximation

(ΓS/mS . 0.1), the signal rate of the resonant di-Higgs production process can be
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written as the multiplication of the production cross-section of the heavy scalar and

the decay branching ratio of the heavy scalar to di-Higgs:

σ(pp→ S → hh) = σ(pp→ S) · Br(S → hh). (3.16)

The leading order production cross-section of the heavy Higgs through the gluon

fusion can be expressed as:

σ(pp→ S)LO =

∫
dτσ̂(gg → S)LO

dLgg
dτ

=
π2

8mS

ΓLO(H → gg)
dLgg
dm2

S

. (3.17)

This is based on the Breit-Wigner form of the scalar propagator in the limit of zero-

width [102]:

lim
ΓS→0

1

π

ŝΓS/mS

(ŝ−m2
S)2 + (ŝΓS/mS)2

= δ(ŝ−mS) (3.18)

3.2.2 non-resonant production

Now let us discuss the non-resonant production. This is usually studied in the

EFT framework where the mass of the heavy scalar is so high such that it cannot

be efficiently produced on the pp collider due to the suppressed parton luminosity at

the high center of mass energy regime. In this case, people usually parametrize the

dependence of the di-Higgs production in the gluon fusion mode with the modification

of the relevant Higgs couplings. Meanwhile, new types of Feynman diagrams can also

be induced. In Fig. 3.7, I list all the topologies of Feynman diagrams that can produce

the di-Higgs signal via the gluon fusion and symbol in the red dots the rescaled new

couplings related to each vertex. These couplings are defined with the following

Lagrangian:

Lgghh = −mtt̄t

(
κt
h

v
+ κ2t

h2

v2

)
+

αs
12π

Ga
µνG

aµν

(
κg
h

v
− 1

2
κ2g

h2

v2

)
− κλ

m2
h

2v2
vh3(3.19)
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Figure 3.7: The topologies of the Feynman diagrams that related to the di-Higgs
production in the gluon fusion mode. The red dots represent the rescaled couplings
of those vertices.
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In this case, the averaged amplitude for the di-Higgs production can be expressed as:

|M |
2

hh =
G2
Fα

2
s ŝ

2

128π2

[∣∣∣∣(3m2
hκtκλ

ŝ−m2
h

+ 2κ2t

)
F4 + κ2

tF� +
2κg
3

3m2
hκλ

ŝ−m2
h

− 2κ2g

3

∣∣∣∣2 + |G�|2
]
.

(3.20)
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CHAPTER 4

NEUTRINO MASS AND SEASAW MECHANISM

The neutrino oscillation experiments Super-Kamiokande [128], SNO [18, 17] and

KamLAND [108] have confirmed that neutrinos are massive. However, in the SM, the

nonexistence of the right-handed neutrino renders no neutrino mass can be generated

at renormalizable level. Therefore, the extension must be needed to generate the

neutrino masses. Since the neutrinos are not charged under U(1)em, two types of

mass terms can be written down. One possibility is that the neutrinos are Dirac

fermions and have Dirac mass terms in the form:

Lν−mass = mν,iν̄L,iνR,i + h.c.. (4.1)

In this case, a set of right-handed neutrinos must be introduced. It is likely that the

set of right-handed neutrinos that are completely neutral under the SM gauge group

actually exist in nature, but they have not been observed due to their negligible

interactions with ordinary matters. Once right-handed neutrinos are introduced, one

can write down the gauge invariant Yukawa interactions involving them like their

counterparts in the quark sector involving the right-handed up type quarks:

LνR−yukawa = −Y νL̄LH̃νR + h.c., (4.2)

where we have suppressed the indices for the lepton flavor. After diagonalizing the

mass matrix for neutrinos one obtains the relation between the Yukawa couplings and
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neutrinos mass: Y ν ∼ mν/v. However, taking into account the fact that the current

upper bound on the sum of the three neutrino masses is around 0.1 to 0.2 eV [210, 99,

98, 85, 138] from the standard cosmology and the observation from the Planck CMB

experiment [16], one finds that the Yukawa coupling Y ν is exceptionally small compare

to other charged fermions in the SM as one can see from Fig. 4.1. Therefore, various
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Figure 4.1: The masses of the SM fermions in log scale [153], one can see that neutrinos
are relatively isolated in the mass spectrum compared with other charged fermions.

theories are proposed to explain the smallness of neutrino masses. This naturally

leads us to consider the possibilities that neutrinos are Majorana particles. Ettore

Majorana in 1937 proposed a mathematical way to describe the particles that are

their own antiparticles [190]. In terms of the four components spinor this relation can

be written as:

ψ = ψC where, ψC = Cψ̄T . (4.3)

C is the charge conjugation operator for the four components spinor, in the Weyl

representation it can be express as C = iγ2γ0, where γ is Dirac matrices. With this

definition one can write down the mass terms in the following forms:

Lν−Majorana = −mL,i

2
νcL,iνL,i −

mR,i

2
νcR,iνR,i + h.c., (4.4)
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where the factor 1/2 is added to ensure that the parameter mL/R,i can be interpreted

as the mass of the particle in the equation of motion. Within the SM, the Majorana

mass related to the left-handed neutrino cannot be generated at the renormalizable

level since the νL is charged under the SM gauge group. The lowest dimensional

operator that obeys the SM symmetry and gives rise to the Majorana mass for the

νL is the Weinberg operator [240]:

cij

Λ
L̄L,iH̃H̃

TLcL,j, (4.5)

where the i, j are the flavor indices, H̃ is defined below Eq. 1.17, the Λ characterize

the heavy new physics scale that accounts for the generation of the Majorana mass,

cij are the corresponding Wilson coefficients.

One of the greatest difference between the Majorana neutrino and the Dirac neu-

trino is that the Majorana mass terms violate the lepton number L in low energy

experiments while the Dirac mass terms do not1. Hence, the experiment searching

for the lepton number violation is helpful to determine the nature of the neutrinos.

Neutrinoless double beta decay (ββ0ν), the idea introduced by Wendell Furry [129],

is one of the most sensitive ways to test lepton violation, see Ref. [97, 221] for re-

views. Another important difference between the Majorana neutrino and the Dirac

neutrino is that the number of CP phases in the PMNS matrix [191, 217] in the lep-

tonic charged current interaction is different. The interaction of the charged current

involving the W boson is given by:

Ll−ν = −l̄L /WUPMNSνL + h.c. (4.6)

1In the SM, L is violated by global electroweak anomalies with B − L exactly conserved. While
at the temperature much lower than the electroweak scale v, the violation of L is negligible, see
Ref. [111] an estimation of SM lepton number violation process in pp collider
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The reason for the difference of the number of CP phases is that the Majorana mass

term, mψ̄Cψ is not invariant under the rephasing ψ → eiαψ. So the rephasing degrees

of freedom only come from the charged leptons, which leaves 3 CP phases in the

UPMNS.

Three types of “Seesaw” mechanism can generate the Weinberg operator in Eq. 4.5

at tree level.

• Type-I seesaw: SM + heavy singlet fermions

The type-I seesaw [198, 134, 243, 200] generates the Weinberg operator by in-

troducing singlet fermions. One example is the right-handed neutrino νR. In

this case, aside from the Yukawa interactions with the SM leptons and Higgs

doublet, a Majorana mass terms for the right-handed neutrinos 1/2mRνcR,iνR,i

can be written down without violating the SM symmetry. The Feynman dia-

gram in Fig. 4.2a will generate the Weinberg operators. One can read off from

the diagram that c/Λ ∼ Y 2
ν /mR, where c is the Wilson coefficient in the Eq. 4.5

and we have suppressed the flavor indices. If we impose the relation:

cv2

Λ
∼ mνL , (4.7)

then we will get the scale of the right-handed neutrino mass as mR ∼ Y 2
ν × 1014

GeV, where we have taken the typical light neutrino mass as 10−1 eV. The

phenomenology related to the Type-I model is limited because the right-handed

neutrino can only be probed through the Yukawa interaction. An enhancement

in the Yukawa coupling Yν will generally increase the mass of the right-handed

neutrino, i.e. make it harder to be produced in experiments.

• Type-II see saw: SM + triplet scalars.
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The type-II seesaw [189, 229, 185] generates neutrino masses with the help of a

SU(2)L triplet with hypercharge Y = 2. The Yukawa interaction

Y∆L
LL∆LL

C
L , (4.8)

combined with the scalar coupling

µHH∆L, (4.9)

will generate the Weinberg operator through the diagram in Fig. 4.2b. One can

read off the Wilson coefficient:

c/Λ ∼ Y µ/M2
∆. (4.10)

Similarly the above relation translates into the scale of the mass of the triplet:

M∆ ∼ 107 ×
√
µY∆L

GeV , where µ is in the unit of GeV. If one chooses µ

small enough (O(10−4 GeV)) as it is a free parameter, then one can obtain

a relatively small triplet mass M∆ (O(TeV)) with a relatively large Yukawa

coupling Y∆L
(for example O(10−3)), which in principle can be tested at the

near future collider. Moreover, the triplet scalar also contains a doubly charged

particle ∆++, which will decay to a pair of same sign leptons serving as a unique

signature in the collider searches.

• Type-III seesaw: SM + triplet fermions.

The type-III seesaw [123, 187, 244] introduces a SU(2)L triplet fermion Σ with

zero hypercharge. In this case, the mass of the triplet fermion scale as: mΣ ∼

Y 2
Σ × 1014GeV which is similar to the case of the Type-I. Regarding to the

phenomenology, the triplet fermion decays to the W (Z) bosons with leptons
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will provide a unique signature in the collider experiments. See Ref. [131, 121]

for detailed discussions.

(a) Type-I

(b) Type-II

(c) Type-III

Figure 4.2: Feynman diagrams that generate the Weinberg operator in three types of
seesaw model.

Apart from the three types of seasaw mechanism discussed above, there are other

types of seasaw mechanism that can also explain the smallness of the neutrino masses

naturally e.g. the inverse seasaw mechanism [199]. Another approach to explain the

smallness of the neutrino mass is to generate them through loops e.g. Zee model [244]

which is naturally suppressed by the quantum effect. One can refer to Ref. [188, 238]

for more detailed discussions.
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CHAPTER 5

CP VIOLATION 2HDMS

With the discovery of the Higgs-like boson at the LHC [8, 58], the remaining parti-

cle predicted by the Standard Model (SM) has been found. Up to now, the measured

properties of this new resonance show no significant deviation from the SM predic-

tions. Nevertheless, the new boson could reside in a larger structure with an extended

scalar sector that incorporates the SM. The possibilities for such extended scalar sec-

tors abound. Among the most widely considered and theoretically well-motivated are

Two Higgs Doublet Models (2HDMs). Even with the rather minimal introduction

of a second SU(2)L scalar doublet, the possible phenomenological consequences of

2HDMs are rich and diverse. The possibility of new sources of CP-violation is one of

the most interesting but, perhaps, less extensively studied.

Explaining the cosmic matter and anti-matter asymmetry requires the existence

of additional CP-violation (CPV) beyond that of the SM. Electroweak Baryogenesis

(EWBG) is one of the most compelling solutions to this problem [239, 68, 202].

EWBG fulfills the Sakharov conditions for successful baryogenesis [228] (B violation,

out-of-equilibrium dynamics, and both C and CP-violation) through B +L violating

sphaleron transitions, a strong first order electroweak phase transition that proceeds

through bubble nucleation, and CPV interactions at the bubble wall. While the

SM would in principle provide these ingredients, it is known that the CPV effects

generated by the Cabibbo-Kobayashi-Maskawa matrix and QCD θ term are too feeble

and that the SM-like Higgs scalar is too heavy for a strongly first order electroweak

phase transition [169, 84, 227].
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The 2HDMs provide possible solutions to these shortcomings. The viability of a

strong first order electroweak phase transition and the favored parameter space of the

2HDMs have been studied in Refs. [107, 127, 69]. In the CPV sector, the LHC has

already excluded the new boson as a pure CP odd scalar at 99.98% CL and 97.8%

CL in Ref. [172] and Ref. [4] respectively.

If the boson is a part of the 2HDM, it could nevertheless receive a small CP-

odd admixture from CP-violating terms in the scalar potential. This possibility for

2HDM CP-violation is strongly bounded by the non-observation of permanent electric

dipole moments (EDMs) of the neutron, electron, and diamagnetic atoms, including

mercury and radium [38, 33, 144, 184], as analyzed recently in Refs. [163, 234, 44,

242, 168]. The authors of Refs. [61, 43, 19, 63, 70] also pointed out that LHC searches

for additional, heavy scalars can be complementary to EDM searches, especially in

regions of 2HDM parameter space where strong cancellations between Barr-Zee EDM

diagrams occur. Nonetheless, there exists a window for sufficient CPV to generate

the matter-antimatter asymmetry, as shown in Ref. [105].

In what follows, we analyze the prospects for future LHC probes of the CPV

2HDM, building on the previous studies in Ref. [163] and Ref. [61], where EDMs

constraints and 8 TeV LHC results in CPV 2HDMs are analyzed in detail. We

adopt the framework of CPV 2HDMs with a softly-broken Z2 symmetry to avoid a

problematic tree level flavor changing neutral currents (FCNCs). We consider future

LHC searches for a heavy Higgs of mixed CP (denoted hi=2,3) which decays to a Z

boson and a SM-like Higgs (h1), and obtain the prospective reach for Run II and the

high luminosity phase (HL-LHC). We concentrate on the llbb̄ final state, where the

Z boson decays to a pair of leptons (e or µ), and the SM-like Higgs decays to a pair

of b quarks, because it is one of the most sensitive channels and because the final

state particles allow for a relatively high reconstruction efficiency. We first follow the

cut-based analysis procedure described in Ref. [10] to reproduce the ATLAS 8 TeV

47



results and validate our Monte Carlo signal and background generation, then use the

Boosted Decision Tree (BDT) [126] method to obtain the 95% CLs exclusion limit

for future 14 TeV experiments with integrated luminosities equal to 300 fb−1, and

3000 fb−1, respectively. We subsequently translate the prospective exclusion limits

into constraints on the parameter space, and find that a large portion of parameter

space can be tested with both future LHC and EDMs experiments.

From the global fit of Higgs coupling measurements [72, 71], one find that the

current data favor the 2HDMs to be close to the alignment limit: β−α = π/2 where

α and β are defined in Sec. 5.1.2 and Sec. 5.1.1 respectively.

In this chapter, I will first introduce the theoretical framework we used for CP

violation 2HDMS in Sec. 6.1. In Sec. 5.2, we show the analytical formulas used to

derive constraints on the parameter space. In Sec. 5.3 we describe details of our

simulation and analyses. In Sec. 5.4, we exhibit future LHC constraints and discuss

possible issues arising from the interference between the resonant and non-resonant

diagrams. The distributions of kinematic variables used in BDT analysis and the

formulas for two-body decay rates of heavy Higgses are given in Appendix.

5.1 CPV 2HDM Model Description

In this section, we describe details of the CPV 2HDM framework that will be used

in the following discussions.

5.1.1 General 2HDM Scalar Potential

The most general 2HDM scalar potential containing two Higgs doublets φ1 and

φ2 can be expressed in the following form:
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V (φ1, φ2) = −1

2

[
m2

11(φ†1φ1) +
(
m2

12(φ†1φ2) + h.c.
)

+m2
22(φ†2φ2)

]
+
λ1

2
(φ†1φ1)2 +

λ2

2
(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1)

+
1

2

[
λ5(φ†1φ2)2 + λ6(φ†1φ2)(φ†1φ1) + λ7(φ†1φ2)(φ†2φ2) + h.c.

]
. (5.1)

Two fields φ1 and φ2 can be expressed as

φ1 =

 H+
1

1√
2
(v1 +H0

1 + iA0
1)

 , φ2 =

 H+
2

1√
2
(v2 +H0

2 + iA0
2)

 (5.2)

with in general v1 and v2 complex and v =
√
|v1|2 + |v2|2 = 246 GeV. We also

denote that tan β = |v2|/|v1|. One can always perform a SU(2)L × U(1)Y gauge

transformation to go into a basis where v1 is real while v2 = |v2|eiξ is still complex.

To guarantee that there are no FCNCs at tree level, one can assign Z2 charges

to the two Higgs doublets as well as the fermion fields such that each fermion can

only couple to one of the Higgs doublets. Depending on the transformation of the

fermion fields under the Z2 symmetry, there can be various types of 2HDMs that we

will introduce in Sec. 5.1.3. The Z2 symmetry implies the potential parameters m2
12

and λ6,7 vanish, which in turn forbids the presence of CP phases in the potential.

Therefore, we retain the m2
12 term which only softly breaks the Z2 symmetry. In

general, this soft Z2 symmetry breaking term together with quartic Z2 conserving

term would induce new quartic Z2 breaking terms by renormalization, but they are

at one-loop level and thus do not induce new FCNC at tree level.

Hermicity implies that there are only two complex parameters, m2
12 and λ5, in the

potential. With the global phase redefinition of the fields φj → eiθjφj, one may define

two rephasing invariant phases as in Ref [163],

δ1 = Arg
[
λ∗5(m2

12)2
]
,

δ2 = Arg
[
λ∗5(m2

12)v1v
∗
2

]
. (5.3)
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The minimization of the potential yields that:

m2
11 = λ1v

2 cos2 β + (λ3 + λ4)v2 sin2 β − Re(m2
12e

iξ) tan β + Re(λ5e
2iξ)v2 sin2 β ,

(5.4)

m2
22 = λ2v

2 sin2 β + (λ3 + λ4)v2 cos2 β − Re(m2
12e

iξ) cot β + Re(λ5e
2iξ)v2 cos2 β ,

(5.5)

Im(m2
12e

iξ) = v2 sin β cos βIm(λ5e
2iξ) . (5.6)

Eq. 5.6 above indicates that the value of ξ is determined by given m2
12 and λ5. Ex-

pressing this equation with rephasing invariant phases implies:

|m2
12| sin(δ2 − δ1) = |λ5v1v2| sin(2δ2 − δ1) . (5.7)

In short, there is only one CP independent phase in the potential after electroweak

symmetry breaking(EWSB). Using this rephasing freedom of the fields, we will work

in a basis where ξ = 0 and encode this invariant CPV phase into a CPV angle in the

diagonalization matrix for the neutral Higgs sector.

5.1.2 Higgs Mass Eigenstates

After EWSB, we can use the following relations to diagonalize the mass matrix for

the charged Higgs sector, which separates the physical charged Higgs and would-be

Goldstone bosons:

 H+

G+

 =

 −sβ cβ

cβ sβ


 H1

+

H2
+

 (5.8)

This leads to a relationship between the mass of the charged Higgs and parameters

in the scalar potential:
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m2
H+ =

1

2
(2ν − λ4 − Reλ5) v2, ν ≡ Rem2

12 csc β sec β

2v2
. (5.9)

where the parameter ν sets the hierarchy between the SM-like Higgs and charged

Higgs. The mass term in the Lagrangian is given by Lmass
neutral = −(H0

1 , H
0
2 , A

0)M2(H0
1 , H

0
2 , A

0)T

gives,

M2 = v2


λ1c

2
β + νs2

β (λ345 − ν)cβsβ −1
2
Imλ5 sβ

(λ345 − ν)cβsβ λ2s
2
β + νc2

β −1
2
Imλ5 cβ

−1
2
Imλ5 sβ −1

2
Imλ5 cβ −Reλ5 + ν

 , (5.10)

where λ345 represents λ3 + λ4 + Re(λ5). A rotation matrix R defined below can be

used to diagonalize the mass matrix:

R =


−sαcαb cαcαb sαb

sαsαbsαc − cαcαc −sαcαc − cαsαbsαc cαbsαc

sαsαbcαc + cαsαc sαsαc − cαsαbcαc cαbcαc

 , (5.11)

where sα and cα are short hands for sinα and cosα. Under this rotation matrix,

we have M2 = RTdiag(m2
h1
,m2

h2
,m2

h3
)R, and R(H0

1 , H
0
2 , A

0)T = (h1, h2, h3)T . We

demand that three rotation angles are in the following range:

−π
2
< α, αb, αc <

π

2
(5.12)

With this diagonalization procedure, one can obtain six linearly independent equa-

tions which can be solved for the parameters in the scalar potential in terms of the

physical parameters, as shown below [163],
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λ1 =
m2
h1

sin2 α cos2 αb +m2
h2
R2

21 +m2
h3
R2

31

v2 cos β2
− ν tan2 β , (5.13)

λ2 =
m2
h1

cos2 α cos2 αb +m2
h2
R2

22 +m2
h3
R2

32

v2 sin β2
− ν cot2 β , (5.14)

Reλ5 = ν −
m2
h1

sin2 αb + cos2 αb(m
2
h2

sin2 αc +m2
h3

cos2 αc)

v2
, (5.15)

λ3 = ν −
m2
h1

sinα cosα cos2 αb −m2
h2
R21R22 −m2

h3
R31R32

v2 sin β cos β
− λ4 − Reλ5 ,(5.16)

Imλ5 = 2 cosαb{(m2
h2
−m2

h3
) cosα sinαc cosαc

+(m2
h1
−m2

h2
sin2 αc −m2

h3
cos2 αc)

2 sinα sinαb}/(v2 sin β), (5.17)

tan β =
(m2

h2
−m2

h3
) cosαc sinαc + (m2

h1
−m2

h2
sin2 αc −m2

h3
cos2 αc) tanα sinαb

(m2
h2
−m2

h3
) tanα cosαc sinαc − (m2

h1
−m2

h2
sin2 αc −m2

h3
cos2 αc) sinαb

.

(5.18)

The last equation relates the two CPV angles, αc and αb, and indicates that there

exists only one independent CPV phase in our model. Using Eq. (5.9) and the min-

imization condition Eq. (5.4) we obtain the full relationships between model param-

eters (λ1, λ2, λ3, λ4, Reλ5, Imλ5, m2
11, m2

22, Rem2
12, Imm2

12) and phenomenological

parameters (v, tan β, ν, α, αb, αc, mh1 , mh2 , mh3 , mH+). Through Eq. (5.18), one

can solve for the angle αb in terms of αc,

αb = − arcsin

[
(m2

h2
−m2

h3
) sin 2αc cot(β + α)

2(m2
h1
−m2

h2
sin2 αc −m2

h3
cos2 αc)

]
. (5.19)

Conversely, one could obtain the formula for αc in terms of αb. However, two solutions

will be generated when solving the second order equation for tanαc. Here we adopt

the convention in Ref. [61],

αc =

 α−c , α + β ≤ 0

α+
c , α + β > 0

, tanα±c =
∓| sinαmax

b |±
√

sin2 αmax
b − sin2 αb

sinαb

√
m2
h3
−m2

h1

m2
h2
−m2

h1

.

(5.20)
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where sinαmax
b sets a theoretical bound on the CPV angle αb which comes from the

requirement of the existence of a real solution for tanαc:

sin2 αb ≤
(m2

h3
−m2

h2
)2 cot2(α + β)

4(m2
h2
−m2

h1
)(m2

h3
−m2

h1
)
≡ sin2 αmax

b . (5.21)

5.1.3 Interaction Terms

To eliminate the tree level FCNCs, one can assign Z2 charges to different fermion

fields. In general, this would lead to four possible arrangements in the Yukawa sector,

which are often dubbed Type-I, Type-II, Lepton-specific and Flipped 2HDMs [139,

34, 48]. In this work, we only concentrate on the first two, since Type-I (Type-

II) differs from Lepton-specific (Flipped) only in the lepton sector and they should

behave similarly to the first two in our collider and EDMs experiments. Under the

Z2 symmetry fermion fields transform as

QL → QL uR → uR dR → dR, Type I , (5.22)

QL → QL uR → uR dR → −dR, Type II . (5.23)

The corresponding Yukawa interactions invariant under the Z2 symmetry are:

LI = −YUQL(iτ2)φ∗2uR − YDQLφ2dR + h.c. , (5.24)

LII = −YUQL(iτ2)φ∗2uR − YDQLφ1dR + h.c. . (5.25)

The interaction of the physical Higgs with fermions and with vector bosons can be

parametrized as

Lint = −mf

v
hi
(
cf,if̄f + c̃f,if̄ iγ5f

)
+ aihi

(
2m2

W

v
WµW

µ +
m2
Z

v
ZµZ

µ

)
, (5.26)

where cf,i(c̃f,i) represents the scalar (pseudo-scalar) component of the physical Higgs

hi coupling to fermions while ai stands for the coefficient of hi coupling to the vector
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bosons. Analytic expressions for these coefficients are given in terms of the phe-

nomenological parameters in Table 5.1. Higgs global fits to the CP conserving 2HDM

ct,i cb,i = cτ,i c̃t,i c̃b,i = c̃τ,i ai
Type I Ri2/ sin β Ri2/ sin β −Ri3 cot β Ri3 cot β Ri2 sin β +Ri1 cos β
Type II Ri2/ sin β Ri1/ cos β −Ri3 cot β −Ri3 tan β Ri2 sin β +Ri1 cos β

.

Table 5.1: Couplings to Higgs mass eigenstates.

from current LHC measurements indicate that the couplings are close to the alignment

limit: β − α = π/2 [72, 71].

Hence, we concentrate on the region having only small deviations from this limit

in our study. The interaction between the heavy Higgses, SM Higgs and Z bosons

can be parametrized in the following form:

Lhi→Zh1 = giz1Z
µ(∂µhih1 − hi∂µh1) , (5.27)

with the coefficient giz1 expressed as:

giz1 =
e

sin 2θW
[(− sin βR11 + cos βR12)Ri3 − (− sin βRi1 + cos βRi2)R13] . (5.28)

We parametrize the deviation from the alignment limit by a small variable θ where

β−α = π/2 + θ. Then we expand coupling giz1 in the limits of small αb (CPV angle)

and θ , which gives,

g2z1 ∝ −αb +O(αbθ) (5.29)

g3z1 ∝ −θ +O(α2
b) (5.30)

Thus, near the alignment limit, the decay h2 → Zh1 could occur only if αb 6= 0,

assuming it is kinematically allowed. In contrast, the decay h3 → Zh1 could arise
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even in the αb = 0 limit so long as there exists a departure from exact alignment.

Consequently, one may interpret null results of any search for a heavy scalar decaying

to a Z-boson and a SM-like Higgs boson in terms of constraints on either αb or θ. In

what follows we will, thus, consider the present and prospective constraints on αb in

two cases: θ = 0 and θ 6= 0.

5.2 Production and Decay of Heavy Higgs

5.2.1 Production of Heavy Higgs

At the LHC, the dominant production mode for a heavy Higgs is via gluon fusion.

