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ABSTRACT

REAL-TIME DENGUE FORECASTING IN THAILAND:
A COMPARISON OF PENALIZED REGRESSION

APPROACHES USING INTERNET SEARCH DATA

SEPTEMBER 2018

CAROLINE KUSIAK

B.A., AMHERST COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Nicholas Reich

Dengue fever affects over 390 million people annually worldwide and is of particu-

lar concern in Southeast Asia where it is one of the leading causes of hospitalization.

Modeling trends in dengue occurrence can provide valuable information to Public

Health officials, however many challenges arise depending on the data available. In

Thailand, reporting of dengue cases is often delayed by more than 6 weeks, and a

small fraction of cases may not be reported until over 11 months after they occurred.

This study shows that incorporating data on Google Search trends can improve dis-

ease predictions in settings with severely underreported data. We compare penalized

iv



regression approaches to seasonal baseline models and illustrate that incorporation

of search data can improve prediction error. This builds on previous research show-

ing that search data and recent surveillance data together can be used to create

accurate forecasts for diseases such as influenza and dengue fever. This work shows

that even in settings where timely surveillance data is not available, using search

data in real-time can produce more accurate short-term forecasts than a seasonal

baseline prediction. However, forecast accuracy degrades the further into the future

the forecasts go. The relative accuracy of these forecasts compared to a seasonal

average forecast varies depending on location. Overall, these data and models can

improve short-term public health situational awareness and should be incorporated

into larger real-time forecasting efforts.
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CHAPTER 1

INTRODUCTION

Dengue Fever is a mosquito-borne viral disease endemic in over 100 countries

worldwide ([20]). Most commonly spread by the Aedes aegypti mosquito, there are

over 390 million dengue infections resulting in about 96 million symptomatic cases

each year [1]. It is estimated that 3.9 billion people are at risk of dengue virus

infection and recently there has been a sharp increase in the number of reported cases

[2]. An infection can develop into more severe forms such as dengue hemorrhagic

fever (DHF) and eventually, dengue shock syndrome (DSS) which has a 44% fatality

rate [17]. Because many dengue infections are asymptomatic, DHF is often used as a

proxy for dengue incidence, since it is more severe and consequently more consistently

reported.

In Thailand, dengue-related illness is the third leading cause of hospitalization

and it is a problem endemic to most all of its provinces [5]. The majority of dengue

infections are asymptomatic making it almost impossible to quantify the true num-

ber of people affected each year. The number of DHF cases varies across different

locations and between seasons making it difficult to anticipate the impact it will have

each year.

Making timely and accurate forecasts for future outbreaks can provide valuable

information for Public Health officials. Predictions can be used to target times and
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Figure 1.1. Dengue case counts and search term frequencies a. Logged DHF
case count distributions since 2009. b.-d. Distributions of normalized search term
frequency for Term 1 (Hemorrhagic fever disease), Term 3 (Hemorrhagic fever), and
Term 6 (Symptoms of Hemorrhagic fever).
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underreported, an information gap exists between our fully reported data and when
we wish to begin making forecasts. We cannot trust that the data in the most recent
past is representative of the eventually fully reported data and for this reason, we
investigate using Google Search data in its place.
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locations which could benefit from increased surveillance, treatment resources, and

prevention education. Forecasts can be utilized for better planning in these areas

and help to understand where to best allocate resources [14].

The Thai Ministry of Public Health provides our team with province-specific

DHF case counts every two weeks (Figure 1.1). These estimates however, begin

underreported and are revised in following months. Cases reports are often delayed

by more than 6 weeks and some cases are not reported until over 11 months after

they occur (Mr. Casey Gibson, personal communication). Therefore, accurate data

for a given biweek may not be available until April of the following year when final

revisions are made. Although we would like to make predictions into the future,

we can not trust that the data in the most recent past will be representative of the

eventually fully reported counts (Figure 1.2). Past forecasting efforts using this data

have dealt with this information gap challenge by ignoring the most recent six weeks

of data when making forecasts [16]. Ongoing efforts attempt to model the reporting

delays themselves to allow for a estimate of current cases based on scaling up partially

observed case counts (Mr. Casey Gibson, personal communication). Both of these

approaches face serious challenges and obstacles.

