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ABSTRACT 

THE EFFECTS OF REWARD AND RISK LEVEL ASSOCIATED WITH SPEEDED 

ACTIONS: EVIDENCE FROM BEHAVIOR AND ELECTROENCEPHALOGRAPHY  

SEPTEMBER 2018 

XINGJIE CHEN, B.S., CENTRAL CHINA NORMAL UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Youngbin Kwak 

Choosing a course of action in our daily lives requires an accurate assessment of the 

associated risks as well as the potential rewards. The present two studies investigated the 

mechanism of how reward and risk level influence the motor decisions of speeded actions 

(Chapter 2) and its neural dynamics (Chapter 3) by focusing on the beta band (15-30 Hz) 

oscillation patterns reflected in the EEG signals. Participants performed a modified version of the 

Go-NoGo task, in which they earned reward points based on the speed and accuracy of response. 

On each trial, the reward points at stake (120 vs. 6) and the probability that a Go signal would 

follow (Go-probability) were presented prior to a Go/NoGo signal (Trial Information Period). 

The behavioral results (from both Chapters 2 and 3) showed that larger amount of rewards can 

motivate people to respond faster, and this effect was modulated by the assessed risk, suggesting 

that decisions for actions are based on a systematic trade-off between rewards and risks. The 

EEG data showed that motor beta oscillations from the two studied brain regions reflected 

different levels of motivation towards a motor response across different reward and risk levels. 

Specifically, the lower beta power associated with higher reward and lower risk level. 

Collectively, the results provide a mechanistic understanding of how motivational cues are 

translated into action outcomes via modulating patterns of brain oscillations. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

Imagine yourself facing a yellow light. You can choose to press down on the gas pedal to 

make it through or to slow down and come to a stop. Choosing a course of action in a daily life 

situation as described requires an accurate assessment of the associated risks as well as the 

potential rewards. These assessments would entail weighing the costs and benefits of one action 

(e.g. speeding up to make the light) vs. the other (e.g. slowing down to come to a stop). Recent 

studies have shown that one relies on a systematic trade-off between the benefits and the costs as 

well as risks associated with an action when making these decisions, equivalent to the 

predictions of economic choice theory (Burke, Brunger, Kahnt, Park, & Tobler, 2013; Klein-

Flügge, Kennerley, Friston, & Bestmann, 2016; Skvortsova, Palminteri, & Pessiglione, 2014). 

Specifically, these studies demonstrate that individuals put greater motor efforts when the 

potential rewards are higher and the associated risks are lower, which parallels the normative 

trade-offs between decision variables such as value and risk during economic decision making. 

These works are also in line with the important theoretical efforts in the field of visual motor 

control aimed at understanding movement planning and control within the framework of 

economic decision making (Trommershäuser, Maloney, & Landy, 2008; Wolpert & Landy, 

2012). In these theoretical efforts, motor control is viewed as a problem of maximizing the utility 

of movement outcomes in the face of sensory, motor and task uncertainty (Wolpert & Landy, 

2012), which is equivalent to economic choice scenarios under uncertainty (Platt & Huettel, 

2008).  

In the present thesis, I investigated the neural bases of decisions for actions. Within this 
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effort, I first developed a novel task paradigm to investigate how rewards and risk level influence 

motor decisions in speeded actions (Chapter 2). Then I investigated how the human brain 

evaluates reward and risk level associated with an action by focusing on the neural oscillation 

patterns reflected in the EEG signals (Chapter 3). In particular, I studied whether the beta-

frequency oscillations involved in motor processing were modulated by the reward and risk level 

associated with a speeded action. 

 

1.2 Motor Control and Decision Making 

Decision making for actions is most often present in choosing to exert motor efforts 

towards a goal. A typical example is shown in animal foraging behavior; the animal puts forth 

moving around from location to location to retrieve food rewards. In doing so, they explore their 

environment to minimize foraging costs and maximize retrieval of foods (Bautista, Tinbergen, & 

Kacelnik, 2001; Kacelnik, 1997; MacArthur & Pianka, 1966).  

In laboratory studies, decisions to put forth physical efforts has often been studied in 

relation to intrinsic motivation and external incentive rewards (Ballanger et al., 2006; D. D. Chen 

& Chen, 2013; Joshua & Lisberger, 2012; Mir et al., 2011; Ramnani & Miall, 2003). These 

studies demonstrate that presenting potential reward outcomes can lead to faster responses and 

exertion of greater forces during an action required for retrieving the reward. More recent work 

has shown that there is a systematic trade-off between physical effort and the associated rewards 

in humans. Specifically these studies showed that people decided to put greater physical efforts 

only when it would result in larger rewards (Burke et al., 2013; Hartmann, Hager, Tobler, & 

Kaiser, 2013; Klein-Flügge et al., 2016; Klein-Flugge, Kennerley, Saraiva, Penny, & Bestmann, 



3 
 

2015; Treadway et al., 2012; Wardle, Treadway, Mayo, Zald, & de Wit, 2011). This suggests 

that similar to the temporal delay to reward arrival, physical efforts can discount the reward 

value at stake.  

It is important to note that risk, as well as reward, is one of the key variables of decision 

making under uncertainty. In general terms, risk is known as a chance of negative outcome 

(Mishra, 2014), such as harm, loss, and danger (Bornovalova et al., 2009; Leigh, 1999). Risk is 

also an important variable to consider in decisions for course of actions. For example, while one 

may choose to drive fast to avoid being late for work, one should also consider that speed driving 

increases the risk of traffic accidents. Despite its relevance to real life, not many studies have 

focused on how risk plays a role in decisions for actions. In one study, a statistical decision 

theory was developed to explain the processes underlying a motor action under risk, using a 

simple target-hitting task (Trommershäuser, Gepshtein, Maloney, Landy, & Banks, 2005; 

Trommershäuser, Maloney, & Landy, 2003a, 2003b). In this task, participants were asked to 

rapidly hit a target area using their fingertips in order to gain a reward and received a penalty if 

they hit the non-target areas. Thus the risk related with their action is proportional to their motor 

variability. The experimental data and the model suggested that decisions on an action was made 

based on one’s estimate of the sensorimotor variability, which allowed controlling for their 

motor responses to minimize the risk associated with the movement and maximize the reward 

(Trommershäuser et al., 2003a). This study, however, was not designed to look at the 

motivational aspect of the risk-taking movements. First of all, the levels of obtainable rewards 

did not vary, while the magnitude of expected rewards could motivate people toward a high risk 

action (Doya, 2008). Furthermore, the level of risk associated with an action was not explicitly 

described such that one can make prior judgment on the course of action. Instead, it was 
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implicitly defined as a result of motor variability. Further studies considering both reward and 

risk in the same context is required to clarify the processes underlying decision making for an 

action. 

One goal of the present studies is to develop a motor decision paradigm combining both 

reward and risk level and investigate how people evaluate the reward and risk level to make a 

motor decision. While “speed” is an important variable determining the characteristics of a 

movement, most studies have only focused on physical force in the studies of decision making 

for actions (e.g., Kurniawan et al., 2010; Meyniel & Pessiglione, 2014; Skvortsova et al., 2014). 

Movement speed is one of the most important factors influencing sensorimotor variability that is 

associated with risks during a movement (Trommershäuser et al., 2005; Trommershäuser et al., 

2003b). Importantly, speed is naturally associated with greater risk for failure in any task 

performance as demonstrated in speed-accuracy trade-off (Franks, Dornhaus, Fitzsimmons, & 

Stevens, 2003; Pachella, 1973; Ratcliff & Tuerlinckx, 2002). Thus movement speed is one 

measure to look at the effects of risk in decision making for action. 

 

1.3 Beta Oscillation in Cortico-Basal Ganglia Circuitry – Target neural mechanism 

In addition to the behavioral study about the effect of reward on risk level on motor 

actions, I would like to further investigated the under neural bases of this process. Until now, the 

literature about motor actions focused on the cortico-basal ganglia circuitry of motor initiation 

and inhibition, specifically, including direct and indirect pathway as well as the hyper-direct 

pathway. The details of the cortico-basal ganglia circuitries were described in the following 

sections.  
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1.3.1 Direct Pathway and Indirect Pathway 

The direct and indirect pathway of movement is a neuronal circuit within the central 

nervous system (CNS) through the basal ganglia (Freeze, Kravitz, Hammack, Berke, & Kreitzer, 

2013; Kravitz, Tye, & Kreitzer, 2012). The main goal of the two pathways is to modulate the 

activity of the thalamus, which normally sends inhibitory signals to the motor cortex when it is 

active. Specifically, the direct pathway is to facilitate the initiation and execution of voluntary 

movement while the indirect pathway is to prevent unwanted muscle contractions from 

competing with voluntary movements.  

