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ABSTRACT 

IMPACT OF NATIVE NATURAL ENEMIES ON POPULATIONS  
OF THE INVASIVE WINTER MOTH (OPEROPHTERA BRUMATA L)  

IN THE NORTHEAST UNITED STATES 
 

SEPTEMBER 2018 
 

HANNAH J. BROADLEY, B.S., BATES COLLEGE 
 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Joseph S. Elkinton 
 

Invasive insects increasingly affect forested landscapes and have important 

ecological and economic impacts. My dissertation focuses on population dynamics of 

winter moth (Operophtera brumata L.), an invasive pest in the northeastern United 

States. Native to Europe, this is the species’ fourth accidental introduction to North 

America. The Elkinton lab established the biological control agent Cyzenis 

albicans across the range of winter moth in the northeastern U.S. Prior research indicates 

that C. albicans’ ability to control winter moth likely depends on additional mortality 

from native natural enemies. My dissertation research evaluates the identity and role of 

natural enemies already present in North America (predators, parasitoids, and pathogens) 

on winter moth, and their interactions with mortality from C. albicans.   

I found that in earlier years of the current North American introduction, predator 

communities were saturated due to the abundance of pupae to consume; however, as 

winter moth densities decreased to levels comparable to its native range (presumably due 

to mortality added to the system by C. albicans) pupal predation’s role on the population 

dynamics has changed; pupal predation is now density dependent and helps stabilize the 
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winter moth populations. Furthermore, I detected parasitism on winter moth pupae by an 

ichenumonid wasp (Pimpla spp.), which causes additional mortality on winter moth 

pupae and rarely kills C. albicans puparia. While rates of mortality on winter moth from 

this parasitoid are lower than those from predation, parasitism is also density dependent 

and has a stabilizing effect on winter moth populations. Lastly, my research shows that 

mortality in larval and pupal stages is lower on winter moth than on the native congener, 

Bruce spanworm, Operophtera bruceata Hulst. Cadavers from both species had low rates 

of infection from nucleopolyhedroviruses. Each host had its own virus species and there 

were no cross-infectious between the two. Microsporidia were detected in Bruce 

spanworm, but not in winter moth.     

I conclude that our biological control efforts have reduced winter moth 

populations to non-pest levels and I expect native natural enemies, along with C. 

albicans, will regulate population densities indefinitely. 
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CHAPTER 1 

THE PHYLOGENETIC RELATIONSHIP AND CROSS-INFECTION OF 

NUCLEOPOLYHEDROVIRUSES BETWEEN THE INVASIVE WINTER MOTH 

(OPEROPHTERA BRUMATA) AND ITS NATIVE CONGENER, BRUCE 

SPANWORM (O. BRUCEATA) 

1.1 Abstract 

Disease can affect biological invasions by acting as either a synergist or 

antagonist. Disease-mediated invasions have important implications for understanding 

the spread of invasive insects, which cost billions of dollars in damages annually. One 

such non-native, destructive insect is the winter moth, Operophtera brumata L. 

(Lepidoptera: Geometridae), which causes defoliation and mortality of deciduous trees in 

its introduced range. In the northeastern United States, winter moth populations overlap 

with a native congener, Bruce spanworm, Operophtera bruceata Hulst. 

Nucleopolyhedrovirus (NPV), appears to be an important natural enemy in Bruce 

spanworm and there is some evidence that the NPV infection found in winter moth in the 

northeastern U.S. may originate from Bruce spanworm. By sequencing two viral genes 

(the polyhedrin and p74 genes) from field-collected larvae of both species, we found that 

the winter moth virus (OpbuNPV) is distinct from the virus from Bruce spanworm 

(OpbrNPV). However, the two viruses do constitute a clade within the Alphabaculovirus 

Group 2 NPVs, indicating that they are more similar to each other than they are to other 

lepidopteran viruses, even other geometrid-derived NPVs. As far as we know, this is the 

first report of sequences from an NPV from Bruce spanworm. Results from cross 
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infection trials suggest that cross infection is uncommon if it occurs at all. Our results 

show that these two closely related species have distinct viruses and, unlike previous 

suggestions, Bruce spanworm virus is not mediating the winter moth invasion. 

1.2 Introduction  

The role of disease (pathogen or parasite infections) in biological invasions is 

increasingly of interest because of the multifaceted ways in which disease can mediate 

invasions. Disease-mediated invasions have recently been reviewed, indicating 

widespread and far-reaching effects, which can either facilitate or hinder invasions 

of vertebrate, invertebrate, and plant taxa (Strauss et al., 2012). Whether facilitating or 

hindering the invasion, the role of disease-mediated invasions has important implications 

for our understanding and management of invasive species, which damage forests and 

agricultural systems and incur large ecological and economic costs. 

In North America, the European winter moth, Operophtera brumata L. 

(Lepidoptera: Geometridae), is one such non-native insect causing widespread defoliation 

in rural and urban settings. Winter moth was accidently introduced to Nova Scotia in the 

1950s (Embree, 1966) and to the Pacific Northwest in the 1970s (Roland, 1986). It was 

first noted in the northeastern United States in the 1990s, near Boston, MA (Elkinton et 

al., 2010). Since its introduction to the northeastern United States (New England), winter 

moth has been in almost continuous outbreak and has spread to coastal New Hampshire, 

Maine, Rhode Island, Connecticut, and New York (Elkinton et al., 2014). In 

Massachusetts, outbreak densities of 500 pupae/m2 have resulted in 50% defoliation and 

significant damage to blueberry, cranberry, and apple crops (Elkinton et al., 2015). With 
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repeated defoliation, winter moth has caused growth reduction and mortality of deciduous 

trees (Embree, 1967; Simmons et al., 2014), resulting in far-reaching effects on 

forest and agricultural landscapes. 

The outbreaks by winter moth were initially assumed to be caused by a native 

geometrid, such as Bruce spanworm (Operophtera bruceata, Hulst) (Elkinton et al., 

2010). Bruce spanworm was suspected because it is prone to outbreaks (though relatively 

localized and short-lived outbreaks), is indigenous to the area (Brown, 1962), and is 

difficult to distinguish morphologically from winter moth. Additionally, Bruce spanworm 

produce and respond to the same pheromone compound as winter moth (Roelofs et al., 

1982) and can hybridize with winter moth (Troubridge and Fitzpatrick, 1993; Elkinton et 

al., 2010, 2014). The cause of the widespread and persistent defoliation in Massachusetts 

was suspected to be winter moth because it remained in continuous outbreak levels each 

year rather than subsiding due to natural enemies as Bruce spanworm population tend to 

do. Upon close examination of adult females and subsequent DNA analyses, the 

outbreaks were definitely identified as being caused by winter moth in December of 2003 

(Elkinton et al., 2010). The close relationship but differences in population dynamics 

between these two species can provide insight into possible biological control methods 

for winter moth. 

Baculoviruses, most notably nucleopolyhedroviruses (NPVs), are important 

natural enemies of many Lepidoptera and appear to be particularly important in species 

whose populations undergo cycles of outbreak and collapse (Cory, 2010; Myers and 

Cory, 2013). They may play a vital role in the suppression of outbreak populations in 

Bruce spanworm. Bruce spanworm populations rarely exhibit outbreaks, and when a 
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Bruce spanworm outbreak does occur, it is usually localized and only lasts for a few 

years before the population collapses (Brown, 1962; Rose and Lindquist, 1997). In Bruce 

spanworm outbreaks that have been reported, NPVs have been noted. Smirnoff (1964) 

reported finding NPVs in Bruce spanworm collected in Quebec, Canada in 1961 and 

suggested that NPV infection was responsible for the successful control of an outbreak of 

Bruce spanworm on maple trees. Similarly, a Bruce spanworm outbreak at the same time 

in Nova Scotia was found to have NPV, and NPV was thought to have caused the 

decline of this population (Neilson, 1965). A decade later in Alberta, Canada, an outbreak 

of Bruce spanworm was also suppressed by an NPV epizootic. In this outbreak, while 

trees were sprayed with NPV derived from the caterpillars collected from the Alberta 

population the previous year, control plots also experienced significant mortality from the 

virus and had a prevalence of up to 77% of larvae (Ives and Cunningham, 1980), 

indicating high levels of NPV naturally occurring at this site. 

Winter moth, on the other hand, is known to continuously outbreak in its 

introduced range (Embree, 1965; Roland, 1990; Elkinton et al., 2015) and an NPV 

epizootic has never been noted. Prior to the introduction of parasitoids as biological 

control agents in Nova Scotia and British Columbia, winter moth persisted at outbreak 

levels (Embree, 1965; Roland, 1990), and while the biocontrol agent builds up in New 

England, populations remain high (Elkinton et al., 2015). Following the introduction of 

winter moth to Nova Scotia, Neilson (1965) conducted surveys of winter moth in that 

province from 1955 to 1960 and none were found to be infected with NPV. In 1961, a 

single larva was found with NPV-like symptoms. Similarly, Cunningham et al. (1981) 

surveyed winter moth larvae in British Columbia and found low (0–1%) incidences of 
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naturally occurring NPV. Further, in the most recent North American invasion of winter 

moth in Massachusetts, only low levels of NPV have been detected, and no viral 

epizootic has been noted (Burand et al., 2011; Elkinton et al., 2015). 

On the other hand, Neilson (1965) reported substantially more NPV-infected 

individuals and more mortality in his survey plots in Nova Scotia in the years following 

the 1960 survey. This decline of winter moth occurred simultaneously and sympatrically 

with a Bruce spanworm epizootic, which he speculated might have crossed over into 

winter moth (Neilson, 1965; Murdoch et al., 1985). Neilson (1965) found, however, that 

the occlusion bodies isolated from the two species were different in shape. He called for 

further research to determine if they were the same virus and if they cross-infect. 

Gillespie et al. (1978) inadvertently tried cross-infection trails on an outbreak of 

geometrids was reported on southern Vancouver Island, B.C., that was thought to be 

Bruce spanworm. They tried to infect caterpillars from this outbreak with Bruce 

spanworm virus. Infection was not successful, and it was later confirmed that the insect 

outbreaks were of winter moth and not Bruce spanworm. This suggested that cross 

infection does not occur, but when this work was done, it was not known if the 

Bruce spanworm virus stock was still infectious. 

Identifying the NPV infecting Bruce spanworm, and evaluating the relationship of 

this virus to winter moth’s NPV and others’, are necessary steps towards understanding 

the role that disease plays in the current winter moth invasion as well as the earlier Nova 

Scotia invasion. We need to know if disease from Bruce spanworm is mediating the 

winter moth invasion or, alternately, if disease from winter moth can harm Bruce 

spanworm. Cross infection, as was proposed by Neilson (1965) and piloted inadvertently 
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by Gillespie et al. (1978), warrants careful testing. Additionally, we now have molecular 

techniques to help elucidate the relationship between the NPV found in Bruce spanworm 

and that found in winter moth. 

We build on these earlier observations to address two questions: (1) What is the is 

phylogenetic relationship between the NPV infecting Bruce spanworm and the NPV 

infecting winter moth, and (2) in a laboratory setting, can Bruce spanworm-derived NPV 

infect winter moth and can winter moth-derived NPV infect Bruce spanworm. 

1.3 Methods  

1.3.1 Collecting larvae and rearing 

To acquire virus samples and live specimens to rear eggs from, Bruce spanworm 

and winter moth larvae were collected from the field in late May of 2013 and 2014. The 

larvae were reared to adulthood and mated to produce eggs used the following springs 

(2014 and 2015) for cross infection trials. Any mortality (cadavers) from the collections 

was noted and inventoried for disease prevalence. In 2013, Bruce spanworm larvae were 

collected from a small outbreak population near Millinocket, Maine (Township 2, Region 

8 NWP). This is 150 km inland of the area where winter moth has been detected in Maine 

and in an area that only has Bruce spanworm (Elkinton et al., 2010). In 2014, Bruce 

spanworm larvae were collected in the Mohawk Trail State Forest, Charlemont, MA, 

which is 60 km from any detected winter moth. Both years, winter moth larvae were 

collected as fourth and fifth instars in long-term study sites in eastern Massachusetts, 

where winter moth is abundant and pure winter moth make up almost 100% of the 
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genetic stock (Elkinton et al., 2010, 2014). Larvae were reared in batches of 500 or fewer 

in ventilated 20 L (5 gallon) buckets with the foliage from the tree species on which they 

were found. Larvae collected from different sites were reared in separate buckets; in this 

way winter moth larvae were reared separately from Bruce spanworm larvae. The foliage 

was mounted in Oasis Floral Foam bricks (Smithers-Oasis North America). Foliage was 

replaced every other day and any cadavers were removed. Larvae were reared for a 

week or less, which is not enough time for any NPV transmitted within the buckets to 

spread between individuals (Wigley, 1976). Any larval cadavers that were found were 

placed individually in sterile 1.5 mL microcentrifuge tubes (Fisherbrand) and 

immediately frozen at -20 °C. When the larvae started to show signs of pupating 

(thickening body shape and rolling a leaf edge over themselves), sifted peat moss was 

added to the bottom of the buckets for pupation. The resulting pupae were sifted, sorted 

by sex, and stored at 10–12 °C until adult emergence at the end of October to beginning 

of November. 

To produce eggs for the cross-infection trials, adult moths were mated with their 

conspecifics. Batches of approximately 50 adults were placed together in clear, 350 mL 

(12-oz) cups lined with paper, in an incubator (Percival) set to 10–12 °C with a 

13.5/10.5 h LD cycle. Females laid eggs on the paper lining of the mating cups. The 

temperature in the incubator with the eggs was reduced gradually to 2 °C by mid-January. 
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1.3.2 DNA amplification and sequencing 

Larval cadavers that had been set aside from the rearing process and stored frozen 

were thawed and homogenized with 200 µL molecular grade water. An aliquot from each 

individual was screened for NPV using light microscopy. DNA was extracted from 

potentially NPV-infected cadavers using 250 µL DNAzol (Invitrogen Life Technologies), 

50 µL sample (cadaver homogenized with 200 µL molecular grade water), and an 

additional 50 µL water. 

DNA was amplified from two different loci—the polyhedrin gene region (polh, 

associated with the envelope protein) and the p74 gene region (a per os infectivity factor 

gene, associated with the virus envelope). To amplify the polyhedrin gene of NPV from 

Bruce spanworm, the primer set Polyh-81F/Polyh-249R, a generalized NPV polyhedrin 

primer, was used. Initially, the primer set ObPol1 and ObPol2, designed to detect winter 

moth NPV (Graham et al., 2004) was tried, but it was not successful in amplifying the 

Bruce spanworm NPV. For PCR using Polyh-81F/ Polhy249R, a reaction of 12.5 µL Taq 

2X Master Mix (New England Biolands) with 5.5 µL RNAse free water, 1.5 µL MgCl2, 

and 0.5 µL of each primer was mixed with 4 µL DNA template for each sample. 

Reactions were run on an Eppendorf Mastercycler ep. using the following temperature 

profile: 95 °C for 3 min; 36 cycles of 95 °C for 30 s, 49.4 °C for 1 min, and 72 °C for 1 

min; and a final extension of 72 °C for 10 min. 

The resulting PCR product was run on an agarose gel, as described in Burand et 

al. (2011), and the resulting NPV DNA fragments from four Bruce spanworm individuals 

from the 2013 Millinocket, ME collection (sample number #7 and #8) were excised 
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from the gel, purified (Qiagen gel purification kit), and pooled to render enough DNA for 

sequencing. PCR products were Sanger sequenced at the University of Massachusetts 

Genomic Resource Laboratory on ABI Model 3130XL and 3100 sequencers yielding 

clean (>60HQ%) sequences. The sequence pairs (forward and reverse-complement) were 

aligned and edited using Geneious 8.1.8 (Biomatters Ltd.) to produce a consensus 

sequence. 

For the p74 gene, DNA was extracted and amplified from Bruce spanworm and 

winter moth cadavers collected in 2013 using generalized p74 primers for Bruce 

spanworm and winter moth specific p74 primers (Supplementary S1) using the following 

temperature profile: 95 °C for 3 min; 36 cycles of 95 °C for 30 s, the primer specific 

annealing temperature (50.8 °C for winter moth and 52.1 °C for Bruce spanworm) for 1 

min, and 72 °C for 1 min; and a final extension of 72 °C for 10 min. The resulting PCR 

product was run on an agarose gel and the resulting DNA fragments were excised from 

the gel, re-amplified using the p74 PCR procedure described above, and sequenced, as 

was described for the polyhedrin gene. To extend the Bruce spanworm sequence, a new 

primer (Table 1) was designed using NCBI Primer BLAST to acquire the flanking 

sequences at the leading and trailing ends of the read. These new primers were used with 

the same PCR protocol described above to amplify the sequence ends for the Bruce 

spanworm DNA extraction. 
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1.3.3 Polyhedrin and p74 gene comparison 

The resulting polyhedrin sequence for Bruce spanworm and p74 sequences for 

both species were aligned with published sequences acquired from GenBank (Table 2). 

The sequence previously submitted by Burand et al. (2011) (accession No. HQ663848.1) 

was used for the winter moth polyhedrin gene comparison. The sequences were aligned 

using Geneious 8.1.8 (Kearse et al., 2012), adjusted by eye, and then truncated to the 

length of the shortest included gene sequence. JModelTest was used in the CIPRES 

Science Gateway (Miller et al., 2010) to select the best base-pair substitution model for 

each locus. HKY was selected as the best substitution model for analysis of the 

polyhedrin gene fragment and GTR was selected as the best model for p74. To infer the 

phylogenic relationships, we conducted neighbor-joining, Maximum Likelihood, and 

Bayesian analyses. Neighbor-joining analyses were implemented in Geneious (Kearse et 

al., 2012) using a Jukes-Cantor genetic distance model for both genes and 1000 bootstrap 

replication. Maximum likelihood analyses were run using PhyML (Guindon et al., 

2010) using the designated substitution model for each locus. Support for each node was 

estimated using 1000 bootstrap replication. Bayesian analyses were run using MrBayes 

3.2.6 (Huelsenbeck and Ronquist, 2001) with the designated substitution model for each 

locus. A MCMC chain of 1,000,000 was used with a burn in length of 10%. MabrNPV 

(accession No. JQ798165.1), with the lowest percent pairwise identity with our 

sequences, was used as the outgroup for both trees. The computed output was visualized 

using FigTree Version 1.4.2 (Rambaut, 2014). 
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1.3.4 Cross infection trials 

To test for the possibility of cross infection, in spring 2014 and 2015 larvae of 

both winter moth and Bruce spanworm were exposed to virus from the other species. We 

ran four different combinations: (1) Bruce spanworm larvae exposed to Bruce spanworm 

virus, (2) Bruce spanworm exposed to winter moth virus, (3) winter moth exposed to 

Bruce spanworm virus, and (4) winter moth exposed to winter moth virus. Controls, with 

the larvae not receiving a virus inoculum, were also run for each larval type. Replicates 

were not balanced across treatments due to differences in rearing outcomes. 

Batches of eggs, still on the paper lining of the mating cups, were surface-

sterilized using a 2% bleach solution wash, followed by three rinses with distilled water, 

then allowed to air dry. The paper with the eggs was stapled to the inside of surface of the 

diet cup lid. A standard, high wheat germ gypsy moth diet was used (Bell et al., 1981). 

The diet was made at the USDA Animal and Plant Health Inspection Service lab at Otis 

ANGB, MA. The eggs and diet were moved from 2 °C storage to a 15 °C incubator to 

temperature induce hatch. The neonates were allowed to feed for 8–12 days with diet 

refreshed once during this time. When they reached their third instar (body ~1 cm long, 

head capsule 2 mm wide), individual larvae were placed singly in 1.5 mL Eppendorf 

microcentrifuge tubes and starved overnight. After starvation, the caterpillars were 

given a 0.5 cm3 cube of the same gypsy moth diet formulation treated with 8 µl of dilute 

NPV inoculum—the maximum volume the diet cube could absorb. 

The inoculum was prepared by combining 3–10 NPV-positive larval cadavers 

with 500 µL dH20, crushing with a sterile pestle, and allowing to settle overnight. The 

top layer was removed so that only the NPV concentrate at the bottom of the tube 
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remained, and an additional 500 µL dH20 was added. Separate inoculum solutions were 

made from infected winter moth cadavers and from infected Bruce cadavers. The 

resulting occlusion body (OB) concentrations were counted using a hemocytometer 

(American Optical Spencer Bright-Line, 1/10 mm deep) and the resulting concentration 

was found to be approximately 2.0 x 108 OB/mL for the winter moth inoculum and 1.0 x 

108 OB/mL for the Bruce spanworm inoculum. The winter moth inoculum was diluted to 

1.0 x 108 OB/mL and stored at 4 °C. 

Treated larvae were stored at 22 °C and monitored daily. If the infected diet was 

completely consumed, additional non-infected diet was added as needed. Any dead 

caterpillars were removed and immediately frozen at -20 °C. A subset of the resulting 

larval cadavers were tested for NPV using PCR and gel electrophoresis as described 

above. Prior to DNA extraction from the larval cadavers, the surfaces of the larvae were 

rinsed three times with distilled water to remove any superficial virus particles, such that 

only internal virus would be detected. 

1.4 Results 

1.4.1 Polyhedrin and p74 gene phylogenetic comparisons 

Larval cadavers were recovered from both winter moth and Bruce spanworm field 

collections with a higher percent mortality evident in both years from Bruce spanworm 

(Table 3). Using light microscopy on the recovered cadavers, occlusion bodies 

characteristic of NPV were found in both the winter moth samples as well as the Bruce 

spanworm. No noticeable difference in the shape was the occlusion body was noted. The 
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polyhedrin gene segment from Bruce spanworm (OpbrNPV_polh) had only an 83.0% 

sequence similarity to that of the Massachusetts winter moth (OpbuNPV_polh) strain 

(Table 4). However, the OpbuNPV and OpbrNPV sequences were more similar to each 

other than to the gene sequences of viruses from the other lepidopteran species included 

in the gene tree (Figure 1). Aligned p74 sequences for winter moth (OpbuNPV_p74) and 

Bruce spanworm (OpbrNPV_p74) were only 81.2% similar to one another (Table 5), but 

when considered with other Lepidoptera NPVs, also separated into their own clade 

(Figure 2). For both loci, OpbuNPV and OpbrNPV fell out with the Group II 

Alphabaculoviruses. 

1.4.2 Cross infection trials 

In the cross-infection trials, the Bruce spanworm virus (OpbrNPV) was able to 

infect Bruce spanworm larvae (26.7% infected) but was unable to infect winter moth 

larvae (0%; Table 6). Similarly, the winter moth virus (OpbuNPV) was able to infect 

winter moth larvae (41.1% infection) but was unable to infect Bruce spanworm larvae 

(0%). In a few cases (2 of 86 tested; 2.3%), when winter moth larvae were exposed to 

Bruce spanworm virus the larvae appeared to die from winter moth NPV infection, as 

determined by sequencing the NPV in the resulting cadavers. When Bruce spanworm 

larvae were inoculated with the same Bruce spanworm virus (OpbrNPV), no winter moth 

virus (OpbuNPV) was detected in the resulting cadavers. No virus was detected in the 

controls. 
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Table 1: Primers used for PCR and sequencing.   

 
 

 
Table 2: Lepidoptera species used to construct the NPV phylogenetic estimates. 

 
 

 
Table 3: Larval collections and mortality. 
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Table 4: Polyhedrin Gene Distance matrix. 

 
 

 
Table 5: p74 Gene Distance matrix. 

 
 

 
Table 6: Cross-infection trials larvae infection results. 
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Figure 1: Phylogenetic tree of the NPV polyhedrin gene nucleotides. The sequences 

acquired from winter moth (OpbuNPV) are shown in red and those from Bruce 
spanworm (OpbrNPV) are shown in blue. Node support values are Bayesian 
posterior probability (probability out of 1) with Neighbor Joining/Maximum 

likelihood support (support out of 100) below. 
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Figure 2: Phylogenetic tree of the p74 envelope protein gene. The sequences 
acquired from winter moth (OpbuNPV) are shown in red and those from Bruce 

spanworm (OpbrNPV) are shown in blue. Node support values are Bayesian 
posterior probability (probability out of 1) with Neighbor Joining/Maximum 

likelihood support (support out of 100) below. 
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1.5 Discussion 

The winter moth and Bruce spanworm have distinct NPV species, but the NPV 

are more closely related to each other than to viruses taken from other host species, 

including other Geometridae. The ObPol1/ObPol2 primer set, designed for winter moth, 

did not amplify Bruce spanworm virus DNA while the general polyhedrin primer, Polyh-

81F/Polyh-249R, amplified Bruce spanworm virus DNA, but not that of winter moth. 

This was the first indication that the two sequences were distinct. The closest match to 

the resulting Bruce spanworm NPV polyhedrin sequence on Genbank was that of 

Massachusetts winter moth NPV strain (OpbuNPV_polhMA) as published by Burand et 

al. (2011). When compared to sequences obtained from a United Kingdom winter 

moth also published in Burand et al. (2011), the match was just slightly less similar. 

However, when compared to other Lepidoptera NPV sequences, including other NPVs 

derived from geometrids (Ectropis obliqua, Buzura suppressaria, and Lambdina 

fiscellaria), OpbuNPV matched OpbrNPV more closely than any other sequence. The 

overarching phylogenetic relationships of the viruses between the two trees are slightly 

different, but in both trees the winter moth and Bruce spanworm NPVs formed part of a 

clade within the Alphabaculovirus Group 2 sequences. Not surprisingly, the relationships 

are more resolved in the p74 tree than in the polh tree. The polh region has been 

traditionally used for simple molecular identification and has many published sequences 

available for comparison; however, its utility in resolving phylogenetic relationships has 

been questioned (Lange et al., 2004; van Oers et al., 2004). The p74 gene has been shown 

to be conserved and highly host specific, thus providing a more reliable phylogenetic tree 

(Haas-Stapleton et al., 2004). Overall, the trees show that the NPVs infecting these two 
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congeners are closely related Group 2 Alphabaculoviruses, but they have distinct viral 

lineages. 

Previous studies examining cross-infectivity have indicated that the host range of 

NPVs is highly variable. Many tend to have narrow host ranges, confined to a single 

species or family, but a few (e.g. AfMNPV and AcMNPV) have broad host ranges 

extending across multiple families of Lepidoptera (Hostetter and Puttler, 1991; Cory and 

Myers, 2003). Our cross-infection trials show that despite the close phylogenetic 

relationship between Bruce spanworm and winter moth and the parallel relationship 

between their respective NPVs, the viruses cannot cross-infect and are specialized on a 

single host species. We know that the virus inoculum was viable; when Bruce spanworm 

larvae were given NPV derived from Bruce spanworm, some of the Bruce spanworm 

cadavers showed detectable levels of Bruce spanworm NPV. Similarly, when winter 

moth larvae were given winter moth derived NPV, some of the winter moth cadavers 

showed detectable levels of winter moth NPV. This shows that, contrary to previous 

suggestions (Neilson, 1965), winter moth does not appear to be vulnerable to Bruce 

spanworm NPV and thus, winter moth’s invasion is not likely mediated by Bruce 

spanworm’s virus. This also means that if winter moth virus were to be considered as a 

microbial control in North America, it is unlikely to affect Bruce spanworm populations. 

Interestingly, some winter moth NPV was detected when winter moth was 

exposed to Bruce spanworm NPV. Covert infections can be triggered and can switch to 

overt infections (Murillo et al., 2011; Cory, 2015). It is possible that when the winter 

moth larvae were exposed to the Bruce spanworm virus, this stress served as the trigger 

inducing an overt expression of the previously covert (latent) OpbuNPV infection in the 
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eggs. Similar results have been found in other lepidopteran NPV studies (Jurkovicova, 

1979; McKinley et al., 1981; Hughes et al., 1993; Cooper et al., 2003); these studies 

show that a host’s covert infection can be activated when exposed to a similar but 

heterologous NPV. It is also possible that our results reflect contamination by the winter 

moth virus either in the egg sterilization process, during larval feeding, or in the 

inoculum; however, this is unlikely as no control samples showed contamination and 

when Bruce spanworm larvae were given the same inoculum, no winter moth NPV was 

detected any the resulting cadavers. 

To compare the viruses for this study, winter moth and Bruce spanworm larvae 

were collected from the field. As was found in other studies (Elkinton et al., 2015), 

winter moth was abundant, easy to find across eastern Massachusetts, and maintained 

high density populations year to year. On the other hand, Bruce spanworm larvae could 

only be found in small, isolated populations which varied year to year. The Bruce 

spanworm collection site in Maine used in 2013 was checked the following year (2014) 

and Bruce spanworm densities were found to have declined precipitously, likely due to an 

epizootic (Brown, 1962; Rose and Lindquist, 1997). Similarly, in our rearing of field-

collected larvae, Bruce spanworm experienced more mortality than winter moth. These 

observations reflect the difference in population dynamics between the two species. 

While Bruce spanworm larvae experienced higher mortality rates, there was no 

notable trend in the percent of cadavers with NPV between the two species. The low rates 

of NPV infection in our winter moth larvae field collections are consistent with those 

found in other studies both in the introduced and native range of winter moth. In New 

England, where the current study was conducted, comparable incidences of larvae with 
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NPV have been noted (Burand et al., 2011; O’Donnell, 2015). In prior introductions in 

Nova Scotia and British Columbia, disease was also not noted as an important source of 

mortality in winter moth (Cunningham et al., 1981; Roland and Embree, 1995). In its 

native range, winter moth experiences NPV, but historically at low prevalence levels and 

seemingly without significant effects on its population dynamics (Feeny, 1970; Varley et 

al., 1973; Wigley, 1976). NPV caused mortality above 50% only in outbreaks of winter 

moth on heather in Orkney, U.K. (Graham et al., 2004) likely due to suboptimal food 

quality, which has been shown to correlate with incidences of NPV (Raymond et al., 

2005; Raymond and Hails, 2007). For Bruce spanworm, the high larval mortality, but 

relatively low NPV infection may be because there is another dominant source of 

mortality in Bruce spanworm. 

Overall, our results do not support the suggestion that previously reported 

epizootics of NPV in winter moth in Canada originated from Bruce spanworm. Similarly, 

in Massachusetts, Bruce spanworm virus is likely not mediating the winter moth 

invasion. However, it appears that Bruce spanworm larvae experience more mortality 

than winter moth larvae, thus further work should be conducted to study the role other 

pathogens and parasites on the populations of these two species. 
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CHAPTER 2 

IDENTIFICATION AND IMPACT OF HYPERPARASITOIDS AND 

PREDATORS AFFECTING CYZENIS ALBICANS (TACHINIDAE), A 

RECENTLY INTRODUCED BIOLOGICAL CONTROL AGENT OF WINTER 

MOTH (OPEROPHTERA BRUMATA L.) IN THE NORTHEASTERN U.S.A.  