It has been shown that internet search data can be helpful in predicting Influenza-

Like-Ilness (ILI) epidemics, however limitations have also been identified [6, 8]. De-

termining trends in influenza-related search queries provides a valuable informa-

tion source without expending many resources and while maintaining users’ privacy.

Google Flu Trends (GFT) was first proposed in 2008 to include information about

this behavior in forecasting models [10]. At first, these models provided promising

4



Term Thai English Translation

1 โรคไขเลือดออก Hemorrhagic fever disease

2 อาการ โรค ไขเลือดออก Symptoms of hemorrhagic fever disease

3 ไขเลือดออก Hemorrhagic fever

4 โรค ไขเลือดออก Hemorrhagic fever disease

5 การ ปองกัน ไขเลือดออก Prevention of hemorrhagic fever

6 อาการ ของ ไขเลือดออก Symptoms of hemorrhagic fever

7 สาเหตุ ไขเลือดออก Cause of hemorrhagic fever

8 สถานการณ โรค ไขเลือดออก Situation of hemorrhagic fever disease

9 สถานการณ ไขเลือดออก Situation of hemorrhagic fever

10 ไขเด็งกี่ Dengue fever

11 ไขเลือดออกช็อค Hemorrhagic fever with shock 
(Dengue shock syndrome)

12 โรคไขเลือดออกช็อค Hemorrhagic fever disease with shock 
(Dengue shock syndrome)

13 เกล็ดเลือดตํ่า Low platelet

14 ไขเลือดออกระบาด Hemorrhagic fever outbreak

15 โรคนําโดยยุงลาย Aedes mosquito-borne disease

Table 1.1. Google Search terms and their English translations.
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results in terms of prediction accuracy and excited a vision of using more creative

“Big Data” sources in influenza forecasting. However, in 2013, these models failed

dramatically, missing key incidence peaks by 140% and overestimating CDC esti-

mates two-fold [12, 4]. These breakdowns resulted in Google abandoning the project

altogether.

The ARGO model serves as a modification to GFT, and has been shown to make

more robust and adaptable estimates in influenza predictions [23, 13, 25]. This work

incorporates an autoregressive times series (AR) and Google search data (GO) into

a regression model penalized with a least absolute shrinkage and selection operator

(LASSO) constraint. This model addresses the limitations of GFT by (1) using a less

static approach which instead evolves as new data is available, (2) not aggregating

search terms into a single variable, and (3) including time series properties such as

seasonality.

The main inspiration for this study is to adapt the methods proposed in the

ARGO model to fit our modeling challenge. The two main differences arise from the

need for (1) real-time predictions and (2) a way to accommodate situations without

fully reported data. Past efforts have investigated using ARGO model in dengue

prediction showing that using search data can help disease tracking in Mexico, Brazil,

Thailand, Singapore, and Taiwan [22]. These analyses however, are not focused on

making real-time predictions. The model as previously used, relies on the assumption

of up-to-date and accurate case counts. This assumption is even a requirement of the

software, which is meant to be refit to essentially complete data at every timestep.

This functionality therefore is only equipped to make estimates for current levels

6



of infectious disease, with no obvious way to make forecasts further into the future

[21]. In Thailand, we cannot trust that the most recent case count data is accurate

and so, a model which needs to be refit to new data frequently is not practically

useful. For our purposes, we need a model which can be fit once a year on only the

most revised data and that is able to make predictions for multiple timesteps into

the future. For these reasons, we set out to modify and extend this original ARGO

model to accommodate situations when timely surveillance data is not available.

This study focuses on the impact of using such internet data to enhance forecasts

when surveillance data is imperfect. Our search data consists of frequencies of 15

terms related to dengue fever each potentially related to DHF trends (Table 1.1).

Our analyses are focused on two provinces in Thailand, Bangkok and Chiang Mai,

both which exhibit different disease dynamics. We incorporate province-level search

data with seasonality components to investigate whether short-term forecasts can be

improved.

