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ABSTRACT 
 

CLPXP-REGULATED PROTEINS SUPPRESS REQUIREMENT FOR RECA IN DAM 
MUTANTS OF ESCHERICHIA COLI K-12  

 
September 2018 

 
AMIE DEMETRA SAVAKIS 

 
B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Prof. Steven J. Sandler 

 
 
Double strand breaks (DSB) are a common source of DNA damage in both prokaryotes and 

eukaryotes. If they are not repaired or are repaired incorrectly, they can lead to cell death 

(bacteria) or cancer (humans). In Escherichia coli, repair of DSB are typically accomplished via 

homologous recombination and mediated by RecA. This repair pathway, among others, is 

associated with activation of the SOS response. DNA adenine methyltransferase (dam) mutants 

have an increased number of DSB and, therefore, are notorious for being RecA-dependent for 

viability. Here, we show that the synthetic lethality of Δdam/ΔrecA is suppressed when clpP is 

removed, suggesting that there is a protein, normally degraded by ClpXP, which is preventing 

DSB from occurring.  

 
 
 
 
 
 
 
 
 
 
 
 



	v	

 
TABLE OF CONTENTS 

 
 

Page 
 

ACKNOWLEDGEMENTS……………………………………………………...……….…      iii 
 
ABSTRACT………………..………………………………....……………………………..      iv 
 
LIST OF TABLES..………………..………………………………....……………………..      vi 
 
LIST OF FIGURES………………..………………………………....………………….….      vii 
 
CHAPTER 
  

I. INTRODUCTION.………………………………....………………….……      1 
 

II. METHODOLOGY AND RESULTS.…………………………..………….       4 
 

III. DISCUSSION.………………………………....…………………………...     13 
 
REFERENCES………………..……….……………………………....…………………...     33 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	vi	

LIST OF TABLES 
 
 

Table               Page 
 
T1.  Strain List…………………………………………………………….………....  15 

T2.  RecA-dependency of dam mutants…………………………………….….…....  17 

T3. Recombination efficiency of dam mutants…………………………….………..  18 

T4. Percentage of cells with fluorescent RecA structures………………….……......  19 

T5. The effects of mutations in protease genes on RecA-dependency………...……  20 

T6. Recombination efficiency 2.………………………………...…………..……....  21 

T7. Assessment of UvrA function with C-terminal tag.………………..………......  22 

T8. Contribution of ClpXP-degraded proteins to suppression.………………..........  23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	vii	

LIST OF FIGURES 
 
 

Figure               Page 
 
F1. Homologous Recombination Pathway (HR).………………...………..………...   24 

F2. Methyl-directed Mismatch Repair Pathway (MMR).………………..………....   25 

F3. MMR in dam mutants.………...……………………...…………………………  26 

F4. SOS response in E. coli.……………………………………………………...…   27 

F5. RecA-GFP in dam mutants.……………………………………….……………   28 

F6. Growth of dam/recA200 at 30°C and 42°C.……………………………………   29 

F7. Growth of dam mutants carrying recA200 mutation at 30°C and 42°C..………  30 

F8. DpnI digest of pBR322 in wild type, dam, and dam/clpP strains.……………… 31 

F9. Recombineering – uvrA223 construct……………………………………..……  32



	1 

CHAPTER I 
 

INTRODUCTION 
 

Double strand breaks (DSB) are a common source of DNA damage in both prokaryotic 

and eukaryotic organisms. They can arise for a multitude of reasons, including ionizing radiation 

[36], reactive oxygen species [36], or problems in DNA replication [32]. If they are not repaired 

correctly, they can cause genomic rearrangements, which are hallmarks of cancerous cells in 

humans [12] and cell death in bacteria.  

Homologous recombination is the mechanism for double-strand break repair (DSBR) in 

E. coli, and is mediated by RecA [13]. This pathway is also a dominant mechanism for DSBR in 

bacteria, including E. coli, and is one alternative in mammals, including humans [10]. 

Homologous recombination begins with resection of DNA at the source of the DSB on the 3’-

end via RecBCD [23], an ATP-dependent helicase-nuclease complex. RecA then binds to the 3’-

overhang of broken single-stranded DNA (ssDNA) [23], polymerizes to form a protein/DNA 

helical filament [23], and induces the SOS response [23, 33]. RecA then searches for a 

homologous sequence and creates a Holliday Junction to repair the break [33]. The pathway 

continues with strand invasion, D-loop formation, branch migration via RuvAB and RecG, and 

resolution of the Holliday Junction via resolvasome RuvABC [13, 32, 33] (Figure 1). 