2.1 Abstract 

The success or failure of an introduced biological control agent may depend on its 

rate of mortality from disease, predation, and hyperparasitism. Cyzenis albicans Fallén 

(Diptera: Tachinidae) was introduced to the northeastern U.S. as a biocontrol agent of the 

invasive species winter moth, Operophtera brumata L. (Lepidoptera: Geometridae). This 

study aimed to determine the rates of mortality from predation by generalist ground 

predators and hyperparasitism of C. albicans puparia, identify any hyperparasitoids, and 

assess the impact of predation and hyperparasitism on the potential success of C. albicans 

in controlling the winter moth. Mortality of C. albicans puparia was primarily due to 

predation, but there was also hyperparasitism. Predation and parasitism of C. albicans 

puparia were consistently high across the six study sites and two years of study, but 

somewhat lower than was reported from British Columbia, where successful 

establishment of C. albicans in the 1970s was followed by a decrease in winter moth 

densities. In this study, three genera of ichneumonid hyperparasitoids were detected and 

identified using a combination of morphological and molecular approaches: Phygadeuon 

(1 species), Pimpla (2 species), and Gelis (2 species), all of which contain species with 

broad host ranges and were likely acting as facultative hyperparsitoids. We conclude that 
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while total mortality of C. albicans puparia is high, it is unlikely to have a significant 

effect on biological control of winter moth in this system, although it may explain why C. 

albicans has been slow to establish in this region. Our study emphasizes the importance 

of assessing the mortality of introduced biological control agents caused by native 

predators and hyperparasitoids. 

2.2 Introduction  

High mortality from disease, predation, and hyperparasitism has the potential to 

interfere with introduced parasitoids in biological controlprograms and can reduce their 

efficacy against targeted pest species in a diversity of insect taxa (Ehler, 1979; Hajek, 

2004; Kellogg et al., 2003; McDonald and Kok, 1991; McNeil and Rabb, 1973; Schooler 

et al., 2011; Strauss, 2012; Sullivan and Völkl, 1999). Natural enemy cultures established 

during foreign exploration are routinely screened for any hyperparasitoids prior to 

introduction (Goldson, et al., 2014; Van Driesche et al., 2008). However, whereas 

hyperparasitism may exist in a food web, it may or may not affect the effectiveness of the 

natural enemy (Flanders, 1963; Hassell, 1969, 1980; McNeil and Rabb, 1973; Nofemela, 

2013). Although the impact of hyperparasitoids in biological control programs may be 

important, relatively few assess the impact of hyperparasitism and other sources of agent 

mortality during post-release monitoring (Mills and Gutierrez, 1996; Schooler et al., 

2011). 

Classical biological control has been implemented in the northeastern United 

States to manage outbreaks of winter moth, Operophtera brumata L., an invasive 

geometrid that was accidently introduced in the 1990s and since has been causing heavy 
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defoliation to hardwood trees in both urban and forest settings, as well as damage to 

commercial blueberry, apple, and cranberry crops (Elkinton et al., 2014a; Simmons et al., 

2014). Since its initial introduction near Boston, MA, winter moth has spread west into 

central Massachusetts, south into Rhode Island and Connecticut, and north along coastal 

New Hampshire and Maine (Elkinton et al., 2010, 2014b). Following earlier successes 

using the tachinid fly Cyzenis albicans (Fallén) as a classical biological control agent in 

Nova Scotia and British Columbia, Canada (Murdoch et al., 1985; Roland and Embree, 

1995), it was first introduced to the northeastern United States in 2004. 

In the northeastern U.S., eggs of winter moth hatch at the time of bud-break of its 

host plant (Elkinton et al., 2014a). Cyzenis albicans lays microtype eggs on the edge of 

partially defoliated leaves in the spring, and a portion of the eggs are inadvertently 

ingested by late instar winter moth larvae (Embree and Sisojevic, 1965; Hassell, 1969, 

1980). When a fly egg is consumed by a winter moth larva, it hatches and migrates to the 

larva’s salivary glands where it remains until the caterpillar drops to the soil and pupates 

in mid-late May (Elkinton et al., 2014a). Cyzenis albicans develops fully inside its host 

pupa and emerges as an adult the following spring (Embree and Sisojevic, 1965; Hassell, 

1980). Because C. albicans spend the majority of their lives (10–11 months) in the soil as 

puparia, they are highly vulnerable to pupal mortality by predation and parasitism 

(Hassell, 1969; Roland, 1990). In contrast, healthy winter moth pupate for 6–7 months, 

emerge as adults in early winter from late November through early January, and then 

overwinter as eggs (Elkinton et al., 2014a). 

For the winter moth biological control program in the northeastern U.S., C. 

albicans flies were collected from Vancouver Island, British Columbia starting in 2004 
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and first released in the northeastern U.S. in spring 2005; subsequent collections from the 

same locations in British Columbia were released the following year and every spring 

until the final collection in 2014, at which time the flies had established at 11 sites 

(Elkinton et al., 2014a). Subsequent collections of flies were made from sites with high 

parasitism in Massachusetts for release in winter moth outbreak sites in Massachusetts, 

Connecticut, Rhode Island, and Maine. Analysis of the population dynamics of C. 

albicans, and the degree of winter moth population control it provides, are ongoing 

(Elkinton et al., 2014a).  

Studies of pupal mortality in the winter moth-C. albicans system in the 

northeastern United States revealed the presence of hyperparasitoids (HJB, pers. observ.). 

Previous studies found hyperparasitism of C. albicans in invasive winter moth 

populations in British Columbia (Humble, 1985; Roland and Embree, 1995). Although 

hyperparasitism was found to be a cause of Cyzenis spp. mortality in British Columbia 

(Humble, 1985; Roland and Embree, 1995), subsequent control of winter moth by C. 

albicans was still deemed a success (Murdoch et al., 1985; Roland, 1990; Van Driesche 

et al., 2008). Hyperparasitism of C. albicans was not detected in Nova Scotia (Embree, 

1965; MacPhee et al., 1988; Pearsall and Walde, 1994), which is closer in geographic 

proximity to the population studied here. However, the goal of the investigations in Nova 

Scotia was not necessarily detection of hyperparasitism, so any hyperparasitoids may 

have been missed. Hyperparastism was also noted in studies conducted on native 

populations of winter moth and C. albicans in England (Hassell, 1969, 1980). Little is 

known about hyperparasitoids of C. albicans in the northeastern U.S. other than that they 

are present. 



 

26 

 

In this study, we investigated hyperparasitism of C. albicans puparia by deploying 

sentinel winter moth cocoons parasitized by C. albicans. More specifically, this study 

aimed to (1) quantify the overall mortality and hyperparasitism of C. albicans puparia, 

(2) identify the species of hyperparasitoids present, and (3) infer the potential impact of 

hyperparasitism on biological control of winter moth by C. albicans. 

2.3 Methods 

2.3.1 Deployment of sentinel puparia 

Pupae deployed as sentinels were reared from spring collections of larvae 

obtained from long-term study plots in eastern Massachusetts (Elkinton et al., 2014a). 

Larvae were reared in batches of up to 500 in ventilated 20 L (5 gallon) buckets with 

foliage from the collection tree species. When larvae showed signs of pupation 

(thickening body shape and rolling a leaf edge over themselves), sifted peat moss was 

added to the bottom of the buckets for pupation. Peat moss was pre-sifted through a 

screen (with 3mm x 3mm openings). This allows for later removing peat through the 

same screen, while not letting pupae pass through. The resulting pupae were non-

destructively evaluated under a dissecting microscope (M5A Wild Heerbrugg stereo) for 

C. albicans parasitism. Winter moth pupae were determined as parasitized if the winter 

moth integument flaked away easily and thus revealed the darker, smoother integument 

of a C. albicans puparium within. The C. albicans puparia were set aside for the study. 

Cyzenis albicans puparia were deployed in sets of 100 puparia at six sites across 

the northeastern U.S. from 2015 to 2016, and data on all hyperparasitism and mortality 
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were recorded. The study sites were chosen to coincide with winter moth long-term study 

sites and to reflect a range of C. albicans establishment (Elkinton et al., 2014a). This 

included sites that have C. albicans establishment, as well as sites that do not have C. 

albicans introduced yet. The study sites were all in mix hardwood forests dominated by 

red oak (Quercus rubra) and red maple (Acer rubrum). To estimate winter moth pupae 

density and percent C. albicans parasitism, 16 buckets (16 cm width x 28 cm length x 10 

cm height), filled 3 cm deep with sifted peat moss, were placed under each study tree in 

late May before pre-pupal winter moth caterpillars began to spin down from the tree 

canopies at each site. Each bucket was placed at a randomly selected distance between 

the tree stem and the edge of the tree canopy along one of eight evenly spaced directions 

radiating from the tree stem as described in Varley et al. (1973) and Whited (2007). 

Parasitism rates on winter moth by C. albicans were estimated from collections of 100 to 

500 late instar larvae collected from a range of host trees at each site. From these values, 

we calculated the corresponding C. albicans density for each plot except for the 

Kingston, RI site, from which no density estimates were taken. 

The C. albicans puparia were deployed at six sites each year of the study (Table 

7) in two or three consecutive rounds of deployments that ran from mid-summer to mid-

autumn. In 2015, two rounds were completed, whereas in 2016 three rounds were 

completed. In 2015, the first round ran from 5 August until 18 September 2015, and the 

second round ran from 18 September until 31 October 2015. In 2016, the first round ran 

from 7 July until 8 August 2016, the second round ran from 8 August until 18 September 

2016, and the third round ran from 18 September until 1 November 2016. 
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For each of the two or three consecutive deployments per year, the sets of 100 

puparia each were deployed haphazardly under the drip line of a red oak (Quercus rubra 

L.) at each study site. The puparia were secured to burlap squares in their cocoons using 

beeswax (Elkinton et al., 1996; Whited, 2007). The purpose of the burlap was to enable 

us to relocate the deployed cocoons later and provide conclusive evidence that predators 

had removed a cocoon. Earlier experiments by Whited (2007) showed that predation rates 

of winter moth pupae deployed in this way were indistinguishable from those of cocoons 

buried directly in the soil without any manipulations. The cocoons containing the puparia 

on their burlap squares were buried 2.5 cm deep in the soil in sets of five tethered 

samples, meaning that five burlap squares with their puparia were secured approximately 

0.5m apart along a nylon string and buried as a set. This depth was chosen to mimic 

natural winter moth pupae depths, which are known to be buried but within the upper 5 

cm of soil (Embree, 1965; East, 1974; Holliday, 1977). After each round, the puparia 

were retrieved and stored at 12 °C in an incubator (Percival) in constant dark until 

analysis. 

2.3.2 Examination and dissection of puparia 

The remains of the C. albicans puparia were examined and scored as survived, 

diseased, preyed upon, or parasitized. Healthy, intact puparia were returned to their 

cocoon (original cocoon made by the winter moth during pupation) to protect them from 

jostling and maintain their moisture balance and then removed from their burlap square. 

To allow the fly or any hyperparasitoids to develop, intact puparia were stored in the 

Percival at 12 °C in batches of up to 50 individuals in sterile, 100mmÅ~15mm 
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polystyrene petri dishes (Fisherbrand) with a mesh lid for ventilation. All other burlap 

squares and puparia were discarded after being scored. The overwintering storage 

temperature of the puparia was lowered to 9.5 °C at the beginning of December, to 5 °C 

at the end of December, and to 2 °C in early January to parallel outdoor ground 

temperatures. During this time, they were watered once a month with water treated with 

sodium propionate to prevent growth of mold. Starting in late March, the storage 

temperature was increased again to 12 °C in increments of 4 °C until they were taken out 

of storage and kept at room temperature in April. The intact puparia were checked for 

hyperparasitoids (either emerged or pharate adults), and pupae scoring records for each 

deployment were updated to account for any additional parasitism that was noted. Any 

samples that had hyperparasitoid adults or larvae were stored at −20 °C for follow up 

morphological and molecular identification. 

2.3.3 Mortality estimate 

Mortality of puparia were estimated for each deployment of sentinel cocoons, and 

cumulative mortality was estimated for each year. The proportion of total puparia that did 

not survive was calculated by dividing the sum of those puparia that were preyed upon or 

parasitized for each deployment by the total number of pupae. Predation was inferred for 

cocoons and/or pupae that had been pulled off the burlap square, puparia with only the 

crushed cuticle remaining, puparia with holes chewed in them, and evidence of teeth or 

claw marks left in the wax. Parasitism was inferred for any puparia with distinct wasp 

emergence holes and puparia that yielded wasp adults or larvae. The total number of 

puparia that did not survive was tallied as the sum of samples eliminated by predation 



 

30 

 

and parasitism. For the purposes of this study, we excluded mortality due to unknown 

causes, including potentially diseased, moldy, or desiccated samples. Such puparia 

accounted for a small proportion of mortality (< 6%) and possibly occurred as a result of 

rearing conditions. 

The proportion of puparia that suffered predation was calculated by dividing the 

number of puparia with evidence of predation by the total number of puparia. 

Hyperparasitism was subsequently calculated as a proportion out of puparia that 

remained after predation (i.e. number of pupae that survived predation that were 

hyperparasitized divided by the number of pupae surviving predation). This way of 

calculating mortality sequentially was employed by Varley and Gradwell (1968) in their 

work on winter moth in Europe and was also inherent in the marginal rate calculations 

introduced by Royama (1981) and Elkinton et al. (1992). The calculations include the 

observation that parasitism rates can be obscured by predation rates because predation 

will always ‘win’ over parasitism. Therefore, if predators do not discriminate between 

healthy and parasitized C. albicans puparia, then predators can remove a proportion of 

the parasitized puparia before we have a chance to calculate parasitism rates. The 

marginal rate of hyperparasitism accounts for this. 

Mortality rates were converted to survival rates (Si) by subtracting the proportion 

dying from one (1−Mi). These then were standardized to a mean daily survival rate across 

42 days (6 weeks) by taking the nth root of the proportion surviving, where n is the 

number of days deployed. The daily survival rates were then raised to an exponent of 42 

to yield the expected survival over 42 days (S42=[(Si)1/n]42). This conversion enabled us to 

compare mortalities across years and months in the face of small differences in the 



 

31 

 

number of days (32–45) that puparia were deployed. The normalized mortality 

proportions (M42) were calculated as M42=1−S42. Cumulative survivorship values were 

calculated as the product of successive normalized survivorships of each deployment 

(ST=1st deployment, S42 x 2nd deployment, S42 x 3rd deployment, S42). The cumulative 

predation, hyperparasitism, and mortality values were calculated by subtracting the 

cumulative survival of each respectively from 1 (e.g. MT=1−ST). 

2.3.4 Statistical analysis 

Mortality results were visualized using JMP Pro 12.1.0 (SAS Institution Inc.) and 

statistical analyses run using RStudio 1.0.136 and JMP Pro. With the exception of the 

analysis of hyperparasitism across the 2016 season (which used all three deployments), 

all statistical analyses used only the data from two overlapping 2015 and 2016 

deployments (i.e. for consistency, the first deployment was not used from the 2016 

dataset). The effect of predation and parasitism, C. albicans parasitism status, 

deployment period, and density of winter moth pupae and C. albicans puparia on 

cumulative total mortality, cumulative hyperparasitism, cumulative predation, and 

standardized hyperparasitism were tested using a logistic generalized linear regression 

model with a quasibinomial fit. When multiple years were included in the analysis, year 

was included in the model as an effect, and potential interactions between year and 

mortality were considered. 



 

32 

 

2.3.5 Morphological identification 

Vouchers for hyperparasitoid species are deposited in the University of 

Massachusetts Insect Collection, Amherst, MA. Emerged adult wasps from the 2015 

collection were tentatively divided into three groups based on morphological similarity, 

and 10 representative adult specimens were sent to the fourth author (RRK) for 

identification. One of the groups had only four specimens and, for this group, all were 

sent for morphological identification, and thus DNA molecular identification was not 

undertaken. Specimens from the three groups were examined using a Leica M205 A 

stereomicroscope with 10X and 25X oculars. They were identified to genus using keys in 

Townes (1969, 1970) and then sorted into morphospecies. The fourth author (RRK) 

attempted to identify one morphospecies to species using keys in Townes et al. (1960); 

the other morphospecies are in genera with high species richness that lack identification 

keys for the Nearctic Region (Yu et al., 2012). 

Authoritatively determined specimens of Phygadeuon dumetorum Gravenhorst 

and Phygadeuon subfuscus Cresson in the Smithsonian Institution National Museum of 

Natural History (USNM) were examined. The former has been reported from C. albicans 

in England (Hassell, 1969), and the latter has been reported from four tachinid species in 

the Nearctic Region (Yu et al., 2012). Authoritatively determined specimens of Pimpla 

contemplator (Müller), Pimpla disparis (Viereck), Pimpla turionellae (L.), and Pimpla 

hesperus (Townes) in the USNM were also examined. Pimpla contemplator, P. disparis, 

and P. turionellae have been introduced into North America to control winter moth and 

other lepidopteran pests (Graham, 1958; Yu et al., 2012; Quicke, 2015). In particular, P. 
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turionellae was introduced to Nova Scotia as a biological control agent of winter moth 

(Graham, 1958) and has also been reported from the tachinid Compsilura concinnata 

(Meigen) (Sharov and Izhevskiy, 1987). Pimpla hesperus has been reported as a 

parasitoid of winter moth and its native congener Bruce spanworm Hulst (Operophtera 

bruceata) in British Columbia (Humble, 1985). Lastly, four species of Gelis (i.e., Gelis 

areator Panzer, Gelis acarorum L., Gelis discedens Förster, and Gelis rufogaster 

Thunberg) have been reported as associated with winter moth in Europe (Sechser, 1970; 

Yu et al., 2012); comparisons were made with specimens in the USNM identified as each 

of those species. One puparium each associated with a Phygadeuon and Pimpla wasp, 

and two puparia associated with Gelis wasps, were dissected thoroughly for remnants of 

parasitism, particularly host remains. 

2.3.6 Molecular identification 

All remaining hyperparasitoid specimens from the 2015 collection and all of the 

2016 collection were prepared for DNA sequencing. These samples represented 

individuals from all wasp taxa, both life stages (larvae and adult), and spanned all the 

study sites. 

DNA was extracted following the QIAGEN DNeasy Blood and Tissue Kit 

protocol for purification of total DNA from animal tissues with the following 

modifications: the DNA was eluted twice in 100 μl Buffer AE instead of 200 μl (Step 7). 

The DNA extractions were stored at −20 °C. A master mix was prepared using the 

following amounts per sample: 17.3 μl nuclease free water, 0.5 μl dNTPs, 5 μl GoTaq 

Buffer, 0.2 μl GoTaq, and 0.5 μl of both the front and reverse primer. The CO1 primers 



 

34 

 

LCO/HCO (Folmer et al., 1994) were used with the temperature profile outlined by 

Hebert et al. (2003). Samples that produced bands of the expected fragment size when 

run on an agarose gel were prepared for sequencing. A master mix of Exonuclease 1 

(Thermo Scientific) and Thermolabile Recombinant Shrimp Alkaline Phosphatase (New 

England BioLabs) was prepared following the ThermoScientific protocol. The resulting 

product was submitted to Yale University’s DNA Analysis Facility on Science Hill for 

Sanger sequencing.  

The sequences obtained were visualized and forward and reverse sequences were 

aligned using Geneious R8.1.8 (Biomatters Ltd.). The ends were trimmed so that all 

sequences were high quality (> 90% high quality sequences). Consensus sequences were 

created from clusters of sequences that had identical sequences. 

We used the National Center for Biotechnology Information (NCBI) Basic Local 

Alignment Search Tool (GenBank BLAST) and the Barcode of Life Database (BOLD) to 

locate the closest sequence matches to each of our consensus Pimpla and Phygadeuon 

sequences. For the Phygadeuon phylogenetic comparisons, we used both repositories to 

download representative sequences for the ichneumonids Phygadeuon, Mastrus, and 

Buathra. These three genera were searched as Humble (1985) reported Phygadeuon sp. 

from undetermined Cyzenis (i.e. either C. albicans or Cyzenis pullula, Townsend), 

Mastrus sp. from ichneumonid primary parasitoids of winter moth, and Buathra 

dorsicarinata (Pratt) as a primary parasitoid of winter moth in British Columbia. Multiple 

representatives of each genus and species were detected, but we chose the first listing of 

each replicate. Following morphological work, additional Phygadeuon sequences were 

added to the analysis. We then ran a Geneious multiple alignment with our consensus 
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sequences and the downloaded sequences and trimmed the ends to the shortest sequence. 

A Tryponinae sequence (accession JX833193.1) was included as the outgroup. We 

looked for evidence of nuclear mitochondrial DNAs (NUMTs) or pseudogenes by 

considering the translation (Using transl_table 5 for Invertebrate Mitochondrial DNA) of 

our CO1 fragment sequences. 

JModelTest was used in the CIPRES Science Gateway (Miller et al., 2010) to 

select the best base-pair substitution model for each locus. HKY+G was selected as the 

best substitution model for analysis. We conducted neighbor-joining, Maximum 

Likelihood, and Bayesian analyses to assess genetic distance and phylogenetic 

relationships. Neighbor-joining analyses were implemented in Geneious (Kearse et al., 

2012) using 1000 bootstrap replication and a majority rule (50%) consensus threshold. 

Maximum likelihood analyses were run using PhyML (Guindon et al., 2010) with 100 

bootstrap replications. Bayesian analyses were run using MrBayes 3.2.6 (Huelsenbeck 

and Ronquist, 2001) with a MCMC chain length of 1,000,000 and a burn in length of 

10%. The computed outputs were visualized using FigTree Version 1.4.2 (Rambaut, 

2014). 

2.4 Results 

2.4.1 Pupal mortality  

Cyzenis albicans experienced consistently high mortality throughout the study  

(Figure 3). Cumulative mortality was not significantly different between years (df=2,1, 

χ2=0.001, p=0.98), but there was a significant difference (df=2,1, χ2=6.62, p=0.037) 
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between mortality types (mortality due to predation, or mortality due to hyperparasitism). 

In both years, predation was the largest contributor to total mortality and was not 

significantly different from the total mortality (χ2=0.90, p=0.34). Mortality due to 

hyperparasitism was significantly lower than predation (χ2=6.5, p=0.011), but was 

observed even at sites where C. albicans has not yet been introduced or established as a 

biocontrol agent. While there was no significant difference (df=1,22, χ2=0.25, p=0.61) in 

hyperparasitism at sites where C. albicans was present or absent, there was a trend 

toward higher hyperparasitism in sites where C. albicans was present (Figure 4). Sentinel 

puparia deployed earlier in the season (July-August) had the highest percent 

hyperparasitism, but there was no significant difference (df=2,15, χ2=2.5, p=0.29) in 

hyperparasitism among deployment periods (Figure 5). Neither winter moth pupae nor C. 

albicans pupal densities were significant predictors of cumulative total mortality (df=1,8, 

χ2=0.0001, p=0.99 and df=1,9, χ2=0.018, p=0.89, respectively) or hyperparasitism 

(Figure 6, df=1,8, χ2=0.62, p=0.43 and df=1,9, χ2=0.48, p=0.49, respectively) and in all 

fit models, year did not have a significant effect (p > 0.44). While there was no 

significant effect of density, there was a trend of more hyperparasitism at sites with high 

pupal and C. albicans densities, and the site with the highest hyperparasitism in the 2016 

data (Yarmouth) was also the site with the highest C. albicans density. 

2.4.2 Hyperparasitoid identification by morphology 

Three ichneumonid wasp genera were identified using morphological features: 

Phygadeuon (Cryptinae), Pimpla (Pimplinae), and Gelis (Cryptinae). All three genera 
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contain generalist parasitoids with few records of parasitism on tachinids; the species 

here likely were facultative or accidental hyperparasitoids of C. albicans. 

Records of Phygadeuon attacking Cyzenis are limited to P. dumetorum and P. 

elegans (Förster) parasitizing C. albicans in Europe (Hassell, 1969; Sechser, 1970) and 

an undetermined species of Phygadeuon reported from Cyzenis spp. (either C. albicans or 

C. pullula) in British Columbia (Humble, 1985). However, other species of Phygadeuon 

have been reported as parasitoids of tachinids in other genera, including P. subfuscus in 

the Nearctic Region (Yu et al., 2012). There are no specimens of P. elegans in the USNM 

and only one male specimen of P. dumetorum. Based on examination of morphological 

features, the male Phygadeuon specimens we obtained were similar to, but probably not 

conspecific with, P. dumetorum. However, our Phygadeuon specimens were 

morphologically similar to specimens of P. subfuscus in the USNM. There are also two 

female specimens in the USNM identified as P. subfuscus that are potentially a species 

different than the other six. Thus, our Phygadeuon specimens are possibly P. subfuscus, 

but unequivocal identification is not possible at this time due to the aforementioned 

ambiguity in the USNM specimens. Dissection of a puparium associated with a 

Phygadeuon wasp yielded only the wasp cocoon and remains of a flattened late fly pupa 

located between the wasp cocoon and fly puparium confirming hyperparasitism and 

suggesting no evidence that a host other than the fly was parasitized. 

Species of Pimpla have been previously reported from winter moth as primary 

parasitoids (Sechser, 1970; Humble, 1985; Yu et al., 2012) but not as hyperparasitoids. 

Pimpla hesperus (previously Coccygomimus hesperus) was reported by Humble (1985) 

as a parasitoid of winter moth and Bruce spanworm in British Columbia and P. 
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turionellae, P. contemplator, and P. disparis were all introduced into Canada and the 

U.S. to control winter moth and other lepidopteran pests (Graham, 1958; Quicke, 2015; 

Yu et al., 2012). However, their potential as hyperparasitoids of Cyzenis is unknown. The 

specimens reared in this study were not considered conspecific with specimens in the 

USNM determined as P. hesperus, P. contemplator, P. disparis, and P. turionellae based 

on examination of specimens in the USNM identified as those species. Dissection of a 

puparium associated with a Pimpla specimen yielded only the wasp cocoon and remains 

of a flattened late fly pupa located between the wasp cocoon and fly puparium confirming 

hyperparasitism and suggesting no evidence that a host other than the fly was parasitized. 

There are no records of any Gelis spp. as parasitoids of tachinids in Yu et al. 

(2012), but Sechser (1970) found G. areator and an unknown Gelis sp. attacking other 

parasitoids of winter moth in Europe, but not C. albicans. Additionally, there are records 

of three other Gelis spp. (G. acarorum, G. discedens, and G. rufogaster) associated with 

winter moth in Europe (Yu et al., 2012). The four Gelis specimens recovered from 

puparia in this study were compared with specimens in the USNM identified as each of 

those four species, but none of these appeared to be conspecific with the two species 

reared in this study. A puparium associated with each of the Gelis species was dissected; 

both contained a wasp cocoon and the remains of a flattened late fly pupa located 

between the wasp cocoon and fly puparium. One puparium also contained a piece of 

hardened, desiccated tissue that was possibly the remains of a wasp larva. It is possible 

that the hardened tissue is the remains of a host attacked by Gelis; thus, the Gelis larva 

may have attacked a parasitoid of the fly rather than the fly itself. 
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2.4.3 Hyperparasitoid identification by molecular techniques 

One hundred and thirty-seven samples (82.5% of the total sequenced) 

yielded high quality CO1 sequences (> 95% high quality sequences, after trimming the 

ends). Comparison of the sequences from our samples to those available from GenBank 

and from BOLD supported the morphological identifications of Phygadeuon and Pimpla. 

Of our sequences, 129 were Phygadeuon (94.2%) and eight (5.8%) were Pimpla. 

Molecular analyses were not conducted on specimens of Gelis because the few specimens 

reared were all used for morphological identification. The Gelis specimens identified 

using morphological features (n=4) were considered two species. 

After aligning and trimming the ends of the sequences, the Phygadeuon sequences 

were 609 bp long and fell into two clades (Table 8, Figure 7). One group (referred to here 

as Clade 1; GenBank Accession numbers MG491041 – MG491040) had 79 samples, and 

the other (referred to here as Clade 2; GenBank Accession numbers MG490987 – 

MG491034) had 48 samples. Clade 2 had 100% sequence identity within the samples, 

whereas Clade 1 could be further broken down into two subgroups – one with 73 samples 

and one with 6 samples – each with 100% sequence identity within the subgroups and a 

distance of 0.3% between the two subgroups (Clade 1.1 and Clade 1.2) or two base pairs. 

The two clades (Clade 1 and 2) had 1.1 to 1.5% sequence difference between each other 

representing a difference of 7–9 base pairs. However, analysis of corresponding 

ecological data (collection year, site, time period, life stage) between individuals from the 

two different clades yielded no trends to predict assignment to either Phygadeuon clade. 
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The subset of Phygadeuon specimens identified using morphological features (n=8) were 

considered one species. 

The closest sequence matches to our Phygadeuon sequences were unidentified 

Hymenoptera species and Cryptinae sp. available from GenBank (Figure 7). These were 

all matches of between 98.8% and 100% (Table 8). Our Phygadeuon Clade 1.1 consensus 

sequence had a 100% sequence match to an unidentified Hymenoptera sequence 

(GenBank Accession KM997587.1) and a Cryptinae sp. (KR782755.1) both collected in 

Ontario. There were no 100% matches to the consensus sequence for Phygadeuon Clade 

1.2. The Phygadeuon Clade 2 consensus sequence matched a Cryptinae sp. from Nova 

Scotia (KR784654.1) and an unidentified Hymenoptera species from Ontario 

(KM997587.1). Our sequences clearly were not conspecific with any previously 

published sequences of Buathra or Mastrus available from GenBank or BOLD.  

After trimming the ends, the Pimpla CO1 sequences (eight sequences) 

were 620 bp long. These eight sequences represented eight different individuals collected 

from five different sites (from samples collected in 2016 from Kingston, RI, Hingham, 

MA, Wellesley, MA, and Hanson, MA). Of these, five sequences were very similar to 

each other (sequence identity of 99.2–100%, representing 0–5 bp differences) and were 

homologous (99–100% identity) to the first 100 samples available from NCBI GenBank 

and BOLD, which were all identified as Pimplinae sp. (e.g. GenBank Accession 

KR409035.1 and KJ167171.1) or Pimpla sp. (e.g. KR809211.1 and KR932958.1). The 

next closest homologous sequences listed were Pimpla nuda Townes (BOLD Accession 

numbers: CNFNR3907-14, CNGBG1989-14, CNGSF433-15, CNGSF436-15) and 

Pimpla stricklandi (Townes) (BOLD Accession numbers: BBHYK694-10, GMODL399-
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15) but with a sequence identity of 92.6–94.3%. The remaining three Pimpla sequences 

(from samples collected in Kingston, RI and Hanson, MA in 2016) were identical to each 

other (sequence identity of 100%) and homologous (97.9–100%) to samples in the 

database labeled Pimpla aequalis Provancher (e.g. accessions AF146681.1, KR791821.1, 

KJ445028.1). The sequence identity between our two clades of hyperparasitic Pimpla 

wasps (the five individuals that most closely matched sequences in GenBank and BOLD 

that were labeled Pimplinae sp./Pimpla sp. versus the three sequences that most closely 

matched sequences labeled P. aequalis) was 90.0–90.3% (or 60–62 bp difference). The 

subset of Pimpla specimens identified using morphological features (n=3) were 

considered one species. No tree showing these comparisons is presented in this 

manuscript as it will be presented in a subsequent manuscript focusing on the identity, 

life history, and role of pimpline wasps in the winter moth system. 

2.4.4 Hyperparasitoid abundance 

Identification of hyperparasitoid specimens using a combination of morphological 

and molecular techniques was successful in identifying a large proportion of wasp 

samples (75%) leaving only a small percentage, mostly larval samples, unidentified 

(Table 9). In 2015, Phygadeuon sp. was the most common hyperparasitoid among 

identified samples (65.3% overall; 63.2% of adults and 69.7% of larvae). In 2015, Pimpla 

samples were observed almost equally as adults and larvae, and Gelis samples were 

observed only as pharate adults. In 2016, Phygadeuon sp. was the only confirmed 

hyperparasitoid present. A small percentage of samples each year (4% in 2015 and 2.5% 
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in 2016) were identified as C. albicans due to sequencing picking up host DNA instead of 

hyperparasitoid DNA. 

