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ABSTRACT

PREPARATION, MECHANICS AND STRUCTURE OF
SPHERE PACKINGS NEAR THE RANDOM LOOSE

PACKING LIMIT

SEPTEMBER, 2018

GREG ROBERT FARRELL

B.S., BRANDEIS UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Narayanan Menon

Packings of monodisperse, hard spheres serve as an important model system in

the understanding of granular materials which are ubiquitous in nature and industry

from sedimented river beds, to construction aggregates, to pharmaceuticals. Unlike

frictionless hard spheres which are only stable at densities near the random close

packing volume fraction, packings of real spheres form stable packings over a range

of volume fractions. We report experimental investigations of sedimented packings of

noncohesive polymethyl-methacrylate spheres over a range of volume fractions near

the lower limit of this range of volume fractions.

We create packings by slow sedimentation in a viscous fluid and find that a limit-

ing low volume fraction is achieved when the Stokes’ number drops below ten. This

threshold value is consistent with the vanishing of the interparticle restitution co-

efficient. We observe that the lower limit of packing achieved depends on the type

of sphere used. We develop a new in situ measurement of the effective interparticle

vi



friction coefficient and find that lower limiting volume fractions are obtained with

higher static friction particles. Thus a random loose packing limit (RLP) in which

non-cohesive spheres are stabilized by frictional contacts can be achieved by gentle

sedimentation and yields volume fractions distinct from random close packing.

We also report experiments on the mechanical response of these sedimented sphere

packings. We observe that the yield-stress scales with identical cube-root power-

laws of strain-rate and age. We introduce a modification of the Maxwell model of

viscoelasticity that accounts for this exponent as well as for mechanical responses

that we observe under constant strain and those observed elsewhere under constant

stress.

We investigate the internal 3-dimensional structure of sedimented packings using

refractive index matching and laser-sheet illumination. Despite these sedimented

packings having been deposited in gravity, we find that the structure is isotropic and

homogeneous in the bulk. We find spatial autocorrelations and cross-correlations to

be short ranged and that the radial distribution function is largely determined by local

structure. We report distributions of local volume and crystalline order parameters

and find that the distributions of order parameters are not predicted solely by hard-

sphere constraints.
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3.1 Experimental setup and preparation of the packing. Within a
transparent, square cross-sectioned box, a roughened “shear
plane” (c) is suspended from a motion stage (a) in the center of
the container, in line with a force transducer (b). The sphere
packing rests on a porous base (f) which is raised and lowered
2 cm via thin rods (h) to allow the spheres to settle. The distance
from the shear plane to the boundary is the system width, W .
The left column shows the force exerted on the shear plane and
the change in volume fraction as the packing is formed. The
approach to the long-time steady-state force, f0, collapses
(top-right), when the force is scaled with the relative buoyant
weight of the particles, ∆ρ = 1− ρf/ρs, and time is scaled with
the Stokes’ timescale, τst = 18 ηf/(g d ρs ∆ρ), of particles falling
under gravity though a fluid of viscosity, ηf . A crossover to a
slower relaxation appears to occur at ∼ 600 τst corresponding to
430 s for ηf = 110 mPa · s and 9.6 s for ηf = 5.4 mPa · s. The
crossover provides a way to estimate the beginning of the aging
time, T , of a freshly sedimented packing. The image shows
surface profiles of a slice of the top of the packing moving
downward while being compacted by a large upward motion of the
shear plane (the yellow lines are sampled every 45 s,
γ̇ = v/W = 8.8× 10−5/s, W = 18 d, ηf = 110 mPa · s). . . . . . . . . . . . . 34

3.2 Compaction triggered by sinusoidal oscillation with period, T = 6.6 s.
Larger amplitudes caused faster compaction although curves at
the two lowest amplitudes nearly overlay. The inset image shows
a slice of the top of the packing during compaction while the
shear plane is drawn upward at constant velocity
(v/W = 8.8× 10−5/s). Light-colored lines show previous surface
profiles sampled every 45 seconds. While the roughened plane
(visible on the right of the inset image) moves upward at constant
velocity, the motion of the free surface is predominately a
downward translation thus it is right to think of this phase of the
packing’s response as compaction rather than shear. Also telling
in this picture is the decoupling of the motion of the roughened
plane from that of the free surface. In this example the surface is
moving downward at about four-times the (absolute) velocity
with which the roughened plane is being dragged upwards. . . . . . . . . 36
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3.3 Average approach of force, f , to steady-state force, f0. The
∆φ = 0.00 curve shows force as the packing sediments. The
higher volume fractions show the relaxation of the force following
sinusoidal compaction imposed at amplitude d/2 and period 6.64 s
for 15, 30, and 90-cycles. As in the top-right of Fig. 3.1, the force
displays an elbow where the timescale of relaxation shifts from the
time expected from the viscous flow of fluid through the pores of
the packing and a longer timescale which we hypothesize comes
from a viscosity, η, of the packing itself. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Response of the sedimented packing to constant velocity motion of
the shear plane. Top panel: the upper horizontal axis shows the
constant-strain-rate protocol, with the imposed strain rate
jumping from zero to γ̇ = v/W = 8.7× 10−5/s at time, t = 0, and
stopping at a displacement of z = 0.2 d. The light lines are
individual shear stress responses (system width, W = 18 d).
Yielding is characterized by a sharp stress peak at small strain.
The bottom panels show run-averaged stresses near yielding at
fixed waiting time, T = 16 s (bottom left), and at fixed strain
rate, γ̇ = 8.7× 10−5/s (bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Power law scaling of the shear yield stress. The top panel shows
examples of the scaling of the yield stress against strain rate and
wait time, both displaying exponents near 1/3. The primary
subfigure shows yield stress from experiments across a variety of
rates, v, fluid viscosities, ηf , density mismatches, ∆ρ = 1− ρf/ρs,
and system widths, W , collapsed onto a master curve against the
dimensionless product of strain rate and wait time. The wait time
represents the age of the packing and is set by a pause of
duration, T , following a brief fluidization except in the open
squares where it is calculated from the end of sedimentation (see
top-right Fig. 3.1). This master curve exhibits a power-law
dependence over a six-decade span with exponent fit by least
squares to 0.30(1) (dashed line, excludes the single outlier). Error
bars display the statistical error in the median. . . . . . . . . . . . . . . . . . . 40
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3.6 Power law scaling of the yield stress at varying degrees of
compaction, ∆φ. The top panel displays the stress response for
different levels of compaction (γ̇ = 8.7× 10−5/s, T = 4 s,
W = 18 d, ηf = 110 mPa · s). The response below the yield stress
varies little with compaction while the dynamic slope immediately
post-yield, Gdyn, increases, ultimately changing sign. The main
figure shows that the power-law scaling of the yield stress with
strain rate of freshly sedimented and compacted packings is
unchanged by the degree of compaction. A least squares fit gives
an exponent of 0.33(1), consistent with σy ∝ γ̇1/3. . . . . . . . . . . . . . . . . 41

3.7 Data from Ref. [15] Fig. 4(a) showing the increase in static friction
coefficient of PMMA with contact time, T . Gray markers are at
293 K, black markers at 345 K. The upper figure plots the data as
it is plotted in Ref. [15] which highlights the logarithmic age
dependence of the friction coefficient. The lower figure replots the
data on log-log axes as one would to highlight power law scaling.
This lower figure displays solid lines showing the best power-law
fit and dashed lines showing the best semilog fit. That these
power-law and semilog fits nearly overlay demonstrates that a
4-decade span in the independent variable is insufficient to
distriguish power-law from semilog behavior given such small
exponents (best fits are 0.028(2) and 0.099(2)). To demonstrate
how different the above behavior is from the ≈ 1/3-power law
forms seen in our dissertation, we’ve drawn a dark line with slope
1/3. The dashed curved line tangent to it is the logarithm that
best approximates a power law of 1/3 over this span. . . . . . . . . . . . . . 43

3.8 Data from Ref. [12] Fig. 4(a) showing the increase in yield stress of
PMMA with strain rate, γ̇. The upper figure replots the data with
strain rate on a logarithmic scale highlighting that these data are
fit well by a logarithmic form. The lower figure plots the data as
it appeared in Ref. [12] on log-log axes as one would to highlight
power law scaling. The black straight-line fit through the data has
slope 0.082(2). The dashed gray line which is the best semi-log fit
to the data is also shown and it’s curvature is barely discernible,
again suggesting the futility of distinguishing between logarithmic
and power law forms for this particular data series. To show how
different these forms are from the ≈ 1/3-power law seen in our
dissertation, I’ve drawn a dark line with slope 1/3. The dashed
curved line tangent to it is the logarithm that best approximates
a power law of 1/3 over this span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xvi



3.9 Numerical solutions for our model (left column) and Nguyen et al.’s
model [62] (right column). The top four figures show numerical
solutions for different rates, γ̇ and the bottom row shows
numerical solutions for the scaling of the height of the stress
maxima, σy, versus strain rate, γ̇, for our model (red circles) and
Nguyen et al.’s model (green squares). The values of the fixed
parameters are a = 0.1, r = G = 1, T = γ̇ = 10, d = 1× 10−6.
The extreme similarity between the rate and age-scaling
subfigures is not a mistake: in constant strain rate solutions of
both models, the shape of stress-strain curves depend only on the
product of γ̇ T . Our model matches the approximate scaling of
Eq. 3.4.1 (black lines) when γ̇ T is large. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Examples of stress response to startup shear: (γ̇ = 8.7× 10−5/s,
W = 18 d, ηf = 110 mPa · s, T = 166 s). At the lowest volume
fractions, the stress response of the packing to an applied steady
strain-rate shear displays the following features: 1) a sharp initial
(“yield stress”) peak (see Chapter 4.2), 2) an abrupt drop or
“collapse” in stress immediately post-yield (see Fig. 4.2), and 3)
the recovery of the stress after it bottoms out (see Fig. 4.3) The
post-yield drop is less pronounced at volume fractions even 0.02
above φRLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Drop in stress immediately following the yield event and associated
timescales at the lowest volume fraction (φ ≈ 0.565(5)). The top
figure shows the drop in stress after the yielding event with the
time zeroed at yield time and stress scaled by the amplitude of
the drop in stress (corresponds to red dots in lower figure).
Middle-left: these same data collapse against the timescale,
τ ∼ γ̇−1/2. Middle-right: repeated in a thinner fluid (blue
diamonds in lower figure), the timescale scales differently, closer
to τ ∼ γ̇−1. The bottom figure plots the timescales from
exponential fits to the first half-decade in stress for the above
data sets and an additional dataset run at half of the system
width (green squares). The inset shows that these timescales do
not dependent on wait time (γ̇ = 8.7× 10−5 /s for W = 18 d and
γ̇ = 1.7× 10−4 /s for W = 9 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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4.3 Growth of stress post-yield: The top panel shows the growth of stress
at the lowest volume fraction, φ ≈ 0.565(5), (left) and higher
volume fractions (right) (W = 18 d, ηf = 110 mPa · s). The lowest
volume fraction exhibits a sharp drop in stress immediately
post-yield (see Fig. 4.1) so the origin is set at the stress minimum.
The origin is not moved for other volume fractions. Middle: axes
are scaled as our model predicts for early growth of the stress.
Note that the time-axis is multiplied by the same τ ∼ γ̇−1/2 that
emerged as the timescale in post-yield stress drop. The
normalization of the stress by the distance from RCP is purely
empirical. The data mostly collapse onto a master curve with
slope close to the predicted square-root although the slowest
traces at the lowest volume fraction (solid lines) which show
evidence of beginning to plateau do not collapse. Bottom: Data
for the lowest volume fraction, plotted with axes scaled as
predicted approaching the long-term steady-state. This appears
to collapse at long times the traces that failed to collapse under
the growth scaling. Both legends apply to the all sub-plots in this
figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Relaxation at constant strain for φ ≈ 0.58, 0.59, 0.60. Top panel:
stress-strain curves with the origin of time zeroed at the cessation
of applied strain (W = 18 d, ηf = 110 mPa · s). The top left shows
examples of relaxation at φ ≈ 0.60 which are representative of
volume fractions φ ≈ 0.58 to 0.60. The stress relaxes
monotonically downward toward a new stress baseline that is not
a function of γ̇. Solid lines are least-squares fits to
σ = σ0 (1 +Gt/η0)−1 − σ∞. Top right: When time and stress are
scaled by the fit parameters, of initial stress, σ0, and initial
timescale, τfit = η0/G, the stress relaxation curves collapse onto
master curve, (1 + t)−α, with exponent α ≈ 1. Bottom panel: The
fit values themselves scale with strain rate. The initial timescale,
τfit = η0/G scaling ∼ γ̇−3/4 (left) and σ0 ∼ γ̇1/4 (right) for small γ̇
where the σ0 is also small. The exponents are consistent with the
scalings of stress growth at higher volume fractions presented in
Fig. 4.3 and the solution for stress-relaxation at small σ in
Sect. 4.4.2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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4.5 Stress relaxation near RLP: Relaxation is qualitatively different at
the lowest volume fraction, φ ≈ 0.565, with the stress swelling
upward after an initial drop. A constant strain rate, γ̇, applies a
total strain ∆γ = 0.2 d/W ≈ 0.011, terminating at t = 0, after
which γ̇ = 0 and the stress relaxes (W = 18 d, ηf = 110 mPa · s).
The size of the post-yield collapse in stress varies so much with
strain rate that while the lower strain rate curves were growing,
even plateauing when the applied strain ceases, the highest strain
rates are still decreasing when the period of relaxation begins.
Thus the relaxation curves which begin at t = 0 represent
relaxation from disparate array of initial conditions. . . . . . . . . . . . . . . 61

5.1 Photograph of the volumetric imaging setup taken from above: A)
the shear apparatus sketched in the center of Fig. 3.1 is enclosed
in an insulated, temperature-controlled box with acrylic windows,
B) the green laser, slit and diverging lens are mounted on a
computer-controlled motion stage, C) the camera is mounted on a
passively sliding motion stage that moves a fixed fraction of the
distance traveled by the laser. The stainless steel rod rotates
about (D) and slides in mounts at (E) and (F). Perpendicular
distances from E to D of 19.8 cm and D to F of 23.2 cm are used
to keep the image of the laser slice in focus while the laser slice
steps into the packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Peak at one diameter separation in the radial distribution function at
the lowest volume fraction: The sharpness of the peak at r ≈ d is
a useful measure of the detection accuracy. A single pass of the
nonlinear least-squares fitting procedure to sharpen sphere
locations yields an approximately 50% improvement in the
sharpness of the peak. A second pass yields little further
improvement. Adjusting the ellipsoidal radius of the step-axis has
a small effect in the sharpness of the peak. The last curve shows
the peak calculated from only the half of the image nearest to the
camera. It is sharper than average demonstrating that detection
accuracy decreases somewhat with depth, y. . . . . . . . . . . . . . . . . . . . . . 80

5.3 Distributions of sphere locations along coordinate axes: There is
layering near the walls at x = 0 and y = 0 which persists 3 or 4
sphere diameters into the packing. No wall is visible in the 3D
image in the vertical, z-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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5.4 Distributions of bond-angles versus the three coordinate axes: Angles
are calculated between nearest-neighbor bonds and a given
coordinate axis. In these data neighbors are defined as lying
within a maximum distance of 1.1 d. The left column shows the
distribution for the entire packing and displays peaks relative to
the distribution expected for an isotropic packing (black line).
The insets show the relative difference between the distribution
and the form expected for an isotropic material,
∆P (θi) = P (θi) / (sin(x) / 2)− 1. In the full packing (left column),
we are seeing excess bonds located perpendicular to the two
horizontal axes which happen also to be the coordinates which
begin on walls. The right column shows the distributions for
particles that are at least a distance 4 d from the nearest wall and
the peaks have disappeared. Thus this phenomenon disappears in
the bulk: it is caused by the walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Amplitude of the excess in bond angles versus the distance from the
wall at y = 0: The differences, ∆P (θi) = P (θi) / (sin(x) / 2)− 1,
at θy = π/2 from Fig. 5.4 are plotted at the four different volume
fractions against the distance, y, from the front wall. The
influence of the wall is seen to disappear in 3 or 4 sphere
diameters into the packing and increases in amplitude with
increasing volume fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Average local values of volume fraction and Steinhardt-Nelson q4 and
q6 crystalline order parameters along coordinate axes. Local
values of volume fraction, φ, are calculated for individual Voronoi
cells. Averages plotted are volume-weighted averages
(volume-weighting makes a small but noticeable difference). q4

and q6 are calculated locally over the bonds to each sphere’s
Voronoi neighbors. Averages of the qn are not weighted by the
Voronoi cells volumes (volume-weighting does not make an
appreciable difference when plotting at this resolution). Left
column: the local volume fraction is plotted along the vertical (z)
and two horizontal axes: x which lies in the focal plain of the
camera increasing with increasing depth of the laser slice
penetrating into the packing and y which measures depth away
from the camera into the packing. The volume fraction can be
seen to decrease close to walls at x = 0 and y = 0. There is no
wall in the imaged section of the packing in the vertical direction.
The volume fraction can be seen to reach bulk values a depth of 3
or 4 diameters away from the walls. q4 increases somewhat
approaching the walls over a similar range, however, the ranges of
the q-parameters in these plots is quite narrow. . . . . . . . . . . . . . . . . . . 85
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5.7 Radial distribution functions at all four volume fractions: The radial
distribution function (A and B) possesses a sharp peak at the
radial distance of one bead diameter. This peak (C) is comprised
of contacting particles and near misses and changes little with
volume fraction. (B): structure is seen to develop with increasing
volume fraction. This change is most pronounced in the growth of
a peak near r =

√
3 d. (D) shows this peak and a peak that

appears to fall just short of r = 2 d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8 Analysis of the shape of the peak in the radial distribution function
at r = d for all four volume fractions: A: There is a region
spanning roughly a decade where g(r) drops as roughly a
power-law of the near miss distance r/d− 1. In (B) this region is
fit to the power-law form g(r) ∼ (r/d− 1)−α. In the inset the
magnitude of the fit exponent can be seen to increase with volume
fraction. The right panel presents an alternative method of fitting
these data where g(r) is taken to have the form
Z/(4 π) δ(r/d− 1) +B θ(r/d− 1) (r/d− 1)−α convolved with a
Gaussian of standard width σ. (C) displays least-squares fits of
the first peak to this form. To make the fits discernible the lowest
volume fraction series is plotted normally and each subsequent
data series is shifted downward by half a decade. (D) shows the
values of the exponent, α, and the average coordination number,
Z, coming from the fit. There is no obvious trend in volume
fraction but there is a clear interdependence of these estimates.
The estimates of Z lie near the value of 4 predicted by isostaticity
and seen in simulation at RLP at large friction coefficient. For the
four volume fractions, parameter estimates are: Z=[4.5, 3.4, 4.1,
3.9], B=[0.39, 0.30 , 0.30 , 0.26], α=[0.45, 0.61, 0.59, 0.66] and
σ=[0.014, 0.014, 0.014, 0.015] where g(r) with bin width
∆r = 0.002 d is fit up to r = 1.3 d and g(r) is normalized as a
number density (note that for viewability the bin width as plotted
in (C) has been reduced to ∆r = 0.01 d). . . . . . . . . . . . . . . . . . . . . . . . . 88
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5.9 Radial distribution function data (binned plots) and numerics
(smooth): Numerics are 3D numerical solutions of the
Ornstein-Zernicke (OZ) equation assuming a direct correlation
function coming solely from the contact number. The only input
parameters are the volume fraction, φ, and the coordination
number, Z, set to 4 in (A) and 5 in (B). Because of computational
limits the granularity of the numerical solution (0.025 d) is larger
than the 0.014 d smoothing found in the data. Solutions at both
Z = 4 and 5 match the locations of peaks and troughs in the g(r)
data, however, the Z = 5 solutions is overall a much better match.
Even the volume fraction dependence appears to be captured.
Thus much of the structure of g(r) appears to be dictated by the
delta sharp peak at r = d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 Volume-weighted distributions of local volume fraction from
Delaunay and Voronoi partitions: included are interior cells that
are at least a distance 3 d from a wall. (A) contains the volume
fractions of Delaunay tetrahedra and (B) the volume fractions of
individual Voronoi cells. The range of volume fractions seen in
Delaunay tetrahedra is very broad spanning the range of average
volume fractions seen for common regular lattices from the
tetrahedral-octahedral honeycomb lattice past close packed
lattices such like FCC and right up to the maximum possible local
volume fraction for a Delaunay tetrahedron of ≈ 0.78 on the
inside of a tetrahedron of four mutually contacting spheres. The
volume-weighting makes the means of these histograms equal to
the mean volume fraction of the sample which come out to
0.566(5), 0.586(5), 0.600(5), 0.614(5) which, when rounded to the
nearest 0.005 give the nominal volume fractions that quote in the
figures. The errors are estimated from a sum of causes with
systematic uncertainty of the sphere radii contributing 0.002,
sensitivity to the distance excluded from the wall contributing an
uncertainty of order 0.001 and an additional 0.001 to 0.002
coming from the statistical uncertainty of estimating the mean of
these distributions which are comprised of 2930, 3041, 3132 and
3213 Voronoi cells and 10327, 10489, 10707 and 10877 Delaunay
tetrahedra, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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5.11 Distribution of local Delaunay volumes (left) and Voronoi volumes
(right): Plotted are the distributions of the “free volume” of
Delaunay tetrahedra and Voronoi cells which is the volume not
containing a sphere, “solid volume” which is the volume of sphere
within the cell and “total volume” which is the sum of these. For
Delaunay tetrahedra these are three distinct distributions with
the distribution of free volumes possessing exponential tails on
both sides, the distribution of sphere volumes sharply peaked with
a heavy tail at small V and a short tail to the right of its peak.
The distribution of total volumes incorporates properties of both.
meaning that the free volume and total volume distributions have
distinct shapes in the Delaunay tessellation. The situation is
simpler for Voronoi cells where the solid volume is constant—the
volume of a single sphere—and thus has a delta function
distribution. The distributions of volumes and free volumes have
the same shape and are simply shifted relative to one another and
so only the free volume distribution is plotted on the semi-log
axes. All volume and free volume distributions have exponential
tails consistent with p(v) ∼ exp (−β v) at large-v. . . . . . . . . . . . . . . . . 96

5.12 Delaunay and Voronoi volume tail distributions centered at the mean.
(A) the complementary cumulative probability distribution,
ccfd(v) = 1− cdf(v), of the distribution of Delaunay volumes
possesses an exponential or Boltzmann tail at all volume
fractions, however, the tails of the distributions of Voronoi
volumes become less linear with increasing volume fraction. In
(B) the linear portions are magnified and least-squares fits to the
probability distribution of form, p(v) ∼ exp(−β v) at large-v
where v = (V − Vmean)/d3 are added in gray. The inset plots the
reciprocal of the slope, β−1, versus volume fraction and fails to
reproduce the collapse seen in [5] with a linear trend extrapolating
to volume fraction near φRCP. The right column explores the role
of noise in shaping these distributions. (C) shows the ccdf for
partitions computed after adding normally distributed noise to the
sphere locations in the lowest volume fraction sample as well as
the tails for a randomly generated point set of the same number
density as (A). Small amounts of noise, even when larger than the
σ = 0.014 d estimated from g(r), have little effect on the tails
large amounts make the tail less linear. (D) shows the tails for
partitions computed for an FCC plus differing levels of normally
distributed noise (note that hard-sphere constrains are violated
here) In all of these cases, randomness appears to make the tails
less linear by bending them down like the tails of a normal
distribution which is opposite what is happening to the tails of
the Voronoi volume distribution at higher volume fractions. . . . . . . . 99
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5.13 Sizes of voids: The largest sphere that can fit in a void space between
particles can be computed from the circumsphere through the
sphere centers in each tetrahedron in the Delaunay tessellation.
The distributions plotted here show that voids large enough to fit
a sphere (dvoid ≥ d) do not exist at any of the volume fractions
scanned. Because multiple small Delaunay tetrahedra can possess
the same circumsphere in degenerate Delaunay tessellations, we
display the hole-diameter distribution counted per Delaunay
tetrahedron (dashed lines) and weighted by the volume of the
tetrahedron (solid lines). Bottom panel: The shape of the
large-dvoid tail in the distribution of hole sizes is not completely
clear, yet even if it is no heavier than a normal distribution, the
extrapolating the trend would predict that we should see some
sphere-sized or larger holes, especially at the lowest volume
fraction, yet none are detected in the bulk. In the bottom-right,
the horizontal axis has been shifted by the smallest possible void
diameter for uniform hard-spheres, corresponding to the void
formed by four mutually contacting spheres, dtetra ≈ 0.225 d.
Above detection error, the shape of the tail is approximately that
of a power-law with exponent one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.14 Distributions of local Steinhardt-Nelson order parameters calculated
on Voronoi neighbor bonds: Order parameters are calculated only
for Voronoi cells that are on the interior of the packing and at
least 3 d away from the nearest wall. The distribution of q4 shifts
toward zero with increasing volume fraction. The distribution of
the q6 is significantly more broad and shifts the opposite way. . . . . . 102

5.15 Distribution of q4 order parameter calculated locally over bonds to
neighbors within varying distances: (A) and (B) display the
distributions q4 calculated locally at the lowest volume fraction,
φ ≈ 0.565(5). (C) displays the location of the peak probability
versus the distance over which bonds are included. This
dependence is well fit by an exponential decay with characteristic
distance ` = 0.41(3) d. (D) shows the distributions at the lowest
volume fraction collapsed by the fit in (C). The distributions
appear to possess the shape of a log-normal distribution. . . . . . . . . . 105
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5.16 Distribution of q6 order parameter calculated locally over bonds to
neighbors within varying distances: (A) and (B) display the
distributions q6 calculated locally at the lowest volume fraction,
φ ≈ 0.565(5), (D) for the highest volume fraction, φ ≈ 0.615(5).
(C) displays the location of the peak probability versus the
distance over which bonds are included. (D) shows the
distributions at all volume fractions at two values of r/d− 1.
Unlike the q4 distributions which appear to be log-normal, the q6

distributions are all approximately normal distributions with the
same widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.17 Distributions of Steinhardt-Nelson qn-order parameters calculated
locally over bonds to neighbors out to distance 1.1 d: (A) and (B)
show the order parameters calculated at the lowest volume
fraction, φ = 0.565(5). The means of these distribution increase
with increasing n up to n = 6 and subsequently begin to decrease.
(C) shows the distributions for three of these order parameters at
all four volume fractions. (D) plots the means of these
distributions versus the degree, n, of the order parameters. q6

appeares to be special as it is both the order parameter with the
largest mean value and also the one that changes least with
volume fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.18 Distributions of local Steinhardt-Nelson order parameters and the
number of neighbors out to maximum radial distances, r: (A)
shows q4 calculated over bonds to various distances and (B) shows
the distributions of q6. (C) shows the number of neighbors within
these distances at the lowest volume fraction, φ ≈ 0.565. (D)
shows the dependence of volume fraction at for neighbors counted
out to r = 1.1 d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.19 Distributions of Steinhardt-Nelson order parameters from
Monte-Carlo simulation of a single sphere with N contacting
neighbors: The left column shows q4 with the distributions having
the log-normal shape seen in the data. The right column shows q6

with the distributions for N < 11 having approximately the
normal distributions seen in the data. . . . . . . . . . . . . . . . . . . . . . . . . . 109
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5.20 Comparison of distribution of q4 and q6 with those generated by
Monte-Carlo: The left column shows the data (solid lines) for the
lowest and highest volume fraction and the distributions of order
parameters when the constant-N Monte-Carlo distributions
(Fig. 5.19) states are sampled according to distribution of N
measured in the data (Fig. 5.18). In the data shown here the qn
and the number of neighbors are calculated out to radius 1.1 d.
The Monte-Carlo captures the low-q4 tail of the q4 distribution
but misses significantly otherwise is offset relative to the observed
q6 distribution. The right column plots the distribution at the
lowest volume fraction alongside Monte-Carlo distributions at
surrounding values of N . The average number of neighbors within
1.1 d in the data is 7.2 at the lowest volume fraction (it is 7.6, 8.0,
8.4 at the higher volume fractions) and we see that the low-q4 tail
in the data matches the low-q4 tail in the Monte-Carlo at N = 8
which is reasonable. The shape of the experimental q4 distribution
could reasonably be seen to arise from a sum of the N = 7 and
N = 8 distributions alone without evidence of the N = 6 and
N = 9 distributions which were included in (A). The
correspondence is less good for q6 with the experimental
distribution best resembling the Monte-Carlo at N = 5. The q6

structure these does not seem to follow solely from the number of
neighbors and hard-sphere constraints. . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.21 Spatial auto-correlations of scalars defined on the Voronoi partition
digitized onto a 0.2 d× 0.2 d× 0.2 d spaced grid. The
autocorrelation lengths are short for all three scalars, the
autocorrelation length of φ being somewhat longer than those of
the crystalline order parameters. There is little change with
volume fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.22 Spatial cross-correlations on the Voronoi partition at all four volume
fractions: (A) shows the cross-correlations calculated between
these scalars when q4 and q6 are calculated over bonds to Voronoi
neighbors. In (B) cross-correlation of φ and q4 where q4 is
calculated over different sets of neighbors within varying radii for
the lowest volume fraction sample. (C) shows the equivalent
cross-correlation for φ and q6. The local correlation between
volume fraction and bond order parameters depends qualitatively
on the region over which bond order is calculated, changing in
both magnitude and sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Geometry of the apparatus used in the friction measurement (scale:
bead radius r = 1.59mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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B.1 Numerical solutions for our model (left column) and Nguyen et al.’s
model [62] (right column). The top four figures show numerical
solutions for different rates, γ̇ and the bottom row shows
numerical solutions for the scaling of the height of the stress
maxima, σy, versus strain rate, γ̇, for our model (red circles) and
Nguyen et al.’s model (green squares). The values of the fixed
parameters are a = 0.1, r = G = 1, T = γ̇ = 10, d = 1× 10−6.
The extreme similarity between the rate and age-scaling
subfigures is not a mistake: in constant strain rate solutions of
both models, the shape of stress-strain curves depend only on the
product of γ̇ T . The numerical solutions to our model match the
approximate scaling of Eq. 3.5.12c (black lines) when γ̇ T is
large. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2 This is data from Ref. [62] Fig.3b replotted an log-log axes. Series
correspond to volume fraction of 0.60 (blue squares), 0.614 (green
trianges), 0.623 (red diamonds). The fits are to the functional
form C = aG/σ + r σ/G with results {a = 10± 2,
r = 4 · 105 ± 6 · 105}, {a = 20± 6, r = 1 · 106 ± 3 · 106} and
{a = 43± 5, r = 10 · 105 ± 4 · 105}. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.1 Radial distribution data from our 3-dimensional experiment plotted
alongside 2D numerical solutions of the Ornstein-Zernicke (OZ)
equation assuming a direct correlation function that comes solely
from the isostatic number of contacts. The numerical solutions
are in 2D with Z = 3 and smoothing (σ ≈ 0.014 d) matching the
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CHAPTER 1

INTRODUCTION

1.1 Overview

Packings of monodisperse, hard spheres serve as an important model system in the

understanding of granular matter, which is ubiquitous in nature and industry. Like

construction aggregates that must be laboriously compacted to prevent the gradual

settling of anything that is constructed on top of them, real spherical grains form

stable packings over a large range of volume fractions and often adopt long-lived

loose-packed states as their initial configuration. In fact most experiments probing

the dense end of this disordered sphere-packing spectrum must employ a shaking

or kneading procedure to compact the initial loose-packed states toward the densest

disordered state named random close packing (RCP) by J. D. Bernal [9] which has

volume fraction φRCP ≈ 0.64 [83]. Only more recently has the lower bound or “random

loose packing limit” (RLP) of this range been probed [67]. At the time of publication

of the work in Chapter 2, doubts existed regarding the existence of an RLP limit

distinct from RCP in the absence of cohesive forces [34] and experiments had yet to

isolate the role of friction.