Methyl-directed mismatch repair (MMR) is another DNA repair pathway, which repairs 

improper base pairs in newly synthesized DNA (Figure 2). During MMR, the unmethylated 

strand of hemimethylated DNA is cleaved, or ‘nicked’, at the GATC site [11]. The system has to 

be able to differentiate between parent and daughter strand during this process. This 

differentiation is possible through the help of DNA Adenine Methyltransferase (Dam), which 

methylates adenine in 5’-GATC-3’ sequences [19]. In the absence of Dam, ‘nicking’ occurs on 
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both strands of DNA, as the cell cannot differentiate between parent and daughter strand [19, 29] 

(Figure 3). This leads to an increase in DSB on the chromosome and a dependence on 

recombination for survival [37].  

Dam is conserved across the gamma-proteobacteria and is responsible for methylation of 

GATC sequences. In addition to its role in DNA mismatch repair, GATC-methylation also 

regulates gene expression and chromosome replication [21]. Although DNA methylation occurs 

immediately following replication, Dam is only present at ~130 molecules per rapidly growing 

cell [2]. The rate-limiting level of Dam explains why there is a lag between chromosomal 

replication and methylation of newly synthesized DNA, or why DNA is initially hemimethylated 

[21]. Extensive previous work [25, 21] has shown that dam mutants are RecA-dependent for 

viability, and, therefore, that a Δdam/ΔrecA combination is synthetically lethal. One known 

mechanism to suppress this synthetic lethality is by removing one of the mutH/L/S genes [6], 

which constitute the ‘nicking’ complex in MMR (Figure 2).  

Upon DNA damage, RecA binds to ssDNA and induces the SOS response, which is 

normally repressed at a transcriptional level by LexA [15] (Figure 4A). When DNA damage 

occurs, the SOS response is activated, LexA is cleaved and inactivated, and approximately 40 

genes are induced for DNA repair to take place [15] (Figure 4B-C). Once DNA repair is 

complete, transcriptional repression of these genes is restored. In order for the cell to return to 

homeostasis, ClpXP, and other proteases, selectively degrade lingering SOS proteins [14]. This 

apparatus is, in part, responsible for allowing the cell to return to homeostasis after the SOS 

response.  

Previous work [5, 24, 27] has shown that ClpXP degrades certain SOS proteins, including 

UvrA and RecN, which are both involved in DNA damage repair pathways.  
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Here, we show that by removing clpP, dam mutants are no longer dependent on RecA for 

survival. This would suggest that there is some protein, normally degraded by ClpXP, that when 

present in higher amounts, is preventing DSB from occurring. 

 All mutations and/or mutant strains referred to in this work are complete gene deletions, 

unless otherwise stated. 
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CHAPTER II 
 

METHODOLOGY AND RESULTS 
 

Strains and Media 

All bacterial strains are derivatives of E. coli K-12 and are described in Table i. All P1 

transductions were selected for on 2%-agar plates made with either Luria broth or 56/2 minimal 

media supplemented with 0.2% glucose, 0.001% thiamine, and appropriate amino acids. 

Selection using antibiotics used 50 μg/ml ampicillin, 25 μg/ml chloramphenicol, 50 μg/ml 

kanamycin, or 10 μg/ml tetracycline.  

 

P1 Transduction 

The protocol for P1 transduction has been previously described [38]. All P1 transductions were 

selected for on 2%-agar plates made with either minimal or rich media plus antibiotics, when 

appropriate. All transductants were purified on the same type of medium on which they were 

selected. 

 

Turbidity (OD600) Measurements 

All bacterial strains were grown to mid-log phase shaking in 3mL 56/2 minimal media. 200uL of 

mid-log phase culture was then inoculated into shaking 10mL 56/2 minimal media. 0.75mL of 

culture was aliquotted into a clean, plastic cuvette for each measurement and inserted into the 

spectrophotometer in the proper orientation. Measurements were taken at 45-minute intervals, 

beginning at 0 minutes. The optical density (OD) was measured at a wavelength of 600nm. 

Growth curves were taken at least 3 different times. Statistical analysis was completed on growth 

curves using the chi-squared test. 
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uvrA223 

To prevent degradation by ClpXP, two aspartates (DD) were added to the C-terminal end of 

uvrA, immediately prior to the stop codon. Flanking sequences with regions homologous to the 

end of uvrA, as well as immediately after, containing the two aspartates (red) were added to a 

portion of the pGalK plasmid (blue), encoding only the galK gene, via PCR. 

pRSJS1645 5’ ACCGTCGCGGAGTGCGAGCATCACACACGGCACGCTTCCTTAA 

GCCGATGCTGGACGACTAACCTGTTGACAATTAATCATCGGCA-3’ 

prSJS1646 5’-GGAAGAAAAACGTAAATTGCTGGTGCAACTCTGAAAGGAAAAG 

GCCGCTCAGAAGCGGCCTTAACGATCAGCACTGTCCTGCTCCTTG-3’ 

This fragment was then cloned onto the chromosome at the end of uvrA by linear transformation 

and standard recombineering methods [40] (Figure 9). Utilization of galactose as a sole carbon 

source was used for selection. The construct was then verified by PCR. 

