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ABSTRACT 

 

EVALUATING THE IMPACT OF DOUBLE-PARKED FREIGHT DELIVERIES ON 

SIGNALIZED ARTERIAL CONTROL DELAY USING ANALYTICAL MODELS AND 

SIMULATION 

SEPTEMBER 2018 

 

AARON J. KEEGAN, B.A., WARREN WILSON COLLEGE 

B.S.C.E., WASHINGTON UNIVERSITY IN ST. LOUIS 

M.S.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Eric J. Gonzales 

 

Freight deliveries on signalized urban streets are known to cause lane blockages during 

delivery. Traffic congestion associated with urban freight deliveries has gained increasing 

attention recently as traffic engineers and planners are tasked with finding solutions to manage 

increasing demand more sustainably with limited road capacity. The goal of this research is to 

evaluate two models for quantifying the capacity and signalized control delay effects of a lane-

blocking freight delivery on an urban arterial. The two methods are: an All-or-Nothing model 

similar to methodology used in the Highway Capacity Manual 6th Edition, and a Detailed model 

consistent with kinematic wave theory. The purpose is to provide insight on the use of these tools 

for analysis of urban freight delivery. The signalized control delay results of the two models are 

compared with observed video data of urban deliveries from one city block of 8th Ave in New 

York City. Empirical confirmation of double-parked delivery impact on signalized controlled 

delay remains elusive due to an inability to isolate the effects of the deliveries from other traffic 

perturbations in the video sample. Instead, microscopic simulation using Aimsun is used for 

comparison to the theoretical models and the results lend credibility to the Detailed model. The 

simulation results show a similar trend of delay impact from double-parked deliveries located at a 

range distances from the intersection and more closely resembled the Detailed model.  The All-



 

vii 

 

or-Nothing model would provide only a coarse representation of the capacity and delay effects.  

The more detailed approach that accounts for the dynamics of queuing in front of the delivery 

vehicle provides closed form analytical formulas for capacity and signalized control delay that 

can account for varying locations of deliveries as well as analysis periods with some blocked 

cycles and others unblocked. Two policy implications are proposed: 1) that double-parked 

deliveries located mid-block likely result in less signalized control delay impact, and 2) freight 

receivers that attract double-parked deliveries near an intersection stop line should be prioritized 

in urban freight delivery mitigation policies such as off-hour delivery. 
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CHAPTER 1 

INTRODUCTION AND EXISTING METHODOLGY 

 

1.1 Introduction 

Freight deliveries are known to disrupt traffic on urban arterials. Traffic congestion 

associated with urban freight deliveries has gained increasing attention in recent years as traffic 

engineers and planners are tasked with finding solutions to manage increasing demand in a more 

sustainable way with limited road capacity. Although trucks make up only a small percentage of 

vehicular traffic (6% of vehicles on urban freeways), they incur a greater proportion of the total 

cost of delays (26% of total cost) (1). In the U.S., approximately 7% of urban traffic is made up 

of trucks (2), but the deliveries are increasing dramatically because of growth in e-commerce. 

Current urban freight policies, e.g. off-hour delivery programs, are intended to mitigate the 

impacts on traffic congestion.  

This study presents an analysis using traffic flow theory and microsimulation to quantify 

the effect of double-parked urban freight deliveries on the signalized control delay experienced 

by traffic on an urban arterial street segment. Although there is an increasing body of literature 

related to policies and operational issues associated with urban freight movements, there is a need 

for systematic analysis of the localized impact of individual deliveries on traffic. 

1.2 Literature Review 

 

The effects of truck deliveries in urban networks can be generally separated into two 

categories: 1) the effect of heavy vehicles in the traffic stream on the flow of vehicles, and 2) the 

effect of truck delivery stops on traffic flow when lane blocking occurs. The first category of 

effects has been analyzed more extensively in the literature. Some studies have made use of 
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traffic simulations to account for the effect of trucks in the traffic stream (3, 4). Other studies 

have made use of empirical field measurements along with calibrated traffic simulations (5). A 

significant synthesis of the effects of heavy vehicles in the traffic stream was published in 

NCFRP Report 31 (6). The report summarizes the effect of trucks on mid-block arterial speeds 

and presents improved methods for calculating truck passenger car equivalent factors for capacity 

analysis of signalized intersections. These methods do not account for blockages caused by 

parked trucks. 

The effect of freight delivery stops that block lanes of traffic on arterial capacity and 

intersection delays has received less attention in the literature. Han et al. (7) conducted a GIS-

based investigation of the extent and order of magnitude of double-parking disruptions for 

pickups and deliveries nationwide in the U.S. Other recent studies have considered the problem of 

truck parking for deliveries from the perspective of the carrier (8–10). Others have identified 

many of the characteristics of delivery patterns and businesses on urban streets (11, 12). Very few 

investigations of the effect of parked trucks on intersection capacity have been conducted, and 

they have not provided a comprehensive analytical approach for estimating capacity and 

signalized control delay impacts (13).  

A growing body of research has investigated policies to encourage the schedule of 

deliveries in urban areas during off-peak hours (14–17). Although a major motivation for off-hour 

delivery programs is to reduce traffic congestion, much of the analysis focuses on the experience 

from the perspective of the delivery drivers, who are able to travel at greater speeds 

during lower traffic periods (18–20). The challenge is to convince receivers to schedule off-hour 

deliveries, which could require paying an employee of a store to stay after normal 

business hours or make special arrangements for the delivery to be made in the absence of 

someone to receive the delivery (21). Programs to reduce traffic congestion by managing urban 

freight exist(22, 23). A trial off-peak delivery program in New York City paid businesses 
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approximately $2,000 to receive shipments during off-hours rather than normal business hours 

for a month; carriers were paid $300 to participate in the trial (24). Evaluations of the 

congestion and reliability effects of the off-hour delivery program in New York required 

extensive simulation analysis and considered macro-scale traffic congestion but did not include 

the impact of lane blocking during delivery (4,25). Being able to quantify the effects of double-

parked urban freight deliveries on the performance of signalized streets in terms of delay would 

be useful for evaluating urban freight delivery policies that may attempt to reduce, relocate, or 

reschedule urban freight deliveries. 

1.3 Study Contribution 

 

The intended contribution of this study is to call attention to the impact of double-parked 

delivery vehicles on signalized control delay for consideration in urban freight policy. The study 

develops and analyzes two analytical models to quantify the impact of double-parked delivery 

vehicles on the signalized control delay of an urban street segment consistent with kinematic 

wave theory (26, 27). The Highway Capacity Manual 6th Edition (28), referred to here as HCM6, 

does not include guidance on double-parked urban freight deliveries. This study proposes a 

methodology, the Detailed model, for incorporating double-parked delivery impact on signalized 

control delay during the analysis of an urban street facility.  

1.4 Existing Highway Capacity Methodology 

 

This section describes in brief how the HCM6 accounts for delay on an urban street 

segment. The incorporation of lane blockage events in the HCM6 are discussed here to provide 

context and comparison between the HCM6 and analytical models presented later that estimate 

the effect of a double-parked delivery vehicle on the signalized control delay of an urban street 

segment. The HCM6 does not include methodology to account for the effect of double-parked 

delivery vehicles, a limitation which is explicitly noted in the HCM6 text. 
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1.4.1  Background on Urban Street Segments 

 

The HCM6 is a state of the practice publication for traffic engineers and transportation 

planners which includes methods for the analyses of mobility on urban street facilities from the 

perspective of motor vehicle drivers among other modes. Urban arterials and collectors are 

typical examples of urban street facilities which are evaluated in the HCM6 as a series of 

segments. The boundaries of the segments are typically determined from intersecting cross streets 

or intersection controls. Urban street facilities are evaluated by aggregating the performance 

measures on a series of segments that make up the facility. Each individual segment consists of a 

link, the travel lanes of the segment, and a point, the downstream intersection of a segment. The 

concept of lane groups is employed to aggregate adjacent lanes that are identical and isolate lanes 

that serve a unique movement or set of shared movements. The lane groups are evaluated 

separately, and then a combined weighted performance measure is calculated for the whole street 

segment approach to the downstream intersection.  Level of service is one of the key operational 

performance measures evaluated on each segment which considers both delay in running time on 

the link portion of the segment and delay at the downstream intersection of the segment. This 

study focuses exclusively on delay at the intersection. 

