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ABSTRACT 

PLANTS, PARASITES, AND POLLINATORS: THE EFFECT OF MEDICINAL 
POLLENS ON A COMMON GUT PARASITE IN BUMBLE BEES  

 
SEPTEMBER 2018 

 
GEORGE M. LOCASCIO III, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
 

Directed by: Professor Lynn S. Adler 
 

 
 Declines in several pollinator species are due to a variety of factors, including 

pathogens. Incorporating pollinator-friendly plant species into wild and agricultural 

habitats could reduce the stress of pathogens if food sources act medicinally against 

pathogens. Previous research demonstrated two domesticated sunflower cultivars 

(Helianthus annuus) can dramatically reduce a gut pathogen (Crithidia bombi) of the 

common eastern bumble bee, Bombus impatiens. To ascertain the breadth of this 

medicinal trait, we tested whether pollen from several H. annuus cultivars and four 

relatives could also reduce C. bombi infections in B. impatiens. We also investigated 

whether timing of exposure to sunflower pollen relative to time of infection affected the 

strength of this medicinal trait. In all experiments, bees were infected and then fed their 

respective pollen diets for a week before they were dissected to assess infection. In our 

first experiment, all pollen from Helianthus species and relatives reduced C. bombi cell 

counts compared to our single species control of buckwheat (Fagopyrum esculentum). In 

our timing of exposure experiments, a one-time exposure to sunflower pollen present at 

the time of infection did not lower infection levels. In longer exposure trials, sunflower 

pollen suppressed C. bombi infection with a strength inversely proportional to the time 
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between treatment and infection. Our results suggest that medicinal pollen may be 

widespread in the Helianthus genus and potentially throughout the Asteraceae family. 

Thus, these results provide insights into how strategic plantings of certain floral resources 

can help mediate and influences pollinator disease dynamics. 
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CHAPTER 1 

MEDICINAL EFFECT OF MULTIPLE SUNFLOWER POLLEN CULTIVARS 

AND SPECIES ON A BUMBLE BEE GUT PATHOGEN 

1.1 Introduction  

Pollination services are critical in ecological and agricultural systems. In the 

United States, up to 90 crops are pollinated by bees (Kremen et al. 2002) and worldwide, 

pollinators pollinate about one third of food crops (Gallai et al. 2009). Pollinators also fill 

important ecological niches by aiding wild plant reproduction, contributing to the 

maintenance of a diverse landscape (Biesmeijer et al. 2006, Ollerton et al. 2011). But 

since the turn of the 21st century, several pollinator taxa have declined, including some 

bee species (Cameron et al., 2011; Colla & Packer, 2008; Potts et al., 2010). With 

mounting concerns about these declines (Goulson, Nicholls, Botías, & Rotheray, 2015; 

Vanbergen, 2013), research on pollinator diseases and their potential mitigation has 

become a pressing need (National Research Council, 2007).   

 Most bees rely solely on nectar and pollen as food sources, obtaining lipids and 

proteins from pollen and sugars from nectar (Nicolson, 2011). Wildflower gardens and 

pollinator strips along agricultural lands are receiving increased attention as mechanisms 

to provide foraging habitat and nesting sites for pollinators (Carvell, Meek, Pywell, 

Goulson, & Nowakowski, 2007). Flowers can provide not only nutritional benefits, but 

also play a role in mediating bee disease dynamics. Some floral rewards have medicinal 

properties that can suppress parasites (Baracchi et al. 2015), suggesting potential benefits 

if these species are planted in wildflower gardens or pollinator strips. Thus, identifying 
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plants with floral rewards that suppress pathogens could provide non-chemical options to 

improve pollinator health by incorporating target plant species into agroecosystems and 

natural habitats.  

 Studies of sunflower floral rewards (Helianthus annuus L.; Asteraceae) indicate 

that they may play a significant role in pathogen suppression. When compared to other 

monofloral pollen diets and a pollen mix, two varieties of cultivated sunflower 

(Helianthus annuus L.; Asteraceae) pollen dramatically suppressed Crithidia bombi 

(Kinetoplastea, Trypanosomatida) in Bombus impatiens (Cresson), and had less dramatic 

but still significant effects reducing the pathogen Nosema ceranae in honey bees, Apis 

mellifera (Giacomini et al., in review). This discovery is consistent with limited other 

research suggesting that floral rewards from sunflower and related taxa have medicinal 

properties for bees.  For example, ingestion of sunflower honey, which is made of 

primarily nectar with some pollen, reduced the fungal parasite Nosema ceranae and 

increased survival in honey bees (Gherman et al. 2014). Additionally, some solitary bees 

are specialists on Asteraceae pollen (Praz et al. 2008) and it has been suggested that in 

Osmia, this may be due to pollen reducing parasitoid larval growth (Spear et al. 2016). 

These discoveries suggest that sunflower and possibly broader Asteraceae pollen have 

medicinal effects that could help bees resist pathogens or parasites, but the extent of this 

effect across plant taxa is unknown.  

 Bumble bees (Bombus spp.) are widespread in temperate regions, and several 

species have undergone dramatic declines in recent decades (Cameron et al., 2011). The 

causes of pollinator declines are complex and multifaceted (Goulson et al. 2015), and 

some declines might be associated with pathogen pressure (Schmid-Hempel et al. 2014, 
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Goulson et al. 2015). One pathogen, Crithidia bombi can reduce Bombus terrestris early 

colony growth rate and successful emergence of hibernating queens (Brown et al. 2003, 

Fauser et al. 2017), reduce the production of new daughter queens (Goulson et al. 2017), 

and interacts with starvation to increase mortality by 50%(Brown et al. 2000). 

Furthermore, C. bombi reduced Bombus impatiens’ motor learning rates of flower 

handling, and foraging rates (Otterstatter et al. 2005), potentially reducing pollination and 

foraging efficiency. The effects of C. bombi on bumble bee physiology and behavior 

suggest this pathogen may contribute to some bumble bee declines.   

 The goal of our study was to assess whether pollen from multiple cultivars and 

wild populations of H. annuus, its congeners, and Asteraceae relatives significantly 

reduced C. bombi in B. impatiens. Additionally, because previous studies have relied on 

honey bee-collected pollen we compared the effects of hand- and honey bee-collected 

pollen. Honey bees use nectar to collect and transport pollen (Thorp 1979, Roulston and 

Cane 2000) and honey bee collected pollen also contains salivary enzymes (Standifer et 

al. 1980, Mărgăoan et al. 2010). Since pollen collected by honey bees includes some 

nectar while hand-collected pollen does not, comparing hand- and honey bee-collected 

pollen allowed us to ascertain whether medicinal properties are due to pollen, nectar, or 

both.  
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1.2 Methods  

1.2.1 Study system 

 The common eastern bumble bee (Bombus impatiens) is a eusocial generalist 

pollinator with an annual colony life cycle (Wilson 1971) that can produce up to 400 

workers (Cnaani et al. 2002). B. impatiens is commonly found in eastern North America 

(Williams et al. 2014) and colonies are commercially available. The intestinal parasite 

Crithidia bombi is found in wild B. impatiens populations  in eastern North America and 

in up to 80% of bumble bee workers in western Massachusetts populations (Gillespie 

2010). Crithidia bombi is transmitted horizontally during floral visitation (Durrer and 

Schmid-Hempel 1994), and in the hive from one generation of workers to the next via 

contact with fecal deposits (Imhoof and Schmid-Hempel 1999). Sunflower (Helianthus 

annuus) is a common early successional, self-compatible annual forb native to central 

North America (Reagon and Snow 2006) that is grown commercially for its oilseed and 

as a cover crop (USDA, 2015). 