 

Preparation of cells for microscopy 

Cells were grown to log phase in 56/2 minimal media. 3-6uL of culture was placed onto a 1% 

agarose pad with minimal media. Coverslip was placed on top of cells. Cells were allowed to 

incubate on pad at 37°C for 2-3 hours. Images were taken for at least 9 different fields of view (3 

fields on 3 different days) and analyzed.  

 

Analysis of microscopic images 

Images were analyzed using the following software: OpenLabs 5.5.1, Oufti Version 1, and 

MatLabs R2016a. Strains were quantified for number of cells, cell area, number of foci, and 
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shape of foci using specially written MatLabs programs. Statistical analysis was completed on 

the number of foci with the chi-squared for homogeneity test.  
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CHAPTER III 
 

RESULTS 
 
dam mutants are dependent on RecA for viability, but do not show decreased 

recombination efficiency. Previous work [25, 18] has shown that dam mutants are RecA-

dependent for viability due to the increased frequency of DSB. Since a dam/recA combination is 

synthetically lethal, ΔrecA was brought in last and non-selectively in all strains via P1 

transduction to avoid a negative result. A Tn10 transposon was inserted at a non-essential gene 

(srlD) nearby. This allowed for a selection for tetracycline resistance followed by a screen for 

kanamycin resistance. The ratio presented (Table 2) is the number of ΔrecA to the total number 

of colonies screened. The linkage between the Tn10 insertion and ΔrecA(kan) is ~85%.  

A recombination efficiency test was performed to show that, even though dam mutants 

are RecA-dependent for viability, they do not show decreased recombination efficiency (Table 

3). This was demonstrated by the ability to transduce into a dam mutant. An allele encoding a 

requirement for methionine (metB1) with a Tn10 transposon nearby (CAG5052) was introduced 

non-selectively. Transductants were selected for on minimal media plus methionine in the 

presence of tetracycline and then screened for growth on minimal media only. Transductants that 

failed to grow on only minimal media carried the metB1 allele. The null mutation in metB1 and a 

transposon insertion in btuB used in this experiment do not affect the overall health of the cell. 

 

Suppression of RecA-dependency in dam mutants is specific to the absence of the ClpXP 

protease complex. ClpXP is a two-module protease complex. The protease portion, ClpP, 

degrades proteins that contain LAA residues [8]. The ATPase chaperone component, ClpX, 

recognizes C-terminal residues 9-11 of an ssrA-tag (AANDENYALAA) [8] and unfolds the 
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protein of interest. An adaptor protein, SspB, enhances the specificity of the ClpXP protease by 

recognizing and delivering ssrA-tagged proteins to ClpX for degradation [8]. We wanted to test 

whether removing clpXP, and having increased levels of SOS proteins, would relieve the 

requirement for RecA in a dam mutant. 

 The RecA-GFP (green fluorescent protein) fusion gene is one method to assess 

RecA activity in vivo. The fluorescent structures, or foci, represent RecA loaded onto damaged 

DNA [30]. Strains that carry RecA-GFP have all the ability of wild type RecA, though at slightly 

reduced levels [30]. In a dam mutant with RecA-GFP, around 50% of cells in a population have 

at least one fluorescent structure, whereas only about 6% of wild type cells do (Table 4). The 

absence of clpP or sspB in a dam mutant significantly decreases the number of RecA structures 

compared to a dam mutant alone (P<0.001), and is comparable to wild type (P>0.999) (Table 4, 

Figure 5). This decrease in fluorescent structures suggests that there is some protein, normally 

degraded by ClpXP, that when present in higher amounts, is either a) preventing DSB from 

occurring, or b) allowing for an alternative, RecA-independent pathway of recombination.  We 

do not believe the latter to be the mechanism of suppression, as the literature has not shown or 

suggested RecA alternatives in Escherichia coli. For this reason, we have focused on the theory 

that some protein is preventing DSB from occurring. 