When people are making decisions about movement, the motor cortex will send 

commands to the striatum. The direct pathway goes from the striatum to globus pallidus internal 

and the main goal is to inhibit the activation of the thalamus and take away the inhibitory signals 

from thalamus to the motor cortex so that the proper functioning of this direct pathway results in 

the natural initiation of movement (Freeze et al., 2013) (Figure 1B). The most crucial 

neurotransmitter helping to regulate this pathway in the background is dopamine, going from the 

substantia nigra to the striatum. When the substantia nigra is more active, it sends more 

dopamine to inhibitory neurons in the striatum heading for the globus pallidus internal. 

Dopamine binds at D1 receptors, leading to greater inhibition and a more active thalamus 

(Williams et al., 2002). Excitatory neurons also travel from the STN to the substantia nigra and 

excite the substantia nigra, allowing for a greater release of dopamine. For the indirect pathway, 

responsible for the inhibition of movement, the goal is to control the thalamus by turning up 

globus pallidus internal inhibition, preventing overexcitation of the motor cortex (Graybiel, 

2000). By receiving the commands from motor cortex, striatum sends inhibitory signals to inhibit 
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the activation of globus pallidus external. Since the activation of globus pallidus external has 

been inhibited, it has less control of the subthalamus nucleus (STN) so that the STN gets excited 

and then the globus pallidus interal becomes more active. As a result, the thalamus becomes 

more active. As a result, the active thalamus send more inhibitory signals to motor cortex so that 

inhibitions happen (Figure 1A).  The most crucial neurotransmitter helping to regulate these 

pathways in the background is dopamine, going from the substantia nigra to the striatum. 

Dopamine has an excitatory effect upon cells in the striatum that are part of the direct pathway. 

This is via D1 receptors. Dopamine has an inhibitory effect upon striatal cells associated with the 

indirect pathway. This is via D2 receptors. In other words, the direct pathway (which turns up 

motor activity) is excited by dopamine while the indirect pathway (which turns down motor 

activity) is inhibited. 

In a typical paradigm about motor inhibition and initiation, people reactively to inhibit 

their behaviors by reacting to the signal of stop (e.g., stop signal or NoGo signal), which is called 

reactive control (Aron, 2011). More recently, researchers pointed out the proactive model of 

motor initiation and inhibition, such that how a subject prepares to stop an upcoming response 

tendencies (Aron, 2011). Proactive inhibitory control is generated according to the goals of the 

subject rather than by an external cue. Neuroimaging studies have localized brain regions within 

the fronto-basal ganglia network as a putative neural circuity underlying motor inhibition, which 

includes the right inferior frontal cortex (rIFC), the dorsomedial frontal cortex (mainly pre-

supplementary motor area, preSMA), STN, the striatum and the primary motor cortex  (e.g., 

Aron et al., 2007; Aron, Robbins, & Poldrack, 2014; Bai, Mari, Vorbach, & Hallett, 2005; Kim 

& Lee, 2011). Recently, a study combined the Go-NoGo paradigm and the monetary incentive 

delay task to explore the interaction between prefrontal cognitive control system and the striatal 
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reward processing network regions in impulsivity. Their results suggested that increased 

activation in the rIFC and decreased activation in the ventral striatum during the reward 

anticipation were associated with successful inhibitions (Behan, Stone, & Garavan, 2015). 

Moreover, their behavioral data suggested that the increased accuracy to NoGo signals was 

associated with the slowed reaction to Go signals which indicated the proactive inhibition 

process. These results were consistent with the proactive inhibition model which involves the 

indirect neural pathway from the prefrontal cortex to caudate, and to the internal globus pallidus 

which then projects to the internal globus pallidus prior to its output to the thalamus (Aron, 

2011). 

 

1.3.2 Hyper-direct Pathway 

 More recently, researchers proposed a third pathway, the hyper-direct pathway of motor 

inhibition. Instead of going through striatum, hyper-direct pathway originates from the right 

prefrontal regions and directly connects to STN (Aron et al., 2007; Chikazoe, 2010) (Figure 

1C).When inhibitory commands are sent from cortex to STN, the activated STN send active 

signals to the thalamus so that the thalamus send the inhibitory signals to the motor cortex. 

Hyper-direct pathway is fast, and reactively cancels out and inhibits a motor command, which 

has already been placed in motor cortex. This process is consistent with reactive motor control.  

 In neural imaging studies, researchers found the co-activation of rIFC and STN and their 

activations were stronger with faster inhibitions (Aron & Poldrack, 2006). Swann et al. (2011) 

suggested that deep brain stimulation of the STN can improve the performance in stop-signal 

task in patients with Parkinson disease and increase their activation of rIFC as well. More 
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recently, simultaneous fMRI and EEG data suggested the interaction between the theta power 

from mid-frontal cortex and probability level can predict the activation of STN in a reward 

learning task (Frank et al., 2015). These results gave evidence of the direct connection between 

the frontal region and STN as the hyper-direct pathway.  

Motor control and reward processing are highly interconnected. The motor system is 

largely influenced by the neural circuitry of the reward-related motivational system as both 

systems are largely modulated by the dopaminergic input from the midbrain to basal ganglia 

nuclei (Wickens, 1990). The proactive direct and indirect pathway is in line with the role of 

motivation in motor control such that when participants are uncertain about the identity of the 

forthcoming stimulus, an adaptive strategy will be used to prepare for inhibition, to some extent, 

based on their predictions and expectations to the upcoming signals. In other words, a not-yet-

initiated action has to be restrained to a certain degree, which has been framed as the proactive 

inhibitory control (Aron, 2011). As to the reactive control, not much work has been discussed. 

The right prefrontal region reactively corrects movements, by canceling out and inhibiting a 

motor command that has already been made (Aron et al., 2007; Chamhers, Garavan, & Bellgrove, 

2009; Chikazoe, 2010). Because of this role of the right prefrontal region in reactive control, I 

hypothesized that right prefrontal region need to work harder when subjects have a stronger 

motivation to make the action so that it can cancel out the improper response impulsive. 

 

1.3.3 Beta Oscillation in Motor Control and Motivational Process  

Neural oscillation is rhythmic or repetitive neural activity in the central nervous system. 

Neural oscillations in beta frequency band (15-30 Hz) across the cortico-basal ganglia network, 
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especially the sensorimotor cortex and prefrontal cortex, have been widely studied in motor 

control. Studies have shown that patterns of motor beta oscillations code for different movement 

parameters modulating the initiation and inhibition of movement (see review Jenkinson & Brown, 

2011). While decrease in beta band oscillations (desynchronization) initiates a movement, 

increase in beta oscillations (synchronization) suppresses a movement (Kühn et al., 2004; Picazio 

et al., 2014; Swann et al., 2012; Swann et al., 2011; Swann et al., 2009; Tan et al., 2015). To date, 

significance of the motor beta oscillations has mostly been studied in the context of lower level 

motor control focusing on how this neural signal encodes the kinematic properties of a 

movement (Brittain & Brown, 2014; Jenkinson & Brown, 2011; Kilavik, Zaepffel, Brovelli, 

MacKay, & Riehle, 2013). Only a handful of studies have started investigating their contribution 

in the influence of higher-level decision processes, such as the effects of reward and risk level in 

motor related decisions.  

There are a few studies suggesting some evidence that people’s motivational status could 

be reflected by the beta oscillation. Studies in clinical population such as patients with 

Parkinson’s disease showed that loss of dopaminergic inputs to the striatum and leads to 

impairments in motivation and learning from feedback (Foerde, Braun, Higgins, & Shohamy, 

2014). Dopaminergic modulations have also demonstrated these apposing effects of beta 

oscillations in motor initiation and inhibition (Gatev, Darbin, & Wichmann, 2006; Hammond, 

Bergman, & Brown, 2007). The dopamine loss in Parkinsonism elevated the level of beta 

frequency oscillations causing difficulty in initiating a movement, which could be mitigated by 

dopaminergic medications (Gatev et al., 2006). One recent study investigated how reward level 

can change people’s motivation of making effort to motion through beta oscillation (Meyniel & 

Pessiglione, 2014). The participants were asked to apply motor effort in order to gain rewards 
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and were allowed to adjust their own effort allocation by having a break or applying greater force 

in order to gain as many rewards as possible. Their results showed that effort onset could be 

predicted by beta desynchronization during the previous break time. Moreover, the incentive 

reward increased movement effort measured by exerted force level through the magnitude of 

beta desynchronization (Myerson, Baumann, & Green, 2014).  This study shed light on the 

relationship between reward and motor control. In addition, in a cued choice reaction task that a 

cue provided information as to which hand to prepare for an upcoming response, results 

suggested that the power of beta band decreased significantly followed by an effective cue 

compared to an ineffective cue indicating the role of coding the information predicting the 

coming motor response (Van Wijk, Daffertshofer, Roach, & Praamstra, 2008).   