 

1.2.2 Plant sources and cultivation 

 We used pollen from nine H. annuus cultivars, four populations of wild H. 

annuus, two Helianthus congeners, two Solidago species and two controls (buckwheat, 

Fagopyrum esculentum, and a honey-bee collected wildflower mixed pollen). Hereafter, 

all 19 pollen treatments will be referred to as ‘taxa’ for simplicity. Pollen from most taxa 

was collected from plants grown from seed obtained from the USDA Agricultural 

Research Service through the North Central Regional Plant Introduction Station, which is 

part of the U.S. National Plant Germplasm System program. The seeds were sown at the 
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College of Natural Science’s greenhouses at the University of Massachusetts-Amherst, 

and were grown at the Crop and Animal Research and Education Center in South 

Deerfield, Massachusetts. For detailed propagation and sowing information, see 

Appendix 1. We also collected pollen from three taxa outside our field site: H. annuus 

‘Cobalt II’ cultivar and H. annuus ‘Black Oil Seed’ cultivar from farms and Solidago 

spp., which grew wild (Appendix 1, Table S1). For the species we didn’t grow, we used 

DNA barcoding following established protocols (Bell et al. 2017) to confirm identity. 

Both yellow and orange-colored Solidago pollen had 96% and 97% matches with 

Solidago rugosa and Solidago canadensis. Because both pollen colors had high potential 

matches with both Solidago species, we will refer to these taxa as ‘Solidago yellow’ and 

‘Solidago orange’ and both taxa will be considered a mix of both potential species. Both 

the yellow and orange colored pollen from H. annuus ‘Cobalt II’ and H. annuus ‘Black 

Oil Seed’ were 96-100% matches with H. annuus. We tested yellow and orange pollen 

separately for both taxa and will refer to them by their cultivar name and their color, 

yellow or orange. Buckwheat and one source of sunflower pollen used in our original 

research (Giacomini et al., in review) were obtained from Changge Hauding Wax 

Industry, China, and the wildflower mix pollen was obtained from Koppert Biological 

Systems (Linden Apiaries, Howell, Minnesota USA). We used single species of multiple 

sunflower taxa and relatives compared to buckwheat because buckwheat has a similar 

‘low quality’ protein content and have a similar amino acid percentage (Yang et al. 

2013).  
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1.2.3 Pollen collection and preparation 

 We collected pollen by hand and with honey bees and brought it to the lab every 

day (Monday – Friday) for storage at -20˚C until trials began. For most cultivars, we 

were only able to use one method or the other due to logistical constraints. However, we 

collected three H. annuus taxa (Black Oil Seed, Germany, and wild California) using 

both methods, allowing direct comparisons between collection methods within taxa. 

Hand-collected pollen was collected using paint brushes to brush pollen into aluminum 

foil envelopes and then stored in the freezer inside 5 ml plastic vials. Honey bee-collected 

pollen was collected using pollen traps (Mann Lake Ltd. Hackensack, Minnesota, USA) 

in honey bee hives from the UMass-Amherst Apiary. Traps were checked and pollen was 

collected on weekdays from July to October 2016. The pollen from all the wild H. 

annuus and the ‘Dwarf’ cultivar were honey bee-collected inside 3.6m x 9.7m x 3m tents 

(Appendix 1, Figure S1A, B) made of polyester fabric (Osgood Textile, West Springfield, 

Massachusetts, USA) and fine mesh cloth (Phifer Incorperated, AL, USA) with a metal 

frame (Delta Canopies, McKinney, TX, USA), which excluded other pollinators. Due to 

logistics, we did not use tents for all taxa grown at the field station. Solidago spp., H. 

annuus ‘Cobalt II’, and H. annuus ‘Black Oil Seed’ were present at natural sites or 

commercial farms, and were honey bee-collected without tents. Pollen collected from 

Solidago spp. and H. annuus ‘Cobalt II’ sites also contained pollen from other species. 

We sorted and excluded pollen from other species, and separated the yellow and orange 

pollen from our taxa in case colors indicated chemical differences that could affect C. 

bombi infection. We also note that H. annuus ‘White’ had white pollen, while all other 

taxa had yellow or orange pollen.  
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Before starting the trials, pollen was mixed with a 30% 1:1 glucose:fructose sugar 

solution, reflecting the concentration and sugar ratios in H. annuus nectar (Neff and 

Simpson 1990, Mateo and Bosch-Reig 1997). The ratio of sugar solution to pollen was 

different between honey bee- and hand-collected pollen because hand-collected pollen 

contained no nectar, and thus needed more liquid to reach the same consistency. The ratio 

of solution to pollen was adjusted for each pollen type to accomplish a dough-like 

consistency similar across all taxa.  For hand-collected pollen, we added 43-47% sugar 

solution by weight, compared to 7-24% sugar solution added to the honey bee-collected 

pollen. Honey bee-collected pollen can contain up to 40% more sugars by weight than 

hand-collected pollen (Todd and Bretherick 1942, Roulston and Cane 2000), which 

roughly corresponds to the 20-40% more sugar solution added to hand compared to 

honey bee-collected pollen in our experiment.  

 

1.2.4 Inoculum preparation 

 Crithidia bombi were maintained in commercial B. impatiens ‘source’ colonies 

(Biobest Canada, Leamington, Ontario, Canada) originally infected with C. bombi from 

wild B. impatiens workers collected at Stone Soup Farm in Hadley, MA (42°21'51.93"N 

72°33'55.88"W). Every day that we inoculated bees, we prepared fresh C. bombi 

inoculum from 5-10 source colony workers. Inoculum was prepared by grinding mid- and 

hindguts in 1.5 mL Eppendorf tubes with 300 µL of ¼ strength Ringer’s solution (Fluka 

96724, Sigma-Aldrich, St. Louis Missouri, USA) with a plastic rod. The solution was 

then vortexed for five seconds, and allowed to settle for 4-5 hours at room temperature. 

After the solution settled, 10 µL samples of the supernatant were placed on a 
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hemocytometer. Using a compound light microscope at 40x magnification, we counted 

and summed moving C. bombi cells from the corner and central squares of the 

hemocytometer grid, a total of 0.02 µL volume. We then used 150 µL samples from 1-3 

bees to make a mixture diluted with Ringer’s solution to achieve 1200 C. bombi cells/ µl. 

This solution was mixed with an equal amount of 50% sucrose solution to prepare an 

inoculum with 600 C. bombi cells/µl in 25% sucrose, as described in Richardson et al  

(2015). 

 

1.2.5 Laboratory trials 

During the spring and summer of 2017, workers were isolated from commercially 

reared laboratory colonies that were confirmed to be free of C. bombi via biweekly 

subsamples of five bees. In total, 17 colonies were used. Before inoculation, worker bees 

were isolated in small vials and starved for 2-3 hours. Bees were inoculated individually 

with 10µl of fresh C. bombi inoculum made according to the protocol described above. 

Bees were randomly assigned to one of the 19 different pollen treatments and housed 

individually in plastic 500 mL deli cups with approximately 50 mg (range 40 – 70 mg) of 

their treatment pollen and 10 mL of the 30% sugar solution, made available by a cotton 

wick through a hole cut into the top of a 95 mm petri dish. Experimental bees were stored 

in the dark at 27˚C in an incubator. Pollen and sugar solutions were replaced every other 

day. After seven days, bees were dissected and C. bombi was counted as described in 

‘Inoculum preparation’ above. Additionally, radial cell length from the right forewing 

was measured as a proxy for bee size (Harder 1982). A total of 650 worker bees were 

used in the experiment (Appendix A, Table S1, for treatment sample sizes). In addition, 
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253 bees died before the end of the 7-day trials, 37 escaped and 13 had damaged wings. 

Bees that died, escaped or had damaged wings were not used in our analysis. 