Therefore, we restrict our study on this specific production mode. The one loop gluon

fusion production cross-section of a heavy Higgs is obtained by rescaling the value of

the production cross-section for the SM-like Higgs:

σ(gg → hi) = σ(gg → HSM)

∣∣∣ct,iFH
1/2(τ it ) + cb,iF

H
1/2(τ ib)

∣∣∣2 +
∣∣∣c̃t,iFA

1/2(τ it ) + c̃b,iF
A
1/2(τ ib)

∣∣∣2∣∣∣FH
1/2(τ it ) + FH

1/2(τ ib)
∣∣∣2 ,

(5.31)

with τ if = m2
hi
/(4m2

f ), the ratio of the mass squared of the heavy Higgs (hi) to 4 times

the mass squared of the fermion running in the loop. Here, σ(gg → HSM) represents

the gluon fusion production cross-section of a heavy Higgs with SM couplings. The

functions FH
1/2 and FA

1/2 are defined in the following:

FH
1/2(τ) = 2 (τ + (τ − 1)f(τ)) τ−2 , (5.32)

FA
1/2(τ) = 2f(τ)τ−1 , (5.33)

f(τ) =

 arcsin2 (
√
τ) , τ ≤ 1

1
4

[
log
(

1+
√

1−τ−1

1−
√

1−τ−1

)
− iπ

]2

, τ > 1
. (5.34)
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As one can see from Eq. (5.31), the numerator involves the sum of two contributions

arising from the CP-odd and CP-even components of the physical Higgs boson, re-

spectively. DenotingMgg→hi
CP−odd andM∗gg→hi

CP−even as the CP-odd and CP-even parts of the

gluon fusion matrix elements, we see that the interference term Mgg→hi
CP−oddM

∗gg→hi
CP−even

vanishes after integrating over final state phase space due to parity. The heavy Higgs

production cross-section in this form automatically takes into account the K-factor, if

one uses the production σ(gg → HSM) with higher order corrections. Here we obtain

the values of σ(gg → HSM) from the website [2].

5.2.2 Decay of Heavy Higgs

The dominant two body decay modes of the heavy Higgses are taken into account

with Γtot expressed in the following form:

Γtot(hi) = Γ(hi → gg) + Γ(hi → Zh1) + Γ(hi → W+W−) + Γ(hi → ZZ) + Γ(hi → tt̄)

+ Γ(hi → bb̄) + Γ(hi → τ+τ−) + Γ(hi → h1h1) + · · · , (5.35)

where the “+ · · · denote the tiny decay rates to a pair of light fermions and photons,

and Z boson and photon, which we have neglected. In addition, we ignore decay rate

of a heavy Higgs to one SM-like Higgs and another heavy Higgs, as well as a pair of

heavy Higgses because they are forbidden by kinematics due to the mass hierarchy we

choose in our benchmark model. The analytical expression for each two-body decay

rate can be found in the Appendix A.2.

5.3 Simulation detail

In this section, we will discuss details of our collider simulation. We first reproduce

the result of 8 TeV ATLAS exclusion limit on σ(gg → hi)×Br(hi → Zh1)×Br(h1 →

bb̄) obtained by searching for a heavy Higgs hi=2,3 decaying to Z(`+`−)h1(bb̄) [10] (As
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in Ref. [10] we do not include a Br(Z → `+`−) factor because it is assumed to have

the SM value) . We then use a BDT method to perform events classification and

derive the projected exclusion limit for a future 14 TeV search. Events are generated

by MadGraph 5 aMC@NLO [24] and then passed through PYTHIA6 [237] for parton

showering. Finally Delphes3 [92] is used for fast detector simulation.

5.3.1 8 TeV Result Reproduction

We use the cuts described in Ref. [10] as follow:

• The events must have 2 electrons or 2 opposite charged muons with pe,µT > 7

GeV and |ηe|(|ηµ|) < 2.5(2.7)

• The leptons must have pe,µT,lead > 25 GeV, and if the leptons are µ+µ− pairs,

then one of the µ must satisfy |ηµ| < 2.5

• The events must have exactly 2 tagged b-jets with plead
b,T > 45 GeV and psub

b,T > 20

GeV

• The reconstructed invariant mass for dilepton and dijet systems should satisfy:

83 < m`` < 99 GeV and 95 < mbb < 135 GeV

• Emiss
T /
√
HT < 3.5 GeV1/2 where HT is defined as the scalar sum of all jets and

leptons in the events

• pZ
T > 0.44 ×M rec

h2,3 − 106 GeV where M rec
h2,3 is the reconstructed mass of heavy

Higgs.

For the detector simulation, we use the default Delphes ATLAS cards with b tagging

efficiency equal to 70% as used in the ATLAS analysis [10]. In the mean time we also

modify the following value to match the ATLAS analysis:

• The isolation conditions for leptons:
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Change DeltaRMax from 0.5(default) to 0.2; Change PTMin from 0.5(default)

to 0.4(1) for electron(muon); Change PTRatio from 0.1(default) to 0.15. These

changes will increase the lepton identification in the boosted regime.

• Change the ParameterR for jet-clustering(anit-kt) algorithm from 0.6 to 0.4.

For the signal process, we only take into account the gluon fusion production mode

of the heavy Higgs. As for the background processes, we consider the two major

backgrounds Zbb and tt̄ as well as to sub-leading backgrounds SM Zh and diboson ZZ

backgrounds. For all the backgrounds, we generate events with one additional jet with

jet matching. The numbers of events generated and the corresponding acceptance

times efficiency are given in Table 5.2. The cross-sections are normalized to the values

with higher order corrections. The K-factors for Zbb , tt̄, Zh, ZZ are calculated based

on the result in Ref. [117, 88, 3]. One can observe that the Z(``)bb background is a bit

larger than the ATLAS result in Table 5.2. This maybe due to the fact that ATLAS

used a data- driven method to estimate the number of Z(``)bb background events,

which may include some effects that our fast detector simulation cannot fully replicate.

However, one can also see that these kinds of effects are at a controllable level; our

simulation result agrees with ATLAS results within at most 20% uncertainty. Since

we may also expect the same kind of effect in 14 TeV simulations, our projected

exclusion limit result will be conservative.

We present the reconstructed invariant mass of the heavy Higgs in Fig. 5.1a which

can be compared with the ATLAS result in Fig.3(b) in Ref. [10]. With this binned

distribution we use a profile likelihood method as used in the ATLAS paper to re-

produce the 95% CLs exclusion limit. A comparison with ATLAS result is given in

Fig. 5.1b, the red curve is our reproduced exclusion limit, and the blue curve is the

ratio of the ATLAS results to our reproduced values. One can see that, the ratio

is generally less than one which corresponds to the excess of Z(``)bb background

in our simulation. The peak at 800 GeV is due to the lack of background statis-
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Backgrounds/
Signal

σ(pb) σ ×
∫
L simulated # of

events after cuts
# of expected

event in Ref. [10]
A × ε

Z(``)bb 12.91 2.620×105 1,788 1443±60 6.825×10−3

t(blν)t̄(blν) 18.12 3.678×105 359 317±28 9.761×10−4

SM Z(``)h(bb) 0.02742 5.566×102 47 31±1.8 8.443×10−2

Diboson(Z(``)Z(bb)) 0.2122 4.308×103 28 30±5 6.679×10−3

Signal(500 GeV ) 0.03 4.06×102 54 - 1.332×10−1

Table 5.2: Summary of the 8 TeV simulation. The second column gives the cross-
section of each background process at 8 TeV LHC with generator level cuts. The
signal distributions are normalized to 0.03 pb as suggested in Ref. [10]. The third
column is the total number of events produced at 8TeV LHC with the integrated
luminosity equal to 20.3 fb−1. The fourth column is the number of events left for
each background after all the cuts with the integrated luminosity equal to 20.3 fb−1.
The fifth column gives the number of events left with the same cuts estimated by
ALTAS in Ref. [10]. The last column gives the acceptance times the efficiency after
all the cuts obtained by our simulation.

tics and downward fluctuation near mhi = 800 GeV, but for our benchmark models

where mh2 = 550,mh3 = 600 GeV and mh2 = 400,mh3 = 450 GeV , the ratio seems

reasonably close to one.

5.3.2 14 TeV Prediction

We use the same Delphes card when generating events for the 14 TeV case. The

preselection cuts we use are almost the same as those for the 8 TeV case. In order to

get a sufficiently large sample for BDT analysis, we expand the mass window for mbb

from 95 ∼ 135 GeV to 60 ∼ 140 GeV. Also, rather than implementing the Emiss
T /

√
HT

and pZT cuts, we allow the BDT to optimize them. The numbers of events generated

and the acceptance times efficiency after preselection for signal and backgrounds are

given in Table 5.3. After preselection, we use a built-in package in ROOT, Toolkit for

Multivariate Data Analysis (TMVA) [159] and the BDT method for the classification

of signal and background events. The variables used for the classification are listed

below:
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Figure 5.1: Fig.(a) shows the reconstructed invariant mass distributions with `+`−bb̄
final state. The signal comes from a heavy Higgs of mass 500 GeV and production
cross-section 0.03 pb with an integrated luminosity 20.3 fb−1. Fig.(b) demonstrates
the 95% exclusion limit on the signal σ(gg → A)Br(A → Zh)Br(h → bb). The red
curve is our result using the distribution in Fig.(a) with profile likelihood method
while the blue curve is the ratio of the ATLAS result (in Fig.3(b) of Ref. [10]) to our
reproduced expected exclusion limit.

plead
T,` , p

sub
T,` , p

lead
T,b , p

sub
T,b ,m``,mbb, p

Z
T , p

h
T , E

miss
T /

√
HT ,∆R``,∆Rjj,∆RZh,∆φZh, (5.36)

where plead,sub
T,(j,`) represent the leading and subleading pT of leptons and jets; m`` and mbb

are the invariant masses of dijet and dilepton systems, respectively; ph,ZT stands for

the reconstructed pT of the Z boson and the SM Higgs; Emiss
T /
√
HT is the ratio of the

missing transverse energy to
√
HT defined in the previous subsection; ∆R``,bb,Zh are

the angular separations of two leptons, two bjets and reconstructed Zh, respectively,

with ∆Rab =
√

(ηa − ηb)2 + (φa − φb)2. ∆φZh is the separation of the azimuthal an-

gles between Z and h. The distributions of these variables are shown in Appendix A.1.

We select representative points with Mh2 = 400, Mh3 = 450, Mh2 = 550 and

Mh3 = 600 GeV as the signal to train the BDT. The BDT algorithm settings in

TMVA are:
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Backgrounds/
Signal

σ(pb) # of events generate
# of events remaining

after cuts
εpre

Z(``)bb 36.57 7.084×106 94,323 1.331×10−2

t(blν)t̄(blν) 68.11 3.276×107 120,627 3.680×10−3

SM Z(``)h(bb) 0.0502 1.429×105 14,380 1.006×10−1

Diboson(Z(bb)Z(``)) 0.3833 1.780×106 80,887 4.554×10−3

Signal(550 GeV ) 0.06 1.0×105 20,645 0.2065
Signal(600 GeV ) 0.06 1.0×105 21,392 0.2139

Table 5.3: Summary of the 14 TeV simulation after preselection cuts. The second
column gives the cross-sections for each background process after generator level cuts
at the 14 TeV LHC. The signal distributions are normalized to 0.06 pb. The third
column gives the number of events generated in our simulation. The fourth column
shows the number of events left after the preselection cuts described in Sec. 5.3.2
before training the BDT. The last column gives the efficiency of the preselection cuts
for each process.

NTrees = 850 : MiniNodeSize = 2.5% : MaxDepth = 3 : BoostType = AdaBoost

: AdaBoostBoostBeta = 0.5 : UseBaggedBoost : BaggedSampleFraction = 0.5

: SeparationType = GiniIndex : nCuts = 20 .

The distributions of the BDT ouput for two heavy Higgs masses are shown in figs. 5.2c

and 5.2d. One could find that the discriminating power is a bit better for the heavier

Higgs as we expected.

The next step is to select a cut on the BDT output to obtain the most stringent

95% exclusion limits. After applying the BDT cuts shown in Table. 5.6 and 5.7,

we use the reconstructed heavy Higgs mass distribution of the remaining events to

derive the 95% exclusion limit on σ(gg → h2,3)Br(h2,3 → Zh1)Br(h1 → bb̄). We show

the resulting prospective exclusion limits in Tables 5.6 and 5.7. We also perform a

cut-based analysis with the same ATLAS cuts described in 5.3.1, and the results

are shown in the “cut-based result” column in Tables 5.6 and 5.7. One can see that

the exclusion limits of our BDT analysis are 30% to 50% better (lower) than the

cut-based analysis results.
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Figure 5.2: The BDT output distributions for both signal and backgrounds. The
signals in Figs. (a) and (b) are for heavy Higgses with masses 400, 450, 550 and 600
GeV, respectively. The background distributions are normalized to the actual 14 TeV
cross-sections in Ref. [2], while the signal distributions are normalized to 0.06 pb.
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Mh2 = 400 GeV (14 TeV)

Luminosity(fb−1) Best Cut exclusion limit σL (pb) cut-based result (pb)
100 0.14 0.0582 0.1003
300 0.14 0.0336 0.0571
3000 0.14 0.0103 0.0185

Table 5.4: Exclusion limits σL for σ(gg → h2)×Br(h2 → Zh1)×Br(h1 → bb̄) and best
cuts on BDT output of different luminosities for Mh2 = 400 GeV. The column “cut-
based result” gives the exclusion limit derived from the ATLAS cut-based analysis
described in Section 5.3.1.

Mh3 = 450 GeV (14 TeV)

Luminosity(fb−1) Best Cut exclusion limit Fig (pb) cut-based result (pb)
100 0.15 0.0506 0.0700
300 0.16 0.0292 0.0571
3000 0.16 0.00901 0.0185

Table 5.5: Exclusion limits σL for σ(gg → h2)×Br(h2 → Zh1)×Br(h1 → bb̄) and best
cuts on BDT output of different luminosities for Mh2 = 450 GeV. The column “cut-
based result” gives the exclusion limit derived from the ATLAS cut-based analysis
described in Section 5.3.1.

Mh2 = 550 GeV (14 TeV)

Luminosity(fb−1) Best Cut exclusion limit σL (pb) cut-based result (pb)
100 0.22 0.0299 0.0443
300 0.22 0.0167 0.0261
3000 0.22 0.00510 0.00782

Table 5.6: Exclusion limits σL for σ(gg → h2)×Br(h2 → Zh1)×Br(h1 → bb̄) and best
cuts on BDT output of different luminosities for Mh2 = 550 GeV. The column “cut-
based result” gives the exclusion limit derived from the ATLAS cut-based analysis
described in Section 5.3.1.
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Mh3 = 600 GeV (14 TeV)

Luminosity(fb−1) Best Cut exclusion limit σL (pb) cut-based result (pb)
100 0.21 0.0248 0.0340
300 0.22 0.0138 0.0192
3000 0.22 0.00423 0.00598

Table 5.7: Exclusion limits σL for σ(gg → h3)×Br(h3 → Zh1)×Br(h1 → bb̄) and best
cuts on BDT output of different luminosities for Mh3 = 600 GeV. The column “cut-
based result” gives the exclusion limit derived from the ATLAS cut-based analysis
described in 5.3.1.
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5.4 Results and Discussion

We now translate our simulated exclusion limit into constraints on the parameter

space of CPV 2HDMs. We mainly focus on the benchmark point below which is

consistent with the electroweak precision measurements and muon g − 2 data as

discussed in Ref. [61]:

mh2 = 550 GeV, mh3 = 600 GeV, mH± = 620 GeV, ν = 1 (5.37)

and show the constraints on sinαb vs tan β. As a comparison we also include the con-

straints in the alignment limit for a lighter mass benchmark point: mh2 = 400 GeV,

mh3 = 450 GeV, mH± = 420 GeV, ν = 1. The reason we choose a relatively small

mass splitting between the two heavy Higgses is that this splitting is tightly con-

strained by bounds on the T parameter from electroweak precision data. The study

in Ref. [61] shows that a splitting round 50 GeV is already marginally consistent with

electroweak precision data.

The 95% CLs exclusion limit is given by:

σ(gg → h2,3)×Br(h2,3 → Zh1)×Br(h1 → bb̄) < σL (5.38)

where σL are the exclusion limit for different luminosity for mh2 = 400 GeV, mh2 =

450 GeV, mh2 = 550 GeV and mh3 = 600 GeV that listed in 5.4, 5.5, 5.6 and 5.7

respectively. We assume that the resonance process is dominant when the invariant

mass of two gluons is approaching the mass of the heavy Higgs. This is not always true

in the parameter space we consider, especially in the limit of small θ. The gluon fusion

to Zh1 box diagram may become important and interfere with the resonant triangle

diagram. This may change the distribution of the invariant mass of Zh1. Here, we

will simply identify the region of parameter space that may suffer from this effect,

leaving a detailed analysis for future study. To proceed, we will compare the relative
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scale of the amplitude squared of the resonant and non-resonant gg → Zh1 processes

at the center of mass energy
√
s = mh2 , and mh3 . For the resonance contribution we

use the following formula

|Mi|2 =
GFα

2
s|giz1|2s2

512π2
√

2
[|
∑
f=t,b

cf,iF
H
1/2(τ if )|2 + |

∑
f=t,b

c̃f,iF
A
1/2(τ if )|2]

×
M2

Z − 2m2
h1
− 2s+ (m2

hi
− s)2/M2

Z

(s−m2
hi

)2 +m2
hi

Γ2
hi

(5.39)

where GF and αs are the Fermi constant and strong coupling constant, respectively,

while giz1, F
A/H
1/2 , cf , c̃f , and Γhi are defined in Sections 6.1 and 5.2. For the non-

resonant piece we obtain the scale of M2
box ' 10−5 from Ref. [154]. In presenting

our results in Figs. 5.3-5.5, we include contours of constant |Mi|2 in order to identify

regions where the resonant and non-resonant contributions are commensurate in scale.

We now consider the prospective future reach at the LHC. In the alignment limit,

the sensitivity comes primarily from the resonant production of h2, as expected from

Eqs. 5.29 and 5.30. We show the prospective exclusion regions associated with h2,3

production separately in Fig. 5.3. The pink region is forbidden by the requirement of

the electroweak symmetry breaking. The green, blue, and magenta regions represent

the prospective exclusion limits for the LHC integrated luminosities equal to 100 fb−1,

300 fb−1 and 3000 fb−1, respectively. The black contours correspond to log10 |M |2i in

Eq. (5.39) with s = mh2,3 for i = 2, 3. If we require |M |2i > 10−4 to guarantee the

dominance of the resonant production, then there will be some parts of the prospective

exclusion region for 3000 fb−1 at low tan β that may not be valid for our analysis.

One could observe that from Fig. 5.6b and Fig. 5.6d there is a loss of sensitivity for

h3 near tan β ≈ 1 in the alignment limit for both Type-I and Type-II models. This

is due to the cancellation effect in the coupling g3z1 when −α = β = π/4.

The situation is similar for non-vanishing but small θ. An illustration for cos(β−

α) = 0.02 is shown in Fig. 5.4. However, for a large deviation, for example cos(β−α) =
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Figure 5.3: Exclusion limits for the heavy Higgs resonant productions in the alignment
limit with mh2 = 550 GeV, mh3 = 600 GeV, mH± = 620 GeV, ν = 1. The plots
in the first and second row represent the constraints for the Type-I and Type-II
models, respectively. The left (right) column shows the constraints from the resonant
production of h2(h3). The pink region is theoretically inaccessible as described in
the text. The green, blue, and magenta regions represent the exclusion limits for the
LHC integrated luminosities equal to 100 fb−1, 300 fb−1 and 3000 fb−1, respectively.
The black contour represents the logarithm of log |M |2i in Eq. 5.39 with s = mh2,3 for
i = 2, 3.
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Figure 5.4: Exclusion limits for the heavy Higgs resonant productions in the Type-I
and Type-II 2HDMs with cos(β − α) = 0.02, mh2 = 550 GeV, mh3 = 600 GeV,
mH± = 620 GeV, ν = 1. The plots in the first and second row represent the con-
straints for the Type-I and Type-II models, respectively. The left (right) column
shows the constraints from the resonance production of h2(h3). The pink region is
theory-inaccessible. The green, blue, and magenta regions represent the exclusion
limits for the LHC integrated luminosities equal to 100 fb−1, 300 fb−1 and 3000 fb−1,
respectively. The black contour represents the logarithm of log |M |2i in Eq. 5.39 with
s = mh2,3 for i = 2, 3.
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0.05 in the Type-II model and cos(β − α) = 0.1 in the Type-I model, the constraints

from the resonance production of h3 become important, and can cover large part of

the parameter space. In this situation, the effect of the non-resonant production is

negligible due to a relatively large |M |23. This can be seen in Fig. 5.5.

In Fig. 5.6, we show the corresponding separate exclusion limit for mh2 = 400 GeV

and mh3 = 450 GeV and contours for log |M |2i . Compare with Fig. 5.3 we find that

the values of |Mi|2 at s = m2
hi

are larger than those of heavier Higgs mass. In other

word, the peak in the distribution of the invariant mass of final state particles is more

prominent for smaller heavy Higgs mass and the interference effects are rather small.

Hence, all the exclusion regions we derive satisfy the requirement |M |2i > 10−4.

In addition, we take into account the constraint from the Higgs coupling measure-

ments at 7 and 8 TeV LHC as what was done in Ref. [61]. The channels included in

the χ2 analysis are: h1 → WW , ZZ, γγ, bb, ττ . We also include the present and

prospective constraints from EDM searches given in Ref. [163], which are summarized

in Table 5.8. We find that the constraints from LHC and low energy experiments are

complementary. Figures 5.7 and 5.8 demonstrate the exclusion limits from both LHC

and EDM searches. In each figure, the orange region gives the current LHC exclusion

limit. The blue, and magenta regions represent prospective future LHC limits for

integrated luminosities equal to 300 fb−1 and 3000 fb−1, respectively. The light green

and light blue regions are excluded by the neutron EDM and electron EDM searches,

respectively. The light red and light yellow represents current constraints from the

mercury and prospective radium atomic EDM searches. The gray regions are ex-

cluded by the Higgs coupling measurements. The pink region is again as described

above theory-inaccessible. There are also constraints that we do not show in Fig. 5.7

and Fig. 5.8 from heavy flavor physics [113], which exclude the regions of parameter

space with tan β less than 0.9 in both Type-I and Type-II models for the benchmark

point we choose. These constraints can be relaxed if other new particles are intro-
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Figure 5.5: Exclusion limits for the heavy Higgs resonant productions with mh2 =
550 GeV, mh3 = 600 GeV, mH± = 620 GeV, ν = 1, and cos(β − α) = 0.1 (Type-
I), cos(β − α) = 0.05 (Type-II). The plots in the first and second row represent
the constraints for the Type-I and Type-II models, respectively. The left (right)
column shows the constraints from the resonance production of h2(h3). The pink
region is theoretically inaccessible. The green, blue, and magenta regions represent
the exclusion limits for the LHC integrated luminosities equal to 100 fb−1, 300 fb−1

and 3000 fb−1, respectively. The black contour represents the logarithm of log |M |2i
in Eq. 5.39 with s = m2

h2,3
for i = 2, 3.
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Figure 5.6: Exclusion limits for the heavy Higgs resonant productions in the alignment
limit mh2 = 400 GeV, mh3 = 450 GeV, mH± = 420 GeV, ν = 1. The plots
in the first and second row represent the constraints for the Type-I and Type-II
models, respectively. The left (right) column shows the constraints from the resonant
production of h2(h3). The pink region is theoretically inaccessible as described in
the text. The green, blue, and magenta regions represent the exclusion limits for the
LHC integrated luminosities equal to 100 fb−1, 300 fb−1 and 3000 fb−1, respectively.
The black contour represents the logarithm of log |M |2i in Eq. 5.39 with s = m2

h2,3
for

i = 2, 3.
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dueced in addition to the 2HDMs or some non-trivial flavor structure [55, 57]. Figure

3 of Ref. [113] demonstrates the constraints on the tan β vs mH+ plane for the Type-I

and Type-II 2HDMs. The most stringent bounds on tan β come from Bs− B̄s mixing

and B0
s → µ+µ− for the Type-I model, and from Bs− B̄s and Bd− B̄d mixing for the

Type-II model.

Source Current EDM (e cm) Projected EDM (e cm)
Electron (e) de < 8.7× 10−29 at 90% CL[38] de < 8.7× 10−30 [184]
Neutron (n) dn < 2.9× 10−26 at 90% CL[33] dn < 2.9× 10−28 [184]

Mercury (Hg) dHg < 7.4× 10−30 at 95% CL[143] -
Radium (Ra) - dRa < 10−27 [184]

Table 5.8: Current and projected EDM constraints in units of e-cm. For the projected
limits we assume that the sensitivity of nEDM is improved by two orders of magnitude,
and eEDM is improved by one order of magnitude. The mercury EDM remains
the same while future projected sensitivity of the radium EDM is assumed to be
dRa < 10−27 e-cm.

In Figs. 5.7a and 5.7b, we show the current and prospective exclusion regions for

the Type-I model in the alignment limit. One can see that the reach of the collider

search is not competitive with that of the electron EDM search even at the end of the

HL-LHC phase, especially in the low tan β region. This is due to the fact that the

collider search is sensitive to Br(h2,3 → Zh1) in addition to the h2,3 production cross

sections. In the alignment limit, the Zh1 channel is fed mainly from the decay of

h2, and the coupling g2z1 is suppressed by the CPV angle αb as shown in Eq. (5.29).