In this dissertation we study loose packings mechanically stabilized by direct in-

terparticle contacts. In Chapter 2 we describe an experimental protocol to prepare

sphere packings in the loose packing limit and establish the dependence of that state

on the value of the interparticle friction coefficient. Then in Chapters 3 and 4 we

experimentally probe the boundaries of solidity in this material and the mechanics of

the material after the solid structure has failed, proposing a simple rheological model
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that describes many of the features of the mechanical response. Finally, in Chap-

ter 5 we investigate the three-dimensional structure of the RLP state and lightly

compacted packings. We find the structure to be homogeneous and isotropic, spatial

correlations to be short ranged, and that much of the longer ranged structure in the

radial distribution function is determined by local structure. In the remainder of

this introductory chapter, we consider the failure of standard equilibrium statistical

mechanics in describing granular systems in general, provide an introduction to the

literature on frictional hard-sphere packings and discuss the general argument con-

cerning isostaticity of loose packing. Finally, we provide an overview of the findings

of our research.

1.2 Inapplicability of Equilibrium Statistical Mechanics

The foundations of the statistical mechanics of equilibrium thermodymanic sys-

tems do not apply to granular systems. In thermodynamic equilibrium, detailed bal-

ance and ergodicity ensure that time averages equal ensemble averages and, at least

away from phase-transitions, these in turn equal spatial averages. Further, Liouville’s

theorem requires conservation of energy to justify the use of phase space,
∫
dp dq,

as the flat measure of the probabilities over ensembles. Being dissipative and com-

posed of particles too large and with barriers too great to be driven by temperature,

granular systems do not satisfy any of these assumptions. The failure of phase-space

as a flat measure, for example, has been demonstrated by the non-uniform sampling

and the existence of valid states that are rarely or never seen in simulations of small

systems [38, 2, 90, 95, 38, 22, 40, 39, 45].

A consequence of the inability of temperature to drive evolution in granular sys-

tems is that the statistics of fluctuations are not constrained in the way they are for

equilibrium systems. This can make large, non-Gaussian fluctuations possible. How-

ever, if phenomena can be surprisingly long ranged in granular matter, the opposite
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is also true and it will be a theme in Chapter 5 that many measures of structure are

short ranged and that much of the longer ranged structure that does exist is a direct

consequence of structure at very short ranges.

1.3 Sphere Packings

Packing density or “volume fraction,” φ, is defined as the solid volume, Vsphere,

divided by the total volume, Vtotal, in which the packing is confined:

φ = Vsphere / Vtotal . (1.3.1)

For non-cohesive spheres, confinement is an essential requirement for the solidity of

the packing: packings of elastic spheres possess bulk shear moduli only when the

packing is under compression. They do not behave as solids under tension.

The densest possible periodic packings of circles and spheres have long been known

to be the hexagonal (honeycomb) lattice in 2d and in 3d any of the close-packed

lattices where 2d hexagonal lattices are shifted and stacked in the troughs of the

previous layer in face centered cubic or hexagonal close packing patterns, or any

combination of these two layerings. These have been proven in both two and three

dimensions to be globally denser than any possible non-periodic packings [37, 42].

While in 2d these lattices also put each sphere in the densest possible local packing

arrangement, the 3d dense lattices do not, so that close-packing has volume fraction

≈ 0.74, but local volume fraction can be as high as ≈ 0.78 (see [89] for an account of

the history of packing problems).

The study of disordered packings of equal spheres dates to the 1960’s when it

was first recognized that real frictional spheres arrest in a range of “loose” volume

fractions and must be kneaded or tapped [82, 56, 77] to reach the upper bound of

the random close packing (RCP) limit, φRCP ≈ 0.6366(5) [83]. This upper bound has
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later been found by simulation to coincide with the unique volume fraction available

to disordered packings of frictionless hard spheres, φc = 0.639(1) [64, 65]. Thus this

RCP limit, φRCP ≈ 0.64 appears to be independent of the detailed properties of the

preparation protocol and of the spheres themselves.

In 1990 Onoda and Liniger demonstrated that a lower, “random loose pack-

ing” (RLP), limit to this volume fraction range of disordered sphere packings of

φRLP ≈ 0.555 [67] is obtained when sedimented packings are prepared in nearly den-

sity matched fluids. Doubts remained, however, about whether nearing the neutral

buoyancy limit represented the slowing of dynamic parameters [97] or simply passage

to a regime where gravitational forces are small enough to be supported by cohesive

interparticle forces such as Van der Waals forces [34]. And while simulations had

shown that sphere packings are not stable below RCP in the absence of friction [64],

experiments isolating the role of friction in RLP had not been done. Our experi-

ments described in Chapter 2 were intended to experimentally address the question

of whether such a distinct RLP limit in fact exists for frictional but completely cohe-

sionless spheres and, if so, what experimental parameters control whether the RLP

state is reached.

1.4 Mechanical response

1.4.1 Solid Mechanics at RCP

A substantial body of work explores the remarkable mechanics near random close

packing via simulation of frictionless elastic spheres [65, 27, 85, 78] (see [20] for a

recent review). Spheres with purely repulsive pairwise interparticle potential of the

form:

V (ri, j) =


ε/α (1− ri, j/σi, j)α , ri, j < σi, j

0 , ri, j ≥ σi, j

(1.4.1)
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are found to exhibit power-law scalings of the pressure, p, bulk modulus, B, and shear

modulus, G, as functions of their confinement above the jamming volume fraction,

∆φ = φ− φc:

p ∝ (φ− φc)α−1 (1.4.2)

B ∝ (φ− φc)α−2 (1.4.3)

G ∝ (φ− φc)α−3/2 . (1.4.4)

all involving the exponent, α, of the interparticle potential. These scalings possess the

interesting property that the shear modulus scales differently than the bulk modulus

with the ratio G/B ∼
√
φ− φc going to zero at small compression [65]. These results

come from simulations without friction or dynamics so it is an open question whether

they will hold in loose packings of real spheres that are stabilized by frictional contacts

and in which dynamics may play a role.

Even if these scalings translate to loose packings of real spheres, it is unclear over

what range to expect elastic behavior. The range of the harmonic approximation from

which these moduli were extracted in simulation is narrow [78], however, there may

be a larger range where systems under cyclic shear enter reversible loops of states [79].

So how these simulation results translate to a real elastic regime is unclear.

It is conceivable that an elastic regime bounded by a true yield stress may not

exist in these materials. There are many reports of creep flow at small stresses in real

granular materials [43, 62, 7] meaning that the yield stress may not be experimentally

accessible. Yield stresses that strengthen with age [55, 50, 17] have also been reported,

suggesting that granular packings may not be entirely static.

Little is known about the solid mechanics of loose packings near RLP. Simulations

have measured the bulk modulus at φRLP, but not the shear modulus [85]. Experi-
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ments have observed logarithmic creep under constant-stress conditions [62] raising

doubts that a true yield stress exists in loose sphere packings.

1.4.2 Steady State Flow

A commonly observed phenomenology in yield stress fluids is that there is a critical

stress, σc, above which shear stress follows a power-law dependence on strain-rate, γ̇,

behaving as a “Herschel-Bulkley fluid:”

σsteady = σc · (1 + (γ̇ τ)n) . (1.4.5)

In granular fluids the exponent, n, has been observed to range from 1/2 to 1 and as

low as 0.3 in experiments and simulations [44, 7, 94, 52, 14, 26, 73]. Reports on the

stability of granular flows above σc vary. Very slow steady flows have been observed

as σc is approached from above [80, 60, 72], however, there are also indications of

instabilities near σc [29, 25, 51].

The few investigations of steady state flows in loose packings report finding rate-

independent stress scaling [80, 60]. Whether Herschel-Bulkley scaling occurs in loose-

sphere packings at higher strain-rates is unknown.

1.5 Structure

1.5.1 Contacts

Perched at the intersection of mechanics and geometric structure, is the average

number of contacts per sphere or “coordination number,” Z: one of the most studied

properties of granular packings. Frictionless simulations of elastic spheres observe a

scaling of the coordination number, Z, for packings under confinement [65],

Z − Zc ∝ (φ− φc)1/2 (1.5.1)
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where Zc = 6 is the coordination number in the limit of zero confinement and φc ≈

φRCP ≈ 0.64.

The coordination number in the limit of zero confinement, Zc = 6, matches the

prediction of the “Isostatic Conjecture” [1]. Treating stability of a packing of hard-

spheres as a constraint satisfaction problem, the number of forces must balance the

number of constraints [1]. This sets the minimum number of bonds needed for a

packing to avoid having unstable modes. The conjecture is that, in the limit of zero

confining pressure, the loosest possible disordered packings exist precisely at this

lower bound [1]. The intuition is that introducing extra contacts would also tend

to increase the packing fraction. For d-dimensional spheres, the isostatic argument

predicts Ziso = d + 1 for highly frictional spheres and Ziso = 2 d for frictionless

spheres [35].

The isostatic conjecture matches the range of coordination numbers seen in sim-

ulations of sphere packings: 4 for high friction to 6 for zero friction [1, 33, 85] 1 but

it falls well below the number of contacts measured in experimental sphere packings

which range from about 5.5 to 7.0 [10, 84, 58, 5] and it is an open question whether

this discrepancy is due to the difficulty in distinguishing contacts from the large num-

ber of near misses or whether real packings of frictional spheres tend to have more

than the minimum number of contacts necessary for stability.

1.5.2 Near Misses

The scaling of coordination number seen in Eq. 1.5.1 is also noteworthy in that it

predicts that the coordination number will increase with the square-root of confine-

ment. This coincides with the exponent of the power-law divergence of near-contacts

first seen in the pair correlation function in simulations by Silbert et al.[86],

1Counting arguments can be difficult to apply even to obtain the lower bound of Z. The iso-
staticity argument for ellipses over-predicts the minimum number of contacts necessary to stabilize
packings when the ellipses are nearly circular [33].
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g(r) ∝ (1− r/d)−1/2 for d < r . 1.4 d (1.5.2)

These two square-root compression scalings seem to be linked: one can explain the

growth in the excess contact number in terms of these near-misses becoming contacts

as density is increased [65], however, the 1/2-power scaling in the pair-correlation

function is not itself understood. This divergence of near misses is also significant

because it may explain the higher coordination numbers measured in experiments

versus those obtained from isostaticity and simulation.

1.6 Summary of results

In this dissertation we describe experiments exploring the loose end of the range

of the volume fractions available to disordered packings of hard, frictional but non-

cohesive polymethyl methacrylate spheres formed by sedimentation. Chapter 2 is

concerned with the existence of a lower, “random loose packing” (RLP) limit in such

a system and the role of dynamics and other parameters in the preparation of packings

near this RLP limit. We show that loose-packed states with volume fraction below

that of random close packing are possible for frictional but non-cohesive spheres and

demonstrate that the dynamics of their formation, as characterized by the Stokes’

number, determines whether the packing arrests in the loosest possible state. The

volume fraction of packings created by sequential sedimentation is found to abruptly

go to a random loose packing (RLP) limit as Stokes’ number drops below ≈ 10,

consistent with the vanishing of the interparticle restitution coefficient. To quantify

the friction-dependence of this RLP limit, we introduce a new experimental method

of measuring the interparticle friction coefficient in an environment very similar to

that of the packing and find that lower RLP volume fractions are obtained with higher

static friction particles.
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In the chapters that follow, we experimentally probe the boundaries of solidity in

this material and the mechanics of the material after the solid structure has failed,

proposing a simple rheological model that describes failure which we then expand

to include other features of the mechanical response. In Chapter 3 we present data

on the mechanical response of similar packings to applied shear conducted near the

loose packing limit. At very small shear strains, we find the apparent strength or

“yield stress” of the material to display approximately cube-root power-law strain-

rate scaling with an unexpected symmetry between the functional dependence on age

of the packing and the strain-rate. We observe that a modification of the Maxwell

model of viscoelasticity describes both the value of the exponent and the symmetry

between age and rate. In the following chapter, we present shear-response data beyond

the apparent yield point where we catalog a number of new features of the mechanical

response and observe that beyond the yield-point the symmetry between strain-rate

and age disappears. We observe that the scaling of many of these features can be

described in a unified way by identifying the previous model as an expansion of the

evolution of the viscous term in the Maxwell model in two variables: the applied

stress, σ, and an emergent internal timescale, τ .

In Chapter 5 we study the structure of this system via three-dimensional imaging.

We present data supporting the assumptions of homogeneity and isotropy made in

the analysis of the mechanical results in the previous chapters and quantify wall-

effects, finding them to unexpectedly suppress volume fraction over a short range.

We observe no evidence of crystallization near the walls. We present data on av-

erage radial structure, distributions of volume fraction, and structural parameters

defined locally. Using the Ornstein-Zernicke equation [68] we demonstrate that much

of the radial distribution function, g(r), is a consequence of the sharp features at

the radial distance of one sphere diameter. We measure spatial auto-correlations and

cross-correlations between local scalars and find these measures of structure to be
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quite short-ranged. To test the hypothesis that the local structure is random subject

to the number of neighbors and hard-sphere constrains, we compare measured dis-

tributions of Steinhardt-Nelson order parameters to those obtained by Monte-Carlo

simulation of the nearest-neighbors of a single sphere. We find that the distribu-

tions of crystalline order parameters do not match the data indicating the presence

of non-trivial structure in the arrangement of neighbors.
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CHAPTER 2

THE RANDOM LOOSE PACKING LIMIT

2.1 Introduction

This chapter describes a completed project published in Soft Matter [36] and bor-

rows heavily from that paper. The early experimental design on the volume fraction

measurements in this project was done by coauthor Michael Martini.

Since the early studies of random close packing, it has been observed that sta-

ble disordered packings of cohesionless, frictional, spheres exist over a broad range

of volume fractions [82, 56, 77, 83] via a number of different packing protocols.

φ ∈ [0.57, 0.64] have been achieved by pouring in air followed by kneading [10] or

tapping [82], φ ≈ 0.58 by pouring around a stick then slowly removing the stick [5],

φ ∈ [0.56, 0.625] by fluidization in air followed by tapping [62], φ ∈ [0.575, 0.628] by

fluidization in water [60], and φ ∈ [0.555, 0.60] [67] and [0.54, 0.59] [36] by sedimen-

tation in fluid. Loose packings have also been generated by dilating denser packed

states via flow [75] or tapping [63].

An upper limit on the volume fraction of such disordered sphere packings was

established early on, that of the “random close packed” (RCP) state with φRCP ≈

0.64 [83]—the highest volume fraction consistently achieved in experiments with disor-

dered packings of frictional spheres. This volume fraction φc ≈ 0.64 also corresponds

to the lowest volume fraction seen in simulations of jammed packings of frictionless

spheres [65].

The apparent robustness of the value of φRCP has motivated attempts to under-

stand RCP in purely geometric terms [46] or in terms of the statistical mechanics of
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hard spheres or soft spheres at zero temperature [90, 38, 49]. 1 In this chapter we

experimentally explore the lower bound on volume fractions of mechanically stable

packings of frictional, noncohesive, identical, hard spheres. Specifically, our questions

are: does a loose packing limit exist for frictional but cohesionless spheres? Will

this loose packing limit depend on the properties of the particle and the preparation

protocol or, like the RCP limit, will it be robust to changes in these variables, and

possibly admit descriptions in terms of the statistical mechanics of hard spheres [9]?

In the first systematic study of loose packings, Onoda and Liniger (1990) sed-

imented glass spheres in fluids of varying densities ρf , approaching the density ρs

of the sphere [67]. They found that the packing fraction approached an asymptotic

state which they refer to as “random loose packed” (RLP) with φRLP = 0.555, in

the limit of vanishing gravitational acceleration in the fluid, gf ≡ g (1− ρf/ρs)→ 0.

However, the limit gf → 0 conflates two different physical effects, both of which may

plausibly lead to lower volume fractions. The first effect involves the dynamics of

assembling the packing: as gf → 0, falling spheres reach the packing with less iner-

tia to explore the surface and rearrange their neighbors. This can trap the particles

in higher-energy, fluffier packings in perhaps the same way that dynamic variables

such as damping and restitution coefficients are tuned in simulations to create loose

packings [97, 87]. A second, distinct, effect concerns the statics of the structure: as

neutral buoyancy is approached, more fragile packings may become stable since the

gravitational load borne by the packing vanishes relative to weak cohesive forces.

Indeed, simulations [34] by Dong et al. argue that attractive van der Waals forces

are important in stabilizing the packings of Onoda and Liniger at small gf . Since

arbitrarily low packing fractions can be attained when attractive interparticle forces

1At present there is a growing consensus that φJ is not uniquely defined for frictionless sys-
tems [21, 90] (see [19] and references therein). It seems likely that the highest volume fractions
available to frictional spheres may not be sharply defined either.
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are dominant [92], this interpretation argues against the uniqueness of Onoda and

Liniger’s RLP state and questions the ability to experimentally access an RLP limit

for cohesionless spheres.

A key goal of our experiments is to peel apart the distinct effects of fluid prop-

erties on the statics and dynamics. We accomplish this by independently controlling

the viscosity and density of the fluid, allowing us to test whether the loose volume

fractions achieved in the limit of small static weights are the same as those achieved

by slow deposition at relatively large density mismatches. We find that the RLP state

does appear unique in this sense and that the approach collapses against the Stokes

number, St, with an abrupt transition to the RLP limit at St ≈ 10 which we believe

is associated with the vanishing of the restitution coefficient.

We conclude, then, that the RLP state for cohensionless, hard spheres, is well

defined with respect to the parameters of sedimentation. We ask whether the RLP

state is also unique with respect to the properties of the solid particles. Loose volume

fractions have long shown signs of dependence on the material of the spheres [82, 77]

with the relevant material property conjectured to be surface roughness [83, 67] which

is experimentally found to correlate with angle of repose [48].

These differences in surface properties are generally modeled by a coefficient of

friction. Simulations of frictional spheres find the RLP limit to be a systematically

decreasing function of friction [97, 86, 22, 87, 85] albeit with unexpectedly large values

(µ ≈ 1.) needed to reproduce values seen experimentally [67, 48].

In this chapter we describe a new experimental apparatus to measure friction

coefficients between spherical beads in the fluid environment of the packing exper-

iments. We describe the measured friction distributions and find that the mean of

the distribution is quite large in this range of normal forces. Plotting the asymptotic

RLP packing fractions of different sets of beads against the means of these static

friction distributions, we present the first experimental determination of the range

13



Table 2.1: Fluids used in hour-glass sedimentation experiments (Table taken from our
Soft Matter publication Ref [36], reproduced by permission of The Royal Society of
Chemistry). The symbols match those used in all figures. Mixture ratios reflect con-
tents before degassing. Density and viscosity were measured after degassing. ∗lit. [54].
†our measurement. ‡lit. at 20C [54]. §MSDS.

fluid density/(g cm−3) viscosity/(mPa s) symbol

n-pentane (Fisher Sci) 0.626‡ 0.23∗ J
n-heptane (Fisher Sci) 0.684‡ 0.41∗ .

water (Millipore) 1.00‡ 1.03∗ O
n-dodecane (Fisher Sci) 0.75 1.53∗ N
∼71/29 n-dodecane/light mineral oil mixture 0.78† 3.02† ◦
∼50/50 n-dodecane/light mineral oil mixture 0.80† 5.96† �
∼48/52 n-dodecane/light mineral oil mixture 0.82† 11.5† �
light mineral oil (Fisher Sci) 0.83§ 46.0† ♦
high temperature silicone oil (Acros Organics) 1.05§ 117.† •
0.01M NaCl in ∼70/30 propylene glycol/glycerol 1.09† 125.† I
heavy mineral oil (Fisher Sci) 0.83§ 157.† /

Fluka 08577 Density and Viscosity Standard 0.87§ 1270.§ H

of packing fractions available to disordered, frictional hard-spheres as a function of

friction coefficient.

2.2 Experimental Methods

2.2.1 Measurement of Volume Fraction

We prepared mechanically stable packings of monodisperse spheres immersed in

fluids, in an hour-glass shaped apparatus (Fig. 2.1) placed on a vibration-isolation

table. Using a variety of fluids (Table 2.1) and spheres (Table 2.2) we formed packings

under a wide range of viscosity and buoyancy conditions allowing distinctions to be

drawn between the relative merits of different parameters controlling the approach to

the RLP limit.

Packings were prepared by inverting the hour-glass shaped cell and allowing parti-

cles to settle through the fluid under gravity. The hour-glass geometry consists of two

conical sections with a cone angle of 60 ◦ and base diameter of 24 sphere-diameters

(d = 2 r) connected by a cylindrical neck of 4.2 d in diameter, which is only as wide as

necessary to avoid jamming by arch formation in the neck. The narrow neck allows

the passage of only a few particles at a time. (We have also deposited spheres singly

14



Table 2.2: Properties of sets of spheres (Table taken from our Soft Matter publi-
cation Ref [36], reproduced by permission of The Royal Society of Chemistry). We
measured particle diameter using a technique similar to Scott’s[83], measuring the
length of ∼ 100 spheres in a groove. Density was calculated from this diameter and
the weight of these spheres. To quantify polydispersity and sphericity, we measured
the diameter of individual spheres with a machinist’s micrometer accurate to 2.5µm,
along five or more directions. “Asphericity” is the relative deviation from sphericity
calculated as the standard deviation of these diameter measurements relative to the
mean. “Polydispersity” is the standard deviation of the average diameters of a set of
20 spheres relative to the mean. “RMS roughness” gives the root-mean-square devia-
tion from sphericity of profilometer traces taken of the sphere’s surface(see Fig. 2.2).
µ̄s and σµs are the mean and width of the distribution of static friction coefficient of
gently contacting spheres in fluid (see Fig. 2.7).

sphere material diameter/cm density/(g cm−3) polydispersity asphericity RMS roughness/µm µ̄s σµs

PTFE 0.3205(4) 2.1389(9) 0.21± 0.06% 0.14± 0.06% 1.1± 0.6 0.540(3) 0.10
aluminum 0.3191(3) 2.775(3) ≤ 0.04% ≤ 0.04% 0.32± 0.14 0.62(6) 0.16
steel 0.3179(4) 7.774(7) 0.14± 0.05% ≤ 0.04% 0.10± 0.02 0.66(14) 0.15
smooth acrylic 0.3174(3) 1.1800(9) 0.15± 0.06% 0.06± 0.04% 0.7± 0.3 0.88(3) 0.10
etched acrylic 0.3092(3) 1.1741(9) 0.16± 0.07% 0.08± 0.05% 2.6± 0.1 0.96(3) 0.10

by a mechanical dropper, with very similar results to those reported here.) The pack-

ing grows as a conical pile at the angle of repose (≈ 23− 26 ◦), which is much smaller

than the cone angle of the container, thus eliminating any empty pockets near the

walls. The conical cell was chosen to minimize the weight supported by the sloping

walls of the container. No crystalline order was observed near the bottom or side

walls.

Measurements of the volume fraction of the packing are performed when the top

surface of the packing just enters the neck of the cell. The total volume of the packing

is the volume of the cone plus the small contribution from the spheres that are in the

neck. The latter is determined from an image of the topography of the top surface

of the particles (inset Fig. 2.1). All volume fractions reported in this dissertation

are subject to the same systematic error in the range δφ ∈ [−0.002, 0.000] due to

uncertainties in these volumes and in the volume of the hour glass.

The particles used in our experiments are commercially available spheres of acrylic

(PMMA), Teflon (PTFE), steel, and aluminum with nominal diameter d ≈ 3.18 mm (see
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Figure 2.1: Hour-glass shaped sedimentation apparatus taken from our Soft Matter
publication Ref [36], reproduced by permission of The Royal Society of Chemistry.
Top right: Image of the topography of the top surface of the particles. Since the
volume is estimated from a single projection, there is a small systematic positive bias
in measuring the volume of the packing leading to a small negative bias in the packing
fraction of −0.002 . δφ < 0.
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Figure 2.2: Histograms of roughness ζ of spherical particles as measured with a
Dektak3 profilometer taken from our Soft Matter publication Ref [36], reproduced by
permission of The Royal Society of Chemistry. Inset (a): Select profilometer traces
ζ as a function of distance along the surface x (the gross curvature of the sphere has
been subtracted). Images of spherical particles: (A) steel, (B) smooth acrylic, (C)
PTFE, (D) solvent-etched acrylic, (E) aluminum.
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Table 2.2, Fig. 2.2). We also use acrylic spheres which were roughened by timed etches

in acetone. All sets of spheres are very monodisperse and highly spherical with, at

worst a deviation from sphericity of ∼ 10−3d, a surface roughness of the same order,

and a polydispersity of double this magnitude. These spheres are much larger than

those used by Onoda and Liniger (0.25 ± 0.02mm, glass). The advantages of using

large spheres are evident: attractive van der Waals forces are smaller compared to

other forces in the problem and the particles are of extremely high sphericity and

monodispersity and more easily characterized. Thus these experiments represent a

better approximation to the idealized packing of hard, monodisperse spheres than

previous experiments.