In sum, although some studies showed some indirect evidence of the role of coding 

reward information in beta band oscillation across the cortico-basal ganglia network, the under 

mechanism is still unclear. Also the neural literature has the gap of investigating the influence of 

risk level on motor decisions. In the current studies, the second important goal is to investigate 

how decision variables such as reward and risk associated with an action are coded in the beta 

frequency oscillations and how these cortico-basal ganglia network work together in this process. 

 

1.4 The Present Studies 

 The current thesis contained two studies. Study 1 was a behavioral study aiming at 

developing a valid paradigm to study how reward and risk level influence people’s decisions of 

speeded actions. A Speed-Rewarded version of the widely used Go-NoGo task was developed. 

In this task, participants gained or lost points based on performance speed and accuracy. The 
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analyses focused on how they trade-off between speed and accuracy based on different levels of 

potential reward and perceived risk level associated with a speeded action. The hypotheses were 

that there would be a systematic trade-off between speed and accuracy based on the expected 

value of an action, which would be calculated by potential reward and perceived risk level 

associated with the action. 

In an effort to investigate the neural mechanism under this processing, EEG was recorded 

in study 2 while the participants were playing the Speed-Rewarded Go-NoGo task. Specifically, 

the analyses focused on the beta band (15-30 Hz) oscillation during the motor plan period and 

the motor reaction period and examined how the beta oscillation coded the reward and risk level 

in order to plan and execute the motor action through the motor pathways. The hypotheses were 

that the patterns of EEG motor beta oscillations would vary across the different levels of reward 

and risk reflecting different levels of motivation towards an action. Specifically, the level of beta 

oscillations would be lower when the decision variables promoted a choice towards a “Go” 

response (e.g. larger rewards and lower risk), whereas it would be higher when they promoted a 

choice for a “NoGo” (e.g., smaller rewards and higher risk).  

Additionally, I am interested in whether personality traits associated with risk-taking and 

impulsive tendencies assessed via self-report measures, influenced the degree to which these 

decision variables modulated motor beta oscillations. Previous studies suggested that individuals 

with greater risk-taking and impulsive tendencies were less sensitive to losses and showed 

greater motivation towards larger compared to smaller rewards (Bechara, Dolan, & Hindes, 2002; 

Bornovalova et al., 2009). Therefore, I hypothesized that those individuals with greater risk-

taking and impulsive tendencies would show greater changes in beta power associated with 

different levels of reward. 
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CHAPTER 2 

STUDY 1: THE EFFECTS OF REWARD AND RISK LEVEL ASSOCIATED WITH 

SPEEDED ACTIONS: A BEHAVIORAL STUDY 

2.1. Participants 

A total of 110 college students (20 males, 22.21+2.13 years) without a history of 

psychiatric and neurological illness, or alcohol/drug dependence were recruited from University 

of Massachusetts, Amherst, MA, United States. All study participants signed a written informed 

consent in accordance with the Declaration of Helsinki, approved by the UMass Institutional 

Review Board before the experiment and received course credits for participation after 

completion of the experiment. 

 

2.2 Speed-Rewarded Go-NoGo Task 

During the first phase of the task, participants completed a typical Go-NoGo task in 

which Go signals appeared 80% of the time in a total of 100 trials. Response times (RT) to the 

Go signals were used to calculate the RT categories for determining actual rewards in the Speed-

Rewarded Go-NoGo task in the second phase. Five RT categories were determined based on the 

lognormal distribution of the Go signal RTs from the first phase (Category 1: RT < μ - 2σ; 

Category 2: μ - 2σ < RT < μ - σ; Category 3: μ - σ < RT < μ; Category 4: μ < RT < μ + σ; 

Category 5: RT ≥ μ + σ; μ and σ refers to the mean and standard deviation of the lognormal 

distribution).  

In the second phase of the task, participants performed the Speed-Rewarded Go-NoGo 

task (Fig. 2). Participants were rewarded based on the speed and accuracy of response. 
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Throughout the task, participants were instructed to use their right index finger to press a button 

on a response box. A faster response to a Go signal resulted in higher rewards, whereas an 

incorrect response to a NoGo signal (i.e. false alarm) was punished by loss of reward points. On 

each trial of the task, participants were first presented with a trial information cue. The cue 

contained information about the amount of reward points they could earn - either 120 (high 

reward) or 6 (low reward) - and the probability that a Go signal would appear in that trial as 

described in a pie-chart (Go-probability: 20, 50 or 80%). Following the presentation of a trial 

information cue, the screen displayed a “READY!” sign for a variable time window (1000-1500 

msec), which prompted the participants to prepare for a response.  A Go (geometric shape in blue) 

or NoGo (same geometric shape in gray) signal, determined by the Go signal probability, was 

presented in the following screen. After participant’s response, the actual reward amount that the 

participant won based on his/her performance was displayed. A correct response to a Go signal 

was rewarded based on RT using the pre-defined RT category from the first phase. For trials that 

met the RT category 1, the total point at stake (either 120 or 6) was awarded. For trials that fall 

under RT category 2, 3, 4 and 5, points were discounted to 50%, 25%, 12.5% and 0% of the total 

point respectively. Correct responses to a NoGo signal did not result in any rewards. However, 

an incorrect response to a NoGo signal (i.e. false alarm) would result in a loss of the total points 

at stake (i.e. results in -120 or -6). Thus, the decision to Go entailed a risk for resulting in 

negative points. The Go-probability can therefore be considered as a metric based on which the 

participants can assess the risk of negative outcomes associated with the Go decision. A fixation 

cue was displayed during inter-trial interval. There were 6 blocks with 192 trials in total (32 

trials in each block: 4 trials with low reward and 20% Go-probability; 8 trials with low reward 

and 50% Go-probability; 4 trials with low reward and 80% Go-probability; 4 trials with high 
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reward and 20% Go-probability; 8 trials with high reward and 50% Go-probability; 4 trials with 

high reward with 80% Go-probability). After each block, participants were shown the 

accumulated amount of points they’ve earned up until the previous block. 

 

2.3 Behavioral Psychometric Measures 

In an effort to determine how individual differences in personality traits related with 

impulsivity and risk taking contributes in performance during Speed-Rewarded Go-NoGo task, 

each participant was asked to fill the following additional scales.   

Behavioral Inhibition & Activation Scale (BIS/BAS). The BIS/BAS contains 24 items and 

yields 4 factors measuring the behavioral inhibition system and behavioral active system (Carver 

& White, 1994). The four factors include Drive, Fun Seeking, Reward Responsiveness, and 

Behavioral Inhibition. Participants are asked to rate each item with a 4-point Likert scale. 

Barratt Impulsiveness Scale (BIS). BIS is a 30 item self-report instrument designed to 

assess the personality/behavioral construct of impulsiveness. It has the following 3 factors: 

Factor 1 (motor impulsivity); Factor 2 (non-planning impulsiveness); Factor 3 (attentional 

impulsiveness) (Barratt, Monahan, & Steadman, 1994). Participants are asked to rate each item 

with a 4-point Likert scale. 

Gambling Related Cognitions Scale (GRCS). GRCS contains 23 items in community-

based population with five factors: Gambling expectancies, Illusion of control, Predictive control, 

Inability to stop gambling, and Interpretive bias (Raylu & Oei, 2004). Participants are asked to 

rate each item with a 7-point Likert scale. 

Delay Discounting Task. The participants will choose between getting a relatively small 
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amount of money today or getting a relatively large amount of money in the future (Kirby, Petry, 

& Bickel, 1999). Here is a sample question “Would you prefer $ 54 today, or $ 55 in 117 days?” 

There were 27 items in this task. The delay discounting rate (value k) in the study was fitted to 

Mazur's (1987) hyperbolic equation: V=A / (1+kD). This equation describes how the subjective 

value (V) of a reward (A) is discounted as a function of delay (D) (Mazur, 1987). High k value 

indicated high delay discounting rate.   

 

2.4 Results 

I analyzed the reaction time to the Go signals and the false alarm rates (the proportion of 

incorrect responses to NoGo signals) in each experimental condition as displayed in Table 1. 

Since different categories for reward size were based on the standard deviation of reaction time 

of each participant, Z-scored RTs were used for all the analyses. Raw RTs within each individual 

were log-transformed, after which they were converted into Z-scores across all the conditions.   