Moreover, for low tan β, the couplings of h2 to quarks are enhanced, which leads to

a suppression on Br(h2 → Zh1) and an increasing gluon fusion h2 production cross

section. However, the increase of the latter cannot compensate for the decreasing

Br(h2 → Zh1). The net effect is a reduced Zh1 signal strength. In contrast, the

electron EDM is sensitive to the pseudo-scalar couplings that are enhanced at low

tan β in the Type-I model, so electron EDM searches exclude a large part of parameter

space in the low tan β region in Fig. 5.7b.
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Figure 5.7: Exclusion regions for the collider and EDM experiments in the type-I
2HDM. The left (right) column is for the current (future) exclusion limit. The orange
region is excluded by the current LHC data. The blue and magenta regions represent
the future LHC limit with integrated luminosities equal to 300 fb−1 and 3000 fb−1,
respectively. Light transparent red represents the constraint from mercury EDM,
light blue denotes electron EDM, light transparent green stands for neutron EDM,
and light yellow signifies future prospective radium EDM. The gray region is excluded
by the coupling measurement of the SM-like Higgs and the pink region is theoretically
inaccessible due to the absence of a real solution for αc. The benchmark point used
here is mh2 = 550 GeV, mh3 = 600 GeV, mH± = 620 GeV, ν = 1.
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Figure 5.8: Exclusion regions for the collider and EDM experiments in the type-II
2HDM. The left (right) column is for the current (future) exclusion limit. The orange
region is excluded by the current LHC data. The blue and magenta regions represent
the future LHC limit with integrated luminosities equal to 300 fb−1 and 3000 fb−1,
respectively. Light transparent red represents the constraint from mercury EDM,
light blue denotes electron EDM, light transparent green stands for neutron EDM,
and light yellow signifies future prospective radium EDM. The gray region is excluded
by the coupling measurement of the SM-like Higgs and the pink region is theoretically
inaccessible due to the absence of a real solution for αc. The benchmark point used
here is mh2 = 550 GeV, mh3 = 600 GeV, mH± = 620 GeV, ν = 1.
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Figure 5.9: Exclusion regions for the collider and EDM experiments in the type-
I and type-II 2HDM with lighter Higgs mass hierarchy. The left (right) column
is for the current (future) exclusion limit. The orange region is excluded by the
current LHC data. The blue and magenta regions represent the future LHC limit
with integrated luminosities equal to 300 fb−1 and 3000 fb−1, respectively. Light
transparent red represents the constraint from mercury EDM, light blue denotes elec-
tron EDM, light transparent green stands for neutron EDM, and light yellow sig-
nifies future prospective radium EDM. The gray region is excluded by the coupling
measurement of the SM-like Higgs and the pink region is theoretically inaccessible
due to the absence of a real solution for αc. The benchmark point used here is
mh2 = 400 GeV, mh3 = 450 GeV, mH± = 420 GeV, ν = 1.
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In Figs. 5.7c to 5.7f, we present the current and prospective exclusion regions away

from the alignment limit. We can observe that the current collider constraints are not

as strong as those from EDMs . However, the future LHC reach can be comparable to

that of the EDMs searches, and even better at moderate tan β. One can observe this

feature from Eq. (5.30), where g3z1 is proportional to θ which describes the level of

deviation from the alignment limit, in contrast to Eq. (5.29) where g2z1 is suppressed

by the small CPV angle αb. One can also observe that in the large tan β region the

LHC loses sensitivity. The reason is that at large tan β, pseudo-scalar couplings of

both t and b quarks to h3 are suppressed, so the total partonic production cross-

section σ̂(gg → h3) decreases as tan β increases. Despite the possible increase in

Br(h3 → Zh1), the over all effect is a decreasing trend of signal rate towards large

tan β resulting in an untestable region for the LHC search.

In the Type-II model, the results are shown in Fig. 5.8. In contrast to the Type-I

model, the electron and mercury EDMs are not able to probe the parameter space

when tan β is close to one due to the cancellation in Barr-Zee diagrams indicated

in [163] and [44], whereas the neutron and radium EDMs retain sensitivity in this

region. In the situation that is close to the alignment limit, as one can observe from

Fig. 5.8a to 5.8d, the future LHC reach can help to test the region where tan β is

close to one. However, the reach of future neutron and radium EDM constraints still

exceeds that of the LHC. When the deviation from the alignment limit is as large as

cos(β −α) = 0.05, the future LHC may probe a large portion of the parameter space

for reasons similar to those for the Type-I model: g3z1 is sensitive to this deviation and

is not suppressed by the CPV angle. Moreover, some portions of the large tan β region

cannot be accessed, but for reasons different from the Type-I case. In the Type-II

model, the pseudo-scalar coupling of the t-quark to h3 is suppressed at large tan β,

while the pseudo-scalar coupling of the b-quark to h3 is enhanced. However, for the

range of tan β we are interested in, the enhancement of the b-quark loop contribution
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Figure 5.10: Production cross-section for h3 for Type-I(left), Type-II(right) model.

to σ̂(gg → h3) cannot compensate for the suppression of the t-quark loop effect as

one can see from Fig. 5.10b. Thus, σ̂(gg → h3) decreases with increasing tan β. As

for Br(h3 → Zh1), due to the increasing Br(h3 → b̄b) and decreasing Br(h3 → t̄t),

the overall effect leads to a decreasing Br(h3 → Zh1). A decreasing production

cross-section combined with a decreasing decay branching ratio makes the large tan β

region relatively inaccessible for the LHC in the Type-II model.

To show the influence of the overall mass scale on the exclusion regions, we present

the current and future prospective exclusion limits for both Type-I and Type-II mod-

els in the alignment limit in Fig 5.9. Comparing Fig. 5.9a and 5.9b with Fig. 5.7a and

Fig. 5.7b, one finds that for the lighter mass benchmark point the exclusion region is

generally larger than that of heavier mass point. The reason is that for lighter mass

point the resonant production cross-sections for the heavy Higgses increase, so the

signal rates are larger compared with those in the heavier mass case. Another feature

for the lighter mass scale is that in the region with small tan β, the future exclusions

are not restricted by the interference effects as the peak value of the amplitude of

the resonant process grows. A similar situation occurs for cos(β − α) away from the

alignment limit, though we do not show this explicitly. Larger exclusion regions are

obtained for the lighter mass point with the same | sinαb|, tan β, and cos(β − α).
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Now we argue that the future result of EDM and LHC experiments are expected

to be complementary to each other and combining information from two kinds of

experiments would help us better determine if the 2HDMs are realized in the nature.

Since the global fit of the Higgs coupling measurements constrains 2HDMs in the

parameter space that are close to the alignment limit, we summarize our results in

two categories: 2HDMs are in the exact alignment limit (cos(β − α) = 0), 2HDMs

deviate from the alignment limit (i.e. cos(β − α) 6= 0).

• 2HDMs in the alignment limit:

– Future LHC makes a discovery

As discussed above, in the alignment limit, the productions of the heavy

Higgses h2 and h3 are purely determined by the size of CPV angle αb, so

the reach of future LHC is merely sensitive to the CPV effect in the model.

From Fig. 5.7b, one can observe that, in the Type-I model, the reach of

future LHC is entirely inside the reach of future radium and electron EDM

experiments. Thus, one can conclude that if Type-I model is true, with a

discovery at the future LHC one should also observe non-zero radium and

electron EDMs, otherwise the null results of radium and electron EDMs

will veto the Type-I CPV 2HDM. A similar conclusion can be drawn for

the Type-II model by observing Fig. 5.8b, where one can find that the LHC

sensitive region is well within the reaches of radium and neutron EDMs.

Hence, if the Type-II model is true, the discovery of the future LHC should

lead to the observations of non-zero radium and neutron EDMs.

– Future LHC gives a null result

For both Type-I and Type-II models, a null result from future LHC does

not exclude the possibility of CPV in 2HDM as long as CPV angle αb is

sufficiently small. Meanwhile, any non-zero EDMs that correspond to the
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regions of parameter space within the reach of LHC would disfavor the

CPV 2HDMs.

• 2HDMs away from the alignment limit:

– Future LHC makes a discovery

In this case, the result from future LHC is not purely sensitive to the

CPV effect since the coupling of h3 to Zh1 is proportional to the level of

deviation from the alignment limit and is not suppressed by the CPV angle

αb. A discovery at the future LHC may or may not imply a non-zero EDM

result, a situation that depends largely on the magnitude of deviation from

the alignment limit. Moreover, if the deviation is relatively small, such as

cos(β − α) = 0.02, the exclusion limit would mainly come from h2, for

which production is purely sensitive to the CPV angle αb, as shown in

Fig. 5.7d and Fig. 5.8d for the Type-I and Type-II models, respectively.

In addition, one would expect the non-zero radium and electron EDMs for

the Type-I model and non-zero radium and neutron EDMs for the Type-II

model. Thus, a null EDM result would disfavor both Type-I and Type-II

CPV 2HDMs. On the other hand, if the deviation is relatively large, such

as cos(β−α) = 0.1 in the Type-I model (Fig. 5.7f) and cos(β−α) = 0.05 in

the Type-II model (Fig. 5.8f), the exclusion power would be dominated by

the h3 decay. As mentioned above, the discovery of h3 does not necessarily

lead to sizable EDMs, and therefore a more detailed study of the CP

properties of the newly discovered particle would be needed.

– Future LHC gives a null result

In this case, for sufficiently large deviations as shown in Fig. 5.7f and

Fig. 5.8f, the discovery of any EDM results would indicate that the CPV

source is not consistent with the CPV 2HDMs. On the other hand, for
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relatively a small deviation as shown in Fig. 5.7d and Fig. 5.8d, the CPV

2HDMs is still available if CPV angle αb is sufficiently small. Moreover,

any non-zero EDMs that correspond to the regions of parameter space

within the reach of LHC would disfavor the CPV 2HDMs.

Finally, we comment on the potential constraints from the viability of successful

EWBG in 2HDMs. One can potentially include the allowed regions where EWBG

is viable in Figs. 5.7 and 5.8. For example, the authors of Ref. [105] studied the

CPV for EWBG and identified some regions of parameter space that seem favorable.

They pointed out that the CP violating phase necessary for successful baryogenesis

is sensitive to tan β and the masses of the heavy Higgses. That work also concen-

trated on parameter space region where the dominant decay channel of h3 is to the

Zh2 final state (A→ ZH in the CP-conserving limit), based on earlier studies of the

electroweak phase transition[107, 106]. A strong first order electroweak phase tran-

sition favors – but does not absolutely require – regions of parameter space leading

to dominance of this decay mode. In this paper our main focus is on constraints of

the CP violating phases from the LHC and EDMs in 2HDMs. It is possible that

for the spectra considered here, the CPV 2HDMs can accommodate a strong first

order electroweak phase transition and give rise to the CPV asymmetries needed for

successful baryogenesis. A detailed and general analysis of this possibility is beyond

the scope of the present paper and will be left for future study.
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CHAPTER 6

ELECTROWEAK PHASE TRANSITION IN XSM

In this chapter, we focus on the singlet extension to the SM, the xSM, which is

proven to be able to give a strong first order electroweak phase transition in Ref. [218].

In the xSM, after EWSB, the gauge eigenstates of the singlet scalar and the SM Higgs

mix with each other to form the mass eigenstates h1 (SM-like) and h2 (singlet-like).

Further, we restrict our study to searching for a signal of the on-shell production of

the heavy singlet-like Higgs h2 decaying to two SM-like Higgs h1 (i.e. m2 > 2m1),

because the regions of parameter space that can generate SFOEWPT simultaneously

tend to enhance the h2h1h1 tri-linear couplings [218, 114, 208]. Currently, the ATLAS

and CMS experiments have already begun to search for a resonant di–Higgs signal

through different Higgs decay final states: 4b [6, 175], bbγγ [176, 11], γγWW ∗ [11] and

bbττ [11] and so far have not found any significant deviation from SM backgrounds.

On the theoretical side, for the parameter regions that are viable for SFOEWPT, the

bbττ final state has been studied in Ref. [208] and found that at the 14 TeV LHC

with a 100 fb−1 luminosity, the singlet-like h2 with a relatively light mass e.g. 270

GeV can be discovered; the bbγγ and 4τ final states can discover m2 up to 500 GeV

at the 14 TeV LHC with a 3 ab−1 luminosity [181]; the bbWW final state studied in

Ref. [160] found that the resonant signal is discoverable for m2 range from 350 GeV

to 600 GeV at the 13 TeV LHC with a 3 ab−1 luminosity.

In this context, we study the prospective discovery/exclusion of 4b final state at

the 14 TeV LHC with a 3 ab−1 luminosity. We first find out the 11 benchmark

points with m2 ∈ [300, 850] GeV that produce the maximum and minimal di–Higgs
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signal rate σh2 × BRh2→h1h1 in consecutive 50 GeV intervals and satisfies all the

current phenomenological constraints from the Higgs signal rate, electroweak precision

data and also the theoretical constraints from stability, perturbativity and viable

for SFOEWPT. Then we do a full simulation of signal and background events with

the parton level events generator Madgraph5 [24], showering with PYTHIA6 [237]

and using DELPHES3 [92] to do the fast detector simulation. Further, we use the

TMVA package in ROOT to implement the Boosted Decision Tree (BDT) algorithm

to optimize the cuts, finally obtain the significance from the BDT score distributions

of background and signal events.

6.1 The xSM

6.1.1 The Model

The most general scalar potential in the xSM model is given by:

V (H,S) = − µ2
(
H†H

)
+ λ

(
H†H

)2
+
a1

2

(
H†H

)
S

+
a2

2

(
H†H

)
S2 +

b2

2
S2 +

b3

3
S3 +

b4

4
S4, (6.1)

where S is the real singlet and H is the SM Higgs doublet. The a1 and a2 parameters

induce the mixing between the singlet scalar and the SM Higgs doublet which provide

a portal for the singlet scalar interacts with SM particles. A Z2 symmetry is presented

in the absence of a1 and b3, we however retain both parameters in our study as they

play an important role in the strength of EWPT and also di-Higgs signal rate at

collider experiments.

After EWSB, H → (v0 + h)/
√

2 with v0 = 246 GeV, and S → x0 + s where x0 is

the vev for S without loss of generality. The stability of the scalar potential requires

the quartic coefficients along all the directions in the field space to be positive. This
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translates into a requirement of a positive the Hessian determinant of the potential

with respect to fields s and h:

det

 ∂2V/(∂s2) ∂2V/(∂s∂h)

∂2V/(∂h∂s) ∂2V/(∂h2)

 > 0. (6.2)

This leads the bounds λ > 0, b4 > 0 and a2 > −
√
λb4. Another way to obtain these

bounds is by parameterizing (h,s) as (r cosα, r sinα) in the field space, and we are

able to extract the quartic coefficients of r along the α direction in the field space:

1

4

(
(b4 + λ− a2) cos4 α + (a2 − 2b2) cos2 α + b4

)
. (6.3)

Requiring the above equation larger than zero for any value of cosα also leads to the

same conditions.

Utilizing the minimization conditions,

dV

dh

∣∣∣∣
h=0,s=0

= 0,
dV

ds

∣∣∣∣
h=0,s=0

= 0, (6.4)

one can express two potential parameters in the Eq. 6.1 in terms of the vevs and other

parameters.

µ2 = λv2
0 + (a1 + a2x0)

x0

2

b2 = − b3x0 − b4x
2
0 −

a1v
2
0

4x0

− a2v
2
0

2
. (6.5)

Two additional conditions need to be satisfied for (v0, x0) to be a stable minimum.

One of them is (v0, x0) minimizing the potential locally, which requires:
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b3x0 + 2b4x
2
0 −

a1v
2
0

4x0

− (a1 + 2a2x0)2

8λ
> 0. (6.6)

Also, this minimum point should be a global minimum, which we impose numerically.

As for the perturbativity, we have requirements on the quartic couplings:

∣∣∣a1

2

∣∣∣ , ∣∣∣a2

2

∣∣∣ , ∣∣∣∣b4

4

∣∣∣∣ < 4π. (6.7)

However, when scanning the parameter space for benchmark points we implement

more stringent bounds on those parameters as discussed in Sec.6.2 compared with

the above requirements. One can refer to Ref. [224] and Ref. [225] for more details

about the perturbativity bound in the xSM.

Now we obtain the elements of mass-squared matrix by:

m2
h ≡

d2V

dh2
= 2λv2

0

m2
s ≡

d2V

ds2
= b3x0 + 2b4x

2
0 −

a1v
2
0

4x0

m2
hs ≡

d2V

dhds
= (a1 + 2a2x0)

v0

2
. (6.8)

After the diagonalization of the above mass matrix, the physical masses of two neutral

scalars can be expressed as:

m2
2,1 =

m2
h +m2

s ± |m2
h −m2

s|

√
1 +

(
4m2

hs

m2
h −m2

s

)2

2
,

(6.9)

with m2 > m1 by construction. The mass eigenstates and gauge eigenstates are

related by a rotation matrix:
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h1

h2

 =

 cos θ sin θ

− sin θ cos θ


h
s

 (6.10)

where h1 is the SM-like Higgs boson with m1 = 125, and h2 is identified as the most

singlet-like mass eigenstate. The mixing angle θ can be expressed with the vevs,

physical masses and potential parameters:

sin 2θ =
2m2

hs

(m2
1 −m2

2)
=

(a1 + 2a2x0) v0

(m2
1 −m2

2)
. (6.11)

From Eq. 6.10, one can observe that the couplings of h1 and h2 to the SM vector

bosons and fermions are changed by rescales of their SM Higgs couplings,

gh1XX = cos θ gSM
hXX , gh2XX = sin θ gSM

hXX , (6.12)

where XX represents final states of SM vector bosons and fermions pairs In this case,

all the signal rates associated with the single Higgs measurments are rescaled by the

mixing angle only:

µh1→XX =
σh1 · BR

σSMh1
· BRSM

= cos2 θ, (6.13)

where σh1 and BR are the production cross section and branching ration in our model,

and the quantities with the superscript SM are the corresponding values in the SM.

In our model, we have BR = BRSM because the partial width of each decay mode is

rescaled by cos2 θ and there is no new decay channel appearing.
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In order to investigate the di-Higgs production in following sections, one also

need to derive the tri-Higgs couplings. The one relevant for the resonant di-Higgs

production is λ211,

λ211 =
1

4

[
(a1 + 2a2x0) cos3 θ + 4v0(a2 − 3λ) cos2 θ sin θ

+(a1 + 2a2x0 − 2b3 − 6b4x0) cos θ sin2 θ − 2a2v0 sin3 θ
]
. (6.14)

In this work, we focus on the situation where m2 > 2m1 such that a resonant

production of h2 and a subsequent decay to h1h1 is allowed. Therefore, we are able

to calculate the partial width Γh2→h1h1 :

Γh2→h1h1 =
λ2

211

√
1− 4m2

1/m
2
2

8πm2

, (6.15)

and the total width of h2:

Γh2 = sin2θ ΓSM(m2) + Γh2→h1h1 , (6.16)

where ΓSM(m2) represents the total width of SM Higgs with a mass of m2, which is

taken from [25]. The singnal rate for pp → h2 → XX (X is SM vector bosons and

fermions) normalized to the SM value is given by:

µh2→XX = sin2 θ

(
sin2 θ ΓSM(m2)

Γh2

)
, (6.17)

which will be used to constrain the parameter space in the next section. The produc-

tion cross section for the process pp→ h2 → h1h1 can also be calculated:

σh1h1 = σSM(m2)× s2
θ

Γh2→h1h1

s2
θΓ

SM(m2) + Γh2→h1h1

. (6.18)

86



6.1.2 Phenomenological Constraints on the Model Parameters

Now we discuss current phenomenological constraints on the xSM. The mixing

angle θ between the singlet and the SM Higgs doublet is constrained by measurements

of the single SM-like Higgs signal strengths. A global analysis by the ATLAS group

gives the 95% CL upper limit on sin2 θ as 0.12 [9].

The LHC searches for the heavy neutral Higgs also provide constraints on the

parameter space, typically, we take into account the existing limits on both the h2 →

V V [15, 12, 60, 174] and the h2 → h1h1 final states, where h1h1 decay to bb̄bb̄ [6, 175],

bb̄γγ [176], bb̄ττ [11]. The constraints on the (m2, cθ) plane can be found in our

previous work [160]. We will also guarantee each benchmark point in the parameter

scan in the next section satisfies all the limits mentioned above.

Finally, we discuss the constraints from electroweak precision observables (EWPO).

The mixing between the singlet scalar and the SM Higgs doublets induces the modi-

fication of the oblique parameters S, T and U with respect to their SM values. From

Eq. 6.10, the deviation in an oblique parameters O, denoted by ∆O, can be expressed

in terms of the SM Higgs contribution to that parameter, OSM(m) [214, 149] and the

mixing angle θ, where m is either m1 or m2. So we have:

∆O = (c2
θ − 1)OSM(m1) + s2

θ OSM(m2) = s2
θ

[
OSM(m2)−OSM(m1)

]
. (6.19)

In the xSM the parameter U = 0 is a good approximation, we therefore focus on only

the deviations in the S and T parameters, which is given by the Gfitter group [30]:

∆S ≡ S − SSM = 0.06± 0.09

∆T ≡ T − TSM = 0.10± 0.07
ρij =

 1 0.91

0.91 1

 , (6.20)

where ρi,j is the covariance matrix in the (S,T ) plane. Again, we will impose the

criteria in the parameter scan in the next section such that for each benchmark point,
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∆χ2(m2, cθ) defined below is less than 5.99, which corresponds to the deviations of S

and T parameters are within 95% C.L.

∆χ2(m2, cθ) =
∑
i,j

[
∆Oi(m2, cθ)−∆O0

i

]
(σ2)−1

ij

(
∆Oj(m2, cθ)−∆O0

j

)
, (6.21)

where ∆O0
i denote the central values in (6.20) and (σ2)ij ≡ σiρijσj, with σi the S or

T standard deviation from (6.20).

6.2 Electroweak Phase Transition and Benchmarks for Di-

Higgs Production

The character of EWPT is understood in terms of the finite-temperature effective

potential, V T 6=0
eff However, the fact that the standard derivation of V T 6=0

eff suffers from

gauge dependence is well known which is discussed in depth in Ref. [223]. Here

we employ a high-temperature expansion to restore the gauge independence in6 our

analysis (see Ref. [219] for details). In such a case, we include in our finite temperature

effective potential the T = 0 tree level potential and the gauge-independent thermal

mass corrections to V T 6=0
eff , which are crucial to restore electroweak symmetry at high

temperature. In this limit, a1 and b3 parameters in the xSM will generates the barrier

between the broken and unbroken electroweak phases for a first-order EWPT at tree-

level. In the high-temperature limit, we follow Ref. [223] and write the T-dependent,

gauge-independent (indicated by the presence of a bar) vevs in a cylindrical coordinate

representation as

v̄(T )/
√

2 = φ̄(T ) cosα(T ), x̄(T ) = φ̄(T ) sinα(T ), (6.22)

with v̄(T = 0) = v0 and x̄(T = 0) = x0. The critical temperature Tc is defined

as the temperature at which the broken and unbroken phases are degenerate, i.e.
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V T 6=0
eff (φ, α 6= π/2, Tc) = V T 6=0

eff (φ, α = π/2, Tc). Once the critical temperature is

found one is able to evaluate the quenching effect of the sphaleron transitions in the

broken electroweak phase (see, e.g., Ref. [202]), which is related to the energy of the

electroweak sphaleron that is proportional to the vev of SU(2)L doublet v̄(T ). A

first-order EWPT is strong when the quenching effect is sufficiently large, and the

criterion is approximately given by:

cosα(Tc)
φ̄(Tc)

Tc
& 1. (6.23)

To select the benchmarks to do the collider simulation, we perform a scan of

parameters a1, b3, x0, b4 and λ within the following range:

a1/TeV, b3/TeV ∈ [−1, 1], x0/TeV ∈ [0, 1], b4, λ ∈ [0, 1] (6.24)

the remaining parameters are fixed by input values of v0 = 246 GeV and mh =

125 GeV. Our lower bound on quartic couplings b4 and λ guarantee the vacuum

stability. We also require a naive perturbativity bound on the Higgs portal coupling

a2/2 . 5. For each set of scanning parameters, we calculate the cθ, m2 and λ211, and

only keep the points that satisfies all the phenomenological constraints mentioned

in the previous section (Higgs signal rate, LHC search for heavy Higgs h2, EWPO).

Then we pass these sets of parameters into the CosmoTransitions and evaluate all

the quantities that related to the EWPT numerically, such as critical temperature,

sphaleron energy, tunneling rate into the electroweak symmetry broken phase with an

input of the finite temperature effective potential of the xSM in the high-temperature

limit. Finally we only keep the sets of parameters that satisfies the strong first-order

EWPT defined above and also has a sufficient tunneling rate to prevent the universe

stucking in a metastable vacuum.
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We choose benchmark points with the maximum and minimum signal rate σ(pp→

h2)BRh2→h1h1 from 11 consective h2 mass windows range from 300 to 850 GeV with

50 GeV width. The upper bound of m2 = 850 GeV is obtained by the logic that we

did not find the mass of m2 larger than 850 GeV that gives a strong first-order EWPT

even though in our scan m2 can potentially reach 1 TeV. We list all the benchmark

points in Table. 6.1 and 6.2.
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6.3 4b Final State Analysis

In this section, we discuss the simulation and analysis details for 4b final state. The

di-Higgs to 4b final state gives the largest branching ratio among all the di-Higgs decay

channel, which potentially gives the largest signal rate. However, 4b channel also

suffer from large SM multi-jet backgrounds, which may reduce the signal significance.

This is why we implement Boosted Decision Tree (BDT) to better separate the signal

and background events and to enhance signal significance. In what follows, we first

reproduce the result of the 13 TeV ATLAS analysis and then evaluate the significance

for the future HL-LHC.

6.3.1 13 TeV result revisit

We follow the ATLAS resolved analysis in Ref. [6], and reproduce the signal ef-

ficiency and background distributions in Fig.2 and Fig.4. We generate the parton

level signal and background with MG5 AMC@NLOv2.4.3 [24] and then use PY-

HIA6 [237] for QCD showering, fragmentation and hadronization, finally we use the

DELPHES3 [92] to simulate the detector effect. For the detector simulation, we used

the default CMS DELPHES card, though we are following the ATLAS analysis. The

reason we use the CMS card rather than the ATLAS card in DELPHES is that the

CMS card is better in reproducing the real experimental effects than the ATLAS

card and we believe that the detector responses are similar in the real world for the

ATLAS and CMS experiments. The b-tagging rate is set to 70% and parameter R in

anti-kt jet clustering algorithm is set to 0.4 to follow the ATLAS analysis.

For the signal process, we scan the mass of h2 from 300 GeV to 1500 GeV with

a interval of 100 GeV. For the backgrounds, we generate pp → 4b and pp → tt̄.

To increase the sample efficiency, for pp → 4b process, we set the parton level cuts

∆Rbb > 0.3, which is consistent with the parameter R=0.4 in anti-kt algorithm that
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set an effective lower bound on ∆R = 0.4 of two jets. For pp → tt̄, we enforce top

quarks decaying hadronically.

Here we summarize the cut flow used in the ATLAS analysis:

• Select the events with at least 4 b-tagged jets with pbt > 40 GeV and |η| < 2.5.

If the number of b-tagged jets is larger than 4, then the jets with 4 highest pt

are selected to reconstruct dijet system.

• Use the selected 4 b-tagged jets to form two dijet systems. The dijet system

is defined by the two jets with ∆R < 1.5. We also require that the transverse

momentum (pt) of the leading (subleading) dijet system to be greater than 200

(150) GeV.

