
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Masters Theses Dissertations and Theses 

October 2018 

Understanding the Thermal Stability and Environmental Sensitivity Understanding the Thermal Stability and Environmental Sensitivity 

of Phycocyanin using Spectroscopic and Modelling Tools of Phycocyanin using Spectroscopic and Modelling Tools 

Cally Toong 

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 

 Part of the Food Science Commons 

Recommended Citation Recommended Citation 
Toong, Cally, "Understanding the Thermal Stability and Environmental Sensitivity of Phycocyanin using 
Spectroscopic and Modelling Tools" (2018). Masters Theses. 717. 
https://scholarworks.umass.edu/masters_theses_2/717 

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/84?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/717?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 

UNDERSTANDING THE THERMAL STABILITY AND ENVIRONMENTAL 

SENSITIVITY OF PHYCOCYANIN USING SPECTROSCOPIC AND 

MODELLING TOOLS 

 

 

 

 

A Thesis Presented 
 

by 
 

CALLY TOONG 
 

 

 

 

 

 

Submitted to the Graduate School of the 

University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 

 
MASTER OF SCIENCE 

 
September 2018 

 
Food Science 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Cally Toong 2018 
 

All Rights Reserved  



UNDERSTANDING THE THERMAL STABILITY AND ENVIRONMENTAL 

SENSITIVITY OF PHYCOCYANIN USING SPECTROSCOPIC AND 

MODELLING TOOLS 

 

A Thesis Presented 

 

by 

 

CALLY TOONG  

 

Approved as to style and content by: 

 ____________________________________ 

Maria G. Corradini, Chair 

 ____________________________________ 

Amanda Kinchla, Member 

 ____________________________________ 

Lili He, Member 

 

__________________________________  

Eric A. Decker, Department Head 
Food Science  



 iv 

ACKNOWLEDGEMENTS 

 

I would firstly like to express my gratitude to my research advisor, Dr. Maria G. 

Corradini, for her guidance, thoughtful feedback, and for sharing her expertise.  

  I would like to acknowledge the professors from University of Massachusetts 

Food Science Department who taught and advised me, especially Dr. Eric A. Decker and 

Dr. Fergus Clydesdale, for their encouragement and support. I would like to thank my 

committee members, Dr. Lili He and Mrs. Amanda Kinchla, for their time and assistance.  

 I am very grateful for my wonderful lab mates, friends, and family.  Specifically, 

Jeremy Yang, for his assistance in running experiments and my parents, sisters, Rob, 

Bennett, and Roxy for their unconditionally support.  

 

 

 

 

 

 

 

 

 

 

 

 



 v 

ABSTRACT 

UNDERSTANDING THE THERMAL STABILITY AND ENVIRONMENTAL 

SENSITIVITY OF PHYCOCYANIN USING SPECTROSCOPIC AND 

MODELLING TOOLS 

SEPTEMBER 2018 

CALLY TOONG, B.S., QUEEN’S UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Maria G. Corradini 

 

Phycocyanin (PC), a pigment-protein conjugate from Arthrospira platensis, is 

increasingly used in foods as a natural alternative to artificial blue dyes.  Although PC 

has been classified as a color additive exempt from certification by the Food and Drug 

Administration, its limited stability has hindered its widespread application in food 

products. The objectives of this study were: a) to evaluate the photophysical properties of 

PC and their sensitivity to temperature, viscosity, and water activity, b) to monitor PC’s 

thermal degradation based on changes in the optical properties of its intrinsic 

fluorophores, namely its chromophores and aromatic amino acids, and c) to extract PC’s 

thermal degradation kinetics parameters from non-isothermal degradation profiles and 

validate their predictive ability.  

PC’s photophysical properties were monitored in solutions with viscosities from 1 

to8000 mPa s and water activities, aw, from about 0 to 1. PC’s emission intensity showed 

high sensitivity to aw above 0.8 and mild sensitivity to the viscosity of its local 



 vi 

environment.  The effect of temperature on PC’s photophysical properties was tested in 

aqueous PC solutions (0.5 µM, pH: 6.1) subjected to non-isothermal temperature profiles 

with target temperatures from 42.5 to 80°C. The stability of PC was monitored in terms 

of its photophysical properties, i.e., fluorescence emission intensity, energy, and 

anisotropy (r) of its chromophore at set time intervals. Additionally, the photophysical 

properties of PC’s aromatic amino acids (AAs) tyrosine and tryptophan (lexc: 280 and 

295 nm) were recorded. The thermal degradation kinetics of PC was assumed to follow a 

Weibullian model, and the temperature dependence of the degradation rate parameter, 

b(T), a logarithmic exponential model. Changes of PC fluorescence intensity under 

dynamic conditions were used to extract the degradation kinetics parameters using the 

endpoints method. Deviations between the estimated and experimental values were less 

than 10% for all temperature profiles. During thermal treatments, hypsochromic shifts of 

AAs’ emission spectra (from 340 to 315 nm) and significant increases in fluorescence 

anisotropy revealed that color losses were not solely associated with an alteration of the 

chromophore but with conformational changes and possible aggregation of the protein 

subunits. An increase in viscosity of the surrounding media provided a protected effect on 

discoloration during heating. 

Adequate modeling approaches and molecular spectroscopic techniques can help 

to develop effective strategies to enhance thermal stability, expand its use as a color and 

functional ingredient and operationalize it as an endogenous sensor of food quality.  

 

Keywords: phycocyanin, fluorescence, thermal stability, degradation kinetics, 

photophysical properties, natural color, blue colorant 
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CHAPTER 1 

INTRODUCTION  

 
A persistent challenge within the food and beverage industry is the replacement of 

artificial additives, such as colorants, with natural alternatives (Newsome et al., 2014, 

Martins et al., 2016). Natural colorants are more expensive than artificial ones, can 

encounter regulatory hurdles if novel, and possess lower stability under normal 

processing conditions (Delgado-Vargas et al., 2000, Sigurdson et al., 2017, Schweiggert, 

2018). Pigment degradation in food products can lead to undesirable sensory changes 

including color loss, discoloration, and the formation of unwanted flavors and smells, 

with the corresponding loss of consumer acceptability (Newsome et al., 2014, Martins et 

al., 2016). Therefore, understanding the kinetics and mechanisms of color degradation is 

of utmost importance for the industry and can contribute to the development of strategies 

to mitigate color loss during processing and storage.  

Phycocyanin (PC) from the microalgae spirulina (Arthrospira platensis) has 

tremendous potential as a natural blue color in foods. PC is currently the only color with 

blue hues listed as a “color additive exempted from certification” by the Food and Drug 

Administration (U.S. Food and Drug Administration, 2017). PC’s use is limited by its 

low thermal stability, i.e., its color rapidly deteriorates at temperatures above 40-50°C 

(Jesperson et al., 2005, Chaiklahan et al., 2012). PC’s color loss during heating is 

attributed to the denaturation or proteolysis of its protein-pigment complex (Murthy et al., 

2004, Antelo et al., 2008, Fukui et al., 2004, Selig et al., 2018). The thermal degradation 

kinetics of PC has been reported to follow first-order kinetics in aqueous solutions 

(Antelo et al., 2008, Chaiklahan et al., 2012, Hadiyanto et al., 2018) and zero-order 
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kinetics in powders (Colla et al., 2015); however, the characterization of PC’s thermal 

degradation using nonlinear kinetic models, such as the Weibull model, has resulted in 

better estimations of color loss during thermal treatments (Faieta 2017, Toong et al., 

2018).  To fully understand PC’s stability as a natural colorant, a thorough 

characterization of its degradation is important.  

PC’s structure contains four endogenous fluorophores; its chromophore 

phycocyanobilin (PCB) and three aromatic amino acids (tyrosine, tryptophan, 

phenylalanine). Therefore, steady-state fluorescence spectroscopy techniques can be used 

to monitor and advance the understanding of PC’s instability and sensitivity to the 

properties of its surrounding medium. The photophysical properties of many lumiphores, 

which include fluorophores, are highly sensitive to changes in composition, 

conformation, and the characteristics of their surrounding environment (Corradini and 

Ludescher, 2015, Strasburg and Ludescher, 1995). Fluorescence emission energy and 

anisotropy measurements can report on the protein conformation, denaturation, and 

renaturation processes, which makes them extremely useful in identifying the underlying 

mechanisms of thermal instability of a pigment-protein conjugate such as phycocyanin 

(Ladokhin, 2000). Additionally, PC’s high quantum yield, related to its fluorescence 

emission efficiency and large Stokes’ shift, i.e., the difference in location between the 

excitation and emission bands; facilitates detection and interpretation of results 

(Corradini et al., 2016, Kahiravan et al., 2008).  

The environmental sensitivity of PC’s optical properties could potentially extend 

its use beyond its function as a color additive. For example, PC has been proposed as a 

suitable replacement for fluorescent carcinogenic dyes used in staining blood and nucleic 
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acids in biotechnological applications, due to its high quantum yield and low toxicity 

(Paswan et al., 2015). Other food dyes, e.g., triarylmethanes and azo dyes, have reported 

viscosity sensitivity and can be used as fluorescent probes for food quality attributes 

based on their response to chemical and physical properties of the food matrix (Corradini 

and Ludescher, 2015, Kashi et al., 2015, Alhassawi et al., 2017, 2018). Assessing the 

sensitivity of PC’s photophysical properties to quality attributes of its surrounding 

environment can contribute to its use as an internal probe of food quality.   

Robust analytical methods such as fluorescence spectroscopy, when complemented 

with modeling techniques, can contribute to the evaluation and comparison of the effect 

of processing treatments on thermolabile species and facilitate data interpretation. If 

reliable data is available, predicting PC’s stability in foods under realistic food processing 

treatments can be accomplished using mathematical software such as Mathematica 

(Wolfram Research Inc., Champaign, IL), Matlab (Mathworks, Natick, MA) or R 

(https://www.r-project.org/) (Peleg et al., 2017, Corradini and Peleg 2006). Identifying 

appropriate models to characterize PC’s degradation kinetics and extracting kinetic 

parameters from non-isothermal profiles using the endpoints method (Peleg et al., 2015, 

2016) can be contribute to estimate PC’s concentration during processing and storage, 

which would be highly valuable for furthering its industrial use.  

There is an opportunity to better understand PC’s stability by monitoring its 

photophysical properties’ changes during thermal treatments and in different 

environments using current fluorescent spectroscopy techniques. Fluorescent 

measurements can provide valuable information on PC’s conformation and elucidate 

mechanisms underlying its thermal instability and sensitivity to food quality attributes. 
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Accurate analytical measurements combined with adequate modeling of its 

environmental sensitivity and degradation kinetics can expand the knowledge and 

utilization of this compound. 

 

1.1 Objectives 

The first objective of this project was to evaluate the photophysical properties of 

phycocyanin and assess their sensitivity to environmental factors, such as temperature, 

viscosity, and water activity (aw). The second objective was to monitor PC’s thermal 

degradation based on changes in the photophysical properties of its intrinsic fluorophores, 

namely its chromophore and aromatic amino acids. Finally, the third objective was to 

extract PC’s thermal degradation kinetics parameters from non-isothermal degradation 

profiles and assess the predictive ability of this approach.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Artificial and natural colorants  

Food colorants, also commonly referred to as food colors, dyes or pigments, are 

compounds that contain chromophores that can absorb and reflect or refract light within 

the visible region of the electromagnetic spectrum. Food colorants can be categorized as 

inorganic, artificial, or natural in origin (Delgado-Vargas et al., 2000). In the United 

States (US), food colorants are regulated by the Food Advisory Committee within the 

Food and Drug Administration (FDA), which classifies them as food additives certifiable 

or exempt from certification. Exempt color additives are obtained, for the most part, from 

natural sources including plants, insects, minerals or bacteria, although nature-identical 

colors are also included in this category (Simon et al., 2017). Certifiable and exempt from 

certification food colors deemed safe for use in foods within the US, are listed in Table 1 

and 2, respectively.  
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Table 1. Color provided, common names, and applications of additives subject to 
certification in the US.  

Colors or Shades 

Provided 

FD&C Identifying 

and/or Common 

Names 

Applications in Foods  

Blue  

FD&C Blue No. 1. 

Brilliant Blue 

Confections, beverages, cereals, frozen dairy 

desserts, popsicles, frostings, and icings  

FD&C Blue No. 2. 

Indigotine 

Baked goods, cereals, snack foods, ice 

cream, confections, and yogurt 

Blue-green 
FD&C Green No. 3. 

Fast Green 

Cereal, ice cream, sherbet, drink mixes, and 

baked goods 

Yellow 
FD&C Yellow No. 5. 

Tartrazine 

Confections, cereals, snack foods, beverages, 

condiments, baked goods, and yogurt 

Orange  

FD&C Yellow No. 6. 