 

1.2.6 Statistical analysis 

 To examine the effects of pollen treatment on C. bombi raw cell counts (cells per 

0.02 µL) in each bee after a seven-day pollen diet, we used the statistical computing and 

graphical environment R version 3.3.1 (R Core Team, 2017). We used generalized mixed 

linear models. Due to the nature of our zero bounded data, we first tested the residuals 

with a Poisson distribution and checked for over-dispersion. Finding that the data were 

over-dispersed, we analyzed data with a negative binomial error distribution with a log 

link function using the package lme4 (Bates, Maechler, Bolker, & Walker, 2015), and 

calculated least-squares means and standard errors with the package lsmeans (Lenth, 

2016).  In addition to the predictor of pollen treatment and response of C. bombi cell 

count we used the fixed covariate of bee size (estimated by radial cell length) and random 

effect covariates of date of inoculation and colony of origin. We tested the significance of 

each covariate with the drop1 function, which compares the goodness of fit between 

models with and without the terms under consideration. Upon finding a significant 

overall effect of pollen treatment, we compared differences between pollen treatments 

using a Tukey’s HSD post hoc test. In a separate analysis, we asked whether species 

differed in ability to reduce C. bombi by pooling pollen treatments into their respective 

species (H. annuus, H. petiolarus, H. argophyllus, Solidago spp) and using species 

instead of pollen taxa as a fixed predictor, with random effects of inoculation date and 

colony of origin and fixed effect of bee size. We also asked whether hand-collected vs. 
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honey bee-collected pollen differed in ability to reduce C. bombi cell counts using a 

similar analysis, but with collection method as the predictor instead of species. Finally, 

we used a survival analysis with the package survminer (Kassambara & Kosinki, 2018) to 

examine whether pollen treatment affected mortality rates. To evaluate if the 19 pollen 

treatments had an effect on the individual bee survival, we compared our model with and 

without pollen treatment as the predictor. We removed 50 bees that escaped or had wing 

damage from our survival analysis. Figures were made with ggplot2 (Wickham, 2009) 

and cowplot (Wilke, 2016) packages. 

 

1.3 Results 

All Helianthus and Solidago pollen treatments decreased C. bombi cell counts in 

B. impatiens when compared to buckwheat pollen (Figure 1.1). Compared to the 

wildflower pollen mix, all but three taxa (H. annuus ‘Germany’ hand-collected, H. 

annuus, ‘wild California’ honey bee-collected and H. petiolaris) significantly decreased 

C. bombi cell counts.  Most bees treated with Helianthus and Solidago taxa had similarly 

low C. bombi cell counts, but those reared on Solidago (yellow) and H. annuus 

‘Germany’ (honey bee collected) had lower cell counts than some others, such as H. 

annuus ‘wild California’ hand collected and H. annuus ‘Cobalt II’ (orange) (Figure 1.1). 

In the survival analysis, neither pollen treatment (χ2
(18) = 5.59, p = 0.997) nor bee size 

(χ2
(1) = 5.59, p = 0.44) affected survival. In our all pollen taxa analysis, there was a 

negative relationship between bee size and C. bombi counts (χ2
(1) = 16.49, p < 0.001). 

When we pooled taxa by species (H. annuus, H. petiolaris, H. argophyllus, 

Solidago spp), species did not differ in their effects on C. bombi counts in a post-hoc 
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Tukey’s HSD test. We collected pollen both by hand and with honey bees for three taxa 

(H. annuus ‘Black Oil Seed’, ‘Germany’, and ‘wild California’), allowing us to make 

direct within-species comparisons between collection methods. There were significant 

effects of collection method on C. bombi cell counts in two of the three direct 

comparisons, but in opposite directions. Honey-bee collection increased C. bombi cell 

counts relative to hand collection in H. annuus ‘Black Oil Seed’ (χ2
(1) = 24.5, p < 0.001, 

Figure 1.2A) but decreased C. bombi counts in H. annuus ‘Germany’ (χ2
(1) = 6.26, p = 

0.012, Figure 1.2B), and collection method had no effect in H. annuus, ‘wild California’ 

(χ2
(1) = 0.40, p = 0.5246, Figure 1.2C). We also grouped the 17 Asteraceae pollen taxa by 

collection method in an overall comparison, and found no statistically significant 

difference between collection methods on C. bombi counts (χ2
(1) = 0.95, p = 0.33, Figure 

1.2D).  

 

1.4 Discussion      

Pollen from a wide variety of sunflowers suppressed the bumble bee gut pathogen 

C. bombi when compared to buckwheat pollen and a wildflower mixed pollen as controls. 

Bees fed buckwheat pollen had a 20- to 40-fold increase in C. bombi cells compared to 

those that consumed Helianthus spp and Solidago spp pollen. Our results greatly extend 

previous work showing that sunflower pollen from two H. annuus cultivars dramatically 

reduced Crithidia (Giacomini et al., in review), and are consistent with other studies 

showing that sunflower honey reduced Nosema infection in Apis mellifera (Gherman et 

al. 2014) and that Asteraceae pollen may protect Osmia bee larvae against brood parasites 

(Spear et al. 2016). The current study provides a much wider range of options for using 
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sunflower pollen as a food supplement for managed bees. Our previous work suggested 

the potential for sunflower pollen to become an important component of pollinator health 

management plans because, in addition to reducing C. bombi in bumble bees, it also 

reduced the fungal parasite Nosema ceranae in honey bees, Apis mellifera (Giacomini et 

al., in review). In addition, the intensity of C. bombi infection was lower in wild-caught 

workers when agricultural lands had more sunflower acreage. By growing most of our 

own pollen rather than purchasing it commercially, our study removed potential variation 

due to different land use practices, such as the application of fungicide or other pesticides 

that can affect bee health (Bernauer et al. 2015) and resistance to pathogens (Pettis et al. 

2013, McArt et al. 2017). 

Although a wide range of sunflower pollen dramatically reduced C. bombi 

infection in our study, sunflower pollen has low protein concentrations compared to other 

types of pollen (Nicolson & Human, 2013). Pollen with low protein can have multiple 

negative effects on bees, such as reducing hypopharyneal gland size in honey bees 

(Pernal and Currie 2000), larval weight in Bombus terrestris (Tasei and Aupinel 2008), 

sweat bee offspring weight (Roulston & Cane, 2002), and immune function in honey bees 

(Rasmont et al. 2005, Brunner et al. 2014). Although we found no differences in 

individual bee mortality when fed sunflower, buckwheat or wildflower mixed pollen, we 

recommend that future work should compare the benefits and costs of sunflower pollen 

on bee performance, including reproduction, and ascertain the proportion of sunflower 

pollen in the diet that maximizes medicinal benefits while minimizing nutritional stress. 

Bumble bees are generalists that typically consume a polyfloral diet, and so the 

comparison of our sunflower taxa to the wildflower mix is more ecologically relevant 
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than the comparison to buckwheat pollen. A polyfloral diet provides varying amounts of 

amino acids, protein, and macronutrients compared to a monofloral diet (Schmidt et al. 

1995, Alaux et al. 2010). Pollen macronutrient composition affected foraging preferences 

in Bombus impatiens (Vaudo et al. 2016) and amino acid composition affected colony 

growth in Bombus terrestris (Kämper et al. 2016). Furthermore, honey bees infected with 

Nosema ceranae had improved longevity when fed a polyfloral pollen diet compared to a 

monofloral diet (Di Pasquale et al., 2013). Thus, pollen resource composition is 

potentially important when managing lands to optimize bee health and resistance to 

pathogens.  

In the temperate regions of North America, Helianthus spp. and Solidago spp. are 

common native plants (Werner et al. 1980, Reagon and Snow 2006) that are in different 

tribes within the family Asteraceae (Bremer 1987). Because Solidago is in a different 

tribe than Helianthus but was equally effective at reducing C. bombi, it is possible that 

medicinal pollen is more widespread in the Asteraceae. Because Asteraceae are common 

components of many habitats and often bloom in mid to late summer in temperate North 

America, this result could have important implications. By reducing parasite infections, 

these plant species could reduce one of the stressors affecting bumble bee populations. In 

Bombus terrestris, high C. bombi infection is negatively correlated with daughter queen 

emergence in wild colonies (Goulson et al. 2017) and high infections can reduce early 

colony development by 40% when queens emerge from hibernation in spring (Brown et 

al., 2003). Because Solidago spp. bloom in late summer and autumn, infected daughter 

queens could have an advantage if they forage on these floral resources before entering 

winter hibernation.  
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Because previous work examined the medicinal effect of honey bee-collected 

sunflower pollen or sunflower honey (Giacomini et al. in review, Gherman et al. 2014), 

both of which contain nectar and pollen, these previous studies could not conclusively 

determine whether medicinal effects were due to pollen, nectar, or both. We compared 

the medicinal effect of hand- vs honey bee-collected pollen to ascertain whether the 

likely mechanism is due to a component of pollen or nectar. Surprisingly, in comparisons 

of hand- and honey bee-collected pollen within taxa, we found opposite results for 

different taxa. Within our three comparisons we found all possible results: honey bee-

collected pollen resulted in more C. bombi (Figure 1.2A), less C. bombi (Figure 1.2B), or 

no effect (Figure 1.2C) compared to hand-collected pollen. In a larger comparison 

including all taxa, most of which were collected with only one of the two methods, there 

was no significant difference (Figure 1.2D). Because we did not consistently find that 

honey bee-collected pollen (which contains nectar) reduced C. bombi counts relative to 

hand-collected pollen (which does not contain nectar), overall our results suggest that the 

main mechanism of reduced infection is due to some component of pollen rather than 

nectar. 

