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ABSTRACT

A RELATION BETWEEN MIRKOVIC-VILONEN CYCLES AND

MODULES OVER PREPROJECTIVE ALGEBRA OF DYNKIN

QUIVER OF TYPE ADE

SEPTEMBER 2018

ZHIJIE DONG

B.S., TSINGHUA UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ivan Mirkovic

The irreducible components of the variety of all modules over the preprojective

algebra and MV cycles both index bases of the universal enveloping algebra of

the positive part of a semisimple Lie algebra canonically. To relate these two

objects Baumann and Kamnitzer associate a cycle in the affine Grassmannian to

a given module. It is conjectured that the ring of functions of the T-fixed point

subscheme of the associated cycle is isomorphic to the cohomology ring of the quiver

Grassmannian of the module. I give a proof of part of this conjecture. The relation

between this conjecture and the reduceness conjecture in [KMW16] is explained at

the end.
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C H A P T E R 1

INTRODUCTION

Let g be simply-laced semisimple finite dimensional complex Lie algebra. There

are several modern constructions of irreducible representation of g. In this paper

we consider two models which realize the crystal of the positive part U(n) of U(g).

One is by Mirkovic-Vilonen (MV) cycles and the other is by the irreducible com-

potents of Lusztig’s nilpotent variety Λ of the preprojective algebra of the quiver

Q corresponding to g.

Baumann and Kamnitzer [BK12] studied the relations between Λ and MV poly-

topes. They associate an MV polytope P (M) to a generic module M and construct

a bijection between the set of irreducible components of Λ and MV polytopes com-

patible with respect to crystal structures. Since MV polytopes are in bijection

with MV cycles, Kamnitzer and Knutson launched a program towards geometric

construction of the MV cycle X(M) in terms of a module M over the preprojective

algebra.

Here we consider a version by Kamnitzer, Knutson and Mirkovic: conjecturally,

the ring of functions O(X(M)T ) on the T fixed point subscheme of the cycle X(M)

associated to M , is isomorphic to H∗(GrΠ(M)), the cohomology ring of the quiver

Grassmannian of M . In this paper I will construct a map from O(X(M)T ) to

H∗(GrΠ(M)) and prove it is isomorphism for the case when M is a representation
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of Q.

In chapter two I recall the basics of loop Grassmannian.

In chapter three I recall quivers, preprojective algebra and Lusztig’s nilpotent

variety and state the conjecture precisely.

In chapter four I describe the ring of functions on the T fixed point subscheme

of the intersection of closures of certain semi-infinite orbits (which is called ”cycle”

in this paper). A particular case of these intersections is a scheme theoretic version

of MV cycles. We realize these cycles as the loop Grassmannian with a certain

condition Y.

In chapter five I construct the map Ψ from O(X(M)T ) to H∗(GrΠ(M)). Here,

Ψ maps certain generators of O(X(M)T ) to Chern classes of tautological bundles

over GrΠ(M). So we need to check that the Chern classes satisfy the relations of

generators of O(X(M)T ). We reduce this problem to a simple SL3 case. In this

case we have a torus action on GrΠ(M) so we could use localization in equivariant

cohomology theory (GKM theory).

In chapter six I will prove Ψ is an isomorphism in the case when M is a repre-

sentation of Q of type A.

In chapter seven I will state some consequences given the conjecture (one of

which is the reduceness conjecture).

1.1 Notation

Let G be a complex semisimple algebraic group unless stated otherwise. Let I

be the set of vertices in the Dynkin diagram of G. In this paper I will work over

base field k = C. We fix a Cartan subgroup T of G and a Borel subgroup B ⊂ G.

Denote by N the unipotent radical of B. Let $i, i ∈ I be the fundamental weights.

2



Let X∗, X
∗ be the cocharacter, character lattice and 〈 , 〉 be the pairing between

them. Let W be the Weyl group. Let e and w0 be the unit and the longest element

in W . Let αi and α̌i be simple roots and coroots. Let Γ = {w$i, w ∈ W, i ∈ I}. Γ

is called the set of chamber weights.

Let d be the formal disc and d∗ be the punctured formal disc. The ring of formal

Taylor series is the ring of functions on the formal disc, O = {
∑

n≥0 ant
n}. The

ring of formal Laurent series is the ring of functions on the punctured formal disc,

K = {
∑

n≥n0
ant

n}.

For X a variety, let Irr(X) be the set of irreducible components of X.

3



C H A P T E R 2

BASICS ABOUT LOOP GRASSMANNIAN

2.1 Definition of loop Grassmannian

One of the origin for this object is to understand the Satake isomorphism. Let

G be a reductive algebraic group. The classical Satake isomorphism says the Hecke

algebra HG(K), G(O) is isomorphic to the representation ring Rep(Ǧ), where Ǧ

is the Langlands dual group. Geometric Satake upgraded this to an between two

tensor categories.

One side is the category of representations of the Langlands dual group G∨ of

G with the tensor functor being tensor product. The other side is the category of

G(O) equivariant perverse sheaves on the loop Grassmannian of G. Here O is the

ring of formal Taylor series and we denote by K the ring of formal Laurent series.

The tensor functor is given by convolution. The functor giving the equivalence is

the (hyper)cohomology functor. For a group G, the loop Grassmannian G(G) is

an infinite dimensional geometric object naturally constructed from G. If we work

over complex numbers, the two categories are semisimple so we can just consider

the simple objects. The intersection homology of Grλ, the G(O) orbit closure of

the point indexed by λ, is isomorphic to L(λ)(for G∨) as G∨ representation.

There are several ways to understand our G(G). We first review how to give it

4



an ind-scheme structure.

We will assume G to be GLn for the rest of this section. For general affine

algebraic group G, we could use an embedding G ↪→ GLn. For details, see [Zhu16].

Let V be a n-dimensional vector space. we call an O-submodule L in V ⊗̂K ∼=

C((t)) a lattice. Denote V ⊗̂O ∼= C[[t]] by L0. The loop group G(K) acts on the set

of all lattices. The orbit of L0 is the subset of all rank n lattices. Recall the rank

of a module over a PID is by definition the dimension of the module tensor with

the fractional field. In this case, this is equivalent to say L⊗̂K ∼= V ⊗̂K.

Lemma 1. The stabilizer of L0 is G(O). Hence we have a bijection between the

quotient G(K)/G(O) and the set of all rank n lattices in V ⊗̂K, which we will denote

by F .

Proof. The action of G(K) on V ⊗̂K is just the action induced from the natural

action of GLn on V ∼= Cn by left-multiplication. It preserves rank since G(K) is

invertible. To see the stabilizer, one could choose a basis of V , say e1, e2, , , en.

For g ∈ G(K), since gL0 = L0, the set ge1, ge2, , , gen is also a basis of L0, so

the entries of g is in O and there exists g′ with entries also ∈ G(O) such that

e1, e2, , , en = g′ge1, , , gen = (g′g)e1, , , en hence g ∈ G(O).

Note that ”to endow” an algebraic structure means to find an ind-scheme ( in

this case, union of schemes) such that the set of all its C points is G(K)/G(O).

To get the desired scheme, we have to filter the set of all lattices in V ⊗̂K.

Lemma 2. Let Fn be the set of lattices L such that t−nL0 ⊂ L ⊂ tnL0. we have

F = ∪Fn.
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Proof. For L ∈ F , by previous lemma, we have g ∈ G(K), such that L = gL0.

Denote by ord the discrete valuation on K. Now we could take n to be

max(max(ord(gij)),max(− ord(gij)))

, note that n is no less than max(ord(gij)) is to guarantee tnL0 ⊂ gL0 and n is less

than max(−ord(gij)) is to guarantee gL0 ⊂ t−nL0.

Lemma 3. Fn is in bijection with the set of all subspace V ⊂ t−nL0/t
nL0 such that

tV ⊂ V . Here t is the operator acting on the vector space t−nL0/t
nL0 from the its

O-module structure.

Proof. We construct a map τ between the two sets. For L ⊃ tnL0, τ(L) = L/tnL0.

For V ⊂ t−nL0/t
nL0, we define the inverse of τ : τ−1(V ) = V ⊕ tnL0.

Lemma 4. We can endow the set of all subspaces V ⊂ t−nL0/t
nL0 such that

tV ⊂ V with a scheme structure.

Define a functor Fn such that Fn(R) is the set of all projective R-modules M

which is a quotient of (t−nL0 ⊗R)/(tnL0 ⊗R) such that tM ⊂M .

Proof. If we do not put the condition tM ⊂M , this is just the usual functor defining

the Grassmannian in the vector space t−nL0/t
nL0. Then we see the condition

tM ⊂M is a closed condition since t is a nilpotent operator.

The scheme Fn represents need not be reduced. In general, we have

Proposition 1. G(G) is reduced if and only if Hom(G,Gm) = 0. In particular, if

G is semisimple, G(G) is reduced.

We refer to prop 4.6 in [LS95] for the proof.

6



There is a natural embedding from Fn to Fn+1, hence we have defined an ind-

projective scheme. We notice that we have different choices of choosing the filtration

and our G(G) should not be dependent on it. Actually, we could write the func-

tor in a more canonical way. The definition is in 1.1 of [Zhu16], for the sake of

completeness, I included this in my thesis.

Definition 1. Let R be a k-algebra. An R-family of lattices in k((t))n is a finitely

generated projective R[[t]]-submodule Λ of R((t))n such that Λ⊗R[[t]]R((t)) = R((t))n.

Definition 2. The affine Grassmannian G(GLn) is the presheaf that assigns every

k-algebra R the set of R-families of lattices in k((t))n.

Lemma 1.1.5 in [Zhu16] shows that the functor we defined is the same as this.

Remark 1. The lattice description turns out to be useful for computations in ex-

amples when n is small.

The fact that the set of all k points of G(G) is G(K)/G(O) is also very useful.

The set of all R points of G(G) is not easy to describe. In fact, we have the

following theory.

Theorem 1. Define the functor L(G) assigning R to G(R((t))) and the functor

L+(G) assigning R to G(R[[t]]). The loop Grassmannian G(G) as in the definition

2 is the fpqc quotient of L(G) and L+(G).

