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ABSTRACT 

 

VARIATION AND EVOLUTION OF FRUIT RIPENING TRAITS IN  

TOMATO SPECIES 

 

SEPTEMBER 2018 

IAN M. GILLIS, B.S. UNIVERSITY OF WASHINGTON 

Ph.D. UNIVERSITY OF MASSACHUSETTS 

 

Directed by: Professor Ana L. Caicedo 

 

As angiosperm seeds mature within their ovaries, ovary tissue tends to grow and 

transform itself into fruit, which aids the success of the seeds. Fruits that are fleshy 

provide numerous ways to aid in the protection and the dispersal of seeds. First, they 

keep seeds hidden, encased in hard walls, surrounded by poisons and unpalatable 

compounds, and second, they undergo developmental changes that facilitate seeds’ 

release. Tomatoes, a model fleshy fruit, have all these protective traits, and over the 

course of ripening they become the familiar fruit that is a staple crop around the world. 

The wild relatives of cultivated tomatoes, however, have substantial variation in ripening 

habits. I characterized several fruit traits and their change during ripening in wild tomato 

species to get a better understanding of the phenotypic variation that exists in fruits. 

Acquiring this background for the clade enables further investigation of genes behind 

these variable traits and inferences of how the traits have evolved. To associate fruit traits 

with genes and genomic regions for further analysis I grew introgression lines (ILs) 

stemming from introgressions of small portions of the genome of the tomato clade 
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outgroup Solanum lycopersicoides, in the background of the cultivated tomato, S. 

lycopersicum. With these lines, I found regions of the genome that are associated with 

change of fruit firmness during ripening, providing data for further investigation of the 

genetics behind this trait. I also investigated the genetic basis of ripe fruit color variation 

by characterizing the gene CYC-B, which produces the enzyme responsible for turning 

red lycopene into the orange β-carotene, across the tomato clade. My results suggest that 

regulation of CYC-B has been key to the evolution of different fruit colors across the 

clade, and that the promoter region of the gene is involved in differentiating a β-carotene 

accumulating plant from a lycopene accumulating plant. The research performed here 

enhances our understanding of phenotypic and genotypic variation in an understudied 

angiosperm organ that can alter how plant species interact with animals around them, 

contributing to our knowledge of how fruit traits evolve and how they can enable plant 

success. 
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CHAPTER 1   

CHARACTERIZING THE WILD TOMATO CLADE FOR VARIABLE FRUIT 

TRAITS 

Introduction 

Fruits and flowers are structures that are exclusive to angiosperms, and are thus 

largely correlated with the success of this speciose group. Flowers provide novel means 

of pollinator attraction and specificity, which help ensure successful pollination with 

subsequent fertilization and embryo formation (Taiz et al., 2015). Fruits are formed from 

the ovary surrounding the fertilized ovule, so they house the developing seeds through 

maturity (Taiz et al., 2015). Angiosperm fruits can take many forms, and can provide 

many novel ways of protecting developing seeds, and of enabling dispersal of mature 

seeds. Dry fruits generally enable wind dispersal, such as winged maple seeds or seeds 

with a pappus acting as a parachute as in dandelions; some dry fruits can enable animal 

dispersal, such as burrs which attach to animal fur. Fleshy fruits allow a way for a plant 

to specifically attract types of animal dispersers, and increase the success of seed 

dispersal and the distance over which seeds can be dispersed.  

Fleshy fruits may serve two purposes over the course of their growth. They 

protect the developing seeds, and they attract animals that can efficiently disperse the 

mature seeds. This dual role is possible because of the process of ripening, where fruits 

develop in numerous ways that increase their palatability; developmental changes include 

alterations in firmness, texture, taste, scent, and color. However, there is abundant 

variation among species in palatability traits at the end of the ripening process. Whether 

fleshy fruit traits are determined primarily by selective pressure for seed dispersal, 

selection for seed protection, or are byproducts of plant metabolic processes is an active 
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area of inquiry (Bolmgren and Eriksson, 2010; Eriksson et al., 2000; Iseki et al., 2011; 

Mack, 2000; Willson and Whelan, 1990; Willson et al., 1989). Thus, why fleshy fruit 

phenotypic diversity exists, what genes are responsible for this diversity, and what 

processes drive fruit evolution are currently not well understood.  

In the past decades, cultivated tomato (Solanum lycopersicum), has been used as a 

model organism for the study of fleshy fruit development (Sato et al., 2012). This is due 

to the small stature and short life cycle of some tomato cultivars. However, the clade of 

species containing cultivated tomato also contains much variation in fleshy fruit traits, 

making it an ideal system in which to study evolution of fleshy fruits. Tomatoes belong to 

the very large Solanum genus which contains c.1,500 species including other major crops 

like potato (S. tuberosum) and eggplant (S. melongena), as well as many regionally 

important crops such as lulo (S. quitoense) and tamarillo (S. betaceum) (Carrillo-Perdomo 

et al., 2015; Ministerio de Agricultura y Desarrollo Rural, B.C., 2011). The genus has 

worldwide distribution with biodiversity hotspots on several continents including around 

the Andes mountains in South America where the tomato group, Solanum section 

lycopersicon, a fairly young clade (~2.5myo (Pease et al., 2016a)), is endemic. The ~13 

wild tomato species (Fig. 1) are spread across the widely varying habitats making up the 

western coast of South America from Ecuador to Chile, including deserts, jungles, coasts, 

mountains and islands (Moyle, 2008; Pease et al., 2016a).  

Species of the tomato clade have adapted to diverse habitats and exhibit various 

phenotypic differences, including fruit traits and the extent to which these are altered by 

the process of ripening. Most wild species in the clade do not change color when they 

ripen, but softening of the fruit is very prevalent (Grumet et al., 1981). Aside from these 
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traits, the limited phenotyping on wild tomato fruits has been confined to fully mature 

fruits (Asano et al., 1996; Furui et al., 1997; Iijima et al., 2013). This biases studies 

towards the potential roles of fruit traits in seed dispersal, while ignoring fruit’s role as 

protector of young seeds. A fruit that maintains high sugar throughout its development is 

different from, and likely under different selective pressures than, a fruit that only 

accumulates high levels of sugar while ripening. The tomato clade presents a good 

opportunity to study fruit diversification and evolution in the traits of unripe and ripe 

fruits to see the balance of protection and dispersal qualities. 

From the beginning of fertilization and seed development, tomato fruits serve to 

protect the seeds in several ways. In general, immature tomatoes are firm and thick, to 

varying degrees, which creates a physical barrier a distance from the seeds. They also 

contain chloroplasts, which, aside from feeding the growing fruit (Hetherington et al., 

1998; Powell et al., 2012), help the fruits blend in with the rest of the plant’s vegetative 

growth. Solanaceous plants are known for their toxic defense compounds, such as deadly 

nightshade, which famously contains atropine and scopolamine. Tomatoes contain the 

less toxic steroidal glycoalkaloid α-tomatine, which can kill fungi (Ökmen et al., 2013; 

Zaccardelli et al., 2011) and insects (Eigenbrode and Trumble, 1994; Güntner et al., 

1997) that grow/eat into the fruits, preventing pests from getting deep enough to damage 

seeds. The taste of α-tomatine can also be quite unpleasant, from a human viewpoint at 

any rate, which could dissuade potential dispersers from eating the fruits before the seeds 

are ready, though other research suggests that some frugivorous insects may gain 

protective benefits by consuming α-tomatine as well as other compounds found in 

tomatoes (Traugott and Stamp, 1997). 
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In cultivated tomatoes the ripening process removes these protective functions to 

yield the edible fruit we are familiar with. The fruit softens and all the flesh that had 

served as a barrier can now become palatable food, also increasing the fruit’s 

vulnerability (Cantu et al., 2008). Chloroplasts are converted to chromoplasts, eliminating 

all the photosynthetic machinery and accumulating the bright red pigment lycopene. The 

α-tomatine is broken down to undetectable levels (Kozukue and Friedman, 2003), which 

also gets rid of its bitter taste. The taste is further improved by the accumulation of 

sugars, aromatic compounds and many other molecules that affect the overall flavor and 

aroma of ripe tomatoes (Bennett, 2012; Tieman et al., 2012).  

Some of these fruit ripening traits seen in cultivated tomatoes exist in wild 

tomatoes, but there exists much variation that may have evolved due to varying species 

habitats and perhaps dispersal mechanisms. Fruits of S. galapagense and S. cheesmaniae, 

species endemic to the Galapagos Islands, are thought to be eaten and dispersed by birds 

and tortoises on the Galapagos Islands (Rick and Bowman, 1961). Fruit in these species 

vary from bright orange to pale yellow, and are soft when ripe. It is possible that these 

traits may have been selected for by dispersers, though islands can easily become limited 

for food and thus the selective pressure may not be linked to food choice among 

dispersers. Some accessions of the species S. habrochaites, which is native to western 

Ecuador and Peru, have been reported to undergo no outward sign of ripening before 

dehiscence (Grumet et al., 1981). These fruits may not be attractive for animal 

consumption, but round hard fruits falling from a plant can bounce and roll which may be 

a suitable method for seed dispersal, especially as these tomatoes are commonly found 

growing on Andean mountainsides. These rocky areas may also be a food limited habitat 
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in which animal dispersers will eat these fruits, despite lack of traits that humans would 

consider palatable. The seeds of many wild tomato species require extensive seed coat 

erosion before they will germinate (Rick and TGRC, 2013) which in nature can be 

achieved by passing through a digestive tract (Rick and Bowman, 1961) or by remaining 

in a fallen, uneaten fruit (from personal experience). The lack of knowledge of the seed 

dispersers and predators of wild tomato species limits understanding of the forces driving 

fruit evolution, as does an incomplete understanding of trait variation in the group. 

Studies in animal preference and diet provide prior information that can inform 

how traits may be shaped by reliance on particular animal dispersers. Sugar content is 

often associated with the type of seed disperser that species interact with in the wild. 

Birds largely cannot taste or digest disaccharides (Baldwin et al., 2014; Del Rio and 

Stevens, 1989), though hummingbirds are a notable exception, so plants that rely on bird 

frugivores as seed dispersers tend to have high glucose and fructose levels (Baker et al., 

1998). Mammals, on the other hand, have a greater affinity for sucrose and fructose than 

for glucose, so plants with mammalian seed dispersers tend to have fruits higher in these 

sugars (Baker et al., 1998; Floerchinger et al., 2010; Ramirez, 1990). Fruit firmness and 

change of firmness over the course of ripening can be informative about the protection of 

seeds and their dispersal. Small fruits are often swallowed whole by birds and do not 

need to soften but usually have visual cues to their ripeness (Wang and Schaefer, 2014), 

while larger fruits are less likely to be swallowed whole so softening of these fruits could 

aid in their consumption. Genes underlying traits associated with increased seed dispersal 

may show signs of this selection, allowing a gene-centric view into selective pressures 

faced by different species. 
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Tomato domestication began thousands of years ago and tomatoes have become a 

staple crop for much of the world (Statista, 2013) providing an important source of 

dietary carotenoids, which are required for human health (Berman et al., 2014; Fraser and 

Bramley, 2004). This domestication and further crop improvement has caused a loss of 

much variation in cultivated tomatoes, resulting in fixation of 25% of the total genome 

(Lin et al., 2014). The variation found in wild tomatoes, particularly S. pennellii, has been 

used many times for crop improvement by breeding beneficial alleles for biotic and 

abiotic resistance traits as well as fruit quality traits into cultivated tomato (Hajjar and 

Hodgkin, 2007; Menda et al., 2014; Fridman et al., 2001). Despite the need and proven 

use for wild variation in crop improvement, few species have received as much study as 

S. pennellii and few traits have been phenotyped in wild species as thoroughly as 

resistance traits have. Further documentation of the variation that exists in wild tomato 

species could strengthen the foundation for future attempts of finding beneficial traits and 

associated alleles to target for use in crop improvement. 

Aside from potential utility, the biodiversity of this group provides an opportunity 

to understand the evolution of fleshy fruit traits. Since tomato is a model organism, many 

resources are available that can aid in the work with wild species, making the process 

easier than with many wild plant species. Three species, cultivated S. lycopersicum as 

well as the wild species S. pimpinellifolium and S. pennellii, have fully sequenced 

genomes completed and available online, via solgenomics.net, providing a resource for 

finding the genes underlying these traits. This system allows the study of evolutionary 

processes affecting fleshy fruits, a structure that has had an important role in the success 

of angiosperms as well as in human welfare.  
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The purpose of this study is to carry out an in-depth characterization of 

phenotypic diversity in certain key fruit traits across the tomato clade. Due to the dual 

role fruits play in a plant’s reproductive success, changes to ripening characteristics can 

have a large effect. A more complete characterization will lead to insights on the 

evolution of these traits as well as helping to develop the tomato clade for further study of 

fleshy fruit evolution. 

Materials and Methods 

Plant materials and growth conditions 

Seeds were obtained from the UC Davis C.M. Rick Tomato Genetics Resource 

Center, maintained by the Department of Plant Sciences, University of California, Davis, 

CA. Cultivated tomato, S. lycopersicum, the ‘feral’ admixed variety (Ranc et al., 2008) S. 

lycopersicum var. cerasiforme, and eleven wild tomato species from Solanum section 

lycopersicon were used in this study (Fig. 1); S. chilense was not included in our project 

due to poor fruit set. Three accessions of each species were chosen based on maximizing 

diversity from across the species range; a single individual of each accession was grown. 

Plants were grown in Conviron growth chambers with 12-hour day length. As pollination 

is required for fruit set, the self-compatible species, S. galapagense, S. cheesmaniae, S. 

pimpinellifolium, S. neorickii and S. chmielewskii, were self-pollinated, while the self-

incompatible species were pollinated with pollen pooled from all grown individuals of 

the same species.  

Fruits from all accessions were collected at the mature green stage, determined by 

the point where fruits have reached their full size but have not begun to ripen (Sargent 
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and Moretti, 2014); this stage is referred to in this chapter as unripe. The mature green 

stage was identified by observing various fruits on the same plant and on the same 

raceme (the collection of separate flowers along one stem) and observing unripe fruits 

that were the same size as ripe fruits. Along racemes the more basal fruits ripen first, so 

fruits further down the raceme can be collected as the earlier fruits ripen. Fruits from all 

accessions were also collected at the fully ripe stage. From personal observation I’ve 

found this stage is associated with browning of the calyx in all species. In addition, fruits 

of most species abscise when ripe and four species change color (Grumet et al., 1981). 

All measurements were made on fruits at both ripeness stages to monitor how these traits 

change over the course of ripening.  

Fruit collection and firmness measurements 

At the time of collection, firmness was measured by pressing into each fruit with 

a 0.5mm2 blunt metal stick attached to a digital force gauge (Imada, Northbrook, IL). The 

fruit was pierced from four different directions to the columella of the fruit, with two 

piercing through septa and two through locules, and the maximum force used in each 

case recorded. The four measurements were averaged to give the fruit firmness. Fruits 

were then halved and seeds were removed; the remaining tissues were frozen in liquid 

nitrogen. Frozen tissue in quantities of 1-3 halves depending on fruit size and availability 

was ground in a Retsch ball mill with a single 1cm stainless steel ball, to form a fine 

powder that was stored at -80°C for further analyses. Firmness measurements include 

more fruits than other traits, as all grown fruits were immediately measured for firmness, 

but only a portion were used in other trait analyses. 
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Sugar content measurements 

A target sample of frozen powder samples from three fruits at each stage of 

ripeness from three accessions of each species was set for sugar measurements. In some 

cases, low fruit set led to different sample sizes for some accessions of the same species. 

Additionally, some species had more successful fruit set, and fruits from more accessions 

of those species were sampled. To measure sugar content of tomato fruits, the ground and 

frozen tissue was thawed and the solid and liquid phases were separated using a 

centrifuge at 8,000 rpm for 5 minutes. A total of 2μl from the liquid phase was used 

directly for sugar measurements with the R-Biopharm sugar kit (Roche Yellow line 

Sucrose/D-Glucose/D-Fructose enzymatic kit), using the modified method by (Velterop 

and Vos, 2001) to accommodate the small volume of liquid available from wild tomato 

fruits. Briefly, the kit allows for measuring of sugar levels indirectly, based on the 

amount of NADP formed during the enzymatic reduction of each sugar. Levels of 

glucose, fructose, and sucrose were measured at both stages of ripeness for all samples. 

ɑ-Tomatine measurements 

A target sample of frozen powder samples from three fruits at each stage of 

ripeness from three accessions of each species was set for α-tomatine measurements. In 

some cases, low fruit set led to different sample sizes for some accessions of the same 

species. Additionally, some species had more successful fruit set and fruits from more 

accessions of those species were sampled. For each sample, approximately 0.020 grams 

of powdered fruit tissue was used, to account for lack of precision and varying 

availability of tissue absorbance area was normalized by the milligrams of fruit used for 

extraction.  ɑ-Tomatine was extracted using solid phase extraction (SPE) Oasis HLB 1 cc 
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vac cartridges [WAT094225] from Waters (Milford, MA). Tomatine was measured using 

high performance liquid chromatography (HPLC) via a Waters 1515 HPLC pump with a 

Waters 2489 UV/Visible light detector set at 208nm. We used the XBridge BEH C18 

2.5µm 3.0x100mm XP column with the matching 20mm guard column, heated to 40°C 

for the runs. The mobile phase used was 24:76 acetonitrile (ACN):0.02M potassium 

phosphate (KH2PO4) adjusted to pH 7, though the final run used a mobile phase with the 

exact makeup as the running solvent. The running solvent used to dissolve the extract 

was 5:3:2 tetrahydrofuran:acetonitrile:0.02M KH2PO4.  