7



CHAPTER 2

METHODS

2.1 The Data

Dengue hemorrhagic fever (DHF) case count data comes from the Thai Ministry

of Public Health. This includes the reported number of DHF cases in the provinces

of Bangkok and Chiang Mai from 1968 to the present. Because disease dynamics

are different in each province, a separate model is fit for Bangkok and for Chiang

Mai. Trends in this data from 2009 onward can be seen in Figure 1.1. These counts

begin underreported and are updated in the following months, with a final report of

all cases in one calendar year delivered in April of the subsequent year. This means

that accurate data for a biweek may not be available until April of the following year

when final revisions are made. We fit models to make biweekly predictions for DHF

on the log scale.

Google Search data was collected with help from collaborators at Harvard Univer-

sity with special access to the Google Trends API . This data is available in realtime.

Based on random samples of the all of the world’s Google searches, the site provides

province-level “interest” estimates on specific topics. Here interest is defined as the

“proportion of all searches on all topics in Google in that same place and time”

[18]. We began with information on 15 commonly queried Thai terms relating to

8



DHF sampled from each province, Bangkok and Chiang Mai. These terms were cho-

sen based on previous modeling efforts and suggestions from our collaborators [22].

Their translations can seen in Table 1.1. In Bangkok, 5 of these terms contained all

0s resulting in 10 terms used in our analysis. In Chiang Mai, only 4 terms were used

also due to too many 0s. Some of their distributions are shown in Figure 1.1.

2.2 Prediction Time Unit

Dengue has a generation time (or time between two consecutive generations) of

two weeks. For this reason, we mapped all data into biweekly intervals. The first

biweek of every year begins on January 1st, at 00h00m00s and the last biweek ends

on December 31st, at 11h59m59s. A more explicit definition of this time scale can

be found in previous work with this same data [16].

2.3 The Baseline Models

2.3.1 Seasonal Average

The primary model we use as a reference is a Seasonal model. This model has a

separate fixed effect for each biweek in the season combined in a simple linear model.

Using this model as a reference allows us to compare each predicted value to the

historical mean at that timestep. These comparisons will help us to determine if

our more complicated models make predictions better than the seasonal mean. This

model will serve as our baseline for all comparisons and is defined as

yt = Log-transformed DHF case counts in biweek t

9



t = biweekly timestep of interest

yt = µ+
B∑
b=1

φbI(biweek = b) + εt, εt ∼ N (0, σ2), (1)

with B = 25 biweek indicators. The 26th biweek is included in the intercept

term, µ which is the average logged DHF cases for biweek 26.

2.3.2 ARGO Model

As explained previously, the original ARGO model is only designed to make 1-step

ahead predictions, refitting the model each week when additional data is received.

However, because the data from Thailand is substantially underreported, we do not

consider the data from the most recent biweeks as reliable. For this reason, we instead

only use the revised data from the previous year, and discard data from the most

recent past. Instead of considering the incoming data for new prediction models, we

want a model which can be fit once a year to fully reported data. This model would

then be used to create forecasts at each timepoint for the next year, until new fully

reported data is available.

The original ARGO model uses a combination of past case counts and search

data as regressors. This model is given by

yt = µ+
L∑
j=1

αjyt−j +
K∑
k=1

βkXk,t + εt, εt ∼ N (0, σ2) (2)

with yt the timeseries of case counts with L lags and Xt a vector of K exogenous

variables, or in this case, search terms at time t.

10



2.3.3 Baseline SeaGO

In Thailand, delays in reported DHF case data often mean than an autoregressive

model has limited practical utility for forecasting into the future. More explicitly,

at certain timesteps in our challenge we do not have complete information. There-

fore rather than including an “AR” term, we instead include a “Sea” component of

seasonal indicators. We propose the following SeaGO model

yt = µ+
K∑
k=1

βkXk,t +
B∑
b=1

φbI(biweek = b) + εt εt ∼ N (0, σ2) (3)

with Xt a vector of K search terms and I(biweek = b) indicator variables for

the biweek at time t. In our specifications in Bangkok, we consider K = 15 Google

search terms and B = 25 biweeks, with the 26th biweek being absorbed into the

intercept term. Because this is a relatively large number of predictors, ordinary least

squares maximum likelihood estimation may lead to overfitting. Thus, to optimize

this equation, we constrain our coefficient estimates using an L1, or LASSO penalty

[19]. The LASSO finds β = {βk} and φ = {φb} to minimize

N∑
i=1

(
yi −

∑
k

xi,kβk −
∑
b

φbIi,b

)2
+ λ

[
K∑
k=1

|βk|+
B∑
b=1

|φb|

]
. (4)

with N = the number of training observations. This is equivalent to minimizing the

residual sums of squares with the constraint
∑
|β|+

∑
|φ| ≤ s. This penalty shrinks

regression coefficients towards and sometimes exactly to 0.