Various sources of vehicle delay on a street segment are incorporated into the 

methodology, for example: street geometry, land use, other travel modes, heavy vehicles, and 

parallel parking. The pick-up and delivery activity of freight vehicles are not included in the 

methodology as a source of urban street segment delay with respect to either running time or 

signalized control delay. Furthermore, there is no procedure for accounting for delay that arises 

from vehicles changing lanes to avoid a double-parked delivery vehicle. The HCM6 limitations 

with respect to delivery vehicle activities are explicitly noted in the text in Chapters 17 and 18. 

The HCM6 also notes that if additional sources of delay are present on the urban street segment 
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under analysis, the analyst may attempt to include them in the methodology, particularly if 

operational observations have been made.  

1.4.2 Lane Blockages Resulting from Parallel Parking and Bus Stopping 

 

Parallel parking maneuvers and buses stopping in travel lanes are two types of lane 

blockage events contributing to signalized control delay on an urban street segment that are 

included in the HCM6. In both cases an adjustment factor is created to reduce the saturation flow 

rate of the affected lane groups for the duration of the whole analysis period. Both adjustment 

factors assume that the travel lane is effectively unavailable to vehicles during the time that the 

lane is blocked, thereby lowering the average lane capacity during the analysis period.  

The adjustment factor for parallel parking is applied when a parking area is located 

adjacent to a travel lane, on either shoulder, within 250ft of the downstream stop line. The factor 

accounts for both the frictional effect of parked vehicles on the shoulder and an assumed 18 

second lane blockage per parallel parking maneuver. An upper limit of 180 parking maneuvers 

per lane group per hour is established. The equation for the parking adjustment factor is found in 

the HCM6 as: 

𝑓𝑝 = 𝑚𝑖𝑛 {
𝑁 − 0.1 −

18𝑁𝑚
3600

𝑁
 , 0.050  }, 

(1) 

where fp is the parking adjustment factor, Nm is the parking maneuver rate adjacent to the lane 

group, and N is the number of lanes in the lane group. 

 The adjustment factor for buses stopping in travel lanes, fbb, is used to reduce the 

saturation flow rate of a lane group when buses are observed to stop in the lane at a near-side 

(upstream) or far-side (downstream) location within 250 ft relative to the intersection stop line 

under evaluation. An upper limit of 250 buses per hour is suggested. A duration of 14.4 seconds 
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of lane blockage time is assumed per bus stop. The equation for the bus-blockage is found in the 

HCM6 as:  

𝑓𝑏𝑏 = 𝑚𝑖𝑛 {
𝑁 −

14.4𝑁𝑏
3,600

𝑁
 , 0.050 }, 

 (2) 

where fbb is the bus-blockage factor, N is the number of lanes in the lane group, and Nb is the 

number of stopped bus events in the lane group.  

1.4.3 Work Zones and Lane Restrictions 

 

For the first time, the HCM6 contains methodologies for incorporating the effects of work 

zones and downstream lane blockages on urban street segments. One method, a factor for 

downstream lane blockages, considers the effect of downstream mid-segment lane blockages on 

the closest upstream intersection. The applicable mid-segment lane blockages are described as 

work zones, traffic incidents, or similar events. By creating a factor to reduce saturation flow rate, 

the methodology ensures that the capacity of movements exiting the upstream intersection cannot 

exceed the capacity at the location of the downstream lane blockage. The capacity of the 

downstream lane blockage is found in the HCM6 as: 

𝑐𝑚𝑠 = 𝑚𝑖𝑛{0.25𝑘𝑗𝑁𝑢𝑛𝑏𝑙𝑘𝑆𝑓 , 1800𝑁𝑢𝑛𝑏𝑙𝑘}, (3) 

where cms is the mid-segment capacity at the site of the downstream restriction, kj is the jam 

density per lane, Nunblk is the number of open lanes where the restriction is located, and Sf is the 

free-flow speed. The adjustment factor for downstream lane blockage is then found in the HCM6 

as: 

If 𝑐𝑚𝑠 < 𝑐𝑖 𝑜𝑟 𝑓𝑚𝑠,𝑖−1 < 1.0, then   𝑓𝑚𝑠,𝑖 = 𝑚𝑖𝑛 {  𝑓𝑚𝑠,𝑖−1

𝑐𝑚𝑠

𝑐𝑖
 , 0.1}, 

otherwise  𝑓𝑚𝑠,𝑖 = 1.0, 

 

(4) 
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where fms,i is the adjustment factor for a downstream mid-segment lane blockage and 𝑐𝑖 is the 

capacity of the movement entering the blockage location. The subscript, i, refers to the iterative 

process set forth in the urban street segment methodology whereby total segment arrival volumes 

and lane group volume allocations are balanced in an iterative process. As for the location of the 

downstream lane restriction, the HCM6 says only qualitatively that the closer a downstream lane 

restriction is to an upstream intersection, the greater the impact on the intersection. In summary, 

the mid-segment lane blockage factor imposes the capacity constraint of a downstream bottleneck 

on the discharge capacity of the upstream intersection but does not delve into the dynamics of 

traffic flow around the downstream lane restriction.  

The work zone presence adjustment factor is the second example of a lane restriction 

methodology included in the HCM6 for the first time. Whereas the factor for downstream lane 

blockage is used to reduce the traffic flow exiting an upstream intersection, the work zone 

presence adjustment factor is used to adjust the saturation flow rate on a segment where a work 

zone is located. The work zone is considered to be on an intersection approach if any part of it is 

located within 250ft of the downstream stop line. The factor can be applied if the work zone is 

located on the shoulder or if it blocks one or more lanes. The following equations are found in the 

HCM6 to calculate the work zone adjustment factor: 

𝑓𝑤𝑧 = 𝑚𝑖𝑛{0.858 ∗ 𝑓𝑤𝑖𝑑 ∗ 𝑓𝑟𝑒𝑑𝑢𝑐𝑒 , 1.0} (5) 

with 

𝑓𝑤𝑖𝑑 =
1

1 − 0.0057(𝑎𝑤 − 12)
 

(6) 

and 

𝑓𝑟𝑒𝑑𝑢𝑐𝑒 =
1

1 + 0.0402(𝑛𝑜 − 𝑛𝑤𝑧)
 

(7) 
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where fwz is a adjustment factor for work zone presence, fwid is an adjustment factor for approach 

width, freduce is the adjustment factor reducing lanes during work zone presence, aw is the approach 

lane width of all open lanes at the work zone location, no is the number of left turn and through 

lanes open during normal operation, and nwz is the number of left-turn and through lanes open 

during work zone presence. The most restrictive cross section of open lanes adjacent to the work 

zone is used to calculate the work zone adjustment factor. 

Both the mid-segment lane blockage factor, and the work zone presence factor limit the 

saturation flow rate at the site of the blockage to something less than the full saturation flow rate 

of the available open lane width(s), meaning the factors impose a frictional effect on the 

remaining open lanes. An explanation for this is that work zones are often signed with warnings 

and or contain moving equipment or workers that cause traffic to further slow. As for traffic 

incidents, an emergency responder may be present and passing vehicles may slow to look at the 

incident. Lastly, it should be noted that the work zone presence adjustment factor does not allow 

for the possibility that a lane blocked by the work zone could be partially open downstream of the 

work zone allowing vehicles to use the lane near the stop line.  

1.4.4 Sustained Spillback on an Urban Street Segment 

 

If a downstream urban street segment with or without a lane restriction is found to 

experience sustained queue spillback onto an upstream segment during the analysis period, the 

HCM6 contains a method to create a spillback adjustment factor that encompasses the previously 

described mid-segment lane blockage factor. The full spillback analysis procedure is lengthier 

than is warranted to describe in detail here, as it involves the division of the analysis period into 

smaller time periods and the determination of origin and destination movements on the segment. 

However, the overall concept is the creation of a spillback factor that reduces the saturation flow 

rate of traffic movements from the upstream segment so that they are balanced with traffic exiting 

the downstream segment where the sustained queue spillback has occurred. Insofar as the 
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downstream segment is constrained by all saturation flow rate adjustment factors that are 

applicable, activity reducing saturation flow on the downstream intersection is also constraining 

the upstream intersection using the sustained spillback analysis procedure.  