Apart from van der Waals attraction, experimental results on the low packing

fraction limit are sensitive to other attractive forces of electrostatic and capillary ori-

gin. In setting up the apparatus, great care was taken to degas fluids and to introduce

the fluid to the spheres slowly to avoid entraining air bubbles which form attractive

bridges between poorly wetted surfaces, especially rough ones. Pumping a vacuum

on heated, stirred fluids for hours was often insufficient to avoid the appearance of

attractive forces between spheres in non-wetting fluids, a phenomenon that has re-

cently been associated with the existence of long-lived [6, 13] nanobubbles capable of

exerting forces comparable to gravity for PMMA spheres in closely density matched

fluids [70]. To avoid this phenomenon, we have used well-wetting fluids when possible

and avoided close density matches in poorly-wetting fluids so that the contribution

of attractive forces is in all cases negligible. Where charging effects were suspected,

we repeated measurements with salts added to screen coulomb interactions.
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Figure 2.3: Geometry of the apparatus used in the friction measurement (scale: bead
radius r = 1.59mm).

2.2.2 Measurement of Friction Coefficient

The coefficient of static friction, µs, is measured by a new technique sketched in

Fig. 2.3 2. Two spherical beads of radius r sit inside a shallow v-groove of angle α

in a vertical circular track. The entire apparatus is immersed in fluid. If there were

only one bead present, it would roll under gravity and settle at the lowest point on

the cylinder at θ = 0. With two beads present, the friction between beads is able to

provide a torque to oppose gravity. Thus the cylinder can be rotated about its axis

without the beads rolling.

Let the cylinder rotate so that the point of contact of the beads is at an angular

position θ with the beads numbered 1 and 2 as in Fig. 2.3. Even in the case where

2In our setup, L = 6.35 ± 0.03mm, r = 1.59 ± 0.03mm and α = 10.0 ± 0.5◦. L is the distance
from the center of the track to the centers of the spheres whereas the radius of the track at contact
with the beads is L+ s.
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the beads roll without slipping against the wall of the cylinder, the beads are stable

for some θ > 0 because there exists a normal force ~N1→2(θ) of bead 1 on bead 2 as

well as a tangential force ~T1→2(θ) caused by static friction between beads. One can

see from the diagram in Fig. 2.3 that this tangential force is in the correct direction

to exert a torque preventing bead 2 from rolling. Similarly, there is an equal and

opposite torque supplied by bead 2 on bead 1 preventing it too from rolling so long

as the Coulomb inequality is not exceeded: |~T1,2(θ)|/| ~N1,2(θ)| ≤ µs. We determine µs

by looking for the maximal angle, θmax, at which this inequality holds. The result is

(see Appendix A for calculation):

µs =
L2/r2 − 1

L/s+ 1
tan(θmax) (2.2.1)

where s = r cos(α).

In obtaining this result, it is assumed that drag coming from fluid viscosity is

negligible as is static rolling resistance between the beads and the cylinder wall. Both

of these assumptions can be tested experimentally. At slow rotation frequency, ω,

the drag of the fluid is expected to scale with ω, thus the drag force can be made

small by rotating the cylinder slowly. The impact of static rolling resistance can be

checked by comparing torques associated with θmax for one bead, where there is only

rolling and fluid resistance, with the torque associated with θmax in the two-bead case.

The factors under experimental control likely to impact rolling resistance include the

hardness of the beads and cylinder; and the angle, α, of the v-groove in the cylinder.

Whereas simulation work to date on loose, frictional sphere packings has used a

simple Coulomb friction model with a uniform coefficient of friction, µ, our early

results measuring the coefficient of friction suggests that this model may be too

idealized to describe real granular materials. In our experiments which use very

high quality grains (see Fig. 2.2 and Table 2.2), the friction coefficient is found to

be neither constant between pairs of beads nor constant spatially over the surface of
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Figure 2.4: Unnormalized distributions of static friction coefficient as measured via
the maximum angle of stability of single pairs of steel (filled blue circles) and acrylic
(open green squares) spherical beads. Plot a) has linear axes; plot b) has a logarithmic
horizontal axis. Solid black and dashed red lines are fits to the log-normal distribution
calculated via the moments of the transformed distributions and nonlinear least–
squares fitting respectively.

a single bead, the distribution of static friction being wide with large mean and a

heavy tail. An example of the broad shapes of the static friction distribution is given

in Fig. 2.4. The distributions are found to be approximately log-normal for the steel

beads but with a much heavier large-µ tail for acrylic beads.

We note that the distribution of friction coefficient likely reflects a biased sampling.

In the friction measurement apparatus, the point of contact between the spheres is

the point of arrest of the spheres themselves and it seems likely that if µs is spatially

uneven across the bead surfaces, that the beads would be more likely to arrest at

a point of higher than average friction coefficient than at one of lower than average

friction coefficient 3. Thus spatially nonuniform friction coefficients may not be well

characterized by the mean of their distribution if they can be modelled by a single

friction parameter at all.

3It is interesting to speculate that a similar bias towards arresting at points of higher than average
or even outlying friction coefficient may also be occurring in the packing itself. It may be that the
friction coefficients at the points of contact in real granular systems are much higher than the average
value for the grains themselves.
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2.3 Results and Discussion

2.3.1 Dimensional Analysis

Onoda and Liniger in 1990 [67] and Jerkins et al. in 2008 [48] find that a loose

packing limit can be reached in sedimented and fluidized systems in the limit of low

static load on the packings. Onoda and Liniger express this as the limit, ∆g =

gf/g → 0, where, gf , is the gravitational acceleration experienced by the beads in the

fluid and g is the acceleration of gravity. This is confusing, however, because g does

not appear to be an important acceleration scale in the problem. What acceleration

scale, then, should gf be compared to?

In our experiment, we eliminate interparticle force scales so the balancing force

must be the viscous drag of the fluid. There appear to be five parameters in the prob-

lem: r and ρs the radius and density of the spheres; ρf , η the density and dynamic

viscosity of the fluid; and gf = g (1 − ρf/ρs), the buoyancy-reduced gravitational

acceleration experienced by particles in the fluid. These five parameters involve three

independent units (length, time, and mass), so we expect to construct two inde-

pendent dimensionless combinations. Following the conventional definitions [57] of

Reynolds’ number, Re = 2 ρf V r /η, and Stokes number, St = 2/9 ρs V r /η, where

V = 2/9 r2 gf ρs /η is the terminal velocity of a particle falling at low Reynolds num-

ber. Convenient choices of the two independent parameters are the Stoke’s flow limits

of the Reynolds number, Re→ R, and the Stokes number, St→ S:

R = 4/9 r3 ρs ρf gf /η
2 (2.3.1a)

S = 4/81 r3 ρ2
s gf /η

2 . (2.3.1b)

or equivalently either of these and their ratio S/R ∼ ρs/ρf .

In principle, R → 0 and S → 0 could tune different RLP limits, however, in

practice as these differ only by the ratio of densities, ρs/ρf , it is difficult to make
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just one of these small 4. Both of these parameters have standard interpretations.

The Reynolds number is the ratio of intertial to viscous force scales in the flow, so

it is plausible that the Reynold’s number affects the state of the packing in a way

independent of S. The Stokes number, S, however, has clear implications for the

dynamics of the sedimenting particles. In the small-Re limit, it is a measure of the

kinetic energy of a falling particle relative to the gravitational potential energy over

the particle’s radius. It is also a measure of the damping length of a falling particle

relative to the particle’s diameter. Thus the Stokes number seems to quantify both

the ability of a sedimenting particle to knock the packing out of a potential energy

minimimum and also the distance which it has to explore before settling into a new

local energy minimum. We shall see, however, that there is another role of Stokes

number, that of controlling the value of the restitution coefficient between spheres,

that appears to be more important than either of these in controlling the passage to

the RLP limit.

2.3.2 Random Loose Packing Limit

We display in Fig. 2.5 the major result of this chapter. For spheres of a given

material, the packing fraction decreases as sedimentation is done more gently. When

plotted against the dimensionless group S, the volume fraction approaches an asymp-

totic limiting low volume fraction which we may interpret as φRLP. We note the

limiting φRLP is different for spheres of different materials. The asymptotic limit is

directly available from the data, and unlike in previous measurements need not be

obtained by extrapolation (for which there is no reliable theoretical guideline). Each

data point is taken with a different liquid, and not with a chemical series or a dilution

series; the smooth approach to this limit thus suggests that the macroscopic parame-

4Large density mismatches might be possible with hollow particles or perhaps with fine particles
in air.
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Figure 2.5: Packing fraction, φ, vs. the dimensionless parameters S, R, and gf/g
(taken from our Soft Matter publication Ref [36], reproduced by permission of The
Royal Society of Chemistry). The data points represent individual packings; the
spread in the data is much larger than the random error on each data point. For a
particle falling at low Reynolds number, S is the Stokes number and R is the Reynolds
number itself. gf is the buoyancy-reduced gravitational acceleration felt by a particle
in the fluid. (Onoda and Liniger’s ∆g ≡ gf/g [67].) In all three graphs the solid line
connects data for smooth acrylic spheres and the dashed line is for steel spheres.

23



ters of the fluid and sphere are sufficient to fully characterize the preparation process,

and that any microscopic interparticle interactions mediated by the fluid have been

successfully suppressed.

Furthermore, Fig. 2.5(b) shows that the degree of density matching, quantified

by gf/g = 1 − ρf/ρs (Onoda and Liniger’s ∆g), is not an appropriate parameter to

define the RLP limit of this packing protocol. Low packing fractions can be achieved

without density matching, by sedimenting in sufficiently viscous fluids. For a fluid

of a given viscosity, RLP can of course be approached by varying gf/g, as the work

of Onoda and Liniger and Jerkins et al. suggest. The role of gf/g is however, not

in reducing the static load on the packing structure, but purely in slowing down the

dynamics of the packing process.

Fig. 2.5(c) shows that the volume fraction φ also smoothly approaches φRLP when

plotted against the dimensionless group R. Since R and S differ only by a factor of

the density contrast ρf/ρs, and available fluids fall within a narrow range of densities

(ρf ∈ [≈ 0.8 g/cm3,≈ 1.2 g/cm3]), it difficult to choose on the basis of the smooth-

ness of individual curves. A wider range of solid densities is available making the

comparison of the asymptotic approaches between beads of different materials useful.

In Fig. 2.5, trends for acrylic beads (solid line) and steel (dashed line) approach their

asymptotic limits at different values of R but at similar values of S. This, in addi-

tion to the physical intuition that Stokes number should control the dynamics of the

sedimentation, leading us to prefer S as the best candidate for the relevant control

parameter. The Stokes number, after all, has also been identified as the parameter

controlling the behavior of avalanches in fluid-immersed piles [25]—a system of direct

relevance to the formation of packings, collapses and avalanches no doubt playing a

role in the formation of packings.

One interesting observation that came out of the avalanche study [25], however,

was that the interpretations we have given for Stokes number as damping distance
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and kinetic energy are likely not the leading physical effects. Indeed, looking more

closely at Fig. 2.5(a) we see some surprises. The φ(S) does not reach it’s asymptotic

limit φRLP slowly for S << 1 but rather abruptly near S ≈ 10 where there should

still be plenty of energy present to rearrange the packing or allow a bouncing particle

to find a minimal energy position. Instead, the rapid approach of the asymptotic

limit at moderately large S seems to coincide with the that of measurements of the

restitution coefficient for collisions of fluid — immersed spheres on a flat surface [41]

which show that the Stokes number St — and not Reynolds number Re — is the

relevant dimensionless parameter that defines the onset of bounce-free collisions [28].

There is good quantitative agreement between the scale of St where bouncing ceases

and where φRLP is attained (Fig. 2.6). Thus control of restitution coefficient appears to

be the most important role played by the Stokes number in the passage to the RLP

limit and it is unclear how important its role as a nondimensional rate of packing

formation is.

We now return to the observation that the two curves in Fig. 2.5 corresponding

to steel and acrylic spheres approach different values of φRLP of 0.551 and 0.540

respectively. With the mass density of the materials already accounted for, the only

relevant differences are those of the contact mechanics of the spheres. In particular,

the coefficient of static friction, µs, between spheres is different. In Fig. 2.7 we plot

the φRLP value against the mean of the friction distribution. Besides confirming the

expected trend of higher friction yielding looser packings, our measurements (see also

Table 2.2) show that the values of µs are larger than those normally quoted for the

same materials at human-scale normal loads.

Unlike the high density limit φRCP, the loosest stable packing density, φRLP, has

been shown in simulation to depend on the friction coefficient between particles [97,

86, 87, 85]. Ours is the first experiment, however, to measure the coefficient of friction

between spherical grains in an environment similar to that in the packing, providing
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Figure 2.6: The main plot shows the packing fraction, φ, of acrylic spheres (left
vertical axis, symbols match Fig. 2.5) versus Stokes number, St (Figure taken from
our Soft Matter publication Ref [36], reproduced by permission of The Royal Society
of Chemistry). We compare the trend with the data of Gondret et al.(from Fig.
6, Ref. [41]), plotted here in dark circles against the right vertical axis) for the St-
dependence of the restitution coefficient e, scaled by its maximal value emax. The data
are for collisions of a Teflon sphere in a fluid, however, data for different materials
collapse on the same curve. To make the comparison with Ref. [41], we inferred the
value of St in our experiments from measured values (Table 2.2) and a standard drag
curve [57]. This correction is shown in the inset; as expected the correction is small
when St is small.
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Fig. 2.7). The solid black circles are from Silbert’s simulations [85]. Note that there is
a break in the horizontal axis allowing the inclusion of Silbert’s highest µ data point.

the first experimental test [36] of the of the “jamming phase diagram” [87, 85] for

frictional spheres at zero temperature, shear, and pressure.

Our data thus suggest a resolution of the puzzle that friction coefficients in sim-

ulated models [97, 86, 87, 85] need to be surprisingly large in order to achieve the

volume fractions around φ ≈ 0.555 seen in experiments [67, 48]: namely that inter-

grain friction actually is large.

2.3.3 Since Publication

In the time since the 2010 publication in Soft Matter [36], the results in this

chapter have generated interest and some have been generalized. Our finding that

the density of the packing can be tuned by controlling the Stokes number of the

sedimentating particles has, for example, been generalized to take into account the

effect of the volume fraction on the settling rate in sedimenting colloidal fluids [53].

It is not yet clear, however, whether this result is applicable to the non-Brownian

spheres we studied.
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Much of the interest in our paper has regarded the mapping out of the volume

fraction range available to frictional sphere packings. Prior work had suggested a

friction dependence of the volume fraction of loose states [56, 77] and simulations had

suggested that loose packings cannot exist without friction [64]. The particles in prior

experiments, however, had generally been relatively small (∼ 100 µm), polydisperse

(5 to 10%), with uncharacterized surface features and friction coefficients quoted

from the bulk material, if at all. We attempted to address these weaknesses by

using large, high quality spherical particles, reporting surface profiles and attempting

an in situ measurement of interparticle friction coefficient. With these results, we

demonstrated a general trend of decreasing φRLP with increasing friction coefficient,

µ. Consistent with our friction findings, Utermann et al. subsequently developed [91]

an experimental technique to alter the surface profile of glass spheres and found a

positive relationship between the vertical roughness scale and the angle of repose and

a negative relationship with φ.

Parallel and subsequent subsequent simulation work on frictional hard sphere

packings suggest similar φRLP(µ) trends, however, offset to slighly higher volume

fraction. Fig. 2.8 shows that our experimental φRLP(µ)-curve appears to be shifted

downward about 0.02 in a volume fraction versus the simulation of Silbert (2010) [85]

published alongside ours in Soft Matter. Subsequent simulation and theory [23, 24]

have found similar trends. The cause of this offset is unknown but may be due to the

finite size of our experiment which is especially likely given our finding in Chapter 5

that volume fraction is suppressed near smooth walls. The discrepancy, however, may

also be due to differences between protocols in the experiment and simulation, or the

simplistic model of friction used in the simulations.

Other interest in the results of this chapter includes Prof. Schröter’s (2017) [81]

use of our Fig. 2.2 showing the roughness of our spheres to support his viewpoint

that more detailed models of the grains themselves are needed to understand real
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granular materials [81]. Prof. Castellanos (2012) [18] theorizes that adding a static

coefficient of rolling friction to the frictional hard-sphere model may explain both

the high friction values and relatively low values of φRLP seen in our experiment as

compared to the simulations.
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CHAPTER 3

MECHANICS OF YIELDING NEAR RANDOM LOOSE
PACKING

3.1 Introduction

This chapter describes a completed project that has been submitted for publication

in Physical Review Letters and borrows heavily from that paper.

In this chapter we describe experiments investigating the rheology and yielding

behavior of loose sphere packings created by the sedimentation process at low Stokes

number described in the previous chapter. We find that the shear yield stress exhibits

an approximately cube-root power-law dependence on both the age of the packing

and the strain rate over a sufficient distance to distinguish this from other functional

forms. Since no lower cutoff of this power-law scaling is seen, this result establishes

an upper bound for reversible elastic response in loose packings. Further, we find

the yield stress to be insensitive to both the volume fraction of the packing and the

viscosity of the interstitial fluid.

We modify a recent model of viscoelastic rheology used by Nguyen et al. [62] to

describe logarithmic creep in a loose sphere packing and find that this new model

accounts for the scaling of the yield stress while also retaining its prediction of creep

under constant-stress loading, thus unifying under a single, simple rheological model

the phenomenology observed by us under constant strain-rate loading with that ob-

served by Nguyen et al. under constant-stress loading.
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3.2 Failure and Rheology in Loose Granular Matter

Loose packings of grains are ubiquitous in environments from sedimented river

beds, to industrial processing of powders, to the soils of low-gravity planets. Loose

packings can be created by sedimenting gently [67, 36], fluidizing packings [62, 66, 60],

and dilating dense packings by tapping [63, 82]. For monodisperse spheres, these

protocols lead to a range in volume fraction from φ ≈ 0.54 to 0.64 [67, 48, 87, 85,

36, 62, 60]. Recent experiments and simulations [36, 85] show evidence for a friction-

dependent lower bound—the random loose packing (RLP) limit [67]—to the volume

fractions that can be achieved for disordered packings of noncohesive spheres. This

contrasts with the upper bound of achievable volume fractions—random close packing

(RCP) [11]—which appears to be independent of friction [83, 85].

Thus spherical grains can pack over a large, friction-dependent range of volume

fractions leading to a practical need to understand the mechanics of these solids.

A substantial body of work explores the remarkable mechanics near random close

packing [65, 27, 85, 78] (see [20] for a recent review). The loose packing limit, how-

ever, remains relatively less explored. The goal of our experiments is to investigate

mechanical response and yielding at small shear strains near the loose packing limit.

A simple picture of failure in loose granular solids is that there is a single critical

stress, σc, about which a transition occurs from solid to liquid behavior. For stresses

above σc, rheological studies are often described by a Herschel-Bulkley dependence of

stress, σ, on strain rate, γ̇, for steady state flows:

σsteady = σc · (1 + (γ̇ τ)n) , (3.2.1)

with the rate-exponent, n, ranging from 1/2 to 1 and as low as 0.3 in experiments

and simulations [44, 7, 94, 52, 14, 26, 73]. Very slow steady flows have been observed

as σc is approached from above [80, 60, 72], however, there are also indications of

instabilities near σc [29, 25, 51]. As with Coulomb friction, these observations lead
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us to differentiate between the “static yield stress,” σy, required to initiate flow, and

a smaller “dynamic yield stress” required to maintain flow.

The identification of σy as a true yield stress, however, is complicated by obser-

vations of creep flow for σ < σy [43, 62, 7] and strengthening with age [55, 50, 17].

In an attempt to incorporate the phenomena of creep flow and aging into a rheolog-

ical description of loose granular solids, Nguyen et al. extend the Maxwell model of

viscoelasticity via an evolving viscosity variable, η (they write it in terms of fluidity,

f = G/η):

γ̇ =
σ̇

G
+
σ

η
(3.2.2a)

η̇

G
= a− r

(
γ̇ η

G

)2

, (3.2.2b)

with aging and rejuvenation tuned by positive dimensionless constants a and r [62].

Equ. 3.2.2 reproduces logarithmic creep observed under constant applied stress [62]

but remains untested under the complementary protocol of controlled strain.

In this chapter we describe constant strain-rate rheological measurements of loose

packings prepared in a range of loose volume fractions and in different fluids. We

present experimental evidence that the “static” shear yield stress, σy, undergoes

power-law strengthening with age and with strain rate and does so symmetrically

in these variables without sensitivity to either the volume fraction or the viscosity of

the interstitial fluid. We do not observe a cutoff of this scaling at low strain rate and

thus find no evidence for a reversible elastic regime. Finally, we show that when the

rheological model of Equ. 3.2.2 is modified so that η̇ depends on stress history rather

than strain history, it successfully accounts for the yield-stress scalings presented here

while retaining the creep predictions of Equ. 3.2.2. Thus the new model offers a uni-

fied description of the response of loose granular solids under constant strain-rate and

constant-stress conditions.
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3.3 Methods

3.3.1 Experimental Setup

We create loose packings of polymethyl methacrylate (PMMA) spheres (McMaster-

Carr) of diameter, d = 1.588 mm, and density, ρs = 1.18 g/cm3, chosen for their high

sphericity and low polydispersity [36]. The particles are at all times immersed in a

fluid with viscosity, ηf = 110 mPa · s, and density, ρf = 1.021(1) g/cm3 composed

of high-temperature silicone oil (Acros Organic) and mineral oil (Fisher Scientific)

mixed in an 82.5:17.5 mass ratio. Some data were also taken with a lower viscosity

fluid mixture with viscosity, ηf = 5.37(4) mPa · s, and density, ρf = 0.799(1) g/cm3,

composed of mineral oil and n-dodecane in a 45:55 mass ratio. Both fluids strongly

wet PMMA, and attractive forces arising from entrapped air are minimized by pump-

ing the fluids after mixing to remove any dissolved gases. To minimize triboelectric

charging, all parts of the sample cell are also made of PMMA. Van der Waals forces

are negligible compared to the weight of the particles.

The spheres are enclosed in a container with a square cross-section of inner dimen-

sion 2W and a height of 184 d (Fig. 3.1). A shear plane roughened by a disordered

monolayer of beads melted to each side, is suspended in the center with an 8 mm gap

between its edges and the side walls. The shear plane is supported from above by

a load cell (Honeywell Sensotec AL311AP,4A whose bridge impedance is measured

with a SR830 lock-in amplifier) and moved vertically with a step size of 0.254 µm by

a servo motor (NI MID-7654 Servo Drive). The spheres rest on a base that is porous

to the fluid, but not the particles. The container is filled with spheres to 160 d leaving

fluid above the top of the packing so that particles never breach the surface of the

fluid.
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Figure 3.1: Experimental setup and preparation of the packing. Within a transparent,
square cross-sectioned box, a roughened “shear plane” (c) is suspended from a motion
stage (a) in the center of the container, in line with a force transducer (b). The sphere
packing rests on a porous base (f) which is raised and lowered 2 cm via thin rods (h)
to allow the spheres to settle. The distance from the shear plane to the boundary is
the system width, W . The left column shows the force exerted on the shear plane
and the change in volume fraction as the packing is formed. The approach to the
long-time steady-state force, f0, collapses (top-right), when the force is scaled with
the relative buoyant weight of the particles, ∆ρ = 1 − ρf/ρs, and time is scaled
with the Stokes’ timescale, τst = 18 ηf/(g d ρs ∆ρ), of particles falling under gravity
though a fluid of viscosity, ηf . A crossover to a slower relaxation appears to occur at
∼ 600 τst corresponding to 430 s for ηf = 110 mPa · s and 9.6 s for ηf = 5.4 mPa · s.
The crossover provides a way to estimate the beginning of the aging time, T , of a
freshly sedimented packing. The image shows surface profiles of a slice of the top of
the packing moving downward while being compacted by a large upward motion of
the shear plane (the yellow lines are sampled every 45 s, γ̇ = v/W = 8.8× 10−5/s,
W = 18 d, ηf = 110 mPa · s).
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3.3.2 Packing Preparation Protocols

Loose packings are prepared by sedimentation of the spheres at low enough Stokes’

number (St ≈ 4× 10−3 for ηf = 110 mPa · s and St ≈ 4 for ηf = 5.4 mPa · s) to

ensure they will form loose packings [36]. 3D imaging measurements (see Fig. 5.10 in

Chapter 5) put the volume fraction after sedimentation at φ0 ≈ 0.565(5) which places

it near the RLP limit for frictional spheres [85, 36]. Denser packings (∆φ = 0.00 to

0.05) are created by inducing compaction with large, rapid oscillations of the shear

plane.

As shown in Fig. 3.1, forces on the shear plane during sedimentation display an

early relaxation phase at a timescale consistent with the viscous flow of interstitial

fluid out of the compacting packing [16] then enter a phase of slower relaxation which

we believe is associated with aging of the solid packing itself. In general when the

age of the packing needs to be known, it is set by briefly fluidizing the packing with

an upward motion of the shear plane of ∆z = 10−2 d (causes negligible compaction)

then pausing for an “aging” or “waiting time,” T . After the waiting time is complete,

the static shear stress, Σ0, is noted and upward motion of the shear plane is initiated

at constant strain rate, γ̇ = v/W , while the shear stress, Σ, is recorded. σ = Σ− Σ0

is taken to be the response to the imposed strain, γ.

Loose packings are prepared by sedimentation of the spheres first by raising the

porous bottom 2 cm which lifts the spheres with it, then rapidly dropping the bottom

and allowing the particles to settle at low Stokes’ number, St ≈ 4× 10−3, which

ensures they will form loose packings [36]. This process creates a packing in a volume

fraction near φRLP which we refer to as φ0.

Denser packings are created by subsequently inducing compaction with large,

rapid oscillations of the shear plane (see Fig. 3.2). After achieving the desired increase

in volume fraction (∆φ = 0.00 to 0.05), a single, sharp upward motion of the shear

plane, ∆z = 10−2 d (where d is the bead diameter), is applied to fluidize the packing
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Figure 3.2: Compaction triggered by sinusoidal oscillation with period, T = 6.6 s.
Larger amplitudes caused faster compaction although curves at the two lowest am-
plitudes nearly overlay. The inset image shows a slice of the top of the pack-
ing during compaction while the shear plane is drawn upward at constant velocity
(v/W = 8.8× 10−5/s). Light-colored lines show previous surface profiles sampled
every 45 seconds. While the roughened plane (visible on the right of the inset image)
moves upward at constant velocity, the motion of the free surface is predominately a
downward translation thus it is right to think of this phase of the packing’s response
as compaction rather than shear. Also telling in this picture is the decoupling of the
motion of the roughened plane from that of the free surface. In this example the
surface is moving downward at about four-times the (absolute) velocity with which
the roughened plane is being dragged upwards.

with negligible change in the volume fraction. Large fast motions like this of the

shear plane induce compaction rather than shear in the packing as evidenced by the

relatively uniform downward motion of the surface of the packing in the bottom-right

of Fig. 3.1 in response to rapid upward motion of the shear plane.

Thus we report measurements of yield stresses for packings that have been pre-

pared and aged according to three slightly different protocols. Except for the open-

squares, all the data in Fig. 3.5 was prepared by allowing a packing 600 s to sediment

then briefly fluidizing the packing by moving the shear plane upward a distance 0.01 d,

then waiting a variable length of time called the “waiting time,” T , then commencing

shear at rate γ̇. In this protocol we associate the waiting time, T , with the age of the

packing and makes it possible to set relatively short packing ages.