To determine whether or not suppression is specific to the ClpXP protease complex, other 

protease genes were removed in a dam mutant and tested for RecA-dependency (Table 5). These 

include the DegP, HslUV, and Lon proteases, as well as the adaptor protein SspB. DegP is 

required for survival at high temperatures and has been shown to degrade mutant, oxidatively 

damaged, and aggregated proteins. Lon is responsible for degradation of misfolded and 

regulatory proteins [8], including SulA [7]. HslUV was originally identified as part of a heat 
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shock operon and is required for growth at high temperatures [9]. The ATPase component of 

HslUV, HslU, shows similar function to ClpX in aiding appropriate proteins to HslV for 

degradation [7]. Therefore, removing HslU is sufficient for testing the ability of suppression by 

the HslUV complex.  

An additional recombination efficiency test (Table 6) was performed to show that the 

low co-transduction frequency present in various dam mutants during the RecA-dependency test 

was in fact due to synthetic lethality and not issues pertaining to homology in the recA region of 

the chromosome as a result of kanamycin insertions. The two genes tested, recX and ygaD, are 

located immediately up- and downstream of recA. These genes are not essential and do not affect 

the overall health of the cell. The same Tn10 transposon insertion was used (srlD) for this test. 

This allowed for a selection for tetracycline resistance followed by a screen for kanamycin 

resistance. The linkage between the Tn10 insertion and ΔygaD(kan) or ΔrecX(kan) is ~85%. 

There is no significant difference between wild type, dam, and clpP mutants in recombination 

efficiency (P<0.001).  

 

dam mutants are still dependent on RecA for viability with recA200ts mutation. As 

mentioned previously, the linkage between the Tn10 insertion and ΔrecA(kan) is ~85%. While 

there was clear suppression in the dam/clpP strain, the linkage was skewed at only ~8-10%. To 

address this, and to further test the idea that a dam/recA combination is synthetically lethal, we 

utilized a temperature-sensitive recA mutation (recA200), which allows for wild-type RecA 

activity at 30°C, but resembles a recA null phenotype at 42°C [1]. The temperature-sensitive 

mutation resulted in a strain that grew at 30°C, but not at 42°C, as expected (Figure 6).  
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 A dam/clpP/recA200 strain and a dam/sspB/recA200 strain was constructed and tested for 

viability at 42°C (Figure 7), as these were the two combinations of mutations in which recA 

suppression was observed. Although the dam/clpP/recA200 and dam/sspB/recA200 strains do 

not grow as well as a dam mutant with wild type RecA at 42°C, there is still a clear, steady 

upward trend in the growth curve. Therefore, these results support the previous results on 

transduction frequencies, even though those frequencies were skewed. 

 

Protein responsible for suppression is not involved in GATC methylation. At least 11 

proteins that are degraded by ClpXP have unknown function [5, 24]. One possibility is that 

suppression is linked to a protein substituting for Dam’s DNA methylation activity. To test this, 

we began by transforming plasmid pBR322 (~4.3 kB) into wild type, Δdam, and Δdam/ΔclpP 

strains. In the Δdam strain, GATC methylation is completely absent. Therefore, when treated 

with DpnI, little to no cutting should occur, as this enzyme specifically recognizes and cuts at 

methylated GATC sites. If appropriate GATC methylation occurs (wild type), the DpnI digest 

product should produce one band at ~1.5 kB, and 22 smaller bands, all ranging from 8-360bp. 

The dam and dam/clpP digests appear to be identical, which supports the theory that the protein 

responsible for suppression is not involved in DNA methylation (Figure 8). 

 To test which ClpXP-degraded substrates were required for suppression, we combined 

various mutations with a dam/clpP strain to test whether or not RecA would still be required. 

 

RecN is required, but not sufficient, for suppression. RecN is a member of the structural 

maintenance of chromosomes family. This protein contains a centrally located coiled-coil 

domain, as well as Walker A and Walker B binding motifs in both the N- and C- terminus [35]. 



	11 

RecN was originally isolated in a recBCD sbcB mutant [17, 26] and is a key player in the 

RecFOR pathway of recombination [26]. Previous work [24] has provided evidence that RecN is 

an intrinsically good substrate for ClpXP degradation. This is expected, as RecN is 1) part of the 

SOS regulon, and 2) contains an LAA at its C-terminal end. We observed that the dam/clpP 

strain no longer suppresses the requirement for RecA in the absence of recN (Table 7).  

Since RecN appears to be required, we tested whether removing the ability of ClpXP to 

recognize and degrade RecN would be sufficient for suppression. While a C-terminal tag 

containing two aspartates (DD) prevented degradation of RecN by ClpXP [24], we found that 

this alteration hindered RecN activity in vivo [39]. Thus, a recN derivative was constructed that 

replaced the last two alanines of the C-terminal end of RecN with serine and valine (A552S, 

A553V) (recN4174). This mutation still prevents recognition and degradation by ClpXP, and 

allows for full activity of RecN in vivo [39]. Since the dam/recN4174/recA mutant could not be 

constructed, this data proposes that RecN is required, but not sufficient, for suppression, 

suggesting that there is/are other protein(s) aiding in suppressing the requirement for RecA in 

dam mutants (Table 8).  