Proof. see [Zhu16]. This is a rather formal thing. We want to define a quotient

functor L(G)/L+(G). The naive definition L(G)/L+(G)(R) = L(G)(R)/L+(G)(R)

is not a sheaf. However, it is a presheaf w.r.t fpqc topology. We have a canonical

way to sheafify this presheaf. To check L(G)/L+(G) is G(G), we only need to check

they coincide as presheaves. This means R is local ring and R-mod behaves like

vector space.

7



2.2 G(O)-orbit in G(G)

We make an analog to the finite case. For flag variety G/B, we could view it as

a quotient and also we could view it as functors as R-family of all Borel subgroups

in G(R). Like we consider B-orbit in G/B and get Bruhat decomposition for flag

variety, we could consider G(O)-orbit in G(G). We also have Bruhat decomposition

in this case:

Theorem 2. We have the decomposition

G(K) =
⊔

λ∈X+
∗ (T )

G(O)tλG(O)

Note that for a cocharacter λ, we could define a point tλ ∈ G(K). Abstractly,

λ defines a map from multiplicative group Gm to Cartan T , the point tλ is just the

composition of the injection of the formal punctured disc to the group Gm and λ

and T ↪→ G. In the case when G is GLn, we could write it very easily, in this case

λ = diag(λ1, , , λn) and tλ = diag(tλ1,,,λn). In general when doing calculation, when

we write G as a matrix group, we could always write tλ easily since the Cartan T

could be realized concretely in G. We denote by Lλ the set of all k points of G(G)

corresponding to the coset tλG(O).

Proof. There is no R-point here. The statement is purely set-theoretic. When G

is GLn, this is just Smith normal form theorem over PID. When G is a general

group, we refer to [PS86] section 8.1 for proof.

8



Corollary 1. The loop Grassmannian G(G) has a stratification by G(O) orbit.

Proof. The above union is disjoint.

We briefly explain how the orbit is defined. We say a group scheme G acting

on X, if for any R, G(R) acts on X(R) and the action is compatible with the map

R −→ R′, or in other word, there exists G × X
a−→ X such that certain diagram

(for it to be a group action) commutes. For a closed point x ∈ X, we could define

the map from G to X by fixing the second factor of G × X to be x. We define

the orbit of x ∈ X as follows: first we take underlying topological space to be the

set-theoretic image. We can show that the image is locally closed in X (closed in

an open subspace of X). Then we put the induced close reduced scheme structure

on it. Actually in our case the group acting on G(G) (G(O) and N(K)) will be

reduced. In this case, the orbit map G −→ X factors through Xred so when we talk

about orbit, we could just think of G(G) as it is reduced and in practice, we could

think in the variety level. Denote by Grλ the G(O) orbit of λ and we could assume

λ is dominant since W ⊂ G(O). We now restrict G to be GLn and compute some

examples of Grλ. Since we are dealing with Grλ, we could just consider k-point.

We use lattice description of G(G) so a k-point of G(G) is a lattice in the sense of

lemma1. Let λ = (λ1, , , λn).

Lemma 5. If L ∈ Grλ, we have the containment relation t−λ1L0 ⊂ L ⊂ t−λnL0.

Proof. Lλ satisfies the relation and G(O) preserve t−λ1L0 and t−λnL0.

This lemma could be generalized to certain dimension equalities.

Lemma 6. If L ∈ Grλ, we have for any 1 ≤ i ≤ n:

(L ∩ t−λiL0)/t−λnL0 = (Lλ ∩ t−λiL0)/t−λnL0

.

9



Proof. Lλ satisfies the equality and G(O) preserve t−λiL0 for any i = 1, , , n.

Actually these dimension equalities determine which orbit L lies.

Lemma 7. The inverse of lemma6 holds.

Proof. By theorem1 and its corollary.

We formulate this two lemmas in a theorem.

Theorem 3. The G(O) orbit of Lλ consists of all lattices L such that

(L ∩ t−λiL0)/t−λnL0 = (Lλ ∩ t−λiL0)/t−λnL0.

Under the bijection in lemma3, the G(O) orbit of Lλ consists all t-invariant

subspaces V in t−λ0L0)/t−λnL0 such that

dim(V ∩ (t−λiL0/t
−λnL0)) = dim((Lλ ∩ (t−λiL0)/t−λnL0)).

Example 1. When λ = (1, 1, , , 1, 0, , , 0), we have Grλ is the Grassmannian of

all k dimensional linear subspaces of V , denoted by Grk(V ). We can see this by

the above description: there is only one dimension equality and all subspace is t

invariant. The irreducible representation Lλ is kth wedge product of kn, Λk(kn).

Each weight space is one dimensional and indexed by k-elements subsets in n-

elements set. In the Geometric Satake, this corresponds to the IH(Grλ). In this

case Grλ is closed and smooth so IH(Grλ) is the ordinary homology group. The

Grassmannian Grk(Cn) has an affine paving also indexed by k-elements subset in

n-elements set.

Example 2. We compute a examples when G = GL2, and λ = (2, 0). By the

above description, Gr(2,0) contains L ⊂ span(t−1V, V ) such that tL ⊂ L, dimL = 2

and dim(L ∩ V ) = 1. Since dim(L ∩ V ) = 1, we have some v1 both in V and

10



L. We extend v1 to a basis v1, v2 of V . Since dimL=2, we have another vector

v ∈ span(t−1V, V ) such that v1, v span L. Suppose v = at−1v1 + bt−1v2 + cv2, since

tL ⊂ L, we have tv = t(at−1v1 + bt−1v2 + cv2) = av1 + bv2 ∈ L, so b=0, otherwise

dimL > 2. Also a is not 0, otherwise dim(L ∩ V ) = 2. So we can let a be 0 and

L is span(v1, t
−1v1 + bv2), where b ∈ k. Abstractly we have constructed a map from

Gr(2,0) to Gr1(V ) by sending L to L ∩ V . We showed that it is subjective and the

fiber is an affine line A1. We can further identify the fiber over the line l ⊂ V

with Hom(l, V/l). The map between fibers is mapping an element B ∈ Hom(l, V/l)

to span(v1, t
−1v1 + bv2) where Bv1 = bv2, here v1 is the basis for l and v2 for

V/l . We notice this is actually independent of the choice of basis we choose and

write it in a more intrinsic way. The fiber over l is the set of all spaces L such

that l ⊂ L ⊂ V ⊕ t−1l, L 6= V , which is isomorphic to Gr1(t−1l ⊕ V/l \ V/l) ∼=

Graph((l⊕ V/l) ∼= Hom(l, V/l). Denote the tautological line subbundle over P 1 by

T and the quotient bundle by Q, we see that Gr(2,0) is isomorphic to Hom(T,Q),

which isomorphic to the tangent bundle over P 1. Now we try to describe the closure

of Gr(2,0). Let b go to ∞ 1, we will get L(1,1) and this point actually lies in every

fiber. So the closure of Gr(2,0) contains Gr(1,1). Define the Functor F2,0 assigning R

to the all rank 2 projective R-module M in (V ⊕t−1V )⊗R such that tM ⊂M . From

the above description of Gr(2,0) and Gr(1,1), F(2,0) coincides with Gr(2,0) ∪Gr(1,1) on

the level of k point. Also F(2,0) is closed and the reduced part of F(2,0) is the closure

of Gr(2,0), which we will denote by Gr(2,0).

We learn two facts in this example: Gr(2,0) is a line bundle over P 1. The

closure of Gr(2,0) is the union of Gr(2,0) and Gr(1,1). These can be generalized to

the following general properties:

1here we use the analytic topology
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Proposition 2. Grλ is a vector bundle over G/Pλ. The closure of Grλ is the union

of all Grµ where µ ≤ λ 2. We denote the closure of Grλ by Grλ.

2.3 Relation to nilpotent orbit and transverse slice

Let me first explain the above example Gr(2,0) again. We could draw a picture

from the above description.

(0, 2) (2, 0)

(1, 1)

x The base line from (0, 2) to (2, 0) represents P 1. The fiber

over any x ∈ P 1 is a line and and all fibers goes to the point L(1,1). We will see if

we remove the base line, we get a nilcone of sl2.

Lemma 8. There is an embedding from N2 to Gr(2,0).

Proof. There is a very short proof from the point of view of quotient description.

Here I am giving a proof in the lattice description point of view. We construct the

embedding as follows. Given a matrix A, we think of it as an operator from V to

V. We have natural maps Map(V, V ) ∼= Map(V, t−1V ) ∼= Graph(V ⊕ t−1V ) ⊂ (V ⊕

t−1V ). Under these maps, A goes to (V,At−1V ), which has to be t invariant to be in

Gr(2,0). Hence we have t(V,At−1V ) ⊂ (W,At−1W ) and since t(V,At−1V ) = (AV, 0)

so W = AV,At−1W = 0. Plug in AV = W to the second equation we get A2 = 0.

This could be generalized for arbitrary GLn.

We can see the relation Grλ = ∪µ≤λGrµ is similar to the case in the nilcone

where Oλ = ∪µ≤λOµ. The former is projective but the latter is affine. Lusztig first

2remember that we assume µ is dominant.
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observe the relation between Grλ and Oλ. One would like to study the geometry

near one fixed point. For example, how singular is the point? One way is to

construct a resolution and the fiber characterize some property. Here we already

have Gm action so make use of the symmetry , we could consider the schematic

fixed point. How ”fatness” is the point in some sense characterizes the how singular

it is. This is a local behaviour so would like to consider inside an affine chart, where

locally have only one fixed point. Also we should not take account of the smooth

part near the point. The two requirements could be axiomized into a definition of

transverse slice.

Definition 3. Let G act on a variety X. We say Sx is a normal slice to the orbit

G · x if

• The tangent space of Sx is a direct summand: Tx(Sx)⊕ Tx(G · x) = Tx(X)

• There exits an action of Gm on X that preserves Sx and G ·x and it contracts

Sx to the point x.