 

2.4.1 The Effect of Reward and Go-Probability 

A set of 2 (Reward: High, Low) x 3 (Go-probability: 20%, 50%, 80%) within subject 

ANOVA was performed for the RT to Go signals, the false alarm rates to NoGo signals as well 

as the speed-accuracy trade-off measure. For RT, there was a main effect of Reward (F(1,99) = 

27.684, p < .001, η2 = .219, Mlow = .264, Mhigh = .033) and Probability (F(2,198) = 88.487, p 

< .001, η2 = .472), as well as the interaction between Reward and Probability(F(2, 198) = 6.572, 

p = .002, η2 = .062) (Fig. 3A). Post-hoc analysis suggested that when the Go-probability was 

relatively low (20%), there was no significant difference between RT for high reward compared 
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to the low reward conditions (p = .111). When the Go-probability was 50% and 80%, RT was 

significantly faster for high reward condition compared to low reward condition (both ps < .001, 

with Bonforroni correction). These results suggested that the effect of reward on speed was 

modulated by the assessed level of risk as described in the Go-probability. Speeding up for larger 

reward only happened when the Go-probability was 50% or above (i.e. when the risk for losing 

associated with false alarm was low).  

For the false alarm rate, there was a significant main effect of Go-probability (F(2,218) = 

91.872, p < .001, η2 = .457). False alarm rate was higher in 80% probability condition (M = .305) 

than in 50% probability condition (M = .131), and it was higher in 50% probability condition 

than in 20% probability condition (M = .054) (all ps < .001, with Bonforroni correction). The 

main effect of reward (F(1,109) = 2.571, p > .10, η2 = .023, Mlow = .154, Mhigh = .172) and the 

interaction between reward and probability (F(2,218) = 1.144, p > .10, η2 = .010) were not 

significant (Fig. 3B). These results suggest that there was a greater tendency to take risks 

associated with a speeded Go response when there was an explicitly known low probability for 

losing due to false alarm (i.e. high Go signal probability). 

Whether reward and risk systematically influenced the speed-accuracy trade-off was also 

examined. The following formula as an index of speed–accuracy trade-off (Fitts, 1954): 

1/RT*ACC. In order to keep all the RT values positive, to be used in the speed-accuracy trade-

off measure, exponential function was applied to the RT Z-scores.  The higher value of the trade-

off measure indicates that participants prefer to trade accuracy for faster response and the lower 

value means that participants prefer to trade speed for higher accuracy. The average speed-

accuracy trade-off measure in different reward and Go-probability conditions was displayed in 

Table 1. For the speed accuracy trade-off, there was a significant main effect of reward (F(1,88) 
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= 11.261, p = .001, η2 = .113) and Go-probability (F(2,176) = 62.506, p < .001, η2 = .415) as 

well as the interaction between them (F(2,176) = 5.09, p = .007, η2 = .055) (Fig. 3C). The simple 

effect analysis suggested that when the Go-probability was 20%, there was no significant 

difference between high and low reward condition (p = .77). When the Go-probability is 50% 

and 80%, the speed-accuracy trade-off was higher in high reward condition compared to low 

reward condition (for 50% Go-probability, p < .001, for 80% Go-probability, p = .007, with 

Bonforroni correction). Consistent with the results from response time, these results suggested 

that the effect of reward on movement speed was modulated by the assessed level of risk as 

described in the Go-probability. When the Go-probability was high (50% or 80%), the risk for 

losing associated with false alarm was low, participants preferred to trade off accuracy in order 

to response faster in order to get the high reward.  

 

2.4.2  Contribution of Risk-taking and Impulsive Traits in Speed-Rewarded Go-NoGo 

Performance 

Correlation analyses were conducted between the measures of risk-taking and impulsive 

traits, and the performance measures of Speed-Rewarded Go-NoGo task. The results were 

displayed in Table 2 and Table 3. Significantly positive correlations with the false alarm rate 

were found in the GRCS and delay discounting (Table 2). Significant negative correlation with 

the RT was found in BIS (Table 3). No significant relationships were found between speed-

accuracy trade-off and any of the risk-taking and impulsive trait measures.   

In general, the overall false alarm rate was positively correlated with the total score of 

GRCS (r = .219, p = .023, Fig. 4A). This suggested that people with higher gambling-oriented 

cognition style have greater tendency to take risks. Further correlation analyses were conducted 
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between GRCS and the false alarm rates in different reward and probability conditions. The 

results suggested that in the high probability condition (80%), there was a significant correlation 

between false alarm rate and the total score of GRCS (r = .192, p = .046). But in the 20% and 50% 

probability conditions, there were no significant correlations. Also with low reward, there was 

significant correlation between the false alarm rate and the total score of GRCS (r = .255, p 

= .008). But no significant correlation was found with high reward condition.  

The delay-discounting rate was significantly correlated with the overall false alarm rate (r 

= .241, p = .013, Fig. 4B), indicating that individuals with larger delay discounting rate, took 

more risks. Across different Go signal probability conditions significant correlations were found 

in 20% (r = .218, p = .024) and 80% (r = .229, p = .018) probability conditions. No significant 

correlation was found in the 50% probability condition. Across different reward levels, in low 

the reward condition, there was a significant correlation between false alarm rate and delay 

discounting rate (r = .256, p = .008). No significant correlation was found with high reward 

condition. 

There was a significant negative correlation between the RT and BIS in BIS/BAS (r = -

.199, p = .05, Fig. 4C), indicating that individuals with greater behavioral avoidance (behavioral 

inhibition system) would respond faster. Further correlation analyses were conducted between 

BIS/BAS and the RT in different reward and probability conditions. For BIS subscale, there was 

not any significant correlations across different reward and Go-probability conditions. But there 

was a positive correlation between BAS and the RT in low reward condition (r = .203, p = .047). 

This suggested that individuals with greater behavioral approach system (behavioral activation 

system) would respond slower in low reward condition. But no significant correlation was found 

in high reward condition as well as the different Go-probability conditions. 
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In an effort to determine whether the relationship with the risk-taking and impulsive trait 

measures differently change across reward level Go-probabilities, I calculated the difference in 

false alarm rate between high and low reward conditions separately in each probability condition 

and looked at the correlation between this difference measure with the risk-taking and impulsive 

trait measures. The results showed that in the 20% probability condition, the difference of false 

alarm rate between the high and low reward conditions were negatively correlated with total 

score of GRCS (r = -.281, p = .003, Fig. 4D). With 50% and 80% probability conditions, no 

significant correlations were found. This indicated that the effect of reward on increasing false 

alarm rate was greater for people who demonstrated less gambling oriented cognition styles and 

that this effect was specific when the Go signal probability was low. No significant correlations 

were found with the delay-discounting rate and BIS/BAS.  
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CHAPTER 3 

STUDY 2: THE EFFECTS OF REWARD AND RISK LEVEL ASSOCIATED WITH 

SPEEDED ACTIONS: THE ROLE OF BETA OSCILLATIONS 

3.1 Participants 

A total of 31 right-handed college students (26 females, 19.70 ± 1.08 yrs) without any 

history of psychiatric or neurological illnesses were recruited from the University of 

Massachusetts, Amherst. All study participants signed a written informed consent, approved by 

the UMass Institutional Review Board. Participants performed the Speed-Rewarded Go-NoGo 

task while EEG was collected continuously. Participants received course credits for participation 

after completion of the experiment. In addition to the flat rate of credit for participation itself, an 

extra bonus credit – 25% of the flat rate – was granted based on the reward points they earned 

throughout the Speed-Rewarded Go-NoGo task.  

 

3.2 Speed-Rewarded Go-NoGo Task 

 The participants performed same task as Study 1. There were six blocks with 288 trials in 

total (48 trials in each block with 8 trials per each reward level and Go-probability combination). 

After each block, participants were shown the accumulated amount of points they’ve earned up 

until the previous block. 

 

3.3 EEG Recording and Analysis 

The electroencephalogram (EEG) was continuously recorded using 64 scalp electrodes 

embedded in an extended coverage, triangulated equidistant cap (M10, EasyCap, GmbH) using a 
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low-pass filter of 100 Hz at a sampling rate of 1000 Hz (actiCHamp, Brain Products, GmbH). 

The electro-oculogram (EOG) was monitored with electrodes below the left eye and just lateral 

to the left and right canthi. Electrode impedances were kept below 25 kΩ. The EEG was 

amplified with a BrainAmp system (Brain Products GmbH, Gilching, Germany). All channels 

were referenced to the vertex (Cz) during recording. 