The first data series in Fig. 3.6 was prepared by lifting and dropping the packing

and waiting a period of 600 s for sedimentation and aging to occur after which we

applied the constant strain rate. Higher levels of compaction reported in the main
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Figure 3.3: Average approach of force, f , to steady-state force, f0. The ∆φ = 0.00
curve shows force as the packing sediments. The higher volume fractions show the
relaxation of the force following sinusoidal compaction imposed at amplitude d/2 and
period 6.64 s for 15, 30, and 90-cycles. As in the top-right of Fig. 3.1, the force
displays an elbow where the timescale of relaxation shifts from the time expected
from the viscous flow of fluid through the pores of the packing and a longer timescale
which we hypothesize comes from a viscosity, η, of the packing itself.
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Figure 3.4: Response of the sedimented packing to constant velocity motion of the
shear plane. Top panel: the upper horizontal axis shows the constant-strain-rate
protocol, with the imposed strain rate jumping from zero to γ̇ = v/W = 8.7× 10−5/s
at time, t = 0, and stopping at a displacement of z = 0.2 d. The light lines are
individual shear stress responses (system width, W = 18 d). Yielding is characterized
by a sharp stress peak at small strain. The bottom panels show run-averaged stresses
near yielding at fixed waiting time, T = 16 s (bottom left), and at fixed strain rate,
γ̇ = 8.7× 10−5/s (bottom right).

panel of Fig. 4 correspond to the same sedimentation processes followed by an applied

rapid sinusoidal perturbation intended to fluidize and compact the packing. After the

perturbation ended, the packing was allowed 600 s to settle and age before commenc-

ing the constant strain rate test. Because sedimentation takes longer than settling

after compaction, these two protocols translate into different wait times which we can

estimate from the location of the elbow in Fig. 3.3. In Fig. 3.6 where we are only

trying to show strain rate scaling, no estimation of the age was needed.
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3.4 Results and Discussion

In Fig. 3.4 (top panel) we show an example of the stress response to a small strain

rate at the lowest volume fraction, φ0. The stress increases as soon as the strain is

initiated but then peaks and falls sharply beyond a very small strain of order 10−5

to 10−3 in the experimental regime studied. Because strains are so small, resolution

is limited in determining the shape of the stress-strain relation before this peak,

however, the relation appears to become nonlinear when the peak is large. The peak

value of σ in Fig. 3.4 is taken to be the yield stress, σy, and is the main focus of this

dissertation. Furthermore the yield stress, σy, is a function of the applied strain rate,

γ̇, and of the waiting time, T , as shown in Fig. 3.4 (lower panels).

One of our principal results is that the yield stress, σy, collapses onto a master

curve displaying power-law scaling over six decades in γ̇ T , as shown in the main

panel of Fig. 3.5. The data collapse includes data for two different widths of cell,

W , and two different fluids. The yield stress collapses even though the fluids differ

in viscosity by a factor of 20. Thus the yield stress arises from solid stresses in the

packing; the surrounding fluid is irrelevant in this small strain regime except for its

contribution to the buoyant weight accounted for in the static load, Σ0. As shown in

Fig. 3.5, a least squares fit on logarithmic axes to

σy/Σ0 = C · (γ̇ T )n (3.4.1)

gives parameter estimates of, n = 0.30(1), and logeC = −0.6(1). No lower cutoff is

observed, suggesting that a quasistatic reversible elastic regime is not experimentally

accessible.

In the main panel of Fig. 3.6, we show that the strain-rate scaling of σy is preserved

when the volume fraction, φ, is varied away from the loosest packing. Increasing

volume fraction by ∆φ above φ0 results in identical scaling of the yield stress with

the exponent fit to n = 0.33(1). The absence of volume fraction dependence in the
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Figure 3.5: Power law scaling of the shear yield stress. The top panel shows examples
of the scaling of the yield stress against strain rate and wait time, both displaying
exponents near 1/3. The primary subfigure shows yield stress from experiments across
a variety of rates, v, fluid viscosities, ηf , density mismatches, ∆ρ = 1 − ρf/ρs, and
system widths, W , collapsed onto a master curve against the dimensionless product
of strain rate and wait time. The wait time represents the age of the packing and is
set by a pause of duration, T , following a brief fluidization except in the open squares
where it is calculated from the end of sedimentation (see top-right Fig. 3.1). This
master curve exhibits a power-law dependence over a six-decade span with exponent
fit by least squares to 0.30(1) (dashed line, excludes the single outlier). Error bars
display the statistical error in the median.
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Figure 3.6: Power law scaling of the yield stress at varying degrees of compaction,
∆φ. The top panel displays the stress response for different levels of compaction
(γ̇ = 8.7× 10−5/s, T = 4 s, W = 18 d, ηf = 110 mPa · s). The response below
the yield stress varies little with compaction while the dynamic slope immediately
post-yield, Gdyn, increases, ultimately changing sign. The main figure shows that
the power-law scaling of the yield stress with strain rate of freshly sedimented and
compacted packings is unchanged by the degree of compaction. A least squares fit
gives an exponent of 0.33(1), consistent with σy ∝ γ̇1/3.
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stress-strain response up to and including the yield stress demonstrates a lack of

sensitivity of the solid near RLP to variations in volume fraction. This stands in

contrast with solid mechanics near RCP where elastic moduli, for instance, display

critical scaling with the distance to φRCP [65]. The insensitivity to volume fraction

near RLP, however, appears to be confined to the solid regime. After yielding has

occurred, volume fraction dependence reappears in the dynamic modulus, Gdyn (top-

right Fig. 3.6).

To place into context our result of cube-root scaling of the yield stress with γ̇ T ,

we note that age and rate dependence have been observed in static yield stresses and

static friction coefficients in granular systems. However, logarithmic or much smaller

exponents are typically reported [55, 69, 50, 17]. The relatively large exponent of 1/3

and the symmetry between age and rate are new observations near the RLP limit,

with the only comparable rate-scaling having been reported in a colloidal paste [31].

Aging of interparticle contacts are a possible source of age and rate-strengthening,

but the logarithmic (and occasionally small-power-law) forms of friction and plasticity

reported for PMMA are much slower than the cube-root scaling of Equ. 3.4.1 [96, 12,

8, 15, 76].

Figs. 3.7 and 3.8 show examples of the difference between the reported age and

rate-scalings of the static friction coefficient [15] and the yield stress of PMMA [12]

and the scaling we are describing for the yield stress. In both cases the data appear at

least as linear on log-log axes as on log-linear axes (as published) indicating that the

2 to 3 decades of the independent variable are not sufficient to distinguish logarithmic

from power law behavior for such small exponents. We include the larger exponent of

1/3 to make clear how much larger it is in practice than these exponents and also that

a 3-decade range in the independent variable is more than sufficient to distinguish a

relatively large exponent like 1/3 from a logarithm.
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Figure 3.7: Data from Ref. [15] Fig. 4(a) showing the increase in static friction coef-
ficient of PMMA with contact time, T . Gray markers are at 293 K, black markers at
345 K. The upper figure plots the data as it is plotted in Ref. [15] which highlights
the logarithmic age dependence of the friction coefficient. The lower figure replots the
data on log-log axes as one would to highlight power law scaling. This lower figure
displays solid lines showing the best power-law fit and dashed lines showing the best
semilog fit. That these power-law and semilog fits nearly overlay demonstrates that a
4-decade span in the independent variable is insufficient to distriguish power-law from
semilog behavior given such small exponents (best fits are 0.028(2) and 0.099(2)). To
demonstrate how different the above behavior is from the ≈ 1/3-power law forms seen
in our dissertation, we’ve drawn a dark line with slope 1/3. The dashed curved line
tangent to it is the logarithm that best approximates a power law of 1/3 over this
span.
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Figure 3.8: Data from Ref. [12] Fig. 4(a) showing the increase in yield stress of PMMA
with strain rate, γ̇. The upper figure replots the data with strain rate on a logarithmic
scale highlighting that these data are fit well by a logarithmic form. The lower figure
plots the data as it appeared in Ref. [12] on log-log axes as one would to highlight
power law scaling. The black straight-line fit through the data has slope 0.082(2).
The dashed gray line which is the best semi-log fit to the data is also shown and it’s
curvature is barely discernible, again suggesting the futility of distinguishing between
logarithmic and power law forms for this particular data series. To show how different
these forms are from the ≈ 1/3-power law seen in our dissertation, I’ve drawn a dark
line with slope 1/3. The dashed curved line tangent to it is the logarithm that best
approximates a power law of 1/3 over this span.
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A simple way to express the difference between the exponents expected for rate

scaling and those presented here is with the magnitude of change expected. The

yield stress of PMMA is consistent with power law scaling [12], with exponent 0.082,

however, over the span of rates in Fig. 3.8, the yield stress of PMMA increases by

about 60% while the yield stress of our loose packings scaling with an exponent of

1/3 would vary by almost 7-fold over the same span. If contact aging is important,

it would appear that it must be amplified by the network of granular contacts.

3.5 Extended Maxwell Model of Viscoelasticity

The Maxwell model of viscoelasticity provides a simple way of describing the

rheology of materials that exhibit an elastic response at short timescales yet creep

over long timescales. In its 1-dimensional form, the Maxwell model consists simply

of a viscous damping element, ση = η · γ̇, in series with a elastic spring, σG = G · γ,

where G is the shear modulus of the material at high frequency, and η is the dynamic

viscosity at low frequency. Because the elements are in series, stresses are equal in

both elements, σ = σG = ση, and strains add, γ = γG + γη, thus the model evolves

according to the following differential equation:

γ̇ =
σ̇

G
+
σ

η
. (3.5.1)

This model is a promising starting point for describing the mixed fluid and solid

nature of loose packings, however it contains no aging mechanism, predicts linear

growth rather than the logarithmic [62] creep of the strain, and is unable to describe

the cube-root yield-stress scaling presented in this chapter.

Some prior attempts to model the rheology of loose granular materials have sought

to extend the Maxwell model of viscoelastic flow by allowing the viscous element, η,

to evolve in time [30, 31, 62]. Nguyen et al. were able to describe the logarithmic
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creep that they observed under constant stress conditions with a model where the

evolution of η depends on strain history [62]:

γ̇ =
σ̇

G
+
σ

η
(3.5.2a)

η̇

G
= a− r

(
γ̇ η

G

)2

. (3.5.2b)

In this model aging and rejuvenation are tuned by positive dimensionless constants

a and r. The aging, a-term leads to linear growth in η when the material is at rest.

Thus the initial viscosity, η(0), at time, t = 0, arises from integrating Eq. 3.5.2b over

the aging or waiting period of duration, T , during which γ̇ = 0,

∫ 0

−T
η̇/G dt =

∫ 0

−T

(
a− r

(
γ̇ η

G

)2
)
dt (3.5.3a)

η(0) = aGT + η(−T ) ≈ aGT (3.5.3b)

where the last approximation assumes that the system was well fluidized at the start

of the aging period and thus that η(−T ) is negligible. The rejuvenating, r-term

fluidizes the packing during periods of large shear when the second order term in

strain rate is significant. A lower order rejuvenation term does not appear in the

expansion of η̇ consistent with the notion that evolution of the viscosity should be a

function of the magnitude and not the direction of strain.

Constant stress solutions of Eq. 3.5.2,

η(t) = aG
(
T +

(
1− r

a
(σ/G)2

)
t
)

(3.5.4a)

γ(t) =
1

a

(
σ/G

1− r
a

(σ/G)2

)
log

[
1 +

t

T

(
1− r

a
(σ/G)2

)]
(3.5.4b)

display the logarithmic creep that Nguyen et al. observed experimentally [62]. Con-

stant strain-rate solutions are less interesting in this model, however, as evolution of
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viscosity decouples from the evolution of the stress when γ̇ is constant:

η̇

G
= a− r

(
γ̇ η

G

)2

(3.5.5)

with solution,

η(t) =

√
a

r

G

γ̇
coth

(√
a

r
γ̇ t+ coth−1(

√
a

r
γ̇ T )

)
. (3.5.6)

This model, then, is less interesting at constant stress than it was at constant strain

rate and it doesn’t yield phenomena resembling the cube-root yield stress scaling of

Eq. 3.4.1 as shown numerically in Fig. B.1.

We propose a different modification of the Maxwell model where we expand η̇ to

the lowest order in applied stress, σ, consistent with symmetry:

γ̇ =
σ̇

G
+
σ

η
(3.5.7a)

η̇

G
= a− r

( σ
G

)2

, (3.5.7b)

where positive dimensionless constants a and r set the strengths of aging and re-

juvenation. This new model turns out to be equivalent to Nguyen et al.’s model

(Eq. 3.2.2) when stress is held constant because at constant σ, Eq. 3.5.7a, reduces

to σ/G = γ̇ η/G—the difference in the r-terms in the models. This new model thus

admits the same logarithmic creep solution (Eq. 3.5.6) and is therefore consistent

with Nguyen et al.’s experimental findings and analysis at constant stress.

It is possible to calculate approximate scalings of the yield stress in this new

model. The following provides a quick sketch of the calculation to show how the

cube-root scaling emerges. Section B.1.1 in the Appendix includes an explicit power-

series solution which provides a justification for the approximations used here.
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Figure 3.9: Numerical solutions for our model (left column) and Nguyen et al.’s
model [62] (right column). The top four figures show numerical solutions for different
rates, γ̇ and the bottom row shows numerical solutions for the scaling of the height of
the stress maxima, σy, versus strain rate, γ̇, for our model (red circles) and Nguyen
et al.’s model (green squares). The values of the fixed parameters are a = 0.1,
r = G = 1, T = γ̇ = 10, d = 1× 10−6. The extreme similarity between the rate
and age-scaling subfigures is not a mistake: in constant strain rate solutions of both
models, the shape of stress-strain curves depend only on the product of γ̇ T . Our
model matches the approximate scaling of Eq. 3.4.1 (black lines) when γ̇ T is large.
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We see from numerics (Fig. 3.9), that when a constant strain rate is first applied

solutions for σ(t) rise from zero, peak then fall. In this limit where the peaks are

large, we see that the response is initially quite linear with a sharp sawtooth-shaped

peak. If the aging parameter, a ∼ 1 (which it appears to be from the ≈ −1 exponent

in relaxation, Sect. 4.3.3), we will show that in the limit where
√
r γ̇ T is large, that

the cube-root scaling of the height of this peak, σy, emerges.

The simple sawtooth shape of σ in the large peak limit suggests a scheme for

calculating the approximate scaling of the stress maxima. Approximating stress as

linear in time, we obtain an approximate solution for η(t) then solve for the time,

ty, when these solutions satisfy the relation implied by Equ. 3.5.7a evaluated at peak

stress.

The initial stress-response is linear,

σ(t) ≈ G γ̇ t . (3.5.8)

Solving Eq. 3.5.7b using the linear approximation of σ gives

η̇/G ≈ a− r t2 γ̇2 (3.5.9a)

η(t)/G ≈ a (t+ T )− 1

3
r t3 γ̇2 (3.5.9b)

where we have used initial condition η(0) = GaT (Eq. 3.5.3b) as aging is the same

in the new model.

We now look at behavior at the stress peak. At the time, ty, of peak stress

σ̇(ty) = 0 so the Maxwell model (Eq. 3.5.7a) gives

σ(ty) = γ̇ η(ty) . (3.5.10)

As the linear behavior appears to extend right up to the peak in the limit where peaks

are large, we attempt to estimate ty by plugging the small-t approximate solutions
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of σ(t) (Eq. 3.5.8) and η(t) (Eq. 3.5.9b) into this relation which is valid at the peak,

yielding

T =
(
3 (1− a) ty + r γ̇2 t3y

)
/(3 a) . (3.5.11)

As the power-series solution Appendix B.1.1 makes clear, the small parameter in

these expansions is ty/T so using the scaling we are about to derive and assuming

a ∼ 1, it can be shown that the first order term in ty is small compared to the other

two terms (note that the power-series calculation also explains why we are justified

in approximating σ(t) to first order in t while we calculate η(t) to third order).

Neglecting the first order term in ty, the cube-root strain-rate and age scalings follow.

ty ≈
(

3 a T

r γ̇2

)1/3

(3.5.12a)

γy ≈
(

3 a T γ̇

r

)1/3

(3.5.12b)

σy ≈ G

(
3 a T γ̇

r

)1/3

. (3.5.12c)

Thus this natural extension of the Maxwell model produces the cube-root power-

law scalings seen in the experiment and may be relevant to other systems [31, 74].

Eliminating γ̇, we see that these cube-root strain-rate scalings are equivalent to

reciprocal-square-root scaling with yield time:

σy ≈ G

(
3 a T

r ty

)1/2

(3.5.13a)

γy ≈
(

3 a T

r ty

)1/2

. (3.5.13b)

The Maxwell model can be generalized to the case where the elastic element follows

an arbitrary power-law potential (see Sect. B.1.2),

U(γ) =
1

α
G |γ|α , (3.5.14)
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In this case the Maxwell model of Eq. 3.5.7a becomes

γ̇ = sgn(σ̇)

(
|σ̇|

(α− 1)Gtα−2

) 1
α−1

+
σ

η
(3.5.15)

and a very similar scaling argument (see Sect. B.1.3) gives the scaling:

ty ≈
(
a (2α− 1)T

r γ̇2 (α−1)

) 1
2α−1

(3.5.16a)

γy ≈
(
a (2α− 1) γ̇ T

r

) 1
2α−1

(3.5.16b)

σy ≈ G

(
a (2α− 1) γ̇ T

r

) α−1
2α−1

. (3.5.16c)

These scalings reduce to the cube-root power law when the potential is harmonic and

give σy depending on γ̇ T to exponents of 3/8 for Hertzian, 2/5 for cubic and 3/7

for quartic potentials suggesting that higher-order elasticity terms may well explain

exponents from ∼ 0.33 to ∼ 0.43.

Interestingly, the reciprocal square root scaling of yield stress with yield time (see

Equ. 3.5.13a),

σy ≈ G

(
(2α− 1) a T

r ty

) 1
2

(3.5.17a)

γy ≈
(

(2α− 1) a T

r ty

) 1
2(α−1)

, (3.5.17b)

is independent of the degree, α, of the potential.

The model of Eq. 3.5.7 unifies the seemingly unrelated responses observed to

constant-strain-rate (Eq. 3.4.1) and constant-stress loading [62]. It explains the initial

solid-like response to constant strain-rate loading because aging can render η large

enough to give approximately linear response until σ = σy(γ̇, T ) and rejuvenation

triggers an abrupt transition from a large-η solid-like response to a small-η liquid-like
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flow. It also explains creep flow in response to very small constant-stress loading,

because the range of this approximately-linear regime vanishes as γ̇ goes to zero,

leaving nothing but a viscous response to small stresses applied over long timescales.

If it is generally true that C ∼ 1 as in Eq. 3.4.1, then the only stress scale

that contributes to the solidity of the packing is the external load, in this case the

gravitational pressure, p. That no new intrinsic timescale needs to be introduced

in Eq. 3.5.7 is consistent with the symmetry of the yield-stress scaling with strain

rate and age and suggests that the mechanisms of aging and rejuvenation may be

interdependent. Together with Eq. 3.5.12c, the observation that C ∼ 1 implies such

a constraint: (a/r)1/3 ∼ p/G. This relationship could provide a clue as to the grain-

level causes for the macroscopic phenomenology of aging and rejuvenation.
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CHAPTER 4

RHEOLOGY AT LARGER STRAINS

4.1 Introduction

The previous two Chapters deal with experimental protocols for the formation

of loose packings and the mechanics of those states up to the point of initial fail-

ure. In the present chapter, we investigate mechanical behavior when the material is

subjected to larger strains.

The expected response to steady-state shear may be the Herschel-Bulkely (H-B)

stress-scaling reported in many related systems [44, 7, 94, 52, 14, 26, 73],

σH-B = σc (1 + (γ̇/τH-B)n) . (4.1.1)

However experiments poking [80] and shearing [60] loose-packed fluidized beds of glass

spheres have described a rate-independent steady-state shear regime.

With regard to statics, simulations have measured the bulk modulus at φRLP [85]

and experiments have reported logarithmic creep under constant-stress conditions [62].

Our experiments described in Chapter 3 were the first to look at the response of loose

packings to the startup of constant strain rate shear. They show that the yield

strength scales as the cube-root of strain rate and the age of the material.

The rate-scaling of the yield stress and the existence of creep at small loads, both

imply that loose sphere packings lack a true static yield stress and thus are not fully

solid. Nguyen et al. suggest that the mixed solid–fluid nature of sphere packings near

RLP may be captured by a generalization of the Maxwell fluid model of a elastic solid
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in series with an evolving viscous element. In the previous chapter, we showed that a

modification of their model reconciles their observation of logarithmic creep with our

observation of cube-root scaling of the yield stress:

γ̇ =
σ̇

G
+
σ

η
(4.1.2a)

η̇

G
= a− r

( σ
G

)2

, (4.1.2b)

This model, however, cannot describe steady-state flows like Herschel-Bulkley

(Eq. 4.1.1) that possess strain-rate dependencies. Because it includes no timescales

beyond those imposed by the initial viscosity and the strain rate, there is no timescale

that can dimensionally balance γ̇ when the initial viscosity is no longer relevant.

Thus a new timescale must be introduced into the model if it is to describe any

γ̇-dependence of shear response at long times.

In this chapter, we report experiments on loose sphere packings observing me-

chanical phenomena that occur after the yielding event. We track several features

of the stress response to the onset of constant rate shear strain including the shape

of the growth of stress beyond the yield point and the timescale of a sharp stress

collapse immediately after the yield point. We find that this last behavior occurs

only at volume fractions near φRLP. We also study relaxation at fixed strain of the

material after it has been subjected to strains well beyond the yielding.

In these phenomena we see evidence of a new timescale, τ , that manifests first

as the timescale of stress decline after the yielding event and later as the prefactor

in power-law growth of stress at scales beyond the initial yielding event. We also

see evidence of this timescale in the initial conditions of stress relaxation at constant

strain. This timescale itself is found to depend on the applied strain rate and to scale

differently in systems with low and high viscosity interstitial fluids.
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We show that a simple generalization of Eq. 4.1.2 where the evolution of the

viscous element, η, of a Maxwell fluid is expanded to lowest order in stress and the

emergent timescale, τ , describes the initial shapes of these features and provides a

framework for relating their strain-rate dependencies. We also demonstrate that this

simple theoretical approach misses phenomena such as pronounced upward swelling

of stress after a brief decline during relaxation at volume fractions near RLP as well

as a shift in baseline stress causing the system to relax to higher than original stress

levels.

4.2 Methods

The apparatus and protocols used in this chapter are the same as in Chapter 3.

In many cases the data traces presented in that chapter are the small strain piece of

longer traces presented here.

4.3 Results

4.3.1 Post-yield Stress Drop At Volume Fractions near RLP

At the lowest volume fraction, φ ≈ 0.565, there is a dramatic drop in the stress

immediately following the yielding event that is not seen at the three higher volume

fractions (Fig. 4.1). The post-yield drop feature at the lowest volume fraction is shown

in Fig. 4.2 with the origin of time shifted to correspond with the yield time. The initial

shape of the stress drop is an exponential decay with a timescale that depends on

strain rate. In the high viscosity interstitial fluid, early behavior collapses cleanly

when time is scaled by a timescale, τ ∼ γ̇−1/2 (the least-squares fit of the exponent is

−0.54(5)). Similar γ̇-scaling but with a smaller prefactor is seen when the system size

is halved consistent with the timescale being proportional to the system width and, as

the other dimensions are not varied, consistent with the timescale being proportional

to the system size. However, when the system is prepared with a lower viscosity
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Figure 4.1: Examples of stress response to startup shear: (γ̇ = 8.7× 10−5/s, W =
18 d, ηf = 110 mPa · s, T = 166 s). At the lowest volume fractions, the stress response
of the packing to an applied steady strain-rate shear displays the following features: 1)
a sharp initial (“yield stress”) peak (see Chapter 4.2), 2) an abrupt drop or “collapse”
in stress immediately post-yield (see Fig. 4.2), and 3) the recovery of the stress after it
bottoms out (see Fig. 4.3) The post-yield drop is less pronounced at volume fractions
even 0.02 above φRLP.

interstitial fluid, the scaling is markedly different with stress at small times collapsing

when the time axis is scaled against τ ∼ γ̇−1. The lower-viscosity system nearly

follows a single stress-strain curve, t/τ ∼ t/γ̇−1 = γ. That changing the viscosity

of interstitial fluid changed the exponent and not the prefactor of the timescale is

surprising. We do not understand either the role of the viscosity of the interstitial

fluid nor what dimensionally balances the square-root strain-rate timescale in the

higher-viscosity system.

No dependence on age is seen breaking the symmetry between age and strain-rate

seen in behavior up to the yield stress (Chapter 3).

4.3.2 Stress Growth

Fig. 4.1 shows examples of the stress response to prolonged steady strains well

beyond the yield point. At volume fractions near RLP there is a pronounced drop

in stress immediately post yield after which the stress bottoms out and slowly grows

56



0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

time, t HsL

s
tr

e
s
s,
Σ
�Σ

a
m

p
l

Γ
 
H1�sL

8.7´10-6

2.6´10-5

8.7´10-5

2.6´10-4

8.7´10-4

2.6´10-3

8.7´10-3

0.00 0.02 0.04 0.06 0.08 0.10

1.00
0.50

0.20
0.10
0.05

0.02

time, t � Γ
  -1�2

Hs
1�2
L

s
tr

e
s
s,
Σ
�Σ

a
m

p
l

0.0 0.5 1.0 1.5 2.0

0.2

0.3

0.5

1.0

time, t � Γ
  -1
H10
-4
L

s
tr

e
s
s,
Σ
�Σ

a
m

p
l Γ

 
H1�sL

8.7´10-6

8.7´10-5

8.7´10-4

10-5 10-4 10-3 10-2 10-1

10-2

10-1

100

101

102

strain rate, Γ
 
H1�sL

ti
m

e
s
c
a
le

,
Τ
Hs
L

-1�2

-1

101 102

100

101

wait time, T HsL

ti
m

e
s
c
a
le

,
Τ
Hs
L

Ηf DΡ W

mPa×s d

110 0.14 18

110 0.14 9

5.4 0.33 18

Figure 4.2: Drop in stress immediately following the yield event and associated
timescales at the lowest volume fraction (φ ≈ 0.565(5)). The top figure shows the
drop in stress after the yielding event with the time zeroed at yield time and stress
scaled by the amplitude of the drop in stress (corresponds to red dots in lower figure).
Middle-left: these same data collapse against the timescale, τ ∼ γ̇−1/2. Middle-right:
repeated in a thinner fluid (blue diamonds in lower figure), the timescale scales differ-
ently, closer to τ ∼ γ̇−1. The bottom figure plots the timescales from exponential fits
to the first half-decade in stress for the above data sets and an additional dataset run
at half of the system width (green squares). The inset shows that these timescales do
not dependent on wait time (γ̇ = 8.7× 10−5 /s for W = 18 d and γ̇ = 1.7× 10−4 /s
for W = 9 d).
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Figure 4.3: Growth of stress post-yield: The top panel shows the growth of stress at
the lowest volume fraction, φ ≈ 0.565(5), (left) and higher volume fractions (right)
(W = 18 d, ηf = 110 mPa · s). The lowest volume fraction exhibits a sharp drop in
stress immediately post-yield (see Fig. 4.1) so the origin is set at the stress minimum.
The origin is not moved for other volume fractions. Middle: axes are scaled as our
model predicts for early growth of the stress. Note that the time-axis is multiplied
by the same τ ∼ γ̇−1/2 that emerged as the timescale in post-yield stress drop. The
normalization of the stress by the distance from RCP is purely empirical. The data
mostly collapse onto a master curve with slope close to the predicted square-root
although the slowest traces at the lowest volume fraction (solid lines) which show
evidence of beginning to plateau do not collapse. Bottom: Data for the lowest volume
fraction, plotted with axes scaled as predicted approaching the long-term steady-
state. This appears to collapse at long times the traces that failed to collapse under
the growth scaling. Both legends apply to the all sub-plots in this figure.
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upward again. At volume fractions even 0.02 above φRLP, this drop is much less

pronounced.

Plotted on log-axes in Fig. 4.3, on larger scales than the early “yield stress” peak,

the stress appears to grow initially as a power-law in time, σ ∼ tn with exponent

n ≈ 1/2, consistent with the square-root prediction of our model in Sect. 4.4.2.3.

These data traces being relatively straight lines on log-log axes especially at the

higher volume fractions, there is necessarily an interdependence in the scalings used

to collapse the horizontal and vertical axes (power-law data with exponent 1/2 that

collapse against σ/γ̇m, t/γ̇n will also collapse against σ/γ̇m+k, t/γ̇n+2 k for any k).

This being noted, in Fig. 4.3 we have scaled the axes to test consistency with the

predictions of rheological model, Eq. 4.4.5, which we will lay out in Sect. 4.4.2.3.

During the early power-law growth phase, this entails scaling time by γ̇1/2, multiplying

time by the timescale, τ ∼ γ̇−1/2, that we had previously divided by when collapsing

the data during the post-yield drop in stress. This difference in the roles of τ speaks

to different physics of the two phenomena: the stress-drop occurs over a characteristic

timescale, τ , while growth appears to be scaleless with τ entering as a unit of time.