 

1.4.5 Urban Street Facility Reliability 

 

 An evaluative procedure for urban facility reliability appears for the first time in the 

HCM6. The reliability procedure draws upon the methodology provided for urban facility 

analysis and calls for the creation of a set of plausible scenarios that attempt to map out the 

universe of likely conditions and incidents that can be expected on the urban facility. As noted in 

the HCM6, because a double-parked delivery vehicle is not included in the urban street segment 

methodology, it is also inherently not included in the procedure for estimating urban facility 

reliability. The HCM6 makes a point to mention that regularly recurring incidents that 

individually have a moderate impact on facility delay tend to have a larger impact on annual 

facility delay compared to infrequently occurring incidents that have a large impact on delay 

individually.  

1.4.6 Capacity and Delay for a Signalized Urban Street 

In this section we will look at the HCM6 evaluation of capacity and delay on a simple 

urban street segment operating with no lane restriction. We consider a one-way, two-lane urban 

street segment controlled by a pre-timed signal at the downstream intersection. The street 

segment has two lane groups: a lane group for through vehicles and another lane group for shared 

right-turns. A diagram of the urban street segment is shown in Figure 1. 
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Figure 1: A Simple Two-Lane Urban Street Segment 

The two-lane groups have different saturation flow rates where Ssr is the saturation rate for the 

shared right-turn lane and St is the saturation rate of a through lane. The arrival volumes vt and vsr, 

in units of vehicles per hour, are calculated using an iterative method from Chapter 31 in the 

HCM6 which balances the lane group arrival volumes for through moving vehicles proportionally 

with the lane group saturation flow rates.   

Each lane group’s capacity is calculated based on the saturation flow rate and signal 

phasing. For a pre-timed traffic signal with no permitted left turns, the capacity of the through 

lane, 𝑐𝑡, and the capacity of the shared right-turn lane, 𝑐𝑠𝑟, are found in the HCM6 as: 

 𝑐𝑡 = 𝑠𝑡𝑁𝑡𝑔/𝐶 (8) 

 
𝑐𝑠𝑟 = 𝑠𝑠𝑟𝑁𝑠𝑟𝑔/𝐶 (9) 

where 𝑁𝑡 is the number of lanes in the exclusive through lane group, 𝑁𝑠𝑟 is the number of lanes in 

the shared right-turn lane group, g is the effective green time, and C is the cycle length. For a lane 

group with no permitted turning movements, the uniform control delay at the intersection is 

calculated using the following HCM6 equations: 

𝑑1 = 𝑃𝐹
0.5𝐶(1 − 𝑔/𝐶)2

1 − (min{1, 𝑋} 𝑔/𝐶)
 (10) 

with 
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𝑃𝐹 =
1 − 𝑃

1 −
𝑔
𝐶

∗ 
1 − 𝑦

1 − min(1, 𝑋) 𝑃
∗ [1 + 𝑦

1 −
𝑃𝐶
𝑔

1 −
𝑔
𝐶

] 

 

(11) 

and 

𝑦 = min(1, 𝑋) 𝑔/𝐶 (12) 

 

where d1 is uniform control delay, PF is a progression adjustment factor, P is the proportion of 

vehicles arriving during green indication, X is the volume-to-capacity ratio, and y is the flow 

ratio. The delay for each lane group is then weighted by lane group arrival volume to calculate an 

overall approach delay.  

The Queue Accumulation Polygon (QAP) method is another delay calculation method in 

the HCM6 which must be used when an approach includes permitted turning movements or if 

there is a residual queue at the end of the signal cycle. The QAP method is introduced here, 

because it will later allow better visualization of the delay calculations when a freight delivery 

causes a lane blockage.  

Figure 2 shows an example QAP diagram for the through lane group of the simple two-

lane street segment. The number of vehicles in queue grow during the red phase, reaching a 

maximum queue length in vehicles denoted by Q1 and receding during the green phase. The 

arrival flow is denoted by qt , in vehicles per second, because the QAP shows a single signal cycle 

in units of seconds.  



 

12 

 

 

Figure 2: A Queue Accumulation Polygon of Uniform Control Delay 

 

An important characteristic of queuing at the intersection is the maximum extent of the queue in 

distance from the stop line at a given arrival rate. In Figure 2, the time it takes for the queue to 

clear after the signal turns green, 𝑡𝑠𝑡
, is given by: 

𝑡𝑠𝑡
=

𝑞𝑡(𝐶−𝑔)

𝑠𝑡−𝑞𝑡
 . (13) 

The calculation of the length of queue follows from the geometry of the figure, and it can be 

expressed in units of distance as xBQ, from the intersection stop line by dividing by the number of 

lanes 𝑁 and the jam density of vehicles per distance 𝑘𝑗 in the equation: 

𝑥𝐵𝑄 =
𝑞𝑡(𝐶−𝑔+𝑡𝑠𝑡

)

𝑁𝑘𝑗
 . (14) 

When the arrival rate of a lane group fully saturates the intersection, the location of the back of 

the queue will be denoted here as 𝑥𝑔𝑚𝑎𝑥, which is obtained by evaluating eq. 14 when the value 

of qt is such that 𝑡𝑠𝑡
= 𝑔. The distance 𝑥𝑔𝑚𝑎𝑥 is the longest length of queue that can be served in 

a lane group during the green time. 
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The total delay of a lane group is the sum of uniform control delay, incremental delay, 

and initial queue delay given by the HCM6 equation: 

𝑑𝑡 = 𝑑1 + 𝑑2+ 𝑑3 (15) 

where 𝑑𝑡  is total delay, 𝑑1  is the uniform control delay, 𝑑2 is the incremental delay, and 𝑑3 is the 

initial queue delay.  

 The uniform control delay is calculated as the area bounded within the constructed QAP 

diagram. The polygon is subdivided into intervals defined by when either the arrival flow rate or 

discharge rate of the lane group changes within a signal cycle. The interval length is the base of 

the triangle or trapezoid, while the height of each interval is given by the peak queue length. A 

general form equation for delay using the QAP method is found in the HCM6 as: 

𝑑1 =  
0.5∑𝑖=1(𝑄𝑖−1 + 𝑄𝑖)𝑡𝑡,𝑖

𝑞𝐶
 

(16) 

where Qi-1 is the queue length of the prior interval, and Qi is the queue length of the current 

interval i, tt,i is the time duration of interval i, and other variables are as previously defined. 

The incremental delay component accounts for delay due to random fluctuations in 

demand and sustained oversaturation. The incremental delay is found with the HCM6 equation: 

𝑑2 =  900 𝑇 [  (𝑋𝐴 − 1) +  √(𝑋𝐴 − 1)2 +
8𝑘𝐼𝑋𝐴

𝑐𝐴𝑇
  ] 

 

(17) 

with 

𝐼 = 𝑚𝑖𝑛{1.0 − 0.91𝑋𝑢
2.68, 0.090 } (18) 

 

where T is the duration of the analysis period, XA is the average volume to capacity ratio of the 

lane group, cA is the average capacity for the lane group, k is a signal control constant with a 

value of 0.50 for pretimed signals,  I is the upstream filtering adjustment factor, and Xu is the 

weighted volume-to-capacity ratio for all upstream movements contributing to the volume on the 
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subject movement group. During undersaturated conditions, when there is no initial queue, XA is 

equal to the volume to capacity ratio X, and cA is equal to the lane group capacity c. This analysis 

focuses exclusively on undersaturated conditions, meaning there is no initial queue at the start of 

a signal cycle, therefore 𝑑3 is equal to zero in eq. 15. 

In the next section, observations of double-parked delivery vehicles are made for 

comparison to the implied traffic behavior in existing HCM6 methodology that treats lane 

blockages such as stopped buses etc. as though they eliminate the vehicular capacity of the entire 

lane. 
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CHAPTER 2 

OBSERVATIONS OF URBAN FREIGHT DELIVERY 

2.1  Video Data from 8th Avenue in NYC 

Recorded video data from an urban street segment in Manhattan was shared with the 

authors by the New York City Department of Transportation Office of Freight Mobility1. The 

video data consisted of continuously recorded traffic footage between 10:30am and 4:30pm on 

Tuesday, August 11, 2015. The recording was made from a camera mounted on a traffic signal 

mast at 8th Ave and 36th St. The camera viewed 8th Ave northbound including the downstream 

intersection of 8th Ave and 37th St. Figure 3 illustrates the lane geometry of the 8th Ave segment 

and the positioning of the camera for data collection.  