In the nilcone case, one example is Slodowy slice. In the loop Grassmannian

case, we consider the slice Grµ at point Lµ in G(G) being the K−1 orbit of Lµ,

where we denote by K−1 the kernel of the G(k[t−1]) to G. 3 In type A, we have

[MV07b]:

Theorem 4. There is a slice Tλ in gln, such that Tλ ∩ Oµ ∼= K−1Lµ ∩Grλ

Proof. The proof is similar to the case n=2 we showed and could be found again

in [MV07b].

3One has to check this satisfies the above definition, we omit this.
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2.4 T -action and fixed point

There is a torus action on G(G) by left multiplication.

Lemma 9. The action restricts to G(O) orbit Grλ and its closure.

This is a crucial tool to understand the geometry of Grλ.

Lemma 10. The set theoretic fix points are Lwµ, µ ≤ λ,w ∈ W . We think in the

smooth topology over C. The action is a Hamiltonian action. The moment map

image is the convex cone of all the weight indexing the fix points: conv(wλ) in

X∗(T )⊗ R.

Example 3. The polytope for Gr(2,0) is:
(0, 2) (2, 0)

(1, 1)

2.5 BB decomposition

For a multiplicative group Gm acting on a smooth variety X , we could consider

its attracting set of each component of Gm fixed variety. When the fixed variety is

isolated points, the attracting sets gives a cell decomposition of X, hence we can

read off the homology group from this. We already see an example in Example

1. In our case although Grλ is not smooth4, we can still study the attracting set

for each fixed point and it could be described as intersections with N(K) orbits.

We first need a embedding form Gm to T such that the induced action of Gm is

generic in the sense that the fixed point is the same as T . Different choices of the

embedding will give different attracting sets. In fact, we have:

4the orbit closure Grλ is not smooth when λ is not minuscule.
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Lemma 11. The choice of w ∈ W gives a map w · ρ∨ : Gm → T .

Swµ = {L ∈ G(G) : lim
s→∞

L · (w · ρ∨)(s) = Lµ.}

We restrict to Grλ. It turns out the set Grλ∩Sµ gives the information about its

intersection homology group just like attracting cells gives the information about

its usual homology groups in the smooth case.

Lemma 12. The global cohomology functor decomposes into weight functor Fµ.

We apply the weight functor Fµ to IC sheaf on Grλ. We have the isomorphism

Fµ(IC(Grλ)) ∼= Irr(Grλ ∩ Sµ).

Proof. This is prop 3.10 in [MV07a].

By geometric Satake, we have Fµ(IC(Grλ)) ∼= (Lλ)µ, so Irr(Grλ∩Sµ) ∼= (Lλ)µ.

There is a combinatorial way to phrase this.

Proposition 3. The union of Irr(Grλ ∩ Sµ) over all µ has a crystal structure of

B(λ).

For the definition of crystal, we refer to [BG+01] for details. One can think

of Irr(Grλ ∩ Sµ) index basis of the µ weight space of Lλ in a way that behaves

nicely with respect to tensor product. In [BG+01], the proof uses some geometric

argument. One way to construct the irreducible module L(λ) is to define it as

the maximal quotient of the Verma module W (λ). As vector spaces, W (λ) is

isomorphic to U(n). W (λ) could be thought as putting the vector space U(n) an

g-module structure depending on λ. So in some sense U(n) is some universal object

dominating all L(λ). For instance, the crystal B(λ) is always part of the crystal

B(∞). It turns out that the union of Irr(S+
0 ∩S−µ ) over µ forms the crystal B(∞).

Theorem 5. Irr(S+
0 ∩ S−µ ) over µ forms the crystal B(∞).
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The origin of this is the loop Grassmannian construction of U(n+). For de-

tails, see [Mir97]. The proof was simplified by Kamnitzer after he found a explicit

description of MV cycles. To explain the result, we introduce the following.

2.6 Weyl polytope and Pseudo-Weyl polytope

For λ dominant, Wλ = conv(W · λ) is called the λ-Weyl polytope.

The Weyl polytope Wλ can be described in three different ways. It is the convex

hull of the orbit of λ, it is the intersection of translated and reflected cones, and

it is the intersection of half spaces. Define the w-reflected cone Cµ
w := {α : α ≥w

µ} = {α : 〈α,w ·$i〉 ≥ 〈µ,w ·$i〉 for all i}.

In particular,

Wλ =
⋂
w

Cw·λ
w = {α : 〈α,w ·$i〉 ≥ 〈w0 · λ,$i〉 for all w ∈ W and i ∈ I}.

We call a weight w · $i a chamber weight of level i. So the chamber weights

Γ :=
⋃
w∈W,i∈I w ·$i are dual to the hyperplanes defining any Weyl polytope.

We see that the moment map image of Grλ is λ-Weyl polytope. The interpre-

tation has a geometric meaning.

Lemma 13. The moment graph of Swλ is Cλ
w.

Conjecture 1. The intersection ∩w∈WSw·λw is Grλ.

This is the reduceness conjecture.

One could break the W -symmetry of Weyl polytope and we will get Pseudo-

Weyl polytope. The data defining a Pseudo-Weyl polytope is W -collection of

coweights λw such that µv ≥w µw for all v, w. The condition guarantees that

the shape of the polytope is the same as the Weyl polytope. The corresponding
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geometric object is then ∩w∈WSwλw . We will eventually use this version, but for the

description of MV cycle a variety, we think the the corresponding geometric object

as ∩w∈WSwλw .

Also we have Pseudo-Weyl polytopes which also admit a description in terms

of intersecting half spaces.

Let M =
(
Mγ

)
γ∈Γ

be a collection of integers, one for each chamber weight.

Given such a collection, we can form P (M) := {α : 〈α, γ〉 ≥ Mγ for all γ ∈ Γ}.

This is the polytope made by translating the hyperplanes defining the Weyl poly-

topes to distances Mγ from the origin.

Proposition 4. Let µ =
(
µw
)
w∈W be a collection of coweights such that µv ≥w µw

for all v, w. Then the set of vertices of P (µ) is the collection µ (which may have

repetition).

A pseudo-Weyl polytope has defining hyperplanes dual to the chamber weights.

In particular, if P is a pseudo-Weyl polytope with vertices µ, then P = P (M) where

Mw·$i = 〈µw, w ·$i〉. (2.1)

Moreover, the M satisfy the following condition which we call the edge in-

equalities. For each w ∈ W and i ∈ I, we have:

Mwsi·$i +Mw·$i +
∑
j 6=i

ajiMw·$j ≤ 0 (2.2)

Conversely, suppose that a collection of integers (Mγ)γ∈Γ satisfies the edge in-

equalities. Then the polytope P (M) is pseudo-Weyl polytope with vertices given

by

µw =
∑
i

Mw·$iw · α∨i . (2.3)
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2.7 Lusztig walk and Kostant partition function

Theorem 6. The dimension of µ weight space of U(n+) is the number of partitions

of µ into positive coroots.

Definition 4. We fix a reduced decomposition w0 = si1 · · · sinof the longest element

w0 ∈ W . For each partition, we can associate a path from 0 to µ as follows: Fix

a reduced word i = (i1, . . . , ip) for an element w ∈ W . The word i determines

a sequence of distinct Weyl group elements wi
k := si1 · · · sik and distinct positive

coroots βi
k := wi

k−1 · α∨ik , k = 1 . . . p.

In particular, when w = w0, we get all the positive coroots this way. A reduced

word determines a distinguished path wi0 = e, wi1 = si1 , w
i
2, . . . , w

i
m = w through the

1-skeleton of Σ.

The kth leg of this path is the vector wik−1 ·ρ−wik ·ρ = βik. The i-chamber weights

are exactly those dual to hyperplanes incident to the vertices along this path.

if µ =
∑

k nkβ
i
k, Lusztig walk is the distinguished path µe, µsi1 , µsi1si2 , . . . , µw0,

such that the difference of the adjacent vertices is niβi.

Lemma 14. Each Lusztig walk determines ∩Siµsis ,which is irreducible. Hence all

MV cycles are of this kind since the number of MV cycles is the dimension of µ

weight space of U(n+), which is the numbers of all Lusztig walks.

The key of the proof is the observation that Sλ is the joint level set of some

constructible functions Dγ. The functions are not independent, they satisfy certain

relations generically (BZ transformation). A Lusztig walk will determine a Pseudo-

Weyl polytope,i.e, the data of vertices on the 1-skeleton determine all vertices, such

that

∩Siµsis = ∩w∈WSwλw .
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2.8 MV cycles and polytopes

Theorem 7 ([Kam05]). Given a collection of integers (Mγ)γ∈Γ, if it satisfies edge

inequalities, and certain tropical relations, put λw =
∑

iMw$iwα̌i.

Then
⋂
w∈W Swλw is an MV cycle, and each MV cycle arises from this way for the

unique data (Mγ)γ∈Γ.

The data (Mγ)γ∈Γ determines a pseudo-Weyl polytope. It is called an MV

polytope if the corresponding cycle
⋂
w∈W Swλw is an MV cycle. MV polytopes are

in bijection with MV cycles. Using this description, Kamnitzer [Kam07] reconstruct

the crystal structure for MV cycles.

Proposition 5 ([Kam07]). MV polytopes have a crystal structure isomorphic to

B(∞).

Example 4. Let G = SL3 Begin from 0 to i+j we have three lusztig walks.

, , The polytope corresponding to them are ,

, .
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C H A P T E R 3

OBJECTS ON THE QUIVER SIDE

Let Q = {I, E} be a Dynkin quiver of type ADE, where I is the set of vertices

and E is the set of edges. We double the edge set E by adding all the opposite

edges. Let E∗ = {a∗|a ∈ E} where for a : i −→ j, a∗ = j −→ i, also we define

s(a) = i, t(a) = j. Define ε(a) = 1 when a ∈ E, ε(a) = −1, when a ∈ E∗. Let

H = E
⊔
E∗ and Q = {I,H}. The preprojective algebra Π of Q is defined as

quotient of the path algebra by a certain ideal:

ΠQ = kQ/ <
∑
a∈H

ε(a)aa∗ > .1

A ΠQ−module is the data of an I graded vector space
⊕

i∈IMi and linear

maps φa : Ms(a) −→ Mt(a) for each a ∈ H satisfying the preprojective relations∑
a∈H,t(a)=i ε(a)φaφa∗ = 0.