 

Table 7: Locations and coordinates for study sites where sentinel puparia of Cyzenis 
albicans were deployed in 2015 and 2016. The X-mark indicates each year the site 

was sampled. 
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Table 8: Phygadeuon spp. CO1 gene distance matrix corresponding to the 
phylogentic analysis presented in Figure 7.  The table is split into two to fit on the 
page, but the second half could have been placed to the right of the first half in the 

matrix.   
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Table 9: Hyperparasitoid specimens reared from C. albicans puparia in 2015 and 

2016 across all sites, indicating wasp taxon and life stage obtained as a proportion of 
all adult specimens, all larval specimens, and total specimens per year. 

 
 
 

 
Figure 3: Mean (+SE) annual cumulative total mortality of Cyzenis albicans puparia 

and the proportional contribution of predation and hyperparasitism across the 
various sites and field deployments (August–September and September–October) in 

2015 and 2016. Hyperparasitism values were calculated from pupae that survived 
predation, so survivorships of predation and hyperparasitism do not add up to the 

total survivorship. In both years, proportional mortality due to predation was 
higher than that due to hyperparasitism, but not significantly different from the 
total mortality (GLM with a logit link function and overdispersion parameter, 

α=0.05). 
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Figure 4: Mean (+SE) hyperparasitism of Cyzenis albicans puparia across all years, 
sites, and sentinel deployments plotted according to the presence/absence of Cyzenis 

albicans.  Hyperparasitism here is the average of each deployment, which was 
normalized to 42 days (6 weeks) to represent average deployment length. 

Differences were not significant (GLM with a logit link function and overdispersion 
parameter, a > 0.05) 
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Figure 5: Mean (+SE) hyperparasitism of Cyzenis albicans puparia during 2016 

sentinel deployments. Only 2016 is shown as only two deployments were made in 
2015, rather than three. Rates of hyperparasitism are normalized to 42 days (6 

weeks) to represent the average deployment period. Differences were not significant 
among time periods (GLM with a logit link function and overdispersion parameter, 

α > 0.05). 
 
 
 

 
Figure 6: Mean (+SE) annual cumulative hyperparasitism of Cyzenis albicans 

puparia for each site and year by A) the corresponding log10-transformed density of 
winter moth and B) Cyzenis albicans pupal density (log pupae/m2) at each site. The 

fit and p-value represent the GLM with a logit link function and overdispersion 
parameter. 
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Figure 7: Phygadeuon spp. phylogenetic tree obtained using a 710 bp fragment of 

the CO1 gene. The base tree was generated using a Bayesian analysis with 
corresponding bootstrap proportion values (out of 1) presented with the Neighbor 
Joining/Maximum Likelihood values (out of 100) presented below or to the right. 
Instances where there were no equivalent branches in models are indicated with a 
dash. Scale bar shows 0.06 substitutions per site. The Phagadeuon sp. sequences 
generated from this study are bolded and fit with representative sequences from 

NCBI GenBank and BOLD. 
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2.5 Discussion 

Cyzenis albicans has been established as a classical biological control 

agent to manage invasive winter moth populations at four separate locations in North 

America: Nova Scotia in the 1950s (Embree, 1965), Oregon and British Columbia in the 

1970s (Roland and Embree, 1995), and the northeastern U.S. beginning in 2005 (Elkinton 

et al., 2014a). The biological control programs in Canada were deemed successful in 

reducing outbreak winter moth populations and are often cited as an example of 

biological control success (Hassell, 1980; Murdoch et al., 1985; Roland, 1990; Van 

Driesche et al., 2008). However, prior studies in this and other pest systems have found 

that hyperparasitism can affect biological control success (Ehler, 1979; McDonald and 

Kok, 1991; McNeil and Rabb, 1973; Schooler et al., 2011; Strauss, 2012; Sullivan and 

Völkl, 1999) or, alternatively, can be present with little or no effect on biocontrol 

outcomes (Flanders, 1963; Hassell, 1969, 1980; Humble, 1985; McNeil and Rabb, 1973). 

Evaluating the extent of hyperparasitism in the most recent winter moth biocontrol 

program is thus pertinent. 

This study is the first report of hyperparasitism of C. albicans following 

its introduction into northeastern U.S. Following an earlier introduction of C. albicans in 

British Columbia, Humble (1985) reported that 12% of a sample of 33 Cyzenis puparia 

were hyperparasitized by Phygadeuon and Villa (Hemipenthes) catulina. However, this 

did not prevent winter moth densities from declining, and parasitism levels by C. 

albicans remained high (Roland, 1986; Roland and Embree, 1995). As far as we know, 

no work was done to assess hyperparasitism following the releases in Oregon. In Nova 

Scotia, studies assessed mortality factors acting on winter moth pupae, including 
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parasitism by C. albicans (Embree, 1965; MacPhee et al., 1988; Pearsall and Walde, 

1994), but did not report on hyperparasitism of C. albicans. Likely, this is because C. 

albicans sentinel puparia were not deployed and retrieved, and hyperparasitoids may 

have been overlooked. Hassell (1969) reported hyperparasitism of C. albicans by P. 

dumetorum in low-density populations of winter moth in England, but his detailed 

analyses (Hassell, 1969, 1980) suggested that hyperparasitism played an insignificant role 

in C. albicans population dynamics. In Austria, one Gelis species was considered a 

potential threat to a wasp introduced as a biological control agent of an invasive 

planthopper (Strauss, 2012). Additional rearing and biological study is necessary to 

elucidate the role of Gelis species in the winter moth food web in the northeastern U.S. 

Unidentified tissue found in one C. albicans puparium parasitized by Gelis is possibly the 

remains of a host other than C. albicans. Gelis is a genus of approximately 300 species 

with host ranges spanning multiple insect orders, even extending to spiders. Some species 

of Gelis have a broad host range; G. areator, has been reported from nearly 200 host 

species. Further, the genus contains both primary and secondary parasitoids. Thus, it is 

conceivable that the Gelis spp. observed could attack either the fly or its primary 

parasitoids. Similarly, little is known about the role of Pimpla sp. on C. albicans; 

however, Elkinton et al. (2014a) presented evidence that C. albicans was beginning to 

suppress outbreak populations of winter moth in the northeastern U.S. despite the 

presence of the hyperparasitoids we report here. 

Cummulative mortality of C. albicans puparia was consistently high 

in this study, averaging more than three quarters of the total puparia deployed. This 

mortality was due to a combination of predation and hyperparasitism, with predation the 
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larger contributor. This mortality is comparable to that reported on winter moth pupae in 

Nova Scotia (60–95%, Embree, 1965; 79%, MacPhee et al. 1988; 49–96%, Pearsall and 

Walde, 1994). The main predators of pupae are likely carabid beetles, staphylinid beetles, 

and small mammals (Frank, 1967; East, 1974; Holliday, 1985; Roland, 1990). Pupal 

predators are unlikely to distinguish between parasitized and unparasitized pupae as the 

C. albicans puparia are contained within the cocoon casing and the integument of the 

winter moth pupae, and both are buried in the soil. The mortality of C. albicans puparia 

in our study, however, was somewhat lower than the 77–98% reported in British 

Columbia by Horgan and Myers (2004). 

In British Columbia, winter moth densities declined following the introduction of 

C. albicans (Roland, 1986), and parasitism of winter moth by that species has remained 

at high levels (∼50%) for several decades (Horgan and Myers, 2004; Roland, 1988). The 

relative role of predation on moth pupae versus parasitism by C. albicans in the decline 

of winter moth densities at these sites, and possible synergism between these factors, has 

been debated by previous researchers (Hassell, 1980; Roland, 1988; Roland and Embree, 

1995). At our multiple study sites in the northeastern U.S., parasitism by C. albicans has 

been steadily increasing and is coupled with a decline in winter moth densities (Elkinton 

et al., 2014a), despite the high parasitoid mortality we report here. However, this 

mortality on C. albicans is likely delaying subsequent parasitism by C. albicans on 

winter moth for several years because the year-to-year increase in C. albicans densities 

following each release is relatively small. 

The present study provides evidence that hyperparasitism of C. albicans 
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is unrelated to either winter moth or primary parasitoid densities. The hyperparasitoids 

discovered – Phygadeuon sp., Pimpla spp. and Gelis spp. – are all common in 

lepidopteran systems (Sullivan, 1987). All three may act as generalist parasitoids and 

facultative or accidental hyperparasitoids, switching between various hosts depending on 

their availability, suggesting that their densities are not strongly linked to densities of C. 

albicans (Hassell,1969; Fitton et al., 1988; Harvey, 2008; Hassell, 1969; Strauss, 2012; 

Yu et al., 2012). Further, some Pimpla spp. are likely facultative or accidental 

hyperparasitoids and have been documented infrequently as hyperparasitic (Yu et al., 

2012). This is supported in the winter moth system; pimpline parasitoids of winter moth 

in the northeastern U.S. appear to be attacking winter moth at higher rates than C. 

albicans (HJB, pers. observ.). In addition, winter moth females lay 150–200 eggs, 

whereas C. albicans females lay 1000–2000 (Hassell, 1980; Varley and Gradwell, 1970). 

This may allow C. albicans populations to keep pace with those of winter moth despite 

the five additional months spent underground where predation is high. These results have 

important population dynamics implications. They suggest that none of these facultative 

hyperparasitoids would likely reduce equilibrium densities of C. albicans to levels that 

would limit parasitism of winter moth. 

Because species identities for the hyperparasitoid families obtained 

here are largely unknown, and identification of larval specimens (a large proportion of 

our dataset) is extremely difficult, we used CO1 gene sequences combined with 

morphological examinations to aid taxonomic identification. This not only aids 

identification, but also provides sequence-specimen voucher information for future 

research reference (Andersen and Wagner, 2016). From the CO1 sequence data, the 
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Phygadeuon specimens fell into two distinct clades that coexist attacking the same hosts 

at the same sites. The distinct clades suggest there may be restriction of gene flow 

between them, but the differences in sequences between the two clades is only 1.1 and 

1.2% (Table 8) suggesting they may not be different species (Ball et al., 2005). Further 

clarification of their taxonomic status would require further molecular, morphological, 

and life history studies. All the closest matches to our Phygadeuon sequences were 

collected from Ontario, Nova Scotia, Manitoba, or Alberta. In Canada, Nova Scotia and 

British Columbia is known to have winter moth, but winter moth is not known from the 

other locations (Elkinton et al., 2010; Elkinton et al., 2014a). However, Bruce spanworm, 

a native congener of winter moth, is known to exist in these other provinces (Brown, 

1962; Elkinton et al., 2010; Ives and Cunningham, 1980; Rose and Lindquist, 1997) and 

is closely related to winter moth (Havill et al., 2017). This indicates that the Phygadeuon 

sp. we detected is associated with other lepidopteran species besides winter moth and 

may also attack Bruce spanworm. 

In this study, we report facultative hyperparasitism of C. albicans by 

three different ichneumonid genera and high levels of predation on C. albicans puparia. 

These findings are consistent with those reported elsewhere in North America, 

particularly in British Columbia. In British Columbia, this mortality has not prevented C. 

albicans from causing high levels of parasitism on winter moth and the consequent 

decline of winter moth densities that have persisted in non-outbreak levels for several 

decades. Thus, we do not expect these agents to prevent C. albicans from causing 

significant mortality to winter moth in the northeastern U.S. and the subsequent decline 

of winter moth densities as a result. The high mortality of C. albicans, due to both 
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predators and hyperparasitoids, may explain why 2–6 years elapse between release of C. 

albicans and its subsequent recovery from winter moth at various release sites and for 

more years to elapse before onset of high levels of parasitism in winter moth. These lag 

times occurred in Nova Scotia in the 1950s (Embree, 1965; Roland and Embree, 1995) 

and in the northeastern U.S. (Elkinton et al., 2014a). The findings reported here 

contribute to our effort to understand the population dynamics of both winter moth and C. 

albicans as part of our effort to evaluate the success of the biological control program 

directed at winter moth. 
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CHAPTER 3 

RECRUITMENT OF NATIVE ICHNEUMONID WASPS TO POPULATIONS OF 

THE INVASIVE WINTER MOTH, OPEROPHTERA BRUMATA L., IN THE 

NORTHEAST U.S. 

3.1 Abstract 

Ecological communities may be resistant to invasive species through a 

combination of top-down and bottom-up mechanisms, including predation, competition, 

parasitism, and disease.  In particular, natural enemies that cross over from native species 

to use newly introduced non-native species as hosts can influence invasive species 

population dynamics and may slow down invasions.  We used the model species winter 

moth (Operophtera brumata) to study the effect of recruitment of native parasitoids on an 

invasive population of winter moth in the northeast United States.  We deployed sentinel 

pupae over four years across this population’s range, identified recovered parasitoids, and 

measured the rate of parasitism by native sources across years, seasons, invasion history, 

and host densities.  Native Pimpla wasps (Hymenoptera: Ichneumonidae) inflicted 98% 

percent of the parasitism detected, resulting in an annual average of 15-40% mortality on 

pupae not depredated.  Pimpla were present across all years, seasons, and sites.  

Parasitism was greatest at the leading edge of the winter moth population spread and 

when winter moth pupal density was high (positive density dependence).  The parasitoid 

wasps were morphologically identified as Pimpla aequalis; however, using a multilocus 

genetic comparison approach, they were determined to comprise two cryptic species.  

Overall, this study shows that recruitment of these native wasps to the invasive winter 
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moth population is likely playing a significant role in regulating population outbreaks and 

is likely aiding in classical biological control efforts.   

3.2 Introduction  

The introduction of non-native species to new communities is creating novel and 

altered predator-prey and parasite-host interactions (Faillace et al. 2017; Garnas et al. 

2016; Hobbs et al. 2009; Pearson et al. 2018; Shea and Chesson 2002; Strauss et al. 

2012).  The species richness of an ecological community can predict the chances that an 

invasive species will successfully establish. This hypothesis (known as the biotic 

resistance hypothesis) holds that communities may resist invasions through a 

combination of factors including predation, competition, parasitism, and disease (Elton 

1958; Jeschke et al. 2012; Levine et al. 2004; Maron and Vilà 2001; Sakai et al. 2001; 

Shea and Chesson 2002).  Natural enemies of native species that cross over to use non-

native species can influence invasions in complex ways (Dearborn et al. 2016; Faillace et 

al. 2017; Grabenweger et al. 2010; Strauss et al. 2012) and have the potential to slow 

down invasions and aid in biological control (Dearborn et al. 2016; Kenis et al. 2008; 

Maron et al. 2001; Vindstad et al. 2013). These interactions are particularly strong for 

non-native species with sympatric native congeners and confamilials (Dearborn et al. 

2016; Grabenweger et al. 2010; Strauss et al. 2012; Vindstad et al. 2013).  Further, these 

interactions may especially affect invasive insects because they are typically r-selected 

(Sakai et al. 2001), and their population dynamics are closely related to natural enemies, 

predominantly parasitoids (Hassell 2000; Myers 2018; Waage and Greathead 1985).   
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The European winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), 

is an invasive defoliator of forest and shade trees with multiple invasive populations 

established in North America, including a recent (circa late 1990s) introduction in the 

northeastern U.S. (Elkinton et al. 2015). Following successful biological control of winter 

moth in Nova Scotia and British Columbia using the tachinid fly Cyzenis albicans 

(Fallén) (Diptera: Tachinidae) (Embree 1966; Murdoch et al. 1985; Roland and Embree 

1995), similar efforts have been initiated in this most recent invasion (Elkinton et al. 

2015). While classical biological control of winter moth in the northeast U.S. has shown 

promising results (Elkinton et al. 2015), as previously found in Canada (Roland 1988; 

Roland 1990), the overall success will likely depend on additional mortality from native 

natural enemies.  Parasitoid recruitment from related native species can have significant 

effects on invasive populations in other insect study systems (Duan et al. 2014; Duan et 

al. 2013; Grabenweger et al. 2010; Matosevic and Melika 2013; Schonrogge et al. 1995; 

Zappala et al. 2012).  This is especially true if the parasitoids can respond to the invasive 

population in a density dependent manor (Holling, 1973) or if the parastioids can 

parasitize at high rates at the invasion front such that they can slow or stop the spread of 

invasive population.    

Non-native species with native congeners in the introduced range may be less 

likely to establish an invasive population than species introduced to a range without a 

native congener; these invasive species face top-down pressure from the natural enemies 

of their congener (Callaway et al. 2013; Carrillo-Gavilan et al. 2012; Diez et al. 2008; 

Keane and Crawley 2002; Richardson and Pysek 2006).  The native congener, Bruce 

spanworm (Operophtera bruceata Hulst), is a potential source of native parasitoid 
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recruitment to the winter moth population in its invasive range in North America. Bruce 

spanworm is present in all regions winter moth has invaded. In addition to having similar 

life-cycle dynamics, these two congeners use similar hosts, are present at similar times of 

the year, and can hybridize in the field (Elkinton et al. 2010; Gwiazdowski et al. 2013; 

Havill et al. 2017).  Thus, it is likely that native natural enemies that parasitize Bruce 

spanworm could use winter moth as a host. Additionally, the life histories of winter moth 

and Bruce spanworm make their populations particularly vulnerable to pupal mortality by 

predation and parasitism from native natural enemies.  Both winter moth and Bruce 

spanworm have a long pupation period (6–7 months during the summer, representing the 

vast majority of its life span) and pupates in the top layer of soil or leaf litter. Together 

this renders both species particularly vulnerable to pupal mortality by predation, 

parasitism, and disease.    

Parasitoid wasps in the genus Pimpla Fabricius (Hymenoptera: Ichneumonidae: 

Pimplinae) might be an important source of mortality for invasive populations of winter 

moth in North America.  Pimpla is a diverse and widespread group of parasitoids; they 

are typically idiobiont endoparasitoids of Lepidoptera prepupae and pupae (Bennett 2008; 

Carlson 2009; Gauld 1991; Goulet and Huber 1993), particularly on geometrid 

(Lepidoptera: Geometridae) and noctuid (Lepidoptera: Noctuidae) pupae concealed in 

moss or soil (Fitton et al. 1988).  Nineteen extant species of Pimpla are known for the 

Nearctic region including both native and non-native species (Yu et al. 2012; Yu et al. 

2016).  Over the last century, several species of Pimpla have been introduced into North 

America for biological control of winter moth and other lepidopterans (Graham 1958; 

Quicke 2015; Yu et al. 2012).  Further, a species of Pimpla in Maine was more abundant 
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at sites with high winter moth infestation than moderately infested sites (Morin 2015, 

unpublished) and species of Pimpla have been reported in the northeast U.S. as 

hyperparasitoids of C. albicans (Broadley et al. 2018), an introduced biological control 

agent of winter moth. These latter two studies revealed an association of Pimpla with 

winter moth in the northeast U.S., but neither study directly assessed species of Pimpla as 

primary parasitoids of winter moth.  The assemblage and origin of Pimpla species 

associated with invasive winter moth populations in the northeast U.S. is unknown, as 

well as their prevalence, role in causing winter moth mortality, and potential to regulate 

winter moth densities.  

In this study we aimed to (1) quantify parasitism by Pimpla on winter moth pupae 

and C. albicans puparia across a spatial and temporal gradient, (2) test for a density 

dependent effect of pupal parasitism, and (3) identify the Pimpla spp. using 

morphological and molecular characteristics. We discuss our findings in relation to their 

implications for understanding the role and origin of this understudied parasitoid in the 

control of an introduced lepidopteran pest. 

 

3.3 Methods  

3.3.1 Pupal deployment   

From 2014 to 2017, we collected winter moth larvae from long-term study sites 

across eastern Massachusetts (Elkinton et al. 2015). Larvae were reared in batches of 500 

or fewer individuals in ventilated 20 L (5 gallon) buckets with the foliage from the tree 

species on which they were found.  Mortality from viruses, other diseases, and larval 
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parasitism in these collections was minimal (Broadley et al. 2017).  When the larvae 

showed signs of pupating (thickening body shape), sifted peat moss was added to the 

bottom of the buckets for pupation. All winter moth pupae were non-destructively 

checked under a dissecting microscope (Wild Heerbrugg M5 stereo) for parasitism by C. 

albicans or other larval parasitoids.   

To study parasitism by native parasitoids, winter moth pupae were then deployed 

at sites in eastern Massachusetts, Rhode Island, and Connecticut in 2014 to 2017 (Table 

10). The study sites were chosen to coincide with winter moth long-term study sites and 

to reflect a range of winter moth and C. albicans establishment histories (Elkinton et al. 

2015; Elkinton et al. 2014). The study sites were all in mixed hardwood forests 

dominated by red oak (Quercus rubra). The pupae were deployed in three to five 

consecutive rounds from mid-June until the end of October with five deployments (one 

every three weeks) in 2014 and three deployments (one every six weeks) in 2015-2017. 

Each deployment consisted of placing 100 winter moth pupae attached to small burlap 

squares with beeswax, as was done in a study of predation on gypsy moth pupae in 

Elkinton et al. (1996).  In total 12,420 winter moth pupae were deployed.  In 2014 to 

2016, an additional 3,400 C. albicans puparia (winter moth pupae that were parasitized 

by C. albicans) were also deployed in three to five consecutive rounds at a subset of sites 

(Table 10). The burlap squares with pupae were then buried 2.5 cm below the soil surface 

haphazardly under the drip line of a red oak tree. This depth was chosen to mimic natural 

pupa depths, which is within the upper 5 cm of soil (East 1974; Embree 1965; Holliday 

1977).  
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3.3.2 Pupal dissections, incubation, and parasitoid collection 

After each pupal deployment, we retrieved the sentinel pupae and characterized 

their fate as alive (ostensibly intact) or dead (consumed by predators, parasitized, or 

diseased). The intact pupae were stored in an incubator (Percival) until the following 

spring to allow further parasitoid development. Pupae were stored at 12°C until the 

beginning of December when the temperature was lowered to 9.5°C. At the end of 

December, the temperature was adjusted to 4°C. The pupae were kept in dark with no 

day/night cycle, and once a month they were sprayed with a sodium propionate solution 

(5 g sodium propionate/L of water) to prevent mold. Starting in late March, the 

temperatures were gradually increased in increments of 4°C until April when pupae were 

taken out of storage and kept at room temperature. Parasitoids (either emerged adults, 

dissected sub-adults, or larvae) were then identified to family using Goulet and Huber 

(1993) and Triplehorn and Johnson (2005) and then stored in 95% ethanol at -20°C for 

molecular or morphological identification. All but four of the parasitized winter moth 

pupae and C. albicans puparia appeared to be parasitized by one species of 

Ichneumonidae. 

A set of 302 of the ichneumonid wasps (289 from winter moth and 13 from C. 

albicans puparia) reared from all collection sites, seasons, and years were used for 

identification. Wasps had an even representation of males and females, and included both 

sentinel pupae and lab-reared wasps (see methods section 2.6).  All wasps were identified 

as Pimpla using keys in Townes (1969; 1970).    
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3.3.3 Monthly and annual parasitism rate estimates 

Across all sites and years, 242 Pimpla wasps were recovered from the 6,580 

pupae and puparia retrieved after predation.  However, this ratio does not represent the 

true parasitism rate because it does not include pupae that had wasp emergence holes and 

does not account for the annual (or season-long) cumulative rate of parasitism; the ratio 

reflects the observed parasitism rate rather than the underlying attack rate, or marginal 

attack rate.  The method of using the marginal attack rate to calculate percent parasitism 

when contemporaneous sources of morality are acting on the system has been employed 

by Varley and Gradwell (1968), Royama (1981), Van Driesche (1983), Buonaccorsi and 

Elkinton (1990), and Elkinton et al. (1992) among others.  It incorporates the observation 

that parasitism rates can be obscured by predation rates, which typically occurs on the 

pupae whether or not they were parasitized and thus aims to estimate the true underlying 

mortality rate of each source in the system.  To test for any relationship between the rates 

of Pimpla parasitism and predation, we regressed the proportion parasitized by the 

proportion lost to predation and no trend was detected; thus, here we apply the marginal 

attack rate method for contemporaneous mortality with the assumption that predators do 

not discriminate between parasitized and unparasitized pupae.   

We calculated monthly and annual mortality. We included both pupae that still 

had developing wasps as well as those with wasp emergence holes in our estimate of 

parasitism.  We performed all analyses with both the standardized monthly and annual 

cumulative parasitism estimates.  For both these estimates of mortality, the proportion of 

winter moth pupae parasitized by Pimpla for each deployment was calculated by dividing 
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the total number of Pimpla wasps (adult and larvae) collected and number of pupae with 

distinct wasp emergence holes by the total number of intact pupae retrieved from the field 

(i.e. number of pupae retrieved excluding the number of pupae that were lost due to 

predation).  To calculate the standardized mortality from parasitism for all deployments 

to 31 days (one month), we subtracted the proportion parasitized for each deployment 

from 1 for the survivorship from parasitism (Sp = 1 - Mp) then raised this to the nth root, 

where n is the true number of days the pupae were deployed (which ranged from 19 to 45 

days with a mean of 31 days).  The survivorship from parasitism (Sp) was then raised to 

an exponent of 31 to yield the expected survivorship over a standardized 31 days 

(S 31=[(S p) 1/n] 31).  To calculate the cumulative (life stage-long) parasitism rate, we 

converted the parasitism rates for each deployment to survival rates (Sp1, Sp2, Sp3, etc.) by 

subtracting the proportion of parasitized pupae from one (e.g. 1−Pp1).  Next, cumulative 

survivorship-from-parasitism was calculated as the product of successive survivorships of 

each deployment (e.g. Sc = Sp1 x Sp2 x Sp3). Lastly, the cumulative parasitism values (Pc) 

were calculated by subtracting the cumulative survival from 1 (e.g. Pc=1−Sc). 

 

3.3.4 Pimpla host selection 

In 2016, we deployed an additional set of 2,000 winter moth pupae to study 

parasitism depth, host searching behavior, and host choice of Pimpla.  Pupae were 

assigned to one of two treatments to evaluate parasitism soil depth.  The two treatments 

were (1) pupae with only a thin layer of leaves over top and (2) pupae with 2.5 cm of soil 
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then leaves over top.  In both treatments, the pupae were spread one layer thick across the 

base of the wire mesh cages over three consecutive rounds for 35 days each at two of our 

sites—Wellesley and Hanson, Massachusetts. The first deployment was from 7 July – 8 

August, the second was from 8 August – 9 September, and the final deployment was 

from 9 September – 11 October. To keep large predators out, pupae were placed in in 

wire mesh cages (mesh size: 6.4 mm sides with a 17 mm mesh lid).  After 35 days, pupae 

were retrieved, sifted from the soil and stored at room temperature with natural light 

cycling to allow wasps to complete their development and emerge. Every second or third 

day, the pupae were sprayed with water, and wasp emergence was recorded.  With this 

comparison, we tested for an effect of soil and leaf coverage on the emergence counts 

using a generalized regression with a negative binomial fit.   

To study development time of the wasps and overwintering behavior, Pimpla 

wasps that emerged were reared in the laboratory in two cloth mesh cages (BugDorm 

Insect Rearing Cage, 47.5 cm3) with winter moth pupae for five to six days in 12 rounds 

of 100 to 500 pupae from 15 August until 17 October 2016. For the first six rounds, we 

reared only 100 to 200 pupae; for the seventh round set up 16 September 2016, we 

increased the number of pupae to 500 to build a lab colony for future experiments. The 

emerged wasps were divided between the two cages such that there were approximately 

30 wasps per cage, and the ratio of males to females was distributed evenly. At night, 

cages were stored in an incubator in full dark at 12˚C, while during the day they were 

taken out and exposed to room temperature (23˚C) and ambient light. The wasps were 

sprayed with water twice a day and given honey water to simulate natural feeding on 

honeydew and nectar (Fitton et al. 1988; Leius 1960).   
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We used two approaches to assess hyperparasitism rates on C. albicans puparia.  

First, in the laboratory, while most wasps were given winter moth pupae only, a subset of 

wasps were reared in a mesh cage with two dishes, one with winter moth pupae and the 

second with C. albicans puparia in a choice test. These trials had 100 winter moth pupae 

with 120 C. albicans puparia exposed to parasitoids 1 – 6 September, 115 winter moth 

pupae with 100 C. albicans puparia exposed 6 – 12 September, and 200 winter moth 

pupae with 220 C. albicans puparia exposed 12 – 16 September.  The exposed pupae and 

puparia were then stored in the same conditions described above (Methods 2.5) and 

monitored for subsequent wasp emergence.  Second, using the long-term data, we 

compared the monthly parasitism rates from pupae and puparia deployed in the main 

study plots that received C. albicans puparia (Table 10, sites A – F) and only in years 

2014 – 2016.  We used a quasibinomial logistic ANOVA of monthly parasitism rates or 

cumulative mortality estimates with pupal type (winter moth C. albicans pupa) as the 

main effect and year, site, and deployment as fixed effects.   

 

3.3.5 Parasitism seasonality, overwintering, and year-to-year variation 

To assess seasonality in parasitism rates, we used parasitism rates from the long-

term study of field-deployed pupae (2014 – 2017) and wasp counts from additional bulk 

deployments conducted in 2016.  For the long-term study data, we used a logistic 

regression to analyze the monthly rate of parasitism on winter moth pupae weighted by 

the total pupae analyzed against the main effect of deployment date and included year 

and site. We used only data from the main study sites (Table 10, sites A – H).  Similarly, 



 

65 

 

to assess seasonality from the 2016 bulk sentinel pupae, fall wasp emergence counts were 

evaluated by their date of exposure to parasitism using a negative binomial generalized 

linear model (GLM).   

Both the 2016 bulk field-exposed pupae and lab-exposed pupae were monitored 

for emergence until 7 October when they were moved to chill conditions.  They were 

acclimated by lowering the temperature by 2°C per day until a final temperature of 4°C 

was reached.  On 17 May 2017, pupae were moved from their overwintering storage of 

4°C to 12°C and on 17 June, they were brought back to room temperature. Samples were 

monitored for wasp emergence starting 23 June and were checked every two to three days 

for a month. 

To assess yearly changes in pupal parasitism, we again used the parasitism rates 

from the winter moth deployed across all years and sites (Table 10, sites A – H).  A 

logistic model (generalized linear model using the binomial family) was applied using 

both our estimation of monthly and annual parasitism rates weighted by the total pupae 

analyzed.  For our analysis of monthly parasitism, we included year, site, and deployment 

as fixed effects.  Four our analysis of annual cumulative parasitism, we weighted the 

logistic regression by the average number of pupae analyzed across the deployments and 

used year and site as a fixed effect.   

 

3.3.6 Parasitism with winter moth spread and density 

To compare Pimpla parasitism on winter moth pupae between sites infested by 

winter moth (the first eight sites in Table 10, to the east of the yellow line in Figure 8) 
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compared to sites on the edge of the infestation or outside the heavy-infestation area (the 

last six sites listed in Table 10, to the west of the yellow line in Figure 8), we used a 

logistic regression to analyze the monthly rate of parasitism weighted by the total pupae 

analyzed against the main effect of infestation status, and included year and site as fixed 

effects.  We also analyzed the cumulative rate of parasitism weighted by the average 

number of pupae analyzed across the deployments against the main effect of infestation 

status and included year and site as fixed effects.  Only years 2015 and 2016 were used 

for these comparisons as they included both heavily infested sites and sites outside the 

heavily infested area. The designation of a site as winter-moth-infested was determined 

from the winter moth spread analysis by Elkinton et al. (2014) and Elkinton et al. (2015).   