• Depending on the reconstructed invariant mass of 4 b-tagged jets we put fol-

lowing mass dependent cuts

plead
T >


400 GeV if m4j > 910 GeV,

200 GeV if m4j < 600 GeV,

0.65m4j − 190 GeV otherwise,

psubl
T >


260 GeV if m4j > 990 GeV,

150 GeV if m4j < 520 GeV,

0.23m4j + 30 GeV otherwise,

|∆ηdijets| <


1.0 if m4j < 820 GeV,

1.6× 10−3m4j − 0.28 otherwise.

• To reduce tt̄ background, we impose the “tt̄ veto” in the following method: if

there are extra jets in the events with pT > 30 GeV and η < 2.5, then we
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will test if this extra jet has ∆R < 1.5 relative to the dijet. Given the above

condition is true, we will calculate the invariant mass of the extra jet and one of

the b-tagged jet in the dijet system as the mass of W boson candidate mW and

the invariant mass of the extra jet and dijet system as the mass of top quark

candidate mt. We will veto the events if the following requirement is satisfied:

Xtt =

√(
mW − 80.4 GeV

0.1mW

)2

+

(
mt − 172.5 GeV

0.1mt

)2

< 3.2, (6.25)

• Finally, we will retain the events as a signal candidate if the invariant masses

of the two Higgs boson candidates are in the signal region defined by:

Xhh =

√√√√(mlead
2j − 120 GeV

0.1mlead
2j

)2

+

(
msubl

2j − 113 GeV

0.12msubl
2j

)2

< 1.6. (6.26)

Comparing with the same requirement in the ATLAS analysis in Ref. [6] we

change the central value of (mlead
2j ,msubl

2j ) in the above equation from (124 GeV,

115 GeV) to (120 GeV, 112 GeV) to compensate for the discrepancy of the jet

energy smearing between the Delphes simulation and the ATLAS simulation.

The efficiencies of signal events with mH ranging from 500 GeV to 1500 GeV a interval

of 100 GeV comparing with the ATLAS results in Ref. [6] are shown in the Fig. 6.1.

The solid lines represent the results from our simulation, the dashed lines represent

the results in Fig.2(b) in Ref. [6]. The five different lines correspond to five cuts

described in the five bullet points above. We found that for the final signal efficiency

our results agree with the ALTAS results very well.

We estimate the backgrounds yields after the same cuts and summarize them in

Table 6.3. Apart from 4b and tt̄ background we also estimate the number of bbcc

background with two c quarks faking to two b quarks by the following formula under
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Figure 6.1: The comparison of the cut flow efficiencies with the ATLAS result. The
solid lines are our simulation results, the dashed lines represent the ATLAS results
in Ref. [6]. The five cuts are correspond to five bullet points described in the sec-
tion 6.3.1.

the assumption that the kinetic distribution of bbcc events are similar to those of 4b

events:

Nbbcc = N4b ×
σbbcc
σ4b

× (
fc→b
fb→b

)2, (6.27)

where N4b is the estimated number of QCD 4b events after all the cuts, σbbcc and σ4b

are parton level cross-sections for bbcc and 4b processes, fc→b is the c originated mis-

tag efficiency which is taken to be 0.2 [14], fb→b is the b jet tag efficiency which is taken

to be 0.7. The expected number of the bbcc background is 2, which contribute less

than 2.5% of the total background. We also plot the distribution of the 4b invariant

mass for the background events in Fig. 6.2, where before calculating the 4b invariant

mass we rescale the four momentums of dijet systems such that their invariant masses

are equal to the physical mass of the SM-like Higgs 125 GeV. One can compare the

same distribution from the ATLAS experiments in the Fig.4 in Ref. [6], again we find

they are identical within the uncertainties.

All of the above 13 TeV analysis gives us the confidence to study the prospective

results in the 14 TeV HL LHC.
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Backgrounds σNLO
parton(pb) K factor efficiency

# of remaining events
(L= 3.2fb−1)

ATLAS results[6]

bbbb 287.24 1.72 [24] 4.02×10−5 37 43
tt̄ 72 1.60 [204] 1.87×10−5 4.0 4.3

.

Table 6.3: Estimated number of background events and comparison with ATLAS
results at the 13 TeV LHC.
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Figure 6.2: The distribution of the 4b invariant mass for backgrounds events after all
the cuts in this section.

6.3.2 14 TeV HL-LHC Reuslt Predictions

In the analysis of the 14 TeV HL LHC prospective results, we first select events

with two dijet systems following the cuts in Ref. [73] described below:

• Select events with at least 4 b-tagged jets with pT > 30 GeV.

• Pairing two of them such that ∆Rjj satisfies the following cuts:

360
m4j
− 0.5 < ∆Rjj,lead <

655
m4j

+ 0.475

235
m4j

< ∆Rjj,subl <
875
m4j

+ 0.35

 if m4j < 1250GeV

0 < ∆Rjj,lead < 1

0 < ∆Rjj,subl < 1

 if m4j > 1250GeV
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• If more than one pairing system satisfied this constraint, we use the one with

the smallest variable Dhh defined by :

Dhh =
√

(mlead
2j )2 + (msubl

2j )2

∣∣∣∣∣sin
(

tan−1

(
msubl

2j

mlead
2j

)
− tan−1

(
115

120

))∣∣∣∣∣ (6.28)

After selecting the events with two dijets we calculate following kinematic variables

and feed them into a Boosted Decision Tree (BDT) to optimize the separation between

signal and background events:

plead
T , psubl

T ,∆Rlead,∆Rsubl,∆Rhh,∆φhh,∆ηhh,m
lead
2j ,msubl

2j , Xhh,m4b. (6.29)

The variables with superscripts “lead” and “sub” correspond to the value of the

leading and sub-leading dijet systems ordered by their pT , and Xhh are defined below:

Xhh =

√√√√(mlead
2j − 120 GeV

0.1mlead
2j

)2

+

(
msubl

2j − 115 GeV

0.1msubl
2j

)2

, (6.30)

m4b represents the invariant mass of four b jets. After training the BDT, we obtain

the BDT score distributions of signal and backgrounds events. To derive the optimal

sensitivity, we re-bin the signal and background distributions such that each bin

contributes the maximum S/
√
B (S and B are the numbers of signal and background

events in that bin), starting from the right edge of the histogram where the signal

peaks.

We summarize the production cross-sections and the preliminary cut efficiencies

before the BDT analysis in Table 6.4.

Then we calculate the CLb with the profiled likelihood method using the asymp-

totic formula described in Ref. [82, 83], and then convert the quantity 1 − CLb,

which represents the probability that the background-only model produce the ob-

served events by fluctuation that can imitate the expectation of the signal plus back-

ground model, into the correspoinding Nσ Gaussian significance. As an illustration,
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Backgrounds σNLO
parton(pb) K factor efficiency

bbbb 131.075+28%
−24% 1.4 [87] 0.02987

tt̄ 110.065+3.8%
−5.8% 2.03 [88] 0.005579

.

Table 6.4: Estimated number of background events for 14 TeV HL-LHC and the
theretical uncertainties.
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Figure 6.3: Re-binned histograms for BM4 and BM7 with the maximum signal rates,
the red line represents the signal distribution, the blue line represents the backgrounds
distribution, they are all normalized to their real expected number of events in the
14 TeV HL LHC with 3 ab−1.

we show the re-binned histograms of the BDT output for two benchmark points in

Fig. 6.3.

We also plot the significance Nσ with uncertainty bands in Fig. 6.4. The upper

and lower bands correspond to the variation of production cross section of 4b and

tt̄ backgrounds within ±1σ uncertainties as one can find in the Table 6.4. One can

observe that with a 3 ab−1 luminosity at the 14TeV LHC the benchmark points with

maximum signal rate up to mH =500 GeV can be discovered with Nσ >5. If the

future HL LHC experiments does not observe the signal, then one can exclude the

maximum signal rate benchmark points up to mH =680 GeV.

We compare the significance that obtained with the same method for the bbγγ and

4τ channels at the 14 TeV HL LHC [181] and for the bbWW channel at the 13 TeV

LHC [160] in Fig. 6.5. We only compare the benchmark points from BM3 to BM11
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Figure 6.4: The significance Nσ calculated from 1-CLb. The upper and lower bands
represent the ±1σ variation of uncertainties on the theoretical backgrounds cross-
sections.

because the first two BM points are different from that in Ref. [181]. We find that

for the mass with heavy Higgs mass mH less than 500 GeV, the bbγγ channel seems

to be the most sensitive channel for searching a resonant di-Higgs signal, and the 4b

channel is competitive with the bbγγ channel, which could serve as a complementary

check if the bbγγ channel observe the signal. However, the mH larger than 500 GeV

the 4b channel demonstrates their better sensitivities compare with the bbγγ channel

and 4τ but not as good as the bbWW channel in our analysis.
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Figure 6.5: The significance Nσ calculated from 1-CLb for the 14 TeV LHC with a
3 ab−1 luminosity for different channels. The values for bbγγ and 4τ channels are
obtained from Ref. [181]
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CHAPTER 7

EXPLORING EXTENDED SCALAR SECTORS WITH
DI-HIGGS SIGNALS: A HIGGS EFT PERSPECTIVE

Precision measurements of the Higgs couplings are a major goal for current and

future high energy experiments. Current experimental results provide strong evidence

that the nature of the Higgs boson is consistent with the predictions of the SM.

The measurement of this behavior is entirely dependent on single Higgs phenomena

through precision measurements of the Higgs couplings to the vector bosons and

the SM fermions. On the other hand, the Higgs self-interactions, responsible for

Electroweak Symmetry Breaking (EWSB), still remain undetermined experimentally.

The Higgs self-coupling directly determines the shape of the Higgs potential and

therefore measuring possible deviations of the Higgs self-coupling from its SM value

is a crucial step in understanding the nature of EWSB, electroweak vacuum stability,

and the nature of the electroweak phase transition (EWPT).

In order to investigate the generic features of the trihiggs coupling at the LHC

and a future collider we adopt an Effective Field Theory (EFT) approach [52, 145,

137, 196]. In doing so we assume some possible new physics beyond the SM which

modifies the Higgs couplings and is heavy with, for example, new physics scales

such as ΛNP ∼ TeV. The effects of the new physics are parametrized by higher di-

mension effective operators, and the dimension-six QH = (H†H)3 operator is the

leading operator which modifies the momentum independent Higgs self-couplings at

low energy. The QH operator remains the only operator related to the Higgs sector

unconstrained by current experiment. In order to motivate this study of the effective

operator QH we consider ultraviolet (UV) complete models which may generate this
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operator at tree level and therefore with a larger Wilson coefficient. This require-

ment combined with Lorentz invariance then limits our consideration to extended

scalar sectors1. Additionally the new scalar must not be charged under SU(3)c as

closure of color indices requires QH be generated at one loop. Such scalar extensions

of the SM constitute relatively simple scenarios beyond the SM which are also well-

motivated by studies of the electroweak phase transition and baryogenesis [36, 37],

having dark matter candidates [197, 53, 122], or mechanisms for neutrino mass gen-

eration [180, 189, 229, 64]. The complete list of the scalar extensions which generate

a tree-level QH are real [197, 53, 209, 36] and complex singlets [37], the two Higgs

doublet model (2HDM) [48, 186, 146], real [46, 122] and complex [180, 189, 229, 64]

triplets, and complex quadruplets. Assuming the new scalars in these models are

heavy, we utilize an EFT approach to study their effects on electroweak precision

tests, modifications of the single Higgs couplings, and the di-Higgs production pro-

cess in a model-independent and predictive way.

Many new physics models with SM-compatible single Higgs phenomena could ex-

hibit di-Higgs phenomenology distinct from that of the SM [93, 29]. The modifications

of the Higgs trilinear couplings can only be directly observed in Higgs boson pair pro-

duction, therefore the di-Higgs process at the LHC and future colliders is the only di-

rect way to measure the Wilson coefficient of the effective QH operator. Alternatively

the trilinear Higgs coupling can be studied indirectly [96, 100, 192, 96, 141, 45, 100].

However our paper will focus on the direct constraints, we discuss the indirect con-

straints briefly at the end of Section 6.1. The di-Higgs production mechanism at

hadronic colliders is dominated by the gluon fusion process which includes the tri-

angle and the box contributions from the top quark. Due to destructive interference

1Requiring closure of spinor and Lorentz indices implies fermions may only generate the QH
operator at one-loop and vectors may only generate dimension-six-operators with two derivatives at
tree-level.
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between these two contributions, the di-Higgs production cross section in the SM

is typically small and thus challenging to observe in the near future. However, in

the scalar extended models, the di-Higgs cross section may be increased consider-

ably making measurement a possibility at the proposed 100 TeV collider [27, 74]. In

this paper we investigate the di-Higgs production cross sections in the EFT frame-

work, and study the discovery potential of the Wilson coefficients in the EFT at the

proposed 100 TeV collider.

In this chapter

7.1 The Effective Lagrangian

We enumerate all the ultraviolet (UV) complete models which include one addi-

tional heavy scalar which generate, after integrating out the new scalar, dimension-six

operators affecting the trihiggs vertex at tree level. The fermion and vector boson

cannot generate QH at tree level because they need loops to close the Lorentz indices

as one can see from Fig. 7.1. HS3 cannot generate QH at tree level, and there is

no representation for scalar S such that HS2 become SU(2) invariant. So the only

possibility is to have a interaction term H2S or H3S, The relevant Feynman diagrams

is shown in Fig. 7.2 Now let us find out the all the representations that can contain

H2S and H3S representations. The group theory tell us how to decompose the direct

product of SU(2)L doublet representations:

2⊗ 2 = 3S ⊕ 1A (7.1)

2⊗ 2⊗ 2 = 4S ⊕ 2 (7.2)

where the subscript A and S denoted the representation as antisymmetric and sym-

metric. Therefore, we concluded that the scalar S can be singlet and triplet to produce

the H2S and can be doublet and quadruplet to produce H3S. Next, let use find out
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(a) Fermion Loop
(b) Vector Loop

Figure 7.1: A illustration that new fermion and vector mediators can not generate
HQ operators at tree level.

(a) Only H3S
(b) Both H3S and H2S (c) H2S

Figure 7.2: The topologies that can generate QH at Tree level through new scalar
mediators
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possible hypercharge assignments for these possible representations. For singlet, HH

must be H†H, so the hypercharge of the singlet S must be zero. For triplet, HH can

either be HiHj with hypercharge of the triplet YS = −2YH (complex triplet) or be

H∗iHj with hypercharge of the triplet YS = 0 (Real triplet). For doublet, the H3 must

be HdaggerHHdagger, so the hypercharge of the new doublet must be YS = YH . For

quadruplet, similar to the triplet case, the hypercharge could be YS = YHor3YH .

For each model we write down the Lagrangians for each UV-model along with

the corresponding effective field theory (EFT) to dimension-six at tree level, we will

only write the new terms in addition to the standard model terms for convenience.

In writing the EFTs we will follow the procedure of Henning et al. [151, 152], the

detailed matching procedure can be found in Appendix. To clarify our notation

and conventions, we write here the general Lagrangian for all UV complete models,

neglecting SM fermionic and gauge boson terms, considered:

L = (DµH)†(DµH)− µ2(H†H)− λ(H†H)2 + ∆L (7.3)

Where ∆L contains all terms containing new fields (in the case of the models we

consider this is one new scalar multiplet of SU(2) which may or may not have hy-

percharge). µ2 becoming negative signals spontaneous symmetry breaking leading to

the massive gauge bosons of the SM. After deriving the EFTs we employ the Warsaw

basis [145] for the dimension-six operators, translations between the various bases are

included throughout much of the recent literature including a package for relating the

bases [115]. The operators which are relevant to our analyses are:

QH = (H†H)3 , QeH = (H†H)(L̄eRH) ,

QH� = (H†H)�(H†H) , QuH = (H†H)(Q̄uRH̃) ,

QHD = (DµH)†HH†(DµH) , QdH = (H†H)(Q̄dRH) .

(7.4)
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The fermionic operators should be summed over each generation with an appropriate

Wilson coefficient. In general the fermionic operators can have off diagonal com-

ponents, however for the models considered this is only possible for the two-Higgs

doublet model and we will employ particular choices of the fermionic matrices in

the model to suppress off diagonal components, as is motivated by studies of flavor

changing neutral currents, and therefore assume these operators to be diagonal.

7.1.1 Real Scalar Singlet

The real scalar singlet has Y = 0, it has been studied extensively in the literature

both from the UV complete [197, 53, 209, 36] and EFT perspectives [79, 151, 142].

The Lagrangian, neglecting SM terms, is given by:

∆L =
1

2
(∂µS)(∂µS)− M2

2
S2 − g

3
S3 − gHS(H†H)S − λS

4
S4 − λHS

2
(H†H)S2 . (7.5)

After integrating out the S field we find the EFT:

∆L → g2
HS

2M2
(H†H)2 −

(
λHS

2
−ggHS

3M2

)
g2
HS

M4
QH −

g2
HS

2M4
QH� . (7.6)

We note that there are corrections to the renormalizable |H|4 vertex, which we will

find is a common feature of integrating out scalars in our models, as well as the

dimension-six operatorsQH andQH� which affect the trihiggs couplings. Additionally

the term gg3
HS/3/M

6 appears to be of the next order in the EFT expansion, we will

retain these terms in the text, however in our summary Tables 7.2 and 7.3 we neglect

such corrections.

7.1.2 Complex Scalar Singlet

For the complex scalar singlet we consider the case of Y = 0. While the complex

scalar singlet is technically the same as introducing two real singlets, and therefore
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doesn’t fit our criteria for considered models, we consider it here as it has been

studied extensively in the literature. Some examples from the literature which study

the complex singlet case and its implications for inflation, the electroweak phase

transition, enhancement of the di-Higgs signal, and vacuum stability include [37, 120,

66, 89, 65]. The Lagrangian is then:

∆L = (∂µΦ)†(∂µΦ)−M2|Φ|2 − (M ′)2

2

(
Φ2 + h.c.

)
−
(
gHS(H†H)Φ + h.c.

)
−
(g

3
Φ3 + h.c.

)
−
(
g′

3
Φ(Φ†)2 + h.c.

)
−
(
λHΦ

2
(H†H)Φ2 + h.c.

)
− λ′HΦ

2
(H†H)|Φ|2 −

(
λ

4
Φ4 + h.c.

)
−λ

′

4
|Φ|4 −

(
λ1

4
Φ(Φ†)3 + h.c.

)
(7.7)

The M ′ term corrects the dimension-six operator coefficients with terms proportional

to M ′/M which must be small for the validity of the EFT so we neglect them2.

Integrating out Φ and Φ† gives the effective Lagrangian:

∆L → |gHS|
2

M2
(H†H)2−

(
|gHS|2λ′HΦ

2M4
+

Re[g2
HSλHΦ]

M4
−2Re[g3

HSg
∗ + g2

HSg
′gHS]

M6

)
QH−

|gHS|2

M4
QH�

(7.8)

Again we induce corrections to the |H|4 vertex as well as the effective operators QH

and QH�.

7.1.3 Two Higgs Doublet Model

Of the many extended scalar sectors studied in the literature the two Higgs doublet

model is the most well studied, reviews on the status of the model from the UV

2M ′ is the parameter which dictates the size of the mass splitting between the components of
the complex scalar field. If M ′ were to become large it is possible that the lighter resonances would
enter the low energy spectrum and invalidate our EFT approach. Therefore it is a requirement of
our EFT approach that this parameter be small. For the same reason we will neglect the effects of
Y3 in the 2HDM below.
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L U D
Type I: Φ2 Φ2 Φ2

Type II: Φ1 Φ2 Φ1

Lepton-Specific: Φ1 Φ2 Φ2

Flipped: Φ2 Φ2 Φ1

Table 7.1: List of Fermion couplings used for various Types of 2HDM.

perspective have a long history (some extensive reviews include [48, 186, 146]), the

two Higgs doublet model has also recently been studied in the EFT framework in great

detail [41, 91, 142] including comparisons between the phenomenological aspects of

both the UV complete and EFT frameworks at tree and one-loop levels [49, 125].

We begin in the “Higgs basis”, where the doublets have already been rotated to a

basis where the physical CP even state is the observed 125 GeV Higgs. This rotation

is performed by rotation of H1 and H2 by the angle β. We follow the notation of [41].

Note the Yukawa couplings are entered generically and later will be recast in terms of

each of the four “types” usually considered to evade flavor changing neutral currents

when we write the EFT. These various types considered are outlined in Table 7.1.

∆L = (DµH2)†(DµH2)−M2|H2|2 − Y3(H†1H2 + h.c.)− Z2

2
|H2|4 − Z3|H1|2|H2|2

−Z4(H†1H2)(H†2H1)− Z5

2
(H†1H2)(H†1H2)− Z∗5

2
(H†2H1)(H†2H1)

−Z6|H1|2(H†1H2)− Z∗6 |H1|2(H†2H1)− Z7|H2|2(H†1H2)− Z∗7 |H2|2(H†2H1)

−
(
H2,iQ̄jYuuRεij +H2,iQ̄iYddR +H2,iL̄iYleR + h.c.

)
(7.9)

The effective Lagrangian for each “type” of 2HDM is then given below. Note we

have neglected terms suppressed by Y3/M
2 as explained above in the complex scalar

discussion. We adopt the notation cos β = cβ and sin β = sβ, where the mixing

angle β is the angle which diagonalizes the mass matrices of the charged scalars and

pseudoscalars, to allow us to rewrite the Higgs-fermion couplings in terms of the

mixing angle and the parameter Z6.
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• Type I:

∆L =
Z6

M2

2vh+ h2

2

(√
2mlcβ
vsβ

L̄H1eR +

√
2mucβ
vsβ

Q̄H̃1uR +

√
2mdcβ
vsβ

Q̄H1dR + h.c.

)

+
|Z6|2

M2
QH +

1

M2
(4− Fermi) (7.10)

• Type II:

∆L =
Z6

M2

2vh+ h2

2

(
−
√

2mlsβ
vcβ

L̄H1er +

√
2mucβ
vsβ

Q̄H̃1uR −
√

2mdsβ
vcβ

Q̄H1dR + h.c.

)

+
|Z6|2

M2
QH +

1

M2
(4− Fermi) (7.11)

• Lepton Specific:

∆L =
Z6

M2

2vh+ h2

2

(
−
√

2mlsβ
vcβ

L̄H1er +

√
2mucβ
vsβ

Q̄H̃1uR +

√
2mdcβ
vsβ

Q̄H1dR + h.c.

)

+
|Z6|2

M2
QH +

1

M2
(4− Fermi) (7.12)

• Flipped:

∆L =
Z6

M2

2vh+ h2

2

(√
2mlcβ
vsβ

L̄H1er +

√
2mucβ
vsβ

Q̄H̃1uR −
√

2mdsβ
vcβ

Q̄H1dR + h.c.

)

+
|Z6|2

M2
QH +

1

M2
(4− Fermi) (7.13)

We see that the 2HDM only induces one purely bosonic operator, QH , at leading order

in Y3/M
2, and induces various combinations of rescalings of the Yukawa couplings,

i.e. the operators QeH , QuH , and QdH . The only difference between the various

realizations of the 2HDM considered are differences in the weight of the fermionic

operators, i.e. by tan β or cot β. To make manifest the mass dependence of the Higgs
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couplings to fermions above we have expanded the fermionic dimension-six operators

(in the unitary gauge for convenience) to recast the couplings of H1 to fermions in

terms of their masses, Z6, and the mixing angle β. In particular the first line of

each expression indicates the shift of the Higgs-fermion couplings relative to the SM

prediction,

LHψψ =

√
2mψ

v
hψ̄RψL . (7.14)

Another unique feature of the 2HDM effective Lagrangians is that they also contain

4-Fermi operators. These are not relevant to our analysis and, as they are weighted

by the square of the Yukawa, are unlikely to have large Wilson coefficients except

possibly in the case of the top quark which has Yt ∼ 1.

7.1.4 Real Scalar Triplet

The real scalar triplet model [46, 62, 67] has been studied in the literature with

ambitions of making the electroweak phase transition first order, e.g. in [162], with

the possibility of the neutral component being a dark matter candidate [122], as well

as from an EFT point of view in [177, 151].

The relevant Lagrangian is given by,

∆L =
1

2
(DµΦa)2− 1

2
M2ΦaΦa+gH†τaHΦa− λHΦ

2
(H†H)ΦaΦa− 1

4
λΦ(ΦaΦa)2 . (7.15)

Integrating out the heavy triplet then gives the effective Lagrangian:

∆L =
g2

8M2
(H†H)2− g2

2M4
QHD−

g2

8M4
QH�+

g2

2M4
(H†H)(DµH)†(DµH)− g

2λHΦ

8M4
QH .

(7.16)

It is convenient to make a change of basis here, we may exchange the operator

|H|2(DµH)†(DµH) for the other dimension-six operators at the cost of an error of

the next order in the EFT (i.e. O(1/Λ4)). While it is frequently simpler to maintain

the basis obtained after integrating out the heavy states [241], for the sake of this
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work which will consider many UV completions and their effective field theories we

choose to project onto a common basis. Discussions of the validity of this method

including proofs of the invariance of the S-matrix can be found in [216, 135, 28, 235].

We perform the change of basis by using the Higgs equation of motion, scaled up to

dimension-six through multiplication by additional Higgs fields,

(H†H)(DµH)†(DµH) = −λRv2(H†H)2 +
1

2
QH� + 2λRQH

+
1

2
(YlQlH + YdQdH + YuQuH + h.c.) +O(1/Λ4) ,(7.17)

labeleq:EOMH where we have called the renormalized (H†H)2 coupling, λR = λ +

g2/8/M2 with λ the (H†H)2 coupling of Eq. 7.3, yielding the new form of Eq. 7.16:

∆L =
g2

M2

(
1

8
− λv2

2M2
− g2v2

16M4

)
(H†H)2 − g2

2M4
QHD +

g2

8M4
QH� −

g2

M4

(
λHΦ

8
− λ− g2

8M2

)
QH

+
g2

4M4
(YlQlH + YdQdH + YuQuH + h.c.) . (7.18)

Consistent with our other examples we have again generated the QH and QH� opera-

tors, however interestingly we have also generated the QHD operator which will have

important phenomenological implications which we discuss in Section 7.2.

7.1.5 Complex Scalar Triplet

Charging the Scalar Triplet under hypercharge, Y = −1, has important uses in

the Type II seesaw [180, 189, 229, 64]. The relevant UV complete Lagrangian is then,

∆L = |DµΦa|2 −M2|Φa|2 + (gHT iσ2τ
aHΦa + h.c.)− λHΦ

2
|H|2|Φa|2

−λ
′

4
(H†τaτ bH)Φa(Φb)† − 1

4
λΦ|Φa|4 − 1

4
λ′ΦTr[τaτ bτ cτ d](Φa)†Φb(Φc)†Φd .