11



2.4 Extensions of the SeaGO

2.4.1 Lagged SeaGO

These models also consider multiple past lag values of these search terms, meaning

the
∑K

k=1 βiXk,t in Equation 3 can be replaced with
∑K

k=1

∑L
j=0 βk,jXk,t−j. The full

model can be written as

yt = µ+
K∑
k=1

L∑
j=0

βk,jXk,t−j +
B∑
b=1

φbI(biweek = b) + εt εt ∼ N (0, σ2) (5)

After consulting autocorrelation plots for each search term, we determined that

each term is autocorrelated with up to 4 lags. Therefore, we decided to use L = 4

as the possible number of lags to be considered in this model. This is the maximum

number of lags that are possibly correlated with case counts allowing the LASSO

algorithm to decide which should remain.

2.4.2 Group SeaGO

One downfall of using a LASSO penalty is that it may not perform well when

many predictors are highly correlated with each other. In cases of such multicollinear-

ity the algorithm arbitrarily places all of the weight on 1 of the predictors from this

group [7]. All other correlated predictors are shrunk to 0.

In our data, many of the predictor trends arise from similar signals. For example,

our biweek indicators are directly related with each other. Term 1 and Term 3

can be translated to “hemorrhagic fever disease” and “hemorrhagic fever” which

would reasonably be queried either at the same time or with similar trends. They

12



have a correlation coefficient of 0.75. These terms are also, by a function of our

choosing, correlated with each of their lag terms. For example, correlation coefficients

between search terms and first lagged values range between 0.46 and 0.96. In order

to accommodate these correlations, we investigate the use of the Group LASSO [24].

The Group LASSO is very similar to the optimization problem seen in Equation

4, but it instead applies the penalty

λ

G∑
h=1

mh||θh||2 (6)

with G = the number of groups considered and ||θh||2 the L2 norm. Here, θh is a

vector of coefficients from group h where
⋃
h θh = {β, φ} and θh is disjoint. kh = the

number of predictors in group h and mh serves as a scalar to account for differences

in group size. mh =
√
kh and

∑
h kh = p = the total number of predictors considered

in the model. This specification of mh means that the same amount of penalty is

applied to groups with different numbers of predictors.

This optimization allows members of a group to share a LASSO penalty. This

means that either all members of each group are 0 or all are non-0. By comparing

the coefficients from these group LASSOs, we can determine if a group of predictors

is helpful in our predictions.

In total, we consider P = 75 predictor variables in our modeling in Bangkok.

These consist of B = 25 seasonal indicators, K = 10 search terms, and L ·K = 40

lagged search terms. Due to the complex collinearity scheme existing between these

independent variables, there are a few different grouping approaches which could

reasonably be employed as described below.
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Option 1: Seasonal Grouping (SeaGO-GrSeas)

This first scheme groups together all B = 25 seasonal indicator variables and

leaves the remaining variables alone, each in a group of 1. In Bangkok, G = 1 + 50

= 51. This finds the optimal values of β and φ to

minimize

(
||y −Xβ − Iφ||2 + λ

G=51∑
h=1

mh||θh||2
)
. (7)

Option 2: Seasonal and Search Grouping (SeaGO-GrSearch)

This scheme groups together all B = 25 seasonal indicators and groups together

each of the K = 10 search terms with their lag terms. For this scheme in Bangkok,

G = 1 + 10 = 11.

Option 3: Seasonal and Lag Grouping (SeaGO-GrLag)

This scheme groups together all B = 25 biweek indicators and groups together

all search terms with terms of the same lag. Here, G = 1 + 5 = 6.