Offline EEG data were exported to Matlab using the EEGLAB software package 

(Delorme & Makeig, 2004), and custom scripts. The data were re-referenced to the average of 

mastoid channels and high-pass filtered by 0.1 Hz. Then I separated the remaining data into two 

epochs. First epoch was time-locked to the presentation of the trial information, spanning from 1 

s prior to and 4.5 s after the onset of the trial information. This epoch includes the 2.5 s Trial 

Information period as well as the 2 s of Ready period. These two periods share the same baseline 

which was 1 s duration before the onset of trial information. The second epoch was time-locked 

to the presentation of the Go/NoGo signal, spanning from 200 ms prior to and 800 ms after the 

onset of the Go/NoGo signal (Go/NoGo period). A pre-stimulus period of 200 ms was used as 

the baseline. For each participant, artifact noise was removed based on an independent 

component analysis (ICA) approach (Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012; 

Makeig, Debener, Onton, & Delorme, 2004; Onton & Makeig, 2006) that has been established 

previously to obtain EEG data, which greatly diminished contribution from ocular/biophysical 

artifacts. Single trials were also visually inspected to exclude epochs with excessively noisy EEG 

or muscle artifacts. 

Time-frequency analysis of the EEG data was performed using the timef function of the 

EEGLAB toolbox (Delorme & Makeig, 2004). Oscillatory power in beta band was calculated by 

means of Fast Fourier Transformation and the mean event-related (log) spectral perturbation 
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(ERSP) was computed with respect to the specific pre-stimulus period as baseline (i.e. -1000 to 0 

ms for Trial Information and Ready period and -200 to 0 ms for Go/NoGo signal period). The 

epoch became -488 ms to 3988 ms for the Trial Information and Ready period and -136 ms to 

736 ms for Go/NoGo signal period. 

The analyses focused on the pre-selected electrodes relevant to the proactive and reactive 

motor control. Specifically, these electrodes of interest encompass the left primary motor region 

contralateral to the right hand used for the response (C3, C5, CP3, CP5) (Deiber et al., 2012) and 

the right prefrontal region (F6, F8, FC6) (Swann et al., 2011). Signals from all of the electrodes 

were averaged within the motor and right frontal regions as in previous literature (Deiber et al., 

2012; Swann et al., 2011). Statistical analyses were performed separately in the following three 

periods; Trial Information, Ready and the Go/NoGo period on mean ERSP values in beta 

frequency band. In order to determine the time window that shows significant effects associated 

with reward and risk level, a point-by-point 2 (Reward: High, Low) x 3 (Go-probability: 25%, 

50%, 75%) repeated measures ANOVA was performed within each period. After the specific 

time windows were determined, statistics were reported based on the average across all time 

points within the identified time window.   

 

3.4 Behavior Psychometric Measures 

Based on the results in study 1, the change of behavioral performance between high and 

low reward condition was only predicted by GRCS. Therefore, in study 2, only GRCS was 

measured as the personality traits related with risk-taking and impulsive tendencies. 
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3.5 Results 

3.5.1 Behavioral Results 

The reaction time and the false alarm rates (the proportion of incorrect responses to 

NoGo signals) were analyzed in each experimental condition. Since different categories for the 

actual reward size were based on the standard deviation of the reaction times, Z-scored RTs were 

used for all the analyses as in study1 (X.-J. Chen & Kwak, 2017). Raw RTs within each 

individual were log-transformed, after which they were converted into Z-scores.  

A set of 2 (Reward: High, Low) x 3 (Go-probability: 25%, 50%, 75%) repeated measures 

ANOVA for the RT to Go signals and the false alarm rate to NoGo signals were performed to 

determine how reward and Go-probability influence behavioral performance. For RT, there was 

a main effect of Reward (F(1,30) = 53.15, p < .001, η2 = .64, Mlow = .34, Mhigh = -.03) and Go-

probability (F(2,60) = 43.62, p < .001, η2 = .59, M25 = .38, M50 = .19, M75 = -.13), as well as the 

interaction between Reward and Go-probability (F(2,60) = 14.44, p < .001, η2 = .33) (Fig. 5A). 

Pairwise comparisons suggested that across the three levels of Go-probability (25%, 50%, 75%), 

RT was significantly faster for high reward compared to low reward condition (25% Go-

probability, p = .016, 50% and 75% Go probability: both p values < .001, with Sidak Bonforroni 

correction). These results suggest that the effect of reward on speed was modulated by the 

assessed level of risk as described in the Go-probability. Speeding up for larger reward only 

happened as the Go-probability increased (i.e. when the risk for losing associated with false 

alarm decreased).  

For the false alarm rate, there was a significant main effect of Go-probability (F(2,60) = 

32.73, p < .001, η2 = .52, M25 = .04, M50 = .11, M75 = .26) (Fig. 5B). False alarm rate was higher 

in 75% than in 50% Go-probability, and in 50% than in 25% Go-probability (all p values < .001). 
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The main effect of Reward (F(1,30) < 1, p = .390, Mlow = .13, Mhigh = .14) and the interaction 

between Reward and Go-probability (F(2,60) < 1, p = .381) were not significant. These results 

suggest that there was a greater tendency to take risks associated with a speeded Go response 

when the probability of losing was lower (i.e. higher Go-probability).  

 The analysis also examined whether reward and risk systematically influenced the speed–

accuracy trade-off using the following formula as an index of speed–accuracy trade-off: 1/RT x 

ACC as in the previous study (Chen & Kwak, 2017). In order to keep all the RT values positive 

to be used in the speed–accuracy trade-off measure, exponential function was applied to the RT 

Z-scores. The higher value of the trade-off measure indicates greater preference to trade accuracy 

for faster response and the lower value indicates greater preference to trade speed for higher 

accuracy. Reward by Go-probability repeated measures ANOVA showed a significant main 

effect of reward (F(1,30) = 34.31, p < .001, η2 = .53, Mlow = 47, Mhigh = .62) and the interaction 

between them (F(2,60) = 5.66, p = .006, η2 = .16) (Fig. 5C), suggesting a systematic trade-off 

between reward and risk level on decisions for speeded actions. Participants showed a greater 

tendency to go faster at the expense of sacrificing the accuracy as the reward stakes increased. 

This effect of reward magnitude was more significant in higher than lower Go-probabilites (p 

= .013 when Go-probability = 25%, p = .001 when Go-probability = 50%, p < .001 when Go-

probability = 75%, with Sidak Bonforroni correction). The main effect of Go-probability was not 

significant (F(2,60) < 1, p = .581). 

Next, I determined whether the task performance predicts individual’s risk-taking and 

impulsive tendencies. Based on prior studies suggesting greater sensitivity to reward magnitudes 

associated with risk-taking and impulsive tendencies (Bechara, Dolan, & Hindes, 2002; 

Bornovalova et al., 2009), the analysis was focused on the effect of reward magnitude. To this 
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end, I computed the difference in false alarm rate and RT as well as the speed-accuracy trade-off 

measure between high and low reward conditions averaged across the three Go-probabilities and 

looked at the correlation between this difference measure and self-report psychometric measures. 

Difference in false alarm rate across high and low reward conditions was positively correlated 

with Gambling Expectation sub-score (r = .517, p = .003) and the total score (r = .378, p = .036) 

of GRCS. Overall the behavioral findings were consistent with the study1 (Chen & Kwak, 2017). 

 

3.5.2 EEG results 

3.5.2.1 EEG beta band activity during Trial Information and Ready Period 

During Trial Information Period, time frequency map from both the left sensorimotor and 

right frontal regions showed a marked decrease in beta power after the onset of the Trial 

Information cue lasting until about 1500 ms (Fig. 6 A and B, Fig. 7 A and B). Thus, the analysis 

was focused within this time period for both regions. In the left sensorimotor region, point-by-

point 2 (Reward: High, Low) x 3 (Go-probability: 25%, 50%, 75%) repeated measures ANOVA 

showed a significant main effect of Reward from 645 ms to 1195 ms after the onset of Trial 

Information cue (F(1,30) = 11.21, p = .002, η2 = .27, Mlow = -0.22, Mhigh = -0.30, Fig. 6C) and a 

significant main effect of Go-probability between 400-1175 ms after the onset of Trial 

Information cue (F(1,60) = 11.04, p < .001, η2 = .27, M25 = -0.27, M50=  -0.29, M75 = -0.52, Fig. 

6D). Post-hoc analysis suggested that the difference between 25% and 50% Go-probability 

condition was not significant (p = .768) whereas the beta power in 75% Go-probability condition 

was significantly lower than the other two conditions (both p values < .001). No significant 

interaction was found during Trial Information period.  
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Similar pattern was found in the right prefrontal region during Trial Information Period. 