To estimate winter moth pupal density at each long-term study plot (Table 10 

sites A – H), 16 plastic buckets (16 cm width X 28 cm length X 10 cm height) filled 3 cm 

deep with sifted peat moss and rainwater drainage holes were placed under each study 

tree in late May before pre-pupal winter moth caterpillars began to spin down from the 

tree canopies. Each bucket was placed at a randomly selected distance between the tree 

stem and the edge of the tree canopy along one of eight evenly spaced directions as 

described in Varley et al. (1973a) and Whited (2007).  We analyzed Pimpla parasitism by 

winter moth pupae density to test for any effects of density dependence.  We used a 

logistic regression of monthly parasitism rates weighted by the total pupae analyzed 

regressed against the corresponding density of winter moth pupae (log-transformed) with 

site, year, and deployment as fixed effects. We also analyzed the cumulative, annual 

parasitism against the log-transformed pupal density with year and site effects.  
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Deployment effects were not included explicitly as the survivorships from each 

deployment were multiplied in the calculation of cumulative mortality.     

 

3.3.7 Wasp development time and sex ratio 

With a subset of pupae parasitized by Pimpla from the laboratory study, we 

estimated development duration of the wasp by noting the first event of parasitism and 

the subsequent date of wasp emergence. During the first day of exposure to the wasps, we 

monitored the set-up for evidence of parasitism. When we saw a female oviposit into a 

pupa, we moved the pupae singly to a tube (15 mL Falcon centrifuge tube with a 

ventilation hole at the top). A total of 120 tubes each with one potentially parasitized 

pupa were set up. The exposed pupae were stored at room temperature in ambient light 

and monitored for subsequent wasp emergence. Of these pupae, 42 wasps emerged. The 

average and standard deviation of wasp development time was calculated. The sex of 

wasps that emerged from the bulk field-exposed pupae and lab-exposed pupae was noted.  

The proportion of females that emerged was evaluated by treatment (field or lab pupae), 

by date of exposure to parasitism, and by season of emergence (fall or spring) using 

binomial GLM.   
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3.3.8 Statistical analyses 

All analyses were performed in R 3.4.4 (RCoreTeam 2013) using RStudio, 

version 1.1.442 (RstudioTeam 2015).  For each analysis, the full model was always run 

initially (including site, year, and deployment effects, etc.), the model was evaluated for 

evidence skew in the residuals or outliers, and any insignificant predictors were dropped 

sequentially until the best fit model was selected using AIC comparisons.  We checked 

for overdispersion, and when evidence of overdispersion was noted, we applied a 

quasibinomial or quasipoisson distribution.  Quasibinomial and quassipoisson analyses 

do not generate AIC values; thus, to select the best fit model, we compared the residual 

deviance of the fit model to that of the null model. A pseudo-R2 was calculated by 

comparing the residual deviance of the fit model against the null model (deviance null 

model – deviance fit model / deviance null model). All graphical data was displayed 

using ggplot2 (Wickham 2009).    

3.3.9 Morphological comparative analyses 

Following initial identification of our specimens as Pimpla using keys in Townes 

(1969; 1970), further morphological and molecular identification was conducted.  

Townes et al. (1960) was used to identify the specimens to species.  Specimens were also 

compared with authoritatively determined specimens of Pimpla turionellae L., Pimpla 

contemplator Müller, Pimpla disparis Viereck, and Pimpla hesperus Townes in the 

Smithsonian Institution National Museum of Natural History (USNM).  All but the last 

species have been recorded as attacking winter moth in its native range (Wylie 1960) and 
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were introduced into Canada and the U.S. to control winter moth and other lepidopteran 

pests in North America (Graham 1958; Humble 1985; Quicke 2015; Yu et al. 2012). 

Pimpla hesperus is native to North America and has been reported as a parasitoid of 

winter moth and Bruce spanworm in British Columbia (Humble 1985). We also 

compared our specimens to the lectotype for Pimpla aequalis Provancher from the 

Université Laval, Quebec City, Quebec, Canada (ULQC).  Vouchers for parasitoid 

species are deposited in the University of Massachusetts Insect Collection, Amherst, MA. 

 

3.3.10 Molecular comparative analyses 

A subset of the Pimpla wasps that emerged or were dissected from winter moth or 

C. albicans pupae were selected for molecular analyses.  When possible, three adult 

samples and one larval sample were selected for each location and study year, otherwise 

up to four wasps of any life stage were selected for a total of 77 field-collected 

individuals and 20 laboratory-reared wasps.  Since morphological identifications and 

pilot molecular work found that the majority of wasps were Pimpla, it was assumed that 

all wasp larvae were Pimpla; subsequent molecular work confirmed this. DNA was 

extracted using the QIAGEN DNeasy Blood and Tissue Kits following the company 

protocol with the following modifications: for larvae, individuals were destructively 

sampled by grinding with a mortar and pestle; for adults, DNA was extracted from a 

single leg removed from the specimen; for both life stages, DNA was eluted twice in 100 

μl Buffer AE instead of once with 200 μL. All DNA extractions were stored at -20°C for 

subsequent analysis.  
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A portion of the mitochondrial locus cytochrome c oxidase subunit I (CO1) was 

amplified using standard PCR techniques. For a subset of individuals collected across 

years, sites, life stages, and life history fragments from three additional nuclear gene 

regions were amplified: the carbomoylphosphate synthase domain (Cadherin, 

rudimentary, CAD), elongation factor 1-α (EF1-α), and the D2 and D3 expansion 

segments of the large subunit ribosomal RNA gene (28S).   

For each locus, a master mix was prepared using the following ratios of reagents per 

sample: 17.3 μl nuclease free water, 0.5 μl dNTPs, 5 μl 5X GoTaq Buffer (Promega), 0.2 

μl GoTaq (Promega), 0.5 μl of both the forward and reverse primer (10 μM each), and 1 

μl of eluted DNA. To amplify a 710 bp fragment of CO1, the primer set LCO (5'-

GGTCAACAAATCATAAAGATATTGG-3') and HCO (5'- 

TAAACTTCAGGGTGACCAAAAAATCA-3') (Folmer et al. 1994) were used with the 

thermocycler profile outlined by Hebert et al. (2003).  A 537 bp region of CAD was 

amplified using the primer pair CADf-CADKlopF (5'-AGCGTCGGTGAGGTAATGGC-

3') and CADr-CADKlopR (5'-CCTATAACCATCGTGTAATTTCC-3') using the same 

temperature profiles as outlined for EF1-α (S. Klopfstein, unpublished). A 450 bp region 

of EF1-α was amplified using the following primer pair EF1r-EF1aKlo11F (5'-

AGATGGGYAARGGTTCCTTCAA-3') and EF1r-EF1aKlo11R2 (5'-

AACATGTTGTCDCCGTGCCATCC-3') (S. Klopfstein, unpublished) and the following 

touchdown temperature profile: 94°C for 2 min for initial denaturing, 2 cycles of 94°C 

for 30 s, 55°C for 45 s, and 72°C for 1 min, followed by 2 cycles of 94°C for 30 s, 52°C 

for 45 s, for 72°C for 1 min, followed by 36 cycles of 94°C for 30 s, 52°C for 45 s, and 

72°C for 1 min with a final extension of 72°C for 5 min and 4°C hold. Lastly, to amplify 
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a 824 bp region of the 28S region, the primer pair 28Sf-s3660 (5'-

GAGAGTTMAASAGTACGTGAAAC-3') and reverse primer 28Sr-28b (5'-

TCGGARGGAACCAGCTACTA-3') (Morse and Normark 2006; Whiting et al. 1997) 

with the touchdown PCR thermocycler protocol described in Morse and Normark (2006).  

All PCR reactions were run on a BioRad T100 thermocycler, and the resulting 

PCR products were visualized on an 1.5% agarose gel stained with SYBERsafe 

(Invitrogen, Carlsbad, CA) to verify amplification. Samples that produced bands of the 

expected fragment size for each locus were then cleaned prior to sequencing using 

Exonuclease 1 (ThermoScientific) and Thermolabile Recombinant Shrimp Alkaline 

Phosphatase (New England BioLabs). The resulting products were submitted to The Yale 

University DNA Analysis Facility on Science Hill for Sanger sequencing in both sense 

and anti-sense orientations.  

The resulting sequences were then visualized, the forward and reverse sequences 

were aligned, and sequences were edited using Geneious R8.1.8 and R9 (Biomatters 

Ltd.).  The ends of the aligned sequences were trimmed by hand to remove primer 

sequences and so that all sequences had a high-quality score (>90% HQ nucleotide 

reads). The presence of heterozygous sites was determined by Geneious and encoded 

using the appropriate IUPAC-IUB ambiguity codes.  All ambiguous regions were 

subsequently inspected by eye.  Additionally, for our CO1 fragment sequences, we 

looked for evidence of nuclear mitochondrial DNAs (NUMTs) or pseudogenes by 

examining for the presence of stop codons based on translation with Invertebrate 

Mitochondrial DNA genetic code.  
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To compare our Pimpla CO1 sequences to other published Pimpla CO1 

sequences, we searched both the National Center for Biotechnology Information (NCBI) 

GenBank database and the University of Guelph Centre for Biodiversity Genomics’s 

Barcode of Life Data Systems (BOLD).  We initially downloaded triplicate sequences 

from each Pimpla species available across the two repositories, but when the triplicates 

were identical to each other or nearly-identical (>99% identical), then we retained one 

representative sequence for each Pimpla species available.  From the BOLD sequences, 

we prioritized sequences acquired from Pimpla samples in the hymenopteran collection 

of the Canadian Natural Collection of Insects, Arachnids and Nematodes (Agriculture 

and Agri-Food Canada) accessed by A. Bennett (accession numbers start with ‘BOLD 

HYCNG’).  These sequences included 57 Pimpla specimens representing 13 North 

American species [of 19 extant described species in the region, (Yu et al. 2016)].  When 

no representative sequence was available for a particular Pimpla species by the Canadian 

National Collection, we then searched GenBank for a representative sample, followed by 

any other sequences available in BOLD.  This added an additional six species of Pimpla; 

however, many of these were from outside the Nearctic region.  

We included five additional sequences identified as P. aequalis and nine 

additional published sequences referred to as Pimpla sp. from Carpenter and Wheeler 

(1999); Hebert et al. (2016); International Barcode of Life (iBOL) unpublished; and 

Dewaar, Telfer, and Young unpublished (accession numbers listed in Figure 12).  These 

were the closest matches using the Basic Local Alignment Search Tool (BLAST) blastn 

suite to sequences of our each of our two Pimpla clades.  
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We used the Geneious alignment algorithm in Geneious v. 8.1.8 (Kearse et al. 

2012) to generate a sequence alignment of all sequences generated in this study and those 

obtained from public databases.  The alignment was truncated to the length of the shortest 

included sequence. To reduce the number of identical sequences included in analyses, if 

any of our sequences were identical we only included a single representative haplotype.   

JModelTest was used to select the best substitution model for nucleotide 

evolution, as implemented in the CIPRES Science Gateway (Miller et al. 2010).  Based 

on these results, we then performed neighbor-joining, maximum likelihood, and Bayesian 

reconstructions using the GTR substitution model. Neighbor-joining analyses were run in 

Geneious using 1,000 bootstrap replications and a majority rule (50%) consensus 

threshold.  Maximum likelihood analyses were run using PhyML (Guindon et al. 2010) 

with 100 bootstrap replications. Bayesian analyses were run using MrBayes 3.2.6 

(Huelsenbeck and Ronquist 2001) with a MCMC chain length of 1,000,000 and a burn in 

length of 10%. The resulting gene trees were then visualized using FigTree Version 1.4.2 

(Rambaut 2014).  

To determine whether specimens identified as P. aequalis might be members of a 

cryptic species complex, we used a multilocus genealogical concordance approach 

(Andersen et al. 2010; Avise and Wollenberg 1997; Baum and Shaw 1995; Dettman et al. 

2003; Dettman et al. 2006; Groeneveld et al. 2009; Menkis et al. 2009; Starrett and Hedin 

2007) to estimate the number of species present in our dataset. This method considers 

lineage sorting in multiple, independent loci and has become a common approach for 

species delineation.  For these analyses, we created separate alignments for each gene 

fragment including each specimen from which all target loci were successfully amplified.  



 

74 

 

In addition, we included publicly available sequences from Labena grallator (Say) 

(Hymenoptera: Ichneumonidae) as the outgroup for each alignment.  Individual gene 

trees were then estimated for each locus using the methods described above.  The 

congruence of the topologies of the reconstructed gene trees were then visualized by 

inferring a majority-rule consensus tree using PAUP (Swofford 2003).  

3.4 Results 

3.4.1 Parasitoid collection 

Of the 6,580 retrieved pupae and puparia that escaped predation in the field 

(5,009 winter moth pupae and 1,571 C. albicans puparia, Table 10) over four years of 

study (2014 – 2017), 342 had evidence of pimpline wasp parasitism.  This included 

specimens with Pimpla larvae or adults still developing in pupae or puparia (206 from 

winter moth pupae and 36 from C. albicans puparia), and an additional 100 sentinel 

pupae had a distinct wasp emergence hole.  Note that the ratio of total wasps per total 

retrieved pupae does not reflect cumulative percent parasitism values (see Methods 2.3).  

Besides the pimpline wasps, only four puparia (deployed in Kingston, Rhode Island from 

5 Aug - 18 Sept 2015) were parasitized by a cluster of diapriid wasps (Hymenoptera: 

Diapriidae), and two winter moth pupae (deployed from 24 Jun - 5 Aug. 2015, one in 

Wellesley, MA and one in Pawckatuck, CT) were parasitized by a species of 

Cratichneumon (Hymenoptera: Ichneumonidae).  The rest of the wasps were determined 

to be Pimpla.  Of the 242 Pimpla wasps recovered from field-deployed sentinel pupae 

and puparia, 112 were adults (46%) and 130 were larvae (54%).  
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3.4.2 Parasitism seasonality, overwintering, and year-to-year variation 

Monthly parasitism on winter moth pupae varied from 0 to 52%.  Deployment 

was marginally significant with parasitism rates from early August to mid-September 

slighter higher than those of either late June to early August or mid-September to late 

October (df=100, pseudoR2= 0.34, p=0.06).  From the bulk pupae at Wellesley, MA and 

Hanson, MA in 2016, deployment was significant (df=8, pseudoR2= 0.30, p=0.0018). We 

found that only pupae exposed to wasps after 8 August had wasps that overwintered, and 

most of the overwintering wasps (91%) were from winter moth pupae that were in the 

field from 9 September until 11 October.  The cumulative Pimpla parasitism ranged from 

an average across years as low as 54% for Hingham, MA to 92% for Sunderland, MA 

(Table 10).  Pimpla wasps were recovered from all years and sites, though some sites had 

a year without recoveries.  There was a significant effect of year but not site or 

deployment date when analyzing monthly parasitism rates (df=57, pseudoR2=0.40, 

p=0.034) and a site effect was evident when analyzing the annual cumulative parasitism 

rates (Figure 9; df=13, pseudoR2=0.72, p=0.009).  2015 had significantly higher 

parasitism rates.   

3.4.3 Parasitism with winter moth spread and density 

No significant difference was found in percent Pimpla parasitism on winter moth 

pupae that were deployed in sites on the edge of the current winter moth infestation area 
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compared to the heavy-infestation area (Figure 8).  No difference was found either for 

monthly parasitism or annual cumulative parasitism. However, there was a trend toward 

higher percent parasitism at the edge of the winter moth infestation.  Pupae deployed in 

sites at the edge of the winter moth infestation had a mean ± SE parasitism rate of 0.53 ± 

0.08, while it was 0.32 ± 0.03 in the infested sites.  Pupal density of the study sites had a 

significant effect on the monthly (df=62, pseudoR2= 0.25, p=0.039) and annual 

cumulative parasitism (df=19, pseudoR2= 0.39, p=0.036), with a significant effect of year 

in both models (Figure 10).   

3.4.4 Wasp development time and sex ratio 

From pupae parasitized in the laboratory, 39 wasps developed and emerged as 

adults. On average, it took 21.2 ± 0.6 SE days from the date of parasitism to adult wasp 

emergence. No wasp emergence was noted after 9 October until spring. Thus, if we 

assume that Pimpla parasitize between 1 June and 1 October, then they have 122 days in 

which to parasitize and develop.  And if wasps take 21 days from oviposition to 

emergence, then we could expect up to 5 generations per season (including some time for 

eclosion and mating) and a final 6th overwintering generation under laboratory rearing 

conditions. This estimate is from individuals held at a constant 23˚C temperature; 

however, in the field average temperatures for this time would have been slightly cooler 

(~19˚C), so development may be slower in field conditions.  Across studies (bulk field 

deployed pupae and laboratory rearing), there were 305 Pimpla females and 238 Pimpla 

males; this is 56.2% female or roughly a 1:1 ratio.   
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3.4.5 Pimpla host selection 

From the three deployments of bulk pupae placed in Wellesley, MA and Hanson, 

MA in 2016, there was a significant effect of soil treatment (df=8, pseudoR2=0.57, 

p=0.0043) and deployment (p=0.0018).  More wasps emerged from the pupae that were 

covered only by a layer of leaves (109 wasps ± 39.0 SE) than from the pupae that were 

buried under 1 cm of soil and a layer of leaves (32.3 wasps ± 14.3 SE). In the host-choice 

study, we did not observe any wasps attempting to oviposit in the pupae parasitized by C. 

albicans, and no wasps emerged from these trials. However, from the field studies (Table 

10, Figure 11) and earlier studies (Broadley et al. 2018), we know that C. albicans 

puparia can be parasitized by Pimpla spp. but typically at a lower rate than winter moth.  

We compared parasitism rates on winter moth pupae and C. albicans puparia (Figure 11).  

Cyzenis albicans puparia experienced significantly lower parasitism rates than winter 

moth pupae for both models that included monthly parasitism rates (df=83, 

pseudoR2=0.39, p=0.00012) and annual cumulative parasitism rates (df=22, pseudoR2= 

0.64, p= 0.0018).  

3.4.6 Molecular and morphological comparative analyses 

The specimens in this study key to P. aequalis using Townes et al. (1960), are 

consistent with the description of that species in Townes (1960), and the lectotype for P. 

aequalis fits within the morphological concept of P. aequalis discerned for our Pimpla 

specimens.  Parasitism of the C. albicans puparia by Pimpla spp. is reported here, while 
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parasitism by other non-pimpline hyperparasitoids was the focus of an earlier study 

(Broadley et al. 2018).  

We acquired high quality CO1 loci sequences for 74 individuals (50 adults and 24 

larvae).  These individuals represented all sites and years from which Pimpla wasps were 

detected.  Based on reconstruction of the phylogeny using the CO1 gene fragment, our 

samples separated into two distinct clades that exhibited 9.7 to 10.1% sequence 

divergence (Figure 12). All nucleotide differences between the two clades represented 

third-codon substitutions and thus likely represent genetic differences accumulated due to 

genetic drift and not selection.  Both Pimpla clades included wasps acting as primary 

parasitoids and hyperparasitoids (49 primary and 26 hyperparasitoids).  Based on the 

CO1 data, sequences from individuals in one of the clades were most similar to those 

labelled P. aequalis in public databases.  However, another sample identified as P. 

aequalis (BOLD HYCNG2310-12) appeared in a different clade.  Our other sequences 

were most similar to sequences labelled in public databases simply as Hymenoptera sp. or 

Pimpla sp. (e.g. HQ978834.1 or KR877820.1) and had no matches to any sequences with 

species identifications which were publicly available at the time of this publication.  We 

also detected no matches with Pimpla CO1 sequences from the hymenopteran collection 

of the Canadian Natural Collection of Insects, Arachnids and Nematodes (BOLD HYC 

sequences).   

Additionally, we obtained high quality sequences for fragments of CAD, EF1-α, 

and 28S from 26 Pimpla wasps (19 Pimpla aequalis species 1 individuals and 7 Pimpla 

aequalis species 2 individuals as from the CO1 analyses).  For CAD, sequences from the 

two Pimpla clades identified based on the CO1 analyses were 1.5-3.4% different from 
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each other, with six base-pair differences fixed between the two Pimpla clades (Figure 

13).  Similarly, for EF1-α the two clades were between 0.7-1.6% different with 3 base-

pairs consistently fixed between clades consistently different.  For 28S, there were no 

differences between individuals from the two CO1 clades, with all but two individuals 

(#876 and #997) having identical sequences; the two individuals (#876 and #997) 

differed from the other by a single base-pair substitution.  Because 28S was invariant, it 

was left out of the multilocus analyses.  The trees constructed from each of these three 

loci (Figure 13) and the majority rule consensus tree all supported the presence in our 

samples of two cryptic Pimpla species that morphologically fit the description of P. 

aequalis. For EF1-a, sequences from both Pimpla clades were 99% similar to sequences 

published by Heraty et al. (2011) and Klopfstein and Ronquist (2013) identified as P. 

aequalis. For 28S, there was no variation, and all sequences we generated matched (99% 

similarity) sequences in GenBank published by Quicke et al. (2009) for several species of 

Pimpla including Pimpla sp. (EU378837.1), P. disparis (EU378831.1), and Pimpla 

mahalensis Gribodo (EU378835.1).   

Based on these comparisons using a morphological and molecular approach, we 

conclude that we have two distinct species of Pimpla.  It is unclear which of the clades is 

P. aequalis. The second author (RRK) and another ichneumonid systematist (B. Santos, 

Smithsonian Institution NMNH) considered the Pimpla specimens in this research one 

species (i.e. P. aequalis) based morphological features; the lectotype for P. aequalis fits 

within the morphological concept. While one of the clades is P. aequalis, the other might 

represent an undescribed species.  However, discerning the identities of these clades 

requires more extensive examination of Pimpla species from the Nearctic and Palearctic 
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regions, as some species of Pimpla have a Holarctic distribution (e.g., Pimpla aquilonia 

Cresson). Presumably, these two species of Pimpla are native to North America. 

Morphologically, both match P. aequalis and do not match any Palearctic species 

available to us that are known to attack winter moth in Europe. Further, the sequences 

generated from our specimens do not match any published sequences available for other 

Pimpla species, which includes 13 or the 19 extant described species in the region, (Yu et 

al. 2016) and an additional six species of Pimpla from outside the Nearctic region. The 

only molecular matches are for other unknown Pimpla species collected from the 

northeast U.S. and southeast Canada. 
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Table 10: Annual cumulative percent parasitism by Pimpla for each study site and 
each year of study.  The parasitism estimate includes all signs of Pimpla parasitism, 
including recovered adult or larval wasps, as well as pupae with prominent wasp 
emergence holes for sentinel winter moth pupae and pupae parasitized by Cyzenis 
albicans. The total number of pupae examined to determine this proportion (i.e. the 
denominator) is included in parentheses.  The first eight sites (A-H) are long-term 
study sites and are used for analyses of parasitism across the years of study and by 
pupal density, while the sites marked in gray were used for an evaluation of Pimpla 
parasitism within and outside the main winter moth infestation area. 
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Figure 8: Average (2014 – 2017) cumulative percent parasitism by Pimpla on winter 

moth pupae across the pupal deployment sites.  The letters for each study site 
correspond to Table 1. The area on the map to the right of the dashed lines 

approximates the winter moth infestation area for 2007 and 2014 (Elkinton et al. 
2014a; Elkinton et al. 2014b). The six main study sites (sites A-F) are noted in blue. 

 
 

 
Figure 9: Mean (±SE) annual cumulative parasitism by Pimpla on winter moth 

pupae by year across sites.  Only the six long-term study sites are included (the first 
six study sites listed in Table 1).  
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Figure 10: Logistic relationship between monthly (top panel) and annual cumulative 
(bottom panel) Pimpla parasitism on pupae by winter moth pupal density across 

sites (the six main study sites).  The model shows year (2014 – 2017) ±SE. 
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Figure 11: Cumulative annual Pimpla parasitism on winter moth pupae as 

compared to Cyzenis albicans puparia. The figure shows the mean ±SE for study 
sites and years that included both pupae types (sites A-L, years 2014 -2016).  The C. 
albicans puparia received experienced significantly less mortality (df=22, pseudoR2= 

0.64, p= 0.0018).  
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Figure 12: Bayesian tree of a 604 bp region of the CO1 loci with the sequences from 

our Pimpla samples (bolded) and representative sequences from NCBI GenBank 
and BOLD.  Where our sequences were identical, the groups were collapsed as 

outlined in Table S2. Pimpla aequalis sp. 1 are noted with red and sp. 2 with blue. 
Branch lengths are drawn proportional to the rate of range observed.  The number 

to the left each node represents the bootstrap support value for the branch 
(Bayesian over the Maximum Likelihood). 
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Figure 13: Phylogentic inferences using (a) CO1, (b) CAD, and (c) EF1-α gene 
regions for only our Pimpla aequalis sp. 1 (red) and sp. 2 (blue) samples. Branch 

lengths are drawn proportional to the rate of range observed.  The number to the 
left each node represents the bootstrap support value for the branch (Bayesian over 

the Maximum Likelihood). 
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3.5 Discussion 

Biotic resistance is the process by which native natural enemies spill over from 

native species to attack an invasive species and reduce the success of that invader (Diez 

et al. 2008; Elton 1958; Levine et al. 2004; Sakai et al. 2001; Shea and Chesson 2002).  

We found evidence of biotic resistance to invasive winter moth populations in the 

northeast U.S.; in this most recent invasion, winter moth populations are sustaining 

heavy, density dependent parasitism by two cryptic species of Pimpla.  One of the Pimpla 

wasps is almost certainly P. aequalis, while the other appears to be a related unknown, 

and potentially undescribed, species.  As far as we know, both wasp species are native, 

and parasitism of winter moth is likely the result of natural enemy spillover from the 

native congener Bruce spanworm or other geometrid or noctuid species in the area.  

While the association of these Pimpla wasps with winter moth is relatively recent, the 

impact of Pimpla is notable; based on wasp collections alone, estimates of parasitism 

across our study sites were as high as 56% on winter moth pupae in infested areas and 

were found across all of our study plots.  Further, Pimpla parasitism responded to winter 

moth pupal density in a positive density-dependent manner and thus has the potential to 

be regulatory (Holling 1973).  Finally, parasitism rates were highest at the leading edge 

of the winter moth infestation, suggesting that the wasp may help to control winter moth 

spread.   

The ability of a native predator or parasitoid to respond functionally or 

numerically to a primary host population, while also using an alternative host when the 

primary host is at low densities, may result in particularly effective suppression of 
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populations of non-native invader by a native species (Necols et al. 1992; Shea and 

Chesson 2002).  In this way, the native natural enemy has the ability to build up using the 

novel host but can also use other host species when this new host is less abundant. As a 

result, the natural enemy is maintained in the community and can aggregate or respond 

numerically when the invasive alien population outbreaks or spreads. This pattern of host 

use is common for a number of generalist predators, parasitoids, and pathogens (deRivera 

et al. 2005; Hassell and Rogers 1972; Holling 1973; Murdoch 1969; Oaten and Murdoch 

1975; Schenk and Bacher 2002; Strauss et al. 2012).   

Parasitism by Pimpla in this study exhibited both of these characteristics.  While 

Pimpla may build up using winter moth as a host species and respond to high densities 

with higher rates of parasitism, it also can use other host species when winter moth 

populations are not at high densities.  We detected a positive density dependent 

relationship of parasitism to winter moth density, suggesting that Pimpla may have a 

regulatory effect on the winter moth population densities, and since Pimpla is 

multivoltine, the population of Pimpla may be able to build up in outbreak populations in 

a numerical response.  Such a numerical response would be density dependent and would 

have the potential to control an outbreaking population (Holling 1973).  However, we did 

not detect increased parasitism rates over either season or years and were not able to test 

for a numerical response to densities.  In the absence of a documented numerical 

response, it is likely that the density dependent response we found may arise from a Type 

III functional response driven by Pimpla host-switching behavior (Holling 1959; 

Murdoch 1969). While pimplines typically have a preferred host species (niche 

specialization), they are facultative generalists and can use a relatively broad host range 
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spanning multiple lepidopteran families (Bennett 2008; Fitton et al. 1988; Krombein et al. 

1979).  Pimpla exhibited particularly high parasitism 95 km beyond the nearest high-

density winter moth infestation (i.e. Framingham, MA) and 22 km from the nearest 

capture of winter moths in pheromone traps (i.e. Orange, MA). This supports the 

hypothesis that Pimpla population densities do not depend on the presence of winter 

moth and are already high in the community using other hosts, especially at the leading 

edge of the winter moth infestation.  In this way, Pimpla may provide a biotic resistance 

barrier to the spread of winter moth.  This may be helping to hold back the spread of 

winter moth, which was documented by Elkinton et al. (2014).   

If Pimpla acts as a hyperparasitoid (a parasitioid of a parasitoid) of any native or 

introduced parasitoids (biological control agents), then it has the potential to reduce 

population control of the invasive species by inflicting more mortality on the biological 

control agent than on the invasive species itself.  However, if a parasitoid inflicts more 

mortality on the invasive species than on any introduced biological control agent, then it 

aids in controlling the pest population (Brodeur 2000; Necols et al. 1992; Sullivan 1987).  

While we found that Pimpla wasps can hyperparasitize, as is typical of many pimpline 

wasps (Bennett 2008; Fitton et al. 1988) and was found previously (Broadley et al. 2018), 

they appear to do so only facultatively. From our laboratory host range study, when given 

a choice of unparasitized winter moth pupae or winter moth pupae parasitized by C. 

albicans, the wasps only parasitized the winter moth pupae. From our field study, both 

species of Pimpla wasps can act as hyperparasitoids, but they do so at rates significantly 

lower than their rate of primary parasitism.  Further, in 2016, we found Pimpla attacking 

winter moth but did not find any evidence of hyperparasitism.  Overall, hyperparasitism 
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on C. albicans at these sites was primarily caused by wasps from the genus Phygadeuon 

rather than Pimpla (Broadley et al. 2018).  Together, this further demonstrates that 

Pimpla wasps contribute toward controlling winter moth populations.   

We detected two species of Pimpla parasitizing winter moth pupae; one appears 

to be P. aequalis; the other is unknown and might be an undescribed cryptic species. For 

our estimates of percent parasitism, we did not distinguish between the two species of 

Pimpla but from the molecular work, one clade is better represented than the other; the 

majority (88%) of the randomized samples we tested belonged to P. aequalis sp. 1. No 

life history difference was detected between the two species. Both species were found 

across study site, season, and year, and both species acted as both primary and 

hyperparasitoids.  No statistically difference between the two groups in these life history 

parameters was detected.  While both species are consistent with the description of P. 

aequalis, we were not able to aquire DNA from the lectotype to definitely determine 

which of our species was consistent with the lectotype.  Future research is needed 

comparing DNA from the lectotype and our samples or the relationship can be 

approximated by comparing to DNA samples collected from the same location and date 

that the lectotype was collected.   

Winter moth has been extensively studied in its native range in Europe (Klemola 

et al. 2008; Myers and Cory 2013; Tenow et al. 2013; Varley et al. 1973a; Vindstad et al. 