(7.19)
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Integrating out the heavy complex triplet yields the effective Lagrangian,

∆L =
|g|2

2M2
(H†H)2 +

|g|2

M4
(H†H)(DµH)†(DµH) +

|g|2

M4
QHD −

|g|2

2M4

(
λHΦ

2
+
λ′

4

)
QH ,

(7.20)

which after applying the equation of motion from Eq. 7.17 (notice here λR = λ +

|g2|/2/M2) gives the final form for the effective Lagrangian:

∆L =
|g|2

M2

(
1

2
− λv2

M2
−|g|

2v2

2M4

)
(H†H)2 +

|g|2

2M4
QH� +

|g|2

M4
QHD

−|g|
2

M4

(
λHΦ

4
+
λ′

8
− 2λ−|g|

2

M2

)
QH +

|g|2

2M4
(YlQlH + YdQdH + YuQuH + h.c.)

. (7.21)

This effective Lagrangian and the effective operators it contains are consistent with

our expectations from the other models, particularly the real scalar triplet.

7.1.6 Quadruplet with Y = 3YH

For the two quadruplet models we follow the notation of [158], the UV Lagrangian

is then given by:

∆L = (DµΦ∗ijk)(DµΦijk)−M2Φ∗ijkΦijk − (λH3ΦH
∗iH∗jH∗kΦijk + h.c.)

−λH2Φ2H
∗iHiΦ

∗lmnΦlmn − λ′H2Φ2H
∗iΦijkΦ

∗jklHl − λΦ(Φ∗ijkΦijk)
2

−λ′Φ(Φ∗ijkΦilmΦ∗lmnΦjkn) . (7.22)

Integrating out the quadruplet leads to the simple EFT,

∆L =
|λH3Φ|2

M2
(H†H)3 . (7.23)
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Note that for a quadruplet we expect a contribution to the T -parameter. This oper-

ator does not occur at dimension-six, but does at dimension-eight. Deriving only the

dimension-eight operator contributing to the T -parameter yields:

LT8 =
6|λH3Φ|2

M4
|H†DµH|2|H|2 (7.24)

Here we have confirmed the sign of [90]. We will see in the case of Y = YH we obtain

a different sign from this work.

7.1.7 Quadruplet with Y = YH

The UV complete Lagrangian is given by,

∆L = (DµΦ∗ijk)(DµΦijk)−M2Φ∗ijkΦijk − (λH3ΦH
∗iΦijkH

∗jεklHl + h.c.)

−λH2Φ2H
∗iHiΦ

∗lmnΦlmn − λ′H2Φ2H
∗iΦijkΦ

∗jklHl − λΦ(Φ∗ijkΦijk)
2

−λ′Φ(Φ∗ijkΦilmΦ∗lmnΦjkn) . (7.25)

Again we find a very simple EFT to dimension-six:

∆L =
|λH3Φ|2

M2
(H†H)3 . (7.26)

which we supplement with the dimension-eight T -parameter operator.

LT8 =
2|λH3Φ|2

M4
|H†DµH|2|H|2 (7.27)

This expression agrees with [90] up to a sign. As the sign of the dimension-eight

T parameter operators in each quadruplet model come purely from the covariant

derivative term of the Lagrangians (other contributions cancel) they should be the

same in both Eqs. 7.24 and 7.26.
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7.1.8 Summary of EFTs

Finally after deriving the corresponding EFTs for each model we may construct

a table with the Wilson coefficients for each operator for each model considered. We

summarize the renormalization of the (H†H)2 term in Table 7.2 and the Wilson co-

efficients of the dimension-six operators in Table 7.3. While it appears that of all the

theories the 2HDM is the only which does not generate a correction to the renormal-

izable (H†H)2, this is a reflection of neglecting terms suppressed by Y3/M
2, these

corrections are generated first at O(Y3/M
2). Unsurprisingly neither the 2HDM nor

the two singlet models generate QHD, also referred to as the T -parameter operator as

they are known not to shift the relation between the W - and Z-masses. It is, however,

expected from studies of the dynamics of the triplet models below EWSB that the

triplet models considered in this work correct the T -parameter. This is consistent

with our findings in Equations 7.18 and 7.21. In the case of the quadruplet we found

they were unique in that at dimension-six they generate only one operator, QH , and

that the T -parameter operator was generated at dimension-eight. Additionally, as

there are no allowed tree level couplings to Fermions in any of the theories except

the 2HDM none of the other theories generate the fermionic operators, however after

trading the operator (H†H)(DµH)†(DµH) in the triplet models via the EOM we do

generate the fermionic operators for the two triplet models.

The case of the quadruplets is particularly interesting as studies which indirectly

probe the Higgs self coupling, such as [96], only allow the SM coupling λ to vary. Our

work indicates that, within the assumptions of our EFT3, such a study corresponds to

a very specific UV complete scenario, in the case where one expects the NP to come

from dimension-six operators this corresponds to the quadruplets. In the case of the

3For example relaxing the assumptions of a single new multiplet one could envision a scenario
with multiple quadruplets in which the T -parameter bounds may be evaded allowing for a sizable H6

operator coefficient and no other operators at dimension-six. In the case where only the H6 operator
is generated the indirect constraints may be more stringent than those of di-Higgs production [141].
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Theory: λRF = λ+ · · ·

R Singlet
g2
HS

2M2

C Singlet |gHS |2
M2

2HDM 0

R Triplet (Y = 0) g2

M2

(
1
8
− λv2

2M2

)
C Triplet (Y = −1) |g|2

M2

(
1
2
− λv2

M2

)
C Quadruplet (Y = 1/2) 0

C Quadruplet (Y = 3/2) 0

Table 7.2: Summary of the tree-level renormalization of the (H†H)2 operator in the
effective field theory. λRF indicates the final renormalized (H†H)2 coupling (i.e. after
shifting the operators by the EOM) including λ from Eq. 7.3. In this Table, as
mentioned in the text in the Real Scalar singlet discussion, we neglect terms which
are of O(g4/M6).

quadruplets the shift in λ due to the effective operators is restricted to be extremely

small since the same UV parameter that generates the operator QH contributes to

the strongly constrained T -parameter. This demonstrates that indirect probes of

the Higgs self coupling which don’t vary other Higgs couplings are incomplete or

correspond to specific UV completions which do not satisfy the criterion of the UV

complete models considered. Other studies which vary these additional couplings

of the Higgs such as [100, 192] indicate the bounds on the Higgs self coupling are

weakened or even lost without the inclusion of the direct di-Higgs probe.

It is useful to project these effective Lagrangians into Lorentz forms relevant to

the di-Higgs analysis performed. We do so here, from the perspective of arbitrary

Wilson coefficients, when the final analyses are performed we use the expressions for

the Wilson coefficients expressed in Table 7.3. We assume that only the heaviest

generation for each fermion has a non-negligible contribution to the EFT. Starting
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from the effective Lagrangian,

L = (DµH)†(DµH) + |µ|2(H†H)

−λRF (H†H)2 + cHQH + cH�QH� + cHDQHD + ceHQeH + cuHQuH + cdHQdH ,(7.28)

we can proceed to expand the operators to find the relevant Lorentz forms. Here we

have used λRF to represent the final renormalized coefficient of the (H†H)2 operator,

the expression for λRF may be found in Table 7.2 in terms of λ of Eq. 7.3 and

the parameters of each UV-model. This involves finite field renormalizations as the

operators QH� and QHD both alter the Higgs kinetic term below EWSB. Details of

this procedure may be found in, for example, [77, 78, 22]. Below EWSB expanding

out the Lorentz forms we find (employing the unitary gauge):

L = g
(3)
HZZhZµZ

µ + gHWWhW
+
µ W

−µ + g
(1)
HHHh

3 + g
(2)
HHHh(∂µh)(∂µh)

+
(
gHehēLeR + gHuhūLuR + gHdhd̄LdR + h.c.

)
+
(
gHHuh

2ūLuR + h.c.
)

+ · · · .

(7.29)

Here “· · · ” indicates the various operators and Lorentz forms which have no impact

on our analysis. The coefficients of the terms in the Lagrangian of Eq. 7.29 are given

by:
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gHWW = 2m2
W (
√

2GF )1/2

[
1− v2

4
(cHD − 4cH�)

]
gHZZ = m2

Z(
√

2GF )1/2

[
1 +

v2

4
(cHD + 4cH�)

]
g

(1)
HHH = −m

2
H

2
(
√

2GF )1/2

[
1− v2

4
(cHD − 4cH� +

4

λRF
cH)

]
(7.30)

g
(2)
HHH =

1

2(
√

2GF )1/2
(cHD − 4cH�)

gHψ = −mψ(
√

2GF )1/2

[
1− v2

4
(cHD − 4cH�)

]
+
cψHv

2

√
2

,

gHHu =
3cuH

2

v√
2
.

Note in Eq. 7.30 we have introduced mψ and cψH as placeholders for the relevant

fermion type (i.e. e, u, or d), and in this analysis we only consider couplings to the

third generation of each. We have only included gHHu and its corresponding operator

as only the top quark h2ψ̄ψ operator will have an effect on our analyses as it is

proportional to the top-quark Yukawa coupling which is the only large Yukawa in the

SM. It is possible to remove the g
(2)
HHH operator by a field redefinition of h, however

as pointed out in [212] removing this operator by a field redefinition of h (not the full

doublet H) requires a nonlinear field redefinition which may prove to make one loop

calculations difficult and if done incorrectly gauge dependent. Therefore we retain the

g
(2)
HHH coupling in favor of easier comparison with other works, such as those which

study globally the constraints on the h3 coupling via one loop dependent processes

[182, 95, 96, 141, 45, 100].

7.2 Higgs Coupling Measurements at the LHC

In this section we consider important constraints on our EFTs in Section 6.1. We

begin by considering the constraints from electroweak precision data along with a

discussion of the loop order at which the S- and T -operators are generated either

explicitly via integrating out at the mass scale of the extended scalar sectors or via
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operator mixing in the EFT while running down to the Higgs mass scale. Next we

introduce the effective hγγ coupling in order to add an additional constraint to our

global fit to single Higgs processes. Finally with our precision constraints on the

EFTs we project these constraints into the UV complete models parameter spaces,

this is especially useful in helping to limit the size of the cH coupling which is partially

dependent on the same couplings as the hγγ effective coupling.

7.2.1 Electroweak Precision Measurements

Electroweak precision data (EWPD) provide very strong constraints on the Wilson

coefficients of effective operators. We note that the operator QHD contributes at tree

level to the T -parameter, while the operator,

QHWB = H†BµνWµνH , (7.31)

contributes to the S-parameter at tree level. However, the only operators contributing

to EWPD that are generated at tree- or one-loop level in our theories are QH� and

QHD the operator QHWB is only generated at two-loop or higher order. From Jenkins

et al. [166, 165, 22] we have the elements of the anomalous dimension matrix for each

of these operators:

ċH =

(
−27

2
g2

2 −
9

2
g2

1

)
cH + λ

[
40

3
g2

2cH� + (−6g2
2 + 24g2

1y
2
h)cHD

]
+ · · ·

ċH� = −
(

4g2
2 +

16

3
g2

1y
2
h

)
cH� +

20

3
g2

1y
2
hcHD + · · · (7.32)

ċHD =
80

3
g2

1y
2
hcH� +

(
9

2
g2

2 −
10

3
g2

1y
2
h

)
cHD + · · ·

ċHWB = 6g1g
2
2cW +

[
−2y2

hg
2
1 +

9

2
g2

2 −
(
−1

6
− 20

9
ng

)
g2

1 −
(

43

6
− 4

3
ng

)
g2

2

]
cHWB

+4g1g2yhcHB + 4g1g2yhcHW (7.33)
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Where we have introduced the U(1)Y , SU(2)L, and SU(3)C couplings g1, g2, and g3

respectively, ng is the number of active generations at the relevant energy scale, the

operators corresponding to the wilson coefficients cW , cHB and cHW are given by,

QW = εijkW i,ν
µ W j,ρ

ν W k,µ
ρ ,

QHB = (H†H)BµνB
µν , (7.34)

QHW = (H†H)W i
µνW

i,µν ,

and “· · · ” represents other operators not generated at tree-level in our EFTs. The final

line of Eq. 7.32 is included to indicate that cHWB is not generated at 1-loop by operator

mixing and therefore must be generated at two- or higher loop order. However, the

T -parameter is generated at tree-level by the triplet models, and one-loop by any

theory which induces cH� (namely all but the 2HDM). In the quartet models, since

the only dimension-six operator is the H6 operator, there is no contribution to S and

T from the H6 operator. However, the T -parameter can be generated at tree-level by

dimension-eight operators.

Including both the one-loop and running effects we have for the S and T param-

eters (see e.g. [20] and [77]):

α∆S = 2sθW cθW v
2cHWB −

1

6

e2

16π2

[
4v2cH� log

(
M2

m2
H

)
+ · · ·

]
, (7.35)

α∆T = −1

2
v2cHD +

3

4c2

e2

16π2

[
2v2cH� log

(
M2

m2
H

)
+ · · ·

]
. (7.36)

Again we have used · · · to represent operators generated at higher loop order in

our theories. For the quadruplet models, the dimension-eight operators generate the

following T -parameter

α∆T ' −v
4

4
cT8, (7.37)
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where we have defined the Wilson coefficient cT8 to be the coefficient of the T -

parameter operator at dimension-eight. This coefficient cT8 is then given by,

cT8 =
2|λH3Φ|2

M4
& cT8 =

6|λH3Φ|2

M4
, (7.38)

for the Y = YH and Y = 3YH quadruplet models respectively. Note that the co-

efficients cT8 depend on the same quadruplet parameters as the operator H6, and

therefore the Wilson coefficient of H6 is also strongly constrained through this corre-

lation.

From GFitter [31] we have the central values of the S and T parameters with

correlation matrix ρ as follows,

 S

T

 =

 0.06± 0.09

0.10± 0.07

 , ρ =

 1.00 0.91

0.91 1.00

 . (7.39)

When considering all of the operators discussed above one may perform a sophisti-

cated fit to the EWPD of the many operator coefficients (see e.g. [116]), however

for our study we need only consider cH� and cHD as discussed above. Therefore per-

forming a simplified chi-square fit relevant to our EFTs, we obtain constraints on the

Wilson coefficients (cHD, cH�):

 v2cHD

v2cH�

 =

 −0.003654± 0.002677

8.935± 9.086

 , ρ =

 1.00 −0.97

−0.97 1.00

 . (7.40)

We note that cHD is tightly constrained while cH� is not as its contribution to S and

T is generated at one-loop.

7.2.2 Higgs Diphoton Rate

In Section II, only the leading tree-level effective operators are written when in-

tegrating out the heavy scalars. The leading effective operators which contribute to
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the Higgs diphoton signature are not included in our framework as they originate

from the one-loop contributions. However because of the precision of the H → γγ

measurements we will include them in this section. Note that after integrating out

the heavy scalars at one loop one may expect contributions to the H → γγ coupling

from the following gauge-invariant dimension-six operators,

LHγγ = cHB(H†H)BµνBµν + cHW (H†H)W i,µνW i
µν + cHWB(H†τ iH)W i

µνB
µν (7.41)

However, since we are only interested in the diphoton rate, and not in corrections

to the h → ZZ and h → WW rates we may simplify the calculation of the Wilson

coefficients by only considering one effective operator in the broken phase:

LHγγ →
α

4π
cγγ

h

2v
FµνF

µν (7.42)

The general Higgs diphoton Wilson coefficient cγγ for new scalars and fermions

at one loop may be found in, e.g. [103]. For the UV complete models considered

in Section 6.1 we find the wilson coefficients in Table 7.4. As mentioned in the

previous section the Wilson coefficients of the Quadruplet model are all proportional

to the parameters contributing to the T -parameter. As such we will not consider the

Quadruplet models for the rest of this section.

Finally the diphoton rate relevant to our models is,

Γ(h→ γγ) =
α2GFm

3
h

128
√

2π3
|cδSM
γγ + cγγ|2 , (7.43)

Where we have defined

cδSM
γγ =

∑
f=t,b,τ

Nc,fQ
2
fA1/2(τf ) + A1(τW ), (7.44)
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Model cγγ

(R & C) Singlet 0

2HDM v2

2M2Z3

(
1
3

+
2m2

H

45M2

)
R Triplet (Y=0) v2

4M2λHΦ

(
1
3

+
2m2

H

45M2

)
C Triplet (Y=-1) v2

4M2

(
5λHΦ + λ′

2

) (
1
3

+
2m2

H

45M2

)
Table 7.4: Wilson coefficient cγγ for each UV Complete model in Section 6.1.

as the SM part of the h→ γγ width taking into account shifts in the couplings of the

Higgs to the t-quark and W -bosons due to the effective Lagrangian of Eq. 7.29. Here

the loop functions A1/2(τ) and A1(τ) are defined in Ref. [103].

7.2.3 Higgs Global Fits

The Run-I Higgs measurements [8, 58, ?, 173] provide constraints on some Wilson

coefficients in the effective Lagrangian. For convenience we reproduce our effective

Lagrangian below EWSB here:

L = g
(3)
HZZhZµZ

µ + gHWWhW
+
µ W

−µ + g
(1)
HHHh

3 + g
(2)
HHHh(∂µh)(∂µh)

+
(
gHehēLeR + gHuhūLuR + gHdhd̄LdR + h.c.

)
+ cγγ

h

2v
FµνF

µν . (7.45)

The corresponding Wilson coefficient dependence can be found in Eq. 7.30 while the

Wilson coefficients for each model can be found in Tables 7.2, 7.3, and 7.4. We note

that the modified Yukawa coupling of the top-quark also causes a shift the Higgs-

digluon effective coupling which we have taken into account in our analyses.

These Wilson coefficients contribute to the Higgs signal strengths µ = σ×A×ε
[σ×A×ε]SM

extracted from the Higgs coupling data, where A× ε is the product of the acceptance

and the efficiency. Since the Higgs discovery global fits to the effective operators

relevant to Higgs physics have become an important area of research [77, 75, 76]
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Figure 7.3: The 1, 2, and 3 σ level profiled contours between v2(cHD−4cH�) and cγγ,
given that other operators are fixed to be the local best values.

and recently they have gone beyond simple inclusion of signal strengths to inclusion

of kinematic variables and off-shell measurements [80, 54]. They have also been

considered in scenarios where EWSB is not linearly realized [50, 81, 51]. However for

the sake of our analyses we require a much smaller set of effective operators, therefore

we perform a simplified global fit to the Higgs signal strengths µi using the program

Lilith [42].

In Lilith, all the Run I LHC Higgs measurements [8, 58, ?, 173] are taken into

account, and a likelihood statistical procedure is performed to obtain the constraints

on the signal strengths. It is based on the assumption that the Higgs measurements

are approximately Guassian and thus the likelihood function L(µ) could be simply

reconstructed. Under this assumption adapted by Lilith, the −2 logL(µ) follows a χ2

law for each observable,

−2 logL(µi) =

(
µi − µ̂i

∆µi

)2

, (7.46)

where µ̂i is the theoretical prediction of the measured Higgs signal strengths µi with

Gaussian uncertainty ∆µi. The full likelihood L(µ) =
∏

i L(µi) is defined as
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−2 logL(µ) = χ2(µ) = (µ− µ̂)TC−1(µ− µ̂), (7.47)

where C−1 is the inverse of the n× n covariance matrix, with Cij = cov[µ̂i, µ̂j].

Then the constraints on the signal strengths are recast as bounds on the Wilson

coefficients. We perform a global fit on these Wilson coefficients (cHD, cH�, cγγ, ciH)

with i = t, b, τ , and then project our results into the sub-space in each scalar model.

First we perform the six-parameter fit, and obtain



v2 ∗ ctH

v2 ∗ cbH

v2 ∗ cτH

v2 ∗ cHD

v2 ∗ cH�

cγγ


=



−0.02224± 0.4609

−0.111± 0.5933

0.02993± 0.4859

0.1399± 0.6514

0.02283± 0.2255

−0.3373± 2.028


,

ρ =



1.00 0.60 0.40 0.21 −0.26 −0.48

0.60 1.00 0.38 0.19 0.43 −0.47

0.40 0.38 1.00 0.29 −0.11 −0.46

0.21 0.19 0.29 1.00 0.19 −0.39

−0.26 0.43 −0.11 0.19 1.00 0.16

−0.48 −0.47 −0.46 −0.39 0.16 1.00


, (7.48)

where ρ is the correlation matrix for this global fit. These Wilson coefficients are

typically small due to suppression by v2

M2 . However from Subsection 7.2.1 we know

we must also consider the EWSB constraints. Assuming equal weight and combining

with the constraints coming from the S and T parameters, we find that CHD is very

tightly constrained:
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v2 ∗ ctH

v2 ∗ cbH

v2 ∗ cτH

v2 ∗ cHD

v2 ∗ cH�

cγγ


=



−0.04967± 0.4551

−0.121± 0.5917

−0.003816± 0.4722

−0.0004666± 0.0003861

0.02302± 0.2184

−0.1513± 1.891


,

ρ =



1.00 0.58 0.35 0.07 −0.32 −0.43

0.58 1.00 0.35 −0.08 0.39 −0.44

0.35 0.35 1.00 0.04 −0.18 −0.40

0.07 −0.08 0.04 1.00 −0.20 −0.05

−0.32 0.39 −0.18 −0.20 1.00 0.27

−0.43 −0.44 −0.40 −0.05 0.27 1.00


. (7.49)

We also obtain that v2 ∗ (cHD − 4cH�) = −0.09256 ± 0.8731, which by Eq. 7.30 we

see is a very important constraint on both the momentum dependent and momentum

independent tri-higgs couplings. In Figure 7.3 we show the v2(cHD − 4cH�) × cscalar
γγ

plane where we have marginalized over the parameters not shown.

We see from Figure 7.3 that the independent constraint on cγγ provides an impor-

tant constraint in the space of Wilson coefficients which will translate to a constraint

on the various four scalar couplings of the UV models and therefore through their cor-

relation with the Wilson coefficient cH on the affects of the QH operator. We project

these constraints in the EFT framework onto the UV complete model parameters in

the next subsection.

7.2.4 Implications for the UV Physics

In the global fitting procedure, all the Wilson coefficients are assumed to be in-

dependent. We know from Section 6.1 that in the specific scalar extended models

some Wilson coefficients are correlated and some Wilson coefficients may be absent
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Figure 7.4: In the upper left panel, the log likelihood vs the coupling g/
√

2M2 (g/M2)
in the real (complex) singlet model. In the others, we show the 1, 2, and 3 σ contours
on the model parameters in the Type-I 2HDM (top right), the real triplet (bottom
left) and complex triplet model (bottom right). The colored contours show the log
likelihood values in the global fit. The blue dashed lines denotes the perturbativity
bounds of the dimensionless scalar couplings: ±4π.

altogether. These correlations and absences may be seen in Table 7.3. Therefore, it

proves useful to recast the global fit results to obtain constraints on the UV model

parameters in each model.

We perform the global fit using the Lilith program in each scalar extended model.

In Fig. 7.4, we show the 1, 2, and 3σ contours on the model parameters in the real

and complex singlet, Type-I doublet, and complex/real triplet models. At the same

time, we also show the central values and errors for the model parameters in Tab. 7.5.

These plots exhibit similar features. First, the Higgs-Higgs-scalar coupling g/M2 or

Z6/M
2 is constrained to be O(0.1 − 1) by the Higgs gauge boson couplings in the
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singlet and doublet models, while in the triplet models the T -parameter puts tighter

constraints on the parameter g/M2. Secondly, for the doublet and triplets, the Higgs

to diphoton rate puts additional constraints on the couplings which contribute to the

cγγ. Converting to the couplings in the UV model, we are not further able to constrain

the Higgs-Higgs-scalar-scalar couplings of the triplet models λHΦ and λ′, because the

constraints shown in Fig. 7.4 and Tab. 7.5 are very loose. Even the perturbativity

constraint, shown as the blue dashed lines in Fig. 7.4, is tighter than the constraint

from the global fit. So to place constraints on the Wilson coefficients of QH for the

2HDM and triplet models, we have to rely on di-Higgs collider constraints. Finally,

we note that although the global fit cannot constrain the renormalizable Higgs self

coupling λ, it is able to constrain the dependence of the h(∂h)2 effective coupling

indirectly. We have neglected to project our global fit into the parameter space of the

quadruplet as it is so strongly constrained by the T -parameter and the triplet serves

as an example of the affects.

While these indirect constraints on the UV models from the global fit are interest-

ing and useful for our di-Higgs analysis in the following section, stronger constraints

may of course be found in UV complete considerations of these models. The ability to

loosely constrain numerous models at once from simple Higgs global fits is nonethe-

less intriguing and (especially in the advent of a significant deviation from the SM

expectation) a useful way to direct UV complete searches of greater depth in the

future.

7.3 Di-Higgs Production at the 100 TeV Collider

Three different topologies of Feynman diagrams of the pp → hh process via the

gluon fusion production are shown in Fig. 7.5. Due to the destructive interference

between the triangle and box diagram for the di-Higgs production in the gluon fusion

channel, it is believed that at 14 TeV LHC with 3 ab−1 luminosity, the triple Higgs
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coupling −g(1)
HHH/λSMv would be constrained to only [−0.8, 7.7] at 95% CL [5]. In

all models considered in this article, the Wilson coefficients of the |H|6 operator

cannot be chosen arbitrarily large. Based on the considerations of the validity of EFT

and perturbative constraints, we estimate the value of the modified trilinear Higgs

coupling to be within the range (−0.1λSM, 2λSM), and take the cutoff scale to be 2

TeV. The higher the cutoff scale, we expect the narrower range of the trilinear Higgs

coupling. On the other hand, at a 100 TeV collider with 30 ab−1 luminosity, the SM

value of the triple Higgs coupling can be measured with around 10% uncertainty [74],

and even around 4% based on the latest study [231]. Therefore, we expect that 100

TeV collider provides a good opportunity to explore the Wilson coefficients cH in

various models we have considered4.

7.3.1 General Formalism on Di–Higgs Production

In our EFT framework, the effective Lagrangian relevant to the di-Higgs produc-

tion is

L = g
(1)
HHHh

3 + g
(2)
HHHh(∂µh)(∂µh)

+
(
gtHht̄LtR + gbHhb̄LbR + gHHthht̄LtR + gHHbhhb̄LbR + h.c.

)
, (7.50)

where

4Though in 2HDM the modification of the Wilson coefficient ctH (not yet constrained tightly)
can be large enough to modify the di-Higgs production cross section to give some evidence in 14
TeV LHC, yet other models we considered definitely need the help of 100 TeV collider to probe, due
to small or zero ctH .