 
UvrA is required, but not sufficient, for suppression. The SOS regulon includes uvrA and 

uvrB, which are involved in the nucleotide excision repair (NER) pathway [3]. This pathway 

utilizes the action of the UvrABCD proteins to recognize and remove UV-induced DNA lesions. 

Upon DNA damage, the UvrA2UvrB complex scans DNA to locate lesions. UvrA detects a 

distortion in the DNA, which is then verified by UvrB [28]. UvrA then dissociates via 

hydrolysis, allowing for the formation of the UvrB-DNA ‘pre-incision’ complex. At this point, 

the endonuclease UvrC is recruited to the site of damage in an ATP-dependent manner [28]. 

UvrC binds to the pre-incision complex and cleaves only the damaged strand of DNA on either 
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side of the lesion [28]. Finally, helicase UvrD removes ssDNA containing the damaged site, 

followed by DNA synthesis and ligation [31, 34]. This mechanism of repair is rather similar to 

MMR. For this reason, it may be possible that the UvrABC complex/NER pathway is 

substituting for MMR in the dam/clpP strain, since UvrA is more readily available in the absence 

of clpP. In turn, this would allow for ΔrecA in the dam/clpP background. The same work [24] 

showed that UvrA is also a naturally good substrate for ClpXP, as it is ranked third (highly 

abundant) on the list of over 100 ClpXP-degraded proteins. To test if UvrA is required, we 

removed uvrA in the dam/clpP background. In doing so, we observed that the absence of clpP no 

longer suppressed the requirement for RecA in dam mutants, when paired with the absence of 

uvrA (Table 7).  

Neher et al [24] demonstrated that a C-terminal tag containing two aspartates (DD) 

prevented degradation of RecN by ClpXP. Since the ClpXP recognition sequence for UvrA has 

yet to be identified, as it does not contain a C-terminal LAA, a similar approach was taken; two 

aspartates were added to the end of uvrA prior to the stop codon (uvrA223) (see materials and 

methods). To test the functionality of uvrA223, viable cell counts were taken for different 

exposures to UV irradiation. The addition of this C-terminal tag does not alter the functionality 

of the UvrA protein (Table 8). Since the dam/uvrA223/recA mutant could not be constructed, 

this data proposes that UvrA is required, but not sufficient, for suppression, suggesting that there 

is/are other protein(s) aiding in suppressing the requirement for RecA in dam mutants (Table 7). 

RecN and UvrA, together, are not sufficient for suppression. Since single mutants, recN4174 

or uvrA223, did not suppress the requirement for RecA in dam mutants, we tested if both of these 

mutations together would suppress; perhaps the increased intracellular levels of both RecN and 

UvrA would be sufficient. Albeit, the combination of these mutations (uvrA223, recN4174) with 
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dam did not suppress the requirement for RecA (Table 7), suggesting that there may be a third 

protein aiding in suppression.  

DISCUSSION 
 

Previous work [25, 21] has shown that dam mutants are RecA-dependent for viability, 

and, therefore, that a dam/recA combination is synthetically lethal. This research primarily 

focuses on the theory that there is a protein(s) that suppresses the requirement for RecA in dam 

mutants. It was expected that, if a specific protease were removed (ClpXP), then the protein(s) 

responsible for suppression would be present in higher amounts, and the Δdam/ΔrecA 

combination would no longer be synthetically lethal.  

It is commonly known that RecA-dependency is suppressed in a dam mutant when one of 

the mutH/L/S genes is removed [6]. Since the mechanism of the NER pathway is quite similar to 

that of MMR, it may be possible that NER is substituting for MMR in the dam/clpP background 

because at least one of the gene products (UvrA) is more readily available. This would suppress 

the requirement for RecA by repairing mismatches in ssDNA without generating DSBs. Another 

possibility is that UvrA is simply masking the mismatch and blocking the MutHLS complex 

from recognizing and binding to it in the absence of clpP.  

RecN aids in double strand break repair and is a key player in the RecFOR pathway of 

recombination [17]. For this reason, it is plausible, though unclear exactly how, RecN may be 

aiding in suppression. 

Since neither of the single mutants (uvrA223, recN4174) alone with dam suppressed the 

requirement for RecA, this would suggest that neither RecN nor UvrA is sufficient for 

suppressing the requirement for RecA in dam mutants, although they are both required. The 
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combination of these mutations (uvrA223, recN4174) with dam did not suppress the requirement 

for RecA, suggesting that there may be a third protein aiding in suppression.  