 

Figure 3: Diagram of 8th Ave Between 36th St and 37th St 

 The segment of 8th Ave under analysis is just over 180ft in length from the downstream 

stop line to the upstream intersection, it has four one-way northbound lanes, a diagonally oriented 

left turn bay that stores one or two vehicles, and parallel parking spaces on both sides. It should 

be noted that the through lane closest to the left curb was observed to function as a shared left-

turn lane in practice despite being designated by road markings as a through lane only. Parking is 

restricted on the right curb near the stop line for a bus stop. The cross street at the downstream 

                                                      
1 The website of the NYCDOT Office of Freight Mobility is http://www.nyc.gov/html/dot/html/motorist/trucks.shtml 
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intersection, 37th St, is one-way in the westbound direction and has two lanes. There is a cycle 

track between the left-side parallel parking bay and the sidewalk curb. The signal control is pre-

timed, and all lanes have an 84 second cycle with 45seconds of green time. The signal control is 

coordinated with upstream and downstream segments of 8th Ave by a 6 second offset. Figure 4 

shows an image of the recorded data vantage point looking north on 8th Ave during a lane 

blocking delivery event. The video was analyzed manually as summarized in the next section. 

 

Figure 4: Vantage Point of 8th Ave Video Data: Looking North to 37th St 

2.2 Observed Results of Double-Parked Delivery Characteristics 

The segment of 8th Ave between 36th St and 37th St was very busy with delivery activity. 

During the six-hour observation period, there were 14 instances of delivery vehicles double-

parking and blocking a lane. During the same period there were an additional 20 delivery vehicles 

which were able to secure a parallel parking space on a side of the street to conduct delivery 

activity of either a good or a service. 

Table 1 summarizes the locations of the observed double-parked delivery events on 8th 

Ave between 36th St and 37th St. The distances from the stop lines are given between the stop line 

and the front of the delivery vehicle. The most frequent location for a lane-blocking delivery 
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vehicle was at the stop line in the left turn bay, effectively blocking the entire bay. The next most 

frequent location was the blockage of a through lane in the mid-block area of the street, between 

60ft and 120ft upstream from the stop line. Mid-block delivery vehicles were as likely to park on 

the left side as the right side. Lane blocking delivery events were also observed near the upstream 

intersection greater than 120ft upstream from the stop line. Clearly, delivery vehicles will use a 

variety of locations on the street when blocking a lane to conduct delivery activity.  

Table 1: The Location of Observed Double-Parked Deliveries on 8th Ave 

Location Description Vehicle 

Distance from 

stop line 

Right 

Side of 

Street 

Left 

Side of 

Street 

Total Lane 

Blocking 

Deliveries 

Left Turn Lane 0-5ft - 6 6 

Stop Line to Mid-Block 0-60ft - - 0 

Mid-Block 60-120ft 3 3 6 

Mid-Block to Upstream Intersection 120-180ft 2 - 2 

Total   5 9 14 
 

Figure 5 shows a chart of delivery duration vs. delivery start time for the 14 observed 

double-parked deliveries. The chart shows that double-parked delivery events occurred 

throughout the observation period, no predominant time of day clustering was evident from the 

sample. 
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Figure 5: Delivery Duration vs. Time 

Figure 6 shows a histogram of the duration of observed lane-blocking delivery events. 

The distribution shows that double-parked deliveries of less than 6 minutes were the most 

frequent. However, much longer duration events occurred including one delivery that blocked a 

lane for nearly 1 hour. The average double-parked delivery duration of the observed set was 12 

minutes with a standard deviation of 16 minutes.  

 

Figure 6: The Distribution of Observed Delivery Durations on 8th Ave 
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 It was confirmed through observation of the 8th Ave data that vehicles will indeed use 

available lane space downstream of double-parked deliveries to exit the street segment. Six 

examples of observed deliveries where vehicles merged into the lane downstream of the double-

parked delivery vehicle are listed in Table 2. The six observed deliveries in Table 2 where selected 

because these observation cases did not have a simultaneous lane-blocking delivery occurring in 

the downstream lane of the downstream street segment. The remaining 8 observations of double-

parked delivery cases had simultaneous deliveries occurring downstream that could have 

discouraged vehicles from using the lane or in any case would have made for a dissimilar 

comparison with the 6 cases listed in Table 2. 

Table 2: Downstream Lane Use by Arriving Vehicles During Double-Parked Deliveries 

Observed Delivery Case 1 2 3 4 5 6 

Double-Parked Delivery 

Distance from Stop Line 
63ft  65ft 70ft 90ft 100ft 144ft 

Side of Street for Blocked 

Through Lane  

Right 

Side 

Right Side Left Side Left Side Left Side Right 

Side 

Delivery Start Time 
1:51 PM 11:08 AM 11:26 

AM 

11:48 

AM 

12:19 PM 12:36 PM 

Duration (mins) 8.32 3.07 1.37 7.03 1.75 4.43 

Total Arrival Flow Rate 

During the Delivery 

Period (veh/hr) 

1,565 1,096 1,796 1,314 2,091 1,734 

No. of Vehs Arriving in 

the Blocked Lane 

Downstream of the 

Delivery Vehicle (veh) 

11 3 10 20 13 11 

Flow Rate of Vehicles 

Arriving in Blocked Lane 

Downstream of the 

Delivery Vehicle (veh/hr) 

79 59 438 171 549 132 

 

As Table 2 shows, in each case where an isolated lane blocking delivery occurred leaving 

lane space open downstream, vehicles flowed through the open downstream portion of the 

blocked lane.  
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2.3 Observed Delay Analysis of Double-Parked Deliveries 

An attempt was made to determine the observed difference in delay caused by the 6 

isolated double-parked delivery cases listed in Table 2. These deliveries were chosen for analysis 

because there were no simultaneous deliveries on 8th Ave while they occurred. For each delivery 

case, a baseline period was chosen for comparison. Typically, the baseline period was chosen as 

the nearest 15 min period before or after the delivery event when no other deliveries or incidents 

occurred. In many cases, finding a nearby baseline period was challenging because of frequent 

deliveries or incidents. Observing the delay during the delivery cases was made challenging by 

the relatively short duration of the suitable delivery casts, the longest was just over eight minutes.  

The baseline periods and delivery periods typically have different arrival volume rates. 

Unfortunately, the nature of the dynamic location on 8th Ave did not easily allow for the exact 

delivery traffic conditions to be observed without the delivery taking place for comparison.  

Observed delay was calculated using a key stroke event recorder manually operated while 

viewing the video at normal speed. The method creates a time log of vehicle arrivals and 

departures for each lane from which signal control delay is calculated using the length and 

duration of vehicle queues. The delay results for each lane are then aggregated for the approach 

weighted by lane volume. Observed delay was recorded for both baseline and delivery periods, 

the results are listed in Table 3. The delay refers to the aggregate approach delay on 8th Ave 

between 36th and 37th streets.  

Table 3: Observed Delay: Baseline vs. Delivery 

Delivery Case Delivery 

Location (ft) 

Delivery 

Duration 

(min) 

Baseline 

Arrival 

(veh/hr) 

Baseline 

Delay 

(sec/veh) 

Delivery 

Arrival 

(veh/hr) 

Delivery 

Delay 

(sec/veh) 

Case 1  63 8.32        1,484  17.3       1,565  15.1 

Case 2 65 3.07        1,430  14.6       1,096  21.9 

Case 3 70 1.37        1,430  14.6       1,796  23.9 

Case 4 90 7.03        1,212  31.8       1,314  22.2 

Case 5 100 1.75        1,428  34.8       2,091  11.1 

Case 6 144 4.43        1,575  33.4       1,734  32.2 
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Table 3 shows contradictory trends. For example, in Delivery Case 1 the arrival volume 

during the delivery was higher than the baseline period, yet the observed delay during the 

delivery was found to be less than that during the baseline period. This indicates that the 

individual lane saturation flow rates were volatile between the observed baseline and the delivery 

periods likely due to other traffic flow perturbations. Volatile saturation flow rates at the 

downstream intersection were likely caused by the variability of the effect of pedestrian crossings 

on turning vehicles, and random queue spill back from the downstream street segment north of 

37th Street. Cyclic oversaturation was not observed on 8th Ave, however many random and brief 

queues occurred downstream of the segment under analysis which affected the discharge rate of 

the segment under analysis.  

In summary, this study was not successful in isolating the empirical delay impact of 

double-parked deliveries using video data. The example of 8th Ave in Manhattan had the 

advantage of providing many examples of double-parked delivery vehicles and demonstrating 

that vehicles will in fact use lane space left open downstream of a delivery vehicle. However, the 

traffic flow data proved too noisy in other causes of delay variability preventing a meaningful 

comparison between baseline and double-parked delivery cases.  