Analyses of fruit trait variation 

Analyses of fruit traits was done in R (R Core Team, 2015). For trait analysis, the 

lme4 package (Bates et al., 2015) was used to create a linear mixed model, using the lmer 

function, which can account for many sources of random variation. The lme4 package 

readily handles multiple sources of random variation, which can be caused by imbalance 

that comes from differing fruit production between individuals and species. Our models 

accounted for fruits by individual, block by individual, and individual by species. The 

linear mixed models were then used as input for ANOVA and Tukey’s HSD tests, which 

were carried out with the anova function of the stats package and the glht function of the 

multcomp package (Hothorn et al., 2008) respectively. Analyses were done comparing all 

species at both ripeness stages for each trait. 

Phylogenetically independent contrasts 

A newick tree file from (Pease et al., 2016a) was used for phylogenetic analysis. 

The species S. lycopersicum, S. sitiens and S. chilense were removed from the tree since 
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they were not in our phylogenetic analyses. For species with multiple representative 

individuals in the tree, we selected the shortest branch length to avoid overemphasizing 

species. A single value to represent the trait for each species at each ripeness stage was 

taken from the linear mixed effects models created above and used for further analysis. 

Phylogenetically independent contrasts (PICs) were run using the R package ‘phytools’ 

and the command phylosig, with the test methods λ and K. Pagel’s λ and Blomberg’s K 

are statistics comparing the variation in a trait as measured to what would be expected if 

the trait were evolving under pure Brownian Motion (BM), given the known tree 

structure for the species measured. Under a Brownian Motion model, the amount of 

phenotypic differences between species should be proportional to the time of divergence 

between them, and this is considered to be analogous to evolution of neutral genes under 

drift (Blomberg et al., 2003). Pagel’s λ is a measure of whether closely related species are 

similar to each other for the trait as expected under BM (λ~1) or if their relatedness does 

not predict similar trait values (λ~0). Blomberg’s K is a measure of whether the variance 

in the trait occurs within clades (K<1) or between clades (K>1) or if it occurs as expected 

under BM (K=1). These both measure phylogenetic signal in different ways. They can be 

thought of as measures of how much closely related species covary (λ), and whether the 

overall variance occurs mostly within or between clades (K).  
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Results 

Groupings of tomato species based on ancestry and fruit color 

We verified the distribution of ripe fruit color among species. Four of the sampled 

species have fruits that change color during ripening, S. cheesmaniae, S. galapagense, S. 

lycopersicum, and S. pimpinellifolium, and multiple sources of evidence show that these 

species have a monophyletic origin (Marshall et al., 2001; Mohan et al., 2016; Spooner et 

al., 2005) (Fig. 1). In this chapter, this group of species will be referred to as the “color” 

group. Remaining species have fruit that is green at maturity, and in this study include S. 

chmielewskii, S. arcanum, S. neorickii, S. huaylasense, S. peruvianum, S. corneliomulleri, 

S. habrochaites, and S. pennellii (Fig. 1). These species will be referred to as the “green” 

group throughout the manuscript. The outgroup, S. lycopersicoides, is not considered a 

part of the tomato clade, and its fruit also remains green through ripening. Colored 

species can be split into species with red ripe fruits, S. lycopersicum and S. 

pimpinellifolium, and species with orange ripe fruits, S. cheesmaniae and S. galapagense. 

Among green species, S. chmielewskii, S. arcanum, and S. neorickii, here referred to as 

the CAN group, are distinguished by their sister clade status to the color group. S. 

pennellii is another green fruited species to highlight, as it is sometimes phenotypically 

similar to the color group, although phylogenetically quite distant.  

Sugar content and concentration 

There is no one dominant sugar type in the unripe fruit between species. Unripe 

color species are higher in glucose than most of the green species, with 8-12 mg/ml 

versus 4-10 mg/ml; however, S. pennellii, a green-fruited species, also has a very high 
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glucose concentration at 20 mg/ml unripe (Fig. 2a; Fig. 3a, Table 1). In contrast, fructose 

concentrations of unripe fruits vary substantially between green species, with the CAN 

species having the lowest levels of fructose with concentrations of 5-8 mg/ml in unripe 

fruits while the remainder of the green species show large variance in fructose 

concentrations from 9-17 mg/ml (Fig. 2a, Fig. 3c, Table 1). The color species and S. 

pennellii are consistently at the high end of the glucose content variance at 10-15 mg/ml 

(Fig. 2a, Table 1). Sucrose concentrations vary substantially within some species (Fig. 

3e), but are generally highest in the green species with a large range from 5-24 mg/ml, 

while the lowest concentrations come from the fairly uniform color group with 1-3 mg/ml 

sucrose in unripe fruits. Overall sugar content in unripe tomato fruits is generally low 

with little variation, though several species do not follow this trend (Fig. 2a, Fig. 3g, 

Table 1). Solanum neorickii has the lowest overall sugar concentration of 16.4 mg/ml and 

S. corneliomulleri had the highest overall unripe sugar concentration at 50.2 mg/ml (Fig. 

3g). 

In ripe fruits, a general trend is that glucose is very low in most green fruited 

species, ranging between 2-5 mg/ml, compared with the color species, which have large 

variability in concentration at 10-32 mg/ml (Fig. 2b, Fig. 3b, Table 1). Solanum pennellii 

stands out as an atypical green-fruited species due to its high levels of glucose in ripe 

fruits. Fructose levels are lowest in S. lycopersicoides and the CAN species with a 

concentration range of 4-8 mg/ml, whereas the remainder of the green species as well as 

the color group have fructose concentration ranging from 10-20 mg/ml in their ripe fruit 

(Fig. 2b, Fig. 3d, Table 1). Sucrose is another sugar where a stark difference is seen 

between color and green-fruited species (Fig. 2b, Fig. 3f, Table 1). Sucrose has high 



14 

 

concentrations in most green species’ fruits though there is a large concentration range, 

from 12.9-45.8 mg/ml. Sucrose is present in very low levels in color species’ fruits and S. 

lycopersicoides, with a range of 1-8.5 mg/ml. Sucrose is the main sugar in ripe fruits of 

the green group and glucose makes up the smallest proportion of total sugars (Table 2). In 

ripe fruits of the color group the predominant sugar is glucose, aside from S. cheesmaniae 

fruits, which have more fructose, and sucrose makes up the smallest proportion of total 

sugars. S. pennellii stands out again with no sugar making up more than 40% of the total 

and roughly even proportions of fructose and sucrose (Table 2). Total sugar 

concentrations cover a somewhat larger range than seen for unripe fruits, with 

concentrations ranging from 20.6 mg/ml in S. lycopersicoides up to 68.3 mg/ml in S. 

corneliomulleri (Fig. 2b, Fig. 3h). 

All species increased the quantity of total sugar in fruits over the course of 

ripening. The sugars that were preferentially accumulated in fruits varied between 

species, as did the concentrations (Fig. 2, Table 3). The outgroup, S. lycopersicoides, 

shows the least accumulation of sugars during ripening and has the lowest amount of total 

sugar at ripeness. The green-fruited species, S. neorickii, also stands out in having very 

low levels of total sugars at ripeness, though it shows more accumulation than the 

outgroup (Fig. 3g,h). At the other end of the extreme, S. galapagense more than doubles 

its total sugar concentration during ripening and S. habrochaites also doubles total sugar 

concentration (Table 3). S. corneliomulleri stands out as the tomato species with the 

highest sugar content both at the unripe stage and at maturity (Fig. 3g,h). Glucose levels 

decreased in most green species during ripening, while showing mostly modest gains in 

color species, except in S. pimpinellifolium, which more than doubled its content, 
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reaching 32.2 mg/ml, and in S. galapagense which tripled in glucose concentration 

during ripening to 30 mg/ml (Fig. 3a,b). Fructose concentration in S. pimpinellifolium 

shows almost no change over the course of ripening while the rest of the color species 

gain fructose, as does S. pennellii, which has the largest increase (Table 3). The CAN 

species, which start with low levels of fructose, show little change or some decrease in 

fructose concentration during ripening. The remainder of the green species show no 

pattern during ripening with small to moderate increases in fructose (Table 3, Fig. 3c,d). 

Sucrose changes show little pattern in color species, with some gain and some loss in 

concentration, though S. galapagense and S. pimpinellifolium both more than double in 

concentration. Green species all accumulate sucrose during ripening. Several species 

double sucrose concentration, while S. huaylasense triples and S. habrochaites 

quadruples sucrose during ripening (Table 3, Fig. 3e,f). 

Sugar phylogenetic analysis 

A superficial examination of species phylogeny and species sugar accumulation 

suggests that these are correlated, as there are sizeable differences in sucrose and glucose 

accumulation between colored and green-fruited species. This is somewhat reflected by 

PIC results, supporting a model of evolution following Brownian Motion, though there 

are also some more subtle differences supporting this model of evolution as well. Glucose 

levels in unripe fruits support a BM model of evolution, with a significant λ very close to 

1. Glucose is accumulated in ripe fruits of the color species while green species, aside 

from S. pennellii, do not have much glucose in their ripe fruits. However, the closely 

related Galapagos species, S. cheesmaniae and S. galapagense, differ substantially in 

glucose levels compared to the near uniformity seen among green species, this causes the 
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ripe glucose levels to break from the BM model. Fructose levels in ripe fruits vary in a 

way that follows the phylogeny, i.e. the closer the relationship between species the more 

similar their fructose levels are, with well-supported K and λ values close to 1 (Table 4). 

The change in sucrose levels over the course of ripening is related to phylogeny though 

following a BM model of evolution less than fructose levels, with highly supported K and 

λ values around 0.85. A λ value slightly less than 1 suggests that close species trait values 

will be a little less predictable than under a BM model, and K value slightly less than 1 

suggests trait variance is more concentrated to within clades than a BM model would 

suggest. Total sugar levels vary substantially between species, though the lack of 

significance for these λ and K values suggests the variation does not correlate with the 

phylogeny (Table 4). 

Firmness 

Unripe fruits vary in firmness among species throughout the tomato clade from 

157 to 354 grams of force, although species range values overlap substantially and do not 

differ greatly from the outgroup species (Table 5, Fig. 4a). Two species stand out as 

outliers from this middling firmness, and these are sister species at the base of the tomato 

clade: S. habrochaites and S. pennellii, which are the firmest and softest species 

respectively (Fig. 4a). At the ripe stage, color species are marginally softer than the green 

species, but this division is not significant (Fig. 4b). Solanum arcanum has the firmest 

ripe fruits in the clade, second to the fruit firmness of the outgroup, S. lycopersicoides. 

Solanum pennellii fruits continue to be the softest through ripening, with little overlap 

with the firmness range of other species (Table 5, Fig. 4b). 
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At the ripe stage, fruit firmness ranges from 63 to 209 grams of force. All species 

show some amount of softening over the course of ripening, though the outgroup, S. 

lycopersicoides, shows the least softening and the fruits of some individuals of this 

species do not soften at all during ripening (Table 5). Solanum pennellii has the softest 

fruits at both ripe and unripe stages and softens by the greatest percentage (Table 5). The 

color species, aside from the cultivated S. lycopersicum, soften by more than 50% while 

most of the green species show less than 50% softening during ripening. 

Firmness phylogenetic analysis 

Firmness of unripe fruits does not show correlation with the phylogeny (Table 6) 

due to a general uniform firmness across the entire clade, aside from the sister species S. 

habrochaites and S. pennellii which are, respectively, the firmest and the softest species 

at the unripe stage (Fig. 2a). Ripe fruit firmness is less uniform, with color species having 

softer ripe fruits than green species, but PIC analyses do not support this trend (Fig. 2b; 

Table 6). Percent change in fruit firmness during ripening does show a strong 

phylogenetic signal, with significant K and λ values (Table 6). This is consistent with 

observations of color species softening by more than 50% and the green species softening 

by less than 50%. However, it does not capture the outliers: green-fruited S. pennellii has 

the softest fruits and softens the most, with a 60% change in value during ripening, and 

the outgroup has the hardest ripe fruits and softens the least at 27.7% change during 

ripening (Table 5). 
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α-Tomatine 

Measurement of α-tomatine presented many difficulties throughout the course of 

the project. Using mass spectrometry appended to our HPLC setup we determined that 

dehydrotomatine wasn’t removed by our extraction method and it eluted at the same time 

as α-tomatine for many measurements. Dehydrotomatine occurs at lower quantities in 

fruits than α-tomatine (Friedman and Levin, 1998; Iijima et al., 2013) but has stronger 

absorbance due to an additional double bond; thus, overlap in HPLC elution time 

prevented accurate measurement of the α-tomatine in many samples. Additionally, even 

though the standards provided linear absorbance curves as expected, quantification 

efforts using these curves routinely overestimated the amount of α-tomatine present. 

Results from this method suggested that by weight some of our fruits were 120% α-

tomatine; the lowest levels calculated were 5% by weight α-tomatine though it has been 

reported in other publications that α-tomatine only comprises up to 0.08% of fresh fruit 

weight in cultivated tomato (Friedman and Levin, 1998; Iijima et al., 2013; Rick et al., 

1994a). These results show that the method used here is unable to accurately quantify α-

tomatine levels in fruits. Instead, relative amounts of α-tomatine as measured by 

absorbance area per milligram of fruit used can be discussed (Table 7), though only for 

samples for which we could resolve the peak for α-tomatine from dehydrotomatine. The 

number of usable individual measurements from each species are given in Table 8. 

Due to the above problems, the α-tomatine dataset is less complete than for other 

traits and only internal comparisons with the data are possible (Fig. 5). In other studies of 

cultivated tomato, α-tomatine is present in unripe fruits at varying levels but uniformly 

decreases to undetectable or near undetectable levels during ripening (Asano et al., 1996; 
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Friedman and Levin, 1998); however our data did not show a decrease. As expected, S. 

lycopersicum did have the lowest levels of α-tomatine out of all ripe fruit measured, 

though we found the concentration basically unchanged from unripe fruits – in fact, there 

was a slight increase. Instead of reflecting true levels of α-tomatine, these measurements 

may represent the lower limit of our ability to detect α-tomatine with this method. 

However, increases in tomatine absorbance values with ripening were observed in many 

other species, suggesting this continued increase through development and ripening is the 

ancestral state. 

Solanum lycopersicoides had the highest levels of α-tomatine in unripe fruits, 

followed by S. habrochaites and S. chmielewskii. Solanum chmielewskii was the only 

species decreasing in α-tomatine during ripening, but the unripe value is based on a single 

fruit and may not be representative. All other species showed an increase in α-tomatine 

concentration during ripening, which was unexpected as the maturing seeds should need 

less protection, though fungi and insects are most strongly affected by α-tomatine and 

they are never dispersers so there may be no selection to shut down α-tomatine 

production. Solanum lycopersicoides had the highest levels of α-tomatine in ripe fruit, 

though it showed only a small increase during ripening. S. pennellii reached the second 

highest α-tomatine levels, increasing over 200% during ripening. S. arcanum also showed 

a 200% increase of α-tomatine during ripening.  S. corneliomulleri showed an increase of 

over 600% though the unripe value is based on a single fruit and may not be 

representative.  
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α-Tomatine phylogenetic analysis 

Though PIC tests cannot be used due to the limited dataset, some patterns can be 

seen. Unripe fruits do not have a clear pattern; although green species’ α-tomatine levels 

are lower in general than color species’, outliers, such as S. galapagense and S. 

corneliomulleri, disrupt this pattern. In ripe fruits, the color species have lower α-

tomatine levels compared to most green species, but these differences were not 

significant. Moreover, variances in tomatine content were larger in many green species 

compared to color species. At both stages of ripeness, cultivated tomatoes and their feral 

relative had the lowest tomatine levels of all. 

Discussion 

Fruit trait variation can be seen throughout the tomato clade, at both stages of 

ripeness and in how much traits are affected by the ripening process. Variation in unripe 

fruit traits is believed to relate to seed protection needed by each species. Ripe fruit traits 

show how much and in what ways the fruits aid in the dispersal of a plant’s seeds. The 

effects of ripening and degree to which traits change over the course of this process can 

be related to how specialized a fruit is for one task or if it plays a role in both seed 

protection and dispersal. These traits, measured across the clade, can reveal many aspects 

of the evolutionary history of tomato and their fruits. 

Green-fruited tomato species show considerable variation in many of the traits 

measured, with S. pennellii being an exception to the rest of this group for most traits. 