Given a dimension vector d ∈ NI , define Λ(d) to be the variety of all represen-

tations of Π on M for Mi = kdi .

Proposition 6 ([Lus90], [BK12]). Irr(Λ) has a crystal structure isomorphic to

B(∞).

1Since most time we fix Q so Q is omitted when there is no confusion.
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Example 5. For the case sl3, we have two vertices. Let d1 = d2 = 1, we have the

nilpotent variety of all pair of numbers (φ1, φ2 such that φ1 · φ2 = 0), which is two

affine lines interseting in a point. The number of irreducible compotents is two.
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C H A P T E R 4

A CONJECTURAL RELATION BETWEEN MV CYCLES

AND MODULES OVER THE PREPROJECTIVE

ALGEBRA

Baumann and Kamnitzer found an isomorphism between the crystal structure

of Irr(Λ) and MV polytopes. For each γ ∈ Γ, they define a constructible funtion

Dγ : Λ(d) −→ Z≥0
1. For any M ∈ Λ(d), the collection (Dγ)γ∈Γ satisfies certain edge

inequalities hence determines a polytope which we denote by P (M).

Example 6. Continue with the above problem. In sl3, we have six chamber weights.

We could describe the functors Dγ explicity.

Dγ = 0 when γ is antidominant. D$i = di and ,D$1−$2 = dimker(φ1),

D$2−$1 = dimker(φ2). We will generalize this description of Dγ in term of di-

mension of certain linear maps in Lemma 16 . In this case, points (a, 0), a 6= 0

correspond to and points (0, a), a 6= 0 corresponds to .

The intersection point is (0,0), which corresponds to .

Theorem 8 ([BK12]). When M is generic, P (M) is an MV-polytope and for

d = (di)i∈I this gives a map from Irr(Λ(d)) to the set of MV polytopes of weight

1Λ(d) and Dγ do not depend on the direction of the edges in E.
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∑
i∈I diαi. This map is a bijection compatible with the crystal structures.

Example 7. Continue with the above example. We see that the generic points

correspond to MV cycles. The intersection does not.

We have MV-cycles (in bijection with MV-polytopes) as the geometric object

on the loop Grassmannian side. In order to upgrade the relations geometrically,

Kamnitzer-Knutson consider the quiver Grassmannian on the quiver side.

The quiver Grassmannian GrΠ(M) of a Π-module M is defined as the moduli

of submodules of M .

It is a subscheme of the moduli of k-vector subspaces of M which is product

of usual Grassmannian
∏

i∈I Gr(Mi). Here we will only consider GrΠ(M) with its

reduced structure, and actually just as a topological space. As the case of usual

Grassmannian, the quiver Grassmannian GrΠ(M) is disjoint union of Grassman-

nians of different dimension vectors. Denote GrΠ
e (M) by the moduli of submodule

N of M of dimension vector e, we have GrΠ
e (M) ⊂

∏
i∈I Grei(Mi).

Given a module M ∈ Λ(d), form the subscheme2 X(M)=
⋂
w∈W Swλw , where

λw =
∑

i∈I −D−w$i(M)wα̌i. The torus T acts on Swλw by multiplication, hence it

also acts on the closure and the intersection X(M).

Conjecture 2. The ring of functions on the T -fixed point subscheme of X(M) is

isomorphic to the cohomology ring of the quiver Grassmannian of M

O(X(M)T )
Ψ−→
∼
H∗(GrΠ(M)).

2We will call it cycle in this paper.
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More precisely, X(M)T is disjoint union of finite schemes X(M)Tν supported at Lν,

ν ∈ X∗(T ) and we can further identify two sides for each connnected component

O(X(M)Tν )
Ψ−→
∼
H∗(GrΠ

e (M)), where ei = (ν,$i).

Example 8. We again use the above example. In the case where the module

k k
a

0 corresponds to . The above correspondence is that:

the three fixed points are all reduced and this corresponds to the fact that quiver

Grassmannian of dimension (1,0), (1,1),(0,0) are all single point. Moreover, the

quiver Grassmannian of dimension (0,1) is empty, which corresponds to the polytope

does not contain the point i = (1,−1, 0).3

Example 9. This is more trivial in terms of correspondence but have content in

the isomorphism. Let G be SL2 so there is one vertex. In this case all chamber

weights are fundamental weights. MV cycles are just S0∩Sw0
dα . Let d=2, the module

is just
k2

and the corresponding MV polytope is
0 α 2α

. The cohomology

ring of Gr1(k2) = P 1 is k[x]/x2, which corresponds to the T-fixed point is a double

point. In this case, S0∩Sw0
dα = Gr2,0 and the T-fixed point is T-fixed point supported

at the singular point in the nilcone N2.

Remark: we define X(M) as a scheme theoretic intersection of closures while

MV-cycles have been defined as varieties (closure of intersections). We lack a

moduli description in the variety level which is essential used to understand the T

fixed point of a cycle. We notice that X(M) may be reducible even when P (M) is

an MV-polytope. The former certainly contains the latter and a further hope is to

relate the latter to some subvariety of the quiver Grassmannian.

3this is not contained in the above conjecture since I only said for all µ that is in the support
of X(M)T . In fact, we could prove that the corresponding quiver Grassmannian is empty when µ
is not in the support of X(M)T .
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C H A P T E R 5

THE T FIXED POINT SUBSCHEME OF THE CYCLE

We introduce some notation first. It is known that the T -fixed point subscheme

of the loop Grassmannian of a reductive group G is the loop Grassmannian of the

Cartan T ofG, i.e., G(G)T = G(T ). We identify T with I copies of the multiplicative

group by T
∏
$i−−−→
∼

GI
m and this gives G(T )

∏
$i−−−→
∼
G(Gm)I .

For G(Gm), we have

G(Gm) = Gm(O) \Gm(K) (5.1)

= {unit ∈ O} \ {unit ∈ K} (5.2)

= tZ ·K− (5.3)

where K− is called the negative congruence subgroup (of Gm). The R-points of K−

can be described as:

K−(R) = {a = (1 + a1t
−1 + ...+ amt

−m) | ai is nilpotent in R}.

We define the degree function from K−(R) to Z≥: deg(a) = m if am 6= 0.

Then (
⋂
Swλw)T is a subscheme of G(G)T ∼= (tZ ·K−)|I|.

Theorem 9. Let (λw)w∈W be a collection of cocharacters such that λv ≥w λw1 for

all w ∈ W in which case we know ([Kam05]) that (λw)w∈W determines a pseudo-

Weyl polytope. The integers Aw$i are well defined by Aw$i = (λw, w$i). The

1This notation is used in [Kam05], λv ≥w λw whenever w−1λv ≥ w−1λw.
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R-points of (
⋂
Swλw)Tν is the subset of R-point of (tZ · K−)|I| containing elements

(t(ν,$i)ai) ∈
∏

(tN ·K−)|I| subject to the degree relations:

deg(Πi∈Ia
(γ,α̌i)
i ) ≤ −Aγ +

∑
(γ, ν) for all γ ∈ Γ.

Proof. We define loop Grassmannian with a condition Y and list the facts we need.

For details, see [Mir17]. Let G acts on scheme Y and y be a point in Y . Denote the

stack quotient by Y/G. Then G(G, Y ) is the moduli of maps of pairs from (d, d∗)

to (Y/G, y). When Y is a point we recover G(G). We will omit writing y when

there is a natural choice. In general, G(G, Y ) is the subfunctor of G(G) subject to

a certain extension condition:

G(G, Y ) = GO \ {g ∈ GK | d∗
g−→ G

o−→ Y extends to d}, where o(g) = gy.

We can realize semi-infinite orbits and their closures as follows:

• G(G,G/N) = S0, where G acts G/N by left multiplication and y = N .

• G(G, (G/N)aff) = S0, where “aff” means affinization.

• G(G × T, (G/N)aff)red =
⊔
Sλ, where “red” means the reduced subscheme.

Here T acts on G/N by left multiplication with the inverse and this extends

to an action on (G/N)aff .

•

G

(
G×

∏
w∈W

Tw,
∏
w∈W

(G/Nw)aff

)
=

⊔
((λw)w∈W

( ⋂
w∈W

Swλw

)
,

We denote a copy of T corresponding to w ∈ W by Tw.

A single cycle
⋂
w∈W Swλw can be written as the fiber product:

⋂
w∈W

Swλw = G

(
G×

∏
w∈W

Tw,
∏

(G/Nw)aff

)
×G(

∏
w∈W Tw) (tλw)w∈W .
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In this fiber product, the morphism for the first factor is the second projec-

tion and the morphism for the second factor is the inclusion of the single point

tλ = (tλw)w∈W .

For a reductive group G, we have G(G, Y )T = G(T, Y ), where T is the Cartan of

G.

So, the T fixed point subscheme is

(
⋂
w∈W

Swλw)T = G(T ×
∏
w∈W

Tw,
∏

(G/Nw)aff )×G(
∏
w∈W Tw) t

λ.

In terms of the above extension condition, this fiber product is:

(
⋂
w∈W

Swλw)T = T (O)\{g ∈ TK, such that d∗
g,tλ−−→ T×TW −→

∏
(G/Nw)aff extends to d}

This is the T (O) quotient of the set of all g ∈ TK, such that

d∗
g,tλw−−−→ T × Tw −→ (G/Nw)aff extends to d for all w ∈ W.

For γ ∈ W · $i ⊂ Γ , we fix weight vectors vγ in the weight space (V$i)γ of V$i .

For each w ∈ W , we embed G/Nw into
⊕

i∈I V$i by g 7→ (g · vw$i)i∈I . Under this

embedding, (G/Nw)aff is a closed subscheme in
⊕

i∈I V$i .

For g ∈ TK, w ∈ W , the composition yw(g) of the map :

d∗
g,tλw−−−→ T × Tw −→ G/Nw ↪→

⊕
V$i

is

yw(g) = (g · (tλw)−1)
∑
i∈I

vw$i =
∑
i∈I

(w$i(g · t−λw))vw$i .