The question arose as to whether or not suppression would still be apparent if any third 

gene were removed in the dam/clpP background. yfgB, a gene of unknown function and 

selectively degraded by ClpXP [24], was removed in this background and suppression was still 

observed at the same frequency as the dam/clpP strain (data not shown). This result further 

supports the claim that RecN and UvrA are required for suppression. 

It is also important to note that, in strains where introducing a recA deletion via P1 

transduction was synthetically lethal, less than 10 colonies between three experimental plates 

grew each time, and all colonies were screened. These transductions were repeated between three 

and six times to obtain the appropriate number of colonies to statistically analyze the difference 

between them. In the dam/clpP, dam/sspB, and dam/clpX strains, approximately 25-50 colonies 

grew between three experimental plates each time, and 12-16 colonies were screened per 

transduction.  

 Future directions for this work include a) identification of all proteins required for 

suppression and b) identification of the mechanism of suppression. These findings may help 

unveil novel alternatives for DNA damage repair or provide insight for innovative cancer and 

gene therapies. 
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Strain List	

	
Strain 

Number	
dam	 recA	 Other Other Relevant Genotype	 Reference	

CAG5052 + +  btuB3191::Tn10 metB1 Singer et al. 1989 
CAG18642 + +  zfj-3131::Tn10 Singer et al. 1989 

JC13509 + +   Lab stocka 
SS1576 13 +   Derivative of GM698 
SS3922 + + ΔclpX del(clpX)100::kan Baba et al. 2006 
SS4871 Δ +  del(dam)100::kan Baba et al. 2006 
SS5129 + + ΔuvrA del(uvrA)100::kan Baba et al. 2006 
SS5130 + + ΔuvrB del(uvrB)100::kan Baba et al. 2006 
SS5131 + + ΔuvrC del(uvrC)100::kan Baba et al. 2006 
SS5907 + Δ  del(recA)100::kan Baba et al. 2006 
SS5983 + + ΔsspB del(sspB)100::kan Baba et al. 2006 
SS6321 + +   Lab stockc 
SS7117 + +   Lab stockc 
SS9949 + + ΔdegP del(degP)100::kan Baba et al. 2006 
SS9950 + + Δlon del(lon)100::kan Baba et al. 2006 
SS9951 + + ΔhslU del(hslU)100::kan Baba et al. 2006 
SS9988 + + ΔrecN del(recN)100::kan Baba et al. 2006 
SS9993 + + ΔclpP del(clpP)100::kan Baba et al. 2006 
SS10350 + + ΔclpP del(clpP)100::kan Lab stockc 
SS10517 + + ΔgalK del(galK)200::frt Lab stockc 
SS10970 + + ΔclpP del(clpP)200::frt Lab stockc 
SS11399 + + Δlon  Lab stockb 
SS11511 + + ΔdegP del(degP)100::kan Lab stockc 
SS11512 + + ΔhslU del(hslU)100::kan Lab stockc 
SS11637 + gfp-918   Lab stockd 
SS11644 + gfp-918   Lab stockd 
SS11748 + gfp-918   SS11637àSS6321 
SS11804 + gfp-918 ΔsspB  Lab stockd 
SS12011 13 gfp-918   SS1576àSS11748d 
SS12023 13 gfp-918 ΔsspB  SS1576àSS11804d 
SS12027 + gfp-918 ΔclpP  SS11637à10970d 
SS12033 13 gfp-918 ΔclpP  SS1576àSS12027d 
SS12052 + Δ  zfj-3131::Tn10 CAG18642àSS5907c 
SS12059 + + ΔsspB del(sspB)100::kan SS5983c 
SS12060 13 +   SS1576àSS6321c 
SS12074 + + ΔsspB  SS12059bc 
SS12075 + + ΔclpP  SS10350bc 
SS12077 13 Δ ΔsspB zfj-3131::Tn10 SS12052àSS12079c 
SS12079 13 + ΔsspB  SS1576àSS12074c 
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SS12080 13 + ΔclpP  SS1576àSS12075c 
SS12083 13 Δ ΔclpP zfj-3131::Tn10 SS12052àSS12080c 
SS12085 + Δ Δlon zfj-3131::Tn10 SS12052àSS11399c 
SS12090 13 + Δlon  SS1576àSS11399c 
SS12095 + + ΔrecN del(recN)100::kan SS9988àSS6321c 
SS12097 + Δ ΔsspB zfj-3131::Tn10 SS12052àSS12074c 
SS12098 + Δ ΔclpP zfj-3131::Tn10 SS12052àSS12075c 
SS12099 + + ΔdegP  SS11511bc 
SS12100 + + ΔhslU  SS11512bc 
SS12290 + + recN4174  Lab stockc 
SS12405 13 + ΔdegP  SS1576àSS12099c 
SS12406 13 + ΔhslU  SS1576àSS12100c 
SS12409 + Δ ΔdegP zfj-3131::Tn10 SS12052àSS12099c 
SS12410 + Δ ΔhslU zfj-3131::Tn10 SS12052àSS12100c 
SS12429 + + uvrA223  This workc 
SS12430 + + uvrA223  SS12429àSS10517c 
SS12436 13 200   SS1576àSTL287 
SS12445 13 200  zfj-3131::Tn10 recA200 CAG18642àSS12436c 
SS12446 Δ +  del(dam)100::kan SS4871àSS7117c 
SS12447 Δ +  del(dam)200::frt SS12446bc 
SS12448 Δ recA200  del(dam)200::frt SS12445àSS12447c 
SS12449 Δ recA200 ΔclpP del(dam)200::frt SS9993àSS12448c 
SS12453 Δ recA200 ΔsspB del(dam)200::frt SS5983àSS12448c 
SS12455 Δ + ΔclpP del(clpP)100::kan SS9993àSS12447c 
SS12456 Δ recA200 recN4174 del(dam)200::frt SS12990à12448c 
SS12457 Δ + ΔclpP del(clpP)200::frt SS12455bc 
SS12459 Δ + ΔclpX del(clpX)200::frt SS3922àSS12447bc 
SS12460 Δ + uvrA223 del(dam)100::kan SS4871à12430c 
SS12461 Δ + ΔuvrA del(uvrA)200::frt SS5129àSS12457bc 
SS12462 Δ + ΔuvrB del(uvrB)200::frt SS5130àSS12457bc 
SS12463 Δ + ΔuvrC del(uvrC)200::frt SS5131àSS12457bc 
SS12464 Δ + uvrA223, 