As a proxy for empirical data, we use microsimulation to isolate the delay impact of 

double-parked deliveries on 8th Ave. However, first we present two analytical models for 

estimating the capacity and delay impacts of double-parked delivery vehicles: in Chapter 3, a 

simple attempt at imitating the existing methodology in the HCM6, then in Chapter 4, a more 

detailed model consistent with kinematic wave theory. After comparing the two models on a 

simple two-lane street in Chapter 5, we will return to the 8th Ave example and compare the 

proposed analytical models to microsimulation in Chapter 6.  
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CHAPTER 3 

AN ALL-OR-NOTHING MODEL 

3.1 Capacity for a Two-Lane Street 

In this section, a simple model is presented based on the existing HCM6 methodology for 

incorporating parallel parking maneuvers and buses stopping in a lane on the signalized control 

delay of an urban street segment. The model is explained using the theoretical two-lane street 

from Section 1.4.6. As described in Section 1.4.2, parallel parking maneuvers and stopped buses 

are treated as events that eliminate an entire travel lane for use while they occur. The saturation 

flow rate of the lane group is reduced for the whole analysis period based on the number of lane 

blocking events by using the adjustment factors in eqs. 1 and 2. We present a similar method for 

incorporating a double-parked delivery vehicle. We call this method an All-or-Nothing model, 

because depending on the location of the delivery, the blockage is either treated as eliminating the 

saturation flow rate of the lane while the delivery occurs, or as having no effect.  

In the HCM6, buses are assumed to reduce the saturation flow rate of a lane to zero when 

a bus is stopped in the lane located within 250 ft (76.3 m) upstream or downstream of an 

intersection. This analysis focuses only on the effect of delivery blockages on the street segment 

where the delivery is taking place, therefore only the distance between the delivery vehicle and 

the downstream intersection is specified.  Rather than use a constant threshold distance, we 

propose to define the threshold in terms of the maximum length of the queue that can be served 

by the lane group when the intersection is at saturation, a distance defined in Section 1.4.6 as 

𝑥𝑔𝑚𝑎𝑥. 

Figure 7 provides an illustration of the All-or-Nothing model assumption of vehicle 

behavior while a double-parked delivery vehicle occupies the shared right-turn lane. The distance 

xD, is measured to determine if the location of the delivery vehicle is close enough to the 
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intersection stop line to cause a reduction in the saturation flow rate of the shared right-turn lane, 

Ssr. 

 

(a) 

 

 

(b) 

Figure 7: The All-or-Nothing Model During a Lane-Blocking Delivery 

 

When xD is less than xgmax, the saturation flow rate of the shared through and right turn 

lane is adjusted resulting in a new saturation flow rate for the shared-right turn lane, labeled Ssr,dl 

in part b of  Figure 7. The reduced saturation flow rate Ssr,dl results in a rebalancing of the lane 

group arrival volumes on the segment Vt,dl and Vsr, dl. 

A double-parked delivery adjustment factor for saturation flow rate is given by the 

equation: 

𝑓𝑑𝑙 =
(1 − 𝑡𝑑/𝑇)

𝑁
 (19) 

 where fdl is the delivery blockage adjustment factor, 𝑡𝑑 is the duration of the delivery blockage, T 

is the duration of the analysis period, and N is the number of lanes in the lane group. 
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The capacity, csr ,of the shared right-turn lane group in Figure 7 is then also dependent 

upon the location of the delivery as shown by the equations: 

𝑐𝑠𝑟 = {
𝑆𝑠𝑟𝑔/𝐶, if 𝑥𝐷 ≥ 𝑥𝑔𝑚𝑎𝑥

𝑆𝑠𝑟,𝑑𝑙𝑔/𝐶, if 𝑥𝐷 < 𝑥𝑔𝑚𝑎𝑥
 (20) 

and 

𝑆𝑠𝑟,𝑑𝑙 = 𝑆𝑠𝑟𝑓𝑑𝑙 (21) 

where all other variables are as previously defined. When the delivery blockage location is equal 

to or upstream of xgmax, the capacity csr is the unblocked capacity of the lane group. 

3.2 Delay for a Two-Lane Street 

The All-or-Nothing model creates an adjusted saturation flow rate for the lane group 

experiencing a delivery blockage which is constant throughout the analysis period. This makes it 

possible to calculate the uniform control delay of lane groups that do not allow permitted turns 

using eqs. 10, 11, and 12. substituting the delivery adjusted capacity and arrival rate. Similarly, 

the incremental delay can be found using eqs. 17 and 18. 

Figure 8 shows an example of a before and after QAP diagram for a lane group adjusted 

with the All-or-Nothing model. The adjusted delivery case is shown by the solid lines, while the 

non-delivery case is overlaid with dashed lines. The arriving demand qsr,dl, which is in units of 

veh/sec, is a lower arrival rate compared to the non-delivery rate qsr because the reduced 

saturation flow rate of the lane group, Ssr,dl, causes the service time of the lane group to increase, 

thereby changing the arrival rate equilibrium of through movement vehicles with adjacent lanes. 

Delay is calculated from the geometry in the QAP diagram in the delivery adjusted case using eq. 

16 with the delivery adjusted slopes of the QAP diagram. 
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Figure 8: A QAP Diagram Before and After Delivery Blockage Adjustment Using the All-or-

Nothing Model 

The All-or-Nothing model presented here fits in with the existing HCM6 methodology 

because it makes similar assumptions about the effect of a lane blockage on the saturation flow 

rate of a lane group. Furthermore, the delivery blockage adjustment factor, fdl, results in a reduced 

saturation flow rate for the lane group that is applied to the whole analysis period as a blockage 

time weighted average which is in keeping with the parallel parking maneuver factor and bus 

stopping factor from the HCM6.   

To represent the dynamics of what occurs when vehicles use the lane capacity 

downstream of a delivery blockage, as was observed in Chapter 2, a more detailed analytical 

model is needed. In the next section we present a detailed analytical model to address the 

shortcomings of the All-or-Nothing model.  
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CHAPTER 4 

A DETAILED ANALYTICAL MODEL 

During a double-parked delivery event on an urban street, the All-or-Nothing model 

described in Chapter 3 eliminates the capacity of the entire travel lane where the delivery vehicle 

is double-parked for the duration of the delivery event. However, observations of double-parked 

delivery vehicles in Chapter 2 showed that lane capacity downstream of the double-parked 

delivery is in fact used by other vehicles on the street segment.  

To more realistically model the traffic dynamics around a double-parked delivery vehicle, 

we present a new analytical model, the Detailed model, informed by kinematic wave theory. The 

simple two-lane street from Chapter 3 is used to demonstrate the Detailed model in this chapter.  

4.1 Capacity for a Two-Lane Street  

Considering the simple two-lane street with a double-parked delivery vehicle blocking 

the shared-right lane, several additional variables are needed to describe the saturation flow rate 

of lane groups affected by the delivery blockage. Part a of Figure 9 shows non-delivery 

conditions on the two-lane theoretical street where the back of the queue location, xBQ,sr, is the 

furthest point back from the stop line that the queue in the shared right-turn lane reaches for a 

given flow rate, vsr.  

In part b of Figure 9, we see the Detailed model implied vehicle behavior around a 

double-parked delivery vehicle located at a distance, xD, from the stop line. The vehicles use the 

storage space in the shared right-turn lane between the stop line and the double-parked vehicle. 

The dimension, WΦ, is labeled representing the minimum unblocked width between the delivery 

vehicle and the other side of the bottleneck.  The Detailed model characterizes the minimum 

width, WΦ, as a bottleneck width located a distance, xD, from the stop line. The exact definition of 

WΦ in a general sense is a matter for further refinement, but for this example, WΦ is assumed as 
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equal to the width of the remaining open through lane on the street assuming that the shared-right 

turn lane is completely blocked. 

Part c of Figure 8 illustrates that the portion of the street downstream of the delivery 

vehicle consisting of unblocked lanes of a length, xD. This portion of the street stores vehicles that 

will discharge at flow rates St and Ssr from each lane respectively. Only the vehicles stored 

downstream of the delivery vehicle will discharge at these rates.  

 

Figure 9: The Detailed Model Saturation Flow Rates with a Double-Parked Delivery 

Vehicle 

Part d of Figure 8 depicts the portion of the street behind the delivery vehicle bottleneck. 