2011; Vindstad et al. 2013), as well as in the prior accidental introductions to North 

America (Embree 1965; Roland 1990; Roland and Embree 1995); however, this is the 

first report of Pimpla as an important parasitoid of winter moth. To our knowledge none 

of the studies of winter moth pupal mortality in Nova Scotia recorded parasitism by 
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Pimpla, although native parasitoids were noted (Embree 1965; Graham 1958; Macphee et 

al. 1988; Pearsall and Walde 1994; Roland 1990).  In British Columbia, Coccygomimus 

(=Pimpla) hesperus was recorded from Operophtera spp. pupae by Humble (Humble 

1985) but was not recorded in later studies by Roland (Roland 1990; Roland and Embree 

1995).  This suggests that the wasps were accidently overlooked in the Nova Scotia 

studies or that Pimpla now shows more host-switching to winter moth than when winter 

moth was first introduced to North America in the 1930s. Surveys were conducted in 

winter moth infested sites in coastal Maine, and pimplines, likely P. aequalis and 

possibly P. aquilonia, were found there (Morin 2015, unpublished); however, that study 

did not include sentinel winter moth and thus showed correlation but not direct causation.   

We were surprised that P. aequalis detected in this study seemed to be the only 

major species that parasitized winter moth pupae.  The lack of additional parasitoids and 

seemingly slow recruitment of Pimpla may help explain why winter moth has been such 

a high-density pest in its introduced region.  We looked for parasitism by P. contemplator 

and P. turionellae, which are known parasitoids of winter moth in Europe (Wylie 1960), 

and for P. turionellae, which was introduced to southeastern Canada in an attempt to 

control winter moth (Graham 1958).  Further, P. disparis, a parasitoid introduced in this 

region to control gypsy moth, was also a potential candidate since P. disparis is highly 

polyphagous, attacking lepidopterans of at least 14 families (Schaefer et al. 1989).  

However, these Pimpla species were not detected.  Besides the two species of Pimpla 

reported here, we only had a few cases of parasitism by other wasps—diapriid and 

Cratichneumon wasps.  Cratichneumon culex (Muell.) has been recorded as an important 

parasitoid of winter moth pupae in Europe (East 1974; Frank 1967; Hassell 1969; Varley 
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and Gradwell 1963; Varley et al. 1973a; Varley et al. 1973b; Wylie 1960), and an 

undescribed Cratichneumon species was reared from winter moth in British Columbia 

(Humble 1985). As far as we know, Cratichneumon sp. was not introduced as a classical 

biological control agent (Embree 1966; Graham 1958).   

Our findings suggest an important role of Pimpla spp. as understudied parasitoids 

in the population dynamics of winter moth, an invasive forest pest.  Overall, this study 

shows that biotic resistance is acting on the winter moth invasion.  We urge future 

entomology population studies and biological control practitioners to consider not only 

the effect of any introduced biocontrol agent but also the effect of native parasitoids and 

the potential interactions between introduced biocontrol agents and native natural 

enemies.  
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CHAPTER 4 

THE ROLE OF NATIVE NATURAL ENEMIES OF PUPAE AND THE 

BIOLOGICAL CONTROL AGENT CYZENIS ALBICANS IN THE POPULATION 

REGULATION OF AN INVASIVE GEOMETRID, WINTER MOTH 

(OPEROPHTERA BRUMATA) 

4.1 Abstract 

Multiple mortality factors can act on the same life stage of an organism. When 

these factors interact, they can have a synergistic, antagonistic, or no interacting effect on 

the host population.  To fully understand the role of natural enemies on a population, it is 

important to evaluate potential interactions among such contemporaneous mortality 

factors.  Here we use the model study organism winter moth (Operophtera brumata) in 

its invasive range in the northeast United States to study potential interactions between 

the introduced parasitoid Cyzenis albicans and generalist ground predators, all of which 

act on the pupal stage.  We also consider additional mortality caused by a native 

parasitoid Pimpla.  Prior long-term population studies showed that pupal mortality acting 

on two earlier invasive populations of winter moth—located in Nova Scotia and British 

Columbia—increased after C. albicans establishment, suggesting that predation on pupae 

was somehow synergized by the presence of this parasitoid.  Roland (1990) suggested 

several hypotheses to explain this observation.  He suggested that synergy between the 

two factors may arise from one or more of three mechanisms: (1) parasitoids suppress the 

winter moth population to a density that can be maintained by generalist predators, (2) 

unparasitized pupae are preferred by predators and thus experience higher mortality rates, 
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or (3) C. albicans, which are present in the soil over winter, sustain predator populations 

throughout the year more effectively than winter moth alone, which emerges in the fall.  

We tested these hypotheses by deploying winter moth pupae over six seasons spanning 

2005 to 2017 and by modeling pupal predation rates as a function of winter moth density 

and C. albicans establishment.  We also compared predation rates on winter moth pupae 

and C. albicans puparia.  We found support for the first hypothesis.  We detected both 

temporal and spatial density dependence, but only in the latter years of the study when 

winter moth densities were lower, presumably due to the added mortality by C. albicans.  

With low-density populations, pupal predators appear to no longer be saturated by the 

abundance of prey.  We found no evidence for the latter two hypotheses. Our findings 

lend support to the hypothesis that pupal predators are currently having a regulatory 

effect on winter moth populations, but only now that the population has been reduced, 

presumably by the introduction of the host-specific larval-pupal parasitoid C. albicans. 

4.2 Introduction  

Evaluating the impact of natural enemies on population dynamics requires 

quantification of all mortality factors in the study system and must account for 

interactions among contemporaneous sources of mortality.  Natural enemies that act on 

the host population during the same life stage can act synergistically or antagonistically.  

These dynamics between contemporaneous mortality factors have important implications 

for our understanding of population dynamics across taxa (Morris 1965, Caughley 1966, 

Varley et al. 1973, Botkin and Miller 1974, Barlow and Boveng 1991), for population 

conservation efforts (Heppell 1998, Jørgensen and Holt 2013), and for biological control 
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programs of pest species (Elkinton et al. 1996, Liebhold et al. 2000, Myers and Cory 

2013, Duan et al. 2014, Van Driesche and Reardon 2014, Murphy et al. 2018).  In 

particular, in-depth multiyear studies based on life-table analyses and comparative studies 

relative to other related populations are necessary to build understanding of insect 

population outbreaks and declines, the potential causes of which are still highly debated 

and of great interest to theoretical and empirical ecologists (Liebhold and Kamata 2000, 

Berryman 2002, Myers and Cory 2013, Myers 2018). 

Winter moth (Geometridae, Operophtera brumata L.) is a famous model study 

organism for understanding insect population dynamics (Varley et al. 1973, Hassell 1980, 

Murdoch et al. 1985, Myers and Cory 2013). It provides unique examples of long-term 

and detailed life-table analyses, carried out in the pest’s native range in Europe (Varley 

and Gradwell 1970, Varley et al. 1973) and in its introduced ranges (Embree 1965, 

Roland and Embree 1995, Elkinton et al. 2015).  Winter moth was accidentally 

introduced from Europe into Nova Scotia, Canada, in the 1930s (Hawboldt and Cuming 

1950), to Oregon, U.S.A., in the 1950s (Kimberling et al. 1986), and to British Columbia, 

Canada, in the 1970s (Gillespie et al. 1978).  A fourth, recent introduction of winter moth 

to North America has taken place in the northeastern United States (Elkinton et al. 2014, 

Elkinton et al. 2015). Comparative analyses among these different populations provide 

valuable insights into the variable population dynamics across the moth’s range. Winter 

moth also provides famous examples of successful biological control (Embree 1966, 

Hassell 1980, Caltagirone 1981, Murdoch et al. 1985, Roland and Embree 1995, Kenis et 

al. 2017), specifically the suppression of winter moth by a tachinid parasitoid (Cyzenis 
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albicans Fallén) and an ichneumonid parasitoid, (Agrypon flaveolatum Gravenhorst), 

both released in Nova Scotia and British Columbia, Canada.   

The long-term population dynamics of winter moth have been extensively studied 

in these invaded areas and compared to the moth’s dynamics in its native range.  

However, even after extensive study, the mechanism underlying winter moth population 

dynamics in its invasive range remains uncertain. In Nova Scotia, following the 

introduction of parasitoids and ensuing winter moth population decline, the introduced 

parasitoids were assumed to be responsible (Embree 1966, 1971, Hassell 1980, Murdoch 

et al. 1985).  However, subsequent studies in Canada, in both Nova Scotia and British 

Columbia, suggested that predation on winter moth pupae along with parasitism was 

necessary to regulate winter moth densities (Roland 1990, Pearsall and Walde 1994, 

Roland 1994, Roland and Embree 1995, Horgan et al. 1999, Raymond et al. 2002, 

Heisswolf et al. 2009). This latter school of thinking recognizes that mortality in the 

pupal stage appears to be particularly important in winter moth.  First, winter moth has a 

long pupal period (6–7 months during the summer, representing most of its life) and it 

pupates in the top layer of soil or leaf litter.  This renders the pupae particularly 

vulnerable to mortality from predation and parasitism.  Winter moth caterpillars hatch in 

synchrony with bud-break of their host plants and feed on the foliage in early spring 

before dropping to the soil in mid-late May to pupate; they emerge as adults in early 

winter, from early November through early January (Embree 1965, Elkinton et al. 2015).  

Second, in the native range of winter moth in Europe, pupal mortality in the soil was the 

most important regulatory factor due to density-dependence across generations (Varley 

and Gradwell 1968, Varley et al. 1973).  Lastly, prior research shows positive density 
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dependent predation in low-to-medium density winter moth populations (Varley and 

Gradwell 1968), and the opposite trend (inverse density dependent predation) when 

winter moth is in outbreak densities (Raymond et al. 2002).    

Much of the research on the population dynamics of winter moth focuses on pupal 

stage interactions with introduced biocontrol agents.  In particular, Roland (1990) showed 

that pupal mortality in both Nova Scotia and British Columbia increased after parasitoid 

establishment, suggesting that predation on pupae was somehow synergized by the 

presence of C. albicans.  He proposed a number of hypotheses of how C. albicans 

parasitism and predation on the winter moth pupae might interact.  He suggested that 

synergy between the two factors might arise from one or more of three mechanisms: (1) 

parasitoids suppress the winter moth population to a density that can be maintained via 

pupal predation by native generalist predators, (2) unparasitized pupae are preferred by 

predators and thus experience higher mortality rates, or (3) C. albicans, which are present 

in the soil for 10 months of the year (June – March), sustain predator populations 

throughout the year more effectively than winter moth alone, which are present in the soil 

for only 6 months of the year (June – November)(Figure 14). 

The hypotheses outlined by Roland (1990) have some support from research in 

Nova Scotia and British Columbia (Roland and Embree 1995, Horgan et al. 1999), but 

have neither been empirically tested, nor evaluated in the most recent and fourth 

accidental introduction of winter moth in North America, in the northeastern U.S.A. 

(Elkinton et al. 2010, Elkinton et al. 2014, Elkinton et al. 2015).  Furthermore, while both 

C. albicans and A. flaveolatum were introduced in an effort to control previous invasive 

populations of winter moth, only C. albicans was introduced to this fourth invasive 
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population of winter moth (Elkinton et al. 2015).  This provides a unique opportunity to 

study the role of C. albicans alone on winter moth population dynamics, and its 

interaction with generalist predation rates, without potential interference from an 

additional introduced parasitoid.       

Cyzenis albicans was introduced across the areas infested by winter moth in the 

northeastern United States, beginning in 2005.  Populations of C. albicans have now 

started to establish across much of this new winter moth range (Elkinton et al. 2015).  In 

several of the release sites, a large change in winter moth densities (more than a 90% 

reduction) has been documented, with only a relatively small percent parasitism (5-15%, 

Elkinton et al., 2018).  This suggests, as Roland (1990) described in Canada, that 

parasitism alone is not responsible for declines in winter moth densities and instead acts 

with predation to regulate the population.  

To test the three hypotheses proposed by Roland (1990), we (1) analyzed pupal 

mortality before and after establishment of C. albicans and as a function of winter moth 

pupae density, (2) compared mortality rates between parasitized and unparasitized pupae 

and (3) analyzed mortality on pupae and tested for a difference in the predator 

community with and without C. albicans.  
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4.3 Methods  

4.3.1 Pupa Deployment 

Pupae were deployed in 2005 and from 2013 to 2017 to estimate mortality from 

predation.  They were deployed in eastern Massachusetts at eight study sites used for 

long-term assessment of winter moth population dynamics (Whited 2007, Elkinton et al. 

2014, Elkinton et al. 2015. The deployments included winter moth pupae and C. albicans 

puparia (Table 16), reared from spring larval collections conducted across eastern 

Massachusetts (Elkinton et al. 2015).  The larvae were reared in batches of 500 or fewer 

individuals in ventilated 20 L (5 gallon) buckets and fed with foliage from the tree 

species on which they were found.  Mortality from viruses, fungus, other diseases, and 

larval parasitism in these collections were minimal (Broadley et al. 2017).  Prepupae 

were given sifted peat moss for pupation (see details in Broadley et al. 2018) and all 

resulting pupae were non-destructively checked under a dissecting microscope (Wild 

Heerbrugg stereo) for parasitism by C. albicans or other larval parasitoids.  Pupae were 

stored until use in an incubator (Percival) at 12 °C, in batches of up to 50 individuals in 

sterile 100 mm x 15 mm polystyrene petri dishes (Fisherbrand) with a mesh lid for 

ventilation.  The pupae were sprayed monthly with water treated with sodium propionate 

(5 g/L) to prevent mold growth.   

Pupae were deployed in either three or five consecutive rounds per year, from 

mid-June until end of October. Five deployments (one every three weeks) were 

completed in 2005, 2013, and 2014; three deployments (one every six weeks) were 

completed in 2015, 2016, and 2017.  In 2005, sets of 40 winter moth pupae were 
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deployed, while in all the subsequent years (2013 – 2017) sets of 100 winter moth pupae 

and 50 C. albicans puparia were deployed.  For each deployment, the cocoons were 

attached to small burlap squares using beeswax, as was done in a study of predation on 

gypsy moth pupae (Elkinton et al. 1996) and in a study on winter moth pupae parasitized 

by C. albicans (Broadley et al. 2018).  Pupae on burlap were placed haphazardly in the 

soil under the drip line of a red oak (Quercus rubra) at the study sites (Table 16).  The 

pupae, attached to the burlap squares, were buried 2.5 cm below the soil surface to mimic 

natural pupa depths, which are within the upper 5 cm of soil (Embree 1965, Frank 1967, 

East 1974, Holliday 1977). 

The study sites were chosen to coincide with existing winter moth long-term 

study sites and to reflect a range of winter moth and C. albicans establishment histories 

(Elkinton et al. 2014, Elkinton et al. 2015). The study sites were all located in mixed 

hardwood forests dominated by red oak (Q. rubra) and red maple (Acer rubrum).  Winter 

moth pupae were deployed at all sites, but only some sites also received deployments of 

C. albicans puparia due to limited supply. 

To test for an effect of our deployment method, we compared mortality of pupae 

attached to wire tags as compared to pupae attached to burlap squares.  In 2005, we 

buried 30 wired pupae and 30 burlap-attached pupae at two sites and retrieved them two 

weeks later for evaluation.  Both techniques— deployment of pupae on burlap squares 

(Elkinton et al. 1996, Whited 2007, Broadley et al. 2018) or marking them using wire or 

string tags (Buckner 1959, 1969, East 1974, Horgan et al. 1999, Raymond et al. 2002, 

Horgan and Myers 2004)—have been used for past studies of pupal predation.  Other 

methods included placing the pupae over screening or within screening (Roland 1988, 
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Pearsall and Walde 1994, Heisswolf et al. 2009), coloring the cocoons (Heisswolf et al. 

2010), or simply marking the location of the pupae (Tanhuanpaa et al. 1999, Heisswolf et 

al. 2010).   

4.3.2 Estimating site pupal densities and parasitism by C. albicans 

To estimate winter moth pupal density and percent C. albicans parasitism at each 

site, 16 buckets (16 cm wide x 28 cm long x 10 cm high) were filled 3 cm deep with 

sifted peat moss and placed under each study tree in late May, before pre-pupal winter 

moth caterpillars began to spin down from the tree canopies. Each bucket was placed at a 

randomly selected distance between the tree stem and the edge of the tree canopy, along 

one of eight evenly-spaced directions radiating from the tree stem, as described in Varley 

et al. (1973) and Whited (2007).  Parasitism rates on winter moth by C. albicans were 

estimated both from the proportion of C. albicans-parasitized pupae from these pupal 

bucket collections and from collections of 100 to 500 late-instar larvae collected from a 

range of host trees at each site. From these values, we calculated the corresponding C. 

albicans density (puparia/m2) for each plot.  

 

4.3.3 Pupal mortality estimates 

After each deployment, pupae were retrieved and stored in an incubator (Percival) 

at 12°C in constant darkness until analysis. We characterized the fate of the pupae as 

intact, predated, parasitized, or diseased.  Predation was assumed for pupae that had been 
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removed from the burlap square, pupae with only the crushed cuticle remaining, pupae 

with holes chewed in them, and ones with evidence of teeth or claw marks in the wax, as 

shown in Broadley et al. (2018).  Parasitism by Pimpla wasps was assumed for pupae 

with wasp emergence holes and pupae that yielded wasp adults or their larvae.  Pimpla is 

an important pupal parasitoid (Broadley et al. 2018 and Broadley, unpublished). Disease 

was inferred for moldy or desiccated pupae.  However, for the purposes of this study we 

excluded the diseased pupae in our mortality estimates since the desiccation or mold 

likely occurred as a result of rearing conditions. These pupae accounted for a small 

proportion of mortality (< 6%).  To allow for pupal parasitoid development, intact pupae 

were stored in an incubator (Percival) over the winter, also as outlined in Broadley et al. 

(2018), and were re-examined for parasitoid emergence or development in the spring.  

Once pupal fate and pupal mortality due to C. albicans parasitism were 

determined, predation and Pimpla parasitism were calculated for each deployment and 

year. Predation was calculated as the proportion of retrieved pupae classified as predated.  

Mortality due to pupal parasitism from Pimpla was calculated as the total number of 

pupae parasitized by Pimpla wasps divided by the number of pupae that remained after 

predation.  

Many studies have used marginal attack rates to calculate mortality when 

contemporaneous sources of morality act in a system (Varley and Gradwell 1968, 

Royama 1981, Van Driesche 1983, Buonaccorsi and Elkinton 1990, Elkinton et al. 1992, 

Pearsall and Walde 1994, Broadley et al. 2018, Murphy et al. 2018). This method 

accommodates the observation that pupal parasitism rates can be obscured by predation, 

which typically occurs on the pupae whether or not they were parasitized.   
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To calculate the annual cumulative (life stage-long) mortality rate, we converted 

the mortality rates for each deployment and each mortality factor to survival rates (Si) by 

subtracting the proportion of pupae that did not survive (Pi) from one (Si  = 1−Pi).  To 

account for slight discrepancies in when pupae were first deployed, we estimated pre-

experimental mortality of the pupae by taking the nth root of the survivorship of the first 

deployment, where n is the number of days the first deployment was out.  We then raised 

this to the estimated number of days that elapsed during the pupal period of winter moth 

before to the onset of the study.  Based on prior research (Elkinton et al. 2014, Elkinton et 

al. 2015), we estimated the start of the pupal period to be 1 June.  Next, cumulative 

survivorship values were calculated as the product of successive survivorships of each 

deployment (e.g., Sc  =  S1 x S2 x S3) and the cumulative mortality values (Pc) were 

calculated by subtracting the cumulative survival from 1 (Pc = 1−Sc). 

To evaluate the rate of mortality of Cyzenis puparia over the winter, we deployed 

an additional set of 100 puparia at each of two sites (study sites B and D in Table 1) from 

26 October to 3 April of 2013.  To analyze mortality rates of deployments across years 

and months, even when the exact number of days deployed varied (from 19 to 45), we 

standardized mortality proportions to the mean deployment duration of 31 days.  We 

subtracted the proportion of pupae that died for each mortality source for each 

deployment from 1 for the survivorship estimate (S  =  1 - M) then raised this to the nth 

root, where n is the true number of days the pupae were deployed (which ranged from 19 

to 45 days with a mean of 31 days).  The survivorship (S) was raised to an exponent of 31 

to yield the expected survivorship over a standardized 31 days (S31 = [(Si)1/n]31).  

 



 

104 

 

4.3.4 Predator exclusion and community experiments 

In 2013 and 2014, we used a combination of predator exclusion studies and pitfall 

traps to identify predators in the community and to evaluate their relative contribution to 

pupal mortality.  We ran six rounds of a predator exclusion experiment to quantify the 

relative role of the different potential pupal predators.  Using the same two sites for each 

round, we ran one round in 2013 and two rounds in 2014. For each round 100 pupae were 

deployed in a 100 m by 100 m grid with one pupa placed every 1 m2 in the array.  The 

pupae were attached to burlap squares and these squares were secured to the bottom of 

one of three cage treatments—cages with 3.2 mm (1/8”), 6.4 mm (1/4”), or 12.7 mm 

(1/2”) square openings or a control (just the wire mesh bottom of one of the other three 

cages).  The cages were placed 2 to 3 cm into the ground and covered with a soil and leaf 

litter. For both years we used the same sites in Wellesley, MA and Hanson, MA. In 2013 

we deployed the array of pupae from 12 August to 20 October, and in 2014 we ran 

deployments from 26 June to 11 August and again from 18 August to 30 October. At the 

end of each deployment the pupae were retrieved and evaluated as described above in 

section 2.2.  In 2013, two pitfall traps were placed at each study site, and all pitfall traps 

were checked once a week.  The pitfall traps were each made of a 24 oz plastic cup, 

buried flush to the surface, covered with a lid elevated five centimeters above with a wire 

stand, and partially filled with 70% ethyl alcohol solution.  All beetle larvae, adult 

staphylinid and carabid beetles, and any small mammal by-catch were counted.     
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4.3.5 Statistical analyses 

All analyses were run in R 3.4.4 (RCoreTeam 2013) using RStudio, version 

1.1.442 (RstudioTeam 2015).  For each analysis, the full model was always run initially 

(including site, year, and deployment effects). The model was evaluated for evidence of 

skew in the residuals or outliers, and any insignificant predictors (p > 0.05) were dropped 

sequentially starting with the largest p-value until the best fit model was selected using 

AIC comparisons.  We checked for overdispersion and when evidence of overdispersion 

was noted we applied a quasibinomial or quasipoisson distribution (Crawley 2005, Zuur 

et al. 2013).  For the logistic regression and ANOVA analysis, proportions were weighted 

by the total number of pupae evaluated.  A pseudo-R2 was calculated by comparing the 

residual deviance of the fit model against the null model (deviance null model – deviance 

fit model / deviance null model).  All graphical data were displayed using ggplot2 

(Wickham 2009).    

To analyze the overall magnitude of total pupal mortality, predation on pupae, and 

pupal parasitism across the years and study sites, we used a logistic generalized linear 

model with the cumulative mortality by each mortality factor as the response with year 

and site as fixed effects.  To test for a significant difference among sets of the mortality 

factors (total mortality, predation, and parasitism), we used a multiple comparisons test of 

the means (Tukey Contrasts), including year and site as factors.  The package multcomp 

(Hothorn et al. 2008) was used for these pairwise comparisons.  We looked for 

seasonality in the predation rate within a year by analyzing monthly mortality rates (as 
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calculated using methods explained in Section 2.2) over the pupal period (June – 

October, as Julian days) with year and site effects.   

To test for direct density-dependent effects on predation to the pupae, we 

analyzed the cumulative mortality on the winter moth pupae by predation at the long-

term study plots against the underlying density of pupae at these sites.  We again 

considered year and site effects (temporal and spatial density dependence, respectively).  

To test for delayed density dependence, we analyze the mortality from predation against 

the prior year’s densities.  As Roland and Myers (1987) did in their evaluation of a 

delayed density effect on pupal weight, we plotted the residuals of the fit model of the 

mortality from predation against the same year’s density estimates plotted against the 

prior year’s density.   

To test the hypothesis that C. albicans puparia may experience mortality from 

predation at a rate lower than that of unparasitized winter moth pupae, we used a logistic 

ANOVA to compare the annual cumulative mortality experienced by the two different 

pupae types over the winter moth pupal season (June – October).  We also compared the 

mortality of winter moth pupae to Cyzenis puparia that were left for the duration of their 

own pupal period, which extends through the winter.  Subsequently, to test the related 

hypothesis that the presence of Cyzenis puparia provides an overwintering food source 

for resident predators and thus allows them better survival and reproduction rates, we 

compared predation rates of winter moth pupae in sites with and without C. albicans 

establishment and across a C. albicans parasitism gradient.   

Lastly, to compare predation rates on winter moth pupae by different members of 

the predator community, we again used a logistic ANOVA to compare the relative 
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mortality of the predator exclusion treatments (deployment methods in Section 2.4) with 

deployment and treatment as fixed effects.  Using logistic regression, we tested for a 

correlation between predation rates and the abundance of carabid beetles, staphylinid 

beetles, beetle larvae, and small mammals at each site.   

4.4 Results 

4.4.1 Winter moth pupal mortality 

In total, 14,500 winter moth pupae were deployed, and 13,525 burlap squares 

were retrieved after their deployment period and evaluated (Table 11).  For C. albicans 

puparia, 3,700 were deployed and 3,507 retrieved.  Overall, predation accounted for the 

vast majority of pupal mortality (Figure 15).  There was no consistent increase or 

decrease in total mortality or predation on pupae from 2005 to the end of the study in 

2017; however, the rate of predation on pupae varied significantly across years (pseudoR2 

= 0.54, df = 38, p = 0.011); rates in 2013 and 2017 were significantly lower than 2005 (p 

= 0.011 and p = 0.031, respectively).  Site effects were not significant (p > 0.29).  

Parasitism by pupal parasitoids accounted for a minority of pupal mortality and was 

significantly lower than predation (p = 0.0001) but ranged from approximately 20 to 40% 

of mortality on pupae left behind after predation. 

When considering rates of predation on the pupae across the pupal period of 

winter moth within a year (June – October, regressing against Julian day the pupae were 

retrieved), there was a significant effect of seasonality (pseudoR2 = 0.37, df = 128, p < 

0.0001), with year and site effects (p < 0.0001 and p = 0.001, respectively).  Peak 
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mortality from predation occurred in the third week of August with an average predation 

rate of 50% of pupae every 31 days.        

There was no effect of deployment method (deploying the pupae on burlap 

squares as compared to deploying with a tag/wire attached to the cocoon) on pupal 

mortality.  For the side-by-side comparison of the two treatments, an equal number of 

pupae were attacked (58% of 60 pupae from each deployment treatment).   

4.4.2 Density dependence of winter moth pupal mortality 

There was a significant effect of winter moth pupa density on the resulting 

mortality from predation of the sentinel pupae (pseudoR2 = 0.50, df = 24, p < 0.018) with 

a significant effect of year (Figure 16A; p = 0.0040) and site (Figure 16B; p = 0.026).  

There was no evidence of delayed density dependence when considering either the 

current year’s rate of predation as compared to the prior year’s winter moth density (p = 

0.63) or the correlation between the residuals of the model constructed with the current 

year’s predation correlated with the density of pupae in the same year against the prior 

year’s winter moth density (p = 0.81 and p = 0.10 for the model with year and site effects, 

respectively).   

4.4.3 Comparative mortality on winter moth pupae vs C. albicans puparia 

The predation rates on C. albicans puparia were not significantly different than 

that on winter moth pupae when compared over the same interval (winter moth’s pupal 

stage, June – October) or when factoring in the additional mortality that may act upon C. 
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albicans puparia over the winter before they emerge as adults (June – April, Figure 17; 

pseudoR2 = 0.67, df = 19, p = 0.32).   There was a trend toward lower mortality on C. 

albicans puparia than winter moth pupae. 

4.4.4 Effect of C. albicans presence on winter moth pupal mortality  

Cyzenis albicans was successfully established in different years across the sites 

included in this analysis (e.g., as early as 2010 for Wellesley, MA or as late as 2014 for 

Hanson, MA).  We compared predation rates on winter moth pupae as a function of 

winter moth density and C. albicans-establishment status (with or without C. albicans).  

The effect of established C. albicans was significant, with lower rates of predation after 

C. albicans establishment (Figure 18; p = 0.012).  However, pupal predation was also 

only significantly related to density after C. albicans establishment (Figure 19; pseudoR2 

= 0.38, df = 33, p = 0.0027).  No correlation was detected between predation rates and 

percent C. albicans parasitism (pseudoR2 = 0.29; df = 36; p = 0.90 and pseudoR2 = 0.32; 

df = 31; p = 0.25 for estimates using pupae and larvae collections, respectively).  

4.4.5 Predator exclusion and community experiments 

In the predator community, we focused on the relative role of small mammals, 

carabid beetles (adults and larvae), and staphylinid beetles.  Using predator exclusion 

cages, there was a significant effect of treatment (mesh size; Figure 20; pseudoR2 = 0.48; 

df = 41; p < 0.0001), and to a lesser extent, deployment number (p = 0.0017).  The four 

size classes of predators contributed equally to pupal mortality; there was an even decline 
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in predation rates on the pupae with each smaller mesh size exclusion cage.  No 

significant effect was found when regressing predation rates against the abundance of 

each of the four taxonomic groups of predators (p = 0.35, p = 0.41, p = 0.40 for small 

mammals, carabid beetle adults, staphylinid beetle adults, and total predator abundance 

including beetle larvae).    

 

Table 11: Study sites used for deployments of winter moth pupae and Cyzenis 
albicans puparia across the years of the study.  The numbers given in the top of each 

cell (ranging from 0.59 to 1.00) are cumulative predation rates.  The numbers in 
parentheses are the total sample sizes.  Data are given only for sites and years that 

had deployments of sentinel pupae.   
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Figure 14: Three hypotheses for how the introduced parastioid C. albicans may 

positively affect predation rates of winter moth pupal predation rates by generalist 
ground predators in winter moth’s introduced range.  After Roland (1990). 
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Figure 15: Mortality from C. albicans parasitism (blue), mortality from predation 
(red), and mortality from Pimpla parasitism (purple) on winter moth pupae across 

the six years of study for long-term study sites (first eight sites listed in Table 1).  
Each mortality source is calculated from what was left behind after the prior 

mortality source acted on the system. Error bars show standard errors.  Data was 
not collected on Pimpla parasitism in 2005 and 2013.    
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Figure 16: Cumulative mortality from predation by the density of winter moth 
pupae at the site by (A) year and (B) site. Pupal density is given as the base-10 

logarithm of (pupae/m2) calculated from the oak trees at each site.  Different colors 
indicate different years (A) or sites (B).   
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Figure 17: Annual cumulative predation on Cyzenis albicans puparia and winter 

moth pupae across all the sites and years in which both were deployed.  There was 
no significant difference between the two types of pupae, even when additional 
spring mortality of C. albicans is included (right most bar).  Error bars show 

standard errors.   
 

 

 
Figure 18: Mortality from predation of winter moth pupae in sites and years prior 
to Cyzenis albicans establishment as compared to sites and years with C. albicans 

establishment. Error bars are constructed using one standard error from the mean.  



 

115 

 

 
Figure 19: Mortality from predation of winter moth pupae in sites and years prior 
to Cyzenis albicans establishment as compared to sites and years with C. albicans 

establishment against the corresponding pupal density.  Pupal density had a 
significant effect on the resulting predation with Cyzenis establishment (black 

trendline) but was not significant prior to Cyzenis establishment.  
 