Sunset Yellow 

Cereals, snack foods, baked goods, gelatins, 

beverages, dessert powders, crackers, and 

sauces 

Citrus Red No. 2. Orange peel 

Orange-red  Orange B. Hot dog and sausage casings 

Red 
FD&C Red No. 40. 

Allura Red 

Cereal, beverages, gelatins, puddings, dairy 

products, and confections 

Pink 
FD&C Red No. 3. 

Erythrosine 

Confections, beverages, cereals, ice cream 

cones, frozen dairy desserts, popsicles, 

frostings, and icings 

Source: U.S. Food and Drug Administration, (2015) 
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Table 2. Color provided, common names and applications of additives exempted from certification in the US.  

 
 
 
 

 

 

 

Colors or Shades 
Provided 

FD&C Identifying or Common 
Names Applications in Foods  

Blue, Green  Spirulina extract 

Confections, frostings, ice cream and frozen desserts, dessert 
coatings and toppings, beverage mixes and powders, yogurts, 
custards, puddings, cottage cheese, gelatin, breadcrumbs, and 

ready-to-eat cereals (excluding extruded cereals)  

Green Sodium copper chlorophyllin, 
chlorophyll Citrus-based beverage mixes  

Greenish white  Ferrous lactate 
Ripe olives 

Yellowish gray Ferrous gluconate 
Yellow Turmeric & Turmeric oleoresin 

Foods generally 

Yellow, orange 
Riboflavin 

Saffron 
Carrot oil 

Yellow, orange, red β-Carotene 

Orange, red 
β-Apo-8′-carotenal (carotenoid) 

Paprika & Paprika oleoresin 
Annatto extract 

Red 
Dehydrated beet powder 

Tomato lycopene extract, tomato 
lycopene concentrate 
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Table 2. Color provided, common names, and applications of additives exempted from certification in the US. (Continued)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sources: U.S. Food and Drug Administration (2015), Stevens et al., 2014, Shahid et al., 2013, Sigurdson et al., 2013

Colors or Shade 
Provided 

FD&C Identifying or 
Common Names Applications in Foods  

Red, pink Cochineal extract, carmine Foods generally 

Red, purple Fruit and vegetable juice 

Red, purple, 
yellow 

Grape color extract Foods excluding beverages 
Grape skin extract 

(enocianina) 
Still and carbonated drinks and ades, beverage bases, and alcoholic 

beverages 
Yellow, orange, 

red, brown, black Synthetic Iron Oxide  Soft and hard candy, mints, and chewing gum  

White Titanium dioxide 

Foods generally Brown 
Caramel 

Toasted partially defatted 
cooked cottonseed flour  
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Despite the numerous natural compounds that can provide color, the food industry 

has historically favored approved synthetic colorants over natural ones due to their 

comparatively low price and high stability during processing and storage conditions 

(Sigurdson et al., 2017, Fletcher, 2014). Approved synthetic dyes are still widely used in 

foods, despite the growing consumer preference for clean labels (Corradini, 2018).  

2.2 Demand and challenges associated with natural colorants   

As mentioned before, there is an increase in demand by consumers and consumer 

advocacy groups for natural coloring agents as replacements for artificial dyes in food 

products (Newsome et al., 2014, Sigurdson et al., 2017). Natural colorants are the fastest 

growing segment within the clean label ingredient market and it is expected to reach 47 

billion dollars by 2022 (PR Newswire, 2017). In 2015 alone, the natural food color 

market was valued at approximately 1.3 billion dollars worldwide, with an anticipated 

compound annual growth rate (CAGR) of 8.4% from 2016 to 2022 (Grand View 

Research, 2017, Thompson, 2016). This increase in demand has been attributed to: 1) a 

growing preference for minimally processed or clean-label food ingredients, which are 

perceived as more natural by consumers, 2) environmentally-friendly perception of 

natural dyes, 3) potential health benefits of select natural pigments, and 4) growing 

concerns about artificial food dye safety and adulteration (Corradini, 2018, Carle and 

Schweiggert 2016, PR Newswire, 2017, Delgado-Vargas et al., 2000). The widespread 

scrutiny over the potentially adverse effects of consuming artificial food dyes stems in 

part from studies in the past that have linked artificial color consumption with behavioral 

problems in children, including attention-deficit/hyperactivity disorder (ADHD) 
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(McCann et al., 2007, Arnold et al., 2012). Historical use of harmful color compounds, 

including toxic heavy metals, in the early 19th century also contributed to the negative 

perception of artificial colors. For certain artificial dyes, such as Tartrazine (FD&C 

Yellow No. 5), its proven allergenicity has been an additional consumer concern 

(Wrolstad and Culver, 2012).  It should be noted, however, that genotoxic and 

carcinogenic effects have not been consistently reported for approved food synthetic dyes 

and that recent studies corroborated the lack of genotoxicity for Allura Red and Sunset 

Yellow (Bastaki et al., 2017). 

Despite the increasing demand for natural food colorants and the health concerns 

linked to the consumption of synthetic colors, artificial dyes are still widely used because 

of their vast advantages over natural colorants.  Artificial colors can efficiently impart a 

homogenous hue to a food when used in small quantities. They are inexpensive to 

produce and highly stable during processing, distribution, and storage (Corradini, 2018, 

Schweiggert, 2018). Conversely, many natural colors cannot be used in industrial 

applications due to their low stability to heat, light, pH, oxidants, or water activity (Carle 

and Schweiggert 2016, 2018, Delgado-Vargas et al., 2000, Newsome et al., 2014). 

Natural colors also lack the brilliance, saturation or intensity, and hue of synthetic colors 

and often they must be used at higher levels than artificial ones (Schweiggert, 2018, 

Newsome et al., 2014). Moreover, incorporating natural colors into foods can result in 

interactions with other ingredients that lead to discoloration and reduced bioactivity. 

Additionally, natural colors can provide foods with unpleasant odors and flavors, such as 

the sulfur-compounds in anthocyanins, earthy notes from pyrazine compounds in 

betalains from red beet extract, and a seaweed taste from spirulina (Gao et al., 2014, 
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Schweiggert, 2018, Wrolstad and Culver, 2012, Wollan, 2016). Limited sourcing and 

availability, and the need to reformulate or apply additional processing techniques prior 

to their use are other drawbacks related to the use of natural colors (Schweiggert, 2018). 

Besides the described technical problems associated with the use of natural colors, the 

industrial and academic communities have criticized and raised concerns that regulations 

and analyses of natural colors do not receive the same level of scrutiny, in terms of purity 

or quality requirements, as artificial colors (Simon et al., 2017). This difference in 

regulations, combined with their high cost, can constitute an opportunity or motivation 

for the potential adulteration (intentional or unintentional) of natural colors (Simon et al., 

2017).  

2.3 Natural Blue Colorants 

Blue and green colors are the fastest growing segment among color additives. 

Blue dyes are the most difficult colors to replace naturally in foods, especially the vivid 

hue of Brilliant Blue FCF (FD&C Blue No. 1) (Newswire, 2017, Newsome et al., 2014, 

Wrolstad and Culver, 2012). The color perceived by the eye as blue comes from pigments 

that absorb light within the reddish color range, e.g., 560-580 nm, of the electromagnetic 

spectrum. Blue pigments are rare in nature because they exhibit a unique combination of 

molecular characteristics, including conjugated π-bonds, aromatic structures, 

heteroatoms, and ionic charges (Newsome et al., 2014). Occasionally, the appearance of 

blue in nature is a structural color and contains no blue pigment. These structural blue 

colors, such as the iridescent blue from Quandong fruit or edible Irish moss, are provided 

by periodically structured surfaces instead of specific chemical compounds (Gebeshuber 
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and Lee, 2014). The rarity of natural blue colorants makes sourcing and obtaining natural 

green colors difficult as well, since blue pigments can be mixed with yellow to produce 

varying shades of green (Buchweitz, 2016).  

Overall, the search for natural blue pigments for use in the food industry has 

produced several options with different advantages and limitations. Table 3 summarizes 

the provenance, status, and characteristics of currently available natural blue colors. The 

permitted and potential natural blue pigments available for use in foods vary in source, 

solubility, stability, and regulatory standing. Water-soluble anthocyanins derived from 

common fruit and vegetable juices are approved by the FDA, but their blue hue can only 

be obtained at low pHs or when co-pigmented or chelated with metals, such as the case 

for delphinidin or commelinin (Ahmadiani, 2012, Delgado-Vargas et al., 2000, Yoshida 

et al., 2009). Anthocyanin-derived pigments from aged wine known as 

pyranoanthocyanins or portisins can appear turquoise blue at pHs from 2 to 7 in 20% 

(v/v) ethanol aqueous solutions, but their availability is limited as they are only present at 

very low concentrations in wine (Oliveira et al., 2010, Newsome et al., 2014). Kusagi 

berries, the source of bis (indole) alkaloid trichotomine and their glycosides, are difficult 

to obtain and, consequently, are unlikely to become commercially available in the 

immediate future (Newsome et al., 2014). Iridoid-derivatives, which include genipen and 

gardenia pigments, can be obtained in high quantities. These compounds have already 

been approved in Asia, but they are only stable at low pH (<5) and cannot withstand heat 

treatments or bright light, e.g., 3.3 x 105 lux xenon lamp (Jesperson et al., 2005). 

Marennine, a blue pigment isolated from the diatom Haslea ostraria, exhibits high 

thermal and light stability, however, its extraction procedures and use are currently in an 
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early research phase and toxicity studies to demonstrate its safety have yet to be 

performed (Gastineau et al., 2014). Of the available sources of natural blue colorants, 

phycocyanin possesses comparatively better characteristics than the rest, including high 

water solubility, a bright blue hue that mimics FD&C. Blue No. 1, a long history of safe 

use, and approval in certain in foods in the US.  The safe use of spirulina has been well 

documented due to its extensive utilization as a food supplement and as a therapeutic 

agent based on its antioxidant, anti-inflammatory, and potentially anti-cancer properties 

(Gershwin and Belay, 2008, Wu et al., 2016, Liu et al., 2016). A comprehensive list of 

PC’s nutraceutical capabilities can be found in Gershwin and Belay (2008).  PC’s use is 

only deterred by its sensitivity to pH, light, and heat, as detailed in the following section.   
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Table 3. Sources, status, characteristics, and stability of approved and potential natural blue pigments. 

                 
 

 

Structure  Chemical 
Classification 

Identifier or 
Compound Source (s) Status Considerations for use (solubility, 

stability, color) References 

Tetrapyrrole 

Phycocyanin Spirulina Extract Arthrospira platensis  
Approved in 
food (US, 
EU, Japan)  

Soluble in water, stable at pH 5-7 
and <45°C. Light sensitive  Jesperson et al. (2005) 

Marennine Marine Diatom 
(sp.)  Haslea ostrearia  Research 

stage  
Water soluble, blue-green at pH 6-
8. Good thermal and light stability  

Pouvreau et al. (2008) 
Gastineau et al. (2014) 

Bactobilin Bactobilin 

Clostridium 
tetanomorphum, 
Propionibacterium 
shermanii  

Research 
stage  

Water soluble. Stability not 
reported 

Brumm et al. (1983) 
Newsome et al. (2014) 

Flavonoids 

Anthocyanins and 
Anthocyanin 

Derivatives or 
Complexes 

Fruit and 
Vegetable Juice 

Red cabbage (Brassica 
sp.), Purple carrot 
(Daucus sp.), Japanese 
eggplant (Solanum sp.), 
Blackcurrant (Ribes 
sp.),  Approved in 

food (US, 
EU)  

Soluble in water 

Sigurdson et al. (2017) 
Buchweitz (2016) Maqui (Aristotelia sp.) Japanese eggplant only blue near 

pH 4 

  

Red cabbage blue near pH 5, 
Purple carrot good thermal 
stability. Blackcurrant poor 
thermal stability  
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Table 3. Sources, status, characteristics, and stability of approved and potential natural blue pigments. (Continued) 

Structure Chemical 
Classification 

Identifier or 
Compound Source (s) Status Considerations for use (solubility, 

stability, color) References 

Flavonoids 

Anthocyanins and 
Anthocyanin 

Derivatives or 
Complexes 

Butterfly Pea 
Flower   Clitoria ternatea  Research 

stage  

Soluble in water Abdullah et al. (2010) 
Sigurdson (2017) Blue at pH 5 – 7. Sensitive to mild 

and high temperature 

Commelinin Asiatic dayflower 
(Commelina communis) 

Research 
stage  

Soluble in water Yoshida et al. (2009)  Blue at > pH 2.4  

Portisins Aged Wine (Vitis 
vinifera) 

Research 
stage 

Solubility not reported.  
Blue/turquoise at pH 2 

Mateus et al., (2004) 
Olivier et al., 2010 

Oenin  Aged Wine skin (Vitis 
vinifera) 