Point-by-point 2 (Reward: High, Low) x 3 (Go-probability: 25%, 50%, 75%) repeated measures 

ANOVA showed a main effect of Reward between 765-1005 ms after the onset of Trial 

Information cue (F(1,30) = 4.86, p = .035, η2 = .14, Mlow = -0.12, Mhigh = -0.22, Fig. 7C) and a 

main effect of Go-probability was found between 905-1275 ms after the onset of Trial 

Information cue (F(1,60) = 5.27, p = .008, η2 = .15, M25 = -0.10, M50=  -0.07, M75 = -0.23) (Fig. 

7D). Post-hoc analysis suggested that beta power in 75% Go-probability condition was 

significantly lower than the 25% (p = .018) and 50% Go-probability condition (p = .008).   

During Ready Period, time frequency maps from the left sensorimotor and right frontal 

regions showed a marked decrease in beta power across the entire period which lasts 1500 ms 

(Fig. 6 A and B, Fig. 7 A and B). Thus the analysis was performed across the whole period. In 

left sensorimotor region, point-by-point 2 (Reward: High, Low) x 3 (Go-probability: 25%, 50%, 

75%) repeated measures ANOVA only showed a main effect of Go-probability between 275-495 

ms after the Ready onset (F(1, 60) = 3.32, p = .043, η2 = .10, M25 = -0.43, M50=  -0.46, M75 = -

0.62, Fig. 6E). Post hoc analysis suggested that the beta power with 75% Go-probability was 

significantly lower compared to the 25% Go-probability condition (p = .024). The difference 

between 25% and 50% Go-probability conditions (p = .653) as well as the difference between 50% 

and 75% Go-probability conditions (p = .063) were not significant. No significant main effect of 

Reward or interaction were found. In the right prefrontal region, there was a significant main 

effect of Reward between 1185-1420 ms after the onset of Ready (F(1,30) = 5.10, p = .031, η2 

= .15, Mlow = -0.16, Mhigh = -0.27, Fig. 7E). The main effect of Go-probability and the interaction 

were not significant.   
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3.5.2.2 EEG beta band activity during Go/NoGo period  

 The trials in Go/NoGo period could further be divided into trials when a Go signal was 

presented (Go trials) and trials when a NoGo signal was presented (NoGo trials). Previous 

literature suggested that beta power was modulated by efforts placed for motor inhibition (Swann 

et al., 2009, 2011; Wagner, Wessel, Ghahremani, & Aron, 2017). Based on these reports, I 

computed the difference in mean beta power between the two trial types (beta power NoGo – Go; 

beta power in NoGo trials – beta power in Go trials) and determined whether there was a 

modulation by Reward and Go-probability in this difference measure. The greater the value in 

this difference measure would reflect greater effort placed for adequate motor inhibition. Thus, I 

interpreted this measure as matric of inhibitory motor effort. I hypothesized that in general, if the 

Trial Information led to a greater motivation towards a Go response, it would require a greater 

inhibitory effort in face of an actual NoGo signal and thus beta power NoGo – Go will be higher. In 

the analysis, trials with only correct responses were included, excluding the false alarms trials 

and the missed trials where no responses were made to the Go signal. In determining the specific 

time period for analysis, the common time window prior to the actual Go response across all 

participants to account for individual differences in RT was investigated. Specifically, the first 

200 ms from the onset of the Go/NoGo signal, which was the minimum average RT across all 

participants, was analyzed. 

In order to examine how Reward and Go-probability modulated beta power NoGo – Go in 

left motor region, initial inspection of the results revealed no specific time point at which the 

patterns of beta frequency power were distinguishable across the Reward and Go-probability 

conditions. 2 (Reward: high, low) x 3 (Go-probability: 25%, 50%, 75%) repeated measures 

ANOVA did not show any main or interaction effects.    
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As opposed to the left motor region, there was a marked difference in the patterns of beta 

frequency power in the right frontal region. Point-by-point 2 (Reward: high, low) x 3 (Go-

probability: 25%, 50%, 75%) repeated measures ANOVA showed a significant main effect of 

Reward between 110-135 ms after the onset of the Go/NoGo signal (F(1,30) = 5.29, p = .029, η2 

= .15, Mlow = -0.24, Mhigh = 0.23, Fig. 8B). Furthermore, a significant Reward by Go-probability 

interaction was found between 135-160 ms after the onset of the Go/NoGo signal (F(2,60) = 3.40, 

p = .040 , η2 = .10, Fig. 8A, C). Post-hoc analysis showed that in 75% Go-probability condition, 

beta power NoGo – Go was significantly greater in high compared to low reward condition (p = .038, 

with Sidak Bonforroni correction) while in 25% and 50% Go-probability condition, there was no 

significant difference between high and low reward condition (both p values > .05). No 

significant main effect of Go-probability was found. 

 

3.5.2.3 EEG Beta band activity predict performance on Speed-Rewarded Go/NoGo task  

In order to determine whether the beta frequency oscillations in the left motor and right 

frontal regions influenced behavioral performance to the forthcoming Go/NoGo signal, linear 

mixed effect model was used. I hypothesized that the difference in behavioral performance (i.e. 

FA and RT) across Reward and Go-probability conditions will be predicted by difference in beta 

power across these conditions. To simplify our interpretations, a model that predicts the 

difference in performance across the high and low reward conditions from the difference in beta 

oscillations across the two reward conditions was created below.    

Performdiffij = 1Probj + 2Betadiffij  + 3Probj x Betadiffij + γ1Probj + εij (i = subject i, j = Go-

probability j, ε = error term)  
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Difference in response time (RT), false alarm rate (FA) and speed-accuracy tradeoff (SA) 

across the high and low reward conditions (Performdiff: high – low RT (RTdiff), high – low FA 

(FAdiff), high – low SA (SAdiff)) were the dependent variables for each model. Go-probability 

(Prob), difference in beta power across high and low reward conditions (Betadiff: high – low 

beta power) and the interaction between the two (Prob x Betadiff) were included as fixed-effect 

variables predicting Performdiff. Go-probability was included in the model to account for the 

fact that each subject had its own set of random parameters associated with the random effect 

“Prob” (γ1Probj). Separate models were tested for Betadiff derived from motor and right frontal 

regions in the Trial Information, Ready and Go/NoGo period. Mean beta power was extracted 

from the time window that showed significant effects associated with Reward. As for the 

Go/NoGo period, Betadiff was computed using the derived metric of inhibitory motor effort 

(beta power NoGo – Go). Only significant results were reported below. 

During Ready period, there was a significant interaction between Betadiff in right frontal 

region and Go-probability in predicting FAdiff (F(2,64.9) = 4.85, p = .01). Reward-associated 

increase in FA was predicted by reward-associated decrease in beta power, most reliably in 50% 

Go-probability (see Fig. 9A). During the Go/NoGo period, there was a significant main effect of 

Betadiff (F(1,71.00) = 4.32, p = .041) and an interaction between Betadiff and Go-probability 

(F(2,51.37) = 3.51, p = .037) in the right frontal region. Increase in FA was predicted by lower 

levels of inhibitory motor efforts most reliably in 75% Go-probability (see Fig. 9B).   

 

3.5.2.4 Beta Oscillation predicts individual difference in risk-taking and impulsive tendencies.  
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Correlation analyses were conducted to test if the beta power from left sensorimotor rand 

right prefrontal region can predict individual’s risk taking and impulsive tendencies. I 

hypothesized that people with stronger risk taking and impulsive tendencies would be more 

sensitive to reward magnitudes reflected by the difference in beta power across the high and low 

reward conditions. In the analysis investigating the relationship between the psychometric 

measures and the behavioral performance (i.e. RT, FA and SA during Speed-Rewarded 

Go/NoGo task), the results with the Gambling Expectation subscore and the total score of GRCS 

as reported earlier were significant. Thus, only these two psychometric measures (PsychM) were 

included in the analyses. Similar to the correlation analyses between the psychometric measures 

and behavioral performance, I calculated the different beta power between high and low reward 

conditions and averaged them across the three Go-probabilities. 

During the Trial Information period, there was a significant negative correlation between 

Gambling Expectation sub-score and the difference beta power in left sensorimotor region (r 

= .52, p = .003, Fig. 9C). Similar pattern was found in right prefrontal region during the Ready 

period, there was a negative correlation between Betadiff and Go-probability and Gambling 

Expectation sub-score (r = .40, p = .026, Fig. 9D).  

 

  



31 
 

CHAPTER 4 

DISCUSSION 

The two studies in the current thesis aimed to explore the effect of reward and risk on 

decisions for speeded actions and the underlying neural bases.  