Option 4: Seasonal and Correlated Grouping (SeaGO-GrCorr)

This approach groups together the B = 25 binary biweek variables and creates 3

groups based on which predictors are most highly correlated. Here, G = 1 + 3 = 4.

2.4.3 Adaptive SeaGO

Another extension of the LASSO often considered is the Adaptive LASSO [26].

This algorithm further reduces LASSO’s bias by penalizing large coefficients and

thus further prevents overfitting. This method applies the penalty λ
∑P

h=1 ŵh|θh|

14



with P = the number of predictors considered and ŵh = 1

θ̂h
initial where θ̂h

initial
are

pilot estimates obtained from a preliminary LASSO run. This finds the argument to

minimize

(
||y −Xβ − Iφ||2 + λ

P∑
h=1

ŵh|θh|
)

(11)

The Adaptive LASSO also has the benefit of the oracle properties [26]. These

include (1) the ability to correctly identify the best subset of predictors and (2) that

it provides the optimal estimation rate.

2.5 Principal Components Regression

The final approach we investigate is the popular dimension reduction method of

Principal Components Regression (PCR) [9]. First, Principal Components Analysis

is performed to identify low-dimensional projections of the data in the form of linear

combinations of the available variables. The optimal number of components to be

included is determined through cross-validation. Our best models chose 43 and 45

components on average. Dimension reduction is then performed by only using the

principal components identified through PCA. These linear combinations are then

used as regressors in least squares regression. This method avoids the many problems

associated with multicollinearity and decreases the amount of overfitting. However,

because this model considers linear combinations of the total number of P predictors

as regressors, it performs dimension reduction, but not feature selection. Therefore,

this method can be very challenging to interpret, and conclusions about specific

predictors are much more difficult to draw than from LASSO methods.
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2.6 Multiple Prediction Horizons

Here, we define a horizon as the number of time steps into the future we hope

to predict. To make predictions for multiple time steps into the future, models are

trained on search term data shifted back in time based on the horizon of interest. An

illustration of this process is shown in Equation 12, for a two-step ahead forecast.

yt+2 = µ+
K∑
i=1

L∑
j=0

βi,jXi,t−j +
B∑
l=1

φl−2I(biweek = l) + εt εt ∼ N (0, σ2) (12)

This way, a new model is fit with different coefficients for the specific modeling

challenges of making predictions in each horizon and each province.

2.7 Cross Validation

Each of the methods outline previously have built-in cross validation approaches

in order to determine which parameterizations are optimal. For each LASSO method,

the best value of λ is determined by 10-fold cross validation over a sequence of possible

values. The optimal value of λ corresponds to the value with the lowest mean-squared

out-of-sample prediction error [3]. For principal components methods, the optimal

number of components is determined through 10-fold cross validation considering 1

through P possible components. The optimal value corresponds to the lowest bias

corrected mean-squared prediction error [15].
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Testing Phase 

2009 2013 2014

2009 2014

2009

2009

2015

2015 2016

2016 2017

Training Testing

2009 2012 2013

2009 2011 2012

a

1/1/2014 1/1/2015
biweek 8
4/1/2014

biweek 8
4/1/2015

2014 Test Year

b

Figure 2.1. Illustration of testing scheme. a. Yellow dots represents years of data
used for our test sets. Back dots represent years of data included in the training sets.
b. As an example, this illustrates our definition of the test year for 2014.
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2.8 Validation

To test the performance of each of these models, we compare their errors in

prospective out-of-sample predictions. Each model was fit on a set of training data

and used to make predictions on a subsequent set of test data (Figure 2.1 a.). We

chose 6 test years between 2012 and 2017. Our training data consisted of all data

through December of the year preceding the test year. The test sets began with data

in April of the test year through March of the following year (Figure 2.1 b.). For each

test year, prediction error was calculated using root-mean-square error (RMSE).

Previous studies have suggested that models perform better with a 2-year sliding

window of training data [23]. This is because internet search behaviors change fre-

quently and trends from 3 years in the past make not be indicative of behaviors today.

For these reasons, we included 2 additional models with this 2-year sliding window.