This map extends to d when for each i ∈ I, the coefficient of vw$i is in O. The
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coefficient of vw$i is

w$i(g · t−λw) = w$i(g) · w$i(t
−λw) = w$i(g) · t−(w$i, λw)

= w$i(g)t−Aw$i = γ(g)z−Aγ where γ = w$i.

It follows that

(
⋂
w∈W

Swλw)T = T (O) \ {g ∈ T (K); γ(g)t−Aγ ∈ O for all γ ∈ Γ}.

and the description of the R-points of (
⋂
Swλw)Tν in the theorem follows when we

identify G(T )
∏
$i−−−→ G(Gm)I = (tZ ·K−)I .

5.1 Ring of functions on (
⋂
Swλw)Tν

For an R-point (t(ν,$i)ai)i∈I of (
⋂
Swλw)Tν , let us write ai = 1+ai1t

−1+· · ·+aimt−m.

When γ = $i, the degree inequality is deg(ai) ≤ ($i, ν) − A$i . We can take

the coefficients aij to be the coordinate functions on (
⋂
Swλw)Tν . Since deg(ai) ≤

($i, ν)−A$i , there are finitely many aijs which generate the ring of functions on

O((
⋂
Swλw)Tν ).

When we take inverse of ai, it is computed in K− as a−1
i = 1 +

∑
s≥0(−1)i(ai1t

−1 +

· · ·+ aimt
−m)s and then expands in the form

∑
i bikt

−k, where bik is the coefficient

of t−k in a−1
i .

deg(Πi∈Ia
(γ,α̌i)
i ) ≤ −Aγ +

∑
(γ, ν) for all γ ∈ Γ.

is equivalent to the condition that the coefficient of the term t−1 to the power

−Aγ +
∑

(γ, ν) + 1 in (Πi∈Ia
(γ,α̌i)
i ) is 0. These coefficients are polynomials of aijs.
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Set bi = 1 +
∑

k bikt
−k = a−1

i , add bij’s as generaters and also add the relations

aibi = 1 for i ∈ I which eliminate all bij’s. For γ ∈ γ, let γi = (γ, α̌i). Denote by

I+
γ the subset of I containing all i such that γi is positive and by I−γ containing all

i γi is negative. Set γ+
i = γi when γi is positive and γ−i = −γi when γi negative.

Corollary 2. The ring of functions on O((
⋂
Swλw)Tν ) is generated by aij’s and bik’s,

for i ∈ I. The relations are degree conditions:

deg(
∏
i∈I+γ

aγi
+

i

∏
i∈I−γ

bγi
−

i ) ≤ (γ, ν)− Aγ

for each γ ∈ Γ and conditions aibi = 1 for each i in I.
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C H A P T E R 6

CONSTRUCTION OF THE MAP Ψ FROM FUNCTIONS

TO COHOMOLOGY

6.1 Map Ψ

For M ∈ Λ(d), to apply corollary 1 to X(M), we set Aγ = −D−γ(M). Then

O(X(M)Tν ) = k[aij, bik]/I(M)

where I(M) is the ideal generated by the degree conditions:

deg(
∏
i∈I+γ

(ai)
γ+i
∏
i∈I−γ

(bi)
γ−i ) ≤ (γ, ν) +D−γ(M)

for each γ ∈ Γ and the conditions aibi = 1 for each i in I.

The conjecture O(X(M)Tν ) ∼= H∗(GrΠ
e (M)), where ei = (ν,$i), is now equiva-

lent to

k[aij, bik]/I(M) ∼= H∗(GrΠ
e (M)).

The quiver Grassmannian GrΠ
e (M)) is a subvariety of

∏
i∈I Grei(Mi) and we

have on each Grei(Mi) the tautological subbundle Si and quotient bundle Qi. We

pull back Si and Qi to
∏

i∈I Grei(Mi) and denote their restrictions on GrΠ
e (M))
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still by Si and Qi by abusing notion. For a rank n bundle E, denote the Chern

class by c(E) and the ith Chern class ci(E), where c(E) = 1 + c1(E) + · · ·+ cn(E).

We want to define the map

Ψ : O(X(M)Tν ) −→ H∗(GrΠ
e (M)), where ei = (ν,$i),

by mapping the generators aij to cj(Si) and bij to cj(Qi).

Theorem 10. The map Ψ described above is well defined.

6.2 Two lemmas

For the proof, we need two lemmas. Lemma 15 is the special case of theorem

10 when Q is the quiver 1 −→ 2 and M is a kQ-module.

Lemma 15. Let Q be the quiver 1 −→ 2 and M be Cd1
φ−→ Cd2.On X = GrΠ

e (M),

we have ci(S2 ⊕Q1) = 0 when i > e2 − e1 + dim(kerφ).

Let φij : Mi −→Mj be the composition of φa where a travels over the unique no

going-back path which links i and j. Let Mγ =
⊕

i∈I−γ M
γ−

i

φγ=⊕φij−−−−−→
⊕

i∈I+γ M
γ+

i

be the module over k(1 −→ 2).

Lemma 16. For a Π-module M and any chamber weight γ, we have

dim(kerφγ) = D−γ(M).

Lemma 16 is a property of Dγ and will be proved in the appendix.

6.3 Proof of theorem 4 from lemmas in § 4.2

Proof of theorem 4. We prove that the theorem can be reduced to lemma 15.

31



For each γ ∈ Γ,we have to prove the degree inequalities carry over to Chern

classes:

deg

Ψ(
∏
i∈I+γ

t
γ+i
i

∏
i∈I−γ

s
γ−i
i )

 = deg

∏
i∈I+γ

c(Si)
γ+i
∏
i∈I−γ

c(Qi)
γ−i

 ≤ Dw0γ(M) + (ν, γ).

Define a map Φ from GrΠ(M) to Grk(1−→2)(Mγ): for N ∈ GrΠ(M), Φ(N) =

⊕i∈I−γ Ni
φγ−→ ⊕i∈I+γ Ni. We have

Φ∗(c(S2)c(Q1)) = c(Φ∗(S2))c(Φ∗(Q1)) = c(⊕i∈I+γ S
γ+i
i )c(⊕i∈I−γ Q

γ−i
i )

=
∏
i∈I+γ

c(Si)
γ+i
∏
i∈I−γ

c(Qi)
γ−i .

Apply lemma15 to Mγ we have

deg(c(Q1)c(S2)) ≤ dimker(φγ) +
∑
i∈I+γ

γiei −
∑
i∈I−γ

γiei

= dimker(φγ) +
∑
i∈I

γiei = dimker(φγ) + (γ, ν).

Then the theorem follows by lemma 2.

Chern class vanishes in certain degree when the bundle contains a trivial bundle

of certain degree but the desired trivial bundle in Q1⊕S2 does not exist. The idea

is to pass to T-equivariant cohomology. Over XT which is just a union of isolated

points we will decompose Q1 ⊕ S2 into the sum of the other two bundles E1 and

E2 pointwisely, where E1 will play the role of trivial bundle. Although there is no

bundle over X whose restriction is E2, there exist T -equivariant cohomology class

in H∗T (X) whose restriction on XT is the T -equivariant Chern class of E2.
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6.4 Recollection of GKM theory

We first recall some facts in T-equivariant cohomology theory.

We follow the paper [Tym05]. Denote a n-dimensional torus by T , topologically

T is homotopic to (S1)n. Take ET to be a contractible space with a free T -action.

Define BT to be the quotient ET/T . The diagonal action of T on X ×ET is free,

since the action on ET is free. Define X ×T ET to be the quotient (X × ET )/T .

We define the equivariant cohomology of X to be

H∗T (X) = H∗(X ×T ET ).

When X is a point and T = Gm,

H∗T (X) = H∗(pt×T ET ) = H∗(ET/T ) = H∗(BT ) = H∗(CP∞) ∼= k[t].

When T = (S1)n,

H∗T (pt) = k[t1, · · · , tn] ∼= S(t∗). (6.1)

So we can identify any class in H∗T (pt) as a function on the Lie algebra t of T . The

map X −→ pt allows us to pull back each class in H∗T (pt) to H∗T (X), so H∗T (X) is a

module over H∗T (pt).

Fix a projective variety X with an action of T . We say that X is equivariantly

formal with respect to this T -action if E2 = E∞ in the spectral sequence associated

to the fibration X ×T ET −→ BT .

When X is equivariantly formal with respect to T , the ordinary cohomology

of X can be reconstructed from its equivariant cohomology. Fix an inclusion map

i : X −→ X ×T ET , we have the pull back map of cohomologies: H∗(X ×T ET
i∗−→

H∗(X). The kernel of i∗ is
∑n

s=1 ts · H∗T (X), where ts is the generator of H∗T (pt)
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(see (4)) and we view it as an element in H∗T (X) by pulling back the map X −→ pt.

Also i∗ is surjective so H∗(X) = H∗T (X)/ker(i∗).

If in additionX has finitely many fixed points and finitely many one-dimensional

orbits, Goresky, Kottwitz, and MacPherson show that the combinatorial data en-

coded in the graph of fixed points and one-dimensional orbits of T in X implies a

particular algebraic characterization of H∗T (X).

Theorem 11 (GKM, see [Tym05], [GKM97]). Let X be an algebraic variety with

a T -action with respect to which X is equivariantly formal, and which has finitely

many fixed points and finitely many one-dimensional orbits. Denote the one-

dimensional orbits O1, . . ., Om. For each i, denote the the T -fixed points of Oi

by Ni and Si and denote the stabilizer of a point in Oi by Ti. Then the map

H∗T (X)
l−→ H∗T (XT ) = ⊕pi∈XTH∗T (pi) is injective and its image is{

f = (fp1 , . . . , fpm) ∈
⊕

fixed pts

S(t∗) : fNi|ti = fSi |ti for each i = 1, . . . ,m

}
.

Here ti is the lie algebra of Ti.

6.5 Affine paving of GrΠ
e (M) when M is a representation of

Q of type A

Definition 5 ([Tym07] 2.2). We say a space X is paved by affines if X has an

order partition into disjoint X1, X2, · · · such that each finite union
⋃j
i=1Xi is closed

in X and each Xi is an affine space.