 Although most of our taxa had typical yellowish-orange pollen, some of our taxa 

produced pollen in distinct colors of yellow (Solidago spp, and H. annuus ‘Cobalt II’), 

orange (Solidago spp, H. annuus ‘Cobalt II’, and H. annuus ‘China’) or white (H. annuus 

‘white’). Solidago spp and H. annuus ‘Cobalt II’ produced both yellow- and orange-

colored pollen, which were separated into two treatments (Supplimental inforamtion 

Table 1). We hypothesized that pigments might play a role in C. bombi suppression, since 

pigments are known to be biologically active and affect herbivores and bacteria 
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(Gronquist et al. 2001, Kagithoju et al. 2012). For example, in Petunia hybrid flowers 

with white and blue petal sections, the white part of the petal was consumed more than 

the blue part by two generalist caterpillars, and larvae gained more weight feeding on 

white than blue tissue (Johnson et al. 2008). This suggests that the anthocyanin pigments 

deterred herbivory and reduced herbivore growth. We found no support for the 

hypothesis that pollen color affects C. bombi counts, suggesting pigments did not play a 

significant role in suppression. Yellow and orange pollen did not differ within taxa, and 

H. annuus with white pollen did not differ from taxa with yellow or orange pollen in 

reducing C. bombi (Figure 1.1). 

Furthermore, while our results clearly demonstrate a substantive effect, the 

mechanism is unknown. Future research should address whether the medicinal quality of 

sunflower pollen is due to secondary chemistry, nutritional components, or another 

mechanism, such as physical attachment of pollen to the parasite or the gut wall, 

preventing C. bombi from adhering to the gut wall (Gorbunov 1996). Previous studies 

have shown that nectar secondary chemistry suppresses C. bombi (Thorburn et al. 2015, 

Richardson et al. 2015) and honey bee immunity can be stimulated by the ingestion of 

some honeys (Mao et al. 2013). Pollen proteins could also play a role. For example, the 

ragweed (Ambrosia artemisiifolia) pollen coat proteins trigger histamine production in 

humans as a defense response (Munshi 2000). Future work is needed to determine 

whether sunflower and goldenrod pollen contain immune stimulants that induce up-

regulation of genes that reduce infection. A limitation of this study is the use of 

bumblebees from commercial hives bred for generations in captivity. Commercial rearing 

may influence how the immune system responds to pathogens, although C. bombi is 
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present in commercial hives (Colla et al. 2006). The effect of sunflower pollen should be 

tested on wild B. impatiens and other bee species to investigate whether the medicinal 

effects are consistent across bee taxa, given that C. bombi infects various Bombus species 

(Gillespie 2010, Malfi and Roulston 2014).  

 Plants have provided humans with medicine for centuries, and our work suggests 

that insights about medicinal pollen for bees may be relevant to human drug discovery. 

Four plant species within the Asteraceae family suppressed C. bombi in B. impatiens 

compared to buckwheat pollen. In addition, pollen from Artemisia annuua, in the same 

family as Helianthus annuus and Solidago spp., suppressed Trypanosoma cruzi and 

Trypanosoma brucei in vitro (Mishina et al. 2007). Furthermore, the plant compound 

artemisinin, which is also found in A. annuua, can be used as an anti-malarial drug 

(Klayman 1985). The potential to use insect model systems to guide searches for human 

medicines from these plant species should be considered, particularly for human diseases 

that are vectored by insects. These studies suggest that the plant family Asteraceae has 

medicinal qualities for both humans and insects that should be investigated in more 

depth.   

Whatever the mechanism of suppression, we found that sunflower and goldenrod 

pollen dramatically reduced the parasite Crithidia bombi in Bombus impatiens, compared 

to both a single-species pollen control and wildflower pollen mix. This study suggests 

that in addition to using sunflower and goldenrod to manage bee health in 

agroecosystems, these native North American species could be incorporated into natural 

ecosystems to manage C. bombi infection in B. impatiens. Future work should address the 
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breadth of this effect for additional bee species and pathogens to make responsible 

recommendations for management practices. 
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CHAPTER 2 
 

THE TIMING OF DOSAGE RELATIVE TO INFECTION 

2.1 Introduction 

 Pollinators are crucial components in agriculture and for maintaining diverse plant 

communities. Pollinators are important for yield of up to 90 crops in the United States, 

and about one third of crops globally (Gallai et al. 2009). Bumble bees are used for 

pollination services in greenhouses and in agricultural fields where they can, along with 

other native pollinators, complement and often exceed honey bee pollination services 

(Winfree et al. 2007, Russo et al. 2013). However, some pollinator species are in decline 

(Potts et al. 2010, Hallmann et al. 2017). Pollinator decline is thought to be caused by 

several factors (Goulson et al. 2015), including pesticides (Pettis et al. 2012), fungicides 

(McArt et al. 2017), habitat degradation (Goulson et al. 2008), land use change (Potts et 

al. 2010), and pathogens (Meeus et al. 2011). These declines underscore the importance 

of developing methods to effectively combat stressors such as pathogens. 

! Managed and wild bumble bees are both affected negatively by pathogens 

(Murray et al. 2013, Graystock et al. 2014). For example, newly emerged Bombus 

terrestris queens infected with the fungal pathogen Nosema spp. produce less sexual 

offspring and smaller colonies (Otti and Schmid-Hempel 2008). Crithidia bombi 

(Kinetoplastea, Trypanosomatida; (Lipa, and Triggiani 1988) is a common pathogen of 

multiple bumble bee species (Gillespie 2010) with a range of effects on hosts. Wild B. 

terrestris colonies infected with C.  bombi are less likely to produce new daughter queens 

compared to uninfected colonies (Goulson et al. 2017). Crithidia bombi reduced motor 

learning rates of flower handling in B. impatiens (Gegear et al. 2005) which could 
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influence how effectively bumble bees pollinate and forage (Koch et al. 2017). 

Furthermore, mortality rates of C. bombi infected B. terrestris under food-limited 

conditions were 50% higher than infected bees with sufficient resources (Brown et al. 

2000). Thus, diet can interact with pathogen infection to alter the severity of outcomes.!

In addition to quantity, the quality of pollinator diet can be important for 

mediating bee resistance to pathogens. For example, a polyfloral pollen diet reduced 

Nosema ceranae (Zander) infections and improved longevity in infected honey bees 

(Apis mellifera L.; Apidae) compared to a monofloral diet (Alaux et al. 2010, Di Pasquale 

et al. 2013). Several nectar secondary compounds reduced C. bombi in B. impatiens 

(Manson et al. 2009, Richardson et al. 2015, Baracchi et al. 2015), indicating that floral 

chemistry may play important roles mediating bee disease, but see (Palmer-Young et al. 

2017) for conflicting results. In addition, sunflower (Helianthus annuus L.; Asteraceae) 

honey reduced Nosema ceranae in honey bees compared to other types of honey 

(Gherman et al. 2014). Furthermore, sunflower pollen reduced two pathogens in two 

different hosts, C. bombi in B. impatiens and N. apis in honey bees (Apis mellifera) 

(Giacomini et al. in review). These studies suggest that floral rewards in pollinator diet 

affect pathogen prevalence and influence disease dynamics. However, sunflower pollen is 

low in protein and amino acids, and so it may be advantageous to only supply as much as 

necessary to effectively manage pathogens, and therefore to determine when exposure to 

sunflower pollen will be most effective, as well as how much is necessary to suppress 

infection. 