Research 
stage  

Solubility and stability not 
reported Newsome et al. (2014) 

Pyridine 
Alkaloids  

Iridoid-
Derivatives  

Gardenia  Gardenia jasminoides 
Ellis 

Approved in 
food (Asia), 
cosmetics 
(S. 
America) 

Soluble in water and alcohol. 
Stable at pH 5-9 
Good thermal and light stability 

Wu et al. (2009) 
Brauch (2016) 

Genipen (Huito 
or Genipa 
Fruits) 

Genipa americana  
Approved in 
raw juice 
(Colombia) 

Brauch (2016) 

Indole 
Alkaloids 

Bis(indole) 
Indigotin  

Trichotomine 
(Indigo Dyes) 

Isatis tinctoria, 
Indigofera tinctoria 

Approved in 
textiles, ink 
(Japan)  

Insoluble in aqueous media, 
moderately soluble in 
triglycerides. Blue at acidic pH. 
Light sensitive 

Newsome et al. (2014) 

Bis (indole) 
Alkaloid 
Trichotomine and 
Glycosides  

Kusagi Berries Clerodendron 
trichotomum  

Research 
stage Blue at acidic pH. Light sensitive Newsome et al. (2014) 

Azulenes Guiazulene 
Fungi (sp.) and 
Plant Essential 
Oils 

Artemisia sp. (oil), 
Lactarius sp. (fungi)  

Approved in 
cosmetics 
(US) 

Poor solubility in water. Low 
stability  Newsome et al. (2014)  
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2.4 Phycocyanin  

Phycocyanin (PC) is extracted from the blue-green algae Arthrospira platensis, 

commonly known as spirulina. PC is the only natural blue colorant approved in foods in 

the US under the title of spirulina extract (Food and Drug Administration, 2017). PC has 

received “exempt from certification” status to be used as a color additive in numerous 

foods (see Table 2) and in coatings for dietary supplements (U.S. Food and Drug 

Administration, 2017). PC has also been approved as a food ingredient and is available as 

a coloring agent in the European Union (EU), Brazil, and Japan (U.S. Food and Drug 

Administration, 2003, Batista et al., 2006, Colla et al., 2017).  

Phycocyanin is a protein-pigment complex within the spirulina extract and its 

principal blue-coloring component, constituting up to 20% of spirulina’s dry weight 

(Vonshak, 1997). PC belongs to the group of water-soluble phycobiliproteins that 

consists of dissimilar α (~12-20 kDa) and β (~15-22 kDa) subunits (Gantt and Lipschultz, 

1977), as shown in Fig. 1.  
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Figure 1. Ribbon depiction of a phycocyanin monomer. The β-subunit is shown in 
green (left) and the α-subunit is shown in yellow (right). The chromophores are 
depicted as ball-in-chain representations in blue. Reproduced from David (2011).  

 

The subunits are made up of four pyrrole rings which are covalently bound by 

cysteine residues (Cys) via thioether linkages to open-chain tetrapyrrole chromophores, 

structurally known as phycobilins (PB) that make up a monomer (see Fig. 2) (Stadnichuk 

and Tropin, 2016, Grossman, 1994, Sidler, 1994).  

 

 

Figure 2. Chemical structure of phycocyanin 
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Each phycocyanin monomer has three chromophores, one chromophore 

associated with the α subunit and referred to as Cys-α84 and two associated with the β 

subunits; Cys-β84, Cys-β155 (Stadnichuk and Tropin, 2016, Debreczeny and Sauer, 1993, 

Romay et al., 2003). Native phycocyanin monomers can also be found organized in disc-

shaped trimers (α, β)3 and hexamers (α, β)6 or larger oligomers, to optimize light capture 

and transfer (Fukui et al., 2004, MacColl, 1998, Eriksen et al., 2008), as shown in Fig. 3.  

 

A 

 

 

B 

 

Figure 3. (A) Phycocyanin trimer showing α and β subunits with attached 
chromophores in blue, adapted from Fukui et al. (2004). (B) Ribbon depiction of a 
phycocyanin hexamer, adapted from Wang et al. (2001). 
 

Phycocyanin’s protein subunits are rich in aliphatic and acidic residues (Boussiba 

and Richmond, 1979). The α and β subunits have 162 and 172 amino acid residues, 

respectively (Lakshmi et al., 2014). PC’s aromatic amino acids, tryptophan, tyrosine, and 

phenylalanine, are important in energy transfer. Phenylalanine is rarely used in optical 

studies because of its low molar extinction coefficient and absorption maximum 

(Ladokhin, 2000, Jameson, 2014). Conversely, tryptophan and tyrosine, shown in Fig. 4, 
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can provide useful photophysical properties to elucidate protein conformation 

(Kannaujiya et al., 2016). The number of tyrosine molecules in phycocyanin isolated 

from A. platensis is reported to be 16 and the average number of tryptophan residues 

associated with the α subunit in five similar cyanobacteria species is one (Kannaujiya et 

al., 2016).  

 

Figure 4. Chemical structure of tyrosine (A) and tryptophan (B). Reproduced from 
Kannaujiya et al. (2016). 

 

2.4.1. Photophysical properties of phycocyanin  

As a light-harvesting protein complex, the optical properties of phycobiliproteins 

(PBP) including phycocyanin (PC), have been studied and its absorbance is particularly 

well documented (Gantt, 1981, Eriksen et al., 2008). As a monomer and in larger 

complexes, PC displays a strong absorption maximum around 620 nm (Murthy et al., 

2004, Paswan et al., 2016). A small band near 280 nm is also detected and is attributed to 

its aromatic amino acids (Paswan et al., 2016). The ratio of its chromophore absorbance 

determined at 620 nm (A620) to its total protein absorbance evaluated at 280 nm (A280), 

provides an estimate of PC concentration within a sample and is commonly used to 

measure its purity (Stadnichuk and Tropin, 2016). A value of the A620/A280 ratio above 
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4.0 corresponds to the highest, analytical grade PC, while 2.50 – 3.50 is reagent grade, 

1.50 – 2.50 is cosmetic grade, and 0.5 – 1.50 is food grade (Guan, 2016).  

Both in monomer and larger complexes, phycocyanin in solution exhibits a strong 

red fluorescence, shown in Fig. 5 (Hefferle et al., 1984). Upon photoexcitation, PC, in 

sodium phosphate buffer at neutral pH, displays an emission peak around 645 nm 

(Benedetti et al., 2006, Debreczeny et al., 1993). Phycocyanin’s emission maximum 

location is dependent on the solvent used, suggesting its sensitivity to its local 

environment, which has not been systematically studied (Guan, 2016, Murthy et al., 

2004, Wang et al., 1998). The fluorescence emission of its aromatic amino acids, 

tryptophan and tyrosine, located on its backbone, exhibit a peak around 350 nm due to 

energy transfer from tyrosine to tryptophan units (Lakowicz et al., 1999).  

A 

 
 

B 

 

Figure 5. Phycocyanin in solution exposed to broad spectrum light (A) and UV light 
(B); notice the red fluorescence. Reproduced from Faieta et al. (2017). 

 

Phycocyanin’s chromophores experience unique microenvironments related to 

their location and vary slightly in their spectral properties (Wang et al., 2001, Debreczeny 

et al., 1993). When measured in isolation in sodium phosphate buffer at pH 7, the 

chromophores display a maximum absorbance at 600 nm, 624 nm, and 628 nm, for Cys-

β155 , Cys-α84, and Cys-β84, respectively, compared to 616 nm found for the monomer 
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(Debreczeny et al., 1993). Similarly, the maximum fluorescence intensity was recorded at 

622 nm, 641 nm, and 647 nm, for Cys-β155 , Cys-α84, and Cys-β84, respectively, and was 

not reported for the monomer (Debreczeny et al., 1993). Earlier work using time-resolved 

fluorescence techniques suggested that one of the chromophores within the β-subunit, 

likely the Cys-β155, should be called a “sensitizing” chromophore instead of a 

“fluorescing” one, as it primarily transferred its energy to the other chromophores instead 

of decaying through emission (Glazer et al., 1985). 

The large amount of literature available on the spectral properties of 

phycobiliproteins provides a solid foundation for additional fluorescence studies that can 

further characterize the photophysical properties and sensitivity of phycocyanin to 

environmental factors. 

 

2.4.2 Stability of Phycocyanin 

PC is highly sensitive to many types of light, including xenon, fluorescent lamps, 

and UV light. Jesperson et al. (2005) reported that 24 hours of exposure to conditions 

mimicking retail store lights (3.0 x 105 lux xenon lamp) resulted in up to 80% degradation 

of PC. Under harsher light conditions, i.e., irradiation using UV-B light (313 nm), only 

one hour was needed to observe a 10% decline in PC concentration due to its 

photochemical degradation (Jesperson et al., 2005). Colla et al. (2017) reported the effect 

of light on powdered PC’s antioxidant activity.  After 30 days of exposure to UV and 

fluorescent light, only 30% of the antioxidant potential (AP %) of powdered PC was 

retained. Current strategies to hinder light degradation are mainly centered in the 

selection of appropriate packaging to reduce exposure to light.  Additional assessments of 
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PC’s light stability would be useful to better understand and prevent color loss of PC 

during storage of this commodity or food products that contain it.  

Although phycocyanin’s light sensitivity affects its overall shelf life, PC’s biggest 

drawback is its thermal instability. Color and activity retention during processing are 

critical for the food industry. Processes that are used in phycocyanin-applicable foods, 

such as panning procedures for gum tablets, routinely are performed at mild to high 

temperatures (50-80°C) and might reach temperatures up to 116°C (Fellows, 2009, 

Greenberg et al., 1999). It is well established that PC’s color, concentration, and 

antioxidant activity decreases after thermal treatments.  Hadiyanto et al. (2018) reported 

that exposure of a phycocyanin solution even to 40°C resulted in observable degradation 

after 1 hour. The thermal stability of PC is also affected by pH. In citrate buffer at pH 6, 

phycocyanin showed a 30, 67, and 78% reduction in its relative concentration after 60 

minutes at 40, 60, and 80°C, respectively (Hadiyanto et al., 2018). In comparison, the 

relative phycocyanin concentration in citrate buffer at pH 5 and 7 showed a less 

substantial decrease of only ~0% and 5%, after 60 minutes at 45°C, respectively 

(Jesperson et al., 2005). PC’s aggregation does not appear to have a strong effect on its 

thermal stability, as PC in trimers and monomers have similar thermal stability (Hefferle 

1984). Intact spirulina cells do not provide protection since PC within them also exhibit a 

significant decrease in absorbance at 50°C (Murphy et al., 2004). 

There are many reasons for the small discrepancies between the thermal stability 

studies mentioned, e.g., purity of the PC samples tested, equipment used, and varying 

analysis techniques. Information about phycocyanin’s thermal stability is scattered in 

many studies, and its degradation kinetics is either briefly mentioned or not reported at 
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all. Several studies using absorbance as a measure of relative concentration have reported 

PC’s degradation to follow first-order kinetics (Antelo et al., 2008, Chaiklahan et al., 

2012, Hadiyanto et al., 2018, Patel et al., 2004). Colla et al. (2017) reported that the 

thermal and photo degradation of powdered phycocyanin over 60 days followed a zero 

order (n=0) and first order (n=1) kinetics, respectively. A recent degradation study of 

phycocyanin, using both absorbance and fluorescence spectroscopy measurements, 

reported that the thermal degradation kinetics of PC was nonlinear, and used the Weibull 

model to describe the discoloration process and make predictions under non-isothermal 

conditions (Faieta, 2017). It should be noted that the latter is the only study that proposed 

a validated model for PC thermal degradation.  

Currently, strategies to enhance phycocyanin’s thermal stability are being 

extensively sought after. The addition of sugar has proven to be an economical way to 

stabilize proteins, including phycocyanin. Chaiklahan et al. (2012) found that after 30 

minutes of thermal treatment at 60°C, samples with 20% glucose (w/v), 20% (w/v) 

sucrose, and 2.5% (w/v) sorbitol showed a significant increase in the relative 

concentration of phycocyanin, compared to controls without the addition of sugar. 

Similarly, Antelo et al. (2008) observed an 80% increase in relative PC concentration 

after the addition of 30% (w/w) of sorbitol, in a PC solution exposed for 30 minutes to 

62°C. Martelli et al. (2004) reported that the concentration was more important than the 

type of sugar (glucose, fructose, sucrose, and honey) in stabilizing PC. However, a more 

recent study found 15% glucose to more effectively maintaining the initial PC 

concentration than 15% fructose or sucrose (Hadiyanto et al., 2018). There is evidence 

that phycocyanin can be stabilized by an increase in viscosity imparted by a viscosity 
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modulating agent whether it be sugars or hydrocolloids. Selig et al. (2018) found that two 

hydrocolloids, beet pectin and guar gum, were also effective in increasing PC stability.  