Solanum pennellii is native to the high elevations and extremely arid conditions of the 

Andes Mountains and nearing the Atacama Desert, a very harsh environment (Bolger et 
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al., 2014). Its unripe fruits contrast from other green-fruited species in that they have high 

levels of all sugars and they are much softer than all other fruits tested, and during 

ripening further soften and accumulate more sugar, mostly sucrose and fructose. The lack 

of preferential accumulation of sucrose makes this species’ sugar profile completely 

unlike all other green-fruited species. Some of the ripe fruits lose their internal structure 

so that, once pierced, the skin yields to a thick fluid matrix suspending the seeds rather 

than discrete seed containing locules like those seen in cultivated tomato. The softness of 

unripe fruits suggests that the young seeds do not need protection or that there is some 

other mechanism to protect the seeds. It may also be part of a different overall protection 

scheme than is commonly seen, as every part of these plants is covered in sticky 

glaborous trichomes, and all leaves, flowers, and fruits are easily detached from the plant 

at any time (personal observation). These traits are unique to S. pennellii, in the tomato 

clade. High glucose and soft fruits may be adaptations to survival in the desert, perhaps 

attracting hungry dispersers without the use of colorful visual cues. 

Solanum habrochaites is the sister species to S. pennellii, together making a basal 

clade long separated from the rest of the tomato clade (Rodriguez et al., 2009). 

Interestingly, S. habrochaites has the hardest unripe fruits though it softens by 45% 

during ripening, which brings it into the firmness range typical of ripe green fruits. In 

general, all plants from all species sampled show some level of fruit softening during 

ripening, the only exception being some individuals of the S. lycopersicoides outgroup. 

These results suggest that softening of the fruit during ripening is a trait specific to the 

tomato clade, and continuously firm fruits may be a basal trait. 
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Solanum habrochaites has low concentrations of sugar when unripe but over the 

course of ripening accumulates sucrose and fructose. This again makes S. habrochaites 

quite distinct from its sister species and more like the other green-fruited species. Sugar 

profiles high in sucrose are associated with mammalian dispersal (Baker et al., 1998; 

Ramirez, 1990). Although the animals that eat S. habrochaites fruits are not known, this 

species’ habitat covers mountainous areas of Ecuador and Peru (Moyle, 2008), which 

harbors many potential mammalian and avian dispersers. 

The next most basal clade of tomato species is made up of S. peruvianum, S. 

corneliomulleri, and S. huaylasense which are found in the desert habitat along the coast 

of Peru, but in environments that receive more rainfall than that of S. pennelli (Moyle, 

2008). Solanum chilense is also a part of this clade but was not included in our analyses. 

Recent molecular evidence suggests that S. huaylasense may not be a true species, but 

rather a hybrid of S. peruvianum and S. corneliomulleri (Pease et al., 2016a). Solanum 

peruvianum and S. corneliomulleri have very high sucrose levels, though these species 

also show considerable variation, with some fruits containing the same amount or less 

sucrose as found in fruits from S. huaylasense. Solanum huaylasense has sugar levels 

more similar to S. habrochaites than to either of its putative parent species, both in 

accumulating lower levels of sugars and in reduced variability. Solanum corneliomulleri 

has the highest fructose levels in its ripe fruits of all species measured, but again with 

high variability like in its sucrose concentrations. Fructose is generally associated more 

with avian dispersers (Baker et al., 1998; Ramirez, 1990), and combined with the high 

levels of sucrose may suggest both mammalian and avian dispersers for this species. 

Solanum huaylasense and S. peruvianum are similar in firmness throughout ripening 
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while S. corneliomulleri softens a bit more, and ends with some of the softest fruits of 

green-fruited species at ripeness. However, none of the three species stands out in terms 

of its firmness from the bulk of the green-fruited species.  

The last sub-clade of green-fruited tomatoes is largely capable of self-fertilization, 

like all the color-fruited species, but unlike the rest of the tomato clade (Rick, 1988). 

However, S. arcanum is not self-fertile (Li and Chetelat, 2014) and stands out in this 

study as it has the hardest ripe fruits measured, aside from the outgroup, and its fruits 

have very high levels of sucrose at the unripe stage and then accumulate more sucrose, 

ending with high sugar levels like S. corneliomulleri and S. peruvianum, and showing 

similarly high variance amongst fruits as well. The other members of this clade, S. 

chmielewskii and S. neorickii, have hard ripe fruits more similar to the other green-fruited 

species but accumulate less sugar than most species, S. neorickii has the lowest levels of 

sugar in ripe fruits out of the entire clade. All of these species are found in non-desert 

mountainous regions of Peru, and S. neorickii has the largest range of these species, 

which extends north into Ecuador (Moyle, 2008). Ripe S. chmielewskii fruits contain a bit 

more sugar, though only reach levels seen in S. habrochaites, and both species showed 

little variation in ripe sugar levels. S. neorickii fruits have several unique characteristics, 

in particular, when the fruit ruptures or is pierced, seeds will shoot out as though the 

inside of the fruit is pressurized. It is common for the fruits of many tomato species to 

rupture in times of high water availability, though in other species seeds typically do not 

escape the fruit at all in these instances (personal observation). I also noticed that S. 

neorickii fruits have a pungent putrid smell that was unlike the odor of any other fruit of 

this clade. These traits, together with the low sugar levels may suggest that this species is 
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not reliant on animal dispersers; it has a suite of traits that make the fruits unpalatable but 

may also enable the plants to spread their seeds via rupturing fruits, which would likely 

be linked to times of heavy rainfall that occur in its Andean range. 

The color fruited group contains species that are separated by a body of water, 

with S. pimpinellifolium occurring on the mainland of South America and S. cheesmaniae 

and S. galapagense growing exclusively on the Galapagos Islands. Colored fruit is 

associated with animal seed dispersal and red fruits are more specifically associated with 

avian dispersal (Willson and Whelan, 1990). This provides a plausible hypothesis of how 

the progenitors of S. cheesmaniae and S. galapagense could have crossed 600 miles of 

ocean to colonize the Galapagos Islands. The colored species all shared multiple traits 

that are also observed in cultivated tomato. They all soften during ripening by more than 

50%, while all green-fruited species soften by less than 50%, aside from S. pennellii, 

making this a trait with a strong phylogenetic correlation. Ripe fruits of color species are 

fairly high in fructose compared to other species, showing small increases through 

ripening, and they especially stand out because they accumulate large amounts of 

glucose, particularly S. pimpinellifolium and S. galapagense. Combined with very low 

sucrose levels, fruits of these species reflect the sugar palate preferred by birds (Baker et 

al., 1998). S. cheesmaniae stands out in that it has much less change in sugar levels 

during ripening than the other color-fruited species. This may be due to a loss of selective 

pressure on the fruits of this species to attract animal dispersers. This somewhat mirrors 

the colors of these species’ fruits, where S. pimpinellifolium and S. galapagense fruits 

gain vibrant colors while S. cheesmaniae fruits show much more color variation with 

some just having a faint yellow color and some a cream color (see chapter 3). 
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 Tomato species show a variety of ways in which fruits can fulfill the dual role of 

aiding both seed protection and seed dispersal. Throughout the clade, unripe fruits are 

camouflaged in green and most provide physical protection in the form of tough tissues, 

yet S. pennellii does not provide a mechanical defense, as even its unripe fruits are quite 

soft. These plants are covered in glaborous trichomes that can trap insects (personal 

observation) and may provide a way to present defense chemicals on the exterior of the 

fruit, deterring/killing predators without necessitating the skin of the fruit to be breached. 

Many more avenues are followed in helping the dispersal of seeds, along with fruit 

softening and sugar accumulation, which occur throughout the clade. The color species 

eponymously and uniquely have fruits that gain red and orange color as they ripen, 

removing the green camouflage and possibly creating strong contrast. Visual attraction is 

not the only tool for drawing in animal seed dispersers, since mammals are more driven 

by scents (Van der Pijl, 1969; Willson et al., 1989). Moreover, the increases in sucrose 

may be enough of a reward for dispersers to begin to seek out these green fruits.  

The role that α-tomatine plays in the various tomato species is less clear; it has 

been shown to harm fungi and insects (Mulatu et al., 2006; Ökmen et al., 2013) but there 

are no studies suggesting that mammals or birds are affected strongly by its presence 

(Friedman et al., 1996). It appears that there is no strong selection for the destruction of 

α-tomatine in ripening fruits and this trait in modern tomatoes may have been selected for 

in domestication. 

This study of phenotypic diversity in wild-tomato fruit traits lays groundwork for 

future research. Ecological studies can build off this when looking for correlations 

between fruit traits and natural dispersers or different abiotic conditions the plants 
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experience in their habitats. This information can also serve genetic studies by 

demonstrating the range of species variation, which fuels gene discovery. There is still 

little understanding as to what drives fruit trait diversity, but the characterization of these 

ripening traits in closely related wild species enables further understanding of the 

evolution of these traits. 
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Tables 

Table 1 Sugar content in fresh fruit extract broken down by sugar type for unripe and 

ripe fruits. Representative values, in mg/ml, are from lme4 models for species based on 

all measurements taken. Each column is color coded on a spectrum with the largest 

values in blue and the smallest values in red. 

 Unripe Ripe 

Species glucose fructose sucrose total glucose fructose sucrose total 

Sc 8.71 14.67 3.84 27.22 12 17.68 4.57 34.25 

Sg 9.83 10.64 3.03 23.49 30.97 15.4 7.59 53.96 

Sl 11.96 13.43 1.77 27.17 16.27 17.57 1.7 35.54 

Slc 12.37 15.1 2.96 30.44 17.4 19.93 0.94 38.27 

Spm 13.25 14.47 1.6 29.32 32.19 15.16 4.3 51.64 

Sn 4.23 6.39 5.76 16.38 3.66 4.96 12.97 21.58 

Sa 5.22 7.85 27.3 40.38 3.11 7.52 45.83 56.46 

Scm 7.81 7.89 8.06 23.76 4.35 8.17 21.59 34.11 

Scr 10.48 17.2 22.58 50.25 5.07 19.23 44.02 68.32 

Shy 6.15 12.07 7.07 25.29 2.81 12.12 26.2 41.13 

Spv 4.56 10.13 23.61 38.3 3.81 12.04 44.6 60.45 

Sh 6.48 8.79 5.37 20.64 4.56 12.69 24.16 41.41 

Spe 21.39 11.01 7.58 39.98 23.67 18.65 18.35 60.68 

Sly 11.81 2.63 3.74 18.18 9.29 4.86 6.5 20.64 

 

 

Table 2 Proportion of each sugar in ripe fruits of each species based on the predicted 

values in Table 1. Cells are color coded within rows to signify the main sugar (in green) 

the median sugar (in yellow) and the minor sugar (in red) for each species. 

 % of total 

Species glucose fructose sucrose 

Sc 35% 52% 13% 

Sg 57% 29% 14% 

Sl 46% 49% 5% 

Slc 45% 52% 2% 

Spm 62% 29% 8% 

Sn 17% 23% 60% 

Sa 6% 13% 81% 

Scm 13% 24% 63% 

Scr 7% 28% 64% 

Shy 7% 29% 64% 

Spv 6% 20% 74% 

Sh 11% 31% 58% 

Spe 39% 31% 30% 

Sly 45% 24% 31% 
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Table 3 Change in sugar content during ripening broken down by sugar type. Values 

calculated using predicted values in Table 1. Each column is color coded on a spectrum, 

with the largest values in blue and the smallest values in red for each sugar type. 

 Change during ripening Percent change 

Species glucose fructose sucrose total glucose fructose sucrose total 

Sc 3.29 3.01 0.73 7.02 38% 21% 19% 26% 

Sg 21.15 4.76 4.56 30.47 215% 45% 151% 130% 

Sl 4.31 4.14 -0.08 8.37 36% 31% -5% 31% 

Slc 5.03 4.83 -2.03 7.83 41% 32% -69% 26% 

Spm 18.93 0.68 2.7 22.31 143% 5% 169% 76% 

Sn -0.57 -1.44 7.21 5.2 -13% -23% 125% 32% 

Sa -2.11 -0.33 18.53 16.08 -40% -4% 68% 40% 

Scm -3.46 0.28 13.52 10.34 -44% 4% 168% 44% 

Scr -5.41 2.04 21.44 18.07 -52% 12% 95% 36% 

Shy -3.34 0.05 19.13 15.84 -54% 0% 271% 63% 

Spv -0.75 1.91 20.99 22.15 -16% 19% 89% 58% 

Sh -1.92 3.89 18.79 20.77 -30% 44% 350% 101% 

Spe 2.28 7.64 10.77 20.7 11% 69% 142% 52% 

Sly -2.53 2.23 2.76 2.46 -21% 85% 74% 14% 

 

 

Table 4 Results from PIC analysis of sugars based on lme4 model output, including 

change in the sugar concentrations during ripening and the percentage change from 

unripe value during ripening. Sl and Slc are not included for PIC analysis as these are 

known to have undergone artificial selection. 

Sugar Stage K λ 

Glucose 
unripe 0.719 0.999* 

ripe 0.217 0.539 

Fructose 
unripe 0.475 0.734 

ripe 0.907* 0.960* 

Sucrose 
unripe 0.410 0.000 

ripe 0.585 0.570 

Total 
unripe 0.409 0.000 

ripe 0.264 0.000 

ΔGlucose  0.174 0.444 

ΔFructose  0.654 0.864 

ΔSucrose  0.855* 0.867* 

ΔTotal  0.094 0.000 

ΔGluc%  0.171 0.476 

ΔFruc%  0.734* 0.822 

ΔSuc%  0.258 0.000 

ΔTotal%  0.077 0.000 

*indicates p-value < .05 
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Table 5 Firmness values in grams of force for species from lme4 model output, including 

change in firmness during ripening and the percentage change from unripe value during 

ripening. Each column is color coded on a spectrum with the largest values in red and the 

smallest values in blue. 

Species  Unripe Firmness Ripe Firmness Change Percent Change 

S. lycopersicum 250.9299 139.0766 -111.853 -44.6% 

S. lycopersicum  

var. cerasiforme 299.7839 145.3827 -154.401 -51.5% 

S. cheesmaniae 301.7047 127.2839 -174.421 -57.8% 

S. galapagense 250.775 104.9666 -145.808 -58.1% 

S. pimpinellifolium 314.5426 135.4662 -179.076 -56.9% 

S. neorickii 303.7335 174.7285 -129.005 -42.5% 

S. arcanum 309.5283 209.1379 -100.39 -32.4% 

S. chmielewskii 272.249 169.2674 -102.982 -37.8% 

S. corneliomulleri 256.8578 149.0352 -107.823 -42.0% 

S. huaylasense 268.6337 179.1026 -89.5311 -33.3% 

S. peruvianum 253.322 168.8899 -84.4321 -33.3% 

S. habrochaites 354.591 192.8753 -161.716 -45.6% 

S. pennellii 156.9274 62.78298 -94.1444 -60.0% 

S. lycopersicoides 284.2864 205.5621 -78.7243 -27.7% 

 

 

Table 6 Results from PIC analysis of firmness data from table 5. Sl and Slc are not 

included for PIC analysis as these are known to have undergone artificial selection. 

Stage K λ 

Unripe 0.385 0.810 

Ripe 0.645 0.951 

Change 0.604 0.832 

Percent change 1.084** 1.000** 

** indicates p-value < .01 
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Table 7 α-Tomatine values (absorbance per mg fresh weight) for species from lme4 

model output, including change in α-tomatine during ripening and percent change from 

unripe value during ripening. Each column is color coded on a spectrum with the largest 

values in red and the smallest values in blue. 

Species Unripe Ripe Change Percent change 

S. lycopersicum 7367 8095 728 10% 

S. lycopersicum 

var. cerasiforme 8137 8954 817 10% 

S. cheesmaniae 25194 42678 17484 69% 

S. galapagense 46267 58319 12052 26% 

S. pimpinellifolium 34366 42121 7755 23% 

S. neorickii 16157    

S. arcanum 19021 60917 41896 220% 

S. chmielewskii 70457 23509 -46947 -67% 

S. corneliomulleri 13210 98764 85554 648% 

S. huaylasense 18602    

S. peruvianum 42574 95290 52716 124% 

S. habrochaites 85084    
S. pennellii 36698 126814 90116 246% 

S. lycopersicoides 119871 135761 15889 13% 

 

 

Table 8 Number of individuals used for α-tomatine measurements at ripe and unripe 

stages. 

Stage Sl Slc Sc Sg Spm Sn Sa Scm Scr Shy Spv Sh Spe Sly 

Unripe 2 5 6 6 3 13 9 1 4 4 5 7 7 7 

Ripe 2 3 5 7 7 0 5 6 5 0 2 0 2 4 
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Figures 

Figure 1 

 

Figure 1 Phylogeny created from Pease et al. (2016) data showing the wild tomato clade 

with an outgroup. Ripe fruit color is indicated by accompanying colored dots; species 

codes are used in other figures; and areas of the text follow the species name in 

parentheses. Solanum chilense, a sister species of S. peruvianum, was left off this tree as 

it was excluded from our analyses. Solanum lycopersicum (Sl) and S. lycopersicum var. 

cerasiforme (Slc), sister species to S. pimpinellifolium, were not included in the 

phylogeny as they are the result of artificial selection. 