 

 
Figure 20: Proportion of pupae predated upon across the predator exclusion cage 

treatments.  The images show the likely predators (staphylinid, beetle larvae, 
carabid, and small mammal) able to access the pupae for each mesh size.  Error 

bars show standard errors.   
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4.5 Discussion 

We used a multifaceted approach to evaluate the role and interaction of two 

important, contemporaneous mortality factors acting on the pupal stage of winter moth—

predation from generalist ground predators and parasitism by Cyzenis albicans— and 

their effect on population dynamics of this model study organism.  Our findings lend 

support to the hypothesis that pupal predators only have a regulatory effect on winter 

moth populations after the moth’s population has been reduced (presumably by the 

introduction of the host-specific larval-pupal parasitoid C. albicans).  This is one of three 

hypotheses proposed by Roland (1990) to explain the trend noted in all introduced 

populations of winter moth in North America, where establishment of Cyzenis led to a 

larger decline in winter moth population densities than can be explained by the additional 

mortality caused by C. albicans.    

We detected both spatial and temporal direct density dependent effects.  Temporal 

density dependent effects were more evident in the most recent year of study, when the 

population of winter moth was at its lowest for the study years and the lowest recorded 

since long-term life-table studies in Massachusetts commenced in 2004 (Elkinton et al. 

2015).  Our data suggests that since winter moth densities have decreased, presumably 

due to mortality by C. albicans, pupal predators are no longer saturated by the abundance 

of prey.  These generalist predators can now regulate winter moth density.  A similar 

trend was detected in the long-term population studies conducted on winter moth in Nova 

Scotia (Embree 1965); mortality in the pupal stage did not govern the survivorship 

between generations until after C. albicans was established.  This density dependent 

effect was detected in our data even with relatively low parasitism by C. albicans (ca 
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13% in 2016 and 18% in 2017).  Additionally, Massachusetts’s population densities have 

now been reduced to levels comparable to those historically found in winter moth’s 

endemic range in Europe (Varley and Gradwell 1968, East 1974, Kowalski 1977).  

However, in 2005 and 2013 – 2015, populations in Massachusetts were at levels that 

matched other invasive, outbreaking populations of winter moth at or above a predator 

saturation threshold (Raymond et al. 2002, Horgan and Myers 2004, Heisswolf et al. 

2009). Together this suggests that the invasive population of winter moth in the northeast 

United States is now behaving much like the native population in Europe and no longer 

represents an outbreak population.   

Predation was by far the main source of mortality on winter moth pupae, resulting 

in more than 75% loss of the pupae deployed.  The rates of pupal mortality from 

predators were similar to those found in prior studies in British Columbia (Roland 1988, 

Horgan et al. 1999, Horgan and Myers 2004), Nova Scotia (Macphee et al. 1988, Pearsall 

and Walde 1994), and Europe (Varley et al. 1973, East 1974, Hansen et al. 2009, 

Heisswolf et al. 2010).  However, our estimate of pupal mortality was higher than some 

other estimates of pupal mortality in Europe (East 1974, Klemola et al. 2009, Klemola et 

al. 2014, Pepi et al. 2017).  This discrepancy was particularly evident when comparing 

data from studies of predation rates in winter moth outbreak years, or at high elevation 

sites, likely because the predator saturation point had been surpassed (Tanhuanpaa et al. 

1999, Raymond et al. 2002, Heisswolf et al. 2009, Klemola et al. 2014).  As in other parts 

of in winter moth’s introduced range (Roland 1990), after predation, we found mortality 

by native pupal parasitoids to be the next highest mortality factor for winter moth pupae.  

In the current study, this was parasitism on the pupae by a Pimpla ichneumonid wasp, 
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while in Roland (1990) the wasp species was not specified.  In another similarity to 

previous studies conducted in winter moth’s introduced range (Neilson 1965, 

Cunningham et al. 1981, Roland 1990, Pearsall and Walde 1994, Horgan et al. 1999, 

Burand et al. 2011, Broadley et al. 2017), fungal, viral, or other unknown reasons that the 

pupation failed accounted for a small portion of mortality in the pupae in our study.  

Combined with evidence from previous winter moth literature, our findings lend 

support to the hypothesis that different suites of mortality factors operate in low-density 

versus outbreak populations of winter moth. Parasitism by C. albicans caused little to no 

detectable mortality in endemic low-density winter moth populations (Varley et al. 1973). 

However, when introduced to outbreak populations in Canada, C. albicans reached high 

levels of parasitism and with three to six years of establishment brought about a decline 

in winter moth population densities (Macphee et al. 1988, Pearsall and Walde 1994, 

Roland 1994, Horgan et al. 1999).  In both Nova Scotia and British Columbia, the 

population of winter moth crashed four to five years after the first release of C. albicans 

(Roland 1990).  More specifically, Embree (1965) found that defoliation by winter moth 

was reduced to negligible levels three years after C. albicans reached 10% parasitism. 

Indeed, while parasitism by C. albicans was non-existent or negligible at the start of our 

study, C. albicans parasitism rates steadily increased each year and shifted winter moth 

from a consistently high-density population showing no regulation by predators to a 

population that is now regulated by predators.     

We did not find significant differences between predation on unparasitized pupae 

compared to parasitized pupae.  We found no difference when comparing the two pupal 

types for the duration of winter moths’ pupal period (June – October) nor when we 
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included the additional mortality C. albicans experiences overwinter as a pupa.  Pupae 

parasitized by C. albicans are smaller than unparasitized pupae and have a thicker and 

tougher cuticle.  Some studies found that Cyzenis puparia suffered lower mortality than 

winter moth pupae (Roland 1990, Horgan and Myers 2004).  However, other studies 

(Hassell 1969, Horgan and Myers 2004) did not find lower rates of mortality on C. 

albicans puparia and, in fact, Horgan and Myers (2004) found that C. albicans puparia 

suffered from overall higher rates of mortality.  Winter moth pupae and C. albicans 

puparia vary in size from year to year (Horgan and Myers 2004); thus, it may be size 

rather than parasitism status that influences mortality rate differences between these two 

pupa types.  We also found very little additional mortality to C. albicans puparia during 

the winter.  This is in contrast to the predictions made by Hassell (1969) but aligns with 

predictions made by Horgan and Myers (2004).  In the northeast U.S., as long as snow 

cover is present, temperatures in the leaf litter and upper soil layer are close to freezing 

between November and March in Massachusetts and can dip much colder without snow 

(Elkinton et al, unpublished).  As was found in British Columbia (Horgan and Myers 

2004), cold winter temperatures limits predation by invertebrates on C. albicans puparia 

over the winter.          

While we did detect positive density-dependent effects on the pupae from 

generalist ground predators and found this effect to be strongest in the recent, lower-

density years, we found no direct evidence that the presence of C. albicans causes an 

increase in predation rates on the winter moth pupae.  As in Nova Scotia and British 

Columbia (Embree 1965, Roland 1988, 1990, Roland and Embree 1995), we found that 

the presence of C. albicans acts on winter moth population to reduce density below the 
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saturation threshold such that generalist predators can then respond spatially and 

temporally to the densities.  However, unlike these previous studies we did not find that 

the presence of C. albicans increased predation rates.  Instead, the presence of C. 

albicans appeared to decrease overall levels of predation.  We suggest that this is because 

C. albicans pupae are a less-preferred prey item than winter moth pupae (Roland 1990, 

Horgan and Myers 2004). Thus, when predators encounter a high proportion of cocoons 

that are C. albicans rather than winter moth, they are likely to switch to other food 

sources and leave in search of better feeding grounds (Holling 1959, Murdoch 1969).  

Such behavior has been found in other studies where predator preference for prey items 

depends on their parasitism status (Lafferty 1992, Al-Zyoud and Sengonca 2004, 

Gehman and Byers 2016, Murphy et al. 2018).  In the current study, this interaction 

results in a density dependent response of pupae, but overall lower predation rates.  While 

there is convincing evidence from Nova Scotia and British that C. albicans parasitism 

synergizes with predation (Embree 1965, Roland 1988, 1990, 1995, Roland and Embree 

1995), complementary research did not detect a relationship between parasitism by C. 

albicans and subsequent declines in in winter moth densities (Kimberling et al. 1986, 

Bonsall and Hassell 1995, Horgan et al. 1999).  We also did not detect a synergistic 

relationship between C. albicans parastism and predation, but our data suggests that the 

two mortality factors are additive.     

     There has been much debate in the literature about which predators are most 

important in terms of applying top-down pressure on the winter moth population.  We 

found that small and large predators contributed equally to the mortality experienced by 

the pupae.  Various studies have come to different conclusions as to whether beetles 
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(primarily carabid and staphylinid) or small mammals were more important predators on 

winter moth pupae, with results depending on the region, season, duration, and method of 

study.  A number of studies determined that small mammals were the most important 

predators of winter moth pupae (Embree 1965, Buckner 1969), while others concluded 

that carabid or staphylinid beetles were most important (East 1974, Kowalski 1977, 

Pearsall and Walde 1994, Roland and Embree 1995, Horgan and Myers 2004).  In 

addition to our results, other studies on winter moth pupal predation have also concluded 

that all three categories contribute equally (Frank 1967, Horgan et al. 1999, Heisswolf et 

al. 2010).  Seasonally, most mortality occurred between the end of July and the end of 

August; however, mortality on the pupae extended through October. It is likely that both 

components of the predator community (mammalian and invertebrate) contribute to the 

top-down regulation of winter moth densities. In some sites and years one predator may 

provide more control while in other sites or years control may result from a different 

species.  The constant fluctuation but consistent pressure from all components of the 

predatory community obscure any obvious association between densities of particular 

taxa and predation rates.   

Mortality from parasitism by the native wasp Pimpla, while much lower than that 

from predation, was still notable.  With the increase in Pimpla parasitism on winter moth 

pupae from 2013 to 2015, it appeared that Pimpla was being recruited to the system as 

was seen by European parasitoids on winter moth in northern Norway by Vindstad et al. 

(Vindstad et al. 2013).  If the increase in parasitism by Pimpla had continued, recruitment 

of parasitoids could explain the apparent synergistic relationship between Cyzenis and 

predation.  However, with the subsequent years’ data, it seems that Pimpla varies from 
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year to year.  Further, we detected high levels of parasitism by Pimpla in central 

Massachusetts 50 km west of the nearest winter moth population (Broadley et al., 

unpublished).  This shows that attacks on winter moth pupae by Pimpla are not linked to 

the presence of winter moth populations because unlike C. albicans (Embree and 

Sisojevic 1965, Elkinton et al. 2015), Pimpla is a generalist (Fitton et al. 1988, Bennett 

2008). We recorded no data on Pimpla in 2005 and 2013 because we had not yet learned 

to identify the emergence holes it makes in winter moth pupae nor learned to hold the 

pupae to allow for wasp development.  The recent two years of data suggest that while 

Pimpla parasitism levels fluctuate from year to year, Cyzenis parasitism levels are 

steadily increasing.   

Lastly, considering our evaluation of pupa deployment methods, we found no 

difference in the predation rate when we deployed our pupae tethered to a wire as 

compared to those attached to burlap squares.  Thus, we can compare across studies that 

have deployed pupae using these different methods.  However, we do not claim that our 

experimental predation rates are equal to the rates on naturally occurring pupae.  Instead, 

these rates are an experimental test of predation rate that are comparable across 

treatments, years, sites, and studies.    

Overall, we explain the role of contemporaneous mortality factors acting on the 

pupal stage and their interaction on the resulting population dynamics of our study 

organism.  Extensive research has been conducted using winter moth as a model 

organism to understand the interactions between parasitoids and predators and the role of 

pupal predation as a density-dependent regulatory factor.  Much of this research has been 

conducted with invasive populations of winter moth and has focused on the interaction 
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between introduced host-specific parasitoids (Cyzenis albicans, a classical biological 

control agent) and native generalist predators (biotic resistance).  Our study lends support 

to the current hypothesis that the introduction of C. albicans results in significant indirect 

mortality on winter moth; reducing the population of winter moth to densities low enough 

to be regulated by pupal predators, as occurs in winter moth’s native range in Europe.  

However, our data suggest that the two mortality factors are additive, but not synergistic.  

These findings are important for both a better understanding of population dynamics, 

particularly in terms of what regulates insect outbreaks, and in understanding the current 

biological control program on winter moth in the northeast United States.   
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CHAPTER 5 

COMPARATIVE POPULATION ECOLOGY OF AN INTRODUCED 

GEOMETRID (OPEROPHTERA BRUMATA.) AND ITS NATIVE CONGENER 

(OPEROPHTERA BRUCEATA) 

5.1 Abstract 

Winter moth (Operophtera brumata L.) (Lepidoptera: Geometridae) is a newly 

invasive species from Europe to the northeastern United States, which causes widespread 

defoliation of a wide variety of deciduous trees.  In this region, it co-occurs, and 

sometimes hybridizes with, a native congener, Bruce spanworm (O. bruceata Hulst) 

(Lepidoptera: Geometridae), a species with a nearly identical life cycle and an equally 

wide host range.  Bruce spanworm is ubiquitous in the northern United States and 

southern Canada, but populations almost always remain at low density.  Outbreaks of the 

species are rare and short-lived.  Here we explore why the two species have such 

different population dynamics.  We discovered a microsporidian in Bruce spanworm that 

causes high mortality among larvae and pupae, especially in high-density populations, 

which are rare. We recovered no microsporidia in winter moth in this region.  We also 

report high levels of parasitism by an ichneumonid wasp, Agrypon sp., in low-density 

populations of Bruce spanworm in Massachusetts.  This wasp appears to be closely 

related to Agrypon flaveolatum Gravenhorst, which was introduced from Europe to 

control invasive winter moth populations in Nova Scotia in the 1950s and to Vancouver 

Island in the 1970s.  However, the Agrypon recovered from Bruce spanworm’s CO1 

sequences are distinct from those recovered from winter moths from Norway, Nova 
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Scotia, and Vancouver Island, all of which have nearly identical sequences.  Also, the 

sequences of Agrypon sp. from Bruce spanworm are a close match to sequences from A. 

flaveolatum reared from the autumnal moth (Epirrita autumnata Borkhausen) in Finland, 

where it apparently does not attack winter moth.  A third clade of Agrypon was found 

attacking winter moth in the northeastern United States, but at very low levels.  Bruce 

spanworm populations are subject to top-down mortality from a pathogen and parasitoid 

that do not affect winter moth, which may explain the differences in their population 

dynamics.   

5.2 Introduction  

The causes of insect population outbreaks and regulation are of interest to 

theoretical and empirical ecologists (Myers and Cory 2013, Myers 2018).  One approach 

to determining the underlying causes of outbreaks and regulation is to use comparative 

studies of a species that exhibits variable population dynamics across its range over time 

(Elkinton and Liebhold 1990, Tanhuanpaa et al. 1999, Raymond et al. 2002); another 

approach is to study two related species that exhibit contrasting dynamics but share a 

common range (Roland and Embree 1995, Watt and Woiwod 1999, Hansen et al. 2009, 

Heisswolf et al. 2009, Heisswolf et al. 2010, Vindstad et al. 2013).  In this study, we use 

the latter approach to better understand the population dynamics of winter moth 

(Operophtera brumata L.) (Lepidoptera: Geometridae) in its introduced range in the 

northeastern United States. We compared populations of winter moth in the northeast 

United States (hereafter, simply ‘the northeast’) with sympatric populations of its native 

congener, Bruce spanworm (Operophtera bruceata Hulst) (Lepidoptera: Geometridae).       
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Winter moth is a famous model study organism for understanding insect 

population dynamics (Varley et al. 1973, Hassell 1980, Myers and Cory 2013, Myers 

2018) and, in North America, is a destructive, invasive forest pest (Cuming 1961, Embree 

1967, Simmons et al. 2014, Elkinton et al. 2015).  The population dynamics of winter 

moth in its native range (Europe) have been extensively studied and were used to develop 

foundational theories in insect population ecology (Varley and Gradwell 1970, Varley et 

al. 1973, Hassell 1980).  Winter moth was accidentally introduced into Nova Scotia, 

Canada in the 1930s (Hawboldt and Cuming 1950), to Oregon, U.S.A. in the 1950s 

(Kimberling et al. 1986), and to British Columbia, Canada, in the 1970s (Gillespie et al. 

1978).  A fourth introduction of winter moth to North America has recently occurred in 

the northeastern United States (Elkinton et al. 2010, Elkinton et al. 2015).  However, the 

suppression of winter moth by a tachinid parasitoid (Cyzenis albicans Fallén) and an 

ichneumonid wasp (Agrypon flaveolatum Gravenhorst) in Nova Scotia and British 

Columbia is a famous example of successfull biological control (Embree 1966, Hassell 

1980, Caltagirone 1981, Murdoch et al. 1985, Roland and Embree 1995, Kenis et al. 

2017).  Biological control work is being implemented against winter moth in the 

northeast and shows promising results (Elkinton et al. 2018).  However, the success of 

this biological control program likely depends in part on mortality caused by native 

natural enemies, including pathogens, parasitoids, and predators (Roland 1990, Horgan et 

al. 1999, Broadley et al. 2017, Broadley et al. 2018, Donahue et al. in press).  

The introduced range of winter moth in the northeast overlaps with that of Bruce 

spanworm, which is a native congener of winter moth.  Bruce spanworm has a similar life 

history to that of winter moth, shares the same pheromone, and can hybridize with winter 
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moth (Pivnick et al. 1988, Gwiazdowski et al. 2013, Havill et al. 2017).  Bruce spanworm 

is widespread in northern North America and southern Canada (Elkinton et al. 2010, 

Gwiazdowski et al. 2013).  However, in contrast to winter moth in the northeast United 

States, Bruce spanworm is remains at low densities and only occasionally undergoes 

local, short-lived outbreaks (Brown 1962, Rose and Lindquist 1997).  This difference in 

density is occurs even where the two species are sympatric (Broadley et al. 2017, 

Donahue et al. in press).  We propose that this difference in population dynamics exists 

because winter moth, in its introduced range, has been released from its natural enemies, 

while Bruce spanworm is regulated by indigenous natural enemies.  Based on research on 

gypsy moth (Lymantria dispar L), we expect host-specific pathogens play an important 

role in the population dynamics when Bruce spanworm densities are high but expect 

generalist predators or parasitoids to play an important role when densities are low 

(Campbell 1975, Campbell and Sloan 1977, Elkinton and Liebhold 1990, Elkinton et al. 

1996).   

Bruce spanworm is an ideal model species to investigate the role of native, natural 

enemies affecting Operophtera in the northeast.  Here we aim to quantify the population 

dynamics of winter moth as compared to Bruce spanworm in the northeast and measure 

the prevalence of larval pathogens (nucleopolyhedrovirus and microsporidia) and 

parasites (Agrypon spp.) in the two species.  Comparison between the two species will 

help us understand why winter moth is an outbreak species, whereas Bruce spanworm 

outbreaks are rare. 
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5.3 Methods  

5.3.1 Sample collection 

Bruce spanworm and winter moth larvae were collected from the field as fourth or 

fifth instars in late May of 2012 – 2016 (Table 12).  In 2012 and 2013, Bruce spanworm 

larvae were collected from a localized outbreak near Millinocket, Maine (Township 2, 

Region 8 NWP).  This is 150 km inland from the area where winter moth has been 

detected in Maine (Elkinton et al. 2010, Elkinton et al. 2015). In 2014, Bruce spanworm 

was undetectable at this site, and collections of Bruce spanworm in 2014 and 2015 were 

made from the Mohawk Trail State Forest in Charlemont, Massachusetts and from Savoy 

Mountain State Forest in Savoy, Massachusetts.  These collection sites are 60 km from 

the westernmost location of y winter moth in Massachusetts (Elkinton et al. 2010, 

Elkinton et al. 2014).  In all four years, winter moth larvae were collected from long-term 

study sites in eastern Massachusetts where winter moth was abundant and Bruce 

spanworm was rare or nonexistent in the study years (Elkinton et al. 2014, Elkinton et al. 

2015, Havill et al. 2017).  The long-term study sites were in Wellesley, MA (42.308444, -

71.266778), Hanson, MA (two sites: 42.048889, -70.873806 and 42.060694, -

70.844167), Hingham, MA (2 sites: 42.208333, -70.853056 and 42.238222, -70.913389), 

Yarmouth, MA (41.686167, -70.287722), and Falmouth, MA (41.626417, -70.580417) 

(Elkinton et al. 2018).  For all collections, collection rate (caterpillars/minute) was 

recorded as a proxy for larval density. Collection rate was calculated from the number of 

caterpillars collected for each site divided by the number of collectors and the number of 

minutes spent collecting at that site.  
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5.3.2 Rearing for estimate larval and pupal mortality 

Larvae were reared in batches of 500 or fewer in ventilated 20 L (5 gallon) 

buckets provisioned with the foliage from the tree species from which the caterpillars 

were collected.  Winter moth larvae were reared separately from Bruce spanworm larvae, 

and larvae of the same species that were collected from different sites were reared 

separately.  The foliage was insertedinto wet Oasis Floral Foam bricks (Smithers-Oasis 

North America) to keep the foliage fresh and upright.  Foliage was replaced every other 

day and any cadavers were removed. Larvae pupated in a week or less, which is not 

enough time for NPV or microsporidia infections to spread among larvae (Wigley 1976).  

All dead larvae found during rearing were placed individually in sterile 1.5 mL 

microcentrifuge tubes (Fisherbrand) and immediately frozen at −20 °C.  When the 

remaining larvae started to show signs of pupating (thickening body shape and rolling a 

leaf edge over themselves), sifted peat moss was added to the bottom of the buckets as a 

pupation site.  Later, pupae were sifted from this peat moss and counted.   

Healthy pupae were stored in an incubator (Percival) until the following spring to 

allow further development of moths or parasitoids. Pupae were stored at 12 °C until the 

beginning of December, when the temperature was lowered to 9.5 °C. At the end of 

December, the temperature was adjusted to 4 °C. The pupae were kept in dark with no 

day/night cycle, and once a month they were sprayed with a sodium propionate solution 

(5 g sodium propionate/L of water) to prevent mold. Starting in late March, the 

temperatures were gradually increased in increments of 4 °C per week until April, when 



 

130 

 

pupae were taken out of storage and held at room temperature for emergence.  Any 

parasitoids that emerged were identified to family using Goulet and Huber (1993) and 

Triplehorn and Johnson (2005) and stored in 95% ethanol at -20 °C for molecular or 

morphological identification. 

5.3.3 Microscopy for prevalence of visible infections 

Larval cadavers were homogenized in molecular-grade water and viewed under a 

light microscope (Carl Zeiss Standard 14) at 400x.  All cadavers collected in 2013 and 

2014 were scanned, and any visible infections of NPV or microsporidia were noted.  

Only cadavers whose tissues were predominately filled with virus particles or 

microsporidia spores were counted as being infected by that agent.  A subsample of the 

microscopy evaluations determining infection by NPV and microsporidia were confirmed 

with molecular analyses (Broadley et al. 2017, Donahue et al. in press).  Disease 

incidences were compared only in 2013-2015, as cadavers were not saved from the 2012 

Bruce spanworm or winter moth collections.  Also, it should be noted that from the 2015 

collection of Bruce spanworm we only recovered three cadavers.  

5.3.4 Molecular analysis of Agrypon wasps 

A subset of the emerged Agrypon sp. wasps was used for molecular analysis.  In 

addition, Agrypon wasps from winter moth collection in British Columbia, Nova Scotia, 

and Norway, as well as Agrypon from autumnal moth (Epirrita autumnata Borkhausen) 

and from grey mountain carpet moth (Entephria caesiata Denis and Schiffermüller) from 
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Finland (Table 13), sent to us by Tero Klemola, Department of Biology, University of 

Turku, Turku, Finland were included in the molecular analysis.    

DNA was extracted using the QIAGEN DNeasy Blood and Tissue Kits, following 

the company protocol with the following modifications: for adults, DNA was extracted 

from a single leg removed from the specimen, and DNA was eluted twice in 100 μl 

Buffer AE instead of once with 200 μL. All DNA extractions were stored at -20°C for 

subsequent analysis.  A portion of the mitochondrial locus cytochrome c oxidase subunit 

I (CO1) was amplified using standard PCR techniques.  A master mix was prepared using 

the following ratios of reagents per sample: 17.3 μl nuclease free water, 0.5 μl dNTPs, 5 

μl 5X GoTaq Buffer (Promega), 0.2 μl GoTaq (Promega), 0.5 μl of both the forward and 

reverse primer (10 μM each), and 1 μl of eluted DNA. To amplify a 710 bp fragment of 

CO1, the primer set LCO (5'-GGTCAACAAATCATAAAGATATTGG-3') and HCO (5'- 

TAAACTTCAGGGTGACCAAAAAATCA-3') (Folmer et al. 1994) were used with the 

thermocycler profile outlined by Hebert et al. (2003).   

PCR reactions were run on a BioRad T100 thermocycler, and the resulting PCR 

products were visualized on an 1.5% agarose gel stained with SYBERsafe (Invitrogen, 

Carlsbad, CA) to verify amplification. Samples that produced bands of the expected 

fragment size for each locus were then cleaned prior to sequencing using Exonuclease 1 

(ThermoScientific) and Thermolabile Recombinant Shrimp Alkaline Phosphatase (New 

England BioLabs). The resulting products were submitted to The Yale University DNA 

Analysis Facility on Science Hill for Sanger sequencing in both sense and anti-sense 

orientations. 
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The resulting sequences were then visualized, the forward and reverse sequences 

were aligned, and sequences were edited using Geneious R8.1.8 and R9 (Biomatters 

Ltd.).  The ends of the aligned sequences were trimmed by hand to remove primer 

sequences and so that all sequences had a high-quality score (>90% HQ nucleotide 

reads). The presence of heterozygous sites was determined by Geneious and encoded 

using the appropriate IUPAC-IUB ambiguity codes.  All ambiguous regions were 

subsequently inspected by eye.  Additionally, for our CO1 fragment sequences, we 

looked for evidence of nuclear mitochondrial DNAs (NUMTs) or pseudogenes by 

examining for the presence of stop codons based on translation with Invertebrate 

Mitochondrial DNA genetic code. 

The sequences were trimmed to the shortest sequence.  We used the Geneious 

alignment algorithm in Geneious v. 8.1.8 (Kearse et al. 2012) to generate a sequence 

alignment.  A sequence from Agrypon flexorium downloaded from the Barcode of Life 

Database (accession number BBHYE400-10) was used as the outgroup.  A neighbor-

joining analysis was run in Geneious using 1,000 bootstrap replications and a majority 

rule (50%) consensus threshold.  The resulting gene tree was then visualized using 

FigTree Version 1.4.2 (Rambaut 2014).  

5.3.5 Statistical analysis 

To calculate the standard error of the mortality of the larval collections and of the 

pupal collections, the standard error of a proportion was calculated.  
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"𝑝(1 − 𝑝)
𝑛  

The symbol p is proportion dying and n is the sample size. Logistic regression 

analyses were performed in R 3.4.4 (RCoreTeam 2013) using RStudio, version 1.1.442 

(RstudioTeam 2015).  We analyzed the effect of year and species on (1) larval mortality 

and pupal mortality, (2) proportion of pupae that died from virus and microsporidia, and 

(3) proportion of pupae with Agrypon sp. parasitism.  For each analysis, the model was 

evaluated for evidence of skew in the residuals or of outliers.  We checked for 

overdispersion, and when evidence of overdispersion was noted, we applied a 

quasibinomial distribution.  Quasibinomial analyses do not generate AIC values; thus, to 

select the best fit model, we compared the residual deviance of the fit model to that of the 

null model. A pseudo-R2 was calculated by comparing the residual deviance of the fit 

model against the null model (deviance null model – deviance fit model / deviance null 

model).   

5.4 Results 

5.4.1 Mortality of larvae and pupae 

Across collection years (2012 -2016), Bruce spanworm consistently experienced 

higher mortality in both larvae (p(species) = 0.030; p(year) = 0.32; df = 3; pseudoR2 = 

0.89; Figure 21A) and pupae (p(species) = 0.016; p(year) =0.025; df= 3; pseudoR2 = 0.94; 

Figure 21B) than winter moth.  This was especially true in the first two years (2012 and 

2013) when the Bruce spanworm larvae were collected from outbreak populations.  In 
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these two years, the Bruce spanworm caterpillars were just as easy to collect as winter 

moth in outbreak areas and could be collected at the same rate (Figure 22).  However, in 

2014 no Bruce spanworm caterpillars were found at the Maine site, and Bruce spanworm 

larvae were collected from low-density sites in western Massachusetts (Table 12).  

Collection of even a very few Bruce spanworm caterpillars in 2014 and 2015 took many 

hours, with a collection rate of only 0.03 and 0.02 caterpillars/minute or 1.6 and 1.2 

caterpillars/hour.  In other words, it took 3 individuals 12 hours to collect the 170 Bruce 

spanworm caterpillars in 2014 and 2 individuals 12 hours to collect the 87 caterpillars in 

2015.  This is in contrast to 3.5 to 4 caterpillars/minute for the other collections of winter 

moth and Bruce spanworm.    

5.4.2 Larval cadavers with visible infections  

Occlusion bodies with the characteristic of NPV were found in both winter moth 

and Bruce spanworm cadavers.  For both species, 10 to 30% of the cadavers showed 

heavy loads of NPV (Figure 23) and there was no significant difference in virus load 

between winter moth and Bruce spanworm or by year (p(species) = 0.12, p(year) = 0.44, 

df = 2, pseudoR2 = 0.93).  No microsporidia were detected in the winter moth collections 

and there was no significant difference in microsporidia prevalence across years (p = 

0.33, df = 3, pseudoR2 = 0.56). 
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5.4.3 Percent parasitism by and phylogenetic analysis of Agrypon wasps 

Both winter moth and Bruce spanworm experienced parasitism by Agrypon 

sp.wasps; however, Bruce spanworm had significantly higher parasitism rates than winter 

moth in our study sites in eastern Massachusetts and Maine (p <0.025, df = 4, pseudoR2 = 

0.71; Figure 24).  While parasitism rates were not significantly different across years (p = 

0.15), there was a trend toward higher parasitism detected in the lower density collections 

of Bruce spanworm than in higher density collections of Bruce spanworm.  From 

molecular analyses using the CO1 loci of Agrypon sp. collected from winter moth and 

Bruce spanworm in these study sites as well as from the Canada release sites and from 

Europe, we found that the Agrypon specimens reared from Bruce spanworm were distinct 

from those that we reared from winter moth. These Bruce spanworm Agrypon 

collections’ COI genes differed by 4% or 22-23 bp for the Agrypon specimens reared 

from winter moth collected in Massachusetts and by 2% or 9-12 bp from the Agrypon 

flaveolatum specimens collected from winter moth from British Columbia and Nova 

Scotia.  We never found any cross-parasitism by Agyrypon species between their two host 

species (Figure 25).  We also detected a different Agrypon species from winter moth in 

Massachusetts.  This parasitoid clade was 4-5% (25 or 26 bp) different from that of the A. 

flaveolatum that we reared from winter moth from Nova Scotia or British Columbia, and 

it was 4% (22 or 23 bp) different from the Agrypon specimens we reared from Bruce 

spanworm.                   
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Table 12: Bruce spanworm and winter moth larvae collections made each year in 
May, the resulting pupae at beginning of the pupal period, of those pupae the 
number that were intact (i.e. not diseased, desiccated, or parasitized), and the 

number of larval cadavers recovered from the rearing and subsequently used for 
comparisons of pathogen prevalence.  The number of collections sites for each year 
and species is included in parentheses after the collection site name.  No cadavers 

were collected from the 2012 collections.   
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Table 13: Agrypon sp. wasp sample collection locations. 
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Figure 21: Mortality of  larvae (A) and pupae (B) by year of Bruce spanworm (blue) 

and winter moth (red).  The first two years of Bruce spanworm collections (2012 
and 2013) were from high-density populations while the second two years (2014 and 

2015) were from low density populations.  Error bars show standard errors.      
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Figure 22: Caterpillars collected per minute for each year and species. 