In summary, PC’s stability is heavily impacted by light and thermal treatments, 

and current strategies are being developed to reduce its degradation. PC degradation 

starts at ~ 50°C, regardless of the state of the chromophore, although lower pHs (<6) can 

have a protective effect on its stability under thermal treatments. Stabilizers that increase 

viscosity, such as sucrose, may partially reduce degradation, but more work is needed to 

understand to what extent and what type of compound is most effective, and the causes of 

the added stability. Furthermore, additional studies on PC degradation kinetics using 

comprehensive assessments of phycocyanin’s stability will provide degradation models 

applicable to future phycocyanin studies.   

 

2.5 Luminescence spectroscopy to assess PC stability and sensitivity  

Luminescence spectroscopy, which encompasses phosphorescence and 

fluorescence spectroscopy, can rapidly assess the structure, dynamics, and local 

environment of luminescent compounds with high sensitivity and specificity (Christensen 

et al., 2006). When photons are absorbed by a fluorescent or phosphorescent compound, 

such as PC, they are excited from a ground state (S0) to a higher energy state (S1 or T1) 

through electronic transitions. The excited photons return to the more stable ground state 

through various de-excitation pathways. The radiative pathways include releasing 

photons through fluorescence or phosphorescence emission; whereas, the non-radiative 

pathways include an internal conversion step with no emission, as shown in Fig. 6 

(Valeur 2012, Lakowicz 2006). 
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Fluorescence spectroscopy measurements can be classified into two subsets, 

steady-state and time-resolved. Typical steady-state fluorescent measurements include 

intensity or quantum yield and energy or wavelength distribution of the emission. Time-

resolved fluorescence measures the lumiphores’ excited-state lifetime, i.e., the time delay 

between absorption and emission. Polarization and anisotropy of a targeted lumiphore, 

which characterize the orientation of the molecule under polarized light, can be 

performed as steady-state or time-resolved measurements. In this section, particular 

attention will be paid to steady-state measurements since they constitute the main type of 

determinations performed in the current study. 

 

 

Figure 6. Jablonski-Perrin diagram showing the potential relaxation pathways of an 
excited lumiphore.  Reproduced from Davidson (2015). 
 

An emission spectrum, as shown in Fig. 7, can provide information about the 

fluorophore’s emission intensity and energy, typically affected by the local environment. 

The emission intensity shows a peak, usually at longer wavelength than the fluorophore’s 

excitation spectrum maximum, due to internal conversion. This difference in wavelength 
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or energy, between absorbed and emitted fluorescence maxima, is referred to as Stokes’ 

shift, named after George Stokes who was noted for studying phycobiliproteins (PBP) 

(Christensen et al., 2006). PBP are reported to have a large Stokes’ shift over 80 nm 

(Fairchild and Glazer, 1994, Stokes, 1854). The emission spectrum shape and maximum 

are independent of the excitation wavelength and pure samples show a consistent peak 

location and shape, although different intensities, when excited at different excitation 

wavelengths. For instance, a large peak near 645 nm, characteristic of phycocyanin’s 

chromophores, is observed when excited within a range from 500 nm to 620 nm (Yan et 

al., 2010, Benedetti et al., 2006). Changes in the energy distribution of the emission 

spectrum, i.e., shifts in the peak location, can provide information about the chemical 

changes and physical state of the local environment.  

 

Figure 7. General diagram of an excitation and emission spectra of PC. Note the 
difference in the excitation and emission peak maxima location. Reproduced from 
Faieta (2017).  
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The quantum yield (QY) of a fluorophore is proportional to its fluorescence 

intensity. It can be defined as the ratio of the rate of the emission process over the sum of 

all rates of their deactivation processes (Jameson, 2014):  

!" = 	 #	&'()(*+	,-.)),/
#	&'()(*+	01+(21,/

= 34 3/   (1)  

where, kf is the rate of fluorescence emission, and kd is the rate of constants for processes 

that deactivate or depopulate the excited state (Jameson, 2014). The QY for 

phycobiliproteins is extremely high, up to 0.98 (Oi et al., 1982). Phycocyanin’s QY is 

reported to be 0.52 (Oi et al., 1982, Grabowski and Gantt, 1978). 

Polarization and anisotropy measurements provide information on the orientation, 

aggregation, rotational diffusion, and conformational changes of fluorophores (Gradinaru 

et al., 2010). During these measurements, polarized light, i.e., light in which its waves are 

aligned in a particular direction, is impinged on the sample (see Fig. 8).  The resulting 

fluorescence will be polarized along the direction of the light unless the fluorophore 

rotates before decaying. Aggregation or the medium’s rigidity preclude this rotation, so 

that the parallel and perpendicular or orthogonal component of the emission, differ from 

each other. The extent of the difference is reported as polarization or anisotropy.  
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Figure 8. Polarization of light before and after reaching the sample for an 
anisotropy measurement. Adapted from Jameson (2014). 
 

Anisotropy (r) is calculated as follows:  

5 = 6∥869
6∥:;69

    (2)  

where <∥	is the recorded parallel intensity and <=is the recorded perpendicular or 

orthogonal intensity (Jameson, 2014). Most fluorescence anisotropy and polarization 

studies for PC have focused on assessing the energy transfer between phycocyanin’s α 

and β subunits (Debreczeny et al., 1995, Hefferle et al., 1984, Kessel et al., 1973, 

MacColl, 1998), and none has reported changes in anisotropy or polarization due to 

conformational changes in the PC’s peptide subunits. 

 Overall, fluorescence spectroscopy is a powerful tool with many advantages over 

UV-Vis absorbance spectroscopy, such as providing 100-1000 times higher sensitivity 

than other spectrophotometric methods, and versatility due to specific accessories such as 

polarizers (Strasburg and Ludescher, 1995). Luminescence spectroscopy can provide 

specific, sensitive information regarding the concentration and orientation of a 
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fluorophore as well as the characteristics of its molecular environment. Phycocyanin is an 

ideal compound to be monitored using luminescent techniques because it has a large 

Stokes’ shift, a high molar-absorption coefficient, and three distinct lumiphores 

embedded in its structure (Corradini et al., 2016, Kahiravan et al., 2008). Phycocyanin’s 

absorption in the far-red region of the electromagnetic spectrum contributes to obtaining 

a good discrimination from the background (Fairchild and Glazer, 1994). Lastly, the 

potential sensitivity of phycocyanin’s and aromatic amino acids’ photophysical properties 

to their local environment can be, in principle, quantified based on their emission 

intensity, energy, and anisotropy (Jesperson et al.., 2005).    

 

2.6. Modeling techniques to predict PC stability  

Properly understanding the degradation kinetics, or the deterioration rate, of a 

shelf-life limiting compound such as color in food is paramount in preserving quality, 

increasing food safety, and in extending shelf-life (Peleg et al., 2017). The degradation 

kinetics of food compounds have been traditionally described by fixed-order kinetics, 

particularly first-order kinetics (n=1) (van Boekel, 2007, 2008, Peleg et al., 2017) as 

indicated in Eq. 3.  

−/?
/)
= −3	@*	     (3)  

where C is the momentary concentration of a compound, t is time, n is the reaction order, 

and k is the degradation rate, which is a temperature-dependent parameter as indicated in 

Eq. 4. 

−/? )
/)

= −3[B C ]@C*    (4)  
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Reaction rates and rate constants can be strongly impacted by temperature. The 

traditional way to characterize the temperature dependence of a degradation-rate constant 

is by using the Arrhenius equation: 

3 = EF
GHI
JK      (5)  

where k is the degradation rate (k), A is a pre-exponential term, Ea is the activation 

energy in J mol-1, R the universal gas constant in Jmol-1K-1, and T is the temperature. 

Departures from the Arrhenius equation have often been observed for several compounds 

and the use of alternative models, such as exponential, logarithmic exponential or 

empirical, to characterize the temperature dependence of degradation or reaction rates has 

been proposed (Holdsworth and Simpson et al. 2007, Peleg et al., 2004, 2009, 2011, 

2016). Recently, Faieta et al. (2017) have identified that PC’s degradation kinetics could 

be better described using a nonlinear model, namely the Weibull model. The Weibull 

model has been proven applicable and potentially more adequate than traditional fixed-

order kinetics, for characterizing microbial and enzyme inactivation, and chemical 

degradation (van Boekel, 2002, Corradini and Peleg, 2004).  

Advances in kinetic modelling include the development of the endpoints method 

by Peleg et al. (2008) as a convenient, robust way to extract kinetic parameters from non-

isothermal gradation studies (Peleg et al., 2008, 2015). This approach allows the 

extraction of kinetic parameters from thermal treatments where the heating and/or 

cooling times greatly affect degradation or when the heating process is so rapid that 

experimentally measuring degradation of samples is not realistic (Corradini et al., 2008). 

The endpoints method overcomes these hurdles by extracting the unknown kinetic 

parameters (n, k, Tref) using a minimum of two concentrations from different treatments 
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and thermally recorded temperature profiles (Peleg et al., 2008, Peleg et al., 2015). The 

endpoints method involves simultaneously solving two differential equations to extract 

the required kinetic parameters. Re-inserting the parameters back into the degradation 

rate model allow obtaining the degradation curves for other isothermal or non-isothermal 

profiles without full experimental testing, aside from validation.  

In summary, PC is a natural blue colorant in high demand, but with limited used 

primarily due to its thermal instability around 50°C. As an intrinsic fluorophore, PC’s 

structure, dynamics, and local environment can be monitored using luminescence 

spectroscopy techniques. The photophysical properties of PC’s chromophores and 

aromatic amino acids can provide accurate and suitable data to assess the compounds 

sensitivity to environmental factors and model its degradation kinetics.  
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CHAPTER 3 

MATERIALS AND METHODS 

  

The following studies were conducted to assess the stability of phycocyanin under 

thermal treatments and to monitor the sensitivity of its photophysical properties to 

viscosity and water activity. Fluorescence emission spectra, emission maxima location, 

and anisotropy were recorded for PC’s chromophore and aromatic amino acids.  

 

3.1 Materials 

Purified powdered phycocyanin, FRUITMAX®, provided by Chr. Hansen A/S, 

(Horsholm, Denmark), was used for all experiments. The actual concentration of PC in 

the tested solutions was determined using its extinction coefficient and the molecular 

weight in g/ml reported in the literature (Kao et al., 1971, Patel et al., 2005, 

Sobiechowska-Sasim et al., 2014). Double-distilled water was used in all determinations. 

Brilliant Blue FCF (Sigma Aldrich, St. Louis, MO) was used as a blue synthetic color for 

comparison. High purity glycerol (spectroscopic grade, purity ≥99.5%) was obtained 

from Sigma Aldrich (St. Louis, MO) and absolute ethanol (≥ 99.5%) for the polarity 

studies was purchased from Fisher Scientific (Waltham, MA).  

 

3.2 UV-Vis Absorbance Measurements  

The absorbance of PC-in-water samples was measured using a UV-Vis 

spectrophotometer (UV-2600, Shimadzu Corp., Kyoto, Japan) at 280-800 nm. Double-

distilled water was used as the blank and was subtracted from the absorbance spectra of 
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the tested solutions. The optimal concentration of PC for further studies was found by 

evaluating the absorbance intensity dependence on concentration, plotting the normalized 

absorbance versus concentration, and locating the linear region of the relationship. The 

samples were run at least in duplicates.  

 

3.3 Fluorescence Spectrometry Measurements 

Steady-state fluorescence measurements to record the fluorescence emission 

spectra and polarization were performed using a FluoroMax-4 Spectrofluorometer 

(Horiba Scientific Inc., Edison, NJ) equipped with a TC-1 Temperature Controller 

(Quantum Northwest Inc., Liberty Lake, WA) and automatized polarizers. Cuvettes used 

for all studies were 1 cm light path UV quartz cuvettes (FireflySci, Staten Island, NY).  

The general procedures and parameters of the steady-state fluorescence 

measurements are described next. Additional information pertaining to each experiment 

subset is provided under their respective sections. PC’s chromophores spectra were 

recorded at an excitation wavelength of 520 nm over an emission wavelength range from 

540 to 800 nm. Both the emission and excitation slits were set to 2 nm, unless specified 

otherwise. The emission spectra of the PC’s aromatic amino acids, tryptophan (Trp) and 

tyrosine (Tyr), were determined at an excitation wavelength of 280 nm over an emission 

range of 300-500 nm. The emission spectra of tryptophan were also monitored separately 

at an excitation wavelength of 295 nm over emission range of 315-500 nm. For all 

measurements of the aromatic amino acids, the excitation and emission slits were set to 3 

and 4 nm, respectively. For Brilliant Blue FCF solutions (2 µM), the emission spectra 
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were recorded at an excitation wavelength of 590 nm over an emission wavelength range 

of 610-800 nm, with excitation and emission slits set to 6 and 7 nm, respectively.  