Figure 2 

 

 

Figure 2 Sugar concentrations based on lme4 model predicted values for each species at 

unripe (a) and ripe (b) stages. Species codes are shown in figure 1. 
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Figure 3 
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Figure 3 Box and whisker plots showing all sugar data of unripe and ripe fruits for each 

sugar separately (a-f) and total sugars(g-h). Graphs are scaled the same for the stages of 

each sugar, but not across sugars. Results from Tukey’s HSD are listed along the top 

using the compact letter display, species with non-overlapping letters are significantly 

different. Predicted fruit values from lme4 model are indicated with filled triangles. 
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Figure 4 

 

 

Figure 4 Box and whisker plots showing all firmness data of unripe (a) and ripe (b) 

fruits. Results from Tukey’s HSD are listed along the top using the compact letter 

display, species with non-overlapping letters are significantly different. Predicted fruit 

values from lme4 model are indicated with filled triangles. 

 

 

a 
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Figure 5 

 

Figure 5 Box and whisker plots showing all α-tomatine data of unripe (a) and ripe (b) 

fruits. Species codes are shown in figure 1. Results from Tukey’s HSD are listed along 

the top using the compact letter display; species with non-overlapping letters are 

significantly different. Predicted fruit values from lme4 model are indicated with filled 

triangles

a b 
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CHAPTER 2  

MAPPING OF FRUIT SUGAR CONTENT AND FIRMNESS TRAITS USING 

INTROGRESSION LINES 

Introduction 

Fleshy fruits provide a structure that can help protect vulnerable seeds and attract 

dispersers for mature seeds. The firmness of the fruit tissue plays a large role in both of 

these functions. Firm fruit tissue can be difficult to get through for seed predators, while 

soft fruits can be easier to eat and more appealing to vertebrate seed dispersers, especially 

when sugar accumulation coincides. However, to function as both protector and attractant 

the fruit firmness and sugar content need to change along with the maturity of the seeds, 

in the familiar process known as fruit ripening. In the wild, the firmness and flavor of 

fruits at either stage, as well as the change during ripening may be subjected to selection, 

as these traits can have a strong effect on survival and seed dispersal and thus the 

reproductive success of plants. 

The wild tomato clade in the Solanum genus shows a great deal of variation in 

firmness and softening, as explored in chapter 1. This includes species that tend to stay 

hard throughout development like S. arcanum and the tomato clade’s outgroup, S. 

lycopersicoides, species that are remarkably soft throughout development, such as S. 

pennellii, as well as species with very firm unripe fruits but soft ripe fruits, such as S. 

pimpinellifolium and S. galapagense. Regardless of the softness of the fruits, all species 

undergo some amount of softening as the fruits ripen, but the genes controlling this 

phenotype and whether this variation is related to expression of softening genes or 

functionality of the proteins are all unknown.  
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Similarly, the variation in total sugar accumulation as well as which sugars wild 

tomato species accumulate was documented in chapter 1. Within this clade there are 

some species, such as S. neorickii and the outgroup, S. lycopersicoides, that have very 

little sugar when unripe and do not accumulate much during ripening; some species, such 

as S. corneliomulleri, have large amounts of sugar and continue to accumulate during 

ripening; and some that have a typical amount of sugar when unripe, but then accumulate 

large amounts, such as S. galapagense. There is also variation in the type of sugar 

accumulated, with color-fruited species accumulating primarily glucose, while green-

fruited species typically accumulate primarily sucrose. Additionally, fructose is depleted 

in some species through ripening while it is accumulated in others, though fructose does 

not dominate in the ripe fruits of any species. As an outlier, S. pennellii seems to not 

favor any particular sugar with an almost even split of the three upon maturity. Though 

many of the pathways involved in sugar production and use in cultivated tomato are 

known (Bianchetti et al., 2017; Chetelat et al., 1993; Klann et al., 1993; Miron et al., 

2002), the different genes and pathways used by wild fruits to produce these varying 

sugar profiles remains an area for study. 

In the study of fleshy fruit development, domesticated tomato has been used as a 

model organism due to the small stature and short life cycle of some tomato cultivars. 

Since other species in the clade encompassing cultivated tomato also show variation in 

fruit firmness and softening, tomato is also an ideal system in which to study the 

evolution and genetics of softening and sugar accumulation. Tomatoes belong to the very 

large Solanum genus which contains approximately 1,500 species, including other major 

crops like potato (S. tuberosum) and eggplant (S. melongena), as well as many regionally 
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important crops such as naranjilla (S. quitoense) and nakati (S. aethiopicum). The genus 

exists worldwide and one of its biodiversity hotspots is found in western South America 

where the ~2.5 myo tomato clade is endemic (Pease et al., 2016a). 

Tomato fruit flesh can become softer due to action of several different classes of 

enzymes involved in the degradation of various cell wall components (Carey et al., 2001; 

Tomassen et al., 2007; Wang et al., 2009). Many genes involved in ripening-related 

softening have been studied in cultivated tomatoes as this is an important trait for the 

modern world, requiring fruits strong enough to withstand shipping while still having a 

pleasant mouth feel. This research has shown that softening in tomatoes is a quantitative 

trait, where no gene is alone responsible for the phenotype. This provides numerous sites 

of potential genetic variation for natural selection to act on in the evolution of the 

phenotypic variation in this clade. 

The accumulation of different sugars in different amounts could be achieved in 

many ways, including transport of sugar into fruits (Reuscher et al., 2016), production of 

sugars in the fruits (Powell et al., 2012), converting between sugar types of those already 

present (Klann et al., 1993), or combinations of these methods (Miron et al., 2002). Sugar 

composition of tomato cultivars has been well studied since it affects the taste profile of 

tomatoes and products made from them, and allows different cultivars to be used for 

different purposes, with some intended to be cooked and sauced and others meant to be 

eaten raw. However in the wild the sugar profiles can have a dramatic effect on frugivore 

preference (Baker et al., 1998; Floerchinger et al., 2010; Ramirez, 1990), which can 

determine the successful dispersion and germination of their seeds. 
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Using a set of introgression lines (ILs) created from phenotypically differing 

species can allow us to find genomic regions that may be associated with evolution of 

fruit softening and sugar accumulation during ripening. Introgression lines are a 

collection of plants that have been crossed and then backcrossed to one parent until only 

a fraction of a line’s total genome comes from the outgroup. The introgression lines used 

in this study are from a cross between cultivated tomato, S. lycopersicum, and the 

outgroup to the wild tomato clade, S. lycopersicoides, backcrossed into S. lycopersicum 

(Canady et al., 2005; Rick et al., 1988). The parental species show very different 

proclivity for softening through ripening, with fruits from S. lycopersicoides softening 

little, if at all, as seen in chapter 1, while cultivated tomato is well known for its 

softening. We also saw in chapter 1 that ripe S. lycopersicum fruits have very little 

sucrose with roughly equal glucose and fructose, while ripe S. lycopersicoides fruits have 

roughly equal amounts of all three sugars but accumulate only about half as much total 

sugar. For any trait, variation in phenotype among ILs from the parental values can be 

tentatively attributed to genes in the specific genomic regions that the introgressed line 

possesses. The full set of introgression lines gives complete coverage of the S. 

lycopersicoides genome as can be seen in Table S1; growing all lines together permits 

identification of lines with fruits that soften and accumulate sugars differently from the 

parents, and directly connect those differences with the introgressed genomic regions. 

This highlights promising areas to investigate further to find genes that may have 

functional or regulatory variances causing the differences in these phenotypes. The 

phenotypic differences along with the phylogenetic distance between these parents makes 
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this an excellent resource for finding regions of the genome associated with various 

phenotypes. 

The aim of this study is to identify candidate genes potentially involved in fruit 

softening and sugar accumulation variation within this clade. Both phenotypes are the 

result of complex processes involving regulators, transcription factors and enzymes 

working together but in various different ways. Understanding which genes may be 

regulated differently or have different function between S. lycopersicoides and S. 

lycopersicum can inform future studies on fruit softening, sugar accumulation and the 

evolution of fruit traits in the wild.   

Materials and Methods 

Plants and growth conditions 

Seeds of all 56 plants of the primary S. lycopersicum x S. lycopersicoides 

introgression lines (Rick et al., 1988) as well as the parental genotypes, LA2951 and 

LA0490, were obtained from the UC Davis C.M. Rick Tomato Genetics Resource 

Center, maintained by the Department of Plant Sciences, University of California, Davis, 

CA. For the introgressed parent, S. lycopersicoides, we grew the same accession used for 

the cross but were unable to get any fruits, so the parental value is represented by values 

from other individuals of the same species (accessions LA1966, LA2407, LA4322). For 

S. lycopersicum the parental accession, LA0490, was grown. A single replicate of each 

line was grown in each of three blocks in the College of Natural Sciences Greenhouse at 

the University of Massachusetts Amherst campus. There were two growing cycles 

starting in February of 2013 and 2014 and grown through the summer. Lines were 
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randomized within each block. The temperature was set to 26°C during the day and 22°C 

at night, humidity was kept below 60% and day length was kept at 12 hours. Plants were 

grown in two-gallon pots, weighted with gravel in the bottom and filled with Sunshine 

LB 2 soil. Starting after one month of growth, plants were fertilized every week 

alternating between 15-5-15 high calcium-magnesium fertilizer at 300 ppm nitrogen to 

promote healthy plant and fruit growth and 10-30-20 fertilizer at 200 ppm nitrogen to 

promote flowering. 

Fruit collection and measuring firmness  

Fruits were collected at the mature green stage, referred to here as unripe, and at 

the fully ripe stage (https://www.ams.usda.gov/grades-standards/tomato-grades-and-

standards). We attempted to collect five fruits from each plant at each maturity stage; 

however, certain lines had difficulty growing, flowering and setting fruits. This difficulty, 

due to the unusual genetic background of the lines, has been reported elsewhere (Canady 

et al., 2005; Chetelat et al., 1989). A second growing season was required to grow these 

individuals to get better fruit set, though some lines still failed to produce usable fruits. In 

total, we were able to collect fruits at the unripe and fully ripe stage in all but one line at 

each stage; IL5 is not represented in unripe measures and IL 49 is not represented in ripe 

measures. Up to 16 fruits were collected for any one line; exact numbers used per line per 

stage are shown in Table S2.  

Firmness was measured at time of collection using an Imada DS2-110 digital 

force gauge with a blunt 0.5mm2 thin metal probe attached. The probe was then used to 

pierce to the center of the fruit from four different directions; the peak force from these 
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four measurements were averaged to give a single value for the firmness of the fruit. 

Fruits were then halved and seeds were removed; the remaining tissues were frozen. 

Frozen tissue was ground using a ball mill to a fine powder for use in analyses of α-

tomatine content and sugar content. However, α-tomatine measurements were later 

discarded due to problems with consistency of the technique. 

Sugar content measurements 

A target sample size of one fruit at each stage of ripeness from plants of every line 

in each of three replicate blocks was set for sugar measurements. Unfortunately, due to 

poor fruit set and substantial loss of collected fruits, and because ground tissue was 

divided among tomatine and sugar measurements, some lines had no fruits measured, 

several lines had only one ripeness stage represented, and most lines had only one total 

fruit measured at each stage (Table S2). Additionally, the fruits that were measured for 

sugars came from the various replicate blocks, as no single block provided enough fruits 

to obtain measurements of every line. Due to these issues, the statistical measures are 

more suggestive than representative.  

To measure sugar content of tomato fruits, the ground frozen tissue was thawed in 

a sonicating water bath to ensure any clumps that may have formed were broken up. The 

solid and liquid phases were separated using a centrifuge at 8,000 rpm for 5 minutes. A 

total of 2μl from the liquid phase was used directly for sugar measurements with the R-

Biopharm sugar kit (Roche Yellow line Sucrose/D-Glucose/D-Fructose enzymatic kit), 

using the modified method by (Velterop and Vos, 2001) to accommodate the small 

volume of liquid available from wild tomato fruits. Briefly, the kit allows for measuring 
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of sugar levels indirectly, based on the amount of NADP formed during the enzymatic 

reduction of each sugar. Levels of glucose, fructose, and sucrose were measured at both 

stages of ripeness for all samples available. 

Data analysis 

Analysis of the IL fruit traits was done in R (R Core Team, 2015). For trait 

analysis the lme4 package (Bates et al., 2015) was used to create a linear mixed model, 

using the lmer function which can account for many sources of random variation in the 

input data. The lme4 package readily handles multiple sources of random variation; Our 

models accounted for individuals of the same line, block by individual, and fruits of a 

line by block. These models provide a value representative of the trait for each 

introgression line based on the values measured from all individuals and fruits of that 

line; these values were used as input for genome scanning. Analyses were done 

comparing all lines at both ripeness stages for each trait.  

Mapping was done in R using the ‘qtl’ package (Broman et al., 2003). The 

genotype map with phenotype data was read in using the read.cross function. The data 

was then processed with the function calc.genoprob to run a hidden Markov model, the 

output of which can be used for genome scans. The genome scan was done with the 

function scanone with the default EM maximum likelihood algorithm to get marker log10 

of odds (LOD) scores. To get a genome-wide LOD significance threshold for each 

dataset, the scanone function was run with 1000 permutations. Potential genes of interest 

were gathered from reports in the literature of their role in fruit softening or sugar 

accumulation, or if they were thought to have products involved in cell wall 
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reorganization or sugar use/synthesis, these lists were pared down focusing on regions of 

interest once those were known. 

Results 

Firmness in introgression lines 

The fruits of the parental introgressed outgroup species, S. lycopersicoides, lose 

26% of their firmness during ripening, and their ripe fruits are the firmest measured in 

this study (Fig. 6, Table S3). The S. lycopersicum parent has fairly firm unripe fruits 

which lose nearly 45% of their firmness, resulting in fairly soft ripe fruits. The unripe 

firmness variation of the introgression lines (ILs) was outside the range of the parents 

(Fig. 6a); the firmest unripe fruits were seen in IL25, which required 343 grams of force 

to pierce, and the softest were seen in IL50, whose unripe fruits required only 167 grams 

of force to pierce, making this fruit softer than some of the ripe fruits measured. The ripe 

firmness of the ILs did not exceed S. lycopersicoides’ 205 grams of force (Fig. 6b). IL16 

had the hardest ripe fruits of the ILs at 181 grams of force (Table S3). IL4 had the softest 

ripe fruits, requiring only 77 grams of force to pierce, which is nearly half the firmness of 

the S. lycopersicum parent’s ripe fruits, though only a single fruit was grown to ripeness 

in this line. The softest well-represented line is IL22 at 99 grams of force. There is only a 

slight, though significant, correlation between unripe and ripe fruit firmness, with 

Pearson’s correlation coefficient r of 0.3525 (Fig. 7), suggesting that unripe and ripe fruit 

firmness are under different genetic controls. Percentage softening variation also 

exceeded the parental range, from only 20% loss of firmness in IL16 up to 69% in IL4 

(Table S3). 
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Firmness genome scan 

In genome scans looking at fruit firmness, no association between unripe firmness 

and introgressed region was found (Fig. 8a), although three peaks stood out. The first is a 

region at the end of chromosome 2, from marker TG151 to the end of the chromosome, 

covering approximately 5Mb. The tallest peak is in the middle of chromosome 5, 

including markers TG358 and TG23, and covering 15Mb after the centromere. The final 

unripe peak is on chromosome 9 around marker CT143, which covers approximately 

1.4Mb near the beginning of that chromosome. 

For ripe fruits, only chromosome 3 showed significant association with firmness 

(Fig. 8b). A 6Mb portion including markers TG284 and TG152 on chromosome 3 was 

linked with firmer ripe fruits (Fig. 9a). One end of chromosome 5 from marker TG69 to 

the end of the chromosome, representing approximately 3.5Mb, came close to 

significance in the genome scan with a LOD of 4.41 where the p-value < 0.05 cutoff was 

at 4.47 (Fig. 9b). 

Sugars in introgression lines 

The IL parent species are quite different in sugar accumulation: S. lycopersicoides 

has low sucrose levels, like color-fruited species, low glucose, like green-fruited species, 

and the lowest fructose of all tomato species; S. lycopersicum accumulates primarily 

fructose and glucose as is typical for all color-fruited species, as seen in chapter 1. 

Solanum lycopersicoides has glucose concentrations at 12.2 mg/ml in unripe fruit and 8.8 

mg/ml in ripe fruit, which is low compared to the ILs’ average (Fig. 10a-d, Table S4); 

sucrose at 4 mg/ml in unripe fruit and 7.1 mg/ml in ripe fruit, which is higher than the IL 
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average; and it consistently has the absolute lowest fructose concentration at 2.6 mg/ml in 

unripe fruit and 5.1 mg/ml in ripe fruit, despite showing the largest percent increase in 

fructose during ripening at 93%. This low fructose also contributed to it having some of 

the lowest total sugar concentrations at 19.1 mg/ml in unripe fruit and 21.6 mg/ml in ripe 

fruit. The other parental species, S. lycopersicum, had concentrations for all sugars that 

were a bit under the ILs’ average for unripe fruit sugar levels though its ripe sugar 

concentrations were very close to average (Fig. 10e-h) for most sugars due to slightly 

above average percentage increases. Sucrose decreased in S. lycopersicum during 

ripening, resulting in one of the lowest concentrations, though many ILs had undetectable 

sucrose concentrations.  