131



Figure 7.5: Different topologies of the gg → hh process via the gluon fusion produc-
tion.

g
(1)
HHH = −λSMv

[
1− v2

4
(cHD − 4cH� +

4

λRF
cH)

]
, (7.51)

g
(2)
HHH = v(cHD − 4cH�), (7.52)

gψH = −mψ

v

[
1− v2

4
(cHD − 4cH�)

]
+
cψHv

2

√
2
, (7.53)

gHHψ =
3cψv

2
√

2
(7.54)

with the SM vacuum expectation value v ≡ 1
2(
√

2GF )1/2 and the SM dimensionless

coupling λSM ≡
√

2GFm
2
H . From the above Lagrangian, we note that in the Warsaw

basis, in addition to the SM trihiggs couplings, we also have derivative triple-Higgs

couplings, which may contribute differently to the distribution compared with solely

non-derivative couplings.

According to Fig. 7.5, the parton amplitude of the di-Higgs production g(p1)g(p2)→

h(p3)h(p4) via the gluon fusion process is

Mhh = −αsŝδ
ab

4πv2
εaµ(p1)εbµ(p2)

{(
gHtv

mt

g
(1)
HHH

v

3m2
H

ŝ−m2
H

− g(2)
HHHv

ŝ+ 2m2
H

ŝ−m2
H

+
2v2

mt

gHHt

)
F4A

µν

+
g2
Htv

2

m2
t

F�A
µν +

g2
Htv

2

m2
t

G�B
µν

}
, (7.55)

132



where the Lorentz structures are defined in Eq. 3.3 and Eq. 3.4 and F4, F�, and G�

are the form factors for triangle and box diagrams which can be found in Ref. [215].

Correspondingly, the differential cross-section for di-Higgs production is given by:

dσ(pp→ hh)

dŝdt̂
=

1

S
Lgg

(
ŝ

S
,
√
ŝ

)
|Mhh|2

32πŝ
, (7.56)

where S is the center-of-mass energy squared of the proton-proton system, ŝ = (p1 +

p2)2, t̂ = (p1 − p3)2 and the parton luminosity function is defined as

Lgg(y, µF ) =

∫ 1

y

dx

x
fg/p(x, µF )fg/p(

y

x
, µF ), (7.57)

with fg/p the gluon distribution function, and µF the factorization scale. As we have

previously noted, the triangle diagram and box diagram interfere destructively and the

smallest cross section is obtained when g
(1)
HHH/v ≈ −2.5λSM assuming no derivative

interaction and no corrections to the quark-Higgs couplings. Due to this fact, the

variation in the gluon fusion to di-Higgs cross section about the SM value of g
(1)
HHH =

−λSMv is not symmetric. When g
(1)
HHH decreases, the total cross section decreases,

till g
(1)
HHH reaches −2.5λSM . Any further decrease in g

(1)
HHH results in increasing of the

cross section with respect to its minimum value at g
(1)
HHH/v ≈ −2.5λSM eventually

surpassing the SM value for g
(1)
HHH values lower than −5λSM . On the other hand as

g
(1)
HHH increases from zero, the total cross section increases. In our case, the situation

is more complicated, we now have both an additional vertex and corrections to the

quark Higgs couplings.

7.3.2 Di–Higgs Cross Section

In Figure 7.6 we show the cross section contours of the pp → hh process in the

(g
(1)
HHH/v, g

(2)
HHHv) plane with three different values of ctH . To evaluate the range of

trihiggs couplings g
(1)
HHH/v and g

(2)
HHHv, we first use the Eq. 7.30 and Table 7.3 to

133



0.5

1

1.5

2
2.5

3

- 0.015 - 0.01 - 0.005 0 0.005 0.01 0.015
- 0.35

- 0.3

- 0.25

- 0.2

- 0.15

- 0.1

- 0.05

0.

0.05

g(2)HHHv

g(
1)
H
H
H
/v

σ(pp>hh)/σSM(pp>hh) 100TeV v2ctH=0

4.5

5

5.5

6

6.5

7

7.5 8

8
8.5

- 0.015 - 0.01 - 0.005 0 0.005 0.01 0.015
- 0.35

- 0.3

- 0.25

- 0.2

- 0.15

- 0.1

- 0.05

0.

0.05

g(2)HHHv

g(
1)
H
H
H
/v

σ(pp>hh)/σSM(pp>hh) 100TeV v2ctH=0.4

1.25

1.25

1.5

1.5

1.75

1.75

2

2

2.25

2.25
2.5

2.5

2.753
- 0.015 - 0.01 - 0.005 0 0.005 0.01 0.015

- 0.35

- 0.3

- 0.25

- 0.2

- 0.15

- 0.1

- 0.05

0.

0.05

g(2)HHHv

g(
1)
H
H
H
/v

σ(pp>hh)/σSM(pp>hh) 100TeV v2ctH=- 0.4

Figure 7.6: The ratio of the cross sections of the pp→ hh process to the SM di-Higgs
cross section denoted by the dashed blue contours in the (g

(1)
HHH , g

(2)
HHH) plane, the

plots from left to right correspond to three different value of ctH = 0, 0.4, −0.4. We
adopt the NNLL matched NNLO SM di-Higgs cross section: 1.75 pb [74].

express the two couplings in terms of the parameters in the UV model, then varies

the dimensionless parameters in the UV models within the range ±4π, couplings with

mass dimension to be in the range ±1 TeV, and the cutoff scale are set to be 2 TeV.

These values are chosen such that our EFT matching procedure is valid (dimension-

eight operators will not be enhanced by the factor g2/M2) and the contribution of the

kinematic region larger than cutoff scale to the total rate is negligible due to the sup-

pression of the parton luminosity. After these consideration, we choose relatively loose

ranges for the two couplings: g
(1)
HHH ⊂ (−0.36, 0.07) and g

(2)
HHH ⊂ (−0.015, 0.015).

For ctH = 0, the anomalous Higgs fermion coupling gHHt in Eq. 7.54 vanishes and

the corrections to the quark Higgs couplings are proportional to cHD− 4cH�. In such

a case, only the first triangle and box diagrams of Figure 7.5 contribute to the cross

section with approximate SM quark Higgs couplings. Hence, one can find that, along

the positive vertical direction, given a fixed value of g
(2)
HHH , the cross section increases.

Along the g
(2)
HHH direction, one can find that a positively increasing value of g

(2)
HHH will

lead to an increase in the total cross-section. This can be understood from Eq. 7.55,

where we observe that, with a positive g
(2)
HHH , the second term inside the bracket in

front of the F4 which is induced by the derivative interaction will add destructively
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with the first term which is induced by the ordinary triple Higgs interaction, such

that the effect of destructive interference between the box and triangle diagrams is

alleviated.

In the case of ctH = 0.4, the cross section increases significantly when compared

with the cross section for ctH = 0, this can also be understood from Eq. 7.55 and

Eq. 7.53: The positive ctH will decrease the magnitude of gtH and also gives a new

positive term generated by tthh vertex, which will alleviate the destructive interfer-

ence. In the case of ctH = −0.4, the cross section will reach some minimum value

between g
(1)
HHH/v = −0.1 and −0.15 due to the destructive interference. Below the

miminum points, for a fixed g
(1)
HHH , increasing g

(2)
HHH will decrease the cross section,

because at this point the amplitude from the triangle diagram becomes dominant,

increasing g
(2)
HHH will decrease the magnitude of the term inside the bracket in front

of the F4, thereby decreasing the cross section.

7.3.3 Monte Carlo Simulation and Validation

In order to perform our simulations we begin by using FeynRules [21] to generate

an UFO model file adding the effects of the dimension-six operators in Eq. 7.50.

We then modify the model file to include the full triangle and box form factors as

computed in [124]. Then we implement MadGraph 5.2.4.3 [24] to generate events.

We use Pythia 6 [237] for the parton shower and the FCC card in Delphes 3.4 [230]

for simulating the detector. The following analysis is only concerned with statistical

uncertainties as the systematical uncertainties are unknown at the moment. When

taken into account they will lower the significance levels given in this section.

We refer to the cuts applied while generating the events in MadGraph/Delphes as

preselection cuts in the Table 7.6. They are as follows5:

5For bbγγ and bbjγ events, we also implement the 50 < mbb < 250GeV and 90 < mjγ,γγ <
160GeV to increase the efficiency of the sample, and we found that the events outside these cuts
contribute negligibly to the final results.
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|ηj,b,γ| < 2.5, ∆Rjj,jγ > 0.4, pTj,b > 20 GeV, pTγ > 10 GeV (7.58)

Important irreducible backgrounds consist of Z(bb̄)h(γγ), tt̄h(γγ), bb̄h(γγ), bb̄γγ

production. Apart from these, there are bbjγ, jjγγ, cc̄γγ and bbjj channel that can

potentially have a contribution to the background. Jet fake rates to photons are

taken to be 0.012%, while jet and charm mistagging rates to bottom quarks are taken

to be 1% and 10% respectively [92]. The backgrounds can be greatly reduced by

vetoing extra jets, i.e., by demanding exact two b-tagged jets in each event. This is

particularly helpful in reducing the tt̄h background. Applying a Higgs mass window

cut of 112.5 < mbb < 137.5 GeV, to the invariant mass of b-jets results in a large

reduction in the Zh background due to exclusion of the Z-peak region.

The Higgs mass window cut for the di-photon invariant mass is sharper than that

for the invariant mass of b-jets and helps to reduce the background in all the channels.

Furthermore, from the normalized distributions for b-jet-pair pT and di-photon pT in

Fig. 7.7 indicate that the signal is favored for pT values larger than 150 GeV and

140 GeV respectively. Therefore, we further apply these cuts in order to enhance

the statistical significance. The resulting efficiencies and cross sections at each stage

due to these cuts in our analysis for leading backgrounds and three benchmark (BM)

points for the signal are tabulated in Table 7.6.

We first investigate the sensitivity of the trilinear Higgs coupling λHHH = −g(1)
HHH/v

in the absence of the derivative Higgs coupling g
(2)
HHH . In this case, we recover the

scenario widely discussed in the literature: how to probe the deviation of the λHHH

from its SM value λSM at the future collider. Compared with the work in [39], we

obtain comparable significance of about 8.25σ for the SM di-Higgs production for

luminosity of 3 ab−1. This corresponds to the significance of ∼ 26σ for 30 ab−1 as

can be seen from the black line in the left panel of Fig. 7.8, where we plot the S/
√
B

for 30 ab−1 and zero derivative interaction.
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Figure 7.7: Normalized distributions for b-jet-pair and di-photon pT for signals and
various backgrounds as described in the legend. Solid histograms correspond to differ-
ent signal benchmarks (BMs) considered. Dashed histograms correspond to various
SM backgrounds as indicated in the legend.
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Figure 7.8: Left panel: The significance of the di-Higgs process as a function of the
trilinear Higgs coupling λHHH = −g(1)

HHH/v assuming that the derivative Higgs cou-

pling g
(2)
HHH is zero. The orange and green bands correspond to the 1σ uncertainty in

the S/
√
B with assumptions of the theoretical uncertainty for the di-Higgs production

cross-section to be 4% and 10% respectively. Right panel: The percentage uncertain-
ties on the measured number of signal events varies with the value of trilinear Higgs
coupling. Orange and green lines correspond to theoretical uncertainties of 4% and
10% respectively.
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We also estimate the uncertainty in the value of S/
√
B by taking into account

the statistical uncertainty for the signal and background as well as the theoretical

uncertainty on the di-Higgs production cross-section. It turns out that for a 30 ab−1

luminosity, the statistical uncertainty in the number of signal events due to Poisson

fluctuations is around 3%, which is less than the 10% theoretical uncertainty coming

from the infinite top mass approximation, the scale, and the PDF uncertainties [74].

The 1σ uncertainty due to this is denoted by the green band in the left panel of

Fig. 7.8. However, the latest estimation on the theoretical uncertainties places them

as low as 4% [231]. Therefore, we also include this case denoted by orange band in

the plot shown in the left panel of Fig. 7.8.

The right panel of Fig. 7.8 represents the percentage uncertainties for the measured

number of signal events as a function of the ratio of the triple Higgs coupling to

its SM predicted value. Orange and green lines here correspond to the theoretical

uncertainty of 4% and 10% respectively. As expected from the above quoted numbers,

the theoretical uncertainty dominates except where the ratio of triple Higgs couplings

is close to 2.5, where the cross section for di-Higgs production is the lowest leading

to enhanced uncertainty due to Poisson fluctuations.

Here we comment on the validity of EFT in our collider analysis. The EFT

breaks down when the parton collision center of mass energy approaches the scale

of the cutoff scale M = 2 TeV. Therefore, we should in principle add a cut on the

kinematic variables like invariant mass of di-Higgs to only keep the events produced

in low energy regime to make our EFT analysis valid. The di-Higgs spectrum is

peaked at an invariant mass mhh near the two higgs threshold indicating our EFT

approach should be valid (i.e. the processes considered have energy well below our

cutoff of 2 TeV). Additionally we have investigated the number of events below 1

TeV, 1.5 TeV, and 2 TeV for three benchmark points: the SM, λHHH/λSM = 2,

λHHH/λSM = −0.9, and finding the results in Table. 7.7. As there are only a small
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λHHH
λSM

mhh > 1TeV mhh > 1.5 TeV mhh > 2TeV

1 2.5% 0.38% 0.16%
2 5.1% 1.0% 0.35%

-0.9 1.3% 0.26% 0.05%

Table 7.7: The percentage of events with mhh above 1, 1.5 and 2 TeV.

number of outlying events with higher energies these numbers support the assertion

that the EFT approach is valid in our Monte Carlo simulation. One should note

that even if the heavy particles were to be discovered at higher energies that in

order to extract the trilinear couplings of the SM Higgs one would still employ an

EFT. Such a procedure is analogous to the use of an effective four fermion theory for

flavor physics where the heavy W s have been integrated out of the theory in favor of

unrenormalizable operators.

7.3.4 Determination of Wilson Coefficients

Equation 7.30 and Table 7.3 demonstrate it is necessary to investigate the discov-

ery potential at the 100 TeV collider when both the deviation of the λHHH coupling

from the SM value, and non-zero g
(2)
HHH exist. Turning on the derivative Higgs cou-

pling g
(2)
HHH will change the significance of the di-Higgs signatures. In Fig. 7.9 we

present the reach of the 100 TeV collider with integrated luminosity of 30 ab−1 in the

space of g
(1)
HHH − g

(2)
HHH in the left panel as well as in the space of Wilson coefficients

cH and cHD−4cH� in the right panel, each with ctH = 0. The left and right panels of

the Fig. 7.9 are not independent. Their values are connected by Eq. 7.30, where the

contours in the right panel are essentially rotated around the SM values as governed

by the Eq. 7.30. This represents only a class of models, in which ctH is not important,

for example, singlet, triplet and quadruplet models. We plot the statistical signifi-

cance contours for 2HDMs in ctH − cH space as shown in separate plots of Fig. 7.10.
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Figure 7.9: Black dashed contours denote statistical significance, S/
√
B, for identi-

fying the signal at 100 TeV with integrated luminosity of 30 ab−1. Left panel: The
significance contours are plotted in the g

(1)
HHH/v vs. g

(2)
HHH plane, the shaded region

is constrained by dimensionless couplings in the Lagrangian within the range ±4π
for couplings with mass dimension within the range ±1 TeV and cutoff scale M = 2
TeV. The light and dark shaded brown and blue regions are allowed by all the global
fit constraints. The Red line and magenta line corresponds to quadruplet model with
Y = 1/2 and 1/3 respectively. Orange and green regions correspond to the 1σ un-
certainty on the significance with assumptions of the theoretical uncertainty for the
di-Higgs production cross-section to be 4% and 10% respectively. Right panel: The
significance contours are plotted in the v2cH vs. v2(cHD − 4cH�) plane. The darker
brown and light brown dotted lines on the right panel correspond to the Wilson coef-
ficient constraints from the Higgs coupling measurements and the T -parameter in the
real and complex triplet models. Shaded regions on the right have the same meaning
as in the left panel. Both plots are with ctH = 0 and the SM limit in both is located
at (0, 0) with S/

√
B ∼ 26.
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Figure 7.10: Dark cyan dashed contours denote statistical significance, S/
√
B, for

identifying the signal at 100 TeV with integrated luminosity of 30 ab−1. The left
and right plots represents Type-I and Type-II 2HDM respectively. The light blue
regions correspond to the parameter regions in tan β which has been ruled out by
experimental data from flavor physics. The orange and green regions are within
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production cross section equal to 4% and 10% respectively.
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ctH = 0 corresponds to tan β → ∞, which is outside the experimental bounds on

tan β in 2HDMs.

Fig. 7.9 shows the allowed parameter regions in singlet, triplet and quadruplet

models, which overlap within the significance contours. In these models, according

to Table 7.3, the Wilson coefficients cH and cHD − 4 cH� are not independent. More

specifically, they are related by linear relations such as cH ' λHS(Φ)(cHD − 4 cH�).

This linear relation then implies that the boundaries of these regions are governed

by the input perturbative limit |λHS(Φ)| ≤ 4π and are straight lines as can be seen in

Figure 7.9. The values of the dimensionless Higgs scalar couplings, such as λHS, λHΦ,

determine the slopes of the parameter region in each model. For example, in the real

singlet case, along the boundary of the parameter region, the Higgs scalar coupling

λHS should be around ±4π. In the region far from the boundary, the dimensionless

Higgs scalar couplings appearing in cH should be small. We choose ctH to be equal

to zero in these two plots. This condition is automatically satisfied by singlet and

quadruplet models, and also approximately satisfied by triplet models. This is because

ctH in triplet models is suppressed by the coupling g2 which is constrained to be very

small by EWPD due to its relation to the T -parameter.

In addition to the allowed region in each model, we also illustrate the region that

will generate the expected significance within the 2σ uncertainties around SM value.

Therefore we simply estimate that this 2σ region roughly gives the region that is

hard to differentiate from the SM in the future experiments.

One can observe that, the future di-Higgs experiment is not sensitive to the cH�

and cHD which have already been strongly constraint by the EWPD. On the other

hand, it can constrain the value of cH . Depending on the theoretical uncertainties

that can be achieved, it may also be possible to exclude some parameter space of the

singlet models, which represents the region outside the 2σ region.
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The case of the 2HDM is much more promising for distinguishing between the SM

and the NP model as ctH is non-zero. We demonstrate the significance for 100 TeV

collider at 30 ab−1 integrated luminosity in v2ctH vs v2cH plane, shown in Fig. 7.10.

Both v2ctH vs v2cH depend on tan β. Here we choose the range of tan β such that

it satisfies the constraints from flavor physics according to Ref. [113]. This rules

out some parameter regions as shown in Fig. 7.10 by blue regions. We note that

the significance in the 2HDM is generally larger than that of the singlet, triplet and

quadruplet models due to typical enhancement from the Yukawa couplings, and it

is very likely to observe a significant deviation from the SM signal. We also find

that, unlike the singlet and triplet, signal significances in the 2HDM are much more

enhanced compared to the ones in the SM. The plots also show that the contours

of significance of two types of 2HDMs are different despite the coupling to up-type

quarks being the same in both Type I and Type II, the reason being that we are using

the bbγγ final state and the branching ratio of h → bb are different between the two

versions of the 2HDM.

From Fig. 7.9 and Fig. 7.10, if we limit ourselves in these models with all the

heavy particles integrated out, the di-Higgs process puts additional constraints on

the scalar model parameters. Our analysis in Fig. 7.9 and Fig 7.10 shows that the

Complex singlet and 2HDM (triplet and quadruplet) scalar models are the most

(least) sensitive, among those resulting from the models under consideration, to the

collider search. As a consequence, the di-Higgs process probes the allowed region of

cH , and thus the Higgs scalar couplings in the UV models.

7.3.5 Exploring Parameter Region in UV Models

We project the sensitivity of the Wilson coefficients into the parameter space

corresponding to the models under consideration. In the real singlet model, the

parameter space of the effective coefficients allowed is indicated by the light blue

144



24.
24.

25.
25.

26. 26.26.3

26.3

26.3

27.

27.

28.

28.

-0.4 -0.2 0 0.2 0.4

-10

-5

0

5

10

gHS/M [TeV-1]

λ
H
S

S/ B Real Singlet Model 30 ab-1

10. 10.

15. 15.

20.
20.

25.

25.

30.
30.

35. 35.

45. 45.

-0.4 -0.2 0 0.2 0.4

-15

-10

-5

0

5

10

15

gHS/M [TeV-1]

λ
H
S
+
λ
H
S
' /2

S/ B Complex Singlet Model 30 ab-1

Figure 7.11: The discovery potential of the model parameters (gHS, λHS) in the real
(left panel) and complex (right panel) singlet models. The contours correspond to the
significance given integrated luminosity of 30 ab−1. The orange and green regions
are with in the SM 2σ uncertainty with assumption of the percentage uncertainty of
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region in Fig. 7.9, can be probed with S/
√
B more than 25, while in the complex

singlet model, the Wilson coefficients resulting from integrating out the complex

singlet can be probed to S/
√
B values higher than even 40. In Fig. 7.11, we show

the possible reach of the model parameters (λHS, gHS) in the real singlet model, and

(λHS + λ′HS/2, gHS) in the complex singlet model, given 30 ab−1 luminosity data set.

One can see that, most of the region in the singlet and triplet models are within the

1σ uncertainty band for S/
√
B reach for the SM, so that they are hard to differentiate

from the SM.

The 2HDM, owing to its preservation of custodial symmetry, resides on the line

cHD = 4cH� = 0 (up to the assumptions made in this paper, that is a tree-level

dimension-six analysis). Therefore, the Higgs coupling measurements and the elec-

troweak precision tests do not place strong constraints on the model parameters. On

the other hand, the di-Higgs signature starts to provide a strong constraint on cH .

In Fig. 7.12 we show the significance contour on the model parameter Z6 vs tan β

plane for Type-I model and Type-II model with the 30 ab−1 luminosity. Note that

when Z6 = 0, the SM limit is recovered (see Table 7.3). We also find that in the

Type-II model, for negative Z6 and large tanβ (left top corner in the right plot in

Fig. 7.12), the significance approaches to the SM value. This is because the decreasing

of the Higgs to b quark coupling reduces the Higgs to b decay branching ratio, which

ameliorate the increasing of the di-Higgs production rate.

In the real and complex triplet models, both cHD and cH� in the EFTs obtained by

integrating out real and complex triplet models are very tightly constrained as shown

by the vertical dashed lines, shown in Fig. 7.9 (right panel). These vertical darker

and lighter green lines represent the 3σ bounds allowed by the Higgs data global fit

on the Wilson coefficient linear combination of cHD − 4cH� for the real and complex

triplet model respectively. The reason that these stringent bounds only exist for the

triplets and not the singlets is that the coefficient cHD is connected with custodial
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symmetry breaking and is tightly constrained by the electroweak precision parameter

T .

As Table 7.3 denotes, the cHD and cH� are tightly related for the triplet models

and therefore the stringent bounds on cHD translate into stringent bounds on the

cHD − 4cH� as well. In the case of the singlet models, there are no couplings of the

singlets to the gauge bosons resulting in cHD being identically zero as indicated in

Table 7.3, liberating them from these constraints suffered by the triplet models. As

a result of these, cH is also strongly constrained from the small allowed values of

cHD − 4cH�, as shown in Fig. 7.9 (right panel). However, the dimensionless Higgs

potential parameters, such as λHΦ and λ, are still very loosely constrained due to

cH ∼ g2

M4λHΦ. Therefore, it is very hard for us to extract the Higgs scalar couplings

from the cH operator, because the deviation of the Higgs coupling from the SM value

is very small in the triplet case.

For the quadruplet model, at dimension-six, only the Wilson coefficient of QH

operator is non zero. However, we include the cHD generated by dimension 8 operator

because it is strongly constraint by EWPD. In the left plot in Fig. 7.13, the allowed

region for two types of quadruplet models are denoted by two lines with different

slopes. The reason can be seen from Table. 7.3, the cH and cHD are correlated, all

proportional to the coupling |λΦ3H |2. So given a fixed cut off scale M , both g
(1)
HHH

and g
(2)
HHH can be parameterized by a single parameter |λΦ3H |2. In the right plot in

Fig. 7.13, we find that the allowed parameter space from the global fit to EWPD for

quadruplet models is tightly constrained, and almost becomes a point near the SM

value. In Fig. 7.11, we show the significance of the model parameter λΦ3H vs new

physics scale M varies with the 30 ab−1 in contours, while the blue region is excluded

by the constraint on cHD from EWPD. One could observe that, the T-parameter

constraint on λφ3H is very sensitive to the cutoff scale, the reason is that the cHD is
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generated by dimension-eight operator so that it is proportional to the fourth power

of (v/M).
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Figure 7.13: The discovery potential of the model parameters (λH3Φ,M) in the quadru-
plet. The dashed black contours correspond to the S/

√
B values for an integrated

luminosity of 30 ab−1. The blue region is excluded by constraints from the electroweak
precision tests. The orange and green regions are within the SM 2σ uncertainty with
an assumption of the percentage theoretical uncertainty of diHiggs production cross-
section equal to 4% and 10% respectively.

Our collider analysis demonstrates that the potential of the 100 TeV collider

in probing the Wilson coefficients resulting from the five scenarios considered here

is very promising with the 2HDM. The singlet, triplet and quadruplet models on

the other hand are restricted due to electroweak precision measurements and their

effective coefficients will have less sensitivity. These restrictions also manifest in the

constraints on the deviation of the triple Higgs couplings in such models owing to the

direct relation between cH and the triple and quadruplet Higgs coupling as shown in

Eq. 7.30.

An interesting consequence of our analysis is that, due to the difference in the al-

lowed region for each model under the theoretical bound and the global fit constraints,
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it is possible to differentiate the 2HDM model from singlet, triplet and quadruplet

models with the observation of a large deviation of the signal rate from the SM ex-

pectation. If a future experiment detects a significantly larger signal rate compared

with the expected SM model value, then it should favor the presence of an extended

scalar sector consisting of the 2HDM the assumptions of this work. If the future

experiment does not detect a significant deviation from the SM expectation, then one

may have hard time to differentiate SM from all the models considered here as well

as models where the wilson coefficients are induced at loop level. Both a reduction in

the theoretical uncertainty estimation and higher luminosities will be needed to make

a more precise measurement of the di-Higgs signal rate.
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CHAPTER 8

TESTING SEASAW MECHANISM IN LRSM WITH
FUTURE COLLIDER

The minimal left-right symmetric model (mLRSM) has been proposed to connect

the smallness of neutrino masses with the spontaneous violation of parity at high

energy scale [232, 200, 201]. Within the mLRSM, both Dirac masses and Majorana

masses can be generated for the heavy and light neutrinos through the Yukawa cou-

plings with Higgs bi-doublet and triplets. It is already known that, the Majorana

mass matrices for the light and heavy neutrino can be probed with the light neu-

trino oscillation experiments and the Keung-Senjanović (KS) process [171] in collider

experiments respectively. Further, it is recently pointed out that [205, 233] if in addi-

tion the mixing between the light and heavy neutrinos are measured, then the Dirac

mass matrix i.e. the Yukawa couplings between leptons and Higgs bi-doublet will be

uniquely determined, which are directly related to the test of the Leptogensis in the

LRSM [167]. It is worth to emphasize that without the left-right symmetry, there

will be no such a connection between the masses and mixing of the neutrinos and

the Dirac mass matrix. This can be seen in the Casas-Ibarra parametrization [56],

where the Dirac mass matrix is given in terms of the heavy and light neutrino mass

matices up to an arbitrary complex, orthogonal matrix. Therefore, measuring the

light and heavy neutrino mixing will be crucial to veriy the LRSM as a complete

model explaining the origin and smallness of neutrino masses.