A space with an affine paving has odd cohomology vanishing.
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Proposition 7 ([Tym07], 2.3). Let X =
⋃
Xi be a paving by a finite number of

affines with each Xi homeomorphic to Cdi. The cohomology groups of X are given

by H2k(X) =
⊕
{i∈I | di=k} Z.

The main observation is the following lemma.

Lemma 17. Let M be a representation of Q, where Q is of type A with all edges in

E pointing to the right. Then the quiver Grassmannian GrΠ
e (M) is paved by affines

for any dimension vector e.

We need a sublemma first.

Sublemma 1. Suppose X is paved by Xi’s. Let Y ⊂ X be a subspace. If for each

i, Yi = Xi

⋂
Y is ∅ or affine then Y =

⋃
Yi is an affine paving.

Proof.
⋃
i≤j Yi =

⋃
i≤j(Xi

⋂
Y ) = (

⋃
i≤j Xi)

⋂
Y is closed in Y since

⋃
i≤j Xi is

closed in X.

Before we give the proof of lemma17, let us introduce some notations about

Schubert decomposition of Grassmannian, following [Shi85]. let V be an n-dimensional

vector space over a field k. Let d be an integer such that 1 ≤ d < n. Let V d be the

direct sum of d copies of V and ∧dV be the d-th alternating product of V . Let

π : V d −→ ∧dV

be the morphism defined by (v1, · · · , vd) → v1 ∧ · · · ∧ vd. Fix a basis {e1, · · · , en}

of V . Then we can identify V d with the set of all d× n matrices over k by

(v1, · · · , vd) 7→ (xi(j))1≤i≤d,1≤j≤n,
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where vi = Σ1≤j≤nxi(j)ej, xi(j) ∈ k. Let P(∧dV ) be the projection. We have

Grass(d, V ) = p(πV d − {0}). Put

I = {α = (α1, · · · , αd) ∈ Zd; 1 ≤ α1 < · · · < αd ≤ n}.

For α = (α1, · · · , αd) in I, put

Dα = {(xi(j)) ∈ V d;xi(j) = 0forj < αi(1 ≤ i ≤ d)},

Cα = {(xi(j)) ∈ Dα;xi(αj) = δij(1 ≤ i, j ≤ d)}.

Then Sα = pπCα is the Schubert cell and p(πDα−{0}) is the Schubert variety, which

is the closure of Sα. We will consider the subvariety of Grassmannian Grd(k
n)φ that

is invariant under a nilpotent operator φ. Let λ be an ordered partition of n, i.e,

an ordered sequence (λ1, · · · , λr) of positive integers such that λ1 + · · · + λr = n.

We represent λ by a Young diagram with rows consisting of λ1, · · · , λr squares

respectively.

Definition 6. Fix a Young diagram λ with n squares. Let d be an integer such

that 1 ≤ d < n. A d-tableau is a Young diagram of type λ whose d squares are

distinguished by .

Fill in the squares of λ with the numbers 1, 2, · · · , n in the order from the

left column to the right and for each column from up to down. For example, if

λ = (4, 3, 2), we have 7 4 2 1
8 5 3
9 6

. Now we could identify α = (α1, · · · , αd) in I with

the d-tableau of type λ whose α1, · · · , αd-th squares are . An nilpotent operator

can be represented by a Young diagram using its Jordan normal form. We could

choose our basis {e1, · · · , en} to be a Jordan normal basis. Explicitly, for a Young

diagram numbered above, we define φ corresponding to λ by φei = ej if λ contains

i j and φei = 0 if i lies on the most left column.
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Definition 7. A d-tableau is said to be semistandard if every square on the left

position to on the same row is .

Lemma 18. ([Shi85] lemma1.8, and see the proof there also) Let Sφα be the subspace

invariant under φ, i.e

Sφα = {W ∈ Sα;φW ⊂ W},

where Sα is the Schubert cell corresponding to α. Then Sφα is nonempty if and only

if α is semistandard.

Now we want to understand Sφα when α is semistandard. For that purpose, we

introduce a notion called initial number.

Definition 8. For a semistandard d-tableau α = (α1, · · · , αi, · · · , αd) of type λ, we

say i is an initial number of α if the square on the right side of αi is not .

Lemma 19. For a semistandard d-tableau α, put

Cφ
α = {v1, · · · , vd) ∈ Dα;φvi = vj if α contains αiαj , (1 ≤ i < j < d), when i is initial xi(αj) = δij.

Then the morphism pφ : Dα
∼= Sα induces an isomorphism

Cφ
α
∼= Sφα.

Proof. The lemma is given in [Shi85] lemma1.10 but I found there seems have a

mistake. The original proof says: take an element p(w1 ∧ · · · ∧ wd) ∈ Sφα, where

(w1, · · · , wd) ∈ Cα. Let (v1, · · · , vd) be an element in Cφ
α such that {(v1, · · · , vd} =

{φhwi : i′s are the initial numbers of α and h ≥ 0} − {0}. However, this element is

not always in Cα. For example, when α is , (remember the number indexing

basis is 4 2 1
5 3

) let v2 = e2 + e3, then v4 = e4 + e5, violating x5(α4) = 0. So we have

to make a change to the statement to relax the condition that (v1, · · · , vd) ∈ Cα to

Dα. After this change, the proof goes word by word.
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Now we can give the proof of lemma17.

Proof of lemma 17. Let V = ⊕Mi be the underlying vector space and φ = ⊕a∈Hφa

be the nilpotent operator on V .

Let n = dimV and d =
∑
ei. From the above discussion, we know that

Grd(k
n)φ =

⊔
Sφα. We want to show Sφα

⋂
GrΠ

e (M) is affine. Take x ∈ Sφα
⋂
GrΠ

e (M),

from lemma19, x = ∧(φhwi : i′s are the initial numbers of α and φhwi 6= 0).

We now show that for x = v1 ∧ · · · ∧ vd ∈ GrΠ
e (M), where vi = ei +

∑
j 6=i xi(j)ej,

if ei ∈ Mt, we have vi ∈ Mt and conversely, if for each i, there exists t such that

vi ∈Mt, x ∈ GrΠ
e (M). We denote this t determined uniquely by i as t(i).

Since span(v1, ..., vd) is a direct sum of someNi ⊂Mi, we have Prt(vi) ∈ span(v1, ..., vd),

where Prt is the projection from V to Mt, and so Prt(vi) =
∑
apvp. Comparing

the coefficient of ep, by the definition of Dα, we have ap = 0 for p 6= i. So we have

Prt(vi) = vi, which implies vi ∈Mt.

Note that {v1, · · · , vd} is determined by wi where i is an initial number(and vice

versa).

We have wi ∈ Mt(i). Denote l(i) be the number on the left of i in the d-tableaus.

If i is the leftmost, set l(i) to be ∅, and set e∅ = 0. Write wi = ei +
∑
xijej, where

ej ∈ Mti , we have φr(wi) = elr(i) +
∑
xijelr(j). Since M is kQ-module, we have

lr(i) = lr(j) hence vir ∈ Mt(ir) and x ∈ GrΠ
e (M). So we have Sφα

⋂
GrΠ

e (M) is

affine. Apply lemma 17, we are done.
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6.6 Proof of lemma 15

Proof. For M given by Cd1
φ−→ Cd2 and a choice of e = (e1, e2), denote X = GrΠ

e (M).

First, we define a torus action on X. Let I = kerφ. Choose a basis e1, e2, · · · , es1 of

I and extend it to a basis e1, · · · , es, es+1, · · · , et of M1. Let J be span{es+1, · · · , et}

so the image of J is span {fs+1, · · · , ft}. We extend the basis {fi = φ(ei)} of the

image of J to a basis (fs+1, · · · , ft, ft+1, · · · , fr) of M2. Let K=span{ft+1, ...fr}.

we have M1 = I ⊕ J and M2 = φ(J)⊕K.

Let I = {1, · · · , s}, J = {s + 1, · · · , t} and K = {t + 1, · · · , r}. Let tori TI =

GIm, TJ = GJm, TK = GLm act on I, J ∼= φ(J), K by compotentwise multiplication

(For instance, TI acts on I by (t1, · · · , ts)
∑
aiei =

∑
aitiei and on J,K trivially).

Hence they act on M1 = I ⊕ J and M2 = φ(J) ⊕ K. This induces an action

of T = TI × TJ × TK on GrΠ
e (M). By lemma 3, GrΠ

e (M) is paved by affines so

by proposition 3 it has odd cohomology vanishing therefore the spectral sequence

associated to the fibration X×TET −→ BT converges at E2 and X is equivariantly

formal.

Denote by f the forgetful map H∗T (X)
f−→ H∗(X). From §4.4 we have ker(f) =∑dimT

1 tsH
∗
T (X). Since ci(S2 ⊕ Q1) = f(ciT (S2 ⊕ Q1)), it suffices to prove ciT (S2 ⊕

Q1)) ∈ ker(f) when i > e2 − e1 + dimI.

To use GKM theorem, we need to know the one dimensional orbits and T -fixed

points of X.

First, we see what XT is. For a point p = (V1, V2) in X, in order to be fixed

by T , V1 and V2 need to be spanned by some of basis vectors ei and fi. For a

subset S of I (resp. J ), we denote by eS (resp. fS) the span {ei|i ∈ S} (resp.

1I also use letter e for dimension vector, but it should be clear which I mean.
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span{fi|i ∈ S}). The T-fixed points in X consist of all V = (V1, V2), such that

V1 = eA⋃
B, V2 = fC⋃

D, for some A ⊂ I, B ⊂ C ⊂ J and D ⊂ K.

For any point p = (V1, V2) in XT , let V1 = eA⋃
B, V2 = fC⋃

D. Over p, Q1 =

(I ⊕ J)/eA⋃
B is isomorphic to e(I\A)⊕(J\B) (The restriction of a T -equivariant

bundle to a T-fixed point is just a T -module). So over XT , we can decompose

S2 ⊕Q1 as follows:

S2 ⊕Q1
∼= e(I\A)⊕(J\B) ⊕ f(C

⋃
D) = (e(I\A)⊕(C\B) ⊕ fD)⊕ (eJ\C ⊕ fC).