In unripe fruits, the highest glucose concentration measured was in IL53 at 20.4 

mg/ml (Table S4) and the lowest were in ILs 43, 37, 35, and 44 with roughly half the 

concentration of IL53. The highest fructose concentrations for unripe fruits were in ILs 

36, 31, 29, 51 and 8 at 17.7-17 mg/ml, the lowest fructose concentration in the ILs was 

10.1 mg/ml in IL2 which was still well above the 2.6 mg/ml found in the parental species 

S. lycopersicoides (Fig. 10b). Sucrose levels were very low in the ILs, with many lines 

having undetectable concentrations; this makes sense given the S. lycopersicum 

background and its low sucrose levels, but since several of these were measured as 

having negative concentrations for sucrose, low levels could also be due to errors in the 

measurements or the way sucrose concentration is calculated by subtracting glucose and 

fructose concentrations from total sugar concentration. Despite this there were also some 

measurements of very high concentrations in ILs, with IL37 containing 11.3 mg/ml and 

IL1 9.5 mg/ml. The highest concentration of total sugar in unripe fruits was found in 
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IL52, which did not have high levels of any particular sugar, but moderate concentrations 

of each sugar giving an overall concentration of 37.4 mg/ml. The lowest total sugar 

concentration for unripe IL fruits was in IL35 at 21.4 mg/ml, which was just slightly 

above the S. lycopersicoides concentration (Fig. 10d). 

In ripe fruits, IL53 still had the highest glucose concentration at 27.7 mg/ml 

(Table S4), but IL48 and IL52 were close behind. The lowest levels were found in IL51 

at only 2.4 mg/ml of glucose, and this IL also had the lowest concentration for all sugars 

at the ripe stage. For fructose, IL23 had the highest concentration at 25.8 mg/ml but ILs 

33, 30 and 28 also had concentrations over 24 mg/ml. IL51 again had the lowest 

concentration of fructose in the ILs at 5.2 mg/ml, just above the 5.1 mg/ml found in S. 

lycopersicoides (Fig. 10f). For sucrose in ripe fruits, both IL30 and IL9 had 

concentrations over 15 mg/ml, but many more lines showed no sucrose present at the 

unripe stage, which is consistent with most lines presenting the typical S. lycopersicum 

phenotype of breaking down sucrose during ripening. The highest overall sugar 

concentrations were found in IL9 at 52.1 mg/ml and IL30 at 51.6 mg/ml, both of which 

had very high fructose and sucrose levels but low glucose levels. The lowest total sugar 

in ripe fruits was found in IL51, which had the lowest measures of all sugars, at 8.2 

mg/ml; this was less than half the total sugars of the next lowest line, IL22 which had a 

concentration of 18.9 mg/ml of total sugar, but did have measurable sucrose 

concentration. The Pearson correlation coefficients comparing the various sugars and 

stages are collected in Table S5. Fructose concentrations across stages had significant 

correlation, as did sucrose concentrations (Table S5a), though there is still variation in the 

amount of change during ripening in these traits. Glucose and fructose were correlated 
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significantly with total sugar at all stages (Table S5b-e), and change in concentration 

during ripening was correlated between glucose and fructose.  

Sugars genome scan 

The LOD scores for sugar concentrations in unripe fruits are shown in Figures 

11a-d. The only measure that had significant LOD scores in the unripe fruits was that of 

total sugar (Fig. 11d). This measure had a significant region on chromosome 3 for the 

marker TG479 (Fig. 12a), which covers 1.3Mb on the end of the chromosome, and on 

chromosome 8 from the beginning of the chromosome to marker TG41 (Fig. 12b) 

covering an entire chromosome arm, approximately 59Mb. There was also a large, 

though not significant peak for sucrose concentration on a different region of 

chromosome 8 at marker TG510, representing a region covering approximately 3.3Mb. 

There was an unusual result for the unripe fructose measure, where most of the genome 

came back with very high LOD scores, though the significance limit was also quite high 

such that no regions reached significance for this trait.  

The LOD scores for sugar concentration in ripe fruits are shown in Figures 11e-h. 

In ripe fruits, there were significant LOD scores for measures of fructose concentration 

(Fig. 11f) as well as total sugar concentration (Fig. 11h). Fructose concentration had 

significant regions on chromosome 5 at marker TG432 (Fig. 12c), covering 3Mb, and on 

chromosome 11 from marker TG46 to the end of the chromosome (Fig. 12d), covering 

over 20Mb. The total sugar concentration in ripe fruit was also significant for the same 

marker on chromosome 5 (Fig. 12e) and had a large though non-significant peak 

corresponding to the same region of chromosome 11, suggesting that significance of 
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LOD scores for fructose levels is driving those of the overall sugar level. There was a 

peak in ripe sucrose concentration but the LOD score is less than half the significance 

cutoff; the peak stands out only because so many of the fruits measured had no sucrose 

and thus there was a lack of association throughout most of the genome.  

Discussion 

The introgression lines in this study showed quite a bit of transgressive 

segregation, so rather than the parental species defining the extremes, trait values 

frequently were exceeded by the ILs on either side of the distribution range. This is an 

occurrence well studied in tomato (deVicente and Tanksley, 1993; Rick and Smith, 

1953), with several proposed mechanisms. Those most applicable to our IL population, 

due to how related the lines are and how they were created, likely are 1) complementary 

alleles from the parental species that drive a trait toward the same extreme and 2) the 

potential for “overdominant” alleles, where a gene in a new background may be freed 

from epistatic controls allowing the gene to drive the trait without constraint. Further 

work would be needed to determine which mechanism was involved with the traits tested 

here and loci identified. In a previous study the second mechanism was found to occur for 

only 7% of traits and loci for other tomato traits (Rick and Smith, 1953), though nothing 

can be assumed for our traits. The first mechanism can occur in numerous ways; the 

newly introduced region may bring stronger regulators, alleles more responsive to 

regulation, or alleles with similar action being brought together. It is also important to 

keep in mind that the value used here for the fruits of S. lycopersicoides does not come 

from the parental accession but is a representative value for the species. 
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We attempted to determine if known candidate genes occurred in any of the 

regions we identified as significantly associated with the traits studied. Firmness of 

unripe fruits did not have any regions with significant LOD scores, and the three that 

came close to significance do not contain any known firmness genes (Table S11). Ripe 

fruit firmness did have a significant and nearly significant marker LOD score due to some 

lines with particularly firm fruits (Fig. 8b, Fig. 9). The introgression line with the firmest 

ripe fruits, IL16, requiring 181 grams of force to pierce and the least softening at 20% 

change from unripe, is responsible for the markers found significant in the genome scan. 

IL16 is homozygous for two introgressed segments from S. lycopersicoides, one on 

chromosome 3 and the other on chromosome 5 (Table S1). The region of chromosome 3 

represented in IL16 is heterozygous in IL15 and this line has ripe fruits of a more typical 

firmness which may suggest that the introgressed alleles are recessive. For protein coding 

regions, having one allele that is expressed or one allele that produces a fully functional 

enzyme may be enough to recover most of the softening phenotype.  

IL16 has the end of chromosome 3 introgressed, but the very last marker is also 

homozygous for introgression in IL14. IL14 fruits have a ripe firmness of 125 grams of 

force which suggests the end of the chromosome may not contain the genes responsible 

for the firmness in IL16. The beginning of chromosome 3 is also present in IL14, but this 

region is heterozygous in this line and is not covered well by other lines so it is difficult 

to determine if this region affects the firmness. This leaves the region on chromosome 3 

between the markers TG284 and TG152 as likely linked to ripe fruit firmness. There are 

two known softening genes between these markers with a third just outside this range 

(Table S6). 
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Polygalacturonase, XPG1 (Sitrit et al., 1999; Tomassen et al., 2007), and auxin 

response factor 2A, ARF2 (Breitel et al., 2016; Hao et al., 2015), fall between the markers 

on chromosome 3, and beta-galactosidase 3, TBG3 (Smith and Gross, 2000), is 2Mb 

away from the significant marker TG152 and 1 Mb away from the non-significant marker 

from IL14, TG244 (Table S6). XPG1 produces a pectin hydrolase and TBG3 produces a 

glycoside hydrolase, both of which can take part in cell wall rearrangement processes in 

softening. The product of ARF2 is a regulator in the ethylene ripening response and may 

coordinate several ripening processes, which could affect degree or timing of response. 

The introgressed segment from chromosome 5 found in IL16 is also present 

homozygously in IL25, which is also quite firm at 152 grams of force, though it has the 

firmest measured unripe fruits and shows the most softening. This line includes a slightly 

longer segment of chromosome 5 than IL16 and it is also homozygous for a small region 

in chromosome 2. This segment of chromosome 2 is shared with IL13 which has fairly 

typical ripe firmness of 130 grams of force. This is the only segment introgressed in 

IL13, which suggests that it likely does not play a role in the firmness of IL25. This end 

region of chromosome 5 does not contain genes known to contribute to tomato softening 

but could be a good candidate region for finding new genes (Table S6).  

The beginning portion of chromosome 5 is introgressed in the softest well-

represented line, IL22, the fruit of which is pierced with 95 grams of force. IL21 and 

IL23 also contain portions of this segment and have fairly soft fruits at 114 and 117 

grams of force respectively. The master regulator, rin, is very close to this region of 

chromosome 5 (Table S6), though the ILs with introgressed regions inclusive of rin have 

more typical fruit firmness, at 127 grams of force. A portion of chromosome 5 that is 
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introgressed in IL22 is shared with IL51, whose fruits are soft at 105 grams of force, 

though this introgressed region stops before the marker near rin.  

IL51 has a second introgressed genome segment that is on chromosome 11 from 

marker TG46 to marker TG393; this genome region is not covered in any of the other 

lines grown. Within this introgressed segment of chromosome 11 there is another beta-

galactosidase gene, TBG5 (Table S6), producing an enzyme that could soften fruits 

through cell wall remodeling (Ishimaru et al., 2009; Smith and Gross, 2000). 

For fruit sugar concentrations, many more regions with significant LOD scores 

were identified in the genome scans, however, fewer lines were evaluated and much 

fewer biological replicates were measured, so these regions bear further examination. We 

are still able to identify regions of the genome that may house genes involved in fruit 

sugar concentration and accumulation to be better explored in future studies.  

In unripe fruits, the total sugars are significant in two genomic regions (Fig. 11d). 

Chromosome 3 is significant at the first marker on the chromosome, TG479 (Fig. 12a), 

due to the low sugar concentration in IL2, which is the only line measured that is 

homozygous for the outgroup’s B allele at this marker (Table S1). There are three known 

glucose transporter protein genes (SlSTP7 SlSTP10 and SlSTP13) on this portion of 

chromosome 3 (Table S7). SlSTP7 has been found to only be expressed in roots, though 

this could still potentially affect sugar levels in the fruits by altering the overall sugar 

content of vascular tissues.  

Chromosome 8 also has a significant region for unripe total sugar concentrations 

involving three markers at one end of the chromosome: markers TG176, TG45 and TG41 
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(Fig. 12b). The significance for these markers is due to the low sugar concentration found 

in IL35, which is the only line homozygous for the S. lycopersicoides alleles at these 

markers, though IL36 is heterozygous for all these markers and IL37 is heterozygous for 

TG41 (Table S1) and both these lines have much higher sugar concentrations (Table S4). 

For IL37 this is due purely to sucrose concentration, which is more similar to that of the 

introgressed species. IL35 is also homozygous for a region in chromosome 6 (Table S1), 

though this is also shared with IL29 which has higher sugar levels. The region on 

chromosome 8 contains many sugar related genes (Table S7). The genes here include 

several UDP-glucose glucosyltransferases and several other classes of enzymes that act 

upon sugars; these enzymes can act by altering sugars or diverting sugars to be used for 

other processes, which could lead to sugar depletion instead of accumulation. There is 

also a marker that was nearly significant in the sucrose concentration genome scan on the 

other end of this chromosome, but there are no known sugar genes in that region. 

Ripe fruits have a genomic region that is significant for total sugar accumulation 

(Fig. 11h) as well as two regions that show significance for fructose accumulation (Fig. 

11f). One marker shows significance in both sugars, marker TG432 on chromosome 5 

(Figs. 12c & 12e), which is homozygous in IL21, IL22 and IL51 and heterozygous in 

IL23 (Table S1). IL51 has the lowest values for these sugar concentrations followed by 

IL22, while IL21 and IL23 have much higher concentrations (Table S4). IL22 and IL21 

only have this region of chromosome 5 introgressed, while IL51 also has a portion of 

chromosome 11 introgressed, a region not shared by any other ILs (Table S1) and is the 

other genomic region with a significant LOD score (Fig. 12d).  
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The significant region of chromosome 5 contains two genes coding for glucose 

interacting enzymes, and is near but non-inclusive of rin, which codes for a major 

transcription factor involved in tomato fruit ripening (Table S7). The significant region of 

chromosome 11 covers three markers and over 24 Mb, but only has three known sugar 

interacting genes, which code for a glucose/ribose dehydrogenase, a neutral invertase and 

a dehydrogenase/reductase SDR family member (Table S7). These enzymes can be 

involved in metabolism and invertases are involved in breaking disaccharides into their 

monosaccharide constituents, altering the overall amount of sugars and the specific types 

that are accumulated. There is also a region of interest on chromosome 1 because of the 

peak in the sucrose LOD score, though it is not significant, which contains a sugar 

transporter encoding gene known to be expressed in late stage fruit development 

(Reuscher et al., 2014). 

The traits studied here, sugar accumulation and fruit softening, are known to be 

quantitative, so many combinations of enzyme coding genes, their promoters, 

transcription factors and other regulatory elements can have effects building up to the 

observed phenotypes. We found that many introgression lines had phenotypes between 

the parental phenotypes but many also transgressed their parents’ bounds. This highlights 

that there are many possible ways for these traits to evolve, and even just a reshuffling of 

existing alleles can create new phenotypes that could affect frugivore or pest behavior 

and impact the plant’s reproductive success. Due to broad interfertility between wild 

tomato species, this raises the possibility of introgression between species in the wild as a 

means for trait evolution. More study is needed to determine the genes that affect these 
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traits and to build a better picture of the regulatory processes involved in the development 

of these traits. 

Numerous genomic regions that include genes known to be involved in ripening 

traits, as well as others that may be involved but are not well studied, have been identified 

in this paper. Future studies can target these areas for sequencing to find allelic 

differences in the parental species and look into the potential functional differences 

between the alleles. Population studies can target these genes for expression and 

sequence variation analysis in wild tomato species to see how trait variation is brought 

about in different species and look for signs of selection. This will improve understanding 

not just of traits of interest in crop plants, but also of the evolutionary paths that have 

brought them about much like we explored for the CYC-B gene in chapter 3. 
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Figures 

 

Figure 6 

 

Figure 6 Frequency distribution of firmness values for ILs with both parental species 

values marked using abbreviated notation for S. lycopersicum, Sl, and S. lycopersicoides, 

Sly. Values shown are the predicted line values from the lme4 model in grams of force. 

 

 

Figure 7 

 

Figure 7 Unripe and ripe firmness values, in grams of force, graphed against each other 

to show degree of correlation between the two values in the IL fruits. Pearson’s 

correlation coefficient r = 0.3525, p = 0.007. 

 

 

 

 

Sl

Sly

0

3

6

9

12

N
u

m
b

er
 o

f 
lin

es

Firmness range (gf)

Unripe Fruit Firmness

Sl

Sly
0

3

6

9

12

15

N
u

m
b

er
 o

f 
lin

es

Firmness range (gf)

Ripe Fruit Firmness 

70

100

130

160

190

220

160 200 240 280 320 360

R
ip

e 
fi

rm
n

es
s 

(g
f)

Unripe firmness (gf)

Firmness correlation during ripening

a b 



59 

 

Figure 8 

 

Figure 8 Linkage analysis associating gene regions with firmness values of (a) unripe 

and (b) ripe tomato fruits of plants from the ILs. Higher log10 of odds (LOD) scores 

correspond to increased likelihood that the trait and gene region are associated. 

Hashmarks along the X-axis indicate the location of markers across the chromosomes. 

For unripe firmness no LOD scores reached the significance cutoff at LOD = 3.72, but 

for ripe fruits the LOD cutoff for p-value < 0.05 is indicated by a gray horizontal line at 

LOD = 4.47. 