The arriving traffic must merge to travel through the unblocked cross section of width, WΦ. The 

bottleneck has a saturation flow rate of its own, SΦ. The saturation flow rates of lane groups 
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downstream of the bottleneck are now constrained by SΦ and furthermore by the fact that more 

than one downstream lane group must share the saturation flow rate through the bottleneck. 

Therefore, the saturation rate for the shared right-turn lane group during a delivery is given by: 

𝑆𝑠𝑟,𝑑𝑙 = {
                 𝑆𝑠𝑟,      𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑞𝑢𝑒𝑢𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑥 <  𝑥𝐷

𝑠𝛷
𝑣𝑠𝑟,𝑑𝑙

𝑣𝑡,𝑑𝑙+𝑣𝑠𝑟,𝑑𝑙
,       𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑞𝑢𝑒𝑢𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑥 ≥  𝑥𝐷 . 

(22) 

For the adjacent through lane group, the saturation flow rate, St,dl , follows from eq. 22 with the 

exception that the subscripts sr and t are replaced with one another in every instance.  

It is required to know the expected arrival rates vsr,dl and vt,dl before applying eq. 22. These 

values can be found by starting with an initial value for each lane group saturation flow rate and 

then using the results of the first iteration as an input to balancing the arriving through moving 

vehicles until there is a service time equilibrium among through moving vehicles across lane 

groups. This iterative process is outlined in a general sense in Chapter 31 of the HCM6. 

 For lane groups affected by the delivery blockage, the first iteration saturation flow rates 

should reflect the maximum discharge possible for vehicles occupying a distance, xD , in the lane 

group, followed by a discharge from the bottleneck for the remainder of the green time, if any. 

For the shared right-turn lane on the simple two-lane street this would be: 

𝑆𝑠𝑟,𝑑𝑙1
= (

𝑚𝑖𝑛(𝑔, 𝑡𝑥𝐷,𝑠𝑟
)

𝑔
) 𝑆𝑠𝑟 + (

max(𝑔 − 𝑡𝑥𝐷,𝑠𝑟
, 0)

𝑔
) 𝑆𝛷

𝑆𝑠𝑟

𝑆𝑠𝑟 + 𝑆𝑡
 

(23) 

where 𝑆𝑠𝑟,𝑑𝑙1   is the initial saturation flow rate used during the arrival volume balancing 

procedure, and 𝑡𝑥𝐷,𝑠𝑟
  is the time it would take to clear vehicles stored in front of the delivery 

vehicle in a queue of length xD. The time 𝑡𝑋𝐷,𝑠𝑟
 𝑖𝑠 given by:  

𝑡𝑥𝐷,𝑠𝑟
=

𝑥𝐷𝑘𝑗

𝑆𝑠𝑟
 

(24) 
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where kj is the vehicle jam density for the street. Subsequent iterations of the arrival volume 

balancing procedure would then replace 
𝑆𝑠𝑟

𝑆𝑠𝑟+𝑆𝑡
 with 

𝑣𝑠𝑟

𝑣𝑠𝑟,𝑑𝑙𝑖
+𝑣𝑡,𝑑𝑙𝑖

  in eq. 23 using volumes from the 

previous iteration until arrival rate equilibrium is reached across lane groups. The through lane 

group in the example two-lane street would follow a simultaneous process for determining arrival 

flow rate but the subscripts sr and t in eqs. 22 and 23 would be transposed in every instance.  

Now that the two possible saturation flow rates for lane groups affected by the double-

parked delivery have been established, the capacity of the lane groups can be defined. The 

problem is now to determine how long the intersection can discharge vehicles that are queued 

downstream of the delivery vehicle and how much time remains to discharge vehicles queued 

upstream of the delivery vehicle.  

The duration of flow from the queue downstream of the intersection at the first saturation 

rate, tsr, will be limited by the minimum of four possible values which must be checked, they are: 

1) the time it takes to serve the queued vehicles if the space between the stop line and the parked 

delivery vehicle at a distance, xD , is filled with queued cars, previously defined in eq. 24 as 𝑡𝑥𝐷,𝑠𝑟
, 

2) the time it takes to serve the maximum length of queue that is possible to develop in the lane 

given the effective red time, the arrival rate through the delivery bottleneck, and the queue service 

time of the lane group, given as: 

𝑡𝑅,𝑆𝛷
=

(𝐶 − 𝑔)𝑆𝛷
𝑞𝑠𝑟,𝑑𝑙

(𝑞𝑡,𝑑𝑙 + 𝑞𝑠𝑟,𝑑𝑙)

𝑚𝑎𝑥 {𝑆𝑠𝑟 − 𝑆𝛷
𝑞𝑠𝑟,𝑑𝑙

𝑞𝑡,𝑑𝑙 + 𝑞𝑠𝑟,𝑑𝑙
, 1}

, 

(25) 

where the arrival flow is labeled qsr,dl = vsr,dl /3600, which converts the units of arrival flow rate to 

veh/sec, 3) the time it takes to serve the maximum queue if the arriving traffic in one or more 

adjacent lanes develops a queue during arrival that prevents flow through the bottleneck and 

therefore limits the size of the queue in the lane under analysis, given as: 
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𝑡𝑞𝑡
=

(
𝑥𝐷𝑘𝑗

𝑞𝑡,𝑑𝑙
) 𝑞𝑠𝑟,𝑑𝑙

𝑆𝑠𝑟
, 

(26) 

and 4) the length of the effective green time, g.  

After the queue in front of the bottleneck is served, the remaining portion of the effective 

green time serves vehicles at the second saturation flow rate of the lane group. This remaining 

time interval, tΦ , is found by subtracting the time required to clear the queue in front of the 

bottleneck from the effective green time. Finally, the capacity of the shared right-turn lane is 

given by: 

𝑐𝑠𝑠𝑟,𝑑𝑙
=

1

𝐶
 (𝑡𝑠𝑟𝑆𝑠𝑟 + 𝑡𝛷𝑆𝛷

𝑞𝑠𝑟,𝑑𝑙

𝑞𝑡,𝑑𝑙 + 𝑞𝑠𝑟,𝑑𝑙
) 

 (27) 

where 

𝑡𝑠𝑟 = 𝑚𝑖𝑛{𝑡𝑥𝐷,𝑠𝑟
, 𝑡𝑅,𝑆𝛷

, 𝑡𝑞𝑡
, 𝑔} (28) 

and 

𝑡𝛷 = 𝑔 − 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑡𝑠𝑟, 𝑡𝑠𝑡}, 𝑡𝑅,𝑆𝛷
, 𝑔} (29) 

The distinction between tsr an tst in eq. 29 is important in order account for the possibility 

that the queues in front of the delivery vehicle clear at different times. For example, in the event 

of a dominant turning movement discharge queue blocking through vehicles at the bottleneck. 

Using eqs. 27, 28, and 29, the capacity of the through lane in part b of Figure 9 follows from the 

same calculation, except that the subscripts sr and t are reversed in every instance.   

4.2 Delay for a Two-Lane Street 

There are two important distinctions between the Detailed model the All-or-Nothing 

model regarding delay. First, in the Detailed model, it is no longer possible to use the capacity to 

calculate uniform control delay with eq.10 because the queue is now served at two different rates 

during two distinct time intervals within a cycle. Second, the total delay during an analysis period 
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is calculated by averaging together the delays associated with blocked and unblocked cycles 

rather than calculating a single average capacity and calculating a delay based on the average 

capacity.  

In the Detailed model, a double-parked delivery vehicle will not increase uniform control 

delay over the unblocked case unless the arriving volume exceeds the saturation flow rate at the 

bottleneck location or the location of the delivery vehicle interferes with the back of the queue 

location, xBQ, in unblocked conditions. The former case would result in a persistent bottleneck 

queue spillback at the delivery vehicle and will not be addressed in this analysis. The latter case 

implies that when the bottleneck can accommodate the arrival volume demand, increased uniform 

control delay is dependent upon the relationship between the location of the delivery vehicle, the 

traffic arrival rate, and the signal timing.  

The queuing delay can be accounted for with a QAP diagram that is constructed for each 

lane group. Figure 10 shows an example for the shared right-turn lane group of the simple two-

lane street. The clearance of the queue during the green phase depends on the durations tsr and tΦ 

as calculated in eqs. 28 and 29. The area of the polygon provides a measure of the uniform 

control delay associated with the intersection during freight delivery blockage following the 

general form of the QAP calculation from eq. 16. 