Previously, the Dirac mass matrix of the light and heavy neutrino mixing is studied

in Ref. [118, 150] by searching one right-handed charged lepton, one left-handed

charged lepton and two jets in the final state in the collider experiments. In this work,
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we proposed that the ideal channel for probing the Dirac mass matrix is through the

purely leptonic decay of W±
R → l±N1 → l±(N1 → l′±W∓ → l±l′∓ν), where N1 is

the lightest heavy neutrino. This channel has been studied in the singlet fermion

extension of the SM with Type-I seesaw mechanism in Ref. [164] and also has been

searched for at the CMS experiment [236]. The advantage of this channel compare

with the KS channel is that it does not need to analysis the handness of the leptons in

the final state, the reconstruction of the W transverse mass from the charged lepton

and the missing ET automatically guarantees the heavy-light mixing in the heavy

neutrino decay.

8.1 Theoretical Framework of LRSM

The gauge group structure in the LRSM is G = SU(2)L×SU(2)R×U(1)B−L, with

an additional discrete symmetry that may be generalized as parity (P) or charge con-

jugation (C). The left-handed and right-handed quarks and leptons fields transform

as SU(2)L and SU(2)R doublets respectively. The quantum numbers corresponding

to the gauge groups SU(2)L, SU(2)R and U(1)B−L are listed in the parenthesis next

to the colons in the equations below:

qL =

 u

d


L

: (2, 1,
1

3
), qR =

 u

d


R

: (1, 2,
1

3
),

LL =

 ν

l


L

: (2, 1,−1), LR =

 N

l


R

: (1, 2,−1),

(8.1)

where N represents the new heavy neutrino states
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The Higgs sector of the mLRSM [198, 200], consists of one bi-doublet Φ, in the

(2,2,0) representation of G and two scalar triplets ∆L and ∆R, belonging to (3,1,2)

and (1,3,2) representation respectively

Φ =

 φ0
1 φ+

2

φ−1 φ0
2

 , ∆L,R =

 δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

 .

(8.2)

The scalar potential is rather complicate which does not directly related to our anal-

ysis which can be found in Appendix.

After spontaneous symmetry breaking (SSB), the vevs of the scalar fields can be

written as [201]

〈Φ〉 =

 v1 0

0 −v2e
−iα

 . (8.3)

〈∆R〉 =

 0 0

vR 0

 , 〈∆L〉 =

 0 0

vLe
iθL 0

 , (8.4)

where α and θL are called the “spontaneous” CP phases, and the magnitudes of the

vevs have the following hierarchy vL � v2
1 + v2

2 � v2
R. All the physical effects due to

θL, can be neglected, since this phase is always accompanied by the small vL.

The Yukawa interactions in the lepton sector are:

LL−Φ = LL(y1Φ + y2Φc)LR + h.c. (8.5)

LL−∆ = −1

2
y∆L

(LL)cε∆LLL −
1

2
(LR)cε∆RLR + h.c., (8.6)

where Φc = εΦ∗ε and ε is the 2-D total antisymmetric tensor.
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Under the generalized Parity P symmetry and the generalized charge conjugation

C symmetry, the transformation of the fields are:

P : {WL, ql, LL,Φ,∆L,R} ↔ {−W ∗
R, qR, LR,Φ

†,∆R,L} (8.7)

C : {WL, ql, LL,Φ,∆L,R} ↔ {−W ∗
R, (qR)c, (LR)c,ΦT ,∆∗R,L}. (8.8)

The left-right symmetry impose the conditions on the SU(2) gauge couplings gL, gR

and Yukawa couplings y1,2 and y∆L,R
:

gL = gR = g, (8.9)

P : y1,2 = y†1,2, y∆L
= y∆R

, (8.10)

C : y1,2 = yT1,2, y∆L
= y∗∆R

. (8.11)

The neutrino mass matrix after SSB becomes:

Lν−N = −
(

(νL)c NR

) ML MT
D

MD MR


 νL

(NR)c

+ h.c. . (8.12)

We define this mass matrix in gauge eigenstates as Mori:

Mori =

 ML MT
D

MD MR

 , (8.13)

with the entries expressed as:

ML = y∆L
vl MR = y∆R

vR M †
D = −(y1v1 + y2v2e

ia). (8.14)

154



Two steps are needed to diagonalize the mass matrix, in the first step we utilize the

rotation matrix R to bring the 6× 6 mass matrix to a block diagonal form:

 1 −ΘT

Θ∗ 1


 ML MT

D

MD MR


 1 Θ†

−Θ 1

 =

 Mν 0

0 MN

 , (8.15)

with

R =

 1 −ΘT

Θ∗ 1

 . (8.16)

In the limit vL � vR, we have at leading order:

MN ≈ MR (8.17)

Mν = ML −MT
DM

−1
N MD (8.18)

ΘT ≈ MT
DM

−1
N . (8.19)

With C as generalized parity, we have:

MD = MT
D (8.20)

ML = εMR ≈ εMN with ε = vL/vR (8.21)

Θ =
√
ε−M−1

N Mν . (8.22)

The next step is to bring Mν and MN to diagonal forms:

Mν = V ∗LmνV
†
L (8.23)

MN = VRmNV
T
R , (8.24)
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where VL,R are 3 × 3 unitary matrices, mν and mN are diagonal matrices. Now we

have:

Mori = R†V

 mν 0

0 mN

V TR∗, (8.25)

with V a 6× 6 matrix:

V =

 V ∗L 0

0 VR

 . (8.26)

The mass eigenstates for the light and heavy neutrinos are denoted as: νL,m and N c
R,m.

Then we have relations between the gauge eigenstates and the mass eigenstates:

νL = VLνL,m + Θ†V ∗ − (NR,m)c (8.27)

N c
R = −ΘVLνL,m + V ∗R(NR,m)c (8.28)

(νL)c = (νL,m)cV T +NR,mV
†
RΘ∗ (8.29)

(NR) = −(νL,m)cV TΘT +NR,mV
†
R. (8.30)

Now we can write down the charged current interaction in lepton sector:

νLγ
µeLW

+
L,µ =

[
νL,mγ

µ(V †LU
e
L)eL,m + (N c

R,m)γµ(V T
R ΘU e

L)eL,m

]
W+
L,µ (8.31)

NRγ
µeRW

+
R,µ =

[
(NR,m)γµ(V †RU

e
L)eR,m − (νL,m)cγµ(V T

L ΘTU e
R)eR,m

]
W+
R,µ,

(8.32)

where U e
L,R are unitary matrices that diagonalize the charged lepton mass matrix,

which can be set to identities by a change of flavor basis at the beginning. This leads
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to the definition of the PMNS matrices for the right-handed and left-handed lepton

sectors:

V L
PMNS = VL (8.33)

V R
PMNS = VR. (8.34)

In the following we will focus on the channel where a WR is on-shell produced and

then decays to a positron and the lightest heavy neutrino N1, with N1 decaying to a

positron, a muon and a light neutrino. Symbolically, this process can be written as:

pp → WR → e+N1 → e+e+µ−ν. We also assume that the mass of the WR boson is

much larger than the mass of the lightest heavy neutrino, i.e. mN1 � mWR
. This will

ensure that the lightest heavy neutrino is on-shell produced.

The topologies of Feynman diagrams that are related to this process are list in

Fig. 8.1, where the vertices with red dots contain the information of the heavy and

light neutrino mixing, which are sensitive to the neutrino Dirac masses. The decays

of N1 through a off-shell W ∗
R are shown in Fig. 8.1c and Fig. 8.1d, they are in general

suppressed by m2
N1
/m2

WR
comparing with the processes where N1 decays through an

on-shell W shown in Fig 8.1a and Fig 8.1b. This is the key point of our study, the

purely leptonic decay of the heavy neutrino N1 is dominated by the W boson mediated

processes which naturally contain the information of the heavy-light mixing with the

presence of N1Wl vertices, so no handness properties of the charged leptons needed

to be further assessed.

In principle, for mN1 > mW , the diagram 8.1a and the diagram 8.1b can be

distinguished by the relative PT order of the muon and sub-leading positron and the

reconstructed transverse mass of the sub-leading positron and missing ET system.

However, we found in our study that for the mass range of mN1 we are interested

in (roughly mN1 < 500GeV ), the power of this discriminant is not good enough to

isolate either one of the contributions. For mN1 < mW , since the decay of the N1 goes
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(a) (b)

(c) (d)

Figure 8.1: The topologies that can contribute to the e+e+µ−ν final state through a
on-shell WR decaying to e+N1. The red dots denote the vertices where the heavy and
light neutrino mixings enter in.
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through the off-shell W , essentially there is no such a single physical cut that can

effectively distinguish the two diagrams. One way to extract the relative contributions

of these two diagrams is proposed in Ref. [26], where the distribution of the angular

observable θ, the polar angle formed by the momentum of the muon and the WR

momentum in the N1 rest frame, is used.As pointed out in Ref. [26], the differential

decay rates with respect to θ of the polarized heavy neutrino of the two different

channels have the following forms:

dΓ

d cos θ
(N1,pol → µ−(W+ → e+νe)) ∼ |(VR)Nµ|2

{
1 + A (xN1) cos θ

}
(8.35)

and

dΓ

d cos θ
(N1,pol → e+(W− → µ−ν̄µ)) ∼ |(VR)Ne|2

{
1− cos θ

}
, (8.36)

where xN1 ≡ mN1/MWR
and A (xN1) is calculated in Ref. [26] and A(xN1) = 0 for

xN1 ≥ 1. In practice, one can fit with this distribution to extract the mixing param-

eters for the two diagrams.

Now one can calculate the decay width of heavy neutrinos into three leptons

Γ(N1 → l±l∓ν), which is proportional to the heavy-light mixing as one can see from

Eq. 8.37. As I mentioned earlier, we assume the ratio of the vev of two triplet ε =0.

Γ(N1 → l±l′∓ν) = (|Θl′N1|2+|ΘlN1|2)
G2
F

96π4mN

∫ m2
N1

0

dx
π

m2
N1

(m2
N1
− x)(m4

N1
+ xm2

N1
− 2x2)

(1− x
M2
W

)2 +
Γ2
W

M2
W

,

(8.37)

One can found the branching ratio in the Fig. 8.2 for different mass of mWR
and

the lightest heavy neutrino mass mN1 . From the Fig. 8.2, one can found that for a

fixed mass of the lightest heavy neutrino mN , the branching ratio Br(N1 → µ−e+ν)

is increasing. This is because the decay channel N1 → ljj through the off shell WR

is suppressed. The increase of the branching ratio around the mW is due to the on-

shell production of WL. The sharp drop around top mass is due to the opening of
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Figure 8.2: Branching ratio of the purely leptonic decays of the heavy neutrino N.

the channel N1 → ltb. The further decrease as mN1 increase is because the decay

channel N1 → µ−e+ν is suppressed by decreasing mixing couping Θ as one can see

from Eq. 8.22.
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8.2 Collider Analysis

As mentioned above, it is hard to distinguish the two processes with the same

final state in the mass range of the lightest heavy neutrino N1 we are interested in.

Therefore, we will first derive the sensitivity bounds on the decay branching ratio

Br(N1 → µ−e+ν) and then translate them into the bound on the mixing parameters

|Θl′N1 | and |ΘlN1|.

For the signal generation, we use the extension of the FeynRules package [21] for

the minimal LR model used in Ref. [226] and expanded in Ref. [207]. The signal and

background events were generated at the LO using Madgraph 5 [24], Pythia 6 [237] for

hadronization and Delphes 3 [92] for detector simulation, using the JetFake module

developed in [207]. The dominant sources of background are found to be tW (j), tt(j)

and WWW (j), while ZW (j), ttZ and eej with jet fake to muon to be sub-dominant.

The j in the parenthesis means we generate the corresponding background with one

jet matching. Table. 8.2 show the the cut flow of the main sources of background for

this process, together with two benchmark points, for 100 TeV respectively. In what

follows we also assume the left and right leptonic mixing matrices are connected with

the relation VL = V ∗R. The backgrounds for this process were studied in Ref. [164].

Finally, a description of the selection criteria is shown in table 8.1. We first demand

the event contains exactly 2 positron, 1 muon and no b tagged jet. The event with

extra jets that are not b tagged are retained. Secondly, we select events with High

PT leptons and a large missing ET, this will cut a lot of background even in 100TeV

collider. Then we require that the reconstructed invariant mass of the positron pair

is not closed to the Z boson mass. This will reduce the background that the positron

pair comes from the Z decay with the electron charged flipped. We also enforce that

the reconstructed transverse mass of sub-leading positron and /ET is less than 150

GeV. This cut ensures that the sub-leading positron is coming from the W boson
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decay. Finally we require the transverse mass of the e+e+µ− /ET system is larger than

the half mass of the right-handed WR.

Cut description

e+e+µ−, no b jets and no additional leptons signal selection
P lead
T,e+ > 200 GeV, P sub

T,e+ > 100 GeV, P lead
T,µ− > 100 GeV reduce all backgrounds
/ET > 100 GeV reduce mostly ttj and eej

|minv(e
+e+ − 91.2|) < 10 GeV reduce mostly WZj
mT (e+

sub
/ET ) < 150 GeV reduce all backgrounds except ZW (j)

mT (e+e+µ− /ET ) > MWR
/2 reduce all backgrounds

Table 8.1: Selection criteria used to reduced the SM background for 100 TeV. For 13
TeV and 28 TeV we apply the same cuts, excepting that P lead

T,e+ > 100 GeV.

We first require that the event contains two positron and one muon (we also require

the number of the additional jets not exceed two). Secondly, we require the leading

positron has PT > 200 GeV, and subleading positron and muon have PT > 100 GeV.

Then a missing ET cut is applied to reduce eej background, a mass window cut on

the positron pair is applied to ensure that one of the positron is not coming from the

charge conversion from the Z boson decay. A cut on the transverse mass of subleading

positron and missing ET system is applied to ensure that the subleading positron is

coming from the decay of a on-shell W boson, which reduces the tt̄ background and

reduce the contamination from the decay of heavy neutrino through an off-shell WR.

Finally, a cut on the transverse mass of the system of e+e+µ− /ET is applied to ensure

decay produce is coming from the high invariant mass region which reduces all kinds

of SM backgrounds. In the estimation of the SM background we take the probability

of the charge misidentification of electron as a function of pt and eta taking from the

current ATLAS results [7], while for muon we assume the charge misidentification

rate is zero. For the jet fake to electron and muon rate we take them equal to 10−4

as indicated in Ref. [59, 86].

In Fig. 8.3, we show for mWR
= 6 TeV that the purely leptonic signal can be

discovered(excluded) with 5σ(2σ) sensitivity for heavy neutrino masses below 170
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Backgrounds√
s =100TeV ttZ(∗) ttW (∗)(j) tt(j) WZ(j) 3W (j) eej

Ne+ = 2 Nµ− = 1 Nb = 0 199 1114 1178 8645 735 1128
PT cuts 18.7 387 226 2350 254 244

/ET > 100 GeV 12.6 312 138 1140 165 18.7
minv(e

+ e+)cuts 12.1 311 136 122 164 5.19
mT (e+

sub
/ET ) < 150 GeV 4.42 116 65.1 22 85.9 0.344

minv(e
+e+µ− /ET ) > 3 TeV 0.126 7.60 5.82 0.336 9.72 2.75×10−2

minv(e
+e+µ− /ET ) > 5 TeV 0 0.918 1.11 0 1.94 0

minv(e
+e+µ− /ET ) > 10 TeV 0 2.62×10−2 6.16×10−2 0 8.05×10−2 0

Table 8.2: SM background processes at 100 TeV and 30 ab−1 for the trilepton signal
e+e+µ−ν and mWR

= 6 TeV, for two benchmark values of the heavy Neutrino masses.
Backgrounds ending with the parenthesis j represent that we did the plus one jet
matching in the simulation. The charge misidentification probability has been taken
from current ATLAS result from Ref. [7]. The jet to lepton fake rates for ttbar(j)
and eej have been taken as 10−4 universally. The NLO K-factor for backgrounds are
taken from Ref. [193]

MN1 [GeV] 1000 500 100

e+e+µ−ν 0.364 0.349 0.319
PT 0.273 0.241 0.234
/ET 0.239 0.196 0.199

minv(e
+e+) 0.239 0.196 0.199

mT (e+
sub
/ET ) 0.223 0.188 0.189

mT (e+e+µ− /ET ) 0.217 0.185 0.187

Table 8.3: signal efficiency for 100TeV collider with mWR
= 6 TeV for different mass

of the lightest heavy neutrino. The charge misidentification rate for electron is take
from [7].
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Figure 8.3: FCC reach to the branching ratio of the purely leptonic decays of the
heavy neutrino. The blue line denotes the branching ration within the mLRSM
and the shadowed thick(dashed) regions show the reach at 5σ(2σ), for an integrated
luminosity of Lint = 30ab−1 and center of mass energy

√
s = 100 TeV.

164



GeV(220 GeV). This result shows that there exist the possibility of discovering the

WR boson at the LHC [206] and probing HN mass generation at the next generation

of hadronic colliders. For mWR
= 10 TeV the purely leptonic signal can be discov-

ered(excluded) with 5σ(2σ) sensitivity for heavy neutrino masses below 300 GeV(460

GeV). Instead the upper limit on the mWR
mass for the 2σ exclusion limit is around

mWR
= 20 TeV.

In the left plot of Fig. 8.4, we have translated the 2σ bound from the 100 TeV

collider to the upper bound on the combined value of |Θl′N1|2 + |ΘlN1|2 for mWR
= 6

TeV, mN2 = 2 TeV and mN3 = 2.5 TeV. One can observe that If both |Θl′N1| and

|ΘlN1| are in the same scale, a bound around ∼ 10−12 on those two quantities can

be derived can be derived on these two quantities. This can be further translate in

to bound on the neutrino Dirac masses (MD)N1e and (MD)N1µ as shown in the right

plot of Fig. 8.4, where we fixed the value |Θl′N1|2 = |ΘlN1|2 = 10−12.
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Figure 8.4: Smallest value for the heavy-light mixing angle Θ and the Dirac Mass
(MD)µe as a function of the heavy neutrino mass, for mWR

= 6 TeV at 2σ.
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CONCLUSION

The Standard Model, though successful, has shortcomings in explaining various

phenomena in nature. The matter anti-matter asymmetry, the non-zero neutrino

masses are two puzzles that indicate the existence of new physics beyond the SM.

Future colliders are great machines to scrutinize the proposed new physics models

trying to solve these two puzzles.

The CPV is a requirement for a successful EWBG to explain the matter-antimatter

asymmetry. The 2HDMs are possible to provide a new CP violation source at tree

level and can be tested in both of pp collider and EDM experiments. My study

demonstrates that the combination of the future LHC and EDM results will be com-

plementary to each other and will provide a better examination of the CPV2HDMs.

Apart from the CPV, a SFOEWPT is also necessary for a successful EWBG.

The singlet extended SM (xSM) provides the most simple scenario to modify the

scalar potential and to make the EWPT strong and first-order in the early universe.

The correlation between the SFOEWPT and the enhancement of the coupling of the

heavy Higgs to the SM-like Higgs pair indicates an excellent opportunity to test the

xSM triggered SFOEWPT by searching a heavy Higgs decaying to two SM-like Higgs

particles. In my study, I point out that, the 4b final state of the di-Higgs channel,

despite substantial SM backgrounds, is a great channel to search for the resonant

di-Higgs signal.

In the case where the scale of the new physics is high, one may implement the

EFT to parametrize the deviation from the SM in a systematic way. In addition

to the precision measurements related to the single Higgs production, the precision
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measurement of the di-Higgs signature in the future 100 TeV collider will offer a new

possibility to look for the new physics in the scalar sector. In this thesis, I study the

potential to probe the modification of the trilinear Higgs couplings originated from

the scalar extensions that can generate the dimension six operator (H†H)3 at tree

level, and show that the theoretical uncertainties related to the di-Higgs production

cross-section will be critical to distinguish the new physics from the SM.

Regarding the origin of the neutrino masses, the LRSM provided a natural way to

relate the smallness of the light to the high scale parity violation in the electroweak

sector. In this thesis, I study the reach of the future 100 TeV collider in measuring

the neutrino Yukawa couplings using the purely leptonic decay of heavy neutrinos

and show that this can be compatible with the traditional semi-leptonic searches.

The road to the new physics is dim. I believe the development of the future

technology and the wisdom of our physicist will shed light on the darkness of this

road.
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APPENDIX A

DISTRIBUTIONS OF KINEMATIC VARIABLES USED
IN BDT AND FORMULAE OF HIGGS DECAYS IN THE

STUDY OF CPV2HDM

A.1 Distributions of BDT Input Variables

We demonstrate the distributions of BDT input variables after our primary cuts

described in Sec. 5.3.2
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Figure A.1: Plots indicated by their titles showing the distributions of the lepton
leading pT , lepton subleading pT , b-jet leading pT , and b-jet subleading pT , respec-
tively. The units of the horizontal axes are GeV. The red histogram is for signal with
heavy Higgs mass 550 GeV, and the blue histogram is for the combined background.
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Figure A.2: Plots indicated by their titles showing the distributions of the recon-
structed invariant mass for dijet system mbb, reconstructed invariant mass for dilepton
system mll, E

miss
T /

√
HT , and reconstructed transverse momentum for Z boson pZT ,

respectively. The units of the horizontal axes are GeV for mbb, mll, p
Z
T , and GeV1/2

for Emiss
T /

√
HT . The red histogram is for the signal with heavy Higgs mass 550 GeV,

and the blue histogram is for the combined background.
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Figure A.3: Plots indicated by their titles showing the distributions of ∆Rll, ∆Rjj,
∆RZh and ∆ΦZh, respectively. The red histogram is for signal with heavy Higgs mass
550 GeV, and the blue histogram is for the combined background.
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Figure A.4: Reconstructed transverse momentum for Higgs pht , the unit of the hori-
zontal axis is GeV. The red histogram is for signal with heavy Higgs mass 550 GeV;
the blue histogram is for the combined background.

A.2 Analytical Formulas for Higgs Tow Body Decays

Higgs two body decay rates are listed in the following,

• hi → gg, heavy Higgs decays to two gluons

Γ(hi → gg) =
α2
sGFm

3
hi

64
√

2π3

[∣∣ct,iFH
1/2(τ it ) + cb,iF

H
1/2(τ ib)

∣∣2 +
∣∣c̃t,iFA

1/2(τ it ) + c̃ibF
A
1/2(τ ib)

∣∣2] . (A.1)

where the functions FH
1/2 and FA

1/2 and the variable τ if are defined in Eqs. 5.33

to 5.34.

• hi → Zh1, heavy Higgs decays to Z boson and SM-like Higgs

Γ(hi → Zh1) =
|giz1|2

16πm3
hi

√(
m2
hi
− (mh1 +MZ)2

) (
m2
hi
− (mh1 −MZ)2

)
×
[
−(2m2

hi
+ 2m2

h1
−M2

Z) +
1

M2
Z

(m2
hi
−m2

h1
)2

]
, (A.2)

where giz1 is defined in Eq. (5.28).
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• hi → V V , heavy Higgs decays to two vector bosons

Γ(hi → V V ) = (ai)
2 GFm

3
hi

16
√

2π
δV

(
1− 4M2

V

m2
hi

)1/2
[

1− 4M2
V

m2
hi

+
3

4

(
4M2

V

m2
hi

)2
]
,(A.3)

where V = W,Z and δZ = 1, δW = 2, i = 2, 3.

• hi → ff̄ , heavy Higgs decays to a fermion pair

Γ(hi → f̄f) =
[
(cf,i)

2 + (c̃f,i)
2
] NcGFm

2
fmhi

4
√

2π

(
1−

4m2
f

m2
hi

)3/2

, (A.4)

where Nc = 3 for quarks, Nc = 1 for leptons.

• hi → h1h1 heavy Higgs decays to a pair of SM Higgs

Γ(hi → h1h1) =
g2
i11v

2

8πmhi

√
1−

4m2
h1

m2
hi

, (A.5)

where gi11 is defined by

gi11 =
∂3V

∂hi∂h1∂h1

|H±,hi=0 . (A.6)
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APPENDIX B

DISTRIBUTIONS OF KINEMATIC VARIABLES USED
IN BDT IN THE STUDY OF SINGLET EXTENDED

STANDARD MODEL

B.1 Distribution used in di-Higgs 4b BDT analysis

We plot the signal and background distributions of kinematic variables used in

BDT analysis here:
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Figure B.1: Distributions of the kinematic variables used in training BDT, the red line
represents signal distribution, the blue line represents the background distribution.
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APPENDIX C

DERIVATIONS OF EFT FOR EACH EXTENDED
SCALAR SECTOR

C.1 Real Singlet

Taking the Lagrangian with normalizations such that the EOM are nicely nor-

malized:

∆L =
1

2
(∂µS)(∂µS)− M2

S

2
S2 − g

3
S3 − gHS|H|2S −

λS
4
S4 − λHS

2
|H|2S2 (C.1)

The classical EOM are:

�S = −M2
SS − gS2 − gHS|H|2 − λSS3 − λHS|H|2S (C.2)

Linearizing the EOM in S and solving for “Sc” as defined by Murayama [151] we find,

Sc = − 1

�+M2
S + λHS|H|2

gHS|H|2 (C.3)

For MS sufficiently larger than the momenta (�) and the excitations of the field H

this gives the approximation,

Sc = −gHS
M2

S

|H|2 +
�+ λHS|H|2

M4
S

gHS|H|2 + · · ·

= −gHS
M2

S

|H|2 +
λHSgHS
M4

S

|H|4 +
gHS
M4

S

�|H|2 + · · · (C.4)
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Plugging this expression into ∆L, Eq. C.1,

∆L → g2
HS

2M4
S

∂µ|H|2∂µ|H|2

− g
2
HS

2M2
S

|H|4 +
λHSg

2
HS

M4
S

|H|6 +
g2
HS

M4
S

|H|2�|H|2

+
gg3

HS

3M6
S

|H|6

+
g2
HS

M2
S

|H|4 − λHSg
2
HS

M4
S

|H|6 − g2
HS

M4
S

|H|2�|H|2

−λHSg
2
HS

2M4
S

|H|6

=
g2
HS

2M2
S

|H|4 − (3λHSM
2
S − 2ggHS)g2

HS

6M6
S

|H|6 +
g2
HS

2M4
S

∂µ|H|2∂µ|H|2

=
g2
HS

2M2
S

|H|4 − (3λHSM
2
S − 2ggHS)g2

HS

6M6
S

QH −
g2
HS

2M4
S

QH� (C.5)

C.2 Complex Singlet

Taking the Lagrangian with the same normalizations as in the real case, but

standard normalization for the kinetic terms:

∆L = (∂µΦ)†(∂µΦ)−M2|Φ|2 − (M ′)2

2

(
Φ2 + h.c.