 

 

 

Figure 9 

 

Figure 9 Detail of figure 8b showing LOD curves of (a) chromosome 3 and (b) 

chromosome 5 for ripe fruit firmness. Higher log10 of odds (LOD) scores correspond to 

increased likelihood that the trait and gene region are associated. Hashmarks along the X-

axis indicate the location of markers across the chromosomes. The LOD cutoff for p-

value < 0.05 is indicated by a gray horizontal line at LOD = 4.47. 
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Figure 10 

 

 

Figure 10 Frequency distribution of sugar concentration values (mg/ml) in unripe (a-d) 

and ripe (e-h) fruits for ILs with both parental species values marked using abbreviated 

notation for S. lycopersicum, Sl, and S. lycopersicoides, Sly. Values shown are the 

predicted line values from the lme4 model. 
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Figure 11 

 

 

 

Figure 11 Linkage analysis associating gene regions with sugar concentrations of (a-d) 

unripe and (e-h) ripe tomato fruits of plants from the ILs. Higher log10 of odds (LOD) 

scores correspond to increased likelihood that the trait and gene region are associated. 

Hashmarks along the X-axis indicate the location of markers across the chromosomes. 

The LOD cutoff for p-value < 0.05 is indicated by a gray horizontal line, graphs with no 

horizontal grey line did not have any significant LOD scores but the cutoffs for all are 

listed here, (a) 2.85 (b) 5.32 (c) 4.05 (d) 2.58 (e) 2.59 (f) 3.54 (g) 7.98 (h) 3.35. 

a 

d 

b 

c 

e 

g 

f 

h 



62 

 

 

Figure 12 

 

 

 

Figure 12 Close-up from analyses in figure 11 of chromosomes with significant LOD 

scores for sugar concentration. Higher LOD scores correspond to increased likelihood 

that the trait and gene region are associated. Hashmarks along the X-axis indicate the 

location of markers across the chromosomes. The LOD cutoff for p-value < 0.05 is 

indicated by a gray horizontal line. 
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CHAPTER 3  

ANALYSIS OF FRUIT COLOR AND CYC-B GENETIC VARIATION IN WILD 

TOMATO SPECIES 

Introduction 

Angiosperm seeds grow within ovary tissue, which can continue to grow and 

develop along with the maturing seeds. This ovary tissue becomes the fruit, a structure 

that can help the survival of the seeds within them or can aid in attracting potential 

dispersers for those seeds. For fleshy fruits, the developmental changes occurring as 

seeds mature are known as ripening. Ripening concludes once seeds have fully developed 

and are capable of germination. Because seeds have different needs at different points of 

their developmental process, the role and appearance of fruit usually changes during this 

time too. During early seed development, there is a need to protect the developing 

embryo, and in fleshy fruits this protection is provided by thick strong walls and other 

structural or chemical defenses. Mature seeds usually benefit in some manner from 

escaping the fruit’s tissue, and ideally dispersing away from the mother plant. The ripe 

stage of fruits provides means of seed release, either through mechanical devices or by 

attracting animal dispersers that can consume the fruit flesh and free the seed.  

Animals can be efficient seed dispersers, but taking advantage of their services 

requires changes in the fruits to make them appealing and to signal that a desirable food 

source now exists. Color is a common ripening indicator in fleshy fruits, but far from the 

only option. Mammals tend to forage more by smell than sight, so plants that rely on 

mammalian dispersal commonly have duller colors, or may even remain green while 

going through dramatic aromatic changes (Eriksson et al., 2000; Van der Pijl, 1969). 

Birds, on the other hand, are visual foragers, attracted to brightly colored fruits (Van der 
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Pijl, 1969); red and black are the colors most commonly associated with avian dispersers 

(Willson and Whelan, 1990). The ripening process for fruits that change color involves 

conversion of the cells’ energy-producing chloroplasts into pigment-storing 

chromoplasts; production and storage of large amounts of pigment compounds gives 

color to the fruit tissue.  

Fruit color can directly affect the survival and dispersal of a plant’s seeds, and 

thus evolutionary changes to fruit color could be under strong selection. For instance, a 

switch from primarily avian to primarily mammalian dispersers may put the seeds at 

jeopardy of being ground by teeth, or the new disperser may help by extending the 

species’ range to new areas. The selective pressures on fruits to have or maintain a certain 

color is not straightforward, though. Birds will often eat fruits of various colors, and 

mammals will often eat red and black fruits that are commonly associated with avian 

dispersal (Willson and Whelan, 1990). Thus, very little is known about the exact 

evolutionary processes leading to differences in fruit color among species. 

Cultivated tomatoes (Solanum lycopersicum) have long been a model plant for 

studying the development of fleshy fruits (Kimura and Sinha, 2008; Knapp et al., 2004; 

Rick and Chetelat, 1995; Sato et al., 2012). The tomato clade also contains a range of 

fruit colors amongst closely related species, making wild tomatoes an excellent candidate 

system for studying the evolution of fruit color. There are 13 species of wild tomato in 

South America (Fig. 1), which have undergone two color transitions through the history 

of the clade. Basal species have green fruits when ripe and maintain chloroplasts 

throughout their ripening, while three species have colored fruits: Solanum 

pimpinellifolium is red-fruited, S. galapagense is orange-fruited and S. cheesmaniae has 
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fruit colors ranging from yellow to orange. Solanum pimpinellifolium is the wild tomato 

species that gave rise to cultivated tomato, S. lycopersicum (Nesbitt and Tanksley, 2002), 

as well as S. cheesmaniae and its daughter species S. galapagense (Pailles et al., 2017), 

both of which are endemic to the Galapagos Islands (Darwin et al., 2003).  

To date, nothing is known about the evolutionary processes that have driven the 

changes in fruit color of tomato species, though it is notable that only red fruits are found 

on the mainland of South America with all of the green-fruited species, while the small 

Galapagos Islands harbor two species with a range of yellow and orange fruit colors. 

Both of these island species are noted for their tolerance to salt and osmotic stress 

(Albaladejo et al., 2015). The Galapagos Islands are known to go through drought 

conditions during La Niña, which creates bottlenecks for the plant populations (Restrepo 

et al., 2012), perhaps removing the selective pressures on traits that maintain fruit color in 

deference to traits enabling the plants to survive through harsh conditions. Alternatively, 

there could be selective pressure against bird endozoochory, with reptiles and mammals 

potentially depositing a greater portion of seeds into suitable habitats on these isolated 

islands, rather than into ocean waters. 

Species in the tomato clade with colored fruits owe their color to two of the most 

well-known carotenoids, lycopene and β-carotene (Stommel and Haynes, 1994). 

Carotenoids are a class of pigments commonly found in nature, providing yellow, orange, 

pink or red colors, depending both on the specific carotenoid and its concentration. There 

are over 700 known carotenoids (Tanaka et al., 2008), which range in color from pale 

yellow to bright red. They are one of the most common classes of plant pigments, along 

with anthocyanins and the much less common betalains (Tanaka et al., 2008). 
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Carotenoids, such as β-carotene and xanthophyll, are ubiquitous in chloroplasts as part of 

the photosynthetic apparatus, providing photoprotective function to protect structures in 

chloroplasts, allowing more efficient photosynthesis (Niyogi, 2000). Most yellow flowers 

owe their color to carotenoids, and carotenoid pigments can also produce orange flowers. 

Carotenoids also commonly co-occur with anthocyanins in floral tissue, producing novel 

colors that would not be possible otherwise (Forkmann, 1991). The color of many 

common fruits, such as squash, guava, orange, cantaloupe, mango, watermelon, papaya 

and chili peppers, are provided by carotenoid pigments.  

Both carotenoids and anthocyanins are universally found in plants, and thus there 

exists little phylogenetic pattern to their use for pigmentation. For instance, plants of the 

Solanum genus variously produce either pigment class for coloring their fruits, and even 

within the tomato clade, where orange, red, and yellow fruits are colored by carotenoids, 

there are some species which have anthocyanin stripes on their fruits (Rick et al., 1994b). 

Within the Solanum genus the ancestral state is having green-mature fruit with a firm 

texture (Wang et al., 2015) while derived fruits of the genus come in many colors, sizes, 

and textures, suggesting fruit traits may be quick to change. Since the regulatory pathway 

to produce wide varieties of pigments exist in all Solanaceous plants, they are capable of 

gaining new color from single mutations (Wang et al., 2015).  

We sought to more thoroughly document wild variation in fruit color in the 

tomato clade, to aid development of this group as a model for fruit color evolution. 

Additionally, we sought to identify possible genes associated with fruit color differences, 

document genetic diversity in these genes, and identify what might be drivers for 

evolution in these genes. This helps to improve the use of tomato as a model system by 
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providing more knowledge on gene function and the wild alleles that exist in close 

relatives. Additionally, it provides a chance to build the more general knowledge base 

about fruit color evolution with a case of several changes in closely related species.  

Materials and Methods 

Plants and growth conditions 

Seeds from multiple accessions of 13 Solanum species, including S. galapagense, 

S. cheesmaniae, S. pimpinellifolium, S. neorickii, S. cornelliomuelleri, S. chmielewskii, S. 

chilense, S. pennellii, S. habrochaites, S. peruvianum, S. lycopersicum, S. lycopersicum 

var. cerasiforme, and the outgroup to the tomato clade, S. lycopersicoides, were obtained 

from the UC Davis C.M. Rick Tomato Genetics Resource Center, maintained by the 

Department of Plant Sciences, University of California, Davis, CA. Plants were grown in 

the Morrill greenhouses on the University of Massachusetts Amherst campus with 

supplementary lighting and heating to maintain 12 hour day length and temperatures 

above 26°C during the day and 22°C at night. Young leaf material was collected for 

DNA extraction from all plants. Four species, which included the color-fruited species S. 

galapagense, S. cheesmaniae, S. pimpinellifolium, and the closely related green-fruited 

species S. neorickii, were grown until maturity and fruit set. Since these species are self-

compatible, new flowers were regularly agitated to promote self-pollination. Fruits were 

collected at the ripe stage or near the beginning of ripening, at the breaker stage, as 

needed for expression analysis. Fruits were halved, seeds were removed and the 

remaining tissue was flash frozen in liquid nitrogen. 
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Phenotyping 

Ripe fruit color was phenotyped by photographing each fruit with a Spydercube 

(Datacolor, Lawrenceville, NJ) to enable reproducible white balance between images. 

White balancing was carried out with Photoshop (Adobe, San Jose, CA), which was also 

used to measure the color of each fruit, giving numerical values to denote color. 

Measurements were taken from three fruits per plant and averaged to give a single value 

representative of fruit color. All color values were measured in the L*a*b* color 

spectrum which uses three values to represent a color, where the L* value denotes 

lightness with 0 being black and 100 being white, and the values of a* and b* are given 

on a scale from -128 to 128, with maximal saturation of a color occurring at each 

extreme. The values of a* measure the amount of green in the negative direction and 

amount of red in the positive direction, values of b* measure the amount of blue in the 

negative direction and amount of yellow in the positive direction. 

Quantification of carotenoid content 

Frozen mature tomato fruit tissue from various accessions belonging to four 

species was powdered using a Retsch (Haan, Germany) MM400 ball mill with a 25ml 

milling jar at the University of Massachusetts Amherst. A total of 0.2 grams was 

collected from each sample for carotenoid extraction. Fruits were chosen that represented 

the variation in fruit color of each species. Accession Spm1, naming follows that used in 

Figure 1 with numbers to differentiate accessions, has red fruit typical of S. 

pimpinellifolium mature fruit; accession Sg2 has dark orange colored fruit, and Sg6 and 

Sg7 have bright orange fruits typical of S. galapagense; the flesh of Sg14 fruits is a 

typical orange although a dark pigment in the skin of these fruits makes them appear very 
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dark; accession Sc19 fruits are similar in color to Sg6 and Sg7, and common for S. 

cheesmaniae though more color variation exists in this species than the other two, while 

Sc3 has a pale orange/yellow colored fruits and Sc11 fruits are very pale with little 

noticeable coloration; accession Sn7 is representative of green-ripe, non-chromoplast 

forming species such as S. neorickii, which is expected to show a baseline amount for 

carotenoids that are used in chloroplasts. Further analysis was carried out in the 

Giovannoni lab at the Boyce Thompson Institute at Cornell. Carotenoids were extracted 

following their lab procedure as previously described (Alba et al., 2005). The sample 

extracts were then measured for content of the carotenoids phytoene, ζ-carotene, β-

carotene, lycopene, and lutein. Quantification of carotenoids was carried out with a 

Waters (www.Waters.com) HPLC system equipped with a 4.6x250mm Waters reverse 

phase YMC Carotenoid S-5 column and a Dionex (www.Dionex.com) PDA-100 

photodiode array detector, which allows simultaneous detection of multiple carotenoids. 

Expression profiling 

Gene expression was measured with semi-quantitative RT-PCR of RNA extracted 

from fully mature fruits, which was determined by browning of the calyx in species of all 

colors. Ripe fruits were used because this allows the inclusion of green-colored species, 

for which developmental stages are difficult to determine except at maturity. RNA was 

extracted using a Qiagen (Hilden, Germany) RNeasy plant mini kit from 2-3 fruit halves 

from the same plant. RNA was converted to cDNA using the Ambion (Thermo Fisher 

Scientific, Waltham, MA) RETROscript kit with oligo d(T) primers following 

manufacturer’s instructions. Primers were designed using the online tool Primer3 

(Koressaar and Remm, 2007; Untergasser et al., 2012), and the primer sequences used 
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can be found in Table 9. Gene expression was measured for the five genes encoding the 

enzymes of the carotenoid synthesis pathway (Fig. 13) starting from Psy1, which acts on 

the general molecule geranylgeranyl diphosphate, required for diversion into the 

carotenoid pathway, and ending with CrtR-b2, which continues the pathway past the 

carotenoids and on to the xanthins. Actin was used as an expression standard. PCR were 

run 25 cycles for all genes to get semi-quantitative results showing approximate relative 

expression levels. 

Microarray expression profiling 

To measure expression levels, microarrays were carried out with the Affymetrix 

(Santa Clara, CA) GeneChip Tomato Genome Array with four RNA samples: two 

replicate extractions each from S. cheesmaniae accession LA0421 and S. pimpinellifolium 

accession LA0373 at the turning stage of ripening, to contrast orange and red fruits. The 

“turning stage” occurs shortly after the fruit stops growing and begins color changes 

associated with full maturation. This stage was chosen because the enzymes involved in 

color change are being actively produced so gene expression can be measured. The 

Affymetrix microarray contains 11 probe pairs per sequence covering over 9,200 tomato 

gene transcripts (Affymetrix, 2011), providing significant coverage and increasing the 

ability for homologous genes in closely related species to be identified by the chip. The 

microarray chip hybridization was done by the University of Massachusetts Medical 

School Genomics Core Facility. Data was analyzed using Bioconductor (Gentleman et 

al., 2004) in the R statistical computing environment (R Core Team, 2015). The affy 

package (Gautier et al., 2004) was used for interpretation of the intensity values to 

numerical values and the snm package (Mecham et al., 2010) for supervised data 
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normalization. A ratio between two values is calculated by taking the difference of those 

values, as the values are logarithmic. Replicate values were averaged and differences 

between the species with a value greater than two were considered to be significant. 

DNA sequencing 

To allow sequencing, DNA was extracted from leaf tissues using a modified 

CTAB miniprep DNA extraction procedure (Hillis et al., 1996). Between four and nine 

accessions of species selected for their color and phylogenetic placement were included 

in this study. The final number included per species also depended on success in 

amplifying the desired genes. Included were: nine accessions each of S. pimpinellifolium 

and S. cheesmaniae; eight accessions of S. galapagense; four accessions each of S. 

lycopersicum, S. lycopersicum var. cerasiforme, S. chmielewskii and S. neorickii; two 

accessions each of S. chilense, S. habrochaites, S. corneliomulleri, S. peruvianum and S. 

pennellii; and a single accession of S. lycopersicoides.  

Portions of five loci were targeted for amplification. The first locus was CYC-B, 

the gene found to have the greatest difference between color morphs in expression out of 

the genes in the carotenoid synthesis pathway (Fig. 13). CYC-B lies on chromosome 6, 

and primers to amplify approximately 985 bases of promoter and 1348 bases of the 

coding region were designed using Primer 3 (Caicedo and Schaal, 2004) (Table 9). Four 

DNA segments not involved in carotenoid synthesis, denoted as ct066, ct093, ct179 and 

vac, were chosen to serve as comparison for CYC-B. Ct066 is an approximately 654 base 

section from the coding sequence of the argenine decarboxylase gene on chromosome 10. 

Ct093 is an approximately 575 base section from the coding sequence of the S-
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adenosylmethionine decarboxylase gene on chromosome 5. Ct179 is an approximately 

985 base section from the coding sequence, with two introns, of the δ-tonoplast intrinsic 

protein on chromosome 3. Primers for all these loci were obtained from (Zuriaga et al., 

2008). Vac is an approximately 742 base section from the second intron within a vacuolar 

invertase gene on chromosome 3, and primers for this locus were obtained from (Caicedo 

and Schaal, 2004). Sanger sequencing was carried out by Beckman Coulter (Pasadena, 

CA). Sequences were aligned and cleaned using BioEdit (Hall, 2013). 