Single point fluorescence anisotropy measurements of PC samples were recorded. 

The anisotropy of PC was monitored using the chromophore, the overall aromatic amino 

acids (Trp and Tyr), and Trp alone, with their corresponding excitation and emissions 

wavelength maxima, i.e., 520 and 641 nm for the chromophore, 280 and 342 nm for Trp 

and Tyr combined, and 295 and 346 nm for Trp alone. The slits were set at 5 nm for all 

determinations, but the combined amino acids required higher slits (8 and 9 nm for 

excitation and emission, respectively). For all anisotropy measurements, the integration 

time was selected to be 0.1 s and the G factor was automatically calculated for each 

sample.  

All fluorescence data were collected using the software FluorEssence (Horiba 

Scientific Inc., Edison, NJ).  

 

3.4 Optimization of Phycocyanin’s Concentration in Solutions 

A concentration study was conducted to optimize the PC concentration in the 

solutions for all studies. This allowed for the selection of a PC concentration that is high 

enough to provide a strong signal within the limit of detection of the equipment and low 

enough to avoid inner filter effect. The inner filter effect is a reduction in emission 

intensity or quenching, caused by the reabsorption of emission due to high concentration 

of the lumiphore in the sample (Lakowicz 2006). PC was dissolved in water to attain 

0.25, 0.5, 1.0, 5.0, 10.0, and 25.0 µM solutions. The samples were transferred to quartz 

cuvettes and their fluorescence emission spectra were recorded using the FluoroMax-4 
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Spectrofluorometer, coupled with a TC-1 Temperature Controller (Quantum Northwest 

Inc., Liberty Lake, WA) set to 20°C. Samples were placed in the chamber for 5 minutes 

prior to data collection to eliminate temperature gradients throughout the sample. In this 

study, the fluorescence spectra were collected at three excitation wavelengths, 370, 520, 

and 600 nm over three different emission wavelength ranges: 390 – 700 nm, 540 – 800 

nm, and 615 - 800 nm, respectively. The excitation wavelengths were selected based on 

the absorbance spectra, literature reports, and sensitivity of the equipment. The excitation 

and emission slits were both 2 nm. The collected emission spectra of all the solutions 

were normalized to the maximum intensity obtained within the whole data set. The 

spectrum of the blank, comprised of double-distilled water, was subtracted from the 

samples’ spectra to remove the background noise. Triplicates were conducted. 

 

3.5 Thermal Stability of Phycocyanin 

To assess the susceptibility of PC to temperature and to evaluate potential 

mechanisms responsible for the chromophore degradation and loss of overall stability, 

steady-state fluorescence measurements were conducted. The photophysical properties, 

mainly emission spectra and anisotropy, of PC’s chromophore and aromatic amino acids, 

Trp and Tyr, were determined for all heat-treated samples.  

 

3.5.1 Thermal Treatments 

Aqueous PC solutions (0.5 µM) were prepared and dispensed in equal amounts 

(1.2 mL) in 1.5 mL micro-centrifuge tubes (Thermo Fisher Scientific, Waltham, MA). A 

circulating water bath (Isotemp4100, Thermo Fisher Scientific, Waltham, MA) was 
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programmed to obtained six specified temperature treatments dubbed TP1, TP2, TP3, 

TP4, TP5, TP6. The treatments exhibit a ramp with progressively increasing targeted 

temperatures from 42.5 to 80°C. The starting target temperature of 42.5°C was chosen 

because the rate of PC degradation increases with temperatures equal or higher than 45°C 

(Jesperson et al., 2005, Antelo et al., 2008). All thermal treatments had a duration of 60 

minutes. The temperature of the samples was recorded using a data logging thermometer 

(Model 800024, Sper Scientific, Scottsdale, AZ) for the whole duration of the treatment. 

Samples were submerged in the bath, removed at designated time intervals, namely 0, 1, 

2, 3, 4, 5, 8, 10, 20, 40, and 60 minutes, immediately inverted to mix, and quickly cooled 

on ice until they reached an internal temperature of 15°C, as monitored by the data-

logging thermometer. Samples were transferred to quartz cuvettes, and placed in the 

spectrophotometer’s temperature-controlled sample holder for 5 minutes at 20°C to 

eliminate temperature gradients throughout the sample. The thermal treatments were 

characterized using the following algebraic expression:  

B C = B.*.) − log	[ 1 + FQR 3',0) ∗ CT'0*U, − C ]   (6) 

where Tinit corresponds to the initial temperature, kheat to the slope of the ramp, and tchange 

to the time at which the change in regime was observed. This algebraic equation allowed 

for the incorporation of the thermal treatments within the degradation kinetic model.  

 

3.5.1.1 Fluorescence Intensity During Thermal Treatments  

The fluorescence spectra of the heat-treated samples were collected for PC’s 

chromophores and its aromatic amino acids at each selected time interval as described in 

Section 3.3. The relative PC concentration was calculated by dividing the maximum 
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fluorescence intensity at an excitation wavelength, lexc, of 520 nm for each time interval, 

I(t), by the initial maximum fluorescence intensity, I0. The relative PC concentration was 

used to monitor the phycocyanin degradation kinetics during the studied thermal 

treatments. Triplicate replicates were conducted for all measurements.  

 
3.5.1.2. Extraction of PC’s Degradation Kinetic Parameters 

 

As mentioned before, PC’s degradation, expressed as a decrease in its relative 

concentration (I(t)/I0), can be assumed to follow nonlinear kinetics that can be described 

using the Weibull equation: 

6 )
6V
= WQR −X ∙ C*  (7) 

where b is a scale parameter and n is a shape parameter (Faieta 2017). A large value of b 

would correspond to a fast degradation rate. Conversely a small value of b would indicate 

a slow degradation rate. The temperature dependence of the rate parameter b(T) can be 

described by a logarithmic exponential model:  

X(B) = ln{1 + exp 3 B − BT }  (8) 

where Tc is the critical temperature at which PC degradation becomes predominant, and k 

is the slope of the b(T) versus T relationship when T exceeds Tc. The temperature 

dependence of the parameter, n, is often weak and consequently its value normally can be 

fixed (van Boekel 2008, 2009, Corradini et al., 2008, Corradini and Peleg 2004).  In 

principle, the PC degradation parameters, k, Tc and n, can be extracted from the final 

relative concentrations and their corresponding isothermal or non isothermal temperature 

profiles. This can be performed applying a program built in Mathematica (Wolfram 

Research Inc., Champaign, IL) that uses an embedded FindRoot command to 
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simultaneously solve the rate equations derived from the Weibull model, e.g., /?())/?V
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,  for two temperature profiles. The process 

adjusts the values of n at set intervals and finds the kinetic parameters k and Tc that allow 

for correct calculations of both endpoints or targeted concentrations. The input from all 

pair-combinations of dynamic temperature profiles and the relative concentrations 

(endpoints) were entered in the Mathematica 11 program so that n could be optimized, 

and k and Tc could be extracted.  The validity of the procedure was verified by predicting 

the outcomes of temperature treatments that have not been used during the parameter 

estimation.  

 

3.5.1.3. Peak Location During Thermal Treatments  

To monitor potential conformational changes in the PC’s protein subunits caused 

by the heat treatments, the fluorescence spectra of the aromatic moieties were determined 

at two excitation wavelengths (lexc); 280 nm which is adequate to excite both tyrosine 

and tryptophan moieties, and 295 nm which only excites the tryptophan. Additionally, to 

evaluate changes in emission energy as a function of heating time, the location of the 

emission maximum at a lexc of 520 nm was also monitored.  Triplicates were conducted 

for all measurements. The shifts observed in the peak location, as a function of heating 

time at different temperatures, were characterized using the following empirical model 

with three parameters:  

pFq3	rstqCusk	 C = p.*.)−tvC-i  (9)  
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where Pinit is the initial peak location, c1 corresponds to the rate of change, m1 accounts 

for the shape of the relationship, and t is heating time at a selected temperature. 

3.5.1.4. Anisotropy During Thermal Treatments 

Anisotropy measurements were performed for samples that underwent isothermal 

treatments at 45, 60, and 80°C for 60 minutes, and removed at designated intervals (0, 1, 

2, 3, 4, 5, 8, 10, 20, 30, 40, 60 minutes). The anisotropy of PC was monitored as 

described in Section 3.3. The changes in anisotropy, r, as a function of heating time were 

characterized using the following model: 

5 C = 	 5w +
)

(xi:xy∗))
   (10)  

where r0 is the initial anisotropy value, t is time, and k1 and k2 are constants that 

correspond to the inverse of the rate of change and the maximum attained anisotropy 

value, respectively (Ryu et al., 2018a, 2018b).  

 

3.6.  Sensitivity of PC to Microviscosity of the Surrounding Media 

To evaluate the sensitivity of PC to molecular crowding, the viscosity of PC 

solutions was modulated in by changing the temperature of the solution and by modifying 

the medium composition. This allowed assessing PC’s fluorescence intensity dependence 

on local viscosity. The temperature controller of the Fluromax-4 was adjusted to 

progressively increasing temperatures from 5 to 60°C. The corresponding viscosities of 

glycerol at each temperature are listed in Table 4. For this experiment, a 0.5 µM PC 

solution was prepared in pure glycerol and hold for 10 minutes at each temperature 

within the temperature controlled sample holder of the spectrophotometer.  Due to the 

potential degradation of PC at temperatures above 40°C, once the measurement at the 
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highest temperature was performed, the fluorescence emission of the sample was 

evaluated in reversed order by progressively decreasing the temperature from 60 to 0°C.  

Table 4. Temperatures used in this study and their corresponding viscosities. 

Temperature (°C) Viscosity (mPa s) 

5 8000 

10 3900 

15 2150 

20 1410 

25 950 

30 612 

35 482 

40 284 

60 81.3 

Source: Segur and Oberstar (1951) 

The medium composition was changed by preparing 0.5 µM PC solutions at 

varying ratios of glycerol, a high viscosity solvent, to double-distilled water, a low 

viscosity solvent. The selected ratios and their corresponding viscosities are listed in 

Table 5. 
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Table 5. Glycerol to water ratios used in this study and their corresponding 
viscosities at 23°C 

Glycerol: Water Viscosity (mPa s) 

0:100 0.9 

10:90" 1.3 

50:50 7.4 

60:40 14.0 

70:30 30.0 

80:20 75.7 

85:15 130.7 

90:10 241.7 

92:08 316.0 

94:06 419.1 

98:02 773.0 

99.95:05 1078.1 

Source: Segur and Oberstar (1951) 

The fluorescence spectrum of each samples was recorded as described in Section 

3.3 for three excitation wavelengths (λexc= 280, 295, and 520 nm). Brilliant Blue FCF 

(BB), a synthetic blue food color, has been identified as a luminescent molecular rotor 

with known local viscosity sensitivity (Kashi et al., 2015). Thus, BB was used for 

comparison and also tested in the same media, i.e., glycerol at different temperatures and 

at different glycerol to water ratios. BB solutions (2.0 uM) spectra were recorded as 



 

 42 

described in Section 3.3. The spectra of double-distilled water and each solvent 

combination, i.e., glycerol; water, were collected and subtracted from the PC and BB 

solutions spectra. All samples were run at least in duplicates.  

 To quantify PC’s sensitivity to local viscosity, the fluorescence emission intensity 

vs. medium viscosity relationship was characterized using a reworked version of the 

Föster Hoffman equation (Föster and Hoffman, 1971, Haiddeker and Theodorakis, 2010):  

<z = q{|     (11)  

where IF represents the fluorescence emission intensity, α is the probe brightness, η is the 

viscosity, and x is a parameter that depicts the sensitivity of the probe to the surrounding 

medium’s local viscosity.  A sensitivity value, x, within the range of 0.20 – 0.60 could 

indicate molecular rotor behavior, based on established values from other known 

molecular rotors (Haidekker and Theodorakis, 2010).  

3.6.1. Impact of Viscosity on Thermal Stability   

To assess the impact of microviscosity on PC’s stability and conformation during 

thermal treatments, steady state fluorescence measurements, i.e., emission spectra and 

anisotropy measurements, were collected in solutions PC in 40% and 100% glycerol held 

at 60 and 80°C for 60 min. 0.5 µM PC solutions in 40% and 100% glycerol were 

prepared and mixed until a homogenous color was obtained throughout the samples. 

Samples were placed in a circulating water bath (Isotemp4100, Thermo Fisher Scientific, 

Waltham, MA) set to the targeted temperature and removed at designated time intervals 

between 0-60 minutes. The spectra were collected for all samples as described in Section 
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3.3. The emission intensity and peak location of the maximum intensity reading were 

determined from the spectra. Data points were collected over two trials.   