 In epidemiology, the time between when a subject is exposed to an infectious 

agent and the administration of medication can affect the outcome. For example, disease 



 

20 

 

was prevented in monkeys when medicinal treatment was administered within 36 hours 

of infection with human immunodeficiency virus (Otten et al. 2000) and with simian 

immunodeficiency virus (Tsai et al. 1995). Furthermore, mice experienced decreased 

lung inflammations if they were medicated within 48 hours after inhaling the irritant 

ragweed pollen (Sur et al. 1996). In these examples, the timing of medicinal dosage 

mattered, and early intervention reduced or prevented irritation or infection better than 

late intervention. However, with insect disease dynamics we know very little about how 

timing of exposure to potentially medicinal floral rewards affects resistance to pathogens.!

Here, we investigate how the interval between exposure relative to treatment affects a 

common bumble bee pathogen.  

 We used two experiments to ask if the time between infection and receiving a 

dose of medicinal sunflower pollen affected C. bombi prevalence in B. impatiens. First, 

we asked if a one-time exposure to sunflower pollen at the time of infection would reduce 

C. bombi prevalence in single-bout foraging trials. Second, in laboratory trials we asked 

if the amount and timing of sunflower pollen consumption relative to time of infection 

affects pathogen prevalence. We hypothesize that early exposure and longer exposure to 

medicinal sunflower pollen will prevent the infection more effectively than later exposure 

or no exposure. 

 

2.2 Methods 

2.2.1 One-time exposure to sunflower pollen at time of infection 

2.2.1.1 Inoculum preparation 

  For both experiments we used Crithidia bombi from wild Bombus impatiens 
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workers collected in Massachusetts at Stone Soup Farm in Hadley (42°21'51.93"N 

72°33'55.88"W) that were used to infect commercial B. impatiens colonies (Biobest 

Canada, Leamington, Ontario, Canada) in the laboratory.  Infection was transferred to 

new commercial colonies when the previous colony began to decline. On days bees 

entered their experiments, fresh C. bombi inoculum was prepared by dissecting 5-10 

workers. We placed guts into separate 1.5 mL Eppendorf tubes mixed with 300 µL of ¼ 

strength Ringer’s solution (Fluka 96724, Sigma-Aldrich, St. Louis Missouri, USA), 

which we then homogenized with a plastic rod, vortexed for five seconds, and settled for 

3-4 hours at room temperature. After guts settled, a clear 10 µL sample of supernatant 

was placed into a hemacytometer.  Using a compound light microscope at 40x 

magnification, moving C. bombi cells in the corner and central squares of the 

hemocytometer grid were counted and summed, a total of 0.02 µL volume. We then 

combined multiple 150 µL samples from 1-4 bees and diluted with ¼ strength Ringer’s 

solution to obtain a solution with 1200 C. bombi cells/µl. This solution was mixed with 

an equal amount of 50% sucrose solution to prepare an inoculum with 600 C. bombi 

cells/µl in 25% sucrose, as described in Richardson et al (2015).  

 

2.2.1.2 Plant cultivation  

 We obtained Helianthus annuus seeds from the United States Department of 

Agriculture Agricultural Research Service through the North Central Regional Plant 

Introduction Station, part of the U.S. National Plant Germplasm System program. They 

were sown in SUNGRO Horticulture medium (Sun Gro Horticulture Canada Ltd., Seba 

Beach, AB TOE 280, Canada) in 50 plug trays in a greenhouse until transplanted to the 
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Crop and Animal Research and Education Center in South Deerfield, MA 

(42°28'51.93"N 72°34'55.88"W). We grew 100 cytoplasmic male sterile (CMS), non-

pollen producing plants and 100 pollen-producing plants (non-CMS), from each of three 

cultivars (89 and CMS-89, 236 and CMS-236, and 404 and CMS-404; see Appendix B, 

Table S1 for propagation information), for a total of approximately 600 plants. The 

numbers 89, 236, 404 refer to the U.S. National Plant Germplasm System database ID 

plots where the seeds were grown. Thus, we used male-sterile (CMS) or pollen-producing 

(non-CMS) lines as the treatment within each of three cultivars to assess generality of our 

results.  

 

2.2.1.3 Transmission trials 

 To determine how pollen exposure during infection affects C. bombi transmission, 

we allowed bumble bees to forage on H. annuus flowers that we hand-inoculated and 

then determined bee infection status after one week. We performed field trials comparing 

transmission of C. bombi on non-pollen producing inflorescences (CMS) to pollen-

producing inflorescences of three cultivars of H. annuus. All inflorescences were 

enclosed with mesh bags for 48 hours prior to trials to prevent pathogen contamination 

from wild bee visitors. We harvested each inflorescence from the field immediately 

before the trial began and placed the stem in a florist’s tube with distilled water in a 

Styrofoam holder. Before the beginning of each trial, we visually divided the 

inflorescence head (capitulum) into quarters, and a 10 µL C. bombi inoculum drop was 

added to one flower in each quarter. The location was marked with a red paint marker 

(UniPaint fine line PX-21, Mitsubishi Pencil, Sanford Corporation, Oak Brook, IL, USA) 
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on the outer edge of the open whorl. All trials were conducted between 10:00 and 16:00 

during June to August 2016. 

 Worker bees for transmission trials were isolated from laboratory colonies that 

were confirmed to be C. bombi-free via weekly subsamples of five bees. Bees were 

placed in small vials and starved for 3-4 hours prior to trials. Trials were conducted in 60 

x 35 x 45 cm3 wood and mesh cages with a canvas cloth at one end to allow insertion of 

bees and flowers. We recorded the number of un-inoculated flowers probed, inoculum 

drops probed, time spent foraging, researcher conducting the trial, and the time the trial 

started and ended, all of which were used as potential covariates. A flower or inoculum 

drop was recorded as ‘probed’ when the bee inserted its tongue into the flower or drop. A 

trial was considered complete when a bee had foraged for a minimum of one minute, 

visited at least one inoculum drop, and visited at least five additional un-inoculated 

flowers. Most bees foraged for much longer than one minute; we allowed bees to 

complete foraging before terminating each trial, which was no longer than 20 minutes. 

Cages were kept in the sun to be sterilized for 30 minutes after each trial had ended; C. 

bombi is not viable after desiccation (Figueroa L. L. et al., in preparation) and in previous 

work using ethanol to sterilize dissolved the wood varnish (Adler L. S., pers. obs.). On 

days field trials were conducted, the inoculum was placed in a cooler with ice packs for 

transport and storage. 

 After each trial, the bee was recaptured into a clean individual vial, placed in a 

cooler, and transported at the end of the day to the laboratory. In the laboratory, we 

placed bees in individual vials with nectar feeder lids and reared them in an incubator at 

27ºC in darkness for seven days. Each day, bees were fed approximately 40-60 mg of 
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wildflower pollen (Koppert Biological Systems) mixed with 30% sucrose to create a 

pollen paste, and 500 µL of 30% sucrose solution made available in a modified 

Eppendorf tube through a cotton wick (nectar feeder). Vials, nectar feeders, and pollen 

were replaced daily. After seven days, we dissected bees and counted C. bombi cells as 

described above for Inoculum preparation. At the time of dissection, we collected the 

right forewing of each bee and measured radial cell length with a dissecting microscope 

to estimate bee size (Harder 1982) as a potential covariate. Final sample sizes of bees for 

each cultivar were: Non-CMS 236 = 38, CMS 236 = 39, Non-CMS 404 = 14, CMS 404 = 

13, Non-CMS 89 = 30, and CMS 89 = 23, from six different colonies. 

 

2.2.2 Timing of sunflower pollen consumption relative to infection 

2.2.2.1 Laboratory trials 

 To evaluate how the timing of exposure to sunflower pollen affected C. bombi 

counts, we used inoculated laboratory bees exposed to one of four pollen treatments: 7 

days of sunflower pollen (sunflower only), 7 days of buckwheat (Fagopyrum esculentum) 

pollen (buckwheat only), 3.5 days of sunflower and then 3.5 days of buckwheat pollen 

(sunflower first), or 3.5 days of buckwheat pollen and then 3.5 days of sunflower pollen 

(buckwheat first). We used single pollen species comparisons because sunflower pollen 

and buckwheat pollen have similar protein and amino acid concentration (Yang et al. 