As for incremental delay, the volume to capacity ratio for each lane group, as calculated 

using the detailed model, is input in to eq. 17 for incremental delay during the blocked cycles. If 

an analysis period consists of blocked and unblocked cycles, the incremental delay for the 

analysis period would then be a weighted average of the two types of cycles based on the number 

of each in the analysis period. 
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Figure 10: A QAP Diagram for the Detailed Model During a Blocked Cycle 
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CHAPTER 5 

COMPARISON OF ANALYTICAL MODELS ON A TWO-LANE STREET 

 

The modeling approaches presented in Chapters 3 and 4 provide different ways to 

estimate capacity and control delay on a signalized urban street when a double-parked delivery 

vehicle blocks a lane. Thus far we have described how to calculate capacity and delay using the 

All-or-Nothing and the Detailed models, in this chapter we will look at the behaviors of the two 

models when applied using the two-lane theoretical street from Chapters 3 and 4.  

5.1 Comparison of Capacity 

 

For the two-lane theoretical street of Chapters 3 and 4 with one through lane and one 

shared right-turn, Figure 11 shows a plot of the capacity versus delivery distance using eqs. 20 

and 27.  

 

Figure 11: Capacity During a Blocked Signal Cycle Using the Two Modeling Methods 

 

The distinct difference is that the All-or-Nothing model is binary; for a delivery closer to 

the intersection than xgmax a single reduced capacity value is given reflecting the capacity of the 
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bottleneck only. The Detailed model shows that the capacity increases gradually as the location of 

the delivery moves away from the intersection. In theory, for deliveries located further upstream 

from the intersection than xgmax both models show that the stopped vehicle has no effect on 

intersection capacity. Driver willingness to use the space in front of the delivery vehicle may 

prevent this from being so, as would any frictional effect on capacity that the mere presence of 

the delivery vehicle may have on driver behavior.  

These models can be interpreted as bounds for the capacity of the street during a signal 

cycle when a vehicle delivery is being made. The All-or-Nothing model provides a lower bound, 

by assuming that the shared right-turn lane group is completely blocked during the delivery. The 

Detailed model provides an upper bound, by assuming that vehicles fully utilize the street space 

in front of the delivery vehicle. Actual driver behavior may result in an observed capacity 

somewhere between these two bounds. 

5.2 Comparison of Delay 

 

A numerical example is used to provide a comparison between the control delay estimated 

using the two methods. The input parameters and critical values for the numerical example are 

summarized in Table 4. The numerical example uses the same simple two-lane street presented in 

Chapters 3 and 4.  

First, we consider the uniform control delay alone. When there is no delivery on the link, the 

average vehicle delay is 9.9 seconds per vehicle at the intersection based on eq.10. This is the 

baseline uniform delay against which the delay during a double-parked delivery is compared.  
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Table 4: Input Parameters for the Numerical Example Two-Lane Street 

 

Variable Value Units 
 

Cycle Length 60 sec 

Effective Green 30 sec 

Total Arrival Rate 900 veh/hr 

Number of lanes, N 2 

Jam Density, kj  264 veh/mi 

Baseline Saturation Flow Rate for Shared Right-Turn Lane, Ssr 1,834 veh/hr 

Baseline Saturation Flow Rate for Exclusive Through Lane, St 1,900 veh/hr 

Saturation Flow Rate at Delivery Vehicle, SΦ 1,900 veh/hr 

Street Length 400ft 

Baseline Length of Queue at Saturation, xgmax  317 ft * 

Baseline Length of Queue at arrival rate, xBQ 101 ft ** 

Analysis Period, T 15min 

*xgmax is controlled by the through lane in this case, ** xBQ is also controlled by the through lane in 

this case.  

Looking at a single signal cycle while a delivery is occurring, Figure 12 shows how the 

uniform control delay per vehicle relates to the location of the stopped delivery vehicle for the 

All-or-Nothing model and the Detailed model. Like the capacity estimates, the models are only in 

agreement when the delivery vehicle is at the intersection stop line or further upstream than xgmax. 

The curve of the Detailed model shows how delays diminish as the distance from the intersection 

to the delivery vehicle, xD, increases. The Detailed model predicts that when the delivery vehicle 

is parked upstream of xBQ, the uniform control delay returns to the baseline level.  

When looking only at a single cycle during which a freight delivery blocks part of the street, 

the All-or-Nothing model provides a conservative worst-case estimate of uniform control delay, 

while the Detailed model shows that the actual uniform control delay may in fact be much less. 
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Figure 12: Uniform Control Delay During a Blocked Signal Cycle Using the Two 

Modeling Methods 

 

A plot of total control delay, which includes the uniform control and incremental delays 

combined, is noticeably different than the comparison of uniform delay. In Figure 13, we see that 

the total control delay baseline is now 11.6 sec/veh for the unblocked case. The All-or-Nothing 

model still changes in a binary fashion at xgmax from the baseline delay to a value of 32.7 sec/veh. 

The Detailed model delay plot is altered in appearance when incremental delay is included. The 

Detailed model delay now departs from the baseline when a delivery is located at any point closer 

than xgmax because this is the blockage location where the potential lane capacity begins to 

decrease. Even if the arrival rate of traffic does not exceed the capacity of the street, the reduced 

capacity that occurs when a vehicle is closer than xgmax causes an increase in incremental delay.  
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Figure 13: Total Control Delay During a Blocked Signal Cycle Using the Two Modeling 

Methods 

Another notable difference between Figure 12 and Figure 13 is that unlike the uniform 

control delay plot, the Detailed model now has a higher total delay at the stop line compared to 

the All-or-Nothing model. This begs the question, how could a delivery vehicle double-parked at 

the stop line result in more total control delay compared with the elimination of the lane? The 

reason, in this case, is that the numerical calculation of the Detailed model as presented was not 

constrained by the following fact: if the delivery vehicle is double-parked at a distance less than 

one vehicle length from the stop line, no vehicle will be able to use the space downstream of the 

delivery vehicle. As the capacity of the blocked lane groups decrease with shorter blockage 

distances to the stop line, the volume to capacity ratios of the lane groups climb. As volume to 

capacity ratio grows so does incremental delay according to eq. 17. On the theoretical street, the 

intersection of total delay from the Detailed model and the total delay from the All-or-Nothing 

model occurs at a delivery distance of 20ft, which corresponds with the assumed vehicle length in 

the jam density, kj. Based on this result, it appears that the Detailed model should be constrained 

to delivery distances greater than one vehicle length from the stop line. In reality, deliveries 
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closer to the stop line are effectively closing the lane, which would yield a total delay equal to 

that found in the All-or-Nothing model. The portion of the Detailed model delay plotted above 

the All-or-Nothing model delay is an artifact which can be derived mathematically but is not 

possible in reality.  

5.3 Comparison of Average Delay During a Partially Blocked Analysis Period 

 

An additional aspect of the delay analysis is to consider how delays caused by blocked 

lanes are impacted over the course of an analysis period, such as an hour, during which some 

cycles are blocked, and other cycles are not. The conventional HCM6 approach used for bus 

blockages and parallel parking maneuvers is to apply a singular average capacity over the course 

of the analysis period. The delay is calculated by assuming that every cycle in the period has the 

average capacity. An example of the resulting average uniform control delays are shown by the 

dashed horizontal lines in Figure 14. The example uses the theoretical two-lane street from earlier 

delay comparisons. A range of delivery durations in a period of length T = 60 minutes are 

considered from td = 0 (no delivery blockage time) to td = 60 minutes (delivery blockage during 

the whole analysis period).  

The calculation of delay based on the average capacity does not accurately reflect the 

aggregate delay of a partially blocked analysis period. The Detailed model instead requires that 

the delay be calculated separately for blocked cycles using eq.16 and for the unblocked cycles 

using eq. 10. A weighted average is then calculated based on the number of vehicles that arrive 

during the blockage and during the remainder of the period. If the arrival rate is constant, this is 

the same as using the total duration of deliveries, td, as the weight for the blocked delay and the 

remaining unblocked duration of the period, T-td, as the weight for the unblocked delay. The 

average uniform control delays using the Detailed model are plotted as the solid line curves in 

Figure 14.  
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Figure 14: Uniform Control Delay for Different Delivery Durations Within an Analysis 

Period of 60 Mins 

Note that when, td=T, the All-or-Nothing model and the Detailed model resemble the 

uniform control delay comparison for the single blocked cycle in Figure 12. For any delivery 

duration, td, that is less than T, the All-or-Nothing model does not provide the same uniform 

control delay estimate as the Detailed model when xD = 0. In fact, the simple All-or-Nothing 

model underestimates the uniform control delay impact of freight deliveries that are close to the 

intersection and overestimates the uniform control delay impact of deliveries that are further from 

the intersection. Therefore, the All-or-Nothing model provides neither a conservative or 

optimistic estimate of delay impacts from freight deliveries; it is a coarse approximation of the 

actual impacts, which are quantified more precisely by the proposed Detailed model approach. 