These models employ the window on the SeaGO Lag and Adaptive SeaGO and

are referred to as the SeaGO Sliding and A. SeaGO Sliding, respectively.
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CHAPTER 3

RESULTS

3.1 Including Search Data to Improve Short-Term Forecasts

We found that a simple model including Google Search data (SeaGO) improves

case count predictions over a seasonal average model (Seasonal). Predictions for

the years 2014 and 2015 are shown in (Figure 3.1). As can be seen in (Table 3.2)

neither model outperformed the other in each location and in each year. However

in both locations, the SeaGo model had better average prediction accuracy. In

Bangkok, the Seasonal model performed best in 2013, the year with highest total

annual incidence. However, the SeaGO model performed best in 2015, another year

with high incidence. In Chiang Mai, the SeaGO model performed better in 2013,

the year with the highest number of reported cases. We can conclude that including

search term data in our models improved forecasts in 8 of 12 province-years and did

better on average than a seasonal average model.

3.2 Extensions of SeaGO
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breaks in test data which occur on April 1st of each year. At this point, we expect that data through December
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20



Bangkok

Seasonal SeaGO
Lagged
SeaGO

Adaptive
SeaGO

SeaGO
GrSeas

SeaGO
GrSearch

SeaGO
GrLag

SeaGO
GrCorr

SeaGO
Sliding

A. SeaGO
Sliding PCR

2012 276.78 268.23 261.22 260.17 259.19 261.10 261.60 260.69 253.93 253.99 4942.49
2013 441.71 485.75 486.01 455.19 487.23 500.51 489.27 477.20 576.95 593.10 859.37
2014 126.78 92.03 85.15 79.48 77.62 88.50 86.80 95.66 71.63 62.67 133.83
2015 683.34 591.13 625.63 600.77 544.91 623.79 581.10 625.56 604.02 649.61 1972.93
2016 244.12 224.75 219.62 223.26 235.44 213.89 231.27 225.26 276.16 179.57 396.03
2017 146.73 99.28 88.06 93.29 94.21 78.32 95.45 95.74 93.12 92.18 243.45
Mean 319.91 293.53 294.28 285.36 283.10 294.35 290.91 296.69 312.64 305.19 1424.68

Chiang Mai

Seasonal SeaGO
Lagged
SeaGO

Adaptive
SeaGO

SeaGO
GrSeas

SeaGO
GrSearch

SeaGO
GrLag

SeaGO
GrCorr

SeaGO
Sliding

A. SeaGO
Sliding PCR

2012 25.78 33.79 28.60 39.97 28.34 25.79 54.14 32.14 22.79 32.43 132.57
2013 259.59 219.12 220.65 207.15 219.06 228.92 240.43 243.27 284.20 283.56 216.30
2014 22.79 13.00 11.15 12.75 8.71 10.63 10.57 10.90 20.21 18.30 13.96
2015 33.38 32.49 33.96 35.66 31.23 30.44 29.80 30.02 35.41 37.72 35.69
2016 32.98 38.63 32.70 36.65 30.15 29.41 35.07 34.84 39.28 33.63 57.01
2017 12.93 17.14 16.27 16.88 18.81 16.46 13.30 13.97 28.14 23.10 23.67
Mean 64.58 59.03 57.22 58.18 56.05 56.94 63.88 60.86 71.67 71.45 79.87

Table 3.1. Root-mean-square prediction errors across all models and years.
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To find the method for best forecasting dengue cases we further compared this

SeaGO model against extensions of LASSO approaches and a model using principal

components regression. In Bangkok the Adaptive SeaGO, SeaGO-GrSeas, and

SeaGO-GrLag models did better on average than other models (Table 3.2). In Chi-

ang Mai, the Lagged SeaGO, SeaGO-GrSeas, and SeaGO-GrSearch performed

the best on average. In both provinces, PCR methods did not seem to provide an

improvement over the Seasonal model on average. All SeaGO extension methods

showed an improvement over the Seasonal baseline in at least one year and one

province. In both provinces, at least 1 SeaGO model outperformed the Seasonal

model in 5 of the 6 test years.