In Chapter 2, I described a task paradigm designed to investigate how decision making 

for speeded motor responses can vary across different levels of the potential rewards and risks. In 

this task, faster responses would result in higher rewards while at the same time it also entailed a 

higher risk of losing rewards due to false alarm. The behavioral results showed that higher 

rewards motivated people to respond faster, and this effect was modulated by the Go-probability 

which explicitly influenced the perceived risk associated with the action. Specifically, when the 

probability of Go signals was relatively high (the perceived risk level was low), the higher 

rewards led to significantly faster response to Go signals whereas the modulatory effect of 

reward was not significant when the probability of Go signals was low. More importantly as 

shown by the results of the speed-accuracy trade-off measure, there was a greater sacrifice for 

accuracy in favor of speed when the response was associated with higher potential reward and 

when the perceived risk level was low (i.e. higher Go-probability). These results suggest that 

decisions for a speeded action is determined by a systematic trade-off between cost and benefit 

associated with an action, which is based on the potential reward and risk level, the two 

determinants of the action value. 

These results were in line with previous studies showing the powerful motivational role 

of monetary rewards in the conscious selection of actions (Ballanger et al., 2006; Kurniawan et 

al., 2010; Meyniel & Pessiglione, 2014; Skvortsova et al., 2014).  In the present study, the level 
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of potential rewards was presented as either high or low and the actual amount of reward was 

proportionally deducted from the potential reward based on the speed of the response. As 

expected, higher rewards resulted in faster responses suggesting an increase in motivation. Faster 

responses, however is inevitably associated with higher risk of incorrect responses as generally 

depicted in speed-accuracy trade-off (Fitts, 1954), which is readily acknowledged in our 

everyday decision making as implied in the idiom “Haste makes waste”. In the task, the risk 

associated with speed was formalized by imposing a loss of points when there was a false alarm, 

a feature that adds on an ecological validity to the ask. The results showed that decisions on 

speeded actions were also made based on the potential rewards to gain as well as the associated 

risk level similar to the way economic choices are made. Specifically, as preparing for a faster 

response introduces higher risk of failure to inhibit the action which may result in loss of points, 

participants only decided to speed up when the known probability of losing is low (i.e. higher Go 

signal probability). 

In Chapter 3, I described how motor beta frequency oscillations were modulated by the 

different levels of rewards and risks. Analysis of neural signals from EEG data focused on the 

beta frequency oscillations involved in motor control. Specifically, the analyses focused on the 

sensorimotor and right frontal regions each representing the neural circuitry of proactive and 

reactive motor control (Aron, 2011). While EEG has low spatial resolution and it is difficult to 

map out the neuroanatomical origins of the EEG signal, many studies have reliably interpreted 

the EEG beta oscillations close to the primary motor cortex (e.g. C3, C5, CP3, CP5) as the 

sensorimotor rhythm (Deiber et al., 2012; López-Larraz et al., 2015; Picazio et al., 2014).  EEG 

beta signal from the right frontal region has also been well identified as reflecting the activity of 

the reactive stopping network (Swann et al., 2011). Consistent with behavioral results, motor 
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beta oscillations reflected the differential levels of motivation towards a Go vs. NoGo response 

across different reward and risk levels. In general, lower beta power was associated with higher 

reward and lower risk level, which was consistent with prior research showing decrease in beta 

oscillations associated with initiating a movement and increase in beta oscillations associated 

with inhibiting a movement (Kuhn et al., 2004; Picazio et al., 2014; Swann et al., 2011, 2009; 

Tan et al., 2015). Functional relevance of these beta signals in task performance also supports 

this interpretation; greater reward-related decrease in beta oscillations in the right frontal region 

during ready period predicted greater reward-related increase in false alarm rate.  

One advantage of EEG is allowing investigation of the dynamic changes of a 

psychological process. The Speed-Rewarded task were divided into three phases including the 

Trial Information period, Ready period and the Go/NoGo period in order to examine how 

individuals preprocess the information cue, prepare the motor actions and react to the actual 

motor signals. During the Trial Information period, comparisons of the EEG data across different 

reward and risk levels suggested that the motor beta oscillations coded the reward and risk level 

information. With greater amount of reward points, people showed more decrease of beta power 

from the sensorimotor cortex. Similarly, with higher possibility to a Go signal, people also 

showed more decrease of beta power in sensorimotor cortex. Same patterns happened in the right 

prefrontal region during this period. The current data demonstrate that beta oscillation 

contributes in processing higher-level decision variables such as the risk and rewards associated 

with an action. The involvement of both sensorimotor and prefrontal region gave evidence of 

proactive role of the “stopping network” happened during the Trial Information process. During 

the Ready period, there was a significant effect of Reward on the beta band oscillatory activity 

from right prefrontal region but not in sensorimotor cortex. Significant effect of  Go-probability 
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was only found in left sensorimotor cortex, which was consistent with previous studies that the 

power of beta band decreased significantly followed by an effective cue compared to an 

ineffective cue (Van Wijk et al., 2008) indicating the role of coding the information predicting 

the coming motor response.  

It was also of note that even within the preparatory periods when participants processed 

Trial Information and gets Ready for the upcoming signal, I observed distinct contributions of 

the two brain regions. While both reward and risk information were coded in both regions during 

Trial Information period, the two variables were separately coded by the two regions by Ready 

period with risk information in the motor region and reward information in the right frontal 

region. The reward information, which entails direct motivational value towards a Go response, 

is constantly being monitored by the reactive control system so that when necessary – for 

example when facing an actual NoGo signal – it can appropriately inhibit responses. The risk 

information, which is expressed as Go-probabilities in the current paradigm, can be more 

intuitively coded by the proactive mechanism in motor region as it plans out a motor command 

based on the degree to which the Go signal is expected.  

More interesting, the beta oscillation could also predict individual differences in risk-

taking and impulsive tendencies as assessed by self-report measures. During Trial Information 

period, individuals with greater pro-gambling cognitive orientation, measured by Gambling 

Related Cognition Scale (GRCS) (Raylu & Oei, 2004) showed greater decrease in beta power in 

the sensorimotor cortex in high compared to low reward stakes. This provides the neural 

evidence indicating that individuals with greater pro-gambling cognitive tendencies are not 

capable of adequately adjusting their behaviors in response to high stakes of reward especially 

during the earlier Trial Information processing period. They have greater motivation towards 
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larger rewards and at the same time have less sufficient inhibitory control mechanism in place 

which is often reported as a hallmark of impulsivity (Beck et al., 2009; Martin & Potts, 2004; 

Scheres, Milham, Knutson, & Castellanos, 2007). But the beta oscillation during Trial 

Information period could not predict any behavioral performance in the Speeded-Reward Go-

NoGo task. While during the Ready period, in addition to predicting individual difference in risk 

taking and impulsive tendencies, the change of beta power between high and low reward 

conditions from right prefrontal region can also effectively predict the later false alarm rate in 

Speed-Rewarded Go/NoGo task. These results confirm the proactive role of prefrontal cortex 

that during the Ready period, the prefrontal regions may play a role of motor plan based on the 

Trial Information and suggested the proactive control from prefrontal lobe in motor inhibition 

(Aron, 2011; Aron et al., 2007). Future studies are required to directly specify the separable 

contributions of the two control mechanisms in processing reward and risk information to 

confirm these hypotheses. 

As previous literature suggested, the right prefrontal region reactively corrects 

movements, by canceling out and inhibiting a motor command that has already been made (Aron 

et al., 2007; Chambers, Garavan, & Bellgrove, 2009; Chikazoe, 2010). Because of this role of the 

right prefrontal region in reactive control, I hypothesized that the modulatory effects of the 

different reward and Go-probability conditions would primarily be found after the Go/NoGo 

signal. Specifically, when facing an actual NoGo signal, the load that was placed in this region to 

inhibit a response would be greater when there was a greater motivation to “Go” based on the 

Trial Information. Thus, I hypothesized that the beta signals in the right prefrontal regions would 

manifest a greater effort to inhibit when the expected values for a “Go” response was higher as 

indicated during Trial Information period. The data supported this hypothesis. The inhibitory 
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effort – indexed by beta power NoGo-Go – was higher for high stakes compared to low stakes. And 

main effect of reward was modulated by the Go-probability condition. Specifically, greater 

inhibitory effort was made for high reward compared to low reward with 75% Go-probability, 

whereas no such difference was found with 50% or 25% Go-probability. More importantly, the 

beta signals predicted behavioral performance to the Go/NoGo signal. These results collectively 

demonstrate that the decision variable such as reward value and the risk level can shape the 

motor system by modulating the neural oscillation patterns involved in the proactive and reactive 

control, which guides a motor response.  