Population level analyses 

Natural selection tests were carried out using the Hudson-Kreitman-Aguade 

(HKA) test, which assesses whether loci display an excess of interspecific divergence or 

intraspecific polymorphism compared to genomic averages. Test were carried out using 

the HKA software developed and made publicly available online by the Jody Hey lab at 

Temple University (https://bio.cst.temple.edu/~hey/software/software.htm) along with 

the maximum-likelihood HKA (MLHKA) software developed by Stephen I. Wright 

(Wright and Charlesworth, 2004). For all tests, sequence from S. lycopersicoides was 

used as an outgroup. Signatures of selection were tested at all sequenced loci for S. 

pimpinellifolium, S. cheesmaniae and S. galapagense, the latter of which grouped 

together as they form the orange-fruited clade and have little genetic diversity between 

them, and S. neorickii and S. chmielewskii also grouped together as they represent the 

green-fruited sister clade to the color-fruited clade. Since S. cheesmaniae, S. 

galapagense, and S. neorickii showed no heterozygous sites they were treated as haploid. 

S. pimpinellifolium had numerous heterozygous sites and S. chmielewskii had some 

heterozygous sites, so both were treated as diploid. 
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The HKA software was used to produce an overall assessment of whether the 

sequence data indicated selection in a species for the loci tested. Time and θ estimates 

from the HKA output were used for the MLHKA infile. The polymorphism and 

divergence statistics π and Tajima’s D statistic (Tajima, 1989), also needed to run the 

program, were calculated using DnaSP software (Librado and Rozas, 2009). The 

MLHKA software allows testing of individual loci for selection, providing a more 

detailed view of selection in each group and allowing for determination of the likelihood 

of a model assuming no loci are under selection and a model assuming one or more loci 

are under selection. This likelihood ratio was tested for significance using a χ2 test. 

Phylogenetic analyses 

Phylogenetic trees were created for each sequenced locus using RAxML-HPC2 

(Stamatakis, 2014) with the GTRGAMMA bootstrapping model. This was done on 

XSEDE through the CIPRES science gateway at www.phylo.org (Miller et al., 2010). 

The resultant newick file was used to create phylogenetic trees with the MEGA software 

(Tamura et al., 2013). The final trees used in figures for this paper were refined using 

Inkscape vector graphics software (www.inkscape.org).  

Analysis of promoter binding sites 

Promoter sequences of CYC-B in red and orange fruited species were analyzed 

using the online tool PlantPAN (Chang et al., 2008), to find potential transcription factor 

(TF) binding sites that could be affected by fixed sequence differences between the color-

fruited species. Transcription factor binding motifs from Arabidopsis thaliana and 

Glycine max were used, as these are the most closely related plants to the tomato clade 
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with well documented transcription factor binding motifs available for use. These results 

were then edited to remove TF families not found in Solanum to give a list of possible TF 

binding sites that could account for differences in orange and red fruits. 

Results 

Variation in fruit color 

This analysis provided a way to quantify the observed visible color variation in 

the fruits of this clade. Ripe fruits from the Solanum clade span a large range on the red-

green and yellow areas of the L*a*b* color space (Fig. 14), and the size of the color 

space area occupied varied greatly between species. Red fruits, all of which belong to S. 

pimpinellifolium or its derived domesticated or semi-domesticated species, S. 

lycopersicum and S. lycopersicum var. cerasiforme, were very similar in L*a*b* color 

values. The orange fruits of S. galapagense and S. cheesmaniae, on the other hand, 

showed large variation (Fig. 14). S. galapagense individuals showed variation in the 

amount of yellow, primarily due to accession Sg14, which stands out due to dark 

pigments found in the skin of its fruits throughout development and is unrelated to 

ripening color changes. S. cheesmaniae individuals showed wide variation along the red-

green and blue-yellow axes, with Sc19 and Sc20 being rich orange, similar in color to the 

fruits of S. galapagense, while Sc1 and Sc11 have very pale fruits that can appear creamy 

or somewhat green (Fig. 14). Most individual plants belonging to the same accession 

produced fruits that were fairly uniform in color, so only one measurement from each 

accession provides a representative color value, however, fruits from Sc11 were quite 

variable and so values from a slightly green and slightly yellow fruit were added along 
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with the representative Sc11 value of the more typical cream color. Green-fruited species 

do not accumulate carotenoids during ripening and a small sample of ripe green fruits 

from two species were included to show the differences in the L*a*b* color space 

between green-ripe fruits and the colored carotenoid accumulating fruits. As expected, 

green fruits clustered toward more green and less yellow values in the color space.  

Carotenoid content 

Both type and quantity of carotenoid pigments differed considerably among 

tomato species. The red fruits of S. pimpinellifolium were the only fruits to contain any 

lycopene, which is also the main carotenoid they accumulate (Fig. 15a). Red fruits also 

contained an order of magnitude more total carotenoids than any of the other fruits (Fig. 

15b). Green colored S. neorickii fruits contained mostly lutein, a light-colored pigment 

that is found in chloroplasts, and this pigment also predominated in our very light-

colored, somewhat greenish S. cheesmaniae, Sc11. The fruits of S. galapagense plants 

varied in carotenoid content despite their visual similarity, accumulating primarily β-

carotene and phytoene, a colorless carotenoid precursor. Sg2 had the deepest orange 

fruits, nearly red, but these were unable to be regrown for the color measurements above. 

Fruits of S. cheesmaniae plants accumulated very little carotenoids overall, most of which 

was phytoene with small amounts of β-carotene, though no β-carotene was detected in 

Sc19 despite its orange color (Fig. 14). Table 10 shows the technical replicate results 

from β-carotene quantification. There is high variability which, along with the surprising 

Sc19 results, highlights that there is too little replication here to draw strong conclusions 

about carotenoid levels and correlation with fruit colors. 
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Carotenoid synthesis gene expression 

We initially examined expression of carotenoid genes in an orange-fruited S. 

cheesmaniae and a red-fruited S. pimpinellifolium at the turning stage of ripening using a 

microarray. Green-fruited species were not included, due to difficulties in identifying the 

homologous developmental stage. Significant differential expression between color 

morphs was observed for CYC-B (Table 11); in orange turning-stage fruits, CYC-B 

expression was over three times the level seen in red fruits, suggesting active synthesis of 

β-carotene at the expense of lycopene (Fig. 13). Out of all the probes on the array, CYC-B 

was the 12th most differentially expressed. Though not significant, the expression of 

CrtR-b2 was almost two times lower in orange fruits compared to red and is the 101st 

most differentially expressed gene on the chip, out of over 9,000 genes covered. Higher 

expression of CrtR-b2 could facilitate depletion of any β-carotene synthesized in red 

fruits, and lower expression could facilitate a greater ability to accumulate β-carotene in 

orange fruits (Fig. 13). Expression of other genes in the pathway differed by less than 

70%. Full microarray results can be found in Table S8, the genes showing an expression 

ratio greater than 2 between the species are shown in Table S9. 

To complement these results, we used RT-PCR to examine expression of 

carotenoid synthesis genes at the fully ripe stage in a larger panel of accessions, including 

one green-fruited sample, S. habrochaites (Fig. 16). From these results, genes in the 

middle of the carotenoid synthesis pathway seem to be the most active across accessions 

of different colors, with varying expression levels between individuals (Fig. 16). Since 

Psy1 is only showing expression in Sg13, it is possible that the beginning of the pathway 

is being shut down at this stage of development, as it would have to have been active at 
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some point. The consistent difference between red fruit and fruits of other colors was a 

large down-regulation of CYC-B gene expression (Fig. 16), which would allow these red 

fruits to accumulate lycopene, while orange fruits are producing the enzymes to deplete 

lycopene, allowing the accumulation of β-carotene instead.  

CYC-B and non-carotenoid related gene trees 

Because CYC-B is the carotenoid synthesis gene that most consistently showed 

expression differences between tomatoes of two colors (orange and red), we examined 

DNA sequences for this gene and its promoter region (Fig. 17), and compared 

phylogenetic relationships to those observed for four other genes unrelated to carotenoid 

synthesis (Fig. 18). For all genes, strong differentiation was seen between green and 

colored-fruited species, with colored-fruited species forming strongly supported 

monophyletic groups, albeit with the occasional green-fruited allele falling in the colored-

fruited clade. This is consistent with known tomato phylogeny and the monophyly of 

colored species (Pease et al., 2016b; Spooner et al., 2005). Orange and red-fruited species 

were not consistently differentiated in any gene tree, except that of the CYC-B promoter, 

for which the red-fruited clade had a high bootstrap support (Fig. 17b). Thus, although 

the promoter and coding regions of CYC-B have unique single nucleotide polymorphisms 

(SNPs) and indels that group the color-fruited species together, only the promoter region 

could differentiate between the red and orange-fruited species. The yellow-orange 

species, S. cheesmaniae and S. galapagense, could not be differentiated by the sequence 

of any of the genes examined in this project. 
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We examined more closely the clade differentiation in the promoter and coding 

region of CYC-B. The coding region in color-fruited species is defined by two fixed non-

synonymous mutations and two fixed synonymous mutations that differentiate them from 

green-fruited species, as listed in Table 12. In addition to these alleles unique to the 

color-fruited species, six synonymous and two non-synonymous segregating sites were 

found to be fixed in the color clade while both alleles still segregated in green-fruited 

relatives (Table 12). 

Within the CYC-B coding region, cultivated tomatoes (S. lycopersicum and S. 

lycopersicum var. cerasiforme) formed a well-supported clade that is separated from 

other colored species. These domesticated species contain a fixed G to T SNP at 868 bp 

from the beginning of the coding region. This SNP results in an exchange of an 

asparagine (Asn) for aspartic acid (Asp). While this change is from a polar neutral amino 

acid to an acidic negatively charged one, these two amino acids can serve similar 

functions, and are frequently referred to interchangeably as Asx for structures and motifs 

that are functionally similar. Thus, it is unlikely that this fixed SNP leads to functional 

changes in the lycopene β-cyclase enzyme. 

The promoter region of CYC-B had multiple polymorphisms that differentiated 

red-fruited accessions from orange-fruited accessions, as well as polymorphisms that 

differentiated colored accessions from green-fruited accessions (Table 13). In our data, 

for the promoter region we sequenced, ten SNPs were fixed in color-fruited species and 

differentiated from green-fruited species. Additionally, there were two single base pair 

insertions and three multi-nucleotide deletions that are fixed and specific to the color-fruit 
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clade. There were also twenty segregating sites that have become fixed for a single allele 

in the color-fruited species, but still segregate in green-fruited species (Table 13).  

Red-fruited and orange-fruited species were differentiated by one SNP 883 bp 

upstream of the start codon that segregates in green-fruited species, but is differentially 

fixed between S. pimpinellifolium and orange-fruited species (Table 13). Additionally, 

there were three point mutations (sites -527, -412 and -78) for which a novel derived 

allele is fixed exclusively in the red clade, and two point mutations (sites -640 and -206) 

for which the orange clade has become fixed for a novel derived allele. 

Genetic diversity and natural selection measures 

Levels of genetic diversity were examined for key tomato groups for all 

sequenced loci. In general, the CYC-B coding region tended to have among the lowest 

levels of nucleotide diversity compared to other loci (Table 14). This was particularly 

pronounced in S. pimpinellifolium and the combined S. neorickii-S. chmielewskii group, 

and less so in the S. cheesmaniae-S. galapagense group. Solanum cheesmaniae and S. 

galapagense tend to have low levels of diversity across the genome, likely due to a 

bottleneck upon island colonization and high levels of self-fertilization, which impacts all 

loci.  The promoter region of CYC-B was also low in diversity in colored species, but not 

as notably so in the green-fruited species. In general, levels of nucleotide diversity in all 

loci were comparable for S. pimpinellifolium and the S. neorickii-S. chmielewskii group, 

and lower for the Galapagos group, S. cheesmaniae and S. galapagense. For the most 

part, Tajima’s D values for CYC-B were unremarkable. The orange-fruited clade was the 

only group that showed an extreme Tajima’s D for the CYC-B promoter, which was 
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different than seen on the loci not involved in carotenoid synthesis (Table 14). In this 

clade, there is a negative Tajima’s D for CYC-B promoter while the coding region shows 

no polymorphism at all, which could suggest purifying selection against new mutations in 

this gene and its promoter, or recent positive selection on the locus. A negative Tajima’s 

D value is consistent with an excess of rare mutations, which can occur after positive 

selection, but can also be attributed to an expanding population.  

To test for possible selection on the CYC-B locus in any tomato group, we used 

HKA tests (Hudson et al., 1987; Wright and Charlesworth, 2004). HKA tests take 

divergence into account along with within-group polymorphism by comparing the species 

of interest against an outgroup for each locus, and assessing if either quantity is different 

from patterns across the genome. χ2 statistics were computed for maximum likelihood 

values from comparing a model assuming no loci are under selection to one assuming 

that the listed locus or loci are under selection (Table 15).  

Surprisingly, the assumed neutral locus ct066 was the only locus with significant 

χ2 in more than one group, both in S. cheesmaniae-S. galapagense and S. neorickii-S. 

chmielewskii. The ct066 locus covers a portion of the coding region of an arginine 

decarboxylase gene on chromosome 10. This locus shows lower divergence than most 

other loci but higher levels of polymorphism, causing the significant result in both cases 

(Table 16). In these two groups, no other locus or combination of loci showed 

significance. False positives in S. neorickii-S. chmielewskii could occur in areas where 

there are divergent SNPs between the species of that group that in turn may imply a 

higher frequency of rare alleles when assuming them to be one species, however this is 

not likely to have been a large issue as this group only had a significant χ2 at one locus.  
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In S. pimpinellifolium the assumed neutral vac locus has a significant χ2, 

suggesting this locus is under selection in the group, with much higher levels of 

polymorphism than the other loci examined in this species (Table 16). The vac locus is 

within the second intron of a vacuolar invertase gene, which could be involved in fruit 

sugar levels, though the locus sequenced is non-coding, and it is not clear why 

diversifying selection would act on a sugar-related gene. Curiously, when the CYC-B 

coding region and promoter were tested separately for signals of selection, neither 

showed significance in any group. However, if the CYC-B gene is tested as a whole, a 

model suggesting selection is strongly supported in S. pimpinellifolium (Table 15). This 

likely stems from the high levels of divergence relative to low polymorphism when 

looking at these loci together (Table 16), which is a common signal of positive selection. 

S. cheesmaniae-S. galapagense have similar divergence to polymorphism ratio for this 

gene but do not show significant χ2 because this group has low polymorphism at all loci. 

Transcription factor binding sites 

Despite only limited signals of selection for the CYC-B gene in orange vs. red 

fruited species, the differentiation in the promoter region suggest that there may be 

functional consequences related to polymorphism in the promoter. Because 

polymorphisms that differentiated red and green fruited species and their potential effect 

on transcription factor (TF) binding have already been described in (Mohan et al., 2016), 

here we focus on polymorphism that may possibly lead to differences in regulation of 

CYC-B in red and orange-fruited species. It is worth noting that binding sites for the 

major ripening induced regulator RIN do not vary between red and orange-fruited species 

but do vary between green and color-fruited species (Table 17). In the promoter region 
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sequenced, we found six SNPs that are fixed between orange and red-fruited species as 

shown in Table S10, which we refer to here by their position from the start codon in our 

alignment. Three of these SNPs have novel alleles in the red clade and two have novel 

alleles in the orange clade. All of these SNPs lead to changes in possible TF binding sites, 

with the fixed SNP in orange-fruited species at -206 creating novel binding possibilities 

and fixed SNP in red-fruited species at -78 which eliminated existing potential TF 

binding sites (Table S10). 

The novel T allele fixed in the red clade at position -883 created a new motif that 

may be recognized by NAC and bZIP family promoters, though it reduces the similarity 

to Myb core TFs found in cyclin promoters. The orange fixed allele at -640 slightly 

lessens similarity to a SAUR auxin responsive motif while increasing similarity to a 

SURE sulfur responsive motif and ruining similarity to a SORLIP light induced motif. 

The derived G allele fixed in the red clade at position -527 somewhat reduces motif 

recognition; though both alleles can be recognized by bZIP and HD-ZIP family TFs the 

red clade loses potential recognition by AP2, AT-Hook and ERF TF families. The 

derived C allele fixed in the red clade at position -412 retains potential Dof family 

recognition while gaining recognition by TFs in the HSF and SBP families, though losing 

AT-Hook TF family recognition. In the orange clade, the derived T allele fixed at 

position -206 creates a new potential TF binding site recognized by Dof family TFs as 

well as gaining similarity to a SORLREP light repressed motif. The derived G allele 

fixed in the red clade at position -78 eliminates potential recognition by Dof and 

Homeodomain TFs as well as eliminating similarity to a root specific motif that is 

unlikely to be active in the fruits. 
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Discussion 

The tomato clade has only three wild species that have colored ripe fruits (Grumet 

et al., 1981), but these three species contain quite a bit of visual variety. Solanum 

pimpinellifolium has bright red deeply colored fruits, while the species from the 

Galapagos Islands are orange fruited. Solanum galapagense’s fruits are intensely orange 

colored, while S. cheesmaniae’s fruits range in color from deep orange to pale orange to 

yellow to cream. 