To quantify PC’s degradation in glycerol solutions, expressed as its relative 

concentration, the data were fitted using Eq. 7, see Section 3.5.1.2., and the temperature-

dependent rate parameters b and n were determining using the nonlinear regression 

routine in Mathematica 11 (Wolfram Research Inc, Champaign, IL).  

To assess the difference in fluorescence anisotropy of phycocyanin in glycerol 

versus water, measurements were done in PC solution in 40% glycerol. The solution of 

40% glycerol was chosen, based its ease in preparation compared to 100% glycerol 

solutions, and to minimize the contribution of the medium viscosity to the anisotropy 

measurement. The samples were heated to 60°C and 80°C for up to 60 minutes. The 

measurements were performed as described in Section 3.3. Data points were collected 

over one trial. The anisotropy (r) was characterized using Eq. 10, as described in Section 

3.5.1.4.  

 

3.7 Sensitivity of PC to Water Activity (aw) of the Surrounding Media  

To evaluate the sensitivity of PC’s photophysical properties to water activity, aw, 

0.5 µM PC solutions were prepared at different ethanol: water ratios. The selected ratios 

and their corresponding aws are listed in Table 6. The fluorescent spectra of all solutions 

were recorded using the conditions as described in Section 3.3, i.e., λexc 520 nm; λem 

range from 540-800 nm, but with higher excitation and emission slits for the 

chromophore (4 and 5 nm), and λexc 280 nm; λem range from 300-500 nm for the overall 

aromatic amino acids.  
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Table 6. Ethanol to water ratios used in this study and their corresponding aws 
Ethanol: Water aw 

99.05:0.05 0.030 

9.4:0.6 0.380 

9.2:0.08 0.460 

9:1 0.520 

7.5:2.5 0.740 

7.0:3.0 0.767 

6.5:3.5 0.794 

5:5 0.841 

4:6 0.863 

2.5:7.5 0.912 

1.5:8.5 0.952 

0:10 1.000 

Source: Allan and Mauer (2017) 
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CHAPTER 4 

RESULTS AND DISCUSSION  

4.1   

 Steady-state fluorescence spectroscopy was used to monitor the degradation of PC 

under thermal treatments and to assess the environmental sensitivity of the photophysical 

properties of this compound. Initial concentration studies using UV-Vis absorbance and 

fluorescence measurements allowed to optimize the concentration to be used throughout 

this project. The thermal stability of PC’s chromophore was assessed based on the loss of 

fluorescence intensity as function of heating time under six non-isothermal treatments. 

PC ‘s degradation kinetic parameters were extracted from this data using the endpoints 

method. Additionally, shifts in the emission maxima location and changes in anisotropy 

of PC were monitored to provide additional insights into potential causes of thermal 

instability. An assessment of the photophysical properties’ sensitivity to molecular 

crowding or local viscosity and water activity, aw, of the surrounding media was also 

conducted.     

 

4.2 UV-Vis Absorbance Measurements  

A representative absorption spectrum of phycocyanin in water is shown in Fig. 9. 

The highest absorbance was identified at a wavelength between 615 - 617 nm, which 

correlates well with previous studies on the optical properties of PC’s chromophore 

(Glazer et al 1973, Eisenberg et al 2017, Yan et al 2011).  
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Figure 9. Absorption spectrum of a 1.0 µM PC solution in water.  

 

A concentration study of aqueous PC solutions (0, 0.1, 0.25, 0.5, 1, 5, 10, 25, 50 

µM) was conducted to verify the presence of the corresponding absorbance peaks at all 

concentrations and identify appropriate concentrations to conduct further studies. The 

data were normalized towards the higher absorbance intensity recorded. The relationship 

between normalized absorbance intensity and PC concentration is shown in Fig. 10. A 

linear relationship between absorbance intensity and concentration was observed at PC 

concentrations below 10 µM, which indicated that concentrations above that value will 

diverge from the Beer Lambert law and are not adequate to perform further studies.  
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Figure 10. Normalized absorbance intensity as a function of PC concentration.  

 

4.3 Fluorescence Spectroscopy Measurements 

Three different excitation wavelengths, λexc. 370, 520, and 600 nm, and their 

corresponding emission ranges, 390-700, 540-800, and 615-800 nm, respectively, were 

used in these measurements. These excitation wavelengths were selected based on the 

absorbance spectrum of PC, which showed a peak within 320-380 nm and another from 

500 to 640 nm. The location of the emission maxima at all tested excitation wavelengths 

was similar for all trials, as expected based on the Kasha-Vavilov rule (Vavilov, 1927). 

The Kasha-Vavilov rule states that the peak’s location and shape are independent of the 

excitation wavelength used, therefore, different excitation wavelengths can produce the 

same emission spectra albeit with different intensities (Jameson et al., 2014). The 

excitation wavelength of 520 nm was selected for all the studies since provided an 
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adequate emission in terms of intensity and energy. The excitation and emission spectra 

of PC is shown in Fig. 11. 

 

Figure 11. Excitation and emission spectra of PC (0.5 µM) in an aqueous solution.  

 

The aromatic amino acids, tryptophan and tyrosine, when excited at 280 nm 

usually show a single band due to energy transfer from the tyrosine and the tryptophan 

(Lakowicz, 2006). This resonance energy transfer occurs due a direct interaction of close 

fluorophores that leads to a reduction in the emission of the donor. It can be classified as 

a hetero-transfer, i.e., from tyrosine to tryptophan, or a homo-transfer, i.e., from 

tryptophan to tryptophan (Christensen, 2006, Jameson, 2014). To separately evaluate the 

contribution of tryptophan from tyrosine, a higher excitation wavelength (λexc =295 nm) 

was selected. The emission spectra of pure tryptophan and tyrosine dissolved in water are 

shown in Fig. 12. The emission bands of pure tyrosine and tryptophan in water have their 

maxima at 305 and 355 – 360 nm, respectively.  
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A 

 

B 

 

Figure 12. Emission spectra of pure aromatic amino acids in water, (A) tyrosine (2.5 
µM) at λexc 280 nm and (B) tryptophan (5 µM) at λexc 295 nm.  

  

4.4 Optimization of Phycocyanin’s Concentration in Solutions 

The emission intensity at increasing concentrations of PC in water was measured 

to select the optimal concentration of phycocyanin for all the studies. The relationship 

between normalized fluorescence intensity and PC concentration is shown in Fig. 13. At 

concentrations below 2 uM, the dependence of emission intensity on PC content was 

linear; however, above 10 µM, an incipient region with a plateau and subsequent decrease 

of the intensity is evidence of the inner filter effect due to reabsorption phenomena that 

prevent accurately interpretation of results (Corradini and Ludescher 2015, Karoui and 

Blecker 2011, Valeur 2012). Therefore, it is important to choose a concentration of PC 

��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���������� (��)

�
��
�
��
��
��
��
��
��
���

(-
)

��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���������� (��)
�
��
�
��
��
��
��
��
��
���

(-
)



 

 50 

that falls within the linear region of the plot. Based on this information, a concentration 

of 0.5 µM PC was selected for further studies.  

 

 

Figure 13. Normalized fluorescence intensity as a function of PC concentration.  
 

4.5 Thermal Stability of Phycocyanin  

The degradation of phycocyanin under thermal treatments was assessed using 

steady-state fluorescence measurements. The photophysical properties of PC’s 

chromophores and aromatic amino acids were measured to evaluate their susceptibility to 

thermal treatments and to examine potential mechanisms related to PC’s thermal stability. 

Based on Faieta’s (2017) previous work, the degradation kinetics of PC was assumed to 

be nonlinear and the feasibility of extracting its kinetic parameters using the endpoints 

method was tested. The endpoints method was used because of its established efficacy in 
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extracting kinetic degradation parameters from non-isothermal treatments when the 

effects of heating and cooling are impactful to the sample. 

4.5.1. Thermal Treatments  

The fluorescence spectra of phycocyanin’s chromophore was measured under six 

different temperature profiles to assess its degradation. The temperature profiles used 

were carefully recorded using a temperature logger (Model 8000024, Sper Scientific, 

Scottsdale, AZ).  Profiles TP1 through TP5 reached their individual target temperatures 

quickly, while profile TP6 was used to illustrate a slower temperature ramp and reached 

its target temperature slowly. Each temperature profile was fitted with Eq. 6 (see 

Materials and Methods, Section 3.5.1) using the nonlinear regression tool of Mathematica 

11 (Wolfram Research Inc., Champaign, IL). The parameters of each thermal history are 

summarized in Table 7.  

 

Table 7. Temperature profiles used in this study, characterized using Eq. 6 

Temperature Profile # Algebraic Expression (Eq. 6) 

TP1 T(t) = 42.8 - Log[(1.0 + exp[10.4*(1.58 - t)])] 

TP2 T(t) = 47.8 - Log[(1.0 + exp[15.4*(1.69 - t)])] 

TP3 T(t) = 58.9 - Log[(1.0 + exp[25.6*(1.56 - t)])] 

TP4 T(t) = 67.7 - Log[(1.0 + exp[27.8*(1.81 - t)])] 

TP5 T(t) = 77.7 - Log [(1.0 + exp[32.3*(1.73 - t)])] 

TP6 T(t) = 68.5 – Log [(1.0 + exp[1.9*(25.7 - t)])] 
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4.5.1.1. Fluorescence Intensity During Thermal Treatments  

PC samples were heated following each of the temperature profiles, removed at 

set intervals, and their photophysical properties were measured, as described in Section 

3.4.1. The relative intensity of PC was calculated by dividing the momentary PC intensity 

I(t) by its initial intensity I0. Due to the correspondence between concentration and 

emission intensity (see Fig. 13) both terms are used interchangeably hereby. During the 

thermal treatments, the PC concentration decreased more steeply as the temperature and 

time of the treatments increased. Figure 14 shows one example of the temperature 

profiles recorded and its corresponding experimental PC degradation data as a function of 

time.  

A 

 

B 

 

Figure 14. Example of a temperature profile, TP4, (A) and its corresponding 
experimental PC degradation data as a function of time (B).  

 

4.5.1.2.  Extraction of PC’s Degradation Kinetic Parameters  
 

The stability of PC under isothermal conditions was properly characterized using 

a Weibullian model (Eq. 7) by Faieta (2017). This model has two parameters; b, a rate 
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parameter and n, a constant that describes the shape of the degradation curve. In Faieta’s 

work the rate parameter’s temperature-dependence was described using a logarithmic 

exponential model, i.e., X(B) = ln{1 + exp 3 B − BT } (Eq. 8), where Tc is the critical 

temperature at which PC degradation becomes predominant, and k is the slope of the b(T) 

versus T relationship when T exceeds Tc. As pointed out before, the temperature 

dependence of the scalar parameter, n, is often weak and consequently its value can be 

fixed (van Boekel 2008, 2009, Corradini et al., 2008, Corradini and Peleg, 2004).  Based 

on the PC degradation data reported by Faieta (2017), it could be appropriate to fix the n 

parameter a value below 1.0 and within 0.3-0.7.   

Combinations of two temperature profiles and their corresponding final PC 

relative concentrations were used to extract the unknown kinetic parameters, k and Tc, 

while progressively fixing n to different values within the defined range, using the 

endpoints method programmed in Mathematica 11. The final concentrations of PC 

corresponding to each temperature profile are shown in Fig. 15, C and D.  
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A 

 

B

 
C 

 

D 

 
Figure 15. Temperature profiles (A, B) and final concentrations (C,D) used to 

extract PC’s degradation kinetic parameters using the endpoints method. 
 

All possible pair combinations of temperature profiles, e.g., TC1 and TC2, TC1 

and TC3, etc., and their corresponding PC final relative concentrations, e.g., C1 and C2, 

C1 and C3, etc. were used to run the method. As can be seen in Table 8, all the 

combinations produced similar values of k and Tc, for n=0.53.  
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Table 8. Extracted parameters using the endpoints method 

Final Points Combination n k (min-1) TC (˚C) 

C1 & C2 

0.53 

0.170 77.00 

C1 & C3 0.176 77.2 

C1 & C4 0.176 77.15 

C1 & C5 0.175 77.36 

C1 & C6 0.173 77.65 

C2 & C3 0.120 88.65 

C2 & C4 0.156 78.4 

C2 & C5 0.161 77.38 

C2 & C6 0.152 79.02 

C3 & C4 0.205 75.86 

C3 & C5 0.187 77.38 

C3 & C6 0.198 76.43 

C4 & C5 0.172 77.40 

C4 & C6 0.150 65.50 

C5 & C6 0.170 77.37 

Mean Parameters  0.169 77.3 
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The program in Mathematica 11 was constructed to test different values of n 

within a framed range, and to select the value of n that provides the best measures of fit 

when simultaneously solving the two differential equations, in this case when n = 0.53.  It 

should be noted that all values for both parameters were very similar despite the 

combination of TP and final concentrations selected. The resulting average values of k 

and Tc, 0.169 min -1 and 77.3 °C, respectively, in combination to the fixed n, 0.53, were 

used to solve the differential equations for each temperature profile. The experimental 

data with their resulting predictions are shown in Fig. 16. 
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TP1 TP2 

  
TP3 TP4 

  
TP5 TP6  

  
Figure 16. Degradation obtained under each temperature profile. Filled circles: 

Experimental data. Dashed lines: Predicted degradation obtained using the 
endpoints method extracted parameters. 
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Overall, the predicted degradation curves do not noticeably diverge from the 

experimentally determined degradation curves (Fig. 16). In the case of the last 

temperature profile tested, TP6, differences between experimental data and the 

estimations were observed at the beginning of the curve. This temperature profile (TP6) 

due to the extent of the ramp was less accurately programmed than the others, therefore, 

the discrepancy might be attributed to experimental errors during data acquisition. It 

should also be noted that Faieta et al. (2017, 2018) described the temperature dependence 

of n using an empirical model, this might suggest the necessity of additional parameters 

to better characterize slow changing temperature profiles as mentioned in Corradini et al. 