2013), but consuming buckwheat pollen results in much higher C. bombi infection than 

consuming sunflower pollen (Giacomini et al. in review). Worker bees were isolated 

from commercial colonies in the lab, placed in small vials and starved for 2-3 hours prior 

to inoculation. We provided bees with a 10 µl drop of inoculum, and only bees that 
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consumed the entire drop were included in the experiment. After inoculation, bees were 

placed in individual vials with nectar feeder lids and their respective pollen treatment, 

then reared in an incubator at 27ºC in darkness for seven days. Each day, bees were fed 

approximately 40-60 mg of a fresh mixture of buckwheat or sunflower pollen paste, and 

500 µl of 30% sucrose solution made available in a modified Eppendorf tube through a 

cotton wick (nectar feeder). Vials, nectar feeders, and pollen were replaced daily. After 

seven days, bees were dissected and C. bombi cells were counted, as described in 

Exposure to sunflower pollen at time of infection experiment (above). At the time of 

dissection, we again collected the right forewing to measure radial cell length to estimate 

body size and use as a covariate in analysis. Our sample sizes were 41-45 bees per 

treatment, for a total of 172 bees, from four different colonies. 

 

2.2.3 Statistical analysis 

 To test whether sunflower pollen presence or absence at time of infection in 

single bout foraging trials reduced infection, we used raw C. bombi cell count as the 

dependent variable with a model including pollen presence (yes/no), H. annuus line (404, 

89, 236) and their interaction as independent fixed predictors. We initially included 

several fixed covariates, including the number of inoculum drops probed (to assess the 

amount of parasite each bee was exposed to), the number of un-inoculated flowers 

probed, and researcher overseeing the foraging trial. However, inoculum drops probed 

and researcher did not affect Crithidia counts (χ2
(1) < 1.3, P > 0.3 for all) and were 

dropped from the model. In addition, colony of origin (to account for the genetic 

similarities between bees), total time foraging on inflorescences, bee size (estimated by 
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radial cell length), and trial date (to account for variation in C. bombi inoculum 

preparation) were originally included as random effects. To analyze the effect of pollen 

presence on foraging behavior, we used separate responses of inoculum drops probed, 

flowers probed, and total time spent foraging, with fixed predictors of pollen presence, H. 

annuus line and their interaction, as well as random effects of colony of origin, bee size, 

and trial date. 

To ask how timing of sunflower consumption after infection affected raw C. 

bombi cell counts, we used a generalized linear mixed model with a negative binomial 

error distribution and a log link function, including pollen diet treatment as a fixed effect 

and originally included random effects of colony of origin, bee size, and inoculation date. 

We compared our model with and without pollen treatment using the anova function. 

Finding a significant treatment effect, we used a Tukey’s post hoc HSD test to compare 

the four treatments. Graphical displays were composed with ggplot2 (Wickham 2009) 

and cowplot (Wilke 2016) packages.  

 

2.3 Results 

2.3.1 Exposure to sunflower pollen at time of infection 

 C. bombi cell count after one week was not affected by pollen presence (χ2
(1) = 

0.028, P = 0.866), H. annuus line (χ2
(2) = 0.808, P = 0.369) or their interaction (χ2

(1) = 

0.697, P = 0.404; Figure 1). Furthermore, the only covariate in the model that had 

significance was un-inoculated flowers probed (χ2
(1) = 4.039, P = 0.045). During the trials, 

bees foraged on inflorescences with pollen (non-CMS) for an average of 4 minutes, 18% 

more time than inflorescences without pollen (Figure 2.2A) and in the model pollen and 
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line interaction was significant P = 0.043, and increased flowers probed by 23%, and 

these effects were significant, and neither line or the interaction term of the model 

covariates were significant (Figure 2.2B). However, the presence of pollen significantly 

decreased the number of inoculum drops probed by 50% and in the model H. annuus line 

was significant P < 0.001(Figure 2.2C). 

  

2.3.2 Timing of sunflower pollen dosage relative to infection 

 Our model explaining C. bombi cell counts included predictors of pollen 

treatment and bee size as fixed effects and a random effect of colony of origin. In our 

model, treatment had a significant affect on raw C. bombi cell counts (χ2
(3) = 38.239, P < 

0.001) Using a Tukey’s post hoc HSD test, a pure sunflower pollen diet most strongly 

reduced C. bombi counts, followed by exposure to sunflower pollen first, then exposure 

to buckwheat pollen first, and finally exposure to only buckwheat pollen (Figure 2.3). 

Bees fed buckwheat pollen first had approximately a two-fold increase in C. bombi 

compared to bees fed sunflower pollen first, but this comparison was not statistically 

significant (P = 0.441, Figure 2.3). However, bees exposed to buckwheat pollen first had 

significantly higher C. bombi counts than bees exposed to pure sunflower pollen, a 12-

fold increase (P < 0.001, Figure 2.3), and this treatment was not statistically different 

from consuming buckwheat pollen only (P = 0.525, Figure 2.3). Furthermore, exposure 

to sunflower pollen first was different from consuming only sunflower pollen (P < 0.001, 

Figure 2.3) and also from consuming buckwheat pollen only (P = 0.023, Figure 2.3), 

indicating that both dose and timing of sunflower pollen affect pathogen counts.  

 



 

28 

 

2.4 Discussion 

 The severity of C. bombi infection depended on the duration, and to some extent 

the timing, of exposure to sunflower pollen relative to infection. The first experiment 

demonstrated that a single dose of sunflower pollen exposure at the time of infection was 

insufficient to prevent or suppress C. bombi infection. In the second experiment, we 

demonstrated that 7 days of sunflower pollen suppressed C. bombi infections to nearly 

untraceable levels while seven days of buckwheat pollen resulted in relatively high C. 

bombi infection, consistent with previous work (Giacomini et al., in review; LoCascio et 

al., in prep). Although exposure to 3.5 days of sunflower pollen immediately following 

infection was not as effective as exposure for 7 days, it was more effective than 

consuming only buckwheat pollen. This indicates that dose is important; consuming 3.5 

days of sunflower pollen is not as effective as 7 days, but better than none. By contrast, 

exposure to 3.5 days of buckwheat pollen and then 3.5 days of sunflower pollen was not 

more effective than only consuming buckwheat pollen, indicating that timing also plays a 

role. These results suggest that duration of exposure is more important for reducing C. 

bombi infection, but earlier exposure can also play a role. 

  Pollen presence affected foraging behavior in our trials. There were significant 

trends for bees to probe more flowers and spent more time foraging when pollen was 

present. Conversely in the absence of pollen, bees foraged on more C. bombi inoculum 

drops.  This is consistent with a previous experiment that showed B. impatiens preferred 

sunflower inflorescences with pollen over inflorescences without pollen (Mallinger and 

Prasifka 2017). Interestingly, although bees probed significantly more inoculum drops on 

inflorescences without pollen, pollen presence did not affect bee infection levels. Thus, 
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bees that foraged on inflorescences without pollen had greater exposure to C. bombi, but 

had similar pathogen counts to bees that foraged on inflorescences with pollen. In 

general, consumption of greater volumes of inoculum led to higher infection intensity in 

B. impatiens (Otterstatter and Thomson 2006). Although we do not know why sunflowers 

without pollen would incur greater exposure to inoculum without affecting pathogen 

counts, this has interesting implications for the relationship between foraging dynamics 

and exposure to infectious material in agricultural settings, since male-sterile sunflowers 

are often grown on farms (Parker 1981).  

 Although the mechanisms by which sunflower pollen reduces C. bombi in bumble 

bees are unknown, the results from our timing experiments lead us to speculate about 

possibilities. For example, if the mechanism underlying resistance was immune system-

priming, we would have expected the one-time exposure to be effective. Priming with 

some nectar alkaloids has been suggested to help bumble bees infected with C. bombi 

(Manson et al. 2009), and warrants further studies investigating pre-exposure and post-

exposure to sunflower pollen. Our results also indicate that a small dose of sunflower 

pollen is not directly toxic to C. bombi, or at least not enough to prevent bee infection. 