The choice of scalings for the lowest volume fraction data are complicated by

differing predictions for the early power-law growth of stress and the approach to a

long-time, steady-state. The middle figure in Fig. 4.2 shows that stress at all volume

fractions and strain rates except for the traces at the lowest volume fraction which

are beginning to plateau collapse well when scaled for growth. These same lowest

volume fraction traces, however, show promise of collapsing (bottom Fig. 4.2) under

the scaling predicted approaching steady-state. Unfortunately we do not have longer

traces at the lowest values of strain rate.
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Figure 4.4: Relaxation at constant strain for φ ≈ 0.58, 0.59, 0.60. Top panel: stress-
strain curves with the origin of time zeroed at the cessation of applied strain (W =
18 d, ηf = 110 mPa · s). The top left shows examples of relaxation at φ ≈ 0.60
which are representative of volume fractions φ ≈ 0.58 to 0.60. The stress relaxes
monotonically downward toward a new stress baseline that is not a function of γ̇.
Solid lines are least-squares fits to σ = σ0 (1 +Gt/η0)−1−σ∞. Top right: When time
and stress are scaled by the fit parameters, of initial stress, σ0, and initial timescale,
τfit = η0/G, the stress relaxation curves collapse onto master curve, (1 + t)−α, with
exponent α ≈ 1. Bottom panel: The fit values themselves scale with strain rate.
The initial timescale, τfit = η0/G scaling ∼ γ̇−3/4 (left) and σ0 ∼ γ̇1/4 (right) for
small γ̇ where the σ0 is also small. The exponents are consistent with the scalings
of stress growth at higher volume fractions presented in Fig. 4.3 and the solution for
stress-relaxation at small σ in Sect. 4.4.2.4.
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Figure 4.5: Stress relaxation near RLP: Relaxation is qualitatively different at the
lowest volume fraction, φ ≈ 0.565, with the stress swelling upward after an initial
drop. A constant strain rate, γ̇, applies a total strain ∆γ = 0.2 d/W ≈ 0.011,
terminating at t = 0, after which γ̇ = 0 and the stress relaxes (W = 18 d, ηf =
110 mPa · s). The size of the post-yield collapse in stress varies so much with strain
rate that while the lower strain rate curves were growing, even plateauing when the
applied strain ceases, the highest strain rates are still decreasing when the period
of relaxation begins. Thus the relaxation curves which begin at t = 0 represent
relaxation from disparate array of initial conditions.

4.3.3 Relaxation

Another interesting quantity is the evolution of stress under the condition of fixed

strain. We observe that when our constant-strain rate measurements are completed

having applied a fixed strain, ∆γ, that the stress relaxes.

At volume fractions above RLP (φ ≈ 0.58 to 0.60) this relaxation resembles that

of a simple Maxwell fluid with stress tending monotonically downward (Fig. 4.4) only

the relaxation is much slower than an exponential decay and the asymptotic value

is higher than the initial stress baseline. We find that this relaxation is well fit by

the functional form, σ = σ0 (1 + aG t/η0)−1/a + σ∞, an equation that arises as a

small-stress solution to the extended Maxwell model as outlined in Sect. 4.4.2.4. The

data suggest that a is very nearly one and the fit parameters which amount to the

initial stress, σ0, and the initial relaxation timescale, η0/G, themselves scale with γ̇

as see in the stress growth phase.
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Relaxation is qualitatively different at the lowest volume fraction, φ ≈ 0.565,

with the stress swelling upward after a brief initial drop (Fig. 4.5). Analysis of this

phenomenon in the present data is complicated by the presence of a pronounced

post-yield collapse in stress at low volume fractions (Fig. 4.2). Because the scale of

the post-yield collapse phenomenon varies hugely with strain rate, in these data the

initial conditions from which the stress is relaxing themselves come from multiple

regimes. At the slowest strain rates, relaxation follows the power-law growth phase,

even the beginnings of a steady-state plateauing of stress, while at the highest strain

rates relaxation begins before the post-yield drop is complete. Thus it is difficult to

say whether the strain rate dependence comes from the initial conditions or from an

internal timescale with a memory of the prior strain rate. What is clear is that the

behavior at volume fractions near RLP is different from the monotonically downward

stress relaxation seen at volume fractions 0.02 to 0.05 above φRLP.

4.4 Discussion

4.4.1 Summary of Experimental Results

To summarize our experimental findings, we report measurements of the mechan-

ical response of loose packings of real, frictional but noncohesive spheres when sub-

jected to constant strain-rate shear strains beyond the yield strain. At the lowest

volume fractions studied, φ ≈ 0.565(5), near RLP, we observe a sharp drop in stress

immediately following the yielding event. We find the initial shape of the this post-

yield stress drop to follow the form of an exponential decay with amplitude scaling

with the height of the yield-stress peak, σy ∼ (γ̇ T )1/3, consistent with previous find-

ings (Chapter 3). The characteristic timescale of this decay, is a new timescale, τ , that

is a power-law function of the strain-rate without any dependence on age, T . Thus

the post-yield stress drop does not obey the symmetry seen in stress-strain curves

between γ̇ and T seen up to the yielding event. For our standard high-viscosity fluid,
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the timescale appears to be a fractional power in strain rate, τ ∼ γ̇−1/2. Curious

about what physical timescale balances this square-root, we repeated the experiment

in a smaller system and found the same τ ∼ γ̇−1/2 scaling but with a smaller pref-

actor, consistent with τ growing proportionally with system size. We also repeated

the experiment with a less viscous interstitial fluid and to our surprise found not a

different prefactor but a different exponent: τ ∼ γ̇−1. What balances the square-root

in the timescale and the role of the interstitial fluid in setting the γ̇-exponent remains

a mystery.

After the drop in stress post-yield, the stress is found to follow approximately

square-root-time growth from its minimum with curves at different strain rates col-

lapsing when the time axis is multiplied by the previously encountered timescale, τ .

Thus the τ ∼ γ̇−1/2 that had emerged as the characteristic timescale of an exponen-

tial decay in stress serves as a prefactor in the power-law growth of stress when it

rebounds. The higher volume fractions studied, φ ≈ 0.58 to 0.60 do not display a

pronounced post-yield drop in stress, however, when it follows a power-law, stress

growth at all volume fractions collapses onto a single master curve when scaled as

predicted for growth. Traces that roll over collapse when scaled as predicted for the

approach to a steady-steady shear (see Sect. 4.4.2.3).

In addition to the phenomena studied which look at features that emerge in the

stress-response under constant applied strain rates, we also looked at stress relaxation

that occurs afterwards at fixed strain. When the applied strain-rate ceases while stress

is growing at these higher volume fractions, we see power-relaxation with exponent

≈ −1 with initial timescales and stress amplitudes scaling as seen during the power-

law growth phase. The stress does not appear to relax back to its original unstrained

value however. The behavior of stress relaxation at fixed strain is more complicated

near RLP, where a brief initial drop in stress is followed by a larger upward swell

in stress which often rises above the yield-stress peak. Unfortunately the initial
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conditions in the present data set vary too much to test for the presence of the same

τ in these data.

4.4.2 Extended Maxwell Viscoelastic Model

To motivate the rheological model that we will use to relate the strain-rate scalings

of the various features of the stress response let us return to Nguyen et al.’s simple

extension of the Maxwell model of viscoelasticity that we introduced in Chapter 3.

They use G for the high-frequency (real) elastic shear modulus and have the fluidity,

f , evolve subject to the strain history [62]:

σ̇ = −f σ +G (4.4.1a)

ḟ = −a f + rγ̇2 . (4.4.1b)

The first line is the familiar Maxwell model of viscoelasticity [59]. The second is

their contribution where positive dimensionless constants a and r set the strengths of

aging and rejuvenation of the fluidity. Written instead in terms of the viscous series

element, η = G/f , their model is:

γ̇ =
σ̇

G
+
σ

η
(4.4.2a)

η̇

G
= a− r

(
γ̇ η

G

)2

. (4.4.2b)

Nguyen et al.’s experiment had been performed entirely under the constant-stress

conditions where σ̇ = 0 and hence Eq. 4.4.2a reduces to σ = γ̇ η. Their model is

therefore equivalent to the following so long as stress is held constant:

γ̇ =
σ̇

G
+
σ

η
(4.4.3a)

η̇

G
= a− r

( σ
G

)2

. (4.4.3b)
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This is no minor modification, however, because the behavior of these models differ

hugely in the general case where stress can change and we found Eq. 4.4.3 to be

much more useful than Eq. 4.4.2 in describing the variable stress conditions of our

experiments presented in Chapter 3.

One striking property of the Eq. 4.4.3 is the paucity of dimensionful parameters.

Setting the elastic modulus to one, G = 1, the equations are simply:

γ̇ = σ̇ + σ/η, η̇ = a− r σ2 . (4.4.4)

The only unit left is time and there are only two independent timescales, γ̇−1 and

η0, which therefore can only enter the stress-strain relationship as a ratio. To the

degree that Eq. 4.4.3 holds, the symmetry between age and strain-rate that was so

surprising in the yield stress data is a direct consequence of the lack of any additional

timescales and the linear relationship between the initial viscosity, η0, and the age,

T (since η̇ ≈ a =⇒ η0 ∼ T ). It seems unphysical for the influence of the age,

T , to persist indefinitely: there must be some additional timescale, τ , missing from

Eq. 4.4.4 over which the symmetry between γ̇ and T will break down under steady

shear.

Another striking property of Eq. 4.4.3 is that the second equation, η̇ = a − r σ2

(G = 1), resembles an analytic expansion of η̇ to the lowest order in σ consistent

with symmetries. Since σ is tensorial and η is an isotropic scalar, σ2 is the lowest

non-zero order in such an expansion. At longer times we expect the influence of η0

to wane and the symmetry between γ̇ and T to break requiring the introduction of

a new timescale, τ , against which to compare γ̇. Adding first order terms in τ to

the analytic expansion in σ, we have η̇ ≈ a − r σ2 + g τ/η − d σ σ̇ τ where g and d

are dimensionless constants tuning the strengths of the growth term which will be

significant at small η and the damping term which will oppose sharp changes in σ.
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The construction of these terms is highly constrained by the lack of dimensional

scales, however, its not clear from first principles that the d-term is the next lowest

order term in this expansion. Indeed, we fully expect that in certain conditions other

terms that we have neglected may be important, however, the goal in this discussion

is only to motivate this model. We shall see that the model with these four terms is

sufficient to capture the relative rate-scalings of many of the phenomena we observe

in our data. Putting the G’s back, our extension of the Maxwell model is,

γ̇ =
σ̇

G
+
σ

η
(4.4.5a)

η̇

G
= a− r

( σ
G

)2

+ g
G τ

η
− d σ σ̇ τ

G2
. (4.4.5b)

Having motivated the model, we now seek approximate solutions in various limiting

cases of relevance to our experiments.

4.4.2.1 Previous results: yield-stress-scaling, creep, aging

When the growth and damping terms are negligible, Eq. 4.4.5 can be solved as

in Chapter 3. At constant strain-rate it predicts the cube-root age and strain rate

scaling of the “yield-stress” stress peak

ty ≈
(

3 a T

r γ̇2

)1/3

(4.4.6a)

γy ≈
(

3 a T γ̇

r

)1/3

(4.4.6b)

σy ≈ G

(
3 a T γ̇

r

)1/3

, (4.4.6c)

valid when
√
r γ̇ T >> 1.
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When solved at constant stress, it reproduces the logarithmic creep seen by Nguyen

et al. [62],

η(t) = aG
(
T +

(
1− r

a
(σ/G)2

)
t
)

(4.4.7a)

γ(t) =
1

a

(
σ/G

1− r
a

(σ/G)2

)
log

[
1 +

t

T

(
1− r

a
(σ/G)2

)]
. (4.4.7b)

Both of these results depend upon knowing the initial viscosity, η0, as a function of

age, T . Before adding the g-term, to calculate the viscosity after an aging or “waiting”

time of duration, T , which followed a highly fluidizing operation like sedimentation,

we could simply integrate η̇ ≈ a over the aging time, assume the initial viscosity is

negligible and obtain η0,

η̇/G ≈ a (4.4.8a)∫ 0

−T
η̇/G dt =

∫ 0

−T
a dt (4.4.8b)

η(0) = aGT + η(−T ) ≈ aGT (4.4.8c)

assuming η(−T ) ≈ 0.

The growth term, g G τ/η, complicates this simple picture by blowing up at η = 0.

It is still possible to have a parameter regime where η(−T ) is small yet the g-term is

also small compared to a, however, this is no longer necessarily the case.

4.4.2.2 Post-yield drop in stress

When the stress is large and viscosity is sharply decreasing, as in the collapse of

the stress immediately post-yield in the experiment, the decrease in stress arises from

a balancing of large r and d terms, which yields exponential decay in the stress:

σ(t) ∼ e−r t/(d τ) (4.4.9)
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at a timescale proportional to the timescale d τ/r. Thus the timescale that we observe

in the post-yield stress collapse is proportional to the timescale, τ , in our model. How

τ develops the experimentally observed γ̇-dependencies seen in the post-yield stress

collapse, (τcollapse ∼ γ̇−1/2 for the high interstitial viscosity system and τcollapse ∼ γ̇−1

for the low interstitial viscosity system) is external to this model and is probably the

most interesting question arising from this work.

4.4.2.3 Stress growth and steady-state shear

The solid-like behavior at the startup of steady strain rate shear below the yield-

stress assumes a substantial initial viscosity, η. A distinct solution exists for the case

of the slow growth of stress starting from a small σ, small η starting point. Assuming

the g-term dominates the a, r and d-terms and the growth is slow enough to neglect

the solid response in the Maxwell model, predicts stress growth:

η(t) ≈ G
√

2 g τ t (4.4.10a)

σ(t) ≈ G γ̇
√

2 g τ t (4.4.10b)

Thus we expect stress to grow as a power law, with the square-root of time, and to

collapse when stress is scaled by γ̇1 and time is multiplied by τ . In Fig. 4.3 we see

the data collapse when scaled this way except for curves that appear to beginning to

plateau.

The plateau can be understood in the model as the approach to a steady-state

solution balancing the growth and rejuvenation terms. Neglecting the a-term, the

steady-state solution is:

σss = G

(
d τ γ̇

r

)1/3

(4.4.11a)

ηss = G

(
d τ

r γ̇2

)1/3

. (4.4.11b)
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Which sets the stress scaling expected for stress growth curves that plateau.

The shape of the approach to the long-term steady-state comes from expanding

about the steady-state solution by substituting η(t) = ηss (1− ξ(t)),

g τ
(
(ξ − 1)3 + 1

)
=

(
g τ

r γ̇2

) 2
3

(ξ − 1) ξ̇ , (4.4.12)

where G = 1. Discarding higher order terms to linearize,

ξ̇ = −3 (g τ r2 γ̇4)
1
3 ξ (4.4.13)

this has solution,

ξ(t) ∼ exp
(
−t / (3 (g τ r2 γ̇4)

1
3 )
)

(4.4.14)

Incorporating the γ̇-dependencies we have seen in τ , the timescales approaching

steady state are thus τss ∼ γ̇−7/6 for the high viscosity interstitial fluid where τ ∼ γ̇−1/2

and τss ∼ γ̇−1 for the low viscosity fluid where τ ∼ γ̇−1. This provides the scaling ex-

pected to collapse the time axis of stress growth curves that plateau. In Fig. 4.3, the

lower strain rates at the lowest volume fraction that do not collapse against the scaling

predicted for the growth regime show promise of collapsing against these predictions

for stress approaching steady-state.

4.4.2.4 Stress relaxation at constant stress

It is also possible to obtain an approximate solution for stress relaxation relevant

to the relaxation at volume fractions φ ≈ 0.58 to 0.60. The small-stress solution

where the g and d-terms are negligible, displays power-law relaxation,

η(t) = aG t+ η(0) (4.4.15a)

σ(t) = σ0 (1 + aG t/η0)−1/a . (4.4.15b)
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The data in Fig. 4.4 are consistent with power-law relaxation with a ≈ 1. Thus in the

absence of driving forces, the viscoelastic relaxation time in the system τvisc = η/G is

the age of the system.

Since the stress relaxation in Fig. 4.4 follows the stress growth regime, it is possible

to predict the strain-rate scaling of the parameters in the model from the scaling of

the growth phase. The parameters in this solution amount to the initial stress, σ0,

and the initial relaxation timescale, η0/G. Since the strain ceases at ∆γ = γ̇ t,

σ(t) ≈ G γ̇
√

2 g τ t during growth and τ ∼ γ̇−1/2 for the high interstitial viscosity

system, it is possible to predict the strain-rate scaling of the final values of σ and η

in the growth phase. Their final values are the initial values σ0, η0 in the relaxation

phase, and are predicted to scale as σ0 ∼ γ̇1/4 and η0 ∼ γ̇−3/4. Indeed this is what

we see in Fig. 4.4 with the only deviation occurring in the γ̇-exponent of σ0 which

is somewhat larger than the predicted 1/4 at the higher rates where the small-σ

assumption used to calculate Eq. 4.4.15b may be violated.

4.4.2.5 Limitations of Model

This model does, however, miss certain phenomena. Where the small-strain ap-

proximation is valid, Eq. 4.4.15b fits relaxation curves very well, however, the fits

predict stress relaxation back to a new baseline value, σ∞, that depends little on

strain-rate. There is unquestionably a mode of evolution marked by the changing

stress baseline that the model is missing at these volume fractions. The model also

misses the upward swell in stress seen during relaxation at volume fractions near RLP.

That this should be the case is not surprising: volume fraction does not enter our

model, yet we know that settling occurs particularly at the lowest volume fractions

when the packing is disturbed. A full understanding of this system would seem to

require at the very least a coupling between σ and φ. Any evolution of the timescale

τ(t) is also beyond the scope of this simple model.
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4.4.3 Conclusion

Previous to our work, there were scant expectations for the mechanical response

of sphere packings near RLP. Simulations had measured the compressive modulus but

not attempted the shear modulus [85] and experiments in this regime had measured

steady-state shear response [80, 60] and creep at constant stress [62]. But no prior

work existed on the important case of short time response to constant strain rate

shear.

To this body of work we have added experimental results concerning a number of

phenomena which occur during the startup of steady-state shear including an initial

stress peak (“yield stress”), the shape of the subsequent drop of the stress after

failure and shape of stress growth as it recovers. We also present stress-relaxation

data at fixed strain, filling in the last of the common modes of shear perturbation

(i.e. constant stress, constant strain rate, constant strain).

We find that a simple lowest-order expansion of the viscous element in the 1d

Maxwell model, Eq. 4.4.5, describes the rate-scaling of a great many of the features

of the system. This approach succeeds in predicting the cube-root age and strain-rate

scaling of the initial “yield-stress” stress-peak of Chapter 3 and the strain-rate scaling

as well the shape of the square-root time growth of stress beyond the strain. It is

also consistent with the collapse of stress immediately post-yield in packings near

RLP, power-law stress relaxation at constant strain rate, as well as log-time creep at

constant stress observed elsewhere [62].

This simple treatment introduces only a single scalar, τ , to represent an internal

timescale in the system. For systems with a high-viscosity interstitial fluid, this

timescale, which first emerges as the characteristic decay time of the stress after

the yield-point is exceeded, is found to itself scale as a power-law with strain rate,

τ ∼ |γ̇|−1/2. And this same τ reappears in the subsequent features of growth and

relaxation. Our model which takes the Maxwell model of viscoelasticity, γ̇ = σ̇+σ/η,
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and expands the viscous element in stress, σ, and an unknown timescale, τ , to obtain,

with G = 1, η̇ ≈ a− r σ2 + g τ/η − d σ σ̇ τ thus provides the rationale for seeing the

influence of a single timescale, τ , in three separate features of the mechanical response

of the system where certain terms dominate allowing for closed form solutions. That

the particular form τ ∼ |γ̇|−1/2 should develop in the high interstitial viscosity system

is unexpected. We neither predicted it nor can offer an after-the-fact explanation even

though dimensionally it begs for one.

The result that τ ∼ |γ̇|−1 in the lower viscosity interstitial fluid is surprising in

that it amounts to a change in the exponent and not simply the prefactor, however,

it is otherwise less surprising than the ∼ |γ̇|−1/2. Up to an absolute value, having

a timescale ∼ |γ̇|−1 means that stress traces collapse not against time but against

strain, γ = t γ̇ = t/γ̇−1. Since this is the timescale that appears in the system

with the lower viscosity interstitial fluid, we can see that this system is behaving

quasi-statically—following the same stress–strain curve regardless of γ̇.

In motivating the expansion of η, we commented that a new timescale beyond η0

and γ̇−1 had to be introduced to describe any γ̇-dependence of the steady-state stress.

Thus it should come as no surprise that plugging in τ ∼ |γ̇|−1 into the solution for

steady-state stress yields a constant because τ = 1/|γ̇| is not a new timescale at all.

Thus the regime of behavior of this low viscosity interstitial fluid system appear to

be in the quasi-static regime reported elsewhere at similar volume fractions [80, 60].
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CHAPTER 5

STRUCTURE OF LOOSE PACKINGS

5.1 Introduction

In this chapter we turn our attention to the three dimensional structure of loose

sphere packings. One important aim is simply to better characterize the system

whose average mechanics we have explored in the previous two chapters. In much

of the work to this point, we have assumed that the packing can be approximated

as spatially homogeneous and rotationally isotropic. Yet the outer walls containing

the packing are flat and smooth so it may be that crystalline order is induced by the

walls. Further, the packing is not density matched so inhomogeneity in the vertical

direction due to the weight of the packing is possible.

We address homogeneity by looking at the spatial variations in local volume frac-

tion and crystalline order parameters. We find that there is layering near the walls

but there is no sign of increased crystalline order and the layering actually suppresses

the volume fraction over a short range. We see no vertical dependence of any of these

measures suggesting that gravitational pressure is saturated and fully supported by

the walls [47]. We address isotropy via distributions of bond-angles which are found

to be isotropic away from the walls. Thus, we find no indication of deviations from

homogeneity and isotropy in the bulk.

We also look at distributions of local volume. As mentioned in the introductory

chapter, there are statistical theories substituting energy in equilibrium theories with

free-volume [35]. These theories predict a Boltzmann distribution of free-volumes

which can be tested against the local cell volumes when the packings are partitioned
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into Voronoi and Delaunay diagrams. We find that volume distributions in both

partitions are not fully exponential but do possess Boltzmann tails. There is, however,

a significant discrepancy between the “granular temperatures” of the tails in the

Delaunay and Voronoi partitions.

As described in the introductory chapter, prior work has been done on the form

of the radial distributions function, g(r), in similar materials. We measure g(r) and,

with a new approach to fitting the data, demonstrate a greater consistency with

predictions of simulation [86, 85] and isostatic theory [1, 35] than had previously

been reported in experiments on loose spheres [4, 5]. We also introduce a numerical

method that uses the Ornstein-Zernicke equation [68] to show that the locations of

longer ranged peaks in g(r) follow as a consequence of sharp features in g(r) observed

at r ≈ d.

Prior work has used Steinhard-Nelson crystalline order parameters [88] to look for

signs of crystalline structure with the finding that only a small fraction of the spheres

have a bond-structure with both q4 and q6 consistent with FCC or HCP order [3].

Since truly crystalline regions therefore do not appear to be present in loose sphere

packings, we look at these “crystalline” order parameters, qn, less with the aim of

locating crystals and more as rotationally invariant measures of nth-degree structure

and thus we are not constrained to n = 4 or 6. We measure these order parameters

for n = 2 to 9 and conclude that maybe q6 is special after all. We also perform Monte-

Carlo simulation of the contacting neighbors of a single sphere to determine whether

the observed q4 and q6 distributions follow solely from the number of neighbors and

hard-sphere constraints and conclude that they do not: there is additional order

present in the arrangement of neighbor bonds. We go on to explore spatial auto-

correlations and cross-correlations of φ, q4 and q6, finding all auto-correlations and

cross-correlations to be very short ranged but with significant negative correlation
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coefficient at r = 0 between local volume fraction and q4 and q6 providing further

evidence that high values of qn do not mark crystalline regions, even locally.

5.2 Methods

The apparatus and protocols used in this chapter are the same as in Chapter 3

with the addition of volumetric imaging (see Fig. 5.1).

5.2.1 Three Dimensional Imaging

Volumetric imaging is accomplished using the higher viscosity fluid described in

Sect. 3.3.1 composed of high-temperature silicone oil (Acros Organic) and mineral

oil (Fisher Scientific) mixed in an 82.5:17.5 mass ratio and with 6× 10−7 weight

fraction Nile Red fluorescent dye. This fluid mixture is mixed to have a slightly

higher refractive index than the acrylic spheres at room temperature. Because the

index of refraction of the fluid decreases with temperature more quickly than the solid,

enclosing the packing in a temperature-controlled container allows the index match

to be tuned via temperature with the best match of refractive indices occurring at

31 degC. This fluid has dynamic viscosity, ηf = 110 mPa · s, and density, ρf =

1.021(1) g/cm3, both measured at 21 ◦C after mixing and degassing as described in

Sect. 2.2. From our work in Chapter 2, we know that this mixture will not swell

or damage the acrylic beads yet wets acrylic well enough to avoid the formation of

nano-bubbles on the surface of the beads.

Close index-matching reduces scattering and lensing at interfaces between the

spheres and the fluid allowing a laser-beam which has been spread into a sheet by

a cylindrical lens to remain collimated as it passes through the packing. The small

amount of fluorescent Nile-red dye dissolved in the fluid glows yellow when the green

(532 nm) laser-sheet excites it. Since the beads do not fluoresce, images of the slices

show beads as dark circles against a bright background.
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Figure 5.1: Photograph of the volumetric imaging setup taken from above: A)
the shear apparatus sketched in the center of Fig. 3.1 is enclosed in an insulated,
temperature-controlled box with acrylic windows, B) the green laser, slit and di-
verging lens are mounted on a computer-controlled motion stage, C) the camera is
mounted on a passively sliding motion stage that moves a fixed fraction of the dis-
tance traveled by the laser. The stainless steel rod rotates about (D) and slides in
mounts at (E) and (F). Perpendicular distances from E to D of 19.8 cm and D to F
of 23.2 cm are used to keep the image of the laser slice in focus while the laser slice
steps into the packing.
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The laser and the diverging lens are mounted on a motion stage. Three dimen-

sional raster images are generated by stepping the laser-sheet through the packing

in steps of size comparable to the width of the sheet, about 1/10 d. To maintain

the apparent size of the spheres as the laser slice steps into the packing despite the

differences in refractive index between the packing in which the laser slice is moving

and air through which the camera is moving, the camera is mounted on a sliding track

with the distance of the camera from the packing mechanically coupled to the motion

stage on which the laser is mounted (see Fig. 5.1). Because the refractive index of the

packing, nPMMA ≈ 1.49, is higher than that of air, light rays straighten out when they

enter the packing increasing the distance to the focal plane over what it would have

been in air. Thus we find that the image of the laser slice can be kept in focus by

moving the camera forward a fixed fraction of the amount the laser slice was moved

forward. This is accomplished mechanically with a rigid bar through points E, D and

F in Fig. 5.1. The relative lengths of E to D and D to F were tuned to keep the image

in focus and maintain the apparent size of objects in the image.

5.2.2 Sphere detection

Once we obtain 3-D images of the packing, the next step is to locate the bead

centers. There are three broad strategies for detecting spherical particles in an image:

1. locate areas of correlation between the image, possibly after a derivative or

edge-detection operation, and an ideal particle

2. identify morphological clusters and locate particles via the center-of-mass of the

cluster

3. perform non-linear least-squares model fitting.
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All of these methods have been used previously to locate particles. We employ a

two-part strategy of 1. followed by 3., using cross correlation to give rough estimates

of sphere centers then sharpening those locations via nonlinear least-squares fitting.