Denote the bundle over XT whose fiber over each point p is e(I\A)⊕(C\B) ⊕ fD) by

E1 and the bundle over XT whose fiber over p is e(J\C) ⊕ fC by E2.

We now use localization. Denote by l the mapH∗T (X)
l−→ H∗T (XT ) = ⊕p∈XTH∗(p).

From GKM theory l is injective, so the condition ciT (S2⊕Q1)) ∈ ker(f) is equivalent

to l(ciT (S2 ⊕Q1)) ∈ l(ker(f)). We have

l(ker(f)) = l(
dimT∑
s=1

tsH
∗
T (X)) =

dimT∑
s=1

(ts, · · · , ts)︸ ︷︷ ︸
the number of T-fixed points in X

l(H∗T (X)). (6.2)

By functorality of Chern class, l(ciT (S2 ⊕Q1)) = ciT (S2|XT ⊕Q1|XT )).

We compute the T -equivariant Chern class over XT . For2 each p,

cpT (S2 ⊕Q1) = cpT (E2 ⊕ E1) =
∑
i

cp−iT (E1)ciT (E2) =
∑
i≥1

cp−iT (E1)ciT (E2).

The last equality holds since cpT (E2) = 0 when p > dimE2 = dimI+e2−e1. Now to

show cpT (S2 ⊕Q1) ∈ l(ker(f)), It suffices to show that cp−iT (E1)ciT (E2) ∈ l(ker(f)),

for any i. The action of T on E2 is actually the same on each T-fixed point. And at

each point, ciT (E2) is the ith elementary symmetric polynomial of ts, 1 ≤ s ≤ dimT .

So by (5), it suffices to show that ciT (E1) ∈ l(H∗T (X)).

2We always denote S and Q but indicate over which space we are considering.
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Now we will see what 1-dimensional orbits are. Take an orbit Oi, in order to be

1 dimensional its closure must contain two fixed points. Let Oi = Oi

⋃
{Ni}

⋃
{Si},

where Ni = (eA⋃
B, fC⋃

D) and Si = (eA′⋃B′ , fC′⋃D′) are the fixed points. Oi is

one dimensional whenever either A
⋃
B and A′

⋃
B′ differ by one element with

C
⋃
D = C ′

⋃
D′ or C

⋃
D and C ′

⋃
D′ differ by one element with A

⋃
B =

A′
⋃
B′. In the first case, we have some s ∈ A

⋃
B and s′ ∈ A′

⋃
B′, such that

A
⋃
B \ s = A′

⋃
B′ \ s′.

Notice that the annihilator for the lie algebra ti in S(t∗) is generated by ts− ts′ ,

so by theorem 5, the condition along Oi for an element h ∈ H∗T (XT ) to be in im(l)

is

(ts − ts′) | (hNi − hSi).

But we have

cT (E1)|Ni−cT (E1)|Si = (1+ts′)
∏

i∈I
⋃
C\(A

⋃
B)\{s′}

(1+ti)−(1+ts)
∏

i∈I
⋃
C\(A′

⋃
B′)\{s}

(1+ti).

Note that I
⋃
C \ (A

⋃
B) \ {s′} = I

⋃
C \ (A′

⋃
B′) \ {s}, so ts − ts′ divides

cT (E1)|Ni − cT (E1)|Si . We conclude that ciT (E1) ∈ l(H∗T (X)).

The other case is similar.
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C H A P T E R 7

PROOF OF ISOMORPHISM WHEN M IS A

REPRESENTATION OF Q OF TYPE A

We first prove that Ψ is surjective.

Lemma 20. (a) Denote Y =
∏
Grei(k

di) and X = GrΠ
e (M). Then Y \X is paved

by affines.

(b) Ψ is surjective.

Proof. (a). Let a be the number where the Young diagram of φY has ath row as

the first row from the bottom that does not have one block. For example, in the

left diagram, a=4.

−→

Define φ′ be the operator of V that corresponds to the diagram by moving the left

most block A of the ath row to the bottom in the diagram of φY . Let M ′ be the

corresponding module and X ′ be GreM
′.

We claim that X ′ \X is paved by affines.

By lemma 18, we have X =
⊔
α∈I Cα, where I is the set of all semi-standard young
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tableau in λ. Also we have Y ′ =
⊔
α∈I′ C

′
α, where I ′ is the set of all semi-standard

young tableau in λ′. If α contains block A, α is s.s in λ implies α′ is s.s in λ′. If α

does not contain block A , α also does not contain any block in that row, so α is

still s.s in λ′. So I ⊂ I ′.

For α that contains block A, there are two types. Let E be the set of α that contains

block A and some other block in the row of A. Let F be the set of α that contains

block A but no other block in the row of A. Let G be the set of α that does not

contain block A. So we have I = E
⊔
F
⊔
G = F

⊔
(E
⊔
G).

Take α ∈ F , in λ, the block A in α is not initial so the vector indexed by A is

determined by the initial vector. In λ′, A is the last block so the vector indexed by

A is the basis vector indexed by block A. In both case the vector indexed by A has

been determined, so Cα = C ′α when α ∈ F.

For α ∈ E
⋃
G, let s(α) be the tableau of the same relative position in λ′ as α

in λ. Then Cα = C ′s(α). Since s is a bijection between E
⊔
G and E ′

⊔
G′ we have⊔

α∈E
⊔
GCα =

⊔
α∈E′

⊔
G′ C

′
α .

Then we have X ′ \X =
⊔
α∈I′\I C

′
α is paved by affines. We can do this procedure

step by step until X ′ becomes Y, so we are done.

(b). By lemma 1, X is paved. With part(a) , we have the homology map from

X to Y is injective hence Ψ is surjective since it is the dual of homology map in

complex coefficient. (see 2.2 in[Tym07]).

We want to prove the two sides of Ψ have the same dimension as k-vector spaces

and actually we will prove it for a more general setting.

Definition 9. For a Π-mod M Let V = ⊕Mi be the underlying vector space and

φ = ⊕a∈Hφa be the nilpotent operator on V . We say M is I-compatible if there is

a Jordan basis {vij} of V such that each vij is contained in some Mr.
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Definition 10. For a Π-module M , if the Young diagram of the associated operator

φ has one row, we call M one direction module.

Proposition 8. If M is I-compatible, it is a direct sum of one direction module

with multiplicities.

Lemma 21. If M is I-compatible, the dimension of two sides of Ψ have the inequal-

ity: dim k[aij, bik]/I(M, e)) ≤ χ(GrΠ
e (M)), where χ is the Euler characteristic. We

denote the ring on the left by R(M, e).

First we state a lemma due to Caldero and Chapoton.

Lemma 22 (see prop 3.6 in [CC04]). For Π-module M,N , we have

χ(Grg(M ⊕N) =
∑
d+e=g

χ(Grd(M))χ(Gre(N)).

The following two lemmas are proved after the proof of lemma 19.

Lemma 23. R(M, e)/ < b1(d1−e1) >∼= R(M ′, e).

Lemma 24. b1(d1−e1)R(M, e) is a module over R(M ′′, e−
∑

i∈I αi).

Proof of lemma 19. We index the basis vector according to the Young diagram of

φ as before but slightly different: eij corresponds to the block of ith row (from up

to down) and jth column (from right to left, which is the difference from before

and this will cause the problem that two blocks in the same column but different

row have different j but we will fix an i sooner so will not be of trouble). so

φ(eij) = ei(j−1).

The basis vector in M1 appears in the first column or in the last column. If it lies

in the last, we can take the dual to make it in the first. So, there exist i such that

ei1 ∈M1.

44



Let λ′ be the young diagram removing the block of ei1 from the original one and

M ′ be the corresponding module. Let λ′′ be the young diagram removing ith row

and M ′′ be the corresponding module. Apply lemma 20, we have

χ(GrΠ
e (M)) = χ(Gre(M

′)) + χ(Gre−∑αi(M
′′)).

We count the dim of R(M, e) by dividing it into two parts.

dimR(M, e) = dimb1(d1−e1)R(M, e) + dimR(M, e)/b1(d1−e1)R(M, e).

By lemma 21 and 8, since b1(d1−e1)R(M, e) is acyclic,

dimb1(d1−e1)R(M, e) ≤ dimR(M ′′, e−
∑
i∈I

αi).

So dimR(M, e) = dimb1(d1−e1)R(M, e)) + dimR(M, e)/b1(d1−e1)R(M, e)

≤ dimR(M ′′, e −
∑

i∈I αi) + dimR(M ′, e) = χ(Gre(M
′) + χ(Gr(e−

∑
i∈I αi)

(M ′′)) =

χ(GrΠ
e (M)).

Now we prove lemma 21 and 22.1

Proof of lemma 21. Recall I(M) = deg
∏

i∈I+(ti)
γi
∏

i∈I−(si)
γi ≤ (γ, ν) + D−γ(M)

We denote v(M,γ, e) = (γ, ν)+Dw0γ(M). The difference between I(M) and I(M)′

only occurs when γ = −$1. In this case v(M ′,−$1, e) = v(M,−$1, e) − 1. The

degree of s1 goes down by by 1, meaning we have one more vanishing condition

which is b1(d1−e1) = 0.

Proof of lemma 22. In order to define a module structure on b1(d1−e1)R(M, e), we

lift the element in R(M ′′, e−
∑

i∈I αi) to R(M, e) (since the former is a quotient of

1The following proof is originally written for type A case in general, but later the author found
for general type A, the proof of existence of affine paving does not work so here we only consider
the special case where the module M is just a kQ-module. In this, the proof is much simpler.
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the latter) and let it act on b1(d1−e1)R(M, e) by multiplication. We denote J to be

the degree v(M,γ, e) part of <
∏

i∈I+(ti)
γi
∏

i∈I−(si)
γi , γ ∈ Γ >.

We need to check it is independent of the choice of the lift:

b1(d1−e1)J ⊂ I(M, e), where I(M, e) = J ⊕ I(M ′′, e−
∑
i∈I

αi).