(2008). The endpoints method produced curves that closely matched the degradation 

observed in the profiles, even though they varied across a wide range of temperatures and 

had very different slopes. Even in the case of TP6, the predictions within the second half 

of the process were accurate. Overall, the predictions of PC’s thermal degradation 

produced by solving the rate equation with parameters determined by the endpoints 

method was successful. 

This is the first time that the endpoints method has been used to characterize PC’s 

degradation. The endpoints method has been demonstrated to be useful to extract kinetic 

parameters for microbial growth and inactivation (Corradini et al., 2008, Corradini et al. 

2009), degradation of ascorbic acid, thiamine, and anthocyanins (Peleg et al., 2016a, 

2016b, Peleg et al. 2015), and even formation of undesirable compounds in foods (Peleg 

et al., 2016c). In the case of PC, the results suggest that the endpoints method provide a 

robust approach to extract the degradation kinetic parameters of PC. This can allow for 
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stability assessments of PC in novel products and under novel treatments without the 

necessity of extensive collection of experimental data. This approach could also be useful 

in advancing assessments of PC during high temperature-short time (HTST) treatments 

(Chaiklahan et al., 2012).  

The endpoints method used in this study assumes that the degradation of PC is 

nonlinear and that the Weibull model is adequate to describe this phenomenon, based on 

a recent degradation study by Faieta (2017). It should be noted that this assumption will 

also allow for the extraction of parameters if a first order degradation kinetics is 

suspected, because the first order kinetics is a special case of Weibull equation where 

n=1. This approach does not assume that the temperature dependence follows the 

Arrhenius equation. 

 

4.5.1.3. Peak location During Thermal Treatments  

While the degradation kinetics was characterized as a relative loss of PC emission 

intensity, additional PC’s photophysical properties, including shifts in the location of 

emission maxima, can provide insights on changes in the local environment that the 

fluorophores are experiencing. The location of the emission peak maximum can change 

during heating and may indicate the unfolding of a protein (Corradini et al., 2017, Duy 

and Fitter 2006, Jameson 2014, Weichel et al. 2008). Unfolding and conformational 

changes in proteins are commonly studied by monitoring changes of aromatic amino 

acids such as tryptophan and tyrosine because they are sensitive to their local 

environment (Duy and Fitter 2006, Jameson 2014). It has been speculated that PC’s 

thermal instability and consequent color loss are due to aggregation or denaturation of 
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their peptide subunits, which can be assessed based on changes in the photophysical 

properties of PC subunits, particularly peak shifts.  

During and after thermal treatments the location of emission maxima of PC 

excited at 280 nm exhibited a hypsochromic or blue shift. As shown in Fig. 17, the 

hypsochromic shift was only evident after the treatment at a high temperature (80°C). No 

shift was observed after treating the sample at mild temperatures for 60 min (45°C) and 

the spectrum at 45C overlaps with that of the untreated sample.  

 

 

Figure 17. Emission spectra of PC solution untreated, and heat treated at 45 and 
80°C for 60 minutes.  
 

The location of the maximum emission shifted from 342 – 345 nm to 315 nm 

after 60 minutes at 80°C. The rate at which the shift occurred, c1, increased as the thermal 

treatment intensified. The effects of heat treatment on the peak location for each 

temperature as a function of time are shown in Fig. 18. The relationships between peak 
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location and heating time were characterized using Eq. 9 and the parameters obtained are 

summarized in Table 9.  

 

Figure 18. Peak location of the emission maxima (lexc = 280 nm) as a function of 
heating time for samples treated at 45, 60, 70 and 80°C. Filled circles represent the 
experimental data, dashed lines are fitted with Eq. 9.  
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Table 9. Parameters and measure of goodness of fit of Eq. 9 used to describe the 
peak location shift as a function of heating time at selected temperatures.   
Temperature 

(°C) Pinit (nm) c1 (min-1)  m1 (-) MSE* 

45 345 0.62 0.37 4.160 

60 345 0.87 0.56 2.660 

70 344 2.01 0.61 1.541 

80 344 5.41 0.44 9.255 

*MSE stands for Mean Square Error and is a measure of goodness of fit  

The observed blue shift suggests a change in the microenvironment of the amino 

acids. A blue shift in tryptophan fluorescence is often attributed to a change in the 

polarity of the environment surrounding the fluorophore. It is usually caused by 

tryptophan residues becoming more buried within a non-polar environment due to 

conformational changes and unfolding during thermal treatments (Duy and Fitter 2006, 

Lakowicz 2006). The shift observed at an λexc of 280 nm was larger than that obtained at 

295 nm (data not shown) which suggests that the tyrosine-tryptophan resonance energy 

transfer is being decoupled during heating probably due to protein unfolding due to larger 

separations between those amino acids. Modifying PC molecules to selectively knock off 

tyrosine residues can provide more detailed information about a conformational change, 

as changes in specific remaining residues could potentially be measured. Alternatively, 

identifying the location of tyrosine residues within PC molecules can help speculate 

where main conformational changes occur. For example, PC in a related species of 

cyanobacteria was found to have 10 tyrosine residues associated with its chromophore 
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Cys-α84 at binding positions 60, 65, 74, 90, 91, 97, 110, 129, 135, and 165, 3 residues 

associated with Cys-β84 at positions 94, 97,165, and five residues linked to Cys-β155 at 

positions 76,119,94, 97, and 165 (Kannauija et al., 2016).  Therefore, an observed blue 

shift in the emission peak of this compound, might indicates that a higher probability that 

the microenvironment around the tyrosine residues on the α subunit changes and that 

tyrosine residues might become further away from tryptophan residues and buried as PC 

unfolds. 

4.5.1.4. Anisotropy During Thermal Treatments 

Steady-state fluorescence anisotropy measurements were used to provide 

information on the protein conformation and potential denaturation processes of the 

whole molecule and its peptide subunits. This might contribute to further understand the 

mechanisms of thermal instability of phycocyanin. Anisotropy measurements (r) 

generally range from 0.0 - 0.4, with low values associated with fast movement of the 

fluorophores and high values associated with slow movement (Cheung, 1991, Corradini 

et al., 2017, Lakowicz, 2006).  

Single point anisotropy measurements were recorded at three temperatures, 45, 

60, and 80°C. The lowest thermal treatment (45°C) had lower anisotropy, while the 

highest treatment (80°C) was characterized with higher anisotropy values as shown in 

Fig. 19.  
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A 

 

B 

 
Figure 19. Anisotropy of PC solutions as a function of heating at three temperatures 
recorded at lexc= 280 nm, lem= 342 nm (A) and at lexc= 520 nm,  lem= 641 nm (B).  
Filled circles: experimental data, dashed lines: fit with Eq. 10.   
 

A comparison of the anisotropy recorded at both excitation wavelengths tested, 

520 and 280 nm, exhibited similar trends with lower r values found at the less intense 

thermal treatments.  

The relationships between anisotropy and heating time were fitted using Eq 10. 

For both excitations wavelengths, the rate of the anisotropy change and the extent of the 

change, expressed by the inverse of k1 and k2, respectively, increased with temperature 

(see Table 10). 
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Table 10. Parameters and measure of goodness of fit of Eq. 10 used to characterize 
the changes in anisotropy (lexc= 280 and 520 nm) as a function of heating time. 
lexc (nm) Temp. (°C)  r0 1/k1 1/k2 MSE* 

280 

45 0.087 0.0005 0.005 3.64 x 10-6 

60 0.087 0.0011 0.027 7.71 x 10-6 

80 0.083 0.0144 0.043 1.29 x 10-5 

520 

45 0.050 0.0035 0.015 9.69 x 10-6 

60 0.055 0.0076 0.029 2.61 x 10-5 

80 0.057 0.0422 0.236 1.21 x 10-4 

*MSE stands for Mean Square Error and is a measure of goodness of fit  

The anisotropy data and the parameters suggest that a change in the rotational 

mobility of the chromophores is occurring. Changes in the effectiveness of energy 

transfer between Tyr and Trp and an increase in the particle dimensions as PC unfolds 

may be causing the observed increase in anisotropy. Early studies on PC showed an 

inverse relationship between phycocyanin’s state of aggregation and its fluorescence 

polarization (Kessel et al., 1973). It was speculated that lower values of polarization were 

associated with intact phycocyanin units rather than with unfolded phycocyanin subunits 

(Goedheer and Birnie 1964). It has been suggested that low polarization values in intact 

phycocyanins are due to efficient energy transfer between the chromophores (MacColl et 

al., 1999, Kessel et al., 1973, Goedheer and Birnie 1964) and as unfolding/denaturation 

progresses the transfer is hindered due to spatial impediments and longer distances 

between chromophores. Overall, the anisotropy results indicate that a change is occurring 
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in PC’s structure, which is more prominent at higher temperatures. However, additional 

validation studies should be conducted to verify this hypothesis.  

 

4.6.  Sensitivity of PC to Microviscosity of the Surrounding Media 

 The assessment of the photophysical properties of PC in solutions of different 

viscosity were performed to establish PC’s sensitivity to its local environment, and to 

determine if viscosity can increase PC’s thermal stability by providing rigidity in the 

surrounding environment and hindering structural changes. As indicated in the Materials 

and Methods, Section 3.6, the viscosity was varied from ~ 0 to 8000 mPa s, by increasing 

the temperature of the sample holder of samples prepared in glycerol (5°C – 60°C) and 

by changing the ratio of glycerol (high viscosity solvent) to water (low viscosity solvent) 

of the samples. The selection of these two approaches provided a more comprehensive 

assessment to ensure that the results were due to a sensitivity to viscosity, not simply to 

temperature. The sensitivity of PC’s photophysical properties to viscosity modulated by 

temperature and a comparison to a probe with established microviscosity sensitivity, 

Brilliant Blue (BB) (Kashi et al. 2015) are shown in Fig. 20. It should be noted that the 

time samples spent at the higher temperatures during viscosity sensitivity testing did not 

impact their photophysical properties and did not resulted in significant degradation of 

the compound. This was evidenced by the almost perfect overlap of the fluorescence 

intensity obtained when the samples were evaluated by progressively increasing the 

temperature from 0 to 60 C and those obtained during decreasing temperatures from 60 to 

0°C. 
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A 

 

B 

 

C 

 

D 

 

Figure 20. Normalized intensity of phycocyanin (A) and brilliant blue (B) as a 
function of viscosity modulated by temperature in linear and logarithmic 
coordinates (C, D). Circles: experimental data, dashed line: fit with Eq. 11.   
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The sensitivity of PC to viscosity, modulated by the ratio of glycerol to water in 

solutions, and a comparison to an established microviscosity sensitive probe, Brilliant 

Blue FCF is presented in Fig. 21.   
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A  

 

 

B  

 

C 

 

D  

 

Figure 21. Normalized intensity of phycocyanin (A) and brilliant blue (B) as a 
function of viscosity modulated by glycerol ratios in linear and logarithmic 
coordinates (C, D). Filled circles: experimental data, dashed line: fit with Eq. 11.  
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The viscosity sensitivity of PC and BB were quantified using a modified version 

of the Föster Hoffman equation (Eq. 11), as described in Section 3.6. As previously 

mentioned, x is a parameter that measures the sensitivity to local viscosity. If x values are 

higher than 0.2-0.25, that can potentially indicate molecular rotor behavior that enables a 

compound’s use as a local viscosity probe (Alhassawi et al 2017). As seen in Table 11, 

the local viscosity sensitivity of PC’s emission intensity was lower than the ones obtained 

for BB, a known molecular rotor, regardless of the conditions of the test.  These values 

show that a present but limited sensitivity of PC to the local viscosity of the surrounding 

medium, as verified by x values close or below to 0.2, which may not be enough to 

advance PC’s use as an intrinsic microviscosity probe. In comparison, BB’s sensitivity 

towards molecular crowding, quantified by the x parameter were significantly higher, i.e., 

0.53 and 0.35, for the temperature and glycerol ratio study, respectively. This is expected, 

as triarylmethane dyes, which include BB, have shown evidence of molecular rotor 

behavior and high viscosity sensitivity (Alhassawi et al., 2017, 2018, Kashi et al., 2015, 

Lynch, 2018).  