Both of our detection steps require the ability to generate an image kernel, that

is a 3D image of an ideal particle. In the case of our image data where the voxels are

wider along the step axis than in the in-plane axes, this kernel needs to be ellipsoidal,

being bright (1) outside the ellipsoid where the fluorescent dye glows and dark (0)

inside the ellipsoid. The simplest way is to generate an array with value 0 if the

center of the voxel is inside the ellipsoid and 1 otherwise, however, the sharp edges of

such a kernel do not shift smoothly: as the center of the ellipsoid moves voxels on the

boundary jump between 0 and 1. This leads to sub-pixel bias in locating the centers

via cross-correlation and discontinuities which are problematic for least-squares fitting

algorithms. To mitigate these issues we generate “ideally downsampled” ellipsoidal

kernels by integrating the volume of ellipsoid contained in each voxel. Such kernels are

ideally downsampled in the sense that these are the kernels that would be obtained

by averaging over bins of a much higher resolution kernel.

The initial cross-correlation detection strategy is to generate an ellipsoidal kernel

centered at the origin with as near to the actual radii of the spheres in the image as

possible (the x, y and z diameters are approximately 24.06, 12.15 and 24.06 voxels).

The full volumetric image is too large for a discrete Fourier transform to be taken

in a desktop computer’s memory but the convolution kernel has finite extent so the

cross-correlation can be computed in chunks so long as the chunks are larger than the

ellipsoid. Choosing power-of-two sizes for speed, chunks of the image with sufficient

boundary padding are pulled into memory and convolved with the kernel via Fourier

convolution. Sphere centers are then detected as local maxima in the brightness of

the convolved image. The locations of these maxima are corrected for the offset of

the chunk and stored. To locate the local maxima to sub-pixel accuracy, we fit a
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paraboloid to a 3x3x3–voxel volume surrounding the brightest voxel recording the

eivenvalues of this fit as well as the location and brightness. This yields a list of

locations of maxima which contains duplicates arising from particles lying near the

boundary between two chunks and maxima which arise in the cross-correlation in

the void space between 4 contacting spheres. Filtering out the duplicates is trivial

as those locations are the same to numerical precision. Filtering out the spurious

maxima detected at the center of the void region between 4-sphere contacts requires

more care. However, these spurious maxima are characterized by being a somewhat

lower maximum surrounded by four more strongly detected particles which overlap by

approximately d/2, have a void in the image at their centers and have very different

eigenvalues from true particles. There is a region at large step depth into the packing

and where the laser slice has traveled deeply into the packing where detection accuracy

is low enough that not all of these criteria agree for every detected maximum. We

have discarded data from that region.

The second step in our particle detection is to sharpen the locations of the detected

spheres by nonlinear least-squares fitting. Again, as the full volumetric image is

relatively large (≈ 1/2GB), the computation is done by streaming chunks of the image

about a given particle from disk. The full scheme is to maintain a list of approximate

sphere centers which is continually updated as the neighborhood around each particle

is pulled in and that particle fit. Explicitly, for a given particle, i, we pull in a portion

of the volumetric image data just large enough to include the centers of the nearest

neighbors of particle i. We then built a model function with three free parameters, xi,

yi, zi, the locations of the sphere, i, by drawing ideally downsampled spheres at the

best known locations of all of i’s neighbors whose centers fall within 1.5 r of (xi, yi, zi).

With the locations of the neighbors fixed, we then perform a non-linear least squares

fit to i’s coordinates, xi, yi, zi, by minimizing the least-squares difference between the

model image and the portion of the volumetric image with particle i at its center.
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Figure 5.2: Peak at one diameter separation in the radial distribution function at the
lowest volume fraction: The sharpness of the peak at r ≈ d is a useful measure of the
detection accuracy. A single pass of the nonlinear least-squares fitting procedure to
sharpen sphere locations yields an approximately 50% improvement in the sharpness
of the peak. A second pass yields little further improvement. Adjusting the ellipsoidal
radius of the step-axis has a small effect in the sharpness of the peak. The last curve
shows the peak calculated from only the half of the image nearest to the camera. It
is sharper than average demonstrating that detection accuracy decreases somewhat
with depth, y.

The location list is then updated with the new estimate for i’s location and this is

repeated for another particle. As can be seen in Fig. 5.2, the corrections become small

after a single pass of this sharpening procedure so, because it is a time-consuming

calculation to run, all of the data presented subsequently in this chapter come from

a single pass of the sharpening procedure.

5.3 Results

5.3.1 Spatial homogeneity and wall effects

In this section we test the assumptions of spatial homogeneity and angular isotropy

made implicitly in the analysis of the previous chapters. We investigate homogeneity

by looking at the spatial dependence of locally defined scalars such as volume fraction

and crystalline order parameters. We investigate isotropy via the distributions of bond

angles against coordinate axes.
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Figure 5.3: Distributions of sphere locations along coordinate axes: There is layering
near the walls at x = 0 and y = 0 which persists 3 or 4 sphere diameters into the
packing. No wall is visible in the 3D image in the vertical, z-direction.
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The geometry of the packing (Fig. 5.3B) is such that the system is narrower along

the horizontal y-axis than in either of the other imaged directions. Layering occurs

near the walls at x = 0 and y = 0, but due to the geometry is more pronounced near

the y = 0 wall. This layering can be seen directly via the distribution of y-coordinate

values of the sphere centers as shown in Fig. 5.3(A) and is short-ranged, disappearing

in 3 to 4 sphere diameters. The effects of layering are also present in the excess

of bonds perpendicular to the y-axis seen in the left column of Fig. 5.4 which shows

bond angles versus coordinate axes for the entire packing. Again, the layering is short

ranged (Fig. 5.5) and the right column of Fig. 5.4 which excludes spheres within 4 d

of the walls does not display this excess.

Wall effects are also reflected in the local volume fraction near the walls, which,

interestingly, is lower near the walls than in the bulk (Fig. 5.6). The influence of the

walls on volume fraction is also short ranged, falling off over a characteristic length

of approximately the sphere diameter, so that little influence remains 3 or 4 d from

the wall. There is no clear trend near the walls in the values of the crystalline order

parameters q4 and q6 (defined and discussed in Sect. 5.3.5). So while there is evidence

of layering at the walls, there is little indication that the structure is crystalline near

the walls. The lower volume fractions near the walls reinforce this point: flat walls do

not seem to drive order at these loose volume fractions the way they do near RCP.

Away from the walls the packing appears to be homogeneous and isotropic. There

is no clear trend in the vertical direction (z) in φ or the crystalline order parameters

nor is there deviation from an isotropic distribution of bond-angles with respect to

the coordinate axes.

5.3.2 Radial distribution

Having established that the packing is isotropic and homogeneous, we now con-

sider the radial distribution function, g(r), which is the radial part of the autocorre-
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Figure 5.4: Distributions of bond-angles versus the three coordinate axes: Angles are
calculated between nearest-neighbor bonds and a given coordinate axis. In these data
neighbors are defined as lying within a maximum distance of 1.1 d. The left column
shows the distribution for the entire packing and displays peaks relative to the dis-
tribution expected for an isotropic packing (black line). The insets show the relative
difference between the distribution and the form expected for an isotropic material,
∆P (θi) = P (θi) / (sin(x) / 2) − 1. In the full packing (left column), we are seeing
excess bonds located perpendicular to the two horizontal axes which happen also to
be the coordinates which begin on walls. The right column shows the distributions
for particles that are at least a distance 4 d from the nearest wall and the peaks have
disappeared. Thus this phenomenon disappears in the bulk: it is caused by the walls.
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Figure 5.5: Amplitude of the excess in bond angles versus the distance from the wall
at y = 0: The differences, ∆P (θi) = P (θi) / (sin(x) / 2)− 1, at θy = π/2 from Fig. 5.4
are plotted at the four different volume fractions against the distance, y, from the
front wall. The influence of the wall is seen to disappear in 3 or 4 sphere diameters
into the packing and increases in amplitude with increasing volume fraction.

lation of number density. An intuitive way of thinking of g(r) is if the origin is set at

a particle’s center, then g(r) is the probability density of other particle centers lying

within a thin shell at radius, r.

In ideal packings of monodisperse hard spheres of diameter, d, incompressibility of

the spheres means that g(r) is zero for r less than d. Then at r = d it must jump from

0 to average number of contacts, Z, (also called the “coordination number”) that lie

at distance r = d. This implies that a discontinuous step exists in the number of

spheres within radial distance, N(r). Letting d = 1, the number of spheres within

distance, r, can be written as an integral of g(r),

N(r) =

∫ r

0

g(r̃) 4π r̃2 dr̃ (5.3.1)

So the step in N(r) marks a delta function in g(r):

g(r) = Z/(4 π) δ(r − 1) . (5.3.2)
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Figure 5.6: Average local values of volume fraction and Steinhardt-Nelson q4 and q6

crystalline order parameters along coordinate axes. Local values of volume fraction,
φ, are calculated for individual Voronoi cells. Averages plotted are volume-weighted
averages (volume-weighting makes a small but noticeable difference). q4 and q6 are
calculated locally over the bonds to each sphere’s Voronoi neighbors. Averages of the
qn are not weighted by the Voronoi cells volumes (volume-weighting does not make
an appreciable difference when plotting at this resolution). Left column: the local
volume fraction is plotted along the vertical (z) and two horizontal axes: x which
lies in the focal plain of the camera increasing with increasing depth of the laser slice
penetrating into the packing and y which measures depth away from the camera into
the packing. The volume fraction can be seen to decrease close to walls at x = 0 and
y = 0. There is no wall in the imaged section of the packing in the vertical direction.
The volume fraction can be seen to reach bulk values a depth of 3 or 4 diameters away
from the walls. q4 increases somewhat approaching the walls over a similar range,
however, the ranges of the q-parameters in these plots is quite narrow.
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Figure 5.7: Radial distribution functions at all four volume fractions: The radial
distribution function (A and B) possesses a sharp peak at the radial distance of
one bead diameter. This peak (C) is comprised of contacting particles and near
misses and changes little with volume fraction. (B): structure is seen to develop with
increasing volume fraction. This change is most pronounced in the growth of a peak
near r =

√
3 d. (D) shows this peak and a peak that appears to fall just short of

r = 2 d.

The isostaticity argument (Sect. 1.5.1) predicts that Z = 4 for large friction and

Z = 6 without friction.

One might suppose that this is all the structure that exists in a disordered sphere

packing with g(r) dropping immediately to the average number density, ρ, for r > d,

however, previous work has found a number of non-trivial features in g(r) including a

prominent power-law after the r = d peak [86], and smaller peaks near
√

3 d and 2 d,

the former being observed to grow with volume fraction and both possibly possessing

similar power-law tails [4, 5].

Fig. 5.7 displays the radial distribution function for the four volume fractions we

studied. Fig. 5.7(A) confirms the presence of a sharp peak near r = d, however, it is
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not infinite: evidently the delta function is being smoothed by some mechanism. In

general we expect broadening of the delta function to arise from compression of the

particles, polydispersity of the spheres themselves, and detection error. In this system

average forces are small (although it is possible that stresses are concentrated on a

few particles) and the beads are highly uniform so we expect that this broadening is

due primarily to detection error. Left of the r = d peak, g(r) resembles a Gaussian

with standard width σ ≈ 0.01 d but with a heavier tail to the right. This first

peak changes little with volume fraction, however, there is noticeable evolution in

subsequent peaks with a peak developing at r ≈
√

3 d as volume fraction increases

and subsequent oscillations growing in amplitude. This is in line with the findings of

Aste et al. [4]. We note that the peak near r = 2 d falls slightly short of 2 d. Although

they do not call attention to it, this also appears to be the case in [4, 5]. Given that

the next two peaks fall far short of 3 d and 4 d, we suspect that this is part of a trend

of decreasing period with increasing distance.

The shape of the sharp peak near r = d where contacts occur is of great importance

in the understanding of the local structure of sphere packings. If this peak were simply

a delta function, then one could integrate over it to obtain the average number of

contacts and so test the isostaticity conjecture. It was first observed in simulation,

however, that this is complicated by a large number of near contacts which follow a

power-law for r > d, going like g(r) ∼ (r/d− 1)−α with α = 1/2 [86, 65]. Subsequent

simulations have found slightly lower value for this exponent α ≈ 0.4 [32] and Aste

et al. report fits to experimental data giving a range of values in which increase with

volume fraction from 0.3 to 0.45 for volume fractions from ≈ 0.58 to 0.64. Plotting

g(r) for our system on log-log axes (Fig. 5.8A), we see a range of about a decade in

r/d−1 where g(r) is declining as a power-law with exponent ∼ −1/2, however, when

a power-law, g(r) ∼ (r/d−1)−α, is fit to this range, we see α increase with φ similarly

to the trend reported by Aste et al. [4].
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Figure 5.8: Analysis of the shape of the peak in the radial distribution function at
r = d for all four volume fractions: A: There is a region spanning roughly a decade
where g(r) drops as roughly a power-law of the near miss distance r/d−1. In (B) this
region is fit to the power-law form g(r) ∼ (r/d − 1)−α. In the inset the magnitude
of the fit exponent can be seen to increase with volume fraction. The right panel
presents an alternative method of fitting these data where g(r) is taken to have the
form Z/(4π) δ(r/d − 1) + B θ(r/d − 1) (r/d − 1)−α convolved with a Gaussian of
standard width σ. (C) displays least-squares fits of the first peak to this form. To
make the fits discernible the lowest volume fraction series is plotted normally and
each subsequent data series is shifted downward by half a decade. (D) shows the
values of the exponent, α, and the average coordination number, Z, coming from the
fit. There is no obvious trend in volume fraction but there is a clear interdependence
of these estimates. The estimates of Z lie near the value of 4 predicted by isostaticity
and seen in simulation at RLP at large friction coefficient. For the four volume
fractions, parameter estimates are: Z=[4.5, 3.4, 4.1, 3.9], B=[0.39, 0.30 , 0.30 , 0.26],
α=[0.45, 0.61, 0.59, 0.66] and σ=[0.014, 0.014, 0.014, 0.015] where g(r) with bin width
∆r = 0.002 d is fit up to r = 1.3 d and g(r) is normalized as a number density (note
that for viewability the bin width as plotted in (C) has been reduced to ∆r = 0.01 d).
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The shape of this tail is important if we are to separate the average number

of true contacts, Z, from the the apparently diverging probability of near-misses.

We follow Aste et al.’s example of modeling the experimental g(r) near r = d as the

convolution of an ideal radial distribution function, g̃(r), with a Gaussian representing

measurement error, Nσ(r).

g̃(r) = Z/(4 π) δ(r − 1) +B θ(r − 1) (r − 1)−α (5.3.3a)

Nσ(r) =
1√

2π σ2
exp (−r2/(2σ2)) (5.3.3b)

where δ(r) is the Dirac-delta function and θ(r) is the Heaviside step function (0 for

r < 0, 1 for r > 0) and r is expressed in units of d. Then the measured radial

distribution function, g(r), is the convolution of these:

g(r) =

∫ ∞
0

g̃(ρ)Nσ(r − ρ) dρ (5.3.4a)

=
1√

2π σ2

∫ ∞
0

[
Z

2 π
δ(ρ− 1) +B θ(ρ− 1) (ρ− 1)−α

]
e−

r2

2σ2 dρ (5.3.4b)

Here we diverge from Aste et al.’s method of analysis noting that it is not strictly

possible to obtain σ from fitting a normal distribution to g(r) for r < d because the

convolution causes some of the number density from the power-law term to spill over

to r < d. This in turn leads to a systematic overestimation of the height of the delta

function and hence an overestimation of Z. Instead we go the direct route solving

this integral numerically and fitting that solution directly to the g(r) data to estimate

parameters Z, B, α and σ. Fig. 5.8C shows that the g(r) data are well fit by these

equations at all volume fractions with none of the parameter estimates showing any

meaningful dependence on volume fraction. If we average over the estimates at the

four volume fractions and take the standard deviation as an estimate of the error, the

fit estimates are Z = 4.0(4), B = 0.31(5), α = 0.58(8) and σ = 0.0141(5). Note that
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this analysis provides a meaningfully lower estimate of Z than the volume-dependent

range 5.81 and 6.97 seen previously [5] and with corresponding differences in estimates

for α. We believe that this difference is due to the differing analysis.

So g(r) in this system is well fit by Eqs. 5.3.3 and 5.3.4 and is consistent with the

high-friction isostaticity prediction that Z = 4 which has also been seen in simulations

at RLP [85]. This analysis also shows the experimental g(r) to be consistent with a

power-law divergence of near misses with exponent −1/2. It is impossible to claim

more than consistency here because there is a substantial interdependence of the

parameter estimates, particularly between Z and α. This can be seen in Fig. 5.8 where

higher than average estimates of α always pair with lower than average estimates of

Z.

The high quality of this fit means that the local environment out past a distance

0.3 d from a given sphere’s surface is consistent with the following radial distribution

function

g(r) = Z/(4 π) δ(r − 1) +B θ(r − 1) (r − 1)−α , (5.3.5)

again letting d = 1. The local structure is thus composed of the sum of two extremely

sharp distributions. Nowhere is the structure uniformly distributed at the average

number density, ρ = g∞.

Surely this sharp local structure in g(r) must have consequences for the shape of

g(r) beyond r ≈ 1.3 d. Neighbors after all also have the same sharply peaked g(r) in

their immediate neighborhood so there must be an echo of the first peak in g(r) at

larger r. In one-dimension the ringing of the sharply peaked feature at r = d would

logically occur at integer multiples of d, r = 1 d, 2 d, 3 d.... The next question is

whether we can predict the period of the ringing in 3D.

The Ornstein-Zernicke (OZ) equation provides a means to separate g(r) into “di-

rect,” c(r), and “indirect” terms [68]. Let ḡ(r) = 1
ρ

(g(r)− ρ),
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ḡ(r) = c(r) +

∫
c(|r − r′|) ρ ḡ(r′) dr′ (5.3.6)

where the integral is over all allowable positions r′ of a third sphere. This equation

defines the direct correlation, c(r), which can be thought of as the direct influence of

the sphere at the origin on the structure at r and the indirect term (the integral) can

be thought of as the sum over indirect influences of the sphere at the origin on the

structure at r mediated by a third particle at r′. There are truncation methods to

solve the OZ equation like the Percus-Yevick approximation [71] which has an analytic

solution for hard spheres [93], however, we are interested in the consequences that

the sharp initial peak has on g(r) in a non-equilibrium granular packing rather than

in the equilibrium solution.

Athermal hard-spheres only interact by contact, so we take the form of the direct

correlation function to be from its contacting neighbors at r = 1 (again letting d = 1),

c(r) = Z/(4 π) δ(r − 1) (5.3.7)

Having a form of the direct correlation function, the principle difficulty in solving the

OZ equation is in confining the integral to run only over positions, r′, that do not

overlap the sphere at r = 0. This constraint can be written explicitly with a function,

T (r′), that is 0 for r′ < d and 1 otherwise, allowing the equation to be written as a

convolution and transformed to Fourier space:

ḡ(r) = c(r) +

∫
c(|r − r′|) ρ ḡ(r′)T (r′) dr′ (5.3.8)

= c(r) + ρ convolve(c, ḡ T ) (5.3.9)

F [ḡ] = F [c] + ρF [c] F [ḡ T ] (5.3.10)

Were T = 1, it would be straightforward to solve for the Fourier transform of ḡ,
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F [ḡ] = F [c] /(1− ρF [c]) . (5.3.11)

An approximate solution, however, can be obtained by approximating T as a spatial

low-pass filter over distance, d, which transforms to a frequency-space cutoff of d/L

where L is the length of system over which the transform is taken. In this approxima-

tion the Fourier transform of ḡ is equal to F [c] for frequencies below the cutoff and is

given by Eq. 5.3.11 above the cutoff. This approximation should be expected to have

significant errors for r < d but be valid for r >> d which is the region of interest

where we which to see the consequences of sharp features at r = d. Indeed behavior

for r & 1.5 d are not sensitive to the value of the frequency cutoff (see Sect. C.1 in

the appendix) but there are significant errors visible for r < d including broadening

of the delta function to the left of r = d and a peak at the origin.

In Fig. 5.9 the OZ equation has been solved assuming the direct correlation comes

only from true contacts. The only inputs into this model are the average number of

contacts, Z, and the volume fraction, φ. The numerical solution for Z = 4 contacts

captures the decreasing frequency of peaks and troughs, however, it underestimates

the amplitude of the peaks and troughs. The numerical solution for Z = 5 matches

the amplitude and period of the peaks and valleys and their growth with increasing

volume fraction. A similar solution can be obtained with Z = 4 by including some of

the distribution of near-misses near r = d (see Fig. C.2 in Sect. C.1).

The oscillations in g(r) after the first peak at r = d thus are explained as a ringing

of the sharp feature at r = d echoing in the neighbors of neighbors and so forth.

Nearly the entire shape of g(r) appears to be a consequence of the local distributions

of contacts and near-misses. This OZ solution does not, however, appear to capture

the splitting of the r ≈ 2 d peak with increasing volume fraction suggesting that this

feature is not a consequence of local structure.
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Figure 5.9: Radial distribution function data (binned plots) and numerics (smooth):
Numerics are 3D numerical solutions of the Ornstein-Zernicke (OZ) equation assuming
a direct correlation function coming solely from the contact number. The only input
parameters are the volume fraction, φ, and the coordination number, Z, set to 4 in
(A) and 5 in (B). Because of computational limits the granularity of the numerical
solution (0.025 d) is larger than the 0.014 d smoothing found in the data. Solutions
at both Z = 4 and 5 match the locations of peaks and troughs in the g(r) data,
however, the Z = 5 solutions is overall a much better match. Even the volume
fraction dependence appears to be captured. Thus much of the structure of g(r)
appears to be dictated by the delta sharp peak at r = d.
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It is also interesting to observe that the decreasing period in g(r) appears to be

linked to dimensionality as we have argued that it should simply be equal to d in

1-dimension, is lower in 2D (Fig. C.1) and still lower in 3D.

5.3.3 Voronoi and Delaunay partitions

As volume is the key property in loose packings, it is interesting to look at lo-

cal measures of volume fraction. This is typically done via Delaunay and Voronoi

partitions which can be computed efficiently with algorithms for finding convex hulls.

A “Delaunay tessellation” partitions space into simplices with vertices at the cen-

ters of nearest neighboring particles. In D-dimensions a simplex is a polygon with

D + 1 vertices so in 2D the simplices are triangles and in 3D they are tetrahedra.

Strictly, simplex vertices are chosen so that no other particle center lies within the

circumcircle or circumsphere through the vertices of the simplex. Degeneracy where

more than D + 1 particle centers lie on the same sphere occurs frequently in ideal

periodic lattices but with probability zero in the presence of noise.

Voronoi diagrams share the same nearest-neighbor relationships with Delaunay

tessellations but are typically thought of as the partition of space into regions around

each particle. For a given particle, i, the Voronoi cell surrounding i is the set of

all points ~x such that ~x is closer to i than to any other particle. Voronoi cells are

generally thought of as a robust quantity, however, they inherit the ambiguity of

defining neighbors when Delaunay tessellations are degenerate and often fail to form

closed surfaces about particles near the boundary.

In Fig. 5.11 we show distributions of volumes of Delaunay tetrahedra and Voronoi

cells that lie in the interior which we define to mean that the Voronoi cell does not

intersect the boundary and is at least 3 d away from a wall (increasing this distance

farther does not have a noticeable effect on the shape of the distributions). Distribu-

tions consists of the “free volume” which is the volume not containing a sphere, the
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Figure 5.10: Volume-weighted distributions of local volume fraction from Delaunay
and Voronoi partitions: included are interior cells that are at least a distance 3 d
from a wall. (A) contains the volume fractions of Delaunay tetrahedra and (B) the
volume fractions of individual Voronoi cells. The range of volume fractions seen in
Delaunay tetrahedra is very broad spanning the range of average volume fractions
seen for common regular lattices from the tetrahedral-octahedral honeycomb lattice
past close packed lattices such like FCC and right up to the maximum possible local
volume fraction for a Delaunay tetrahedron of ≈ 0.78 on the inside of a tetrahedron
of four mutually contacting spheres. The volume-weighting makes the means of these
histograms equal to the mean volume fraction of the sample which come out to
0.566(5), 0.586(5), 0.600(5), 0.614(5) which, when rounded to the nearest 0.005 give
the nominal volume fractions that quote in the figures. The errors are estimated
from a sum of causes with systematic uncertainty of the sphere radii contributing
0.002, sensitivity to the distance excluded from the wall contributing an uncertainty
of order 0.001 and an additional 0.001 to 0.002 coming from the statistical uncertainty
of estimating the mean of these distributions which are comprised of 2930, 3041, 3132
and 3213 Voronoi cells and 10327, 10489, 10707 and 10877 Delaunay tetrahedra,
respectively.
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Figure 5.11: Distribution of local Delaunay volumes (left) and Voronoi volumes
(right): Plotted are the distributions of the “free volume” of Delaunay tetrahedra
and Voronoi cells which is the volume not containing a sphere, “solid volume” which
is the volume of sphere within the cell and “total volume” which is the sum of these.
For Delaunay tetrahedra these are three distinct distributions with the distribution
of free volumes possessing exponential tails on both sides, the distribution of sphere
volumes sharply peaked with a heavy tail at small V and a short tail to the right of
its peak. The distribution of total volumes incorporates properties of both. meaning
that the free volume and total volume distributions have distinct shapes in the Delau-
nay tessellation. The situation is simpler for Voronoi cells where the solid volume is
constant—the volume of a single sphere—and thus has a delta function distribution.
The distributions of volumes and free volumes have the same shape and are simply
shifted relative to one another and so only the free volume distribution is plotted on
the semi-log axes. All volume and free volume distributions have exponential tails
consistent with p(v) ∼ exp (−β v) at large-v.
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“solid volume” which is the volume of sphere within the cell and the “total volume”

which is the sum of these. In the Voronoi case, each Voronoi cell contains a single,

whole particle and thus the solid volume is constant, 4/3 π (1/2)3 (since d = 1), and

the distributions of free volumes and total volumes therefore differ only by an offset.

This is also the case for Delaunay volumes in two dimensions: the interior angles of

a triangle always sum to π so the solid area in a Delaunay triangle is always half the

area of a particle. This is not the case in three dimensions, however: the sum of the

solid angles in a tetrahedron is not constant so the distribution of solid volumes in

the Delaunay tessellation, although sharply peaked, is not guaranteed to be a delta

function. Instead we find that it possesses a heavy small-v tail. This heavy small-v

tail carries over to the total volume so whereas the distributions of free volumes in

the Delaunay and Voronoi partitions look similar, the shapes of the total volume

distributions differ qualitatively in the small-v tail.

The shape of volume distributions is of particular interest to theoretical Edwards

volume distributions and related models which seek statistical mechanics descriptions

with volume replacing the role of energy in equilibrium theory. The differences be-

tween distributions of volume and free volume in Delaunay tessellation in three dimen-

sions may be of interest to such theories, however, of particular interest is the degree to

which volume distributions resemble the Boltzmann distribution, P (V ) ∼ exp(−β v).

As observed elsewhere in a similar system [3], none of these distributions as a whole

follow this shape, however, the large-v tails do. We follow the lead of Aste [3] in-

troducing the “complementary cumulative density function,” ccdf, to quantify the

shape of the large-v tails of these distributions. If p(v) is the normalized probabil-

ity density function, then the cumulative density function, cdf(v) =
∫ v
−∞ p(v′) dv′,

represents the accumulation of probability up to v. The complementary cumulative

density function, ccdf(v) = 1− cdf(v), flips this over to highlight the large-v tail. For

a probability distribution, p(v), with an exponential tail at large-v, the ccdf will have

97



the same exponential tail, but it will be better suited to plotting on logarithmic axes

far into the tail where the histogram of p(v) encounters empty bins.

Fig. 5.12(A) shows the complementary cumulative probability distributions or

“tail distributions” for volume distributions of Delaunay and Voronoi partitions with

the mean volumes subtracted to allow better comparison of the tails. We observe that

the tails appear quite linear for both Delaunay and Voronoi partitions consistent with

the Boltzmann form p(v) ∼ exp (−β v) seen in [3] and anticipated in Edwards volume-

ensemble theories. The slopes of these tails vary with volume fractions (Fig. 5.12(B),

inset) and differ by about a factor of two between the Delaunay and Voronoi partitions

suggesting that the “granular temperature” in the Edwards volume-ensemble theory

is significantly higher for the Voronoi partition than for the Delaunay partition. We

are seeing a larger discrepancy than the roughly 20% difference reported by Aste.

As he noted Ref. [3], this poses the question to volume-ensemble theories of which

volume partition is the appropriate way to measure volume locally.