 
 
 

 
Figure 23: Proportion	of	larval	cadavers	with	visible	infections	by	

nucleopolyhedrovirus	and	microsporidia.		Error	bars	show	standard	errors.	 
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Figure 24: Percent parasitism by Agrypon wasps on Bruce spanworm as compared 

to winter moth.  Error bars show standard errors.    
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Figure 25: Neighbor joining tree of a 570 bp region of the CO1 loci with the 

sequences from our Agrypon species samples.  The color of the text indicates the 
host: Red indicates winter moth, green indicates autumnal moth, blue indicates 

Bruce spanworm, and purple indicates gray mountain carpet moth.  The number to 
the left each node represents the bootstrap support value for the branch. 
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5.5 Discussion 

To better understand the population dynamics of winter moth in its introduced 

range in the northeastern United States, we compared winter moth larval and pupal 

mortality to that of Bruce spanworm, its native congener.  In the northeastern United 

States, winter moth is a high-density, invasive species (Elkinton et al. 2015) and Bruce 

spanworm is a native species, which is typically at low densities (Brown 1962, Rose and 

Lindquist 1997).  We found that winter moth experienced lower larval and pupal 

mortality than did Bruce spanworm.  While the populations of winter moth have recently 

been decreasing in Massachusetts, presumably due to classical biological control efforts 

(Elkinton et al. 2015, Elkinton et al. 2018), during the period of the present study, winter 

moth caterpillars were still consistently of higher density and easier to collect than Bruce 

spanworm caterpillars from low-density populations.   

The findings from this study have important implications for our understanding of 

why, winter moth has been in high-density populations in this region while Bruce 

spanworm only showed local, short-duration outbreaks or was at low densities.  Bruce 

spanworm was affected by several natural enemies in its larval and pupal stages, 

including viruses, fungal infections, and parasitism Bruce spanworm likely also 

experiences additional mortality from generalist predators and parasitoids of the larval 

and pupal stages, but these are likely similar to those that affect winter moth (Elkinton et 

al. 2015, Pepi et al. 2016, 2017, Broadley et al. 2018) and likely cause comparable rates 

of mortality.  The mortality factors acting on Bruce spanworm appear to maintain its 

populations at low density.  This is in contrast to winter moth, which, during the study 

period, showed consistently high densities and low rates for larval and pupal mortality.  
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Together, these findings suggest that winter moth is at such high densities in its invasive 

range because it has been released from the top-down regulation from natural enemies 

that have co-evolved with it in its native range.  This is referred to as e enemy release, 

where a non-indigenous species gains an advantage because it arrives in a new habitat 

without its specialized natural enemies. 

Microsporidia are important fungal pathogens of insects that typically show low 

virulence, causing chronic infections that reduce fecundity and population growth of the 

host (Hajek et al. 2007, Solter et al. 2012). Our finding, that microsporidia were present 

in Bruce spanworm but not winter moth in the northeastern United States, is consistent 

Donahue et al. (in press), who showed that these infections were caused by two species of 

Nosema/Vairimorpha microsporidia in Bruce spanworm.  We also detected NPV 

infections in both winter moth and Bruce spanworm cadavers and found that the 

proportion of cadavers with visible viral infections was similar between the two species.  

This supports an earlier study that showed that in the introduced range, both winter moth 

and Bruce spanworm experience low incidences of NPV, but that each host species is 

infected by its own virus species, which do not cross infect the other congener moth 

(Broadley et al. 2017).   

The pathogens present in each of the two species’ populations appear to act 

differently.  The incidence of microsporidia in Bruce spanworm was higher in larvae 

collected from a high-density population (2013) than from a low-density population 

(2014).  Furthermore, the Bruce spanworm collection site used in 2013 was checked the 

following year, and Bruce spanworm densities were found to have declined precipitously.  

Together, this suggests that when Bruce spanworm populations are in a high-density 
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phase, microsporidia may cause an epizootic able to reduce the host’s population density.  

On the other hand, winter moth larvae consistently experienced lower mortality than 

Bruce spanworm, even though for the past decade winter moth in the northeastern USA 

has existed at consistently high density (Elkinton et al. 2015, Elkinton et al. 2018), at 

levels where one would expect to see a disease epizootic (Hajek 2004).  This difference 

may help to explain why, in contrast to winter moth within its introduced range, Bruce 

spanworm is typically present in low-density populations, and why when Bruce 

spanworm does outbreak it does so on a local scale, and the high-density populations 

disappear quickly (Brown 1962, Rose and Lindquist 1997), as did our population in 

central Maine.   

Bruce spanworm not only experienced more larval mortality from pathogens, but 

also from parasitism, compared to winter moth.  We found a much higher percent 

parasitism by Agrypon wasps on the Bruce spanworm than on the winter moth, and 

Agrypon sp. parasitism was higher when Bruce spanworm densities were lower than 

when Bruce spanworm densities were higher.  We also compared the CO1 barcoding loci 

of Agrypon wasps collected from (1) Bruce spanworm, (2) winter moth collected in the 

northeast, (3) the Agrypon speciesintroduction sites in Canada, and (4) Norway and 

Finland.  Surprisingly, we found that the Agrypon sp. collected from Bruce spanworm 

was most closely related to the Agrypon recovered from autumnal moth (E. autumnata) 

collected in Finland.  In Finland, Agrypon sp. can be reared from the autumnal moth, but 

it does not attack winter moth (Klemola, unpublished).  The Agrypon specimens collected 

from winter moth from British Columbia and from Nova Scotia all were nearly identical 

and matched published sequences for A. flaveolatum.  Agrypon flaveolatum has not been 
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introduced to Massachusetts due lack of information on its host preference and taxonomy 

(Elkinton et al. 2015). However, we detected another Agrypon wasp in our Massachusetts 

winter moth collections, which was never detected in our Bruce spanworm collections.   

Agrypon sp. wasps are known to play an important role in the population 

dynamics of winter moth and were studied in the biological control project against winter 

moth in Canada.  In contrast, the influence of Agrypon sp. parasitism on Bruce spanworm 

is largely unstudied.  One year after introduction to Nova Scotia in 1956, A. flaveolatum 

was recovered in large numbers (Graham 1958).  Subsequently, winter moth populations 

in Nova Scotia declined dramatically in 1962, following high levels of both C. albicans 

and A. flaveolatum parasitism (40-60%) and remained at low density in subsequent years 

(Embree 1965, 1966, Macphee et al. 1988, Roland and Embree 1995).  Studies of the role 

of these two parastioids showed that parastism by C. albicans exceeded that caused by A. 

flaveolatum at high winter moth densities but the reverse was true at lower densities 

(Embree 1966, Macphee et al. 1988, Roland and Embree 1995).  This reflects what we 

found with the Agrypon sp. present in Bruce spanworm; parasitism was higher in the 

collections from Bruce spanworm that were from lower density populations than from the 

high-density population. 

Following the research conducted in Nova Scotia, both C. albicans and A. 

flaveolatum were also introduced to Victoria, British Columbia to control a new invasion 

of winter moth in the 1970s (Gillespie et al. 1978).  These introductions resulted in the 

subsequent decline of winter moth densities (Embree and Otvos 1984, Roland 1988, 

1994, Roland and Embree 1995).  Parasitism by C. albicans varied between 40-80% 

during this period, but, in contrast to Nova Scotia, parasitism by A. flaveolatum never 
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exceeded 2%. Similar levels of parasitism by both species prevailed in collections of 

winter moth larvae from Victoria, British Columbia between 2007 and 2013 (G. Boettner, 

unpublished data).  This suggests that A. flaveolatum may play an important role in some 

locations where winter moth has invaded, but not in others.  Since the host range of A. 

flaveolatum is not known, A. flaveolatum will not be introduced to Massachusetts, but if 

we consider the population dynamics of Bruce spanworm as a proxy for that of winter 

moth, the data suggest that A. flaveolatum could have played an important role.   

The current study used light microscopy to identify the primary pathogens in the 

cadavers recovered.  However, due to the life cycle of microsporidia, the spore stage is 

the only easily recognizable life stage (Ptaszyńska 2014), and light phase microscopy is 

known to result in false negative diagnoses (Sokolova et al. 2004).  Similarly, NPV can 

also be hard to detect using light microscopy.  However, we confirmed our visual 

diagnoses with molecular approaches in other work (Broadley et al. 2017, Donahue et al. 

in press).  These studies showed that what we identified as microsporidia and NPV by 

visual scan were indeed microsporidia and NPV.  However, from both of these studies we 

also found that our PCR technique was not always sensitive enough or broad enough to 

pick up the signal.   

Our results support the hypothesis that winter moth in the Northeast exhibits 

outbreak populations because, in contrast to Bruce spanworm, it lacks several natural 

enemies.  By studying two related species that exhibit variable dynamics but share their 

range, we highlighted differences that suggest what may be allowing the invasive winter 

moth to maintain high population densities, while its native congener, Bruce spanworm, 

has consistently low population densities.  



 

147 

 

BIBLIOGRAPHY 

Al-Zyoud, F., and C. Sengonca. 2004. Preference by prey consumption of Serangium 
parcesetosum Sicard (Col., Coccinellidae) by feeding on different prey stages, 
species and parasitized prey. Journal of Pest Science 77:197-204. 

 
Andersen, J. C., M. E. Gruwell, G. E. Morse, and B. B. Normark. 2010. Cryptic Diversity 

in the Aspidiotus nerii Complex in Australia. Annals of the Entomological 
Society of America 103(6):844-854. doi: 10.1603/an10060 

 
Andersen, J.C., Wagner, D.L., 2016. Systematics and biological control, in: Van 

Driesche, R.G., Simberloff, D., Blossey, B., Causton, C., Hoddle, M.S., Wagner, 
D.L., Warner, K.D. (Eds.), Integrating Biological Control into Conservation 
Practice. John Wiley & Sons, Ltd., Chichester, UK, pp. 105–129. 

 
Avise, J. C., and K. Wollenberg. 1997. Phylogenetics and the origin of species. P Natl 

Acad Sci USA 94(15):7748-7755. doi: 10.1073/pnas.94.15.7748 
 
Ball, S.L., Hebert, P.D.N., Burian, S.K., Webb, J.M., 2005. Biological identifications of 

mayflies (Ephemeroptera) using DNA barcodes. J. N. Am. Benthol. Soc. 24(3), 
508–524. https://doi.org/10.1899/04-142.1 

 
Barlow, J., and P. Boveng. 1991. Modeling age-specific mortality for marine mammal 

populations. Marine Mammal Science 7:50-65. 
 
Baum, D. A., and K. L. Shaw. 1995. Genealogical Perspectives on the Species Problem. 

In: P. C. Hoch and A. G. Stephenson, editors, Molecular and experimental 
approaches to plant biosystematics. Missouri Botanical Garden, St. Louis, MO. p. 
289-303. 

 
Bell, R. A., C. D. Owens, M. Shapiro, and J. R. Tardif. 1981. Development of mass 

rearing technology. Pages 599–633 in D. C. C. and M. M. L., editors. The gypsy 
moth: Research toward integrated pest management. Technical Bulletin 1584. 
U.S. Department of Agriculture, Forest Service, Washington, DC. 

 
Bennett, A. M. R. 2008. Review and identification keys to the ichneumonid parasitoids 

(Hymenoptera : Ichneumonidae) of Nearctic Choristoneura species (Lepidoptera : 
Tortricidae). Canadian Entomologist 140(1):1-47. 

 
Berryman, A. A. e. 2002. Population cycles: the case for trophic interactions. Oxford 

University Press, Oxford, UK. 
 
Bonsall, M. B., and M. P. Hassell. 1995. Identifying density-dependent processes - a 

comment on the regulation of winter moth. Journal of Animal Ecology 64:781-
784. 



 

148 

 

 
Botkin, D. B., and R. S. Miller. 1974. Mortality Rates and Survival of Birds. The 

American Naturalist 108:181-192. 
 
Broadley, H. J., M. Boucher, J. P. Burand, and J. S. Elkinton. 2017. The phylogenetic 

relationship and cross-infection of nucleopolyhedroviruses between the invasive 
winter moth (Operophtera brumata) and its native congener, Bruce spanworm (O. 
bruceata). Journal of Invertebrate Pathology 143:61-68. doi: 
10.1016/j.jip.2016.11.016 

 
Broadley, H. J., E. A. Kelly, J. S. Elkinton, R. R. Kula, and G. H. Boettner. 2018. 

Identification and impact of hyperparasitoids and predators affecting Cyzenis 
albicans (Tachinidae), a recently introduced biological control agent of winter 
moth (Operophtera brumata L.) in the northeastern U.S.A. Biological Control 
121:99-108. 

 
Brodeur, J. 2000. Host specificity and trophic relationships of hyperparasitoids. In: M. E. 

Hochberg and A. R. Ives, editors, Parasitoid Populaiton Ecology. Princeton 
University Press, Princeton, New Jersey. 

 
Brown, C. E. 1962. The Life History of the Bruce Spanworm, Operophtera bruceata. The 

Canadian Entomologist. 
 
Buckner, C. H. 1959. The assessment of larch sawfly cocoon predation by small 

mammals. Canadian Entomologist 91:275-282. 
 
Buckner, C. H. 1969. Common shrew (Sorex araneus) as a predator of winter moth 

(Operophtera brumata) near Oxford England. Canadian Entomologist 101:370-&. 
 
Buonaccorsi, J. P., and J. S. Elkinton. 1990. Estimation of contemporaneous mortality 

factors. Res Popul Ecol 32:151-171.  
 
Burand, J. P., W. Kim, A. Welch, and J. S. Elkinton. 2011. Identification of a 

nucleopolyhedrovirus in winter moth populations from Massachusetts. J Invertebr 
Pathol 108:217-219. 

 
Callaway, R. M., D. Montesinos, K. Williams, and J. L. Maron. 2013. Native congeners 

provide biotic resistance to invasive Potentilla through soil biota. Ecology 
94(6):1223-1229. doi: 10.1890/12-1875.1 

 
Caltagirone, L. E. 1981. Landmark examples in classical biological-control. Annual 

Review of Entomology 26:213-232. 
 
Campbell, R. W. 1975. The gypsy moth and its natural enemies. U.S. Dept. Agric. Info. 

Buill. 381. 



 

149 

 

 
Campbell, R. W., and R. J. Sloan. 1977. Natural regulation of innocuous gypsy moth 

populations. Environmental Entomology 6:315-322. 
 
Caughley, G. 1966. Mortality Patterns in Mammals. Ecology 47:906-918. 
 
Carlson, R. W. 2009. Superfamily Ichneumoidea. 

http://www.discoverlife.org/proceedings/0000/6 
 
Carpenter, J. M., and W. C. Wheeler. 1999. Towards simultaneous analysis of 

morphological and molecular data in Hymenoptera. Zoologica Scripta 28(1-
2):251-260. doi: 10.1046/j.1463-6409.1999.00009.x 

 
Carrillo-Gavilan, A., X. Moreira, R. Zas, M. Vila, and L. Sampedro. 2012. Early 

resistance of alien and native pines against two native generalist insect herbivores: 
no support for the natural enemy hypothesis. Funct Ecol 26(1):283-293. doi: 
10.1111/j.1365-2435.2011.01931.x 

 
Cooper, D., J. S. Cory, D. A. Theilmann, and J. H. Myers. 2003. Nucleopolyhedroviruses 

of forest and western tent caterpillars: cross-infectivity and evidence for activation 
of latent virus in high-density field populations. Ecological Entomology 28:41-50.  

 
Cory, J. S. 2010. The Ecology of Baculoviruses. Pages 411-428 in S. Asgari and K. 

Johnson, editors. Insect Virology. Caister Academic Press, Norfolk, UK. 
 
Cory, J. S. 2015. Insect virus transmission: different routes to persistence. Current 

Opinion in Insect Science 8:130-135. 
 
Cory, J. S., and J. H. Myers. 2003. The ecology and evolution of insect baculoviruses. 

Annual Review of Ecology Evolution and Systematics 34:239-272. 
 
Caughley, G. 1966. Mortality Patterns in Mammals. Ecology 47:906-918. 
 
Cuming, F. G. 1961. The distribution, life history, and economic importance of the winter 

moth Operophtera brumata (L.) (Lepidoptera, Geometridae) in Nova Scotia. The 
Canadian Entomologist 93:135-142. 

 
Cunningham, J. C., N. V. Tonks, and W. J. Kaupp. 1981. Viruses to control winter moth, 

Operophtera brumata, (Lepidoptera: Geometridae) Journal of the Entomological 
Society of British Columbia 78:17-24. 

 
Dearborn, K. W., S. B. Heard, J. Sweeney, and D. S. Pureswaran. 2016. Displacement of 

Tetropium cinnamopterum (Coleoptera: Cerambycidae) by Its Invasive Congener 
Tetropium fuscum. Environ Entomol 45(4):848-854. doi: 10.1093/ee/nvw045 

 



 

150 

 

deRivera, C. E., G. M. Ruiz, A. H. Hines, and P. Jivoff. 2005. Biotic resistance to 
invasion: Native predator limits abundance and distribution of an introduced crab. 
Ecology 86(12):3364-3376. doi: 10.1890/05-0479 

 
Dettman, J. R., D. J. Jacobson, and J. W. Taylor. 2003. A multilocus genealogical 

approach to phylogenetic species recognition in the model eukaryote Neurospora. 
Evolution 57(12):2703-2720. 

 
Dettman, J. R., D. J. Jacobson, and J. W. Taylor. 2006. Multilocus sequence data reveal 

extensive phylogenetic species diversity within the Neurospora discreta complex. 
Mycologia 98(3):436-446. doi: 10.3852/mycologia.98.3.436 

 
Diez, J. M., J. J. Sullivan, P. E. Hulme, G. Edwards, and R. P. Duncan. 2008. Darwin's 

naturalization conundrum: dissecting taxonomic patterns of species invasions. 
Ecology Letters 11(7):674-681. doi: 10.1111/j.1461-0248.2008.01178.x 

 
Donahue, K. L., H. J. Broadley, J. S. Elkinton, J. P. Burand, W. F. Huang, and J. C. 

Andersen. in press. Using the SSU, ITS, and Ribosomal DNA Operon 
Arrangement to Characterize Two Microsporidia Infecting Bruce spanworm, 
Operophtera bruceata (Lepidoptera: Geometridae). Journal of Eukaryotic 
Microbiology. 

 
Duan, J. J., K. J. Abell, L. S. Bauer, J. Gould, and R. Van Driesche. 2014. Natural 

enemies implicated in the regulation of an invasive pest: a life table analysis of 
the population dynamics of the emerald ash borer. Agricultural and Forest 
Entomology 16(4):406-416. doi: 10.1111/afe.12070 

 
Duan, J. J., P. B. Taylor, R. W. Fuester, R. R. Kula, and P. M. Marsh. 2013. 

Hymenopteran parasitoids attacking the invasive emerald ash boror (Coleoptera: 
Buprestidae) in western and central Pennsylvania. Florida Entomologist 
96(1):166-172. doi: 10.1653/024.096.0122 

 
East, R., 1974. Predation on soil-dwelling stages of winter moth at Wytham Woods 

Berkshire. J. Anim. Ecol. 43(3), 611–626. http://www.jstor.org/stable/3526 
 
Ehler, I.E., 1979. Utility of facultative secondary parasites in biological control. Environ. 

Entomol. 8(5), 829–832. https://doi.org/10.1093/ee/8.5.829 
 
Elkinton, J. S., G. H. Boettner, A. Liebhold, and R. Gwiazdowski. 2015. Biology, Spread, 

and Biological Control of Winter Moth in the Eastern United States. USDA 
Forest Service Publication, Morgantown, West Virginia. 

 
Elkinton, J. S., G. H. Boettner, H. J. Broadley, R. Reardon, and R. D. Weeks Jr. 2018. 

Biological control of the winter moth in the northeastern North America. USDA 
Forest Service Forest Health Assessment and Applied Science Team 2018-03:0-9.  



 

151 

 

 
Elkinton, J. S., G. H. Boettner, M. Sermac, R. Gwiazdowski, R. R. Hunkins, J. Callahan, 

S. B. Scheufele, C. P. Donahue, A. H. Porter, A. Khrimian, B. M. Whited, and N. 
K. Campbell. 2010. Survey for Winter Moth (Lepidoptera: Geometridae) in 
Northeastern North America With Pheromone-Baited Traps and Hybridization 
With the Native Bruce Spanworm (Lepidoptera: Geometridae). Annals of the 
Entomological Society of America 103:135-145. 

 
Elkinton, J.S., Buonaccorsi, J.P., Bellows, T.S., Van Driesche, R.G., 1992. Marginal 

attack rate, k-values and density dependence in the analysis of contemporaneous 
mortality factors. Res. Popul. Ecol. 34, 29–44. 
https://doi.org/10.1007/BF02513520 

 
Elkinton, J.S., Healy, W.M., Buonaccorsi, J.P., Boettner, G.H., Hazzard, A.M., Smith, 

H.R., 1996. Interactions among gypsy moths, white-footed mice, and acorns. 
Ecology 77(8), 2332–2342. http://www.jstor.org/stable/2265735 

 
Elkinton, J. S., and A. M. Liebhold. 1990. Population dynamics of gypsy moth in North 

America. Annual Review of Entomology 35:571-596. 
 
Elkinton, J. S., A. Liebhold, G. H. Boettner, and M. Sremac. 2014. Invasion spread of 

Operophtera brumata in northeastern United States and hybridization with 
O.bruceata. Biological Invasions 16:2263-2272. 

 
Elton, C. S. 1958. The Ecology of Invasions by Animals and Plants. Methuen, London, 

England. 
 
Embree, D. G. 1965. The population dynamics of the winter moth in Nova Scotia, 1954–

1962. Memoirs of the Entomological Society of Canada 97:5-57. 
 
Embree, D.G., Sisojevic, P., 1965. The bionomics and population density of Cyzenis 

albicans (Fall.) (Tachinidae: Diptera) in Nova Scotia. Can. Entomol. 97(6), 631–
639. https://doi.org/10.4039/Ent97631-6 

 
Embree, D. G. 1966. The role of introduced parasites in the control of the winter moth in 

Nova Scotia. Canadian Entomologist 98:1159-1168. 
 
Embree, D. G. 1967. Effects of winter moth on growth and mortality of red oak in Nova 

Scotia. Forest Science 13:295-299. 
 
Embree, D. G., and I. S. Otvos. 1984. Operophtera brumata (L.), winter moth 

(Lepidoptera:  Geometridae). Pages 353-357  Biological Control Programmes 
Against Insects and Weeds in Canada, 1969-1980. 

 



 

152 

 

Faillace, C. A., N. S. Lorusso, and S. Duffy. 2017. Overlooking the smallest matter: 
viruses impact biological invasions. Ecology Letters 20(4):524-538. doi: 
10.1111/ele.12742 

 
Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring 

feeding by winter moth caterpillars. Ecology 51:565-581. 
 
Fitton, M.G., Shaw, M.R., Gauld, I.D., 1988. Pimpline Ichneumon-flies: Hymenoptera, 

Ichneumonidae (Pimplinae). Royal Entomological Society of London, London, 
U.K. 

 
Flanders, S.E., 1963. Hyperparasitism, a mutualistic phenomonon. Can. Entomol. 95(7), 

716–720. https://doi.org/10.4039/Ent95716-7 
 
Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for the 

amplification of mitochondrial cytochrome c oxidase subunit I from diverse 
metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299. 

 
Frank, J.H., 1967. Effect of pupal predators on a population of winter moth Operophtera 

brumata (L) (Hydriomenidae). Journal of Animal Ecology 36:661-621. 
 
Frank, J. H. 1967. Insect predators of pupal stage of winter moth Operophtera brumata 

(L) (Lepidoptera - Hydriomenidea). Journal of Animal Ecology 36:375-&. 
 
Frost, S. W. 1964. Insects Taken in Light Traps at the Archbold Biological Station, 

Highlands County, Florida. The Florida Entomologist 47(2):129-161. doi: 
10.2307/3493289 

 
Garnas, J. R., M. A. Auger-Rozenberg, A. Roques, C. Bertelsmeier, M. J. Wingfield, D. 

L. Saccaggi, H. E. Roy, and B. Slippers. 2016. Complex patterns of global spread 
in invasive insects: eco-evolutionary and management consequences. Biological 
Invasions 18(4):935-952. doi: 10.1007/s10530-016-1082-9 

 
Gauld, I. D. 1991. The Ichneumonidae of Costa Rica,1. Introduction, keys to subfamilies, 

and keys to the species of the lower pimpliform subfamilies Rhyssinae, 
Poemeniinae, Acaenitinae and Cylloceriinae. Memoirs of the American 
Entomological Institute 47:1-589.  

 
Gillespie, D. R., T. Finlayson, N. V. Tonks, and D. A. Ross. 1978. Occurrence of Winter 

Moth, Operophtera brumata (Lepidoptera Geometridae), on Southern Vancouver-
Island, British-Columbia. Canadian Entomologist 110:223-224. 

 
Gehman, A. L. M., and J. E. Byers. 2016. Non-native parasite enhances susceptibility of 

host to native predators. Oecologia 183:919-926. 
 



 

153 

 

Goldson, S.L., Wratten, S.D., Ferguson, C.M., Gerard, P.J., Barratt, B.I.P., Hardwick, S., 
McNeill, M.R., Phillips, C.B., Popay, A.J., Tylianakis, J.M., Tomasetto, F. 2014. 
If and when successful classical biological control fails. Biological Control. 72, 
76-79, https://doi.org/10.1016/j.biocontrol.2014.02.012.  

 
Goulet, H., and J. T. Huber. 1993. Hymenoptera of the world: An identification guide to 

families. Centre for Land and Biological Resources Research, Ottawa, Ontario. 
 
Grabenweger, G., P. Kehrli, I. Zweimuller, S. Augustin, N. Avtzis, S. Bacher, J. Freise, 

S. Girardoz, S. Guichard, W. Heitland, C. Lethmayer, M. Stolz, R. Tomov, L. 
Volter, and M. Kenis. 2010. Temporal and spatial variations in the parasitoid 
complex of the horse chestnut leafminer during its invasion of Europe. Biological 
Invasions 12(8):2797-2813. doi: 10.1007/s10530-009-9685-z 

 
Graham, A. R. 1958. Recoveries of introduced species of parasites of the winter moth, 

Operophtera brumata (L.) (Lepidoptera:  Geometridae), in Nova Scotia. The 
Canadian Entomologist 90:595-596. 

 
Graham, R. I., W. I. Tyne, R. D. Possee, S. M. Sait, and R. S. Hails. 2004. Genetically 

variable nucleopolyhedroviruses isolated from spatially separate populations of 
the winter moth Operophtera brumata (Lepidoptera: Geometridae) in Orkney. 
Journal of Invertebrate Pathology 87:29-38. 

 
Groeneveld, L. F., D. W. Weisrock, R. M. Rasoloarison, A. D. Yoder, and P. M. 

Kappeler. 2009. Species delimitation in lemurs: multiple genetic loci reveal low 
levels of species diversity in the genus Cheirogaleus. Bmc Evolutionary Biology 
9doi: 10.1186/1471-2148-9-30 

 
Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. 

New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: 
Assessing the Performance of PhyML 3.0. Systematic Biology 59:307-321. 

 
Gwiazdowski, R. A., J. S. Elkinton, J. R. Dewaard, and M. Sremac. 2013. 

Phylogeographic Diversity of the Winter Moths Operophtera brumata and O. 
bruceata (Lepidoptera: Geometridae) in Europe and North America. Annals of the 
Entomological Society of America 106(2):143-151. doi: 10.1603/an12033 

 
Haas-Stapleton, J. O. Washburn, and L. E. Volkman. 2004. P74 mediates specific binding 

of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to 
primary celluar target in the midgut epithelia of Heliothis virescens larvae. 
Journal of Virology 78:6786-6791.  

 
Hajek, A.E., 2004. Natural Enemies: An Introduction to Biological Control. Cambridge 

University Press. New York, New York.  
 



 

154 

 

Hajek, A. E., M. L. McManus, and I. D. Junior. 2007. A review of introductions of 
pathogens and nematodes for classical biological control of insects and mites. 
Biological Control 41:1-13. 

 
Hansen, N. M., R. A. Ims, and S. B. Hagen. 2009. No Impact of Pupal Predation on the 

Altitudinal Distribution of Autumnal Moth and Winter Moth (Lepidoptera: 
Geometridae) in Sub-Arctic Birch Forest. Environmental Entomology 38:627-
632. 

 
Harvey, J.A., 2008. Comparing and contrasting development and reproductive strategies 

in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: 
Ichneumonidae). Evol. Ecol. 22(2), 153–166. https://doi.org/10.1007/s10682-007-
9164-x 

 
Hassell, M.P., 1969. A study of the mortality factors acting upon Cyzenis albicans (Fall.), 

a tachinid parasite of the winter moth (Operophtera brumata (L.)). J. Anim. Ecol. 
38(2), 329–339. https://doi.org/10.2307/2774 

 
Hassell, M.P., 1980. Foraging strategies, population models and biological control: a case 

study. J. Anim. Ecol. 49(2), 603–628. http://www.jstor.org/stable/4267 
 
Hassell, M. P. 2000. Host-parasitoid population dynamics. Journal of Animal Ecology 

69(4):543-566. doi: 10.1046/j.1365-2656.2000.00445.x 
 
Hassell, M. P., and D. J. Rogers. 1972. Insect parasite responses in the development of 

population models. Journal of Animal Ecology 41(3):661-676.  
 
Havill, N. P., Elkinton, J.S., Andersen, J. C., Hagen, S. B., Broadley, H. J., Boettner, G. 

J., Caccone, A. 2017. Asymmetric hybridization between non-native winter moth, 
Operophtera brumata (Lepidoptera: Geometridae), and native Bruce spanworm, 
Operophtera bruceata, in the Northeastern United States, assessed with novel 
microsatellites and SNPs. Bull Entomol Res. 107:241-250. 

 
Hawboldt, L. S., and F. G. Cuming. 1950. Cankerworms and winter moth in Novia 

Scotia. Forest Insect Investigations; bi-monthly progress report 6:1-2. 
 
Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R., 2003. Biological identifications 

through DNA barcodes. Proc. R. Soc. Lond. [Biol.] 270(1512), 313–321. 
https://doi.org/10.1098/rspb.2002.2218 

 
Hebert, P. D. N., S. Ratnasingham, E. V. Zakharov, A. C. Telfer, V. Levesque-Beaudin, 

M. A. Milton, S. Pedersen, P. Jannetta, and J. R. deWaard. 2016. Counting animal 
species with DNA barcodes: Canadian insects. Philos T R Soc B 371(1702)doi: 
10.1098/rstb.2015.0333 

 



 

155 

 

Heisswolf, A., M. Kaar, T. Klemola, and K. Ruohomaki. 2010. Local outbreaks of 
Operophtera brumata and Operophtera fagata cannot be explained by low 
vulnerability to pupal predation. Agricultural and Forest Entomology 12:81-87. 