recN4174  SS12290àSS12460bc 

STL287 + recA200   1 
 
Table 1:Strain List (continued onto next page). 
aJC13509 has the following genotype: sulB103− lacMS286 attΦ80-lacBK1 argE3 his-4 thi-1 xyl-5 mtl-1. 

bKan resistant derivative from Keio Collection was transduced into strain as indicated in reference 
column. Plasmid pCP20, carrying the flp gene, was then introduced and Kan sensitive derivatives were 
screened. 
cThese strains have the following additional genotype: hupA::mcherry FRT del(attB)::sulAp-gfp 
dThese strains have the following additional genotype: ygaD1:kan recAo1403 recA4155, 4136::gfp-918 
(A206E) del(galK)200::frt del(attB)::sulAp-mCherry 
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RecA-dependency	of	dam	mutants 
 ΔrecA  

(KanR/TetR) 
WT 28/32 
Δdam 0/18 

 
 
Table 2: RecA-dependency of dam mutants. Here, we show that dam mutants are RecA-dependent for 
viability. The data above is the number of KanR transductants/TetR transductants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	18 

 
 
 
 

Recombination	efficiency 
dam btuB-met 

+ 14/16 
Δ 13/16 

 
Table 3: Recombination efficiency of dam mutants via P1 transduction. There is no significant 
difference between wild type and dam mutants in recombination efficiency (P<0.001).  
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Percentage of Cells with Fluorescent RecA Structures 
Genotype Avg Cell Area % Cells with 0 

Foci 
% Cells with 1 

Foci 
% Cells with 2+ 

Foci 
Wild type 440 94.2 5.2 0.6 
Δdam* 886 50.9 34.9 14.2 
ΔclpP** 544 64.3 24.4 11.3 
ΔsspB** 458 93.7 5.2 1.1 
Δdam/ΔclpP** 487 64.5 27.0 8.5 
Δdam/ΔsspB** 787 86.1 5.7 8.2 
 
Table 4: Percentage of Cells with Fluorescent RecA Structures. Cells were grown to log phase in 
minimal media and placed on 1% agarose pad for microscopy. Cells were allowed to grow to log phase 
once placed on pad. * = Significant difference in the number of foci compared to wild type (P<0.001).  
** = Not a significant difference in the number of foci compared to wild type (P>0.025).  
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The effects of mutations in protease genes on 
RecA-dependency 

 dam+ Δdam 
WT 28/32 0/18 
ΔclpP	 22/32 4/54 
ΔclpX 24/32 4/43 
ΔsspB 24/32 6/56 
ΔdegP 14/16 0/19 
ΔhslU 11/14 0/17 
Δlon	 16/20 0/18 