As shown in (Figure 3.1 ) for Bangkok in 2015, the LASSO extension models were

able to anticipate the late season spike in case counts when the Seasonal model was

not. In this same year in Chiang Mai, these models incorrectly predicted a similar

peak (Figure 3.1). In 2016 in Bangkok, all models seem to over-predict the number

of DHF in early months. This makes sense because the last data used to train those

models was through December of 2015, when the number of reported cases rocketed

to 2,000.

No model achieved the lowest error in every season, highlighting the impact of

season-to-season variation on model performance. In Bangkok, all 9 SeaGO mod-

els outperformed the Seasonal model in 5 of the 6 test years and also on average.

Sliding-window models had the lowest prediction error in 3 of the 6 test years. In

Chiang Mai, all SeaGO extensions, except for the sliding-window models, outper-

formed the Seasonal baseline model on average. Sliding-window models performed
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better than the Seasonal model in only 3 of 12 province-years. In both Bangkok and

Chiang Mai the sliding SeaGO and Adaptive SeaGO models did worse than their

non-sliding counterparts.

We can conclude that in Bangkok the Adaptive SeaGO, SeaGO-GrSeas, and

SeaGO GrLag models had the lowest prediction error in our testing phase and

we recommend them for future forecasting efforts. We recommend the Adaptive

SeaGO, SeaGO-GrSeas, and SeaGO-GrSearch models for future efforts.
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Figure 3.2. Regression coefficients in Bangkok. This plot shows regression term coefficients for each model
in each test year in Bangkok. Labels are provided for coefficients with magnitude of at least 0.1. White
cells represent coefficients close to, but not exactly 0. Gray cells represent the regression terms which were
deselected out of the model during cross validation. The exception for this is the Seasonal baseline model,
where search terms were not considered for modeling efforts.
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Figure 3.3. Regression coefficients in Chiang Mai. This plot shows regression term coefficients for each
model in each test year in Chiang Mai. Labels are provided for coefficients with magnitude of at least 0.1.
White cells represent coefficients close to, but not exactly 0. Gray cells represent the regression terms which
were deselected out of the model during cross validation. The exception for this is the Seasonal baseline
model, where search terms were not considered for modeling efforts.
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Figure 3.2 shows the coefficients fit for each model in each year. Labels from

these plots are the coefficients for each regression term and can be interpreted as

the term’s relationship with expected log-DHF cases. For example, in 2014 the A.

Sliding SeaGO model found after that holding all else equal, being in the 22nd

biweek is associated e0.6 = 1.82, or 82% more expected DHF cases than being in

the 1st biweek of that year. This model also found that a one unit increase in

the standardized frequency of Term 3 is associated with e0.3 = 1.35, or 35% more

expected DHF cases, after controlling for other terms.

In 2014 and 2015, very few of the SeaGO extension models selected the seasonal

predictors in their fits. Here, it is evident that the SeaGO extension models spread

weight onto more regression terms than the SeaGO model. For example in 3.3 , the

baseline SeaGO model put all weight on Term 3. However, SeaGO extension models

(which account for multicollinearity) spread weight onto multiple search terms.

In Chiang Mai, much more weight was put on the seasonality terms than in

Bangkok (Figure 3.3). Intuitively, this makes sense because Chiang Mai has stronger

seasonal patterns. Bangkok is nearly “a-seasonal” meaning that cases are harder to

predict and more weight is put on the Google data. Chiang Mai models also had a

smaller subset of search terms to penalize because less search data was available in

this province. Only search terms 1, 3, 4, and 6 had reasonable frequencies for our

modeling.

“Hemorrhagic fever” (Term 3) was consistently found to be predictive of DHF

case counts in both provinces. “Hemorrhagic fever disease” (Term 4), a close variant

of Term 3, is similarly weighted into the models across method types. “Dengue fever”
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(Term 10) was not found to be predictive of DHF in any model. This is reasonable,

because the term “dengue fever” is often not used in Thailand, whereas “hemorrhagic

fever” is much more common for the same illness. More technical terms such as “Low

Platelet” (Term 13) and “Aedes mosquito-borne disease” (Term 15) were also not

included in any models. These terms were not selected in Bangkok and were not

searched with enough frequency to be used in our models in Chiang Mai.