 
Heisswolf, A., N. Klemola, T. Ammunet, and T. Klemola. 2009. Responses of generalist 

invertebrate predators to pupal densities of autumnal and winter moths under field 
conditions. Ecological Entomology 34:709-717. 

 
Heppell, S. S. 1998. Application of Life-History Theory and Population Model Analysis 

to Turtle Conservation. Copeia 1998:367-375. 
 
Heraty, J., F. Ronquist, J. M. Carpenter, D. Hawks, S. Schulmeister, A. P. Dowling, D. 

Murray, J. Munro, W. C. Wheeler, N. Schiff, and M. Sharkey. 2011. Evolution of 
the hymenopteran megaradiation. Molecular Phylogenetics and Evolution 
60(1):73-88. doi: 10.1016/j.ympev.2011.04.003 

 
Hobbs, R. J., E. Higgs, and J. A. Harris. 2009. Novel ecosystems: implications for 

conservation and restoration. Trends Ecol Evol 24(11):599-605. doi: 
10.1016/j.tree.2009.05.012 

 
Holliday, N.J., 1977. Population ecology of winter moth (Operophtera brumata) on apple 

in relation to larval dispersal and time of bud burst. J. Appl. Ecol. 14(3), 803–813. 
http://www.jstor.org/stable/2402812 

 
Holliday, N.J., 1985. Maintenance of the Phenology of the Winter Moth (Lepidoptera, 

Geometridae). Biological Journal of the Linnean Society 25:221-234. 
 
Holling, C. S. 1959. The components of predation as revealed by a study of small 

mammal predation of the European pine sawfly. Canadian Entomologist 91:293-
320.  

 
Holling, C. S. 1973. Resilience and Stability of Ecological Systems. Annual Review of 

Ecology and Systematics 4(1):1-23. doi: 10.1146/annurev.es.04.110173.000245 
 
Horgan, F.G., Myers, J.H., 2004. Interactions between predatory ground beetles, the 

winter moth and an introduced parasitoid on the Lower Mainland of British 
Columbia. Pedobiologia 48(1), 23–35. 
https://doi.org/10.1016/j.pedobi.2003.07.002 

 
Horgan, F. G., J. H. Myers, and R. Van Meel. 1999. Cyzenis albicans (Diptera : 

Tachinidae) does not prevent the outbreak of winter moth (Lepidoptera : 
Geometridae) in birch stands and blueberry plots on the lower mainland of British 
Columbia. Environmental Entomology 28:96-107. 

 



 

156 

 

Hostetter, D. L., and B. Puttler. 1991. A new broad host spectrum nuclear polyhedrosis 
virus isolated from a celery looper, Anagrapha flacifera (Kriby), (Lepidoptera, 
Noctuidae) Environmental Entomology 20:1480-1488. 

 
Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous Inference in General 

Parametric Models. Biometrical Journal 50:346 - 363. 
 
Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of 

phylogeny. Bioinformatics 17:754-755. 
 
Hughes, D. S., R. D. Possee, and L. A. King. 1993. Activation and detection of latent 

baculovirus resembling Mamestra brassicae nuclear polyhedrosis virus in M. 
brassicae insects. Virology 194:608-615. 

 
Humble, L., 1985. Final-instar larvae of native pupal parasites and hyperparasites of 

Operophtera spp. (Lepidoptera: Geometridae) on Southern Vancouver Island. 
Can. Entomol. 117(5), 525–534. https://doi.org/10.4039/Ent117525-5 

 
Ives, W. G. H., and J. C. Cunningham. 1980. Application of nuclear polyhedrosis virus to 

control Bruce spanworm (Lepidoptera: Geometridae). The Canadian 
Entomologist 112:741-744. 

 
Jeschke, J., L. Gómez Aparicio, S. Haider, T. Heger, C. Lortie, P. Pyšek, and D. Strayer. 

2012. Support for major hypotheses in invasion biology is uneven and declining. 
NeoBiota 14doi: 10.3897/neobiota.14.3435 

 
Jørgensen, C., and R. E. Holt. 2013. Natural mortality: Its ecology, how it shapes fish life 

histories, and why it may be increased by fishing. Journal of Sea Research 75:8-
18. 

 
Jurkovicova, M. 1979. Activation of latent virus infections in larvae of Adoxophyes 

orana (Lepidoptera: Tortricidae) and Barathra brassicae (Lepidoptera: Noctuidae) 
by foreign polyhedra. Journal of Invertebrate Pathology 34:213-223. 

 
Keane, R. M., and M. J. Crawley. 2002. Exotic plant invasions and the enemy release 

hypothesis. Trends Ecol Evol 17(4):164-170. doi: 10.1016/s0169-5347(02)02499-
0 

 
Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. 

Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Mentjies, and A. 
Drummond. 2012. Geneious Basic: an integrated and extendable desktop software 
platform for the organization and analysis of sequence data. Bioinformatics 
28:1647-1649. 

 



 

157 

 

Kellogg, S.K., Fink, L.S., Brower, L.P., 2003. Parasitism of native luna moths, Actias 
luna (L.) (Lepidoptera: Saturniidae) by the introduced Compsilura concinnata 
(Meigen) (Diptera: Tachinidae) in central Virginia, and their hyperparasitism by 
trigonalid wasps (Hymenoptera: Trigonalidae). Environ. Entomol. 32(5), 1019–
1027. https://doi.org/10.1603/0046-225X-32.5.1019 

 
Kenis, M., B. P. Hurley, A. E. Hajek, and M. J. W. Cock. 2017. Classical biological 

control of insect pests of trees: facts and figures. Biological Invasions 19:3401-
3417. 

 
Kenis, M., H. E. Roy, R. Zindel, and M. E. N. Majerus. 2008. Current and potential 

management strategies against Harmonia axyridis. Biocontrol 53(1):235-252. doi: 
10.1007/s10526-007-9136-7 

 
Kim, W., J. S. Elkinton, G. Boettner, and J. P. Burand. 2011. Possible origin of 

nucleopolyhedrovirus in winter moth populations in Massachusetts. Society of 
Invertebrate Pathology, Halifax, Nova Scotia, Canada. 

 
Kimberling, D. N., J. C. Miller, and R. L. Penrose. 1986. Distribution and Parasitism of 

Winter Moth, Operophtera-Brumata (Lepidoptera, Geometridae), in Western 
Oregon. Environmental Entomology 15:1042-1046. 

 
Klemola, N., A. Heisswolf, T. Ammunet, K. Ruohomaki, and T. Klemola. 2009. 

Reversed impacts by specialist parasitoids and generalist predators may explain a 
phase lag in moth cycles: a novel hypothesis and preliminary field tests. Annales 
Zoologici Fennici 46:380-393. 

 
Klemola, T., T. Andersson, and K. Ruohomaki. 2014. Delayed density-dependent 

parasitism of eggs and pupae as a contributor to the cyclic population dynamics of 
the autumnal moth. Oecologia 175:1211-1225. 

 
Klemola, T., T. Andersson, and K. Ruohomaki. 2008. Fecundity of the autumnal moth 

depends on pooled geometrid abundance without a time lag: implications for 
cyclic population dynamics. Journal of Animal Ecology 77(3):597-604. doi: DOI 
10.1111/j.1365-2656.2008.01369.x 

 
Klopfstein, S., and F. Ronquist. 2013. Convergent intron gains in hymenopteran 

elongation factor-1 alpha. Molecular Phylogenetics and Evolution 67(1):266-276. 
doi: 10.1016/j.ympev.2013.01.015 

 
Kowalski, R. 1977. Further elaboration of winter moth population models. Journal of 

Animal Ecology 46:471-482. 
 



 

158 

 

Krombein, K. V., P. D. Hurd, D. R. Smith, and B. D. Burks. 1979. Symphyta and 
Apocrita (Parasitica), Catalog of Hymenoptera in America North of Mexico No. 
1. Smithsonian Institute Press, Washington, DC. 

 
Lafferty, K. D. 1992. Foraging on Prey that are Modified by Parasites. American Society 

of Naturalists 140:854-867. 
 
Lange, M., H. Wang, H. Zhihong, and J. A. Jehle. 2004. Towards a molecular 

identification and classification system of lepidopteran-specific baculoviruses. 
Virology 325:36-47.  

 
Leius, K. 1960. Attractiveness of Different Foods and Flowers to the Adults of some 

Hymenopterous Parasites. The Canadian Entomologist 92(5):369-376. doi: 
10.4039/Ent92369-5 

 
Levine, J. M., P. B. Adler, and S. G. Yelenik. 2004. A meta-analysis of biotic resistance 

to exotic plant invasions. Ecology Letters 7(10):975-989. doi: 10.1111/j.1461-
0248.2004.00657.x 

 
MacPhee, A., Newton, A., McRae, K.B., 1988. Population studies on the winter moth 

Operophtera brumata (L.) (Lepidoptera: Geometridae) in apple orchards in Nova 
Scotia. Can. Entomol. 120(1), 73–83. https://doi.org/10.4039/Ent12073-1 

 
Maron, J. L., S. Harrison, and M. Greaves. 2001. Origin of an insect outbreak: escape in 

space or time from natural enemies? Oecologia 126(4):595-602.  
 
Maron, J. L., and M. Vila. 2001. When do herbivores affect plant invasion? Evidence for 

the natural enemies and biotic resistance hypotheses. Oikos 95(3):361-373. doi: 
10.1034/j.1600-0706.2001.950301.x 

 
Matosevic, D., and G. Melika. 2013. Recruitment of native parasitoids to a new invasive 

host: first results of Diyocosmus kuriphilus parasitoid assemblage in Croatia. 
Bulletin of Insectology 66(2):231-238. 

McDonald, R.C., Kok, L.T., 1991. Hyperparasites attacking Cotesia glomerata (L.) and 
Cotesia rubecula (Marshall) (Hymenoptera: Braconidae) in southwestern Virginia. 
Biol. Control 1(2), 170–175. https://doi.org/10.1016/1049-9644(91)90116-H 

 
McKinley, D. J., D. A. Brown, C. C. Payne, and K. A. Harrap. 1981. Cross-infectivity 

and activation studies with four baculoviruses. Entomophaga 26:79-90. 
 
McNeil, J.N., Rabb, R.L., 1973. Life histories and seasonal biology of four 

hyperparasites of the tobacco hornworm, Manduca sexta, (Lepidoptera: 
Sphingidae). Can. Entomol. 105(8), 1041–1052. 
https://doi.org/10.4039/Ent1051041-8 

 



 

159 

 

Menkis, A., E. Bastiaans, D. J. Jacobson, and H. Johannesson. 2009. Phylogenetic and 
biological species diversity within the Neurospora tetrasperma complex. Journal 
of Evolutionary Biology 22(9):1923-1936. doi: 10.1111/j.1420-
9101.2009.01801.x 

 
Miller, M. A., W. Pfeiffer, and T. Schwartz. 2010. Creating the CIPRES Science 

Gateway for inference of large phylogenetic trees. Proceedings of the Gateway 
Computing Environments Workshop (GCE), New Orleans, LA  

 
Mills, N.J., Gutierrez, A.P., 1996. Prospective modelling in biological control: an 

analysis of the dynamics of heteronomous hyperparasitism in a contton-whitefly-
parasitoid system. J. Appl. Ecol. 33(6), 1379–1394. 
http://www.jstor.org/stable/2404778 

 
Morin, H. 2015. Winter Moth (Operophtera brumata L.) Natural Enemy Diversity and 

Abundance in Infested Areas in Midcoast Maine, The University of Maine. 
 
Morris, R. F. 1965. Contemporaneous Mortality Factors in Population Dynamics. The 

Canadian Entomologist 97:1173-1184. 
 
Morse, H. E., and B. B. Normark. 2006. A molecular phylogenetic study of armored scale 

insects (Hemiptera: Diaspididae). Systematic Entomology 31:338-349.  
 
Murdoch, W. W. 1969. Switching in General Predators: Experiments on Predator 

Specificity and Stability of Prey Populations. Ecological Monographs 39:335-339. 
 
Murdoch, W. W., J. Chesson, and P. L. Chesson. 1985. Biological-Control in Theory and 

Practice. American Naturalist 125:344-366. 
 
Murillo, R., M. S. Hussey, and R. D. Possee. 2011. Evidence for covert baculovirus 

infections in a Spodoptera exigua laboratory culture. Journal of General Virology 
92:1061-1070. 

 
Murphy, T. C., J. R. Gould, R. G. Van Driesche, and J. S. Elkinton. 2018. Interactions 

between woodpecker attack and parasitism by introduced parasitoids of the 
emerald ash borer. Biological Control 122:109-117. 

 
Myers, J. H. 2018. Population cycles: generalities, exceptions and remaining mysteries. P 

R Soc B 285(1875)doi: 10.1098/rspb.2017.2841 
 
Myers, J. H., and J. S. Cory. 2013. Population Cycles in Forest Lepidoptera Revisited. 

Pages 565-592 in D. J. Futuyma, editor. Annual Review of Ecology, Evolution, 
and Systematics, Vol 44. 

 



 

160 

 

Necols, J. R., W. C. Kauffman, and P. W. Schaefer. 1992. Significane of host-specificity 
in classical biological control. Selection criteria and ecological consequences of 
importing natural enemies:41-52. 

 
Neilson, M. M. 1965. Effects of a cytoplasmic polyhedrosis on adult Lepidoptera. Journal 

of Invertebrate Pathology 7:306-314. 
 
Nofemela, R.S., 2013. The effect of obligate hyperparasitoids on biological control: 

Differential vulnerability of primary parasitoids to hyperparasitism can mitigate 
trophic cascades. Biological Control. 65(2): 218-224. 
https://doi.org/10.1016/j.biocontrol.2013.02.003 

 
O'Donnell, K. M. 2015. The relationship between the winter moth (Operophtera brumata) 

and its host plant in coastal Maine. Masters Thesis, The University of Maine. 
 
Oaten, A., and W. W. Murdoch. 1975. Switching, Functional Response, and Stability in 

Predator-Prey Systems. The American Naturalist 109(967):299-318. doi: 
10.1086/282999 

 
Pearsall, I.A., Walde, S.J., 1994. Parasitism and predation as agents of mortality of winter 

moth populations in neglected apple orchards in Nova Scotia. Ecol. Entomol. 
19(2),190–198. http://dx.doi.org/10.1111/j.1365-2311.1994.tb00409.x 

 
Pearson, D. E., Y. K. Ortega, O. Eren, and J. L. Hierro. 2018. Community Assembly 

Theory as a Framework for Biological Invasions. Trends Ecol Evol 33(5):313-
325. doi: 10.1016/j.tree.2018.03.002 

 
Pepi, A. A., H. J. Broadley, and J. S. Elkinton. 2016. Density-dependent effects of larval 

dispersal mediated by host plant quality on populations of an invasive insect. 
Oecologia 182:499-509. 

 
Pepi, A. A., H. J. Broadley, and J. S. Elkinton. 2017. Erratum to: Density-dependent 

effects of larval dispersal mediated by host plant quality on populations of an 
invasive insect (vol 182, pg 499, 2016). Oecologia 185:533-535. 

 
Pepi, A. A., O. P. L. Vindstad, M. Ek, and J. U. Jepsen. 2017. Elevationally biased avian 

predation as a contributor to the spatial distribution of geometrid moth outbreaks 
in sub-arctic mountain birch forest. Ecological Entomology 42:430-438. 

 
Pivnick, K. A., D. L. Barton, J. G. Millar, and E. W. Underhill. 1988. Improved 

Pheromone Trap Exclusion of the Bruce Spanworm Operophtera bruceata (Hulst) 
(Lepidoptera, Geometridae) When Monitoring Winter Moth Operophtera brumata 
(L) Populations. Canadian Entomologist 120:389-396. 

 



 

161 

 

Ptaszyńska, A. A. 2014. The validation of microscopic techniques for identification and 
differentiation of Microsporidia. European Journal of Medical Technologies 1:1-
5. 

 
Quicke, D.L.J. 2015. The Braconid and Ichneumonid Parastoids Wasps: Biology, 

Systematics, Evolution, and Ecology. John Wilely and Sons, Ltd. West Sussex, 
U.K.  

 
Quicke DLJ, Laurenne NM, Fitton MG, Broad GR (2009) A thousand and one wasps: a 

28S rDNA and morphological phylogeny of the Ichneumonidae (Insecta: 
Hymenoptera) with an investigation into alignment parameter space and elision 
Journal of Natural History 43:1305-1421 doi:10.1080/00222930902807783 

 
Rambaut, A. 2014. FigTree Tree Figure Drawing Tool. 
 
Raymond, B., A. Vanbergen, A. Watt, S. E. Hartley, J. S. Cory, and R. S. Hails. 2002. 

Escape from pupal predation as a potential cause of outbreaks of the winter moth, 
Operophtera brumata. Oikos 98:219-228. 

 
Raymond, B., and R. S. Hails. 2007. Variation in plant resource quality and the 

transmission and fitness of the winter moth, Operophtera brumata, 
nucleopolyhedrovirus. Biological Control 41:237-245. 

 
Raymond, B., S. Hartley, J. S. Cory, and R. S. Hails. 2005. The role of food plant and 

pathogeninduced behaviour in the persistence of a nucleopolyhedrovirus. Journal 
of Invertebrate Pathology 88:47-57. 

 
RCoreTeam. 2013. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 
 
Richardson, D. M., and P. Pysek. 2006. Plant invasions: merging the concepts of species 

invasiveness and community invasibility. Progress in Physical Geography 
30(3):409-431. doi: 10.1191/0309133306pp490pr 

 
Rodriguez V.A., Belaich M.N., Gomez D.L.M., Sciocco-Cap A., Ghiringhelli P.D., 

Identification of nucleopolyhedrovirus that infect Nymphalid butterflies Agraulis 
vanilla and Dione juno, J. Invertebr. Pathol. 106, 2011, 255-262. 

 
Rodriguez, V. A., M. N. Belaich, D. L. M. Gomez, A. Sciocco-Cap, and P. D. 

Ghiringhelli. 2011. Identification of nucleopolyhedrovirus that infect Nymphalid 
butterflies Agraulis vanillae and Dione juno. Journal of Invertebrate Pathology 
106:255-262. 

 



 

162 

 

Roelofs, W. L., A. S. Hill, C. E. Linn, J. Meinwald, S. C. Jain, H. J. Herbert, and R. F. 
Smith. 1982. Sex-pheromone of the winter moth, a geometrid with unusually low-
temperature pre-copulatory responses. Science 217:657-659. 

 
Roland, J. 1986. Parasitism of winter moth in British Columbia during buildup of its 

parasitoid Cyzenis albicans - Attack rate on oak vs. apple. Journal of Animal 
Ecology 55:215-234. 

 
Roland, J., 1988. Decline in winter moth populations in North America: direct versus 

indirect effect of introduced parasites. J. Anim. Ecol. 57(2), 523–531. 
http://www.jstor.org/stable/4922 

 
Roland, J. 1990. Interaction of parasitism and predation in the decline of winter moth in 

Canada. Pages 289-301 in A. Watt, S. R. Leather, and A. F. Hunter, editors. 
Population Dynamics of Forest Insects. Intercept Ltd, Andover, Hampshire, UK. 

 
Roland, J. 1994. After the decline: What maintains low winter moth density after 

successful biological-control. Journal of Animal Ecology 63:392-398. 
 
Roland, J., and D. G. Embree. 1995. Biological-control of the winter moth. Annual 

Review of Entomology 40:475-492. 
 
Roland, J., and J. H. Myers. 1987. Improved Insect Performance from Host-Plant 

Defoliation - Winter Moth on Oak and Apple. Ecological Entomology 12:409-
414. 

 
Rose, A. H., and O. H. Lindquist. 1997. Insects of eastern hardwood trees; Revised 1997. 

Department of the Environment, Canadian Forestry Service, Minister of the 
Environment, Government of Canada, Ottawa, Ontario, Canada. 

 
Royama T., 1981. Evaluation of mortality factors in insect life table analysis. Ecol. 

Monogr. 51(4), 495–505. http://www.jstor.org/stable/2937326 
 
RstudioTeam. 2015. RStudio: Integrated Development Environment for R. RStudio, Inc., 

Boston, MA. 
 
Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. 

Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O'Neil, 
I. M. Parker, J. N. Thompson, and S. G. Weller. 2001. The population biology of 
invasive species. Annual Review of Ecology and Systematics 32:305-332. doi: 
10.1146/annurev.ecolsys.32.081501.114037 

 
Schauber, E. M., M. J. Connors, B. J. Goodwin, C. G. Jones, and R. S. Ostfeld. 2009. 

Quantifying a dynamic risk landscape: heterogeneous predator activity and 
implications for prey persistence. Ecology 90:240-251. 



 

163 

 

 
Schaefer, P. W., R. W. Fuester, R. J. Chianese, L. D. Rhoads, and R. B. Tichenor. 1989. 

Introduction and North-Amherican establishment of Coccygomimus disparis 
(Hymenoptera, Ichneumonidae), a polyphagus pupal parasite of Lepidoptera, 
including gypsy moth. Environ Entomol 18(6):1117-1125. 

 
Schenk, D., and S. Bacher. 2002. Functional response of a generalist insect predator to 

one of its prey species in the field. Journal of Animal Ecology 71(3):524-531. doi: 
10.1046/j.1365-2656.2002.00620.x 

 
Schonrogge, K., G. N. Stone, and M. J. Crawley. 1995. Spatial and temporal variation in 

guild structure - parasitoids and inquilines of Andricus quercuscalicis 
(Hymenoptera, Cynipidae) in its native and alien ranges. Oikos 72(1):51-60. doi: 
10.2307/3546037 

 
Schooler, S.S., De Barro, P., Ives, A.R., 2011. The potential for hyperparasitism to 

compromise biological control: why don’t hyperparasitoids drive their primary 
parasitoid hosts extinct? Biol. Control 58(3), 167–173. 
https://doi.org/10.1016/j.biocontrol.2011.05.018 

 
Sechser, B., 1970. Der Parasitenkomplex des Kleinen Frostspanners (Operophtera 

brumata L.) (Lep., Geometridae) unter besonderer Berücksichtigung der 
Kokonparasiten. I. Teil. Z. Angew. Entomol. 66, 1–35. 

 
Shea, K., and P. Chesson. 2002. Community ecology theory as a framework for 

biological invasions. Trends Ecol Evol 17(4):170-176. doi: 10.1016/s0169-
5347(02)02495-3 

 
Simmons, M. J., T. D. Lee, M. J. Ducey, J. S. Elkinton, G. H. Boettner, and K. J. Dodds. 

2014. Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in 
Eastern Massachusetts, USA. Insects 5:301-318. 

 
Smirnoff, W. A. 1964. Nucleopolyhedrosis of Operophtera bruceata (Hulst) 

(Lepidoptera: Geometridae). Journal of Insect Pathology 6:384-386. 
 
Sokolova, Y. Y., I. M. Sokolv, and J. R. Fuxa. 2004. Identification of Microsporidia 

infections in nature: light microscopy or PCR? Protistology 3:273-281. 
 
Solter, L. F., J. J. Becnel, and D. H. Oi. 2012. Microsporidian Entomopathogens. Pages 

221-263  Insect Pathology. Academic Press, San Diego, CA. 
 
Starrett, J., and M. Hedin. 2007. Multilocus genealogies reveal multiple cryptic species 

and biogeographical complexity in the California turret spider Antrodiaetus 
riversi (Mygalomorphae, Antrodiaetidae). Mol Ecol 16:583-604. 

 



 

164 

 

Strauss, A., A. White, and M. Boots. 2012. Invading with biological weapons: the 
importance of disease-mediated invasions. Functional Ecology 26:1249-1261. 

 
Sullivan, D. J. 1987. Insect Hyperparasitism. Annual Review of Entomology 32:49-70.  
 
Sullivan, D.J., Völkl, W., 1999. Hyperparasitism: multitrophic ecology and behavior. 

Annu. Rev. Entomol. 44(1), 291–315. 
https://doi.org/10.1146/annurev.ento.44.1.291 

 
Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other 

Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. 
 
Tanhuanpaa, M., K. Ruohomaki, P. Kaitaniemi, and T. Klemola. 1999. Different impact 

of pupal predation on populations of Epirrita autumnata (Lepidoptera; 
Geometridae) within and outside the outbreak range. Journal of Animal Ecology 
68:562-570. 

 
Tenow, O., A. C. Nilssen, H. Bylund, R. Pettersson, A. Battisti, U. Bohn, F. Caroulle, C. 

Ciornei, G. Csoka, H. Delb, W. De Prins, M. Glavendekic, Y. I. Gninenko, B. 
Hrasovec, D. Matosevic, V. Meshkova, L. Moraal, C. Netoiu, J. Pajares, V. 
Rubtsov, R. Tomescu, and I. Utkina. 2013. Geometrid outbreak waves travel 
across Europe. Journal of Animal Ecology 82(1):84-95. doi: 10.1111/j.1365-
2656.2012.02023.x 

 
Townes, H., 1969. The genera of Ichneumonidae, Part 1. Mem. Am. Entomol. Inst. 11, i–

ii+1–300. 
 
Townes, H., 1970. The genera of Ichneumonidae, Part 2. Mem. Am. Entomol. Inst. 12, i–

iv+1–537. 
 
Townes, H. K. 1940. A revision of the Pimplini of Eastern North America (Hymenoptera, 

Ichneumonidae). Annals of the Entomological Society of America 33(2):283-323. 
 
Townes, H.K., Townes, M., Walley, G.S., Townes, G., 1960. Ichneumon-flies of 

America north of Mexico: 2 Subfamily Ephialtinae, Xoridinae, Acaenitinae. US 
Natl. Mus. Bull. 216, 1–676. 

 
Triplehorn, C. A., and N. F. Johnson. 2005. Borror and DeLong's Introduction tot he 

Study of Insects. 7th ed. Brooks/Cole, a division of Thomson Learning, Inc. , 
Belmont, CA. 

Troubridge, J. T., and S. M. Fitzpatrick. 1993. A revision of the North American 
Operophtera (Lepidoptera, Geometridae). Canadian Entomologist 125:379-397. 

 
Van Driesche, R. G. 1983. Meaning of “Percent Parasitism” in Studies of Insect 

Parasitoids. Environ Entomol 12(6):1611–1622. 



 

165 

 

 
Van Driesche, R., Hoddle, M., Center, T., 2008. Control of Pests and Weeds by Natural 

Enemies: An Introduction to Biological Control.  Blackwell Publishing, Malden, 
MA.  

 
Van Driesche, R. G., and R. Reardon. 2014. The use of classical biological control to 

preserve forests in North America. United States Department of Agriculture, 
Forest Service, Morgantown, West Virginia. 

 
van Oers, M. M., E. A. Herniou, M. Usmany, G. J. Messelink, and J. M. Vlak. 2004. 

Identification and characterization of a DNA photolyase-containing baculovirus 
from Chrysodeixis chalcites. Virology 330:460-470.  

 
Varley, G. C., and G. R. Gradwell. 1963. Predatory insects as density dependent 

mortality factors, Proceedings of the 16th International Congress of Zoology, 
Washington, 20-27 August 1963 No. 1, Washington, D.C. p. 240. 

 
Varley, G.C., Gradwell, G.R., 1968. Population Models for the Winter Moth. In: T. R. E. 

Southwood Ed., Insect Abundance, Symposium, Royal Entomological Society, 
London.  

 
Varley, G.C., and Gradwell, G.R., 1970. Recent advances in insect population dynamics. 

Annual Review of Entomology 15:1-24. 
 
Varley, G. C., G. R. Gradwell, and M. P. Hassell. 1973. Insect population ecology: an 

analytical approach. University of California Press. 
 
Vindstad, O. P. L., S. B. Hagen, J. U. Jepsen, L. Kapari, T. Schott, and R. A. Ims. 2011. 

Phenological diversity in the interactions between winter moth (Operophtera 
brumata) larvae and parasitoid wasps in sub-arctic mountain birch forest. Bulletin 
of Entomological Research 101(6):705-714. doi: Doi 
10.1017/S0007485311000277 

 
Vindstad, O. P. L., T. Schott, S. B. Hagen, J. U. Jepsen, L. Kapari, and R. A. Ims. 2013. 

How rapidly do invasive birch forest geometrids recruit larval parasitoids? 
Insights from comparison with a sympatric native geometrid. Biological Invasions 
15(7):1573-1589. doi: 10.1007/s10530-012-0393-8 

 
Waage, J., and D. Greathead. 1985. Insect Parasitoids. Academic Press Limited, San 

Diego, CA. 
 
Watt, A. D., and I. P. Woiwod. 1999. The effect of phenological asynchrony on 

population dynamics: analysis of fluctuations of British macrolepidoptera. Oikos 
87:411-416. 

 



 

166 

 

Whited, B. M., 2007. The population ecology of winter moth (Operophtera brumata) in 
eastern Massachusetts. M.S. Thesis in Organismic and Evolutionary Biology. 
University of Massachusetts, Amherst. 

 
Whiting, M. F., J. C. Carpenter, Q. D. Wheeler, and W. C. Wheeler. 1997. The 

strepsiptera problem: Phylogeny of the holometabolous insect orders inferred 
from 18S and 28S ribosomal DNA sequences and morphology. Systematic 
Biology 46(1):1-68.  

 
Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New 

York. 
 
Wigley, P. J. 1976. The epizootics of a nuclear polyhedrosis virus disease of winter moth, 

Operophtera brumata, L., at Wistman's Wood, Dartmoor. Doctoral Dissertation, 
Oxford University. 

 
Wylie, H. G. 1960. Insect parasites of the winter moth, Operophtera brumata (L.) 

(Lepidoptera: Geometridae) in western Europe. Entomophaga 5:111-129.  
 
World Ichneumonoidea 2011. Taxonomy, Biology, Morphology and Distribution (2012) 

Home of Ichneumonoidea. http://www.taxapad.com Accessed accessed 17 August 
2017 

 
Yu, D. S. K., C. van Achterberg, and K. Horstmann. 2016. World Ichneumonoidea 2015 

Taxapad 2016. Home of Ichneumonoidea, Nepean, Ontario, Canada. 
 
Yu, D. S. K., C. van Achterberg, and K. Horstmann. 2012. World Ichneumonoidea 2011. 

Taxonomy, Biology, Morphology and Distribution Taxapad. Home of 
Ichneumonoidea, Nepean, Ontario, Canada. 

 
Zappala, L., U. Bernardo, A. Biondi, A. Cocco, S. Deliperi, G. Delrio, M. Giorgini, P. 

Pedata, C. Rapisarda, G. T. Garzia, and G. Siscaro. 2012. Recruitment of native 
parasitoids by the exotic pest Tuta absoluta in Southern Italy. Bulletin of 
Insectology 65(1):51-61.  

 
Zuur, A. F., J. M. Hilbe, and E. N. Ieno. 2013. A Beginner’s Guide to GLM and GLMM 

with R. Highland Statistics Ltd., Newburgh, United Kingdom. 
 


	IMPACT OF NATIVE NATURAL ENEMIES ON POPULATIONS OF THE INVASIVE WINTER MOTH (OPEROPHTERA BRUMATA L) IN THE NORTHEAST UNITED STATES
	Recommended Citation

	Broadley_Dissertation_23Sept2018