That these tails are Boltzmann-like at all remains encouraging for Edwards volume-

ensemble theories. Wondering if such exponential tails are a predictable artifact of

calculating Voronoi and Delaunay partitions on noisy data, we added pseudo-random

Gaussian noise to our sphere location data then re-ran the Voronoi and Delaunay

algorithms. The result is that adding small amounts of noise has little effect and

that adding large amplitude noise makes the tails bend downward like the tails of

a Gaussian distribution. Random point sets also produce volume distributions with

Gaussian rather than Boltzmann tails. Thus whatever origin of the Boltzmann tails

in the data, they do not appear to be an artifact of detection noise which we have

reason to believe is Gaussian (Sect. 5.3.2).
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Figure 5.12: Delaunay and Voronoi volume tail distributions centered at the mean.
(A) the complementary cumulative probability distribution, ccfd(v) = 1 − cdf(v), of
the distribution of Delaunay volumes possesses an exponential or Boltzmann tail at
all volume fractions, however, the tails of the distributions of Voronoi volumes become
less linear with increasing volume fraction. In (B) the linear portions are magnified
and least-squares fits to the probability distribution of form, p(v) ∼ exp(−β v) at
large-v where v = (V − Vmean)/d3 are added in gray. The inset plots the reciprocal
of the slope, β−1, versus volume fraction and fails to reproduce the collapse seen in
[5] with a linear trend extrapolating to volume fraction near φRCP. The right column
explores the role of noise in shaping these distributions. (C) shows the ccdf for
partitions computed after adding normally distributed noise to the sphere locations
in the lowest volume fraction sample as well as the tails for a randomly generated
point set of the same number density as (A). Small amounts of noise, even when larger
than the σ = 0.014 d estimated from g(r), have little effect on the tails large amounts
make the tail less linear. (D) shows the tails for partitions computed for an FCC
plus differing levels of normally distributed noise (note that hard-sphere constrains
are violated here) In all of these cases, randomness appears to make the tails less
linear by bending them down like the tails of a normal distribution which is opposite
what is happening to the tails of the Voronoi volume distribution at higher volume
fractions.
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5.3.4 Hole size distribution

One quantity of interest that can be calculated from the Delaunay triangulation

is the size of the voids in the material. Whereas Voronoi cells define the space nearest

to a given sphere, a Delaunay tetrahedron encloses slices of four neighboring spheres

and the void region between them. The size of voids can be obtained from the

circumsphere through the centers of each Delaunay tetrahedron. The size of the

largest sphere that can fit in the void can then be calculated by subtracting the d

from the circumsphere’s diameter. That no other spheres impinge on this void is

guaranteed by the definition of the Delaunay partition which states that no other

sphere’s center can lie within the circumsphere.

Thus it is possible to calculate a maximal void diameter for each Delaunay cell,

however, the statistics of this distribution are complicated by the fact that void spaces

often overlap in the sense that multiple Delaunay simplices can surround the same

void area. Thus there is a possible issue with over-counting certain voids. To show

that over-counting is not a huge effect, in Fig. 5.13 we show distributions of hole

sizes counted one per Delaunay tetrahedron and also weighted by the volume of the

tetrahedron. These different weighings result in a minor but noticeable difference.

As volume fraction increases, the void size distributions shift to smaller dvoid and

become somewhat narrower. The narrowing of the distribution may reflect that it is

beginning to push up against dense packing (e.g. FCC or HCP) where half of the voids

are the smallest possible being inside four touching spheres with void diameter, dvoid ≈

0.225 d, and the other half have diameter: ≈ 0.414 d. The tails of the distribution are

also interesting with the large-dvoid tail appearing somewhat heavier than Gaussian,

however, the trend would appear to steepen approaching the sphere diameter, dvoid,

as we do not detect any holes large enough to fit a sphere. The small dvoid tail is also

interesting and appears to approach the smallest possible void size, dtetra ≈ 0.225 d,

up to detection accuracy, as a power-law with exponent near 1.
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Figure 5.13: Sizes of voids: The largest sphere that can fit in a void space between
particles can be computed from the circumsphere through the sphere centers in each
tetrahedron in the Delaunay tessellation. The distributions plotted here show that
voids large enough to fit a sphere (dvoid ≥ d) do not exist at any of the volume fractions
scanned. Because multiple small Delaunay tetrahedra can possess the same circum-
sphere in degenerate Delaunay tessellations, we display the hole-diameter distribution
counted per Delaunay tetrahedron (dashed lines) and weighted by the volume of the
tetrahedron (solid lines). Bottom panel: The shape of the large-dvoid tail in the dis-
tribution of hole sizes is not completely clear, yet even if it is no heavier than a
normal distribution, the extrapolating the trend would predict that we should see
some sphere-sized or larger holes, especially at the lowest volume fraction, yet none
are detected in the bulk. In the bottom-right, the horizontal axis has been shifted by
the smallest possible void diameter for uniform hard-spheres, corresponding to the
void formed by four mutually contacting spheres, dtetra ≈ 0.225 d. Above detection
error, the shape of the tail is approximately that of a power-law with exponent one.
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5.3.5 Crystalline order parameters
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Figure 5.14: Distributions of local Steinhardt-Nelson order parameters calculated on
Voronoi neighbor bonds: Order parameters are calculated only for Voronoi cells that
are on the interior of the packing and at least 3 d away from the nearest wall. The
distribution of q4 shifts toward zero with increasing volume fraction. The distribution
of the q6 is significantly more broad and shifts the opposite way.

One method for characterizing order which has proven particularly useful for mea-

suring crystalline order is the set of qn-crystalline order parameters of Steinhardt,

Nelson and Ronchetti [88]. Many measures of crystalline structure rely on prior

knowledge of the orientations of the crystalline axes. This poses difficulties when an-

alyzing materials with many randomly aligned crystalline regions or materials lacking

long range order such as liquids or glasses. One solution is to look for rotationally

invariant measures of order.

In two dimensions one could imagine looking at the angles of the bonds sur-

rounding a particle. The values of each angle depend on the orientation of the axes,

however, a different choice of axes gives the same set of angles up to an additive

constant (modulo 2 π). To quantify the pattern

f(θ) =
n∑
j=1

δ(θ − θj) (5.3.12)
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of these bonds to neighboring particles, {j}, one could take a discrete Fourier trans-

form

f̂n =

∫ 2π

0

ei n θ f(θ) dθ (5.3.13)

to obtain Fourier coefficients, f̂n, which for n > 1 depend on the choice of axes only

for their phase. Normalizing these a little differently and taking the absolute value,

fn(i) =
1

Ni

∣∣ Ni∑
j=1

ei n θi j
∣∣ (5.3.14)

yields a set of rotationally invariant order parameters, fn, for n > 1 and we have

informally introduced the Nelson-Halperin 2D crystalline order parameters [61]. It

is immediately clear that these fn will be useful for locating crystalline regions. A

square lattice uniquely has f4 = 1 and fn6=4 = 0 and a honeycomb lattice uniquely has

f6 = 1, fn6=6 = 0. So the fn provide a means of detecting crystalline regions without

needing to know the orientation of the crystalline axes as well as a sensitive way of

differentiating between different crystalline lattices.

The Steinhardt-Nelson q-parameters generalize these crystalline bond-order pa-

rameters to three dimensions, providing a rotationally invariant way to measure crys-

talline order in an arrangement of three-dimensional bonds. In 3D the sum over bonds

to neighbors, {j}, looks like:

f(θ, φ) =
n∑
j=1

1

sin θ
δ(θ − θj) δ(φ− φj) (5.3.15)

and can be expanded in terms of spherical harmonics,

f(θ, φ) =
`max∑
`=1

∑̀
m=−`

f̂`m Y`m(θ, φ) (5.3.16)

103



with orthogonality allowing a solution for the coefficients,

f̂`m =

∫ 2π

0

∫ π

0

f(θ, φ)Y ∗`m(θ, φ) sin(θ) dθ dφ (5.3.17)

These coefficients are analogous to those from a Fourier transform in the 2d case

except for the presence of a second index, m, that runs from −` to `. All that

remains is to convert these tensors into a rotationally invariant scalar. This can be

done two ways to obtain order parameters qn or wn [88], the latter being less used.

We will only consider the qn which can be computed,

q̄`m(i) =
1

Ni

Ni∑
j=1

Y`m(~ri j) (5.3.18a)

qn(i) =

√√√√ 4π

2n+ 1

n∑
m=−n

|q̄n,m(i)|2 , (5.3.18b)

with the sum in the first equation running over the bonds from the i’th particle to

its Ni neighbors, {j}.

As periodic lattices must have 2, 3, 4 or 6-fold symmetry, the qn corresponding to

these, and particularly q4 and q6, are typically the most used in identifying crystalline

regions. The Fourier transform analogy holds, however, in that there is no reason

that other qn cannot be present and these can provide information about the local

structure of disordered materials.

In order to calculate the local values of qn from Eq. 5.3.18, one must first define

nearest neighbor bonds over which to evaluate the sum. Probably the most meaningful

way to do this in disordered packings would be to sum over contacts. Unfortunately

experimental error and the divergence of near misses make this impossible to do

experimentally from particle positions alone. Contacts not being known, one typical

choice is to sum over Voronoi neighbors which, however, includes many neighbors

that are relatively remote and obviously not contacts. The other option is to choose
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Figure 5.15: Distribution of q4 order parameter calculated locally over bonds to neigh-
bors within varying distances: (A) and (B) display the distributions q4 calculated
locally at the lowest volume fraction, φ ≈ 0.565(5). (C) displays the location of the
peak probability versus the distance over which bonds are included. This dependence
is well fit by an exponential decay with characteristic distance ` = 0.41(3) d. (D)
shows the distributions at the lowest volume fraction collapsed by the fit in (C). The
distributions appear to possess the shape of a log-normal distribution.

a distance slightly above the sphere diameter and sum over neighbors within that

distance. As we will demonstrate, the results depend quite a bit on how the neighbors

are chosen.

Fig. 5.14 shows distributions of q4 and q6 calculated over Voronoi neighbors. The

q4 distribution has a maximum at ≈ 0.1 and q6 at ≈ 0.3 which makes them roughly

equivalent to the distributions calculated out to a radial distance of 1.5 d as shown in

Figs. 5.15 and 5.16. The latter figures show that as the radius over which bonds are

included increases, the peaks of the distributions decrease. The q6 distribution largely

maintains its shape and width while the distribution of q4 changes as it collapses onto a

single log-normal distribution. The trend of decreasing means with increasing radius

105



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Steinhardt-Nelson, q6

0

1

2

3

4

5

6

7

pr
ob

ab
ilit

y 
de

ns
ity

, p

(A) r /d− 1
0.1
0.2
0.3
0.4
0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6
near miss distance, r /d− 1

0.0

0.1

0.2

0.3

0.4

0.5

lo
ca

tio
n 

of
 p

ea
k,

 q
4p

ea
k

(C)

ϕ
0.565(5)
0.585(5)
0.600(5)
0.615(5)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Steinhardt-Nelson, q6

10−1

100

101

pr
ob

ab
ilit

y 
de

ns
ity

, p

(B)

r /d− 1
0.1
0.2
0.3
0.4
0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Steinhardt-Nelson, q6

10−1

100

101
pr

ob
ab

ilit
y 

de
ns

ity
, p

(D)

ϕ
0.565(5)
0.585(5)
0.600(5)
0.615(5)

r /d− 1
0.1
0.5

Figure 5.16: Distribution of q6 order parameter calculated locally over bonds to neigh-
bors within varying distances: (A) and (B) display the distributions q6 calculated lo-
cally at the lowest volume fraction, φ ≈ 0.565(5), (D) for the highest volume fraction,
φ ≈ 0.615(5). (C) displays the location of the peak probability versus the distance
over which bonds are included. (D) shows the distributions at all volume fractions at
two values of r/d− 1. Unlike the q4 distributions which appear to be log-normal, the
q6 distributions are all approximately normal distributions with the same widths.
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Figure 5.17: Distributions of Steinhardt-Nelson qn-order parameters calculated lo-
cally over bonds to neighbors out to distance 1.1 d: (A) and (B) show the order
parameters calculated at the lowest volume fraction, φ = 0.565(5). The means of
these distribution increase with increasing n up to n = 6 and subsequently begin to
decrease. (C) shows the distributions for three of these order parameters at all four
volume fractions. (D) plots the means of these distributions versus the degree, n, of
the order parameters. q6 appeares to be special as it is both the order parameter with
the largest mean value and also the one that changes least with volume fraction.

is in the expected direction. Including ever more distant bonds should ultimately

make the q-parameters tend toward zero if the material is isotropic.

It is possible to calculate the qn at any integer value of n and while only certain

values are consistent with periodic lattices, all of these values denote n-degree sym-

metry locally in a disordered packing. Fig. 5.17 plots the distributions of the qn from

n = 2 to 9, summing over neighbors out to 1.1d. Among these order parameters q6

is special: it is both the distribution with the highest mean and the distribution that

shifts least with volume fraction. q4, by contrast, looks simply like the intermediate

step between q3 and q5.
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Figure 5.18: Distributions of local Steinhardt-Nelson order parameters and the num-
ber of neighbors out to maximum radial distances, r: (A) shows q4 calculated over
bonds to various distances and (B) shows the distributions of q6. (C) shows the num-
ber of neighbors within these distances at the lowest volume fraction, φ ≈ 0.565. (D)
shows the dependence of volume fraction at for neighbors counted out to r = 1.1 d.
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Figure 5.19: Distributions of Steinhardt-Nelson order parameters from Monte-Carlo
simulation of a single sphere with N contacting neighbors: The left column shows
q4 with the distributions having the log-normal shape seen in the data. The right
column shows q6 with the distributions for N < 11 having approximately the normal
distributions seen in the data.

To see if the local structure captured by the crystalline order parameters fol-

lows simply from hard-sphere constraints between neighboring spheres, we performed

Monte-Carlo calculations where a single sphere is surrounded by a cloud of N con-

tacts (see Sect. C.2 for the details of the simulation). Calculating the local bond-order

parameters from the Monte-Carlo, we obtain distributions of q4 and q6 for fixed N

(Fig. 5.19). We know the distribution of the number of neighbors in the data from

Fig. 5.18, so it is possible to sample the fixed N Monte-Carlo results according to

the experimental distribution of N . The predictions this gives are shown in the left

column of Fig. 5.20. The distribution of q4 in the data at the lowest volume fraction

where the average of N is 7.2 resembles a combination of the Monte-Carlo distri-

butions at N = 7 and 8 which is reasonable. Further, the low-q4 tail matches the
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Figure 5.20: Comparison of distribution of q4 and q6 with those generated by Monte-
Carlo: The left column shows the data (solid lines) for the lowest and highest volume
fraction and the distributions of order parameters when the constant-N Monte-Carlo
distributions (Fig. 5.19) states are sampled according to distribution of N measured
in the data (Fig. 5.18). In the data shown here the qn and the number of neighbors
are calculated out to radius 1.1 d. The Monte-Carlo captures the low-q4 tail of the
q4 distribution but misses significantly otherwise is offset relative to the observed q6

distribution. The right column plots the distribution at the lowest volume fraction
alongside Monte-Carlo distributions at surrounding values of N . The average number
of neighbors within 1.1 d in the data is 7.2 at the lowest volume fraction (it is 7.6,
8.0, 8.4 at the higher volume fractions) and we see that the low-q4 tail in the data
matches the low-q4 tail in the Monte-Carlo at N = 8 which is reasonable. The shape
of the experimental q4 distribution could reasonably be seen to arise from a sum of
the N = 7 and N = 8 distributions alone without evidence of the N = 6 and N = 9
distributions which were included in (A). The correspondence is less good for q6 with
the experimental distribution best resembling the Monte-Carlo at N = 5. The q6

structure these does not seem to follow solely from the number of neighbors and
hard-sphere constraints.
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Monte-Carlo at N = 8, but when we weight by the frequency of these N ’s in the

data, the result (Fig. 5.20(A)) seems to incorporate too much of the N = 8 and 9

distributions. Thus it is conceivable that certain parts of the q4 structure such as

the low-q4 tail are captured by the Monte-Carlo and therefore determined simply by

hard-sphere constraints and the number of neighbors.

The distribution of q6 is less well reproduced by the Monte Carlo. At the lowest

volume fraction the experimental distribution which has < N >= 7.2 best matches

the Monte-Carlo at N = 5 and this correspondence gets worse with increasing volume

fraction since < N > increases while the q6 distribution changes little. The structure

signified by q6 seems not to follow solely from the number of neighbors, hard-sphere

constraints and the assumption that all else is random.

5.3.6 Spatial correlations on the Voronoi Partition

We have looked at distributions of scalars defined locally and spatial dependence

of these. Now we explore spatial correlations between scalars that can be defined

locally on the Voronoi diagram, focusing on the volume fraction of Voronoi cells, φ,

and the crystalline order parameters q4 and q6.

To compute spatial correlations, we first compute the Voronoi partition. Volume

fractions are computed for the Voronoi cells about each sphere and q4 and q6 are com-

puted for bonds about that sphere, as before either summing over Voronoi neighbors

or neighbors within a set radius. Then, defining the values of scalars φ(r), q4(r) and

q6(r) to be constant in each Voronoi cell, the spatial dependencies of these scalars

are digitized onto a 0.2 d× 0.2 d× 0.2 d spaced grid without any smoothing or inter-

polation. Spatial cross-correlations are computed and the average radial component

extracted.

The ranges of the autocorrelations computed this way are very short, falling es-

sentially to zero by a distance of 2 d (Fig. 5.21). The autocorrelation length of φ
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Figure 5.21: Spatial auto-correlations of scalars defined on the Voronoi partition
digitized onto a 0.2 d × 0.2 d × 0.2 d spaced grid. The autocorrelation lengths are
short for all three scalars, the autocorrelation length of φ being somewhat longer
than those of the crystalline order parameters. There is little change with volume
fraction.
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is somewhat longer than for q4 and q6, showing little variation with average volume

fraction.

Cross-correlations contain more features (Fig. 5.22). Even the values of the cor-

relation coefficient at r = 0 are non-trivial with there being a significant positive

correlation between φ and q6 and a smaller negative correlation between φ and q4

(Fig. 5.22). The shapes of the cross-correlation in Fig. 5.22(A) in which q4 and q6

are summed over Voronoi neighbors are also interesting with the cross-correlation

between q4 and q6 changing sign from r = 0 to r ≈ d. All of these features, however,

appear to depend on the region over which the qn are calculated and choosing the

Voronoi cell as that region seems to give results that are not in line with any region

defined by a radius. This being true, there is a trend toward negative cross-correlation

between φ and both q4 and q6 at r = 0 as the radius over which bonds the qn are

summed goes to d. This is interesting because it is the opposite of what one would

expect if the q’s where signaling crystalline order which would be expected to increase

volume fraction.

5.4 Discussion

The first function of the structural analysis in this chapter is to assess the plausi-

bility of the working assumptions of homogeneity and isotropy made in the previous

chapters. To address homogeneity we look at the spatial dependence of local volume

fraction and the Steinhardt-Nelson crystalline order parameters which are found to

be uniform in the bulk. The absence of a measurable dependence on height suggests

that the imaged portion of the packing is deep enough that any vertical dependence

has saturated [47]. The distribution of bond angles relative to coordinate axes was

also found to be consistent with expectations for an isotropic material. We did see

signs of layering near the walls, however, it is short ranged and is not accompanied

by a measurable increase in crystalline order parameters suggesting that the pres-
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Figure 5.22: Spatial cross-correlations on the Voronoi partition at all four volume
fractions: (A) shows the cross-correlations calculated between these scalars when q4

and q6 are calculated over bonds to Voronoi neighbors. In (B) cross-correlation of φ
and q4 where q4 is calculated over different sets of neighbors within varying radii for
the lowest volume fraction sample. (C) shows the equivalent cross-correlation for φ
and q6. The local correlation between volume fraction and bond order parameters
depends qualitatively on the region over which bond order is calculated, changing in
both magnitude and sign.

114



ence of layering does not imply that the structure is crystalline near the walls. The

walls were, however, found to have a short ranged negative influence on the volume

fraction. This is counter to the expectations from denser packings where walls tend

to act as templates for crystalline regions. Thus the walls do not appear to be driv-

ing crystalline order and while they do induce layering, that effect is relatively short

ranged (3 to 4 sphere diameters), leaving the packing homogeneous in the bulk.

Partitioning the packing into Voronoi and Delaunay diagrams, we observe that

free-volume distributions have Boltzmann tails as predicted for Edwards free-volume

distributions [35], however, with even more distinct slopes for Delaunay and Voronoi

free-volume distributions than has been reported previously [5]. We demonstrate that

these exponential tails are real in the sense that they are not artifacts of computing

Voronoi and Delaunay partitions on noisy data. This would seem to be promising

for free-volume theories, however, it does demand an explanation of why these two

volume partitions appear to possess different “granular temperatures.”

Through the Delaunay partition we also obtain the distribution of maximum void

sizes. We find that none of the voids are large enough to fit a particle which is of

relevance to grand-canonical ensemble versions of free-volume theories: the insertion

probability may be very small.

We also look at properties of the Steinhard-Nelson q-crystalline order parameters

finding that the distributions of these order parameters have different shapes with

q4’s being log-normal and q6’s approximately normal. Both shift depending on the

distance over which bonds to neighbors are included in the sums calculating their

parameters. Comparing these to a broader range of qn distributions, we see that q6 is

special in two ways as it has the largest mean and changes the least with bulk volume

fraction. In fact the plot of the mean value of qn versus n resembles a resonance

with peak at n = 6, making six-fold symmetry a dominant mode of sorts. That six-

fold structure should also be the structure that changes least with volume fraction is
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puzzling. At the very least this argues against the formation of face-centered cubic

crystals being the primary means of compaction, since that would be expected to

increase q6 more than other modes.

To try to understand the origins of the structure of neighbor locations encoded

in the q4 and q6 distributions, we perform Monte-Carlo simulation of single spheres.

These simulations which calculate q4 and q6 distributions assuming N contracts ar-

ranged randomly subject to hard sphere constraints, reproduce some of the features

of the q4 distribution but fail to match the q6 distribution. Thus the q6 distribution

is signaling the presence of structure in the arrangement of neighbors that does not

follow solely from the number of neighbors and hard-sphere constraints.

We also explore spatial correlations of local volume fraction, q4 and q6, finding

all auto-correlations and cross-correlations to be short ranged, falling off completely

after a distance of 1 or 2 particles. There are interesting correlation coefficients at

r = 0, revealing an anti-correlation between local volume fraction and the values of

crystalline order parameters q4 and q6. The anti-correlation with volume fraction

together with the lack of crystal growth at the walls and the lack of change in q6

with the volume fraction of the system, point toward the conclusion that crystalline

regions, however small, are not apt to form in loose packings and their growth is not

the mechanism by which volume fraction increases either locally or globally.

We also look at structure via the radial distribution function, and by directly

fitting g(r) near the peak at r ≈ d find better agreement with predictions of the

isostaticity hypothesis and simulations [86] than had previously been seen in experi-

mental data [4, 5]. The quality of the fits in Fig. 5.8 to Eq. 5.3.4 suggest that locally

g(r) is composed of only two distributions, that of true contacts at r = d and diver-

gent power-law distribution of near-misses. Both of these distributions are sharply

peaked at r = d so there is nowhere locally where structure is even remotely uniform

at the average number density. Such a sharply peaked feature at r = d must have
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consequences for the longer ranged shape of g(r). The Ornstein-Zernicke (OZ) equa-

tion provides a means to split g(r) into direct and indirect components. We show

numerically that the presence of a sharp peak at r = d predicts the decreasing period

of peaks and troughs at larger r and their growth with volume fraction. The local

distributions of contacts and near misses therefore determine much of the overall ra-

dial distribution—that is the entirety of structure in an isotropic material to the level

of two-particle correlations. The numerics from the OZ equation do not appear to

reproduce the splitting of the peak at r ≈ 2. Thus the growth of the
√

3 d peak in

g(r) appears to be the only feature of radial structure that does not arise as a direct

consequence of very short ranged order.
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CHAPTER 6

CONCLUSION

We began the work presented in this dissertation addressing the question of

uniqueness of Onoda and Liniger’s [67] random loose packing limit of φRLP ≈ 0.555

which they obtained in the limit of neutral buoyancy and whether their limit of neutral

buoyancy should be understood as the limit where particle weight drops below cohe-

sive force scales or whether it could be interpreted as the limit of slowing dynamics

freezing the packing in a fragile state.

We found that such a limit did exist but that it was not unique in the sense that

different material spheres went to different limits. Thus in the work described in

Chapter 2 we were the first to closely characterize the spherical grains used in gran-

ular packing experiments. Likely the details of grains had been neglected previously

because the surface of the spheres matters little at RCP: φRCP is the same at infinite

friction as it is at zero friction [85]. It turns out that these details do matter in looser

packing and we showed that surface properties manifest as a friction coefficient and

spheres with higher friction coefficients formed looser RLP packings. So we had an-

swered uniqueness: φRLP was not uniquely 0.555 because that exact number depends

on friction.

The second question remained: was the limit of neutral buoyancy a comparison

with a force scale or was it part of a dynamic parameter? We measured upper

bounds on the interparticle cohesive forces then chose fluids such that the weight of

the spheres was never comparable to those forces. Subject to that constraint we varied

the density and dynamic viscosity of the interstitial fluids and found that we could
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collapse sedimented volume fractions against a single parameter combination: Stokes

number. This was the parameter we had suspected would control the dynamics of

packing since it could be written as the ratio of the kinetic and gravitational energy

scales of a sedimenting sphere. The surprise was that we were obtaining a loose

packing limit too early: low volume fractions were obtained at St ≈ 10. Interpreted

as the ratio of kinetic energy to potential energy that seemed like quite enough energy

to disrupt a fragile state. It turns out that we had guessed the right parameter but

for the wrong reason. The Stokes number also controls the restitution coefficient [28]

and that is the dynamic parameter that mattered.

To return to the uniqueness question: we showed that RLP is not unique because

it depends on friction but is it a unique function of friction? Specifically, is it unique

if one were to decouple the two roles of Stokes number? Is the RLP limit achieved

by taking the restitution coefficient to zero at constant deposition energy the same

as the limit of zero deposition energy at constant restitution coefficient?

This is a question that we were not able to experimentally address. The next

section lays out a conjecture we were not able to test regarding the radial distribution

function and the final section lays out what we do and do not understand about the

rheology of loose grains.

6.1 Radial Structure

Short ranges are a theme in our investigation of structure. Auto-correlation and

cross-correlation lengths are very short and even the effect of walls suppressing volume

fraction is found to be short ranged.

The importance of short ranges is perhaps most striking in the radial distribution

function. By directly fitting g(r) near the peak at r ≈ d we found better agreement

with predictions of the isostaticity hypothesis and simulations [86] than had previously

been seen in experimental data [4, 5]. We demonstrated that for radial distances
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near the sphere diameter, g(r) can be decomposed into two contributions coming

from contacts and near-misses, both of these distributions sharply peaked right at

the surface of the central sphere. We then showed with a numerical solution of the

Ornstein-Zernicke equation that these sharply peaked local structures determine much

of the behavior of the radial distribution function at all distances.

A hypothesis of ours that we did not have occasion to test experimentally relates

to the local picture of structure. g(r) comes from two distributions near r = d, both

peaked at r = d: the distribution of contacts and the distribution of near-misses. The

near-miss distribution has form (r − d)−α for r > d with values seen in simulation of

α ≈ 1/2 [86, 65] and ≈ 0.4 [32]. Our data are consistent with α = 1/2. Where does

this fractional exponent come from and how does the near-miss distribution “know”

to peak so sharply (divergently in fact) at the sphere diameter? Our suspicion is

that the near-miss distribution is comprised of former contacts. Loose packings are a

dissipative highly damped system: the Stokes number is low (much less than ten) so

spheres do not bounce after collisions. Further, the spheres are cohesionless so that

tension is not supported. All these factors point toward contacts failing primarily by

sliding apart along the tangent plane at the point of contact rather than by being

pulled apart. If one assumes that contacts break by sliding a random distance along

their common tangent plane and that this random distance is from a broad enough

distribution to be flat about zero, the reciprocal square-root shape of the near-miss

distribution ∼ 1/
√
r − d follows immediately (see Appendix Section C.3).