Rather, a longer-term exposure in the gut seems to be necessary for suppression, 

suggesting a more gradual immune response to sunflower. Alternatively, sunflower 

pollen may affect resistance by altering the gut microbial community, a mechanism that 

can only be effective post-consumption. Gut microbiota obtained from nest mates provide 

protection against C. bombi in B. terrestris (Koch and Schmid-Hempel 2011). 

Additionally, gut microbiota in honey bees interact with pollen by producing enzymes 

that can break down pollen walls (Engel et al. 2012) releasing internal pollen components 



 

30 

 

into the gut. Although our experiments were not designed to elucidate mechanism, the 

contrasting results for single foraging bout exposure vs. longer periods of consumption 

suggest that exploring whether immune function and the gut microbiota are affected by 

sunflower pollen would be important in future work.  

 Sunflower pollen effectively reduced C. bombi with a 7 day exposure, but it is 

relatively nutrient poor, having low protein content and less than the minimum 

requirement of two essential amino acids for honey bees (Nicolson and Human 2013). 

Sunflower pollen has been suggested to hinder honey bee development and reduce larval 

weight in Bombus terrestris when it is their sole pollen source (Tasei and Aupinel 2008), 

and resulted in as much mortality as pollen starvation for honey bees infected with 

Nosema (Giacomini et al, in review). Aside from the specific disadvantages of a 

sunflower-only diet, consuming any monofloral pollen diet may reduce bee health. For 

example, nurse honey bees parasitized with Nosema ceranae had reduced survival when 

fed monofloral compared to polyfloral pollen diets (Di Pasquale et al. 2013), and a 

polyfloral pollen mix increased immune system activity compared to monofloral diets 

(Alaux et al. 2010). Therefore, future plans using sunflower pollen to manage bee disease 

should also include other pollen sources for optimal bee health. Our data suggest that, 

while timing of sunflower pollen relative to infection exposure can improve beneficial 

medicinal effects, a 7-day exposure is optimal to reduce C. bombi infection.  

 Our findings may have important applications with managed bumble bees. 

Because previous studies indicate that multiple cultivars of sunflower and some relatives 

suppress C. bombi (LoCascio et al, unpublished data), future studies could directly supply 

bee colonies with sunflower pollen to see whether sunflower pollen supplements can 
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benefit bees at the whole-colony level. Sunflower supplements may also provide benefits 

to managed honey bee colonies. Giacomini et al. (in review) found that sunflower pollen 

also suppressed the widespread fungal parasite, Nosema spp., in honey bees. Apiary 

managers could investigate whether the use of sunflower pollen supplements or increased 

sunflower plantings improves honey bee health. 

 Our result that timing plays a role in disease management is consistent with 

studies using other trypanosomes that cause Chagas disease and African sleeping 

sickness in humans. With Chagas disease, early treatment suppressed acute symptoms 

better than when treatment was administered after chronic symptoms began (Vallejo and 

Reyes 2005, Jannin and Villa 2007). Early intervention is crucial for African sleeping 

sickness (Legros et al. 2002) and is necessary to prevent late stage progression, which 

requires a combination of medicines to ensure drug resistance doesn’t occur (Priotto et al. 

2006). In both diseases, early treatment is imperative for the disease to subside quickly or 

to be brought to manageable levels. Furthermore, treatment must be continued for a 

prolonged period of time after infection to be most effective. Although less effective than 

7 days of sunflower pollen, we found that even 3.5 days of exposure to sunflower pollen 

could reduce C. bombi, but only if sunflower pollen was administered immediately after 

infection.    

 In conclusion, we found that early short-term exposure to sunflower for 3.5 days 

was more effective at reducing C. bombi compared to a buckwheat only diet. Pollen 

presence also affected bee foraging behavior; bees foraging on inflorescences with pollen 

probed more flowers but fewer inoculum drops than on inflorescences without pollen. 

Thus, floral resources have the potential to affect bee disease transmission both before 
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and after infective material is encountered. Future field studies that examine how late-

season Asteraceae diets affect bee overwintering infection will help determine potential 

land management strategies that reduce infection harbored between seasons. This could 

provide insight for land managers and beekeepers about plants and diets that improve 

pollinator disease resistance. Our results suggest that providing B. impatiens with 

medicinal sunflower pollen at the early stages of infection of C. bombi and for sufficient 

duration is important in managing disease in bumble bees. 
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Figure 1.1 Mean raw Crithidia count per 0.02µL (± SE) for the 19 pollen taxa. Buckwheat (pink), wildflower mix (yellow), our 

positive control of H. annuus ‘China’ (orange), honey bee-collected taxa (grey), hand-collected taxa (blue) and Solidago spp (green), 

which were honey bee-collected. Letters a-d indicate statistically significant differences between pollen treatments after a post hoc 

Tukey’s test. Full explanations for all taxa names are provided in Appendix A; “HC” refers to hand-collected for the three taxa where 

we had both honey bee and hand collection. Standard errors were calculated by back-transforming least-square means plus or minus 

least-square mean standard errors.  
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Figure 1.2 Comparison of hand vs. honey bee-collected pollen. (A) H. annuus, ‘Black Oil Seed’, (B) H. annuus, Germany, (C) H. 

annuus, wild California, and D) comparison pooled across all Asteraceae taxa used in the experiment (17 treatments). Asterisks (*) 

denotes statistically significant differences between collection method. Standard errors were calculated by back-transforming least-

square means plus or minus least-square mean standard errors.  
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Figure 2.1 Mean Crithidia bombi count (± SE) within each cultivar one week following exposure in a single foraging bout. Categories 

on the x-axis represent cultivars with pollen (light grey) and without pollen (dark grey). Means and standard errors were calculated by 

back-transforming least-square means plus or minus least-square mean standard errors. 
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Figure 2.2 Effect of pollen presence on bee foraging behavior. In all plots, ‘No’ indicate inflorescences without pollen (CMS) and 

‘Yes’ indicates inflorescences with pollen (non-CMS). A) mean (± SE) total minutes foraging on each inflorescence type. B) mean (± 

SE) flowers probed per inflorescence. C) mean (± SE) inoculum drops probed per inflorescence. The asterisk (*) denotes significantly 

different at P < 0.05. Means and standard errors were calculated by back-transforming least-square means plus or minus least-square 

mean standard errors. 
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Figure 2.3 Mean (± SE) C. bombi counts comparing timing of dosage relative to infection. Sunflower for 7 days, sunflower for 3.5 

days then 3.5 days of buckwheat pollen, buckwheat pollen of 3.5 days then 3.5 days of sunflower pollen, and buckwheat for 7 days. 

Different letters above bars denote significantly different treatments at P < 0.05 using a Tukey’s post hoc HSD test. Means and 

standard errors were calculated by back-transforming least-square means plus or minus least-square mean standard errors.  
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APPENDIX A 
 
 

CHAPTER 1 SUPPLEMENTAL INFORMATION 
 

Table legend.  Source information and propagation protocols. All dates are from 2016. Taxa column refers to the plant species or 

cultivar we used in the experiment. The color indicates the color of the pollen.  Sample size refers to the number of bees that went 

through the experiment with that pollen treatment. Bee, hand, or both indicates how the pollen was collected. ‘Bee’ was collected with 

honey bees using pollen traps, ‘hand’ was collected by hand using paint brushes and colleting the pollen into aluminum foil envelopes, 

and ‘both’ was when we used both methods. The source column refers to where we obtained the pollen from, and the GRIN seeds are 

accompanied with the plot ID number (PI) that the seeds were obtained from. In the location column, ‘UMass’ refers to the Crop and 

Animal Research and Education Center in South Deerfield, Massachusetts (42°28'39.6"N 72°34'51.1"W), operated by the University 

of Massachusetts, Amherst. Seed scarification, transferred to 15-cm pot, and date transferred to field refers to the propagation methods 

of the taxa we grew. The amount of plants refers to the total acres or the total number of plants that were grown.  

Taxa$$ Pollen$
color$

Sample$
size$
(n)$

Collection$
type$

Source$ Location$$ Seed$
Scarification$

Transferred$
to$15=cm$
pot$

Date$
Transferred$
to$field$

Amount$
of$plants$

Solidago!spp! Yellow! 36! Bee!! East!Leverett!
Meadow!