Denote the module corresponding to ith row P. We have M = M ′′ ⊕ P . Then

v(M,γ, e)− v(M ′′, γ,
∑

i∈I αi) = v(P, γ,
∑

i∈I αi).

We claim that v(P, γ,
∑

i∈I αi) = 0 or 1 and is 0 when γ1 = 1.

This is a direct calculation.

When γ1 = −1, t1j appears in each summand
∏

i∈I+(ti)
γi
∏

i∈I−(si)
γi , γ ∈ Γ.

Let one of the summand be t1jk.

s1(d1−e1)t1jk = −
∑

p+q=d1−e1+j s1pt1qk = −s1(d1−e1+j−q)
∑

q>j t1qk. We have
∑

q>j t1qk

is in I(M, e) since this is of degree larger than v(M,γ, e).

When γ1 = 0,

we claim that when v(P, γ,
∑

i∈I αi) is 1 , we have γ −$1 ∈ Γ.

Then we want to show s1(d1−e1)

∏
i∈I+(ti)

γi
∏

i∈I−(si)
γi is in I(M, e). Let k is a

summand of degree v(M,γ, e) part of I(M, e). We want to show s1(d1−e1)k is of

degree v(M,γ −$1, e) + 1. So we need v(M,γ, e) + d1 − e1 ≥ v(M,γ −$1, e) + 1.

By the dimension description, the image of Φγ−$1 is at least 1 dimensional bigger

than the image of Φγ since φ1m(ei1) = eim is in the image but for γ − $1 (since

φ1m is not a summand of φ) the projection of img(φ) on Vm is zero, where m is the

smallest number in Γ+.

Theorem 12. Ψ is an isomorphism when M is a kQ-module.

Proof. by lemma 18, Ψ is surjective so dim k[aij, bik]/I(M, e)) ≥ χ(GrΠ
e (M)) and

by lemma 19 this is an equality so the theorem follows.
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C H A P T E R 8

A CONSEQUENCE OF THIS CONJECTURE

In section 3, we defined G(G, Y ) as moduli of maps of between pairs form (d, d∗)

to (G/Y, pt). This is actually a local version of (fiber at a closed point c) the global

loop Grassmannian with a condition Y to a curve C, GC(G, Y ). To a curve C,

define GC(G, Y ) over the ran space RC with the fiber at E ∈ RC :

GC(G, Y )E =def map[(C,C − E), (G/Y, pt)].

Denote the map from GC(G, Y ) to RC remembering the singularities by π.

One can ask if π is (ind) flat for any G and (Y, pt). The case we are concerned

is when G′ = G×
∏

w Tw and Y =
∏

w(G/Nw)aff . Let c ∈ C, λw, µw ∈ X∗(T )W . In

particular, we restrict GC(G′, Y ) to C × c and denote the image under projection

from G(G′) to G(G) by X. We have X is a closed subscheme of GrG,X×c. Explicitly,

an R-point of GrG,X×c consists of the following data

• x : specR −→ C. Let Γx be the graph of x. Let Γc be the graph of the constant

map taking value c.

• β a G-bundle on specR× C.

• A trivialization η : β0
η−→ β defined on specR× C − (Γx

⋃
Γc).
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An R-point of X over C × c consists of an R-point of GrG,X×c subject to the

condition: For every i ∈ I, the composition

ηi : β0 ×G V ($i) −→ β ×G V ($i) −→ β ×G V ($i)⊗O(〈γ, λw〉 · Γx + 〈γ, µw〉 · Γc).

is regular on all of specR× C.

We can show the fiber over a closed point other than c is
⋂
Swλw ×

⋂
Swµw and

the fiber over c is
⋂
Swλw+µw

.

Corollary 3 (Given the conjecture). The T-fixed point subscheme of this family is

flat.

Proof. dimO((
⋂
Swλw+µw

T
)ν) = dimH∗(GrΠ

e (M)) = 1
∑

e1+e2=e dimH
∗(GrΠ

e1
(M1)dimH∗(GrΠ

e2
(M2) =∑

ν1+ν2=ν O(
⋂
Swλw

T

ν1
)·O(

⋂
Swµw

T

ν2
) = dimO(

⊔
ν1+ν2=ν

⋂
Swλw

T

ν1
×
⋂
Swµw

T

ν2
= dim(

⋃
Swλw

T
×⋂

Swλw
T

)ν .

Conjecture 3. T-fixed subschemes flatness imply flatness.

We take λw = −w0λ + wλ, then
⋂
Swλw = Y λ. In this case the conjecture is

proved to be true. This flatness is mentioned in [KMW16] remark 4.3 and will

reduce the proof of reduceness of Y λ to the case when λ is $i for each i ∈ I.

1By lemma 20, and given the conjecture, Euler character is the same as total cohomology.
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A P P E N D I X

PROOF OF LEMMA 16

For an expression sim · · · si1 of an element w in W , we say it is j-admissible if

〈αia , sia−1 · · · si1$j ≥ 0 for any a ≤ m.

Lemma 25. For any element w ∈ W , any reduced expression of w is j-admissible.(since

we will fix an j, we will omit j and just say admissible).

Proof. Since we are in the ADE case,

si$i = −$i +
∑

h is adjacent to i

$h. (A.1)

si$h = $h, for h 6= i. (A.2)

We use induction on the length of w. Suppose lemma holds when l(w) ≤ m. Take

a reduced expression of w ∈ W with length m+ 1 : w = sim+1 · · · si1 . Suppose this

expression is not admissible, we have 〈αim+1 , sim · · · si1$j〉 ≤ 0. Since 〈αim+1 , $j〉 ≥

0, and by (6),(7)

〈αim+1 , stγ〉 ≥ 〈αim+1 , γ〉.

unless t = im+1, there must exists k such that ik = im+1.Let k be the biggest num-

ber such that ik = im+1.

In the case there is no element in the set {im, · · · , ik+1} is adjacent to im+1 in the
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Coxeter diagram, sim+1 commutes with sim · · · sik+1
. Therefore sim+1sim · · · sik+1

sim+1 =

sim+1sim+1sim · · · sik+1
= sim · · · sik+1

so the w = sim+1 · · · si1 is not reduced, contra-

diction.

In the case where for some t, it is adjacent to im+1, we will show we can reduce to the

case we have only one such t. Suppose we have at least two elements it1 , it2 · · · , ith

such that they are all adjacent to im+1. Since 〈αim+1 , sim+1 · · · sik · · · si1$j〉 ≤ 0 and

h > 1, by (6), (7), we must have some iu1 , iu2 such that they are adjacent to im+1.

Since one point at most has 3 adjacent points we must have some iux = ity . Let

p = iux = ity . Using spsim+1sp = sim+1spsim+1 we can move sim+1 in front of sty so

the number h is reduced by 1. We could do this procedure until h=1. In this case

we can rewrite the sequence before sik−1
using the braid relation between im+1 and

it:

sim+1 · · · sit · · · sik = sim+1 · · · sit · · · sim+1 = · · · sim+1sitsim+1 · · · = · · · sitsim+1sit · · · .

Set β = sik−1
· · · si1$j. By induction hypothesis, sim+1sitsim+1 · · · and sitsim+1sit · · ·

are admissible. So 〈αit , β〉 ≥ 0 and 〈αim+1 , β〉 ≥ 0. Again using (6) and (7) we

have 〈sitsim+1β, αim+1〉 ≥ 0. Then 〈sim+1 · · · si1$j, αim+1〉 = 〈sitsim+1β, αim+1〉 ≥ 0,

contradicts with sim+1 · · · si1 is not admissible.

Proof of lemma 16. Set F0 = {$j}. Let Fm be the set which contains all w$j,

where l(w) ≤ m. We use induction. Suppose lemma 2 holds for γ ∈ Fm, we will

prove lemma holds when γ ∈ Fm+1. For any γ = w$j ∈ Fm+1, by lemma 1, w

has a reduced admissible expression: w = sim+1 · · · si1 . Denote im+1 by i and β by

sim · · · si1$j. So γ = siβ, β ∈ Fm. Since sim+1 · · · si1 is admissible, 〈β, αi〉 ≥ 0.

Therefore 〈γ, αi〉 = 〈siβ, αi〉 = −〈β, αi〉 ≤ 0 and we can apply prop 4.1 in [BK12].

Then Dγ(M) = Dsi(siγ)(M) = Dsiγ(ΣiM) , where Σi is the reflection functor
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defined in section 2.2 in [BK12].

Let A = {j | j is adjacent to i, j ∈ I} and MA = ⊕s∈AMs. The ith component of

ΣiM is the kernel of the map ξ (Still see section 2.2 in [BK12] for the definition

of ξ) from MA to Mi. Since β ∈ Fm, by induction hypothesis, we can apply this

lemma to the case where γ is taken to be β and the module M is ΣiM . Recall we

denote by I+
γ the subset of I containing all i such that 〈γ, α̌i〉 is positive and by I−γ

containing all i 〈γ, α̌i〉 is negative.

Denote A+ = {j | j is adjacent to i, j ∈ I+
γ } and A− = A \ A+. For a multiset

S, let MS = ⊕Mm(s)
s . Regarding I−γ as a multiset by setting m(i) = γ−i , we can

rewrite ⊕i∈I−γ M
γ−

i as MI−γ
, similarly ⊕i∈I+γ M

γ+

i as MI+γ
.

Consider the case when 〈γ, αi〉 = −1. We have I+
β = I+

siγ
= (I+

γ \A+)
⋃
{i} and

I−β = I−siγ = (I−γ \ {i})
⋃
A− as multisets. Therefore Dsiγ(ΣiM) is the dimension

of the kernel the natural map (which is φβ) from MI+γ \A+
⊕ ker(MA

ξ−→ Mi) to

MI−γ \{i} ⊕MA− . This is equal to the dimension of the kernel of the natural map

from MI+γ \A+
⊕ ker(MA+

ξ−→ Mi) to MI+γ \{i}, which is just ker(M+
Iγ

φγ−→ MI+γ
). The

case when 〈γ, αi〉 = −2 is similar.
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