3.3 Multiple Prediction Horizons
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These analyses were replicated for making predictions multiple timesteps into the

future. As can be seen in Figure 3.4 a., Bangkok models perform similarly across

multiple prediction horizons. SeaGO models continue to outperform the Seasonal

model for all horizons. For example, the Adaptive SeaGO model had 18.3%,

9.5%, and 6.2% less error than the Seasonal model at 1, 3, and 7 horizons into the

future, respectively. Even at 7 horizons into the future, all SeaGO models have less

prediction error that the Seasonal model.

In Chiang Mai, SeaGO models perform better than the Seasonal model for

the 1st horizon, however by the 3rd horizon, their predictions are worse than a

seasonal mean. For example, the SeaGO-GrCorr model has 13% less error than

the Seasonal model at 1 horizon, but has 8.9% more error for predictions made for 3

horizons into the future. By 7 horizons into the future, the SeaGO-GrCorr model

has 60.7% more error than the Seasonal model. From this we can conclude that

SeaGO models are useful in predicting 1 horizon into the future, but for further

targets in Chiang Mai, a Seasonal model may be more accurate.
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CHAPTER 4

DISCUSSION

We have shown that real-time internet data can be used in the place of un-

derreported case count time series. On average our SeaGO models which incorpo-

rate Google Search data outperform seasonal average models in both provinces. In

Bangkok, these models have lower average prediction error than a seasonal model

for up to at least 7 horizons into the future. In Chiang Mai, these models perform

better for short-term forecasts, but for making predictions 3 or more horizons into

the future, a seasonal model is preferable.

It is evident that there is not one modeling approach which uniformly outper-

forms all others. Certain models are better able to adapt to a province’s unique

disease dynamics. This further substantiates the need for fitting different models

for different provinces in Thailand. Different methods work better depending on the

provinces and years they are fit for. This means it is important to investigate which

approach works best in each location and to not generalize findings from one location

to another.

Predicting similar behaviors between provinces is unsurprising because our search

term behavior is often indicative of national trends. Therefore, when a there is a

large influx in search term frequency our models react similarly but, in different
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magnitudes. In December of 2015, a beloved Thai actor Por Sahawong, died in

Bangkok after developing dengue shock syndrome. His illness sparked national fear

in the disease and resulted in surges in searches related to both him and dengue [11].

Although his illness was centered in the Bangkok outbreak, people all over Thailand

were interested in his story, meaning search data at this time did not mirror province-

specific behavior. Thus it is unsurprising, that in 2015 SeaGO models in Chiang Mai

made predictions more suited for activity in Bangkok.

Results from 2015 show that these models still have susceptibility to spurious

search traffic that is not necessarily related to symptomatic illness. Unfortunately,

it is difficult to reproduce the GFT models in order to make a comparison with

our results. It is reasonable to believe though that our models may do better in

times with misleading amounts of search traffic. This may be because GFT uses a

single variable for the fraction of ILI-related search queries at a given time while the

SeaGO models do not aggregate all search information into one predictor [8]. Instead,

the SeaGO models treat each search term separately, perhaps allowing for a more

nuanced accommodation of internet trends. These models also include a seasonality

component. More work is needed to evaluate how these models are sensitive to

unrelated search behaviors and what methods can be used to combat those issues.

This study leaves many doors open for future work. Successes with the moving-

window models in Bangkok suggest further investigation is promising. An ensemble

of the SeaGO models may provide smoother and more accurate predictions. Another

area of interest would be investigating probabilistic predictions in addition to our

point estimates.
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The algorithms utilized for both the LASSO and PCR methods used mean-

squared errors to choose optimal parameterizations. For this reason, we chose out-of-

sample prediction RMSE as our main metric for model performance. Mean absolute

error is a similar metric, however it is though to be is less sensitive to outliers. We

replicated these same procedures instead using MAE and our results were much the

same. Future work may benefit from further investigating this relationship between

parameter optimization and prediction error metrics.

Our work has been able to extend the ARGO model to make real-time predictions

in settings with imperfect surveillance. We have shown that internet trends can be

a powerful alternative source of data. With careful modeling approaches this data

can improve predictions otherwise limited by underreporting. These approaches can

likely be applied to many different model challenges, infectious disease or otherwise.
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