Massachusetts!
42˚43’91.80” N, 
-72˚48’68.03” 

W!

N/A! N/A! N/A! ~5!acres!
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Solidago!spp! Orange! 48! Bee! East!Leverett!
Meadow!

Massachusetts!
42˚43’91.80” N, 
-72˚48’68.03” 

W!

N/A! N/A! N/A! ~5!acres!

H.*annuus,!
Black!Oil!
Seed!!

Yellowish!
orange!

93! Both! Laurenitis!
Farm!

Massachusetts!
42˚44’17.77” N, 
-72˚55’04.64” 

W!

N/A! N/A! N/A! ~1!acres!

H.*annuus,!
Cobalt!II!!

Yellow! 41! Bee! Messa!Farm! Wisconsin!
44˚73’16.91” N, 
-91˚94’86.32” 

W!

N/A! N/A! N/A! ~75!acres!

H.*annuus,!
Cobalt!II!!

Orange! 47! Bee! Messa!Farm! Wisconsin!
44˚73’16.91” N, 
-91˚94’86.32” 

W!

N/A! N/A! N/A! ~75!acres!

H.*annuus,!
China!

Orange! 49! Bee! Changge 
Hauding Wax 

Industry!

China! N/A! N/A! N/A! Unknown!

Buckwheat! Brown! 57! Bee! Changge 
Hauding Wax 

Industry!

China! N/A! N/A! N/A! Unknown!

H.*annuus,!
Germany!!

Yellowish!
orange!

25! Both! GRIN!Seeds!
PlT650375!

UMass!! No! No! June!17! ~300!
plants!

H.*annuus,!
wild!

California!!

Yellowish!
orange!

56! Both! GRIN!Seeds!
PlT613732,!
PlT649815,!
PlT649816!

UMass! Yes! No! July!12!
!

~300!
plants!

H.*annuus,!
‘Dwarf’!

Yellowish!
orange!

36! Bee The Chas. C. 
Hart Seed Co 
Wethersfield, 

CT, USA!

UMass!! No! No! July!8!
(directly!
sown)!

~300!
plants!

Helianthus*
argophyllus*

Yellowish!
orange!

14! Hand!! GRIN!Seeds!
PlT435630,!
PlT494569!

UMass!! Yes! Yes! June!17! ~300!
plants!
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H.*annuus,!
wild!Texas!

Yellowish!
orange!

35! Hand!! GRIN!Seeds!
PlT613728,!
PlT649810,!
PlT649811!

UMass!! Yes! No! June!17! ~300!
plants!

H.*annuus,!
wild!North!
Dakota!

Yellowish!
orange!

35! Hand!! GRIN!Seeds!
PlT613724,!
PlT613725,!
PlT613750!

UMass! Yes! No! June!27! ~300!
plants!

H.*annuus,!
white!

White! 18! Hand!! GRIN!Seeds!
PlT650655!

UMass! Yes! No! June!17! ~300!
plants!

Helianthus*
petiolaris*

Yellowish!
orange!

7! Hand!! GRIN!Seeds!
PlT435825,!
PlT435826,!
PlT435827!

UMass!! Yes! Yes! N/A! ~30!
plants!

Wildflower!
mix!

Various! 53! Bee Koppert 
Biological 
Systems!

Minnesota! N/A! N/A! N/A! Unknown!
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Supplemental methods 

Plant propagation information 

 All seeds were sown in SUNGRO Horticulture medium (SunGro Horticulture 

Canada Ltd., Seba Beach, AB TOE 280, Canada) in 50-plug trays with natural lighting. 

They were germinated at 21˚C and misted every 15 minutes for 30 seconds from sunrise 

to sunset on a mist top bench. When 50% of the seedlings in a tray reached the four true-

leaf stage, the tray was relocated to a different greenhouse with natural light plus 14 

hours of artificial supplementary lighting consisting of 50% 400W high pressure sodium 

and 50% 400W metal halide lights. Plants were watered as needed. The plants ranged 

from 18-60 cm in height when transplanted to the field site. H. petiolaris was 

transplanted into 15-cm pots and remained in the greenhouse due to small sample sizes. 

H. petiolaris was fertilized twice, on April 20 and May 13, 2016, and H. argophyllus 

once on May 13, 2016 with Peters Professional 20-10-20 Peat lite (JR Peters Inc. 

Allentown PA, USA) at 350 ppm. Other taxa were not fertilized. Helianthus annuus 

‘Dwarf’ cultivar was sown directly into soil in the field. Pollen collection methods are 

located in the main body of the methods section of the manuscript. 

 

Seed scarification protocol 

 Seeds were sterilized with a 2% bleach (The Chlorox Co, Oakland CA, USA) and 

1% Triton-X 100 (Sigma-Aldrich, St. Louis Missouri, USA) solution for 10 minutes, 

stirring for 10 seconds every minute. Afterwards, they were rinsed in distilled water for 5 

minutes, stirring for 10 seconds every minute. After rinsing, a small section of the blunt 

end of each achene was removed with scissors. The seeds were then placed on moist filter 
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paper in 95 mm petri dishes, sealed with parafilm and placed in an incubator for 48 hours 

at 27˚ C. After 48 hours, the remaining seed coat was removed by hand and cotyledons 

were placed on a new petri dish with new moist filter paper in an incubator for an 

additional 24-48 hours. When the radicle grew to > 10 mm on ~50% of the seeds, petri 

dishes were moved to a lab bench in ambient light for 3 days, after which they were 

transplanted into the soil growing medium and grown in the greenhouse as described 

above in ‘Plant propagation information.’ 

 

Tent assembly 

  The metal tent frame (Delta Canopies, McKinney, Texas, USA) was assembled 

according to manufacturer instructions with slight modifications. We removed 12, 0.75m 

joint pieces, which reduced the width of the tent from 4.8m to 3.6m; length was 9.7 m 

and height was 3 m.  The 9 joints where the legs and the roof of the frame connected 

were reinforced by 0.6m metal conduit pieces. The conduits were attached to roof 

sections spanning the joints perpendicular to the vertical legs with six to eight zip ties. 

The frame was also reinforced with three evenly spaced ratchet straps pulled taught, 

spanning the width of the frame parallel to the ground. Next, the polyester fabric and 

mesh was draped evenly over the frame and held in place with 10 2.54 cm PVC snap 

clips (Johnny’s Select Seeds, Winslow, Maine, USA), one per leg. Four pieces of 0.6m 

factory-provided angle iron, two on each side near the tent ends, were hammered into the 

ground and reinforced by 2 0.6m pieces of 7.62cm rebar to provide an anchor for rope 

that spanned the top of the tent to secure the frame and fabric in place. Finally, a trench 

approximately 12cm deep and 6cm wide was dug around the perimeter of the tent, except 
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for a space of 2m across the one of the narrow sides, which served as an entrance. Excess 

fabric was rolled around lumber (4cm x 8cm, various lengths) and buried in the trenches. 

To secure the entrance, fabric was rolled on one piece of lumber and weighted down with 

concrete bricks and soil. 
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APPENDIX B 
 
 

CHAPTER 2 SUPPLEMENTAL INFORMATION 
 

Table legend. Plant cultivation information. All dates were in the year 2016. The cultivar 

column includes whether the plant had pollen or no pollen (CMS). The date and total 

sown describes the date each group of plant was sown at the University of Massachusetts 

Amherst greenhouses and the amount that was sown. Date trails completed indicates the 

last day we used plants from that group for foraging trials. 

Cultivar Date and total 
sown  

Date from 
propagation 
room to 
greenhouse  

Date 
transplanted 
to pots  

Date 
transplanted 
to field 

Date trials 
completed 

 404 April 22 100 April 29 May 19 June 16 July 11 

CMS 404 April 22 100 April 29 May 19 June 16 July 11 

 89 May 2 100 May 9 May 20 June 15 July 22 

CMS 89 May 2 100 May 9 May 20 June 15 July 22 

 236 May 12 100 May 19 June 13 June 17 August 15 

CMS 236 May 12 100 May 19 June 13 June 17 August 15 
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