Literature on beta frequency oscillations across the cortico-basal ganglia network 

suggests that different information is represented in this neural signal. With regards to the 

sensorimotor beta rhythm, it is suggested that it codes estimation of time towards an action 

(Arnal, 2012; Fujioka, Trainor, Large, & Ross, 2012), general movement planning (Engel & 

Fries, 2010; Jenkinson & Brown, 2011) or an anticipatory up-regulation of motor processing in 

face of an upcoming action (Bai et al., 2005; Kilavik et al., 2013). Furthermore, it is also 

associated with inhibiting an action (Swann et al., 2011; Swann et al., 2009; Wagner, Wessel, 

Ghahremani, & Aron, 2018). In addition to the sensorimotor rhythm, beta oscillations are also 

widely reported from prefrontal regions while processing rewards. Both anticipation (Kawasaki 

& Yamaguchi, 2013) and delivery (Cohen & Ranganath, 2007; HajiHosseini, Rodríguez-Fornells, 

& Marco-Pallarés, 2012) of rewards increased beta oscillations in frontal regions during reward 

learning and risky gambling tasks. More recent line of work has demonstrated that reward-

related signals are also present in the sensorimotor rhythm (Meyniel & Pessiglione, 2014). 

Presentation of larger compared to smaller prospective reward resulted in greater motivation to 

exert physical force towards obtaining the reward, which was reflected as greater 
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desynchronization of the beta rhythm from the sensorimotor region. These results support the 

role of sensorimotor beta rhythm in translating the motivation towards a motor activation. The 

results extend these findings showing how both reward magnitude and risk level shape the 

pattern of sensorimotor rhythm to guide the upcoming action. My claims are strongly supported 

by the data showing direct contribution of beta oscillations in predicting individual differences in 

behavioral task performance as well as impulsive and risk-taking tendencies measured through 

GRCS.  

There were several limitations in the present studies. Fist, our sample was limited to 

undergraduate college students. The current results could not be generalized to the general 

population. Further studies should recruit a large sample size with a wider age range from the 

community. Second, there was a great gender bias in the present samples with much more female 

compared to the male participants. Previous literature suggested the gender difference in 

inhibitory control (e.g., Li, Huang, Constable, & Sinha, 2006).  Further studies are required to 

clarify the effect of gender with more balanced sample size between males and females. Finally, 

due to the poor spatial resolution of EEG, it is hard to determine the specific brain regions 

actually work together during the decision making process of speeded actions. For future study, 

it is important to combine multiple neural measurements such as fMRI for a better understanding 

of the neural mechanism of this process. 

In sum, the present studies investigated the contribution of the reward amount and 

assessed risk level in decision making for speeded actions and the neural correlates of this 

process. A novel experimental paradigm presenting an ecologically valid decision making 

scenario, which implements both reward and risk during a Go-NoGo task was used in the present 

studies. The results indicate that in general, larger rewards increases movement speed despite 
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being associated with higher risk of losing and the degree to which reward influences 

performance, is modulated by the assessed risk-level. This is reflected as a systematic speed-

accuracy trade-off across different levels of reward and risk, which are the two determinants of 

the action value. At the neural level, the beta frequency oscillations from sensorimotor cortex 

and the right prefrontal region represent the reward magnitude and risk level in order to guide 

decision making. Moreover, individual differences in risk taking and impulsive tendencies 

contributes to this process such that individuals with greater risk taking and impulsive tendencies 

does not adequately adjust their behavior across different reward levels. The results demonstrate 

that when making decisions for a speeded action, the associated costs and benefits are evaluated 

based on the potential reward and risk level, which are the two determinants of the action value. 

In addition, these decision variables can guide choice for actions by modulating brain oscillations. 
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Table 1: Performance of Speed-Rewarded Go-NoGo task in each condition 

  20% 50% 80% 

  M SD M SD M SD 

Low 

reward 

FA for NoGo 0.056 0.097 0.112 0.124 0.294 0.304 

Z-scored RT for 

Go 
0.465 0.520 0.290 0.424 0.026 0.512 

 Speed-accuracy 

trade-off 
0.783 0.504 0.951 0.500 1.806 1.86 

High 

reward 

FA for NoGo 0.052 0.071 0.149 0.156 0.316 0.289 

Z-scored  RT for 

Go 
0.348 0.454 0.073 0.234 - 0.314 0.321 

Speed-accuracy 

trade-off 
0.862 0.650 1.200 0.572 2.399 1.875 

 Note. FA: false alarm rate; RT: reaction time 
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Table 2: The correlations among false alarm rate, delay discounting rate and impulsive and risk-

taking tendencies in each probability and reward condition 

 BIS/BAS Barratt Impulsiveness 

Scale 

GRCS Delay Discounting 

Rate (k) 
 BIS BAS 

FA_20 -.025 .102 -.089 .177 .218* 

FA_50 -.005 -.094 -.118 .15 .117 

FA_80 -.012 .013 -.025 .192* .229* 

FA_Low .022 .011 -.097 .255** .256** 

FA_High -.045 -.021 -.04 .143 .177 

FA_Total -.015 -.007 -.076 .219* .241* 

Note. * p < .05 

          ** p < .01 

FA_20; FA_50; FA_80: False alarm rate in 20%, 50%, 80% Go-probability conditions, FA_Low; 

FA_High: False alarm rate in high and low reward conditions, FA_Total: overall false alarm rate. 
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Table 3: The correlations among normalized RT, discounting rate and risk preference in each 

probability and reward condition 

 BIS/BAS Barratt 

Impulsiveness Scale 

GRCS Delay Discounting 

Rate (k) 
 BIS BAS 

Z-scored RT_20 -.067 .09 -.001 -.085 .125 

Z-scored RT_50 -.119 .076 -.11 .061 .125 

Z-scored RT_80 -.099 .126 -.029 -.093 -.077 

Z-scored RT_Low -.184 .203* -.139 -.08 .04 

Z-scored RT_High .035 -.111 .105 .078 .125 

Z-scored RT_Total -.199* .177 -.101 -.129 .103 

Note. * p < .05 

          ** p < .01 
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Figure 1: The motor pathways. A) Indirect pathway; B) Direct pathway; C) Hyper-direct 

pathway. 
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Figure 2: The trial structure of Speed-Rewarded Go-NoGo task. 
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Figure 3: The performance of Speed-Rewarded Go-NoGo task (study1). (A) Z-scored RT; (B) 

false alarm rate; (C) the speed-accuracy trade-off.  
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Figure 4: The correlations between the performance of Speed-Rewarded Go-NoGo task and the 

impulsive and risk-taking tendencies. (A) The correlation between GRCS total score and false 

alarm rate; (B) the correlation between delay discounting and false alarm rate; (C) the correlation 

between BIS score and Z-scored RT; (D) the correlation between the GRCS total score and the 

difference of false alarm rate between high and low reward conditions. 
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Figure 5: Performance of Speed-Rewarded Go-NoGo task (study 2). (A) The Z-scored RT, (B) 

false alarm rate, (C) Speed-accuracy trade-off. 
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Figure 6: EEG beta band activity in left sensorimotor region during Trial Information and Ready 

period. (A) Time-frequency map of the beta band power across all the trials. (B) The mean beta 

band power in each Reward and Go-probability condition. (C) Left: the main effect of Reward 

during Trial Information period; Middle: the main effect of Go-probability during Trial 

Information period; Right: the main effect of Go-probability during Ready period.   
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Figure 7: EEG beta band activity in right prefrontal region during Trial Information and Ready 

period. (A) Time-frequency map of the beta band power across all the trials. (B) The mean beta 

band power in each Reward and Go-probability condition. (C) Left: the main effect of Reward 

during Trial Information period; Middle: the main effect of Go-probability during Trial 

Information period; Right: the main effect of Reward during Ready period.   
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Figure 8: EEG beta band activity in right prefrontal region during Go/NoGo period. (A) The 

mean of the beta powerNoGo – Go during Go/NoGo period under each Reward and Go-

probability condition. (B) Time-frequency map of the difference in beta powerNoGo – Go across 

high and low reward conditions (High-Low). (C) The interaction between Reward and Go-

probability on beta powerNoGo – Go during the GO/NoGo period. 
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Figure 9: Beta oscillations can predict the performance of Speed-Rewarded Go-NoGo task and 

the personal trait related with risk taking and impulsive tendencies. (A) Beta oscillation during 

Ready period from right prefrontal region can predict the FA in Speed-Rewarded Go/NoGo Task. 

(B) Beta oscillation during Go/NoGo Period from right prefrontal region can predict the FA in 

Speed-Rewarded Go/NoGo Task. (C) Beta oscillation during Trial Information period from left 

sensorimotor cortex can predict the Gambling Expectation score. (D) Beta oscillation during 

Ready period from right prefrontal region can predict the Gambling Expectation score. 
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