If true, this broken-contacts explanation of the near-miss distribution would be

important because the distribution of near-misses is thought to relate to the coor-

dination number scaling of Eq. 1.5.1 [65]. It would also mean that nearly all of the

radial structure at RLP follows from isostaticity and some assumptions about the

history of packing formation. Isostaticity would give the delta function at r = d and

the broken-contacts hypothesis would give the divergent near-miss distribution. Since
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these sharply peaked distributions are sufficient to make up the radial distribution at

small separation and the sharp feature near r = d largely controls the structure at

larger separations via the self-consistency enforced by the Ornstein-Zernicke equation,

much of the radial distribution would be explained. It is not until volume fraction

increases above RLP and a peak appears at r ≈
√

3 d that there would be signals of

structure that is not a direct consequence of the local environment of the spheres.

6.2 Mechanics of Loose Packings

In Chapter 3 we presented mechanical responses of loose sphere packings display-

ing a number of unanticipated scalings, including the cube-root scaling of the yield

stress with both strain-rate and the age of the packing. Together with our obser-

vation of power-law stress-relaxation at constant strain in the same system and the

observation of logarithmic creep at constant stress elsewhere in a similar system [62],

these responses to the three common modes of linear mechanical perturbation,

σy ∼ (γ̇ T )1/3 at constant strain-rate (6.2.1)

σ ∼ t−1 at constant strain (6.2.2)

γ ∼ log(t) at constant stress (6.2.3)

describe a new mechanical phenomenology which we find can be unified by an ex-

tremely simple rheological model.

Since this material creeps at small steady stresses yet reacts like a solid at higher

frequencies, the simplest rheology is that of a Maxwell fluid—a viscous element in

series with an elastic element. Quantitatively this is all wrong though: creep should go

like t not log t and what of the cube-root or the role of age, T? And the phenomenology

of 6.2.1 does not just creep, it also ages. All of these questions are resolved if the
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viscosity is understood to evolve. Expanded to lowest order in applied stress, σ,

consistent with σ being a tensor and η a scalar,

η̇ ≈ a+ r σ2, (6.2.4)

(this is Eq. 4.4.3b where we let G = 1), all of the phenomena in Eq. 6.2.1 are accounted

for. Thus we describe in a very general way a material that exhibits logarithmic

creep, heavy-tailed relaxation and cube-root strain-rate-scaling of the yield stress.

It is not hard to find other instances in the literature where very different systems

exhibit similar scalings including similar cube-root strain-rate yield-stress scaling in

polymers [74] and in a colloidal paste [31]. It may be that the rheological model of

Eq. 3.5.7 of Chapter 2 arises quite commonly as a slow evolution regime in yield stress

fluids and the cube-root may often be mistaken for a semi-log, σ0 + σ1 log γ̇.

It is not difficult to imagine adding additional terms to the expansion of η̇. Finding

that the symmetry between age and strain-rate breaks down abruptly after the yield

point is passed, we introduce into the expansion a new timescale, τ , attempting now

to expand the evolution of η̇ to lowest order in τ and σ. We find that τ appears in

the strain-rate dependence of multiple features, all related by the simple expansion

in Eq. 4.4.5. We make no claim that these expansions are sufficient for every case:

indeed, these equations only closely fit our data near extreme features where only a

few terms are significant. One possibility is that the phenomenon is so complicated

that every term consistent with symmetry is present and will be important in certain

parameter regimes. It may be that in general it is useful to treat the elastic shear

modulus, G, as evolving as well, however, we have not identified any phenomena that

clearly demonstrate that this is happening.

Despite the successes of our rheological models, Eq. 3.5.7 and Eq. 4.4.5, much

is not understood about this system. We have not identified the mechanisms of

aging and rejuvenation represented by a and r terms, nor, do we understand the
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origin of the strain-rate dependence of the timescale τ which becomes relevant beyond

the yield point. To make matters worse, τ scales to different exponents in systems

with different viscosities of the interstitial fluid. In the lower viscosity interstitial

fluid system it displays τ ∼ |γ̇|−1 as would be expected in a quasi-static or rate-

independent regime. Yet in the system with a higher viscosity interstitial fluid, τ is

not scaled proportionally to the change in interstitial viscosities, instead it exhibits

an altogether different exponent, τ ∼ |γ̇|−1/2, which itself demands a dimensional

explanation. At present we have none to offer. Investigation of the origins of τ as

well as the mechanisms behind aging and rejuvenation in this material are among the

most pressing questions for future work.
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APPENDIX A

FRICTION COEFFICIENT CALCULATION

Θ

r

bead 1

bead 2

N

®

1®2T

®

1®2 L

r

Α

front side

Figure A.1: Geometry of the apparatus used in the friction measurement (scale: bead
radius r = 1.59mm).

In the limit of where we can ignore fluid effects and static rolling resistance,

the friction measurement described in Chapter 3 might be described as a textbook

problem on Lagrangian mechanics: “Two spheres of radius r roll without slipping in

a vertical circular track of radius L. What is the maximum angle of stability of the

two spheres if the coefficient of static friction between them is µ and the angle of the

v-groove in the track is α.” See Fig. A.1 for the diagram of the problem.
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For convenience, define the following:

f ≡ r/L (A.0.1)

s = r cosα (A.0.2)

θ1 ≡ θ − sin−1 f (A.0.3)

θ2 ≡ θ + sin−1 f (A.0.4)

where the θi are the angle of the spheres individually in terms of the angle of the

sphere–sphere contact point, θ. The parameter s is the length of the level–arm be-

tween the rotational axis of the spheres and the line on the v-groove of the cylindrical

track where the spheres make contact.

We can write the θi in terms of the angles of rotation of the beads about their

centers, γi:

θi =
s

L+ s
γi (A.0.5)

Now let us write the two constraints at the point of contact between spheres.

Constraint 1) impenetrability implies spheres move the same amount:

dθ2 − dθ1 = 0 (A.0.6)

θ2 − θ1 = const (A.0.7)

s

L+ s
(γ2 − γ1) = c1 (A.0.8)

Constraint 2) no slipping between beads implies average position is constant:

γ2 + γ1 = const (A.0.9)

Since we are interested in the friction force applied tangent to the surface at radial

distance r (lever arm of length r), we write:
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r(γ2 + γ1) = c2 (A.0.10)

so that the Lagrange multiplier will be the force, F , tangent to the surface.

Let us now write the Lagrangian, L:

L = mg L (cos θ2 + cos θ1) (A.0.11)

= mg L

(
cos

[
r

r + L
γ2

]
+ cos

[
r

r + L
γ1

])
(A.0.12)

The Euler–Lagrange equations are:

−∂L
∂γi

= τ
∂

∂γi

s

L+ s
(γ2 − γ1) + F

∂

∂γi
r(γ2 + γ1) (A.0.13)

Where Lagrange multipliers τ and F represent torque about the center of the cylinder

and the frictional force btween spheres, respectively. Expanding the Euler–Lagrange

equations, we have:

mg L r

L+ r
sin θ1 =

−s
L+ s

+ F r (A.0.14)

mg L r

L+ r
sin θ2 =

s

L+ s
+ F r (A.0.15)

Solving for the Lagrange multipliers,

F =
mg L

2(L+ r)
(sin θ2 + sin θ1) (A.0.16)

τ =
mg L r (L+ s)

2(L+ r)s
(sin θ2 − sin θ1) (A.0.17)

It will be convenient later to reexpress these in terms of θ, substituting

θ1 → θ − sin−1 f and θ2 → θ + sin−1 f and making use of obscure trigonometric

identities, we have
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F =

√
1− f 2 g ms

f (L+ s)
sin θ (A.0.18)

τ = Lf gm cos θ (A.0.19)

The Langrange multiplier τ which we interpret as a torque about the center of the

cylinder is related to the normal force, N , between spheres by a lever–arm of length,

a (Note that a < L).

a = L cos sin−1 f =
√

1− f 2 L (A.0.20)

τ = aN (A.0.21)

We are now in a position to solve for the coefficient of friction, µ.

µ = F/N = aF/τ =
√

1− f 2 LF/τ (A.0.22)

= −(f 2 − 1)s tan θ

f 2 (L+ s)
(A.0.23)

=
(L/r)2 − 1

L/s+ 1
tan θ (A.0.24)
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APPENDIX B

EXTENDED MAXWELL MODEL CALCULATIONS AND
NUMERICS

B.1 Analytic Results

B.1.1 Yield-stress Scaling Calculation

Our modification of the Maxwell model of viscoelasticity to describe the solid

regime of loose sphere packings relates the evolution of viscosity to stress history:

γ̇ =
σ̇

G
+
σ

η
(B.1.1a)

η̇

G
= a− r

( σ
G

)2

(B.1.1b)

where dimensionless constants a and r tune the respective strengths of aging and

shear-rejuvenation in the material.

In this section we carry the analysis of the location of the stress maxima presented

in Sect. 3.5 to higher order to obtain an estimate of the error associated with the

scalings of Eq. 3.5.12. We follow the same general approach of obtaining approximate

solutions for σ(t) and η(t) valid at small-t, then solving for the time, ty, when they

satify

σ(ty) = γ̇ η(ty) (B.1.2)

which must be true at the peak (see argument for Eq. 3.5.10).
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Seeking power-series solutions to Eq. B.1.1 consistent with initial conditions,

σ(0) = 0 and η(t) = aGT (Eq. 3.5.3b), we obtain

σ(t)/G ≈ γ̇ t− γ̇

2 a T
t2 +

(1 + 2 a) γ̇

6 a2 T 2
t3 − γ̇ (1 + 5 a+ 6 a2)

24 a3 T 3
t4 (B.1.3a)

η(t)/G ≈ a T + a t− r γ̇2

3
t3 +

r γ̇2

4 a T
t4 . (B.1.3b)

Plugging the power-series solutions into the relation at the peak, σ(ty) = γ̇ η(ty),

produces a relation for the yield time, ty:

0 = 24 a4 + 24 (a4 − a3) (ty/T ) + 12 a2 (ty/T )2 − (4 a+ 8 a2 + 8 a3 r T 2 γ̇2) (ty/T )3

+(1 + 5 a+ 6 a2 + 6 a2 r T 2 γ̇2) (ty/T )4

(B.1.4)

If ty/T is small, then the 0’th-order term and the last part of the 3rd-order term

dominate and we are left with the same relation for yield time, ty as before:

0 = 24 a4 − 8 a3 r T 2 γ̇2 (ty/T )3 . (B.1.5)

We can self-consistently judge how large the discarded terms are relative to the 3rd-

order term using the scaling for ty (Eq. B.1.6). If a ∼ 1, all turn out to be higher

order in ty/T ∼ (r γ̇2 T 2)−1/3.

The scaling of ty follows from Eq. B.1.5,

ty ≈
(

3 a T

r γ̇2

)1/3

. (B.1.6)

Cube-root scaling of the yield strain follows from this and the constant strain rate

(γy = γ̇ ty),

γy ≈
(

3 a T γ̇

r

)1/3

. (B.1.7)
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The yield-stress scaling requires a first order approximation of σ(t) from Eq. B.1.3,

i.e. σ(t) ≈ G γ̇ t,

σy ≈ G

(
3 a T γ̇

r

)1/3

(B.1.8)

Including the 2nd-order term in the power-series for σ(t) adds another term to σy

G

(
32

2 a r2 T γ̇

)1/3

(B.1.9)

which is also small when
√
r γ̇ T is large or ty/T is small.

An interesting reciprocal-square-root dependence on ty emerges when we eliminate

γ̇:

σy ≈ G

(
3 a T

r ty

)1/2

(B.1.10a)

γy ≈
(

3 a T

r ty

)1/2

. (B.1.10b)

B.1.2 Generalized Maxwell Model for Arbitrary Power-Law Potential

In the standard 1-dimensional Maxwell model, viscoelastic response is modeled

as a solid which responds to stress as a Hookean spring in series with a viscous fluid

modeled as a viscous damper dashpot:

γ̇ =
σ̇

G
+
σ

η
. (B.1.11)

We wish to generalize this equation to cases where elastic response is not necessarily

Hookean but instead follows from an arbitrary power law potential

U(γ) =
1

α
G |γ|α . (B.1.12)
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As in the standard Maxwell model, we assume the elements are in series. Thus

shear stress in both elements is equal to net stress, σ, and strains are additive:

γ̇ = γ̇U + γ̇η . (B.1.13)

The behavior of the liquid element is viscous so σ = γ̇η · η and

γ̇η = σ/η . (B.1.14)

For the solid element, in place of the standard Hookean spring, we use stress from

the potential in Equ. B.1.12:

σ =
d

dγ
U(γU) = G |γU |α−1 sgn (γU) (B.1.15)

= G |γ̇U t|α−1 sgn (γ̇U t) (B.1.16)

= Gtα−1 |γ̇U |α−1 sgn (γ̇U) (B.1.17)

σ̇ = (α− 1)Gtα−2 |γ̇U |α−1 sgn (γ̇U) (B.1.18)

where the sgn(x) function is 1 for positive x and −1 for negative x and we have

made use of the fact that t is positive. Since everything on the right hand side of

Equ. B.1.18 is always positive except sgn(γ̇U), sgn(γ̇U) = sgn(σ̇), thus

σ̇ = (α− 1)Gtα−2 |γ̇U |α−1 sgn (σ̇) (B.1.19)

|γ̇U | =
(

σ̇ sgn(σ̇)

(α− 1)Gtα−2

) 1
α−1

(B.1.20)

γ̇U sgn(γ̇U) =

(
|σ̇|

(α− 1)Gtα−2

) 1
α−1

(B.1.21)

γ̇U = sgn(σ̇)

(
|σ̇|

(α− 1)Gtα−2

) 1
α−1

(B.1.22)
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Putting everything together (i.e. plugging Equ. B.1.14 and Equ. B.1.22 into

Equ. B.1.13), we obtain the general formula for the rheology of the Maxwell model

where the solid element has power law potential with exponent α,

γ̇ = sgn(σ̇)

(
|σ̇|

(α− 1)Gtα−2

) 1
α−1

+
σ

η
. (B.1.23)

B.1.3 Yield-stress Scaling Calculation with Arbitrary Power-law Poten-

tial

It’s possible to generalize the calculation of the scaling of the static yield stress in

Sect. B.1.1 to the case of a Maxwell-like model where the elastic element follows an

arbitrary power law potential. Combining a Maxwell model generalized in this way

(see Sect. B.1.2) with the stress-history dependence of viscosity from our model, we

have:

γ̇ = sgn(σ̇)

(
|σ̇|

(α− 1)Gtα−2

) 1
α−1

+
σ

η
(B.1.24a)

η̇

G
= a− r

( σ
G

)2

(B.1.24b)

where sgn(x) is 1 for x > 0 and −1 for x < 0.

The calculation of the peaks follows the procedure used for the harmonic case. We

approximate stress at small time then use that to solve for an approximate viscosity

at small time. We then assume these approximations hold up to the peak where σ̇ = 0

and solve Eq. B.1.24a for the time at the peak, ty.

In the present case, instead of approximating the early stress as linear in time, we

use the following form:

σ(t) ≈ G γ̇α−1 tα−1 (B.1.25)

Plugging this back into B.1.24b gives a differential equation for η,
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η̇/G = a− r(γ̇ t)2 (α−1) (B.1.26a)

η(t)/G = a (t+ T ) + r γ̇2 (α−1) t2α−1/(2α− 1) (B.1.26b)

where we have used η(0) = GaT as derived in Equ. 3.5.3b.

We now look at behavior at the stress peak. Evaluating Equ. B.1.24a at the peak,

t = ty, where σ̇(t = ty) = 0 and using the approximation of η from Equ. B.1.26b,

σ(ty) = γ̇ η(ty) (B.1.27a)

(B.1.27b)

Plugging small-time solutions for σ(t) (Eq. B.1.25) and η(t) (Eq. B.1.26b) into this

gives a relation for ty,

T = −ty +
γ̇α−2 tα−1

y

a
+
r γ̇2 (α+1) t2α−1

y

a(2α− 1)
(B.1.28)

In the case where γ̇ ty and r are large, only the highest term in ty contributes and we

have

T ≈
r γ̇2 (α+1) t2α−1

y

a(2α− 1)
(B.1.29a)

ty ≈
(
a (2α− 1)T

r γ̇2 (α−1)

) 1
2α−1

(B.1.29b)

γy ≈
(
a (2α− 1) γ̇ T

r

) 1
2α−1

(B.1.29c)

σy ≈ G

(
a (2α− 1) γ̇ T

r

) α−1
2α−1

(B.1.29d)

Where we have used γy = γ̇ ty and Equ. B.1.25. These scalings reduce to the cube-

root power law when the potential is harmonic and give σy depending on γ̇ T to
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exponents of 3/8 for Hertzian, 2/5 for cubic and 3/7 for quartic potentials suggesting

that higher-order elasticity terms may explain exponents from ∼ 0.33 to ∼ 0.43.

Interestingly, the reciprocal square root scaling of yield stress with yield time (see

Equ. 3.5.13a),

σy ≈ G

(
(2α− 1) a T

r ty

) 1
2

(B.1.30a)

γy ≈
(

(2α− 1) a T

r ty

) 1
2(α−1)

, (B.1.30b)

is independent of the degree, α, of the potential.

B.2 Numerical Solutions for Yielding of Solid

Fig. B.1 shows numerical solutions under constant strain rate conditions to the

model of Nguyen et al. (they use fluidity, f = G/η) [62],

γ̇ =
σ̇

G
+
σ

η
(B.2.1a)

η̇

G
= a− r

(
γ̇ η

G

)2

, (B.2.1b)

and our model,

γ̇ =
σ̇

G
+
σ

η
(B.2.2a)

η̇

G
= a− r

( σ
G

)2

+ d

(
σ̇

G γ̇

)2

, (B.2.2b)

to which we’ve added a damping term for numerical reasons to prevent stiffness of

the differential equation during the stress-collapse after the yield stress. Solutions

plotted here use the small value of d = 1× 10−6 and are not sensitive to its value, in

fact the yield stress scaling figure is very little changed if d is increased to 1.
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Figure B.1: Numerical solutions for our model (left column) and Nguyen et al.’s
model [62] (right column). The top four figures show numerical solutions for different
rates, γ̇ and the bottom row shows numerical solutions for the scaling of the height of
the stress maxima, σy, versus strain rate, γ̇, for our model (red circles) and Nguyen
et al.’s model (green squares). The values of the fixed parameters are a = 0.1,
r = G = 1, T = γ̇ = 10, d = 1× 10−6. The extreme similarity between the rate
and age-scaling subfigures is not a mistake: in constant strain rate solutions of both
models, the shape of stress-strain curves depend only on the product of γ̇ T . The
numerical solutions to our model match the approximate scaling of Eq. 3.5.12c (black
lines) when γ̇ T is large.
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Figure B.2: This is data from Ref. [62] Fig.3b replotted an log-log axes. Series
correspond to volume fraction of 0.60 (blue squares), 0.614 (green trianges), 0.623
(red diamonds). The fits are to the functional form C = aG/σ + r σ/G with results
{a = 10± 2, r = 4 · 105 ± 6 · 105}, {a = 20± 6, r = 1 · 106 ± 3 · 106} and {a = 43± 5,
r = 10 · 105 ± 4 · 105}.

The bottom row displays the scaling of the yield stress versus strain rate and wait

time. When γ̇ T is large, our model exhibits cube-root scaling in both γ̇ and T and

well matches the approximate solution given in Eq. 3.5.12c. Nguyen et al.’s model

(Eq. B.2.1) however, does not exhibit similar scaling in this parameter regime, or any

other that was investigated. It does not seem to be possible to separate values of a

and r from data in reported in [62] (see Fig. B.2) so we are unable to show numerical

solutions to the experimental regime.
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APPENDIX C

STRUCTURE OF LOOSE PACKINGS

C.1 Numerical Solutions of Ornstein-Zernicke Equation

In Fig. C.1(B) we that even numerical solutions in two dimensions reproduce many

of the features of g(r) in the data including the gross shape of the peak at r ≈ 2 d,

subsequent shortening of the period of oscillation and the growth of the more distant

peaks with increasing volume fraction. We suspect the discrepancy in the locations

of more distant peaks arises from the difference in dimensionality.

Numerical solutions of the Ornstein-Zernicke equation as described in Sect. 5.3.2

are computationally very expensive in three dimensions so we explore some of the

properties in 2D. Fig. C.1(B) we that even numerical solutions in two dimensions

reproduce many of the features of g(r) in the data including the gross shape of the

peak at r ≈ 2 d, subsequent shortening of the period of oscillation and the growth

of the more distant peaks with increasing volume fraction. The discrepancy in the

locations of more distant peaks appears to arise from the difference in dimensionality

as the 3D solution captures the positions of the peaks (Fig. 5.9).

This OZ solution does not, however, appear to capture the splitting of the r ≈ 2 d

with increasing volume fraction suggesting that the
√

3 d cannot be explained as a

consequence of sharp local features.

C.2 Monte-Carlo Simulation of Sphere and Contacts

To see determine whether local structure is determined solely by hard-sphere con-

straints and the number of neighbors, we perform Monte-Carlo simulations of the
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Figure C.1: Radial distribution data from our 3-dimensional experiment plotted
alongside 2D numerical solutions of the Ornstein-Zernicke (OZ) equation assuming a
direct correlation function that comes solely from the isostatic number of contacts.
The numerical solutions are in 2D with Z = 3 and smoothing (σ ≈ 0.014 d) matching
the value measured in the experiment. (A): The numerical solutions are not sensitive
small changes in the cutoff frequency, however, a cutoff is necessary. (B): The 2D
numerical solutions to the OZ equation (dashed curves) match many of the features
of g(r) in the data including the gross shape of the peak at r ≈ 2 d, growth of subse-
quent peaks with volume fraction and shortening of the period of oscillions although
the predicted period is slighly too long.
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Figure C.2: Radial distribution function data (binned plots) and numerics (smooth):
Numerics are 3D numerical solutions of the Ornstein-Zernicke (OZ) equation assum-
ing a direct correlation function coming from the isostatic contact number at large
friction, Z = 4, and the near miss distribution cut off at distance 1.1 d: The correspon-
dence between the numerical solutions and g(r) data is comparable to the numerics
for Z = 5 in Fig. 5.9.
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Figure C.3: Auto-correlation functions of at the most challenging particle number,
N = 11, where the neighbor cloud is in a icosahedral shape with a single hole. The
autocorrelation lengths of the qn are of order 103 steps. We observe that the hole
collapses and reforms somewhere else in the neighbor cloud after the order of 105 of
these steps. Computations are all N are run for 5× 105 steps to be certain states are
being sampled in the Monte Carlo.

angular locations of N contacting particles. This problem we are simulating could be

thought of as gas of hard circles with opening angle π/3 on the surface of the unit

sphere. One can generate states with N particles in such a system in a completely se-

quentially independent way by generating N points on the unit sphere then rejecting

those that violate the hard-sphere constraints. The rejection rate grows with N , how-

ever, making this algorithm inefficient by N = 6 and unworkable for N > 7. Instead

we employ a Metropolis-style algorithm where the proposed states are generated by

picking one of the spheres at random and proposing to shift it by a random distance

(from a normal distribution with width = 0.05) in a random direction. The proposal

is accepted if it does not overlap another sphere, otherwise it is rejected.

Initial states with N contacts are seeded by placing 12 spheres at the verticles of

regular icosahedron then randomly removing 12 − N of them. One concern is that

particularly for larger values of N , the system will stick in the neighborhood its initial

state and the holes will always remain in the relative positions. We observe, however,

that at N = 11 the hole collapses and reforms elsewhere in the course of ≈ 105 of
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Figure C.4: Peaks of q4 and q6 distributions from Monte-Carlo at fixed N from
Fig. 5.19 versus N . In (A) the distributions of q4 and q6 are seen to shift slowly
downward together with increasing number of contacts, N , until about N ≈ 8 where
they split. This is Monte Carlo simulation of the angular positions of contacts subject
only to hard-sphere constraints. It seems that above 8 contacts q6 is beginning to
pick up icosahedral order above N ≈ 8.

these Monte-Carlo steps. This is much longer than autocorrelation time of the q4 and

q6 cystalline order parameters that we measure (Fig. C.3) which is of order 103 steps.

Surely collapse of the hole at N = 11 is the longest timescale we will encounter so we

run all simulations for 5× 105 to ensure averaging over even the longest timescale in

the system.

Calculating the local bond-order parameters for the states generate by this Monte-

Carlo simulation, we obtain a distribution for fixed N (Fig. 5.19) we compare directly

to the experimental distributions of q4 and q6 and via weighted sampling over the

measured number of neighbors (Fig. 5.20).

C.3 Divergence of Near-misses from Broken Contacts

A new simple hypothesis that explains the divergent distribution of near-misses is

that the near misses are former contacts broken during the evolution of the packing.

Cohesionless packings are always under pressure and cannot support tension so one

might suppose that when contacts fail, they fail by sliding tangentially rather than

141



by pulling apart. If we assume that the distribution of the displacements of these

tangential failures is broad, that is to say, that it is flat around the origin, then a near

miss probability density of the following form follows

p(r) ∼ (r − d)−1/2 . (C.3.1)

To see this, let d = 1 and suppose that contacts break by sliding a distance,

x, along the tangent plane at their point of contact. Let px(x) = const be the

flat probability distribution from which x is sampled. Let pr(r) be the unknown

probability distribution of radial separations of pairs of spheres that have broken

contact in this way. Since x is tangential to the original point of contact,

r =
√

1 + x2 ≈ 1 +
1

2
x2 . (C.3.2)

Solving this for x and taking a derivative that we will use later,

x ≈
√

2
√
r − 1 (C.3.3)

dx

dr
=

√
2

2
(r − 1)−1/2 . (C.3.4)

Since x and r parameterize the same relative motion, their probability distributions

must integrate to the same probability over a given interval:

∫ x(r2)

x(r1)

px(x) dx =

∫ r2

r1

pr(r) dr (C.3.5)

and the probability distribution for radial separations follows:
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px(x) dx = pr(r) dr (C.3.6)

pr(r) = px(x)
dx

dr
(C.3.7)

=

√
2

2
px(x) (r − 1)−1/2 (C.3.8)

∼ (r − 1)−1/2 (C.3.9)

where we have made use of C.3.4 and the assumption that the px(x) is constant.
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[37] L Fejes. Über die dichteste kugellagerung. Mathematische Zeitschrift, 48(1):
676–684, 1942.

[38] Guo-Jie Gao, Jerzy B lawzdziewicz, and Corey S. O’Hern. Frequency distribution
of mechanically stable disk packings. Phys. Rev. E, 74(6):061304, Dec 2006.

[39] Guo-Jie Gao, Jerzy Blawzdziewicz, and Corey S. O’Hern. Geometrical families
of mechanically stable granular packings. Phys. Rev. E, 80(6):061303, Dec 2009.

146



[40] Guo-Jie Gao, Jerzy Blawzdziewicz, Corey S. O’Hern, and Mark Shattuck. Exper-
imental demonstration of nonuniform frequency distributions of granular pack-
ings. Phys. Rev. E, 80(6):061304, Dec 2009.

[41] P. Gondret, M. Lance, and L. Petit. Bouncing motion of spherical particles in
fluids. Phys. Fluids, 14(2):643–652, 2002.

[42] TC Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162:1065–
1185, 2005.

[43] RR Hartley and RP Behringer. Logarithmic rate dependence of force networks
in sheared granular materials. Nature, 421(6926):928–931, 2003.

[44] Takahiro Hatano. Rheology of a dense granular material. J. Phys. Conf. Ser.,
89(1):012015, 2007.

[45] Silke Henkes and Bulbul Chakraborty. Statistical mechanics framework for static
granular matter. Phys. Rev. E, 79(6):061301, Jun 2009.

[46] Payman Jalali and Mo Li. An estimate of random close packing density in
monodisperse hard spheres. J. Chem. Phys., 120(2):1138–1139, 2004.

[47] H A Janssen. Experiments on corn pressure in silo cells. Zeitschr. d. Vereines
deutscher Ingenieure, 39(1045), 1895.
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of random-close-packed spherical bubbles: An analogy with granular materials.
Phys. Rev. Lett., 106(14):148302, 2011.

[53] Shir R. Liber, Shai Borohovich, Alexander V. Butenko, Andrew B. Schofield, and
Eli Sloutskin. Dense colloidal fluids form denser amorphous sediments. Proc.
Natl. Acad. Sci. U.S.A. of the United States of America, 110(15):5769–5773,
2013. ISSN 00278424.

147



[54] David R. Lide, editor. CRC Handbook of chemistry and physics. CRC Press,
Boca Raton, 80 edition, 1999.
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