 
Table 5: The effects of mutations in protease genes on RecA-dependency. Here, we show that RecA is 
no longer required for survival in dam mutants in the absence of clpP or sspB. The data above is the 
number of KanR transductants/TetR transductants. 
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Recombination efficiency 

clpP dam recX  
(KanR/TetR) 

ygaD  
(KanR/TetR) 

recA  
(KanR/TetR) 

+ + 15/16 16/16 28/32 
Δ + 13/16 15/16 22/32 
+ Δ 14/16 14/16 0/15 
Δ Δ 13/16 14/16 4/54 

Table 6: Recombination efficiency of dam mutants via P1 transduction. There is no significant 
difference in recombination efficiency (P<0.001). The data above is the number of KanR 
transductants/TetR transductants.  
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Contribution of ClpXP-degraded Proteins to 
Suppression 

 clpP dam recA 
(KanR/TetR) 

 + Δ 0/18 
 Δ Δ 4/54 

ΔclpP Δ Δ 0/17 

recN174 + Δ 0/19 

ΔuvrA Δ Δ 0/24 
ΔuvrB Δ Δ 0/26 
ΔuvrC Δ Δ 0/22 

uvrA223 + Δ 0/23 
recN4174, 
uvrA223 

+ Δ 0/19 

 
Table 7: Contribution of RecN to suppression. The data above suggests that RecN and UvrA are 
required, but not sufficient, for suppressing the requirement for RecA in dam mutants.  
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Assessment of UvrA Function with C-terminal Tag 
 WT ΔuvrA uvrA223 

0J 138 124 127 
10J	 129 3 118 
20J 122 - 109 
30J 117 - 104 
40J 110 - 97 

 
Table 8: Assessment of UvrA function with C-terminal tag. The addition of two aspartates on the C-
terminal end of uvrA does not significantly alter the functionality of the protein up to 40J of UV exposure 
(P<0.001). The data above is the total number of colonies from 100uL of 10-6 diluted culture. 
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Figure 1: Homologous Recombination Pathway (HR). RecBCD resects ssDNA on the 5’-end of a 
DSB. RecA then loads onto ssDNA and activates the SOS response. After RecA filaments onto damaged 
DNA, searches for homology, and exchanges strands, RuvAB and RecG carry out synthesis and branch 
migration to generate a Holliday Junction. Finally, RuvABC resolves the Holliday Junction, and DSBR is 
complete. 
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Figure 2: Methyl-directed Mismatch Repair Pathway (MMR). Base mismatches in newly 
synthesized, unmethylated DNA are recognized by the MutSLH complex. The complex cleaves the newly 
synthesized strand of DNA to remove the mismatch, and the gap is then synthesized and filled. Dam then 
methylated the newly synthesized strand of DNA. 
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Figure 3: MMR in dam mutants. A. In wild type cells, the MutSLH complex only nicks the 
unmethylated, newly synthesized strand. B. In dam mutants, the MutSLH complex cannot differentiate 
between parents and daughter strand and nicks both strands, causing a DSB. 
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Figure 4: SOS response in E. coli. A. Genes are normally repressed at transcriptional level by LexA 
protein. B. Upon DNA damage, RecA binds to ssDNA and activates the SOS response. C. LexA 
autocleaves and induces transcription of approximately 40 genes.  
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Figure 5: RecA-GFP in dam mutants. A. Wild type with RecA-GFP. B. dam with RecA-GFP. C. 
dam/clpP with RecA-GFP. D. dam/sspB with RecA-GFP. 
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Figure 6: Growth of dam/recA200 at 30°C and 42°C. The strain was grown shaking in 56/2 minimal 
media at 30°C and 42°C. See materials and methods for turbidity measurement protocol. 
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Figure 7: Growth of dam mutants carrying recA200 mutation at 30°C and 42°C. The strain was 
grown shaking in 56/2 minimal media at 30°C and 42°C. The upward arrow at 90 minutes indicates the 
temperature shift from 30°C to 42°C. See materials and methods for turbidity measurement protocol. 
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Figure 8: DpnI digest of pBR322 in wild type, dam, and dam/clpP strains. 10kB ladder, pBR322 
isolated from wild type strain and digested with DpnI, pBR322 isolated from Δdam strain and digested 
with DpnI, and pBR322 isolated from Δdam/ΔclpP strain and digested with DpnI ran on 1% agarose gel.  
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Figure 9: Recombineering – uvrA223 construct. Two aspartates (DD) were added to the C-
terminal end of uvrA, immediately prior to the stop codon, via PCR. This fragment (also 
encoding for galK) was then cloned onto the chromosome at the end of uvrA by linear 
transformation and standard recombineering methods [40]. 
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