This pattern of visual consistency/variation was supported in the measured color 

values but less so in the measured carotenoid contents. Solanum pimpinellifolium 

contained very high levels of the red pigment lycopene. This was expected since their 

fruits are a deep red color and cultivated tomato is well known for containing lycopene. 

However, the concentrations are orders of magnitude higher than what was seen for 

carotenoids of other color fruits. The orange fruits had dramatically less carotenoids 

overall and contained no lycopene, accumulating β-carotene instead. The fruits of S. 

galapagense varied quite a bit in β-carotene content; Sg2 was the darkest orange fruit 

with hints of red and also had the highest β-carotene content. Sg6 and Sg7 have visually 

similar fruits that vary slightly in their L*a*b* values, but Sg6 contains almost no β-

carotene. Sg7 is also visually similar and very close in L*a*b* values to Sc19 which 

contains no β-carotene and barely any carotenoids at all. If these values are correct it 

suggests that much less carotenoid investment is required to produce rich colors with β-

carotene than with lycopene, though the ability to attract avian dispersers could justify the 

cost.  



84 

 

The gene expression in ripening fruits highlighted the division between 

red/orange fruits and their lycopene/β-carotene accumulation. Red fruits showed very low 

expression of CYC-B, limiting production of lycopene beta-cyclase, allowing the 

accumulation of lycopene, a molecule acted upon by this enzyme. Orange S. cheesmaniae 

fruits, conversely, express CYC-B, allowing the conversion of lycopene to the β-carotene 

that these fruits accumulate, while showing a slight reduction in expression of CrtR-b2, a 

gene producing β-carotene hydroxylase, an enzyme which acts on β-carotene. This 

confirmation of the genetic control of color production suggests that, to achieve red or 

orange fruit colors, the expression of genes that produce enzymes which modify colored 

carotenoids are being affected, and not their function. 

The CYC-B gene was sequenced to look at whether differences had evolved 

between red-fruited, orange-fruited and green-fruited species. This gene contains many 

differences specific to carotenoid accumulating species in both promoter and coding 

region sequence. The promoter region has many SNPs, some larger indels as well as loss 

of allele diversity at other SNP sites differentiating color-fruited species from the green-

fruited species. As previously reported, none of these lie in binding sites associated with 

the ripening associated transcription factor RIN (Mohan et al., 2016). There are other TF 

recognized sequences that are affected by these SNPs which may play a role in the 

overall expression, though how this regulation may occur is less understood than RIN 

associated expression. Within the coding region of CYC-B the color-fruited species have 

SNPs resulting in synonymous and non-synonymous changes. Two of these non-

synonymous SNPs are unique to the color-fruited clade and two others result from a loss 

of diversity (Table 12). The division between orange and red-fruited species, however, is 
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limited to the promoter region, where both groups have unique SNPs. These SNPs do not 

affect RIN binding sites, but they do all fall inside putative TF binding motifs, which 

could lead to differential expression of this carotenoid acting enzyme to produce different 

colored fruits. 

Some loci that were included in this study as neutrally evolving background loci, 

uninvolved in the color phenotype, actually showed highly significant likelihood to have 

been evolving under selective pressures (Table 15). Neither the S. cheesmaniae-S. 

galapagense nor S. neorickii-S. chmielewskii groups showed evidence of CYC-B evolving 

under selection. However, there was evidence that ct066, a portion of the coding region 

from an arginine decarboxylase gene, may be evolving under diversifying selection in 

both groups. In S. pimpinellifolium, vac, the second intron within a vacuolar invertase 

gene, might also be under diversifying selection (Table 15), which may indicate a 

diversity of sugar accumulation profiles or sugar use profiles in the species. The promoter 

and coding sequence of CYC-B in S. pimpinellifolium show likelihood of evolution under 

positive selection, but only when taken together, as neither sequence on its own was 

significant. However, it is only the promoter region of CYC-B that shows red specific 

sequence. With these results, it is likely that CYC-B has been under more selective 

pressures in red-fruited S. pimpinellifolium to decrease expression during fruit ripening, 

than it has in increasing fruit ripening expression in the orange-fruited Galapagos 

tomatoes. 

Despite having many phenotypic differences, S. cheesmaniae and S. galapagense 

have high levels of genetic similarity, so much so that for a long time S. galapagense was 

classified as a subspecies of S. cheesmaniae. Sequences from three of the regions used in 
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this study had no differences at all between the two species and, overall the sequences 

from these species had very little variation compared to variation found in the sequences 

of the same regions in other species. It was thus unsurprising that no region sequenced 

could be used to differentiate these species. 

CYC-B expression is tightly linked to tomato fruit color in determining red versus 

orange, since for the accumulation of lycopene little to no lycopene β-cyclase being 

present is required. The likelihood of this gene evolving under selection is only high in S. 

pimpinellifolium, suggesting maintenance of red coloration and lycopene accumulation is 

important for this species. The orange fruits of the Galapagos Islands’ species have a less 

direct story. The colors of these fruits vary and the results from carotenoid profiling are 

unlikely to be robust as they represent unlikely or impossible situations, where some 

orange fruits apparently contain no β-carotene, leaving much room for a more thorough 

carotenoid profiling of these fruits. There is also no clear reason for the observed 

differences in color between orange fruits; an explanation may require gene expression 

profiling of a wider array of orange fruits. Due to high sequence similarity in the 

promoter of CYC-B in these orange fruits, an understanding of the TFs active in these 

fruits may also be needed to understand how this color variation is brought about. Given 

what is currently known, it is possible that fruit color variation in S. cheesmaniae and S. 

galapagense is not under selective pressure on the Galapagos Islands, producing the 

observed variation through drift.
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Tables 

 

Table 9 Primers used for carotenoid synthesis pathway genes and actin standard, 

followed by gene regions assumed to be evolving separately from fruit color. 

Gene Forward primer Reverse primer 

Psy1 5’-GCGTTTGATGTCACTTTTGCTGA-3’ 5’-AGCAGGATTTCACAACACGGCTA-3’ 

PDS 5’-GGTAGTGCAATCGAGGGAGATGC-3’ 5’-GCGCCTTCCATTGAAGCCAAGTAT-3’ 

ZDS 5’-ATGGGTCACCTGGATTCTTGGTT-3’ 5’-TGTAAGGGTGCTCCAACTGGAAA-3’ 

CYC-B 5’-TCCCTCTTTTCTAAGTCCCACCA-3’ 5’-TGTCCGAAAAGACACAAGCTGAG-3’ 

CrtR-b2 5’-TGCTGTAATTTAATGCTGTGGTCCT-3’ 5’-TGAAATCCCCAGACAGCAGAATC-3’ 

actin 

 

5’-TTGCTGACCGTATGAGCAAG-3’ 

5’-GTTGGAATGGGTCAGAAAGATGC-3’ 

5’-GGACAATGGATGGACCAGAC-3’ 

5’-GACTCACACCATCACCAGAGTCC-3’ 

   

ct066 5’-CAATCAGGACAGGTTCGTTGTTG-3’ 5’-AATTGCTCTGCCACTTTCGCTAC-3’ 

ct093 5’-GGAAATGGACTTGCCAGTTTCTG-3’ 5’-ATGTGAGCAGCCGAACTTTCTTC-3’ 

ct179 5’-CGAATTCATCTCCACACTCA-3’ 5’-TAAGACCAGCCAAACTACCAC-3’ 

vac 

 

5’-GGATTCTGATTGGATGCT-3’ 

 

5’-GTATGACCCACATAACGTG-3’ 

5’-GGCCCAACTATTGGTATTATT-3’ 

 

 

Table 10 β-carotene individual measurements showing high variability between technical 

replicates (indicated by -1 and -2). Species codes are shown in figure 1 with a number 

representing the accession used. 

β-Carotene replicate content (µg) average content (µg) stdev 

Sg14-1 0.262746 0.192225 0.099732 

Sg14-2 0.121704   

Sc11-1 n.a. 0 0 

Sc11-2 n.a.   

Sc3-1 0.105072 0.097746 0.010361 

Sc3-2 0.09042   

Sc19-1 n.a. 0 0 

Sc19-2 n.a.   

Sn7-1 n.a. 0 0 

Sn7-2 n.a.   

Spm1-1 0.416394 0.781935 0.516953 

Spm1-2 1.147476   

Sg6-1 4.57215 5.600496 1.454301 

Sg6-2 6.628842   

Sg7-1 0.526416 0.354882 0.242586 

Sg7-2 0.183348   
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Table 11 Expression levels of genes involved in the carotenoid pathway as determined 

by microarray analysis. The ratio gives the difference between the average species value 

for each gene’s expression. 

Gene Name Symbol Sc rep 1 Sc rep 2 Spm rep 1 Spm rep 2 ratio 

Phytoene Synthetase Psy1 6.952828 6.959477 6.590111 6.596759 0.362718 

Phytoene Desaturase PDS 8.455209 8.223653 8.431434 8.199878 0.023775 

ζ-Carotene Desaturase ZDS 6.511347 6.796353 7.112425 7.39743 -0.60108 

Lycopene β-Cyclase CYC-B 9.698078 9.11466 6.370464 5.787046 3.327613 

β-Carotene Hydroxylase CrtR-b2 6.102995 6.144434 7.940746 7.982184 -1.83775 

 

 

Table 12 Mutations present in CYC-B coding sequence differentiating the color-fruited 

species (C) from the green-fruited species (G). Site number is counted from the beginning 

of the start codon in my alignment. For nonsynonymous mutations, the main amino acid 

(AA) effect difference from the green clade allele to the fixed color clade allele are given 

in the final column. 

Site Mutation type  G Allele G AA C Allele C AA AA Change Effect 

59 Nonsyn G/A Lysine/Arginine G Arginine Increase Hydrophilicity 

60 Syn G/A  G   

66 Nonsyn T Phenylalanine G Valine Increase Hydrophobicity 

125 Nonsyn C/T Proline/Leucine T Leucine Hydrophilic to Hydrophobic 

232 Nonsyn G Aspartic acid T Asparagine Acidic to Neutral 

249 Syn C/T  C   

261 Syn C/T  C   

459 Syn G/A  A   

462 Syn C/T  T   

795 Syn A  G   

798 Syn C/T  T   

912 Syn G  T   
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Table 13 SNP and indel alleles, found in the promoter region of CYC-B, differentiating 

green, red and orange-fruited species. For sites that are variable within a group, both 

alleles are listed. The site of the polymorphism is given in distance to the start codon in 

my alignment, for multiple base polymorphisms only the start site location is given. 

 Site Green Red Orange 

-1003 A/G G G 

-956 T C C 

-883 C/T T C 

-793 C/T T T 

-776 C/T C C 

-774 A T T 

-771 del T T 

-753 T del del 

-743 C/T C C 

-742 C/T C C 

-735 A/G G G 

-686 AA del del 

-679 T/G G G 

-671 A/T T T 

-664 A T T 

-661 C/G C C 

-652 C T T 

-640 C C T 

-527 A G A 

-495 CGAAGTAT del del 

-467 A/T T T 

-440 A/C C C 

-415 A G G 

-412 T C T 

-394 T/C C T/C 

-368 G A A 

-364 T/C C C 

-362 A/G G G 

-347 C T T 

-344 A/G A A 

-328 A G G 

-317 CCAAATAT del del 

-301 C/T C/T T 

-299 G A A 

-206 A A T 

-142 del T T 

-90 A/G G G 

-78 T G T 

-24 T del del 

-14 del A A 

-7 T C C 
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Table 14 π, θ and Tajima’s D diversity statistics for loci sequenced, separated by group, 

species codes are shown in figure 1. 

Statistic ct066 ct093 ct179 vac CYC-B pro CYC-B orf 

Spm       

   π 0.00129 0.00126 0.00157 0.00793 0.00046 0.00021 

   θ 0.00133 0.00164 0.00172 0.00678 0.00035 0.00027 

   Tajima's D -0.09241 -0.7077 -0.28831 0.64919 0.64998 0.20063 

ScSg       

   π 0.00069 0 0 0.00043 0.00019 0 

   θ 0.00102 0 0 0.00042 0.00037 0 

   Tajima's D -0.9092 --- --- 0.08512 -1.14053 --- 

SnScm       

   π 0.00586 0.00057 0.00159 0.0086 0.0013 0.00245 

   θ 0.00457 0.0006 0.00203 0.00667 0.00157 0.00259 

   Tajima's D 1.14124 -0.10001 -0.82229 1.32247 -0.68914 -0.43284 

 

Table 15 HKA results for each gene locus, species listed are compared against the 

outgroup S. lycopersicoides, species codes are shown in figure 1. Maximum likelihood 

(ML) values are from ML-HKA tests assuming the locus was under selection, ‘No 

selection’ ML value given for reference. Significance was determined from χ2 

distribution using one degree of freedom, except ‘CYC-B pro + orf’ which had 2 degrees 

of freedom, significance is indicated with * for p < 0.05 and ** for p < 0.01. 

 Spm ScSg SnScm 

Locus ML χ2 ML χ2 ML χ2 

No selection -30.85  -22.4427  -32.6451  

ct066 -30.5987 0.5026 -20.3187 4.2480* -28.9961 7.2980** 

ct093 -30.1017 1.4966 -22.2438 0.3978 -32.5251 0.2400 

ct179 -30.5936 0.5128 -21.2891 2.3072 -31.8547 1.5808 

vac -28.6275 4.4450* -22.4395 0.0064 -32.4895 0.3112 

CYC-B pro -29.407 2.8860 -22.3736 0.1382 -30.9326 3.4250 

CYC-B orf -29.1158 3.4684 -21.7695 1.3464 -32.6096 0.0710 

CYC-B pro + orf -27.2 7.3000* -21.7 1.4854 -30.9 3.4902 

 

Table 14 Collected values of polymorphic (polym) and divergent (diver) sites for each 

locus used in population level analyses. Species codes are shown in figure 1. Length 

measurements are based on overall length in my alignments. 

  Spm ScSg SnScm 

locus ID length (bp) Polym Diver Polym Diver Polym Diver 

ct066 654 3 10 2 11 9 7 

ct093 576 3 7 0 9 1 7 

ct179 961 5 45 0 45 4 35 

vac 755 16 41 1 42 12 36 

CYC-B pro 1005 1 26 1 28 2 33 

CYC-B orf 1348 1 29 0 29 8 29 
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Table 15 Binding sites in the promoter region of CYC-B for the overall ripening regulator 

RIN. Start site given in distance to start codon in my alignment. Species containing the 

motif variant are given using the species codes used in figure 1. 

RIN binding motifs Start Site Species  

CCTTTATGGG -653 Spe 

CCTTTATAGG -653 Sch, Scm, Sh, Sn, Spe, Sly 

CTTTTATAGG -653 Sc, Sg, Sl, Slc, Spm 

CCTTTTTTG -146 Spe 

CTTTTTTTG -146 Sch, Scm, Sh, Sn, Spe, Sly 

CTTTTTTTTG -146 Sc, Sg, Sl, Slc, Spm 

CAATATTTTG -104 All 
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Figures 

 

Figure 13 

 

Figure 13 Carotenoid synthesis pathway, showing enzymes active in each step. Green 

arrows represent enzymes active in leaves, yellow arrows show enzymes active in 

flowers and fruits, checkered arrows are shared enzymes, and dashed arrows indicate that 

multiple unlisted enzymes exist between the two products (modified from Galpaz, 2006). 
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Figure 14 

 

Figure 14 Color distribution chart showing the a* and b* aspects of L*a*b* color space 

values for fruits used in carotenoid measurements. L* measures the lightness/darkness, so 

it was not included here. Chart shows just the area of the color space in which these fruit 

colors occur; both a* and b* extend from -256 to 256. Plant names in bold represent the 

same fruits that were used in carotenoid HPLC. Multiple accessions from each species 

were used. Species codes are shown in figure 1 with a number representing the accession 

used. 

 

Figure 15 
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Figure 15 Carotenoid HPLC results showing (a) percentage of different carotenoids 

present and (b) total carotenoid concentration by weight. Species codes are shown in 

figure 1 followed by a number representing the accession used. 

 

Figure 16 

 

Figure 16 RT-PCR results for genes involved in the carotenoid synthesis pathway and 

actin standard. RNA was extracted from fruits at the turning stage, near the beginning of 

the ripening process. Species codes are shown in figure 1 followed by a number 

representing the accession used. 
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Figure 17 

 

 

Figure 17 Trees created from sequence data of the CYC-B gene. (a) is created from the 

coding region of the gene, and (b) is from the promoter sequence. Species codes are 

shown in figure 1, the number in parentheses represents the number of sequences from 

each species in the collapsed branch, dot color indicates the color of mature fruits from 

the species. Bootstrap values are from 100 trees; values under 50 are not shown. 

 

a 

b 
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Figure 18 
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Figure 18 Additional trees created from (a) ct066, (b) ct093, (c) ct179 and (d) vac 

regions, unrelated to carotenoid development. Species codes are shown in figure 1, the 

number in parentheses represents the number of sequences of each species in the 

collapsed branch, dot color indicates the color of mature fruits from the species. 

Bootstrap values are from 100 trees, values under 50 are not shown. 

c 

d 
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