)
−
(
gHS|H|2Φ + h.c.

)
−
(g

3
Φ3 + h.c.

)
−
(
g′

3
Φ(Φ†)2 + h.c.

)
−
(
λHΦ

2
|H|2Φ2 + h.c.

)
− λ′HΦ

2
|H|2|Φ|2 −

(
λ

4
Φ4 + h.c.

)
− λ′

4
|Φ|4 −

(
λ1

4
Φ(Φ†)3 + h.c.

)
(C.6)

The classical EOM are:
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�Φ = −M2Φ− (M ′)2Φ† − g∗HS|H|2 − g∗(Φ†)2 − 2g′

3
ΦΦ† − (g′)∗

3
Φ2

−λ∗HΦ|H|2Φ† − λ′HΦ

2
|H|2Φ− λ∗(Φ†)3 − λ′

2
|Φ|2Φ− 3λ1

4
Φ(Φ†)2 − λ∗1

4
Φ3

�Φ† = −M2Φ† − (M ′)2Φ− gHS|H|2 − gΦ2 − g′

3
(Φ†)2 +

2(g′)∗

3
ΦΦ†

−λHΦ|H|2Φ− λ′HΦ

2
|H|2Φ† − λΦ3 − λ′

2
|Φ|2Φ† − λ1

4
(Φ†)3 − 3λ1

4
Φ†Φ2

(C.7)

Linearizing the EOM,

(
�+M2 +

λ′HΦ

2
|H|2

)
Φ† = −(M ′)2Φ− gHS|H|2 − λHΦ|H|2Φ (C.8)

Solving for Φ† and taking the series to dimension–4 in fields/derivatives,

Φ†c ∼
1

�+M2 +
λ′HΦ

2
|H|2

[
−(M ′)2Φ− gHΦ|H|2 − λHΦ|H|2Φ

]
∼ (M ′)2

M4
�Φ− (M ′)2

M2
Φ− λHS

M2
|H|2Φ +

λ′HS(M ′)2

2M4
|H|2Φ

+
gHS
M4
�|H|2 − gHS

M2
|H|2 +

gHSλ
′
HS

2M4
|H|4 + · · ·

(C.9)

Plugging into the EOM for Φ yields,

[(
1− (M ′)2

M4

)
� +

(
M2 + (M ′)2

M2 + λHS
M2 |H|2 +

λ′HS(M ′)2

2M4 |H|2
)]

Φ

= −gHS(M ′)2

M4 �|H|2 + gHS(M ′)2

M2 |H|2 − g∗HS|H|2 +
gHSλ

∗
HS

M2 |H|4

(C.10)

Solving for Φc to operator dimension–4,
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Φc = − 1

M2

(
g∗HS −

gHS(M ′)2

M2
+
g∗HS(M ′)4

M4
+ · · ·

)
|H|2

+
1

2M4

(
gHSλ

∗
HS + λ′HSg

∗
HS − (gHSλ

′
HS − g∗HSλ′HS + g∗HSλ

∗
HS)

(M ′)2

M2
+ · · ·

)
|H|4

+
1

M4

(
g∗HS −

2(M ′)2

M2
gHS + 3

(M ′)4

M4
g∗HS + · · ·

)
�|H|2 (C.11)

Where the · · · represent terms of higher powers of M ′/M .

Plugging Φc and Φ†c into the original ∆L gives,

∆L → 1

M2

(
|gHS|2 −

(M ′)2

2M2
[g2
HS + (g∗HS)2] +

(M ′)4

M4
|gHS|2

)
|H|4

−|H|
6

M4

[
1

2
|gHS|2λ′HS +

1

2
(g2
HSλHS + c.c.)− 1

3M2
(g3
HSg

∗ + c.c.)− 1

3M2
(g2
HSg

′g∗HS + c.c.)

]
− 1

M4

(
|gHS|2 −

(M ′)2

M2
(g2
HS + c.c.) + · · ·

)
|H|2�|H|2

∼ |gHS|2

M2
|H|4 − M2|gHS|2λ′HS/2 +M2Re[g2

HSλHS]− 2Re[g3
HSg

∗ + g2
HSg

′g∗HS]/3)

M6
QH

− |gHS|2

M4
QH� (C.12)

Again · · · represents higher powers of M ′/M and I’ve only shown to a convenient

order for each operator, not necessarily the same order for each operator.

C.3 2HDMs

L = |DµΦ1|2 + |DµΦ2|2 −m2
11Φ†1Φ1 −m2

22Φ†2Φ2 +m2
12(Φ†1Φ2 + h.c.)

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†2Φ2)(Φ†1Φ2) + h.c.

]
(C.13)
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Which is rotated into the Higgs basis via [48]:

H1 = cos βΦ1 + sin βΦ2

H2 = − sin βΦ1 + cos βΦ2 (C.14)

Recently in the literature we have Bélusca-Mäıto et al. [41], with the potential in the

Higgs basis,

V (H1, H2) = Y1|H1|2 + Y2|H2|2 + (Y3H
†
1H2 + h.c.) +

Z1

2
|H1|4 +

Z2

2
|H2|4

+Z3|H1|2|H2|2 + Z4(H†1H2)(H†2H1)

+

(
Z5

2
(H†1H2)2 + (Z6|H1|2 + Z7|H2|2)(H†1H2) + h.c.

)
(C.15)

they claim all Yi and Zi are real. They integrate out to find the EFT, and can be used

as a reference. Additionally the tree level D6 EFT is discussed in [49], and the 1–loop

D6 EFT in [125]. Taking the Lagrangian with normalizations such that the EOM are

nicely normalized and we have trivialized the couplings to fermions, we need to turn

on/off various Yukawas here as well as scale them for the Higgs basis dependent on

the ‘Type’ of 2HDM:

∆L = (DµH2)†(DµH2)−M2|H2|2 − Y3(H†1H2 + h.c.)− Z2

2
|H2|4 − Z3|H1|2|H2|2

−Z4(H†1H2)(H†2H1)− Z5

2
(H†1H2)(H†1H2)− Z∗5

2
(H†2H1)(H†2H1)− Z6|H1|2(H†1H2)

−Z∗6 |H1|2(H†2H1)− Z7|H2|2(H†1H2)− Z∗7 |H2|2(H†2H1)

−
(
H2,iQ̄jYuuεij +H2,iQ̄iYdd+H2,iL̄iYle+ h.c.

)
(C.16)

The classical EOM are:
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D2H2,i = −M2H2,i − Y3H1,i − Z2H2,i|H2|2 − Z3H2,i|H1|2 − Z4H1,i(H
†
1H2)

−Z∗5H1,i(H
†
2H1)− Z∗6H1,i|H1|2 − Z7H2,i(H

†
1H2)− Z∗7H2,i(H

†
2H1)

−Z∗7H1,i|H2|2 − ēY †Li − d̄Y †dQi − ūY †uQjεij

D2H†2,i = −M2H†2,i − Y3H
†
1,i − Z2|H2|2H†2,i − Z3|H1|2H†2,i − Z4(H†2H1)H†1,i

−Z5(H†1H2)H†1,i − Z6|H1|2H†1,i − Z7(H†1H2)H†2,i − Z7|H2|2H†1,i

−Z∗7(H†2H1)H†2,i − L̄iYle− Q̄iYdd− Q̄jYuuεij

(C.17)

Linearizing,

(D2δij +M2δij + Z3|H1|2δij + Z4H1,iH
†
1,j)H2,j

= −Y3H1,i − Z∗5H1,i(H
†
2H1)− Z∗6H1,i|H1|2 − ēY †l Li − d̄Y

†
dQi − ūY †uQjεij

H†2,j(
~D
2
δij +M2δij + Z3|H1|2δij + Z4H1,jH

†
1,i)

= −Y3H
†
1,i − Z5(H†1H2)H†1,i − Z6|H1|2H†1,i − L̄iYle− Q̄iYdd− Q̄jYuuεij

(C.18)

Solving for H†2,

(H†2,i)c = − Y3

M2
H†1,i −

1

M2
L̄iYle−

1

M2
Q̄iYdd−

1

M2
Q̄jYuuεij

+
Y3(Z3 + Z4)−M2Z6

M4
(H†1H1)H†1,i −

(Z3 + Z4)(Y3(Z3 + Z4)−M2Z6)

M6
(H†1H1)2H†1,i

+
Y3

M4
(D2H1,i)

† +
Z6M

2 − Y3(2Z3 + Z4)

M6
(H†1H1)(D2H1,i)

† − Y3

M6
(D4H1,i)

†

− Z5

M2
(H†1H2)H†1,i +

(Z3 + Z4)Z5

M4
(H†1H1)(H†1H2)H†1,i +

Z5

M4
(H†1H2)(D2H1,i)

† (C.19)
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Plugging this expression into the classical EOM for H2 (i.e. Eq. C.17), linearizing,

and again solving for (H2)c gives,

(H2,i)c = − Y3

M2
H1,i −

1

M2
ēY †l Li −

1

M2
d̄YdQi −

1

M2
ūYuQjεij

+
M2Y3(Z3 + Z4 + Z∗5)−M4Z∗6 − 2Y 2

3 Z
∗
7

M6
H1,i|H1|2

+
M4(Z∗5Z6 + (Z3 + Z4)Z∗6) + 2Y 2

3 (3(Z3 + Z4) + Z∗5)Z∗7
M8

H1,i|H1|4

+
−4Y 3

3 (Z∗7)2 −M4Y3((Z3 + Z4)2 + 2(Z3 + Z4)Z∗5 + |Z5|2 + 2(Z6 + Z∗6)Z∗7
M10

H1,i|H1|4

+
Y3

M4
D2H1,i −

Y3

M6
(D4H1,i)−

M2Y3(Z3 + Z∗5)−M4Z∗6 − Y 2
3 Z
∗
7

M8
(D2H1,i)|H1|2

+
Y3(−M2Z4 + Y3Z

∗
7)

M8
H1,i(H

†
1D

2H1) +
Y3(−M2Z∗5 + 2Y3Z

∗
7)

M8
H1,i(D

2H1)†H1 (C.20)

Taking this expression and its h.c. and plugging it into the Lagrangian (less the kinetic

term), Eq. C.16, we find the effective Lagrangian:

∆L − (DµH2)†(DµH2) =
Y 2

3

M2
|H1|2

−
(

2Re[Z6]
Y3

M2
− (2Z3 + 2Z4 + 2Re[Z5])

Y 2
3

2M4
+O(Y 3

3 /M
6)

)
|H1|4

+

(
|Z6|2 − (Z∗5Z6 + Z5Z

∗
6 + 2(Z3 + Z4)Re[Z6]

Y3

M2
+O(Y 2

3 /M
4)

)
1

M2
|H1|6

− Y
2

3

M6
(D2H1)†(D2H1)

+
Y3Z2 −M2Z7

M4

Y 3
3

M6
(H†1H1)[(D2H1)†H1 + h.c.]

+
Y3

M2
(Yukawa)

+
1

M2
(4− Fermi)

+

(
Z6

M2
− (Z3 + Z4 + Z5)

Y3

M4
+O(Y 2

3 /M
6)

)
|H1|2H1,i

(
d̄Y †dQi + ūY †uQjεij + ēY †Li

)
+ h.c.

(C.21)

The kinetic term gives,
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(DµH2)†(DµH2) = − Y
2

3

M6
[(D2DµH1)†(DµH1) + h.c.]

+
Y 2

3

M4
(DµH1)†(DµH1)

+

(
2Y3Re[Z6]

Y3

M2
− (2Z3 + 2Z4 + 2Re[Z5])

Y 2
3

M4

)
1

M2
|H1|2(DµH1)†(DµH1)

+
Y3

M4

[
(DµH1,i)Dµ(L̄iYle+ Q̄iYdd+ Q̄jYuuεij) + h.c.

]

∼ 0 (for sufficiently small Y3) (C.22)

This is a good argument for at least neglecting terms O(Y 2
3 /M

6). The last term can

be traded via the EOM for 4–fermi interactions and rescaling of the Yukawas, via the

EOM:

(DµDµH)i = m2Hi − λ|H|2Hi − ēY †l Li − Q̄jYuuεij − d̄Y †dQi (C.23)

So for sufficiently small Y3 we have,

∆L =
|Z6|2

M2
QH +

∑
i

Z6

M2
Yii(QeH,ii+QuH,ii+QdH,ii)+h.c.+

1

M2
(4− Fermi) (C.24)

C.4 Real Triplet

Taking the Lagrangian with normalizations such that the EOM are nicely nor-

malized,

∆L =
1

2
(DµΦa)2 − 1

2
M2ΦaΦa + gH†τaHΦa − λHΦ

2
|H|2ΦaΦa − 1

4
λΦ(ΦaΦa)2

(C.25)

The classical EOM are:

D2Φa = −M2Φa − λHΦ|H|2Φa + gH†τaH − λΦ(ΦbΦb)Φa (C.26)
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Linearizing the EOM in Φa,

(D2 +M2 + λHΦH
2)Φa = gH†τ kH (C.27)

For M sufficiently larger than the momenta and the excitations of the field H this

gives the approximation,

Φa
c =

1

D2 +M2 + λHΦ|H|2
gH†τaH

=
1

M2
gH†τaH − D2 + λHΦ|H|2

M4
gH†τaH

=
g

M2
H†τaH − g

M4
D2(H†τaH)− λHΦg

M4
|H|2(H†τaH) (C.28)

Plugging this expression into ∆L, Eq. C.25,

∆L =
g2

2M4
[Dµ(H†τaH)]2

− g2

2M2
(H†τaH)2 +

g2

M4
(H†τaH)D2(H†τaH) +

λHΦg
2

M4
|H|2(H†τaH)2

+
g2

M2
(H†τaH)2 − g2

M4
(H†τaH)D2(H†τaH)− g2λHΦ

M4
|H|2(H†τaH)2

−λHΦg
2

2M4
|H|2(H†τaH)2

=
g2

2M4
[Dµ(H†τaH)] +

g2

2M2
(H†τaH)2 − g2λHΦ

2M4
|H|2(H†τaH)2 (C.29)

Noting that,

τaijτ
a
kl =

1

2
δilδjk −

1

4
δijδkl, (C.30)

we see,

(H†τaH)(H†τaH) =
1

4
(H†H)2. (C.31)
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Considering the derivative term we have,

Dµ(H†τaH) = [(DµH)†τaH +H†(DµτaH)]

= (DµH)†τaH +H†τa(DµH)−H†[τa, Dµ]H (C.32)

Performing the commutator:

[τa, Dµ] = [τa, ∂µ] + [τa, igτ bAbµ]

= −2gAbµε
abcτ c (C.33)

Because this is multiplied by Dµ(H†τaH) this term is symmetric in a↔ c for the pauli

matrices but antisymmetric in the Levi-Civita symbol, therefore this term vanishes.

Then the derivative term becomes,

Dµ(H†τaH)Dµ(H†τaH)

= [(DµH)†τaH +H†τa(DµH)][(DµH)†τaH +H†τa(DµH)]

= [(DµH)†τaH][(DµH)†τaH] + [H†τa(DµH)][H†τa(DµH)] + 2[H†τa(DµH)][(DµH)†τaH]

=
1

4

(
(DµH)†H(DµH)†H + 4(DµH)†(DµH)H†H

)
−1

4

(
2(DµH)†HH†(DµH) + 2H†(DµH)H†(DµH)

)
=

1

4

[
∂µ(H†H)∂µ(H†H)− 4(DµH)†HH†(DµH) + 4(DµH)†(DµH)H†H

]
(C.34)

Finally the full EFT at tree level to dimension–six is:
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∆L =
g2

2M4

[
−(DµH)†HH†(DµH) +

1

4
∂µ(H†H)∂µ(H†H) + (DµH)†(DµH)(H†H)

]
+

g2

8M2
|H|4 − g2λHΦ

8M4
|H|6

= +
g2

8M2
|H|4 − g2

2M4
(DµH)†HH†(DµH) +

g2

4M4

1

2
∂µ|H|2∂µ|H|2

+
g2

2M4
|H|2(DµH)†(DµH)− g2λHΦ

8M4
|H|6

=
g2

8M2
|H|4 − g2

2M2
QHD −

g2

8M4
QH� +

g2

2M4

(
1

2
QH� + 2λQH

)
− g2λHΦ

8M4
QH

(C.35)

Note here that λ = λSM + g2

8M2 .

C.5 Complex Triplet

Taking the Lagrangian with the same normalizations as in the real case, but

standard normalization for the kinetic terms:

∆L = |DµΦa|2−M2|Φa|2+(gHT iσ2τ
aHΦa+h.c.)−λHΦ

2
|H|2|Φa|2−1

4
λΦ|Φa|4−λ

′

4
(H†τaτ bH)Φa(Φb)†

(C.36)

The classical EOM are:

D2Φa = −M2Φa − g∗H†τaiσ2H
∗ − λHΦ

2
|H|2Φa − 1

2
λΦ|Φb|2Φa − λ′

4
(H†τ bτaH)Φb

D2(Φa)† = −M2(Φa)† + gHT iσ2τ
aH − λHΦ

2
|H|2(Φa)† − 1

2
λΦ|Φb|2(Φa)† − λ′

4
(H†τaτ bH)(Φb)†

(C.37)

Linearizing the EOM in Φa and (Φa)† and solving for Φa
c and (Φa

c)
†:
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Φa
c ∼

1

D2 +M2 + (λHΦ/2 + λ′/4)|H|2

(
−g∗H†τaiσ2H

∗ − λ′

4
H†iεabcσcHΦb

)
= − g∗

M2
H†τaiσ2H

∗ +
g∗

M4
D2(H†τaiσ2H

∗) +
g∗

M4

(
λHΦ

2
+
λ′

4

)
|H|2(H†τaiσ2H

∗)

− λ′

4M2
H†iεabcσcHΦb +

λ′

M4
D2(H†iεabcσcHΦb) +

λ′

4M4

(
λHΦ

2
+
λ′

4

)
|H|2(H†iεabcσcHΦb)

(C.38)

Iterating this solution to remove the dependence on Φb and removing terms with

operator dimension ≥ 5 we find:

Φa
c ∼ − g∗

M2
H†τaiσ2H

∗ +
g∗

M4
D2(H†τaiσ2H

∗) +
g∗

M4

(
λHΦ

2
+
λ′

4

)
|H|2(H†τaiσ2H

∗)

+
λ′g∗

4M4
(H†iεabcσcH)(H†τ biσ2H

∗)

(Φa
c)
† ∼ g

M2
HT τaiσ2H −

g

M4
D2(HT τaiσ2H)− g

M4

(
λHΦ

2
+
λ′

4

)
|H|2(HT τaiσ2H)

+
λ′g

4M4
(H†iεabcσcH)(HT iσ2τ

bH) (C.39)

Plugging in to Eq. C.36,

∆L = −|g|
2

M4

[
Dµ(HT iσ2τ

aH)
] [
Dµ(H†τaiσ2H

∗)
]
− |g|

2

M2
(HT iσ2τ

aH)(H†τaiσ2H
∗)

+
|g|2

M4

(
λHΦ

2
+
λ′

4

)
|H|2(H†τaiσ2H)(HT iσ2τ

aH)

+
|g|2λ′

4M4
(H†τaτ bH)(H†τaiσ2H

∗)(HT τ biσ2H)

(C.40)

Applying the identity,

(HT iσ2τ
aH)(H†τaiσ2H

∗) =
1

4

[
2(HT iσ2iσ2H

∗)(H†H)− (HT iσ2H)(H†iσ2H
∗)
]

= −1

2
(H†H)2 + ∅ (C.41)
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Similar to the derivative term for the real scalar triplet we find,

Dµ(H†τaiσ2H
∗) = (DµH)†τaiσ2H

∗ +H†τaiσ2(DµH∗)−H†[τaiσ2, D
µ]H∗

(C.42)

C.6 Quadruplet Y = 1/2

∆L = (DµΦ∗ijk)(DµΦijk)−M2Φ∗ijkΦijk − (λH3ΦH
∗iΦijkH

∗jεklHl + h.c.)

−λH2Φ2H
∗iHiΦ

∗lmnΦlmn − λ′H2Φ2H
∗iΦijkΦ

∗jklHl − λΦ(Φ∗ijkΦijk)
2

−λ′Φ(Φ∗ijkΦilmΦ∗lmnΦjkn) (C.43)

From the EOM we have (neglecting terms cubic or higher in Φ, denoted: · · · ):

(D2δlk +M2δlk + λH2Φ2H
∗mHmδlk + λ′H2Φ2δmlHkH

∗m)Φijl = −λ∗H3ΦHiHjεknH
∗n + · · ·

(C.44)

We solve for Φ, neglecting terms of mass dimension above 3, EXCEPT the terms

involving D2. The linearizing procedure above is a problem for dimension 8 operators,

but will work for the terms proportional to D2 because they cannot be formed by the

Φ3 or Φ4 couplings we are neglecting.

Φijl = −λ
∗
H3Φ

M2
HiHjεlnH

∗n +
λ∗H3Φ

M4
D2HiHjεlnH

∗n + · · ·

Φ∗ijl = −λH3Φ

M2
H∗iH∗jεlnHn +

λH3Φ

M4
D2H∗iH∗jεlnHn + · · · (C.45)

Plugging this in we find (neglecting d ≥ 6),
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∆L = −|λH3Φ|2

M2
(HiHjεlmH

∗m)(H∗iH∗jεlnHn) +
2|λH3Φ|2

M2
(H∗iH∗jεklHl)(HiHjεkmH

∗m)

=
|λH3Φ|2

M2
(H∗iH∗jεklHl)(HiHjεkmH

∗m)

=
|λH3Φ|2

M2
(H†H)3 (C.46)

Where we have used,

(H∗iH∗jεklHl)(HiHjεkmH
∗m) = (H†H)2Hlε

klεkmH
∗m

= (H†H)2Hlδ
l
mH

∗m

= (H†H)3 (C.47)

For the dimension 8 operators involving D2 we have,

∆L8 =
|λH3Φ|2

M4
(DµH∗iH∗jεlnHn)(DµHiHjεlmH

∗m) +
|λH3Φ|2

M4
(HiHjεlnH

∗n)(D2H∗iH∗jεln
′
Hn′)

+
|λH3Φ|2

M4
(H∗iH∗jεlnHn)(D2H∗iH∗jεln

′
Hn′)−

|λH3Φ|2

M4
(H∗iH∗jεklHl)(D

2HiHjεknH
∗n)

−|λH3Φ|2

M4
(HiHjεklH

∗l)(D2H∗iH∗jεknHn)

=
|λH3Φ|2

M4
(DµH∗iH∗jHn)(DµHiHjH

∗n) (C.48)

Then the T parameter part is given by:

LT8 = 2|λH3Φ|2
M4 |H†DµH|2|H|2 + · · ·

= −1
4

2|λH3Φ|2
M4 |H|2(H†

↔
D
µ

H)2 + · · ·

(C.49)

Where the second line is rewriting in terms of the operator used by Dawson et al.

(· · · stands for non T parameter operators)

186



C.7 Quadruplet Y = 3/2

∆L = (DµΦ∗ijk)(DµΦijk)−M2Φ∗ijkΦijk − (λH3ΦH
∗iH∗jH∗kΦijk + h.c.)

−λH2Φ2H
∗iHiΦ

∗lmnΦlmn − λ′H2Φ2H
∗iΦijkΦ

∗jklHl − λΦ(Φ∗ijkΦijk)
2

−λ′Φ(Φ∗ijkΦilmΦ∗lmnΦjkn) (C.50)

From the EOM we have (neglecting terms cubic or higher in Φ, denoted: · · · ):

(D2δkl +M2δkl + λH2Φ2H
∗mHmδkl + λ′H2Φ2H

∗iHkδkl)Φijl = −λ∗H3ΦHiHjHk

(C.51)

Solving for Φ we find (neglecting terms of mass dimension above 3, denoted · · · ),

EXCEPT the terms involving D2. The linearizing procedure above is a problem for

dimension 8 operators, but will work for the terms proportional to D2 because they

cannot be formed by the Φ3 or Φ4 couplings we are neglecting.

Φijl = −λ
∗
H3Φ

M2
HiHjHk +

D2

M4
λ∗H3ΦHiHjHk + · · ·

Φ∗ijl = −λH3Φ

M2
H∗iH∗jH∗k +

D2

M4
λH3ΦH

∗iH∗jH∗k + · · · (C.52)

Plugging this in we find (neglecting d ≥ 6),

∆L = −|λH3Φ|2

M2
(H†H)3 +

2|λH3Φ|2

M2
(H†H)3 + · · ·

=
|λH3Φ|2

M2
(H†H)3 + · · · (C.53)

For the dimension 8 operators involving D2 we have,
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∆L8 =
|λH3Φ|2

M4
(DµH∗iH∗jH∗k)(DµHiHjHk) +

|λH3Φ|2

M4
(H∗iH∗jH∗k)D2(HiHjHk)

+
|λH3Φ|2

M4
D2(H∗iH∗jH∗k)(HiHjHk)

−|λH3Φ|2

M4
[H∗iH∗jH∗kD2(HiHjHk) +D2(H∗iH∗jH∗k)HiHjHk]

=
|λH3Φ|2

M4
(DµH∗iH∗jH∗k)(DµHiHjHk) (C.54)

Then the T parameter part is given by:

LT8 = 6|λH3Φ|2
M4 |H†DµH|2|H|2 + · · ·

= −1
4

6|λH3Φ|2
M4 |H|2(H†

↔
D
µ

H)2 + · · ·

(C.55)
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