Table 11. Comparison of the viscosity sensitivity parameter, x, for phycocyanin and 
brilliant blue. 

Experiment Sample  x MSE* 

Temperature 
Phycocyanin 0.20 2.0 x 10-3 

Brilliant Blue 0.50 1.4 x 10-3 

Glycerol/ Water Ratios 
Phycocyanin 0.10 8.4 x 10-3 

Brilliant Blue 0.40 2.7 x 10-3 

*MSE stands for Mean Square Error and is a measure of goodness of fit  
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PC’s limited sensitivity to the viscosity of the medium was also greatly affected 

by the conditions of the experiment, e.g., a reduction of 50% in the x parameter when 

tested in water/glycerol solutions, which might indicate a sensitivity to water activity, aw, 

which will be discussed in a following section. 

4.6.1.  Impact of Viscosity on Thermal Stability   

Viscosity is known to improve protein stability by making the protein 

conformation more compact which reduces flexibility and inhibits unfolding. Therefore, 

it was speculated that an increase in medium viscosity could enhance the thermal stability 

of a PC solution. To this end, PC samples prepared in pure glycerol and water were 

exposed to 80°C for 60 min and their emission intensity recorded to assess if the previous 

hypothesis was valid and to what extent it could result in an improvement of stability. 

Fig. 22 allows to compare the effect of both treatments on the relative intensity of PC as a 

function of heating time.   
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Figure 22. Comparison of the degradation of phycocyanin's solutions in pure 
glycerol and in pure water treated at 80°C over time. Filled circles: experimental 
data, dashed line: fit with Eq. 7. 
 
 

The degradation curves of PC in both solvents was fitted using a Weibullian 

model (Eq. 7) with the built-in nonlinear regression routine in Mathematica 11. The 

degradation of PC in glycerol was about 75% less than that obtained in water. It should 

be noted that during these experiments the temperature was constantly monitored to avoid 

temperature differences throughout the samples due to lower heat transfer in the highly 

viscous glycerol solution. Also, reporting the relative PC emission intensity, I(t)/I0, 

contributes to eliminating differences in the initial concentrations of the samples. This 

normalization also allows eliminating the increase in overall emission due to difference in 

rigidity of the surrounding medium provided by the addition of glycerol. The thermal 

degradation parameters, b and n, for both samples are reported in Table 12. The 



 

 73 

degradation rate parameter, b, is significantly higher, i.e., one order of magnitude, for PC 

solutions in water in comparison to glycerol.  

 

Table 12. Parameters and measure of goodness of fit of Eq. 7 used to fit the PC 
degradation at 80°C in pure water and glycerol. 

Solvent Used b (min-1) n (-) MSE* 

Pure Glycerol (G) 0.045 0.51 0.0012 

Pure Water (W) 0.380 0.82 0.0087 

*MSE stands for Mean Square Error and is a measure of goodness of fit  

These results appear to indicate that glycerol is slowing the degradation of PC and 

providing some protection. This is in accordance with the notion that glycerol can help 

maintain protein stability by compacting the structure, reducing unfolding, and stabilizing 

unfolded intermediates (Vagenende et al., 2009). Selig et al. (2018) proposed that a more 

rigid conformation of PC protects the thioether linkages that attach the chromophores to 

the protein backbone to protect color loss. Therefore, glycerol and other compounds that 

stabilize protein conformation, may protect the chromophores and reduce color loss.   

Assessments of PC’s anisotropy in high viscosity solutions provided additional 

information on how viscosity may impact PC’s thermal degradation. Solutions of PC 

prepared in a 40% glycerol-water solution (14.0 mPa s) and in pure water were 

compared. The anisotropy measurements, r, of PC’s solutions were higher in glycerol 

than in water, as seen in Fig. 23, due to the higher viscosity of the medium. The  

rotational mobility of a molecule is partially dependent on the viscosity of the solvent 

(Lakowicz 2007), affecting its anisotropy. Therefore, all the comparisons were performed 

based on the rate of anisotropy change (Eq. 10), instead of using the increase in 
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anisotropy levels as an indication of loss of stability. The parameters of Eq. 10 are listed 

in Table 13.  

A 

 

B 

 
C 

 

D 

 
Figure 23. Anisotropy recorded at lexc of 280 nm (A,B) and at lexc of 520 nm (C,D) 
prepared in 40% glycerol as a function of heating time at 80C. Filled circles: 
experimental data, dashed line: fit with Eq. 10. 
 
 Changes in anisotropy were observed regardless of the temperature and conditions 

of the fluorescence measurements, e.g.,  lexc and lem tested. The inverse of k1, which is 

related to the rate of anisotropy change, is similar for most data except for changes in 

anisotropy at lexc = 520 nm in water and glycerol tested at 80°C.  A significantly lower 
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rate of change in glycerol might be associated with a higher retention of the original 

structure throughout heating time. These results also suggest that following anisotropy at  

lexc = 520 nm will be a more sensitive way than using r at lexc = 280 nm to assess 

conformational changes in these kinds of systems. 

Table 13. Extracted parameters of PC anisotropy under non-isothermal heating in 
water and glycerol solutions. 

lexc (nm)  Solvent 
Temp. 

(°C)  
r0 1/k1 1/k2 MSE* 

280 

Water 
60 

0.087 0.001 0.027 7.71 x 10-6 

Glycerol 0.095 0.006 0.068 3.25 x 10-5 

Water 
80 

0.083 0.014 0.043 1.29 x 10-5 

Glycerol 0.092 0.021 0.093 1.26 x 10-5 

520 

Water 
60 

0.055 0.008 0.029 2.61 x 10-5 

Glycerol 0.086 0.023 0.057 4.41x 10-5 

Water 
80 

0.057 0.042 0.236 1.21 x 10-4 

Glycerol 0.122 0.017 0.253 1.09 x 10-4 

*MSE stands for Mean Square Error and is a measure of goodness of fit  

4.7 Sensitivity of PC to the Water Activity (aw) of the Surrounding Media  

A study of PC in water/ethanol solution was performed to further assess PC’s 

sensitivity to changes in the physicochemical properties of its local environment. As 

mentioned in Section 3.7, at increasing concentrations of ethanol, there is a decrease in 

water activity, aw, as well as a change in polarity as ethanol has a lower relative dielectric 

constant than water (25 vs 80.1) (Haidekker et al. 2005). 
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Figure 24 (A) shows that high aws (> 0.8) correlated with increasing PC emission. 

Below aw levels of 0.8, the emission intensity was very low. This indicates that the 

chromophores are responding to a change in their environment caused by the addition of 

ethanol. It should be noted that the changes in photophysical properties were also 

accompanied by an increasingly visible change in the solutions, in terms of less blue 

color at higher concentrations of ethanol. While precipitation of PC was not evident by 

visual observation of the samples, it is possible that there was a progressive precipitation 

with the addition of increasing amounts of ethanol (Liu et al., 2016). Like many 

pigments, PC is routinely extracted in ethanol (Cuellar-Bermudez et al., 2014, Hadiyanto 

et al., 2016). This extraction of PC with ethanol, and its efficacy, could also be followed 

using a luminescence technique, as indicated by the data presented in Fig. 24.  

The location of the peak maxima of PC in the water/ ethanol did not exhibit a 

clear trend as ethanol content increased (Fig. 24 B). However, an hypsochromic shift 

from an average value of 660 nm to 630 nm was observed when comparing the samples 

at low (<0.8) and high (>0.8) aw. This shift might be associated to the aggregation or 

precipitation of PC. Additional studies are needed to elucidate the nature of these 

changes.  
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A 

 

B 

 

Figure 24. PC emission intensity (A) and energy (B) as a function of the aw of the 
surrounding medium.  

 

While high water activity (> 0.8) was correlated with increasing PC emission, 

results of the PC’s sensitivity to water activity remain unclear, as emission intensity may 

have been impacted by precipitation of the PC due to the high ethanol concentration. 

Further studies on PC’s response to water activity are needed to more comprehensively 

evaluate if a potential sensitivity exists.  
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

 

 The thermal stability and environmental sensitivity of the natural blue colorant 

phycocyanin was assessed by monitoring changes in its photophysical properties, i.e., its 

emission spectra (intensity, and energy) and anisotropy, using steady-state fluorescence 

spectroscopy. The emission spectra, location of emission maxima, and fluorescence 

anisotropy of PC’s chromophores and aromatic amino acid provided information about 

PC’s degradation under thermal treatments, potential mechanisms underlying its 

instability, and insight into its sensitivity to attributes of its local environment.  

 The emission intensity of PC’s chromophores under thermal treatments provided 

an effective measure of its relative concentration and an assessment of its progressive 

degradation. The degradation was assumed to follow nonlinear kinetics that could be 

described using the Weibull model with temperature dependent b(T) logarithmic 

exponential model. Although the use of the endpoints method to extract PC’s degradation 

kinetics parameters from non-isothermal temperature profiles is feasible and overall 

effective, this should be cautiously applied since additional parameters could be required 

to obtain adequate predictions under complex temperature profiles. The benefit of the 

endpoints method is that it requires relatively little input in terms of experimental data 

and can be especially useful in determining degradation during HTST treatments. This is 

especially relevant to the food industry due to the prevalence of these processing 

operations that seldom allow to perform multiple in-line measurements. Therefore, 

additional stability assessments of PC under thermal treatments should consider the 
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endpoints method as a robust, time-savings technique to obtain degradation kinetics 

parameters for heat labile compounds such as phycocyanin.   

 Shifts in the location of the peak emission maxima of PC’s amino acids provided 

information about chemical and physical changes in the local environment under thermal 

treatments. Differences in the peak shifts at excitation wavelengths,lexc, of 280 nm and 

295 nm emphasize the importance of the hetero energy transfer between tyrosine and 

tryptophan and how possible larger separations between these moieties are responsible 

for the change in peak location after heat treatments. The changes in the peak location 

were faster at higher temperatures. The hypsochromic shifts provided evidence that the 

microenvironment of around the amino acids is changing, possibly Trp becoming buried 

or Tyr moving further apart from Trp Additional studies, such as time-resolved 

fluorescence measurements for resonance energy transfer, could be conducted to further 

explore this.   

Single-point fluorescence anisotropy of PC’s chromophores and its aromatic amino 

acids provided additional insights into the potential mechanisms underlying PC’s thermal 

instability. Higher anisotropy values (r) suggest that a change in the rotational mobility of 

PC is occurring as the compound is heated. This further indicates that PC’s structure is 

progressively being altered as it may be unfolding at high temperatures.  

 To better understand how PC responds to its local environment, the sensitivity of 

its photophysical properties to the medium’s viscosity and water activity were monitored 

using the emission spectra and anisotropy of its chromophore. PC’s viscosity sensitivity 

was established and when quantified using the Föster Hoffman equation, was found to be 

less sensitive than a molecular rotor with known local viscosity sensitivity, BB, but still 
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displaying sensitivity under both conditions tested. Testing PC’s stability in a highly 

viscous environment such as samples prepared in pure glycerol, verified the protective 

effect of compounds that stabilize conformation on color loss. The results showed that PC 

prepared in pure glycerol degraded 75% less than samples prepared in water, under the 

same thermal treatments. Furthermore, results of PC’s fluorescence anisotropy provided 

additional support that viscosity may improve stability. A slower rate of anisotropy 

change under thermal treatments was found for samples prepared in 40% glycerol than in 

pure water. The anisotropy results suggest viscosity may lead to a higher retention of 

PC’s original structure. Additional studies on the impact of viscosity on PC’s stability 

would be helpful in discerning if the observed results were due to the viscosity. PC’s 

emission intensity and peak location also showed sensitivity to the aw of the surrounding 

medium. However, additional studies are needed to establish if the response was directly 

correlated to water activity or to factors imposed by the solvent, e.g., incipient 

precipitation of the compound. Testing PC’s in solutions with water activity modulated 

by the addition of sugars or salts instead of ethanol, could help verify this sensitivity and 

elucidate the reasons for it.    

 To sum up, the photophysical properties of PC can be assessed using fluorescence 

spectroscopy and its sensitivity to thermal treatments, viscosity, and water activity can be 

established. PC’s degradation can be characterized based on changes in its emission 

spectra and the endpoints method can save time in extracting its degradation parameters. 

While the results indicate that PC is undergoing a conformational change under heat 

treatments, additional studies, such as circular dichroism, would provide more detailed 

assessment of its potential unfolding.  
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