When xD = 0, the error in this numerical example was as much as 10 percent in uniform control 

delay alone when the duration of the delivery is 30 minutes in an analysis period of 60 minutes.   



 

40 

 

CHAPTER 6 

COMPARISON OF MODEL APPLICATION AND SIMULATION ON 8TH AVE 

 

Returning to the example of 8th Ave in Manhattan first described in Chapter 2, this 

chapter presents a microsimulation of a segment of 8th Ave and then compares the simulation 

results with the two analytical models and observed data.  

6.1 Simulation Calibration 

Because the video capture of 8th Ave focused on the segment of 8th Ave between 36th and 

37th streets, the simulation could only be calibrated for that street segment. Still some activity, 

such as arrival volume turning movements and signals on the downstream segment could be 

observed from the available vantage point looking north on 8th Ave as shown in Figure 4. A 

simulation network was constructed and scaled to the correct geometry using an aerial photo from 

Google Earth. Figure 15 shows the simulation network scope.  

 

Figure 15: Microsimulation Network of 8th Ave Between 36th and 37th Streets 
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Before the delivery scenario case could be built, a baseline scenario was constructed to 

calibrate the simulation based on a delivery-free analysis period. To achieve this, a 13-minute 

period from 10:55AM to 11:08AM occurring just before the chosen delivery case was analyzed in 

detail. The 13-minute period, just over 9 signal cycles, was selected because of its proximity in 

time to the chosen delivery case but also because this was a relatively rare time window that did 

not have an apparent incident such as another delivery or an emergency vehicle.  

 During the observed baseline period, arriving traffic to each lane and departure from each 

lane were recorded manually. A video viewing program was used that allowed for vehicle arrivals 

and departures from each lane group to be recorded with a manual key stroke. The program 

produced a time-stamped log for arrivals and departures that was used to keep track of vehicle 

queues in each lane. The calculation of delay in each lane followed from a record of the number 

and duration of vehicles in queue. The key result was an estimate of signalized control delay for 

the approach on 8th Ave between 36th and 37th Streets of 14.6 seconds per vehicle given an 

observed traffic arrival rate of 1,420 vehicles per hour during the baseline period.  

Trip matrices were then created by performing a 15-minute turning movement count, 

between 11:00AM and 11:15AM for all visible turns in the video. The 15-minute turning 

movement counts included heavy vehicles and public transit bus stops. At this point, car and 

truck traffic trip matrices along with a public transit profile could be created based on the turning 

movement proportions observed from the counts and scaled to the overall traffic arrival rate on 8th 

Ave as observed in the baseline period.  

The baseline simulations were run for 15 minutes in duration and replicated 20 times per 

scenario. The traffic arrival type was kept on default, which is called Exponential in Aimsun, a 

Poisson distribution arrival type. For each iteration the resulting approach delay per vehicle on 8th 

Ave was compared to observed baseline period delay and adjustments were made until the 

simulation matched the observed baseline period in delay. Calibration adjustments included speed 
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modifications in some lanes, particularly for turning lanes. Although pedestrian counts were 

recorded, they could not be simulated due to software license limitations at the volume of 

pedestrians needed for this Manhattan example. Instead, the turning speeds of vehicles moving 

through crosswalks were calibrated to match the observed speed of the same turning vehicle 

movements which frequently had to wait for high volume pedestrian and bicycle crossings. 

The calibration was stopped when the simulated approach delay on the 8th Ave segment 

reached 14.6 seconds per vehicle, the delay from the baseline period. It should be noted however, 

that the segment delay output report from the simulation only gave a total delay on the segment. 

Ideally for calibration, the signalized control delay would be isolated from running delay and 

delay from lane change movements on the link. However, this distinction between sources of 

delay was not possible to make in the simulation software.   

6.2 Delivery Simulation  

 

Now that the simulation was calibrated to an observed baseline of delay, a new set of car 

and truck trip tables were created to emulate the traffic flow conditions during one of the 

observed delivery cases. The delivery case selected, Delivery Case 2, occurred at 11:08AM and 

lasted for just over 3 minutes. The traffic arrival rate during the delivery was 1,096 veh/hr, lower 

than the baseline period. The observed trip tables made from the turning movement counts were 

scaled down to equal the delivery traffic arrival rate.  

 The delivery case location was 65ft upstream from the stop line and parked in the right 

most through lane. This delivery case was selected because it was one of the observed deliveries 

that did not have simultaneous deliveries occurring on 8th Ave and vehicles were observed to 

have used the lane storage space in front of the delivery. Figure 16 shows an image of the 

delivery simulation running. The software feature used to simulate the parked truck was a so-

called traffic incident feature. The square outline appearing in the rightmost lane in Figure 16 is a 
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defined footprint of a lane blockage that appears for a defined amount of time. The simulated 

vehicles had to avoid the blocked incident space, emulating a delivery vehicle.  

 

Figure 16: A Snapshot of the Delivery Simulation 

An objective of the delivery simulation was to compare the simulated delay to the observed 

delay during the delivery event. Therefore, the simulation delivery case held the delivery 

blockage in place for the 15-min duration of the simulation. The purpose of the simulation was 

not to replicate the observed duration of the delivery within a longer analysis period. Twenty 

replications were run for the delivery scenario. 

The results showed a disparity between delivery effect on delay in the simulation vs. 

observed. The simulated increase in approach delay went from 14.0 seconds using the delivery 

arrival rate with no delivery to 14.8 seconds with the delivery. The impact of the delivery 

blockage was just 0.8 seconds per vehicle in the simulation. It should be noted that the arrival rate 

of 1,096 veh per hour was well below the capacity of the 4-lane arterial, therefore the small 

impact on delay was not unexpected.  

The observed results from the video showed a much higher delay while the delivery 

vehicle was present at 21.9 sec/veh. There is no observed delay impact, since the calibration 
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baseline period had a different arrival rate. Table 5 shows the simulation results for the replication 

of the selected delivery case. 

Table 5: Simulation Results for a Selected Delivery Case 

  Intersection Approach Delay (sec/veh) 

Scenario on 8th Ave Detailed 

Model 

All-or-

Nothing 

Model 

Simulation 

Model 

Simulation 

95% 

Confidence 

Observed 

No Delivery Baseline for 

Calibration at 1430 (veh/hr) 
14.6 14.6 14.6 +-0.42 14.6 

           

No Delivery at 1096 veh/hr 13.3 13.3 14 +-0.37 
Not 

Available 

Case 2 Observed Delivery 

Event at 1096 (veh/hr) at 

(xD=65ft, Right Lane) 

13.6 13.9 14.8 +-0.44 21.9 

Delivery Delay Impact 

(sec/veh) 
0.3 0.5 0.8   

Not 

Available 

 

Given the disparity between the simulated and observed delivery delays, the analytical 

models were used to create additional data points of delivery delay impact.  Table 5 includes the 

total control delay values from the Detailed model and the All-or-Nothing model. For the baseline 

scenario, a spreadsheet equation solver procedure was used to back calculate the saturation flow 

rate of each lane given the observed arrival flow rate and the observed approach delay. Then, 

holding the lane saturation rates constant from the baseline case, the delivery case delay values 

were calculated. The two analytical models were first used to calculate approach delay during the 

delivery case arrival rate, 1,906 veh/hr, but without a delivery event. Then the delivery case 

delays were calculated at the same arrival rate. The results show that the two analytical models 

predicted a change in approach total signalized control delay during the delivery that lower than 

but more similar in magnitude to the simulation. The Detailed model predicted on 0.3 seconds of 

delay increase during the delivery, while the All-or-Nothing model predicted 0.5 seconds of 
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delay. Given that the simulation includes more sources of delay than signalized control delay the 

lesser impact predicted by the analytical models was expected. 

The results of attempting to replicate a single observed delivery case in simulation 

appeared to show: 1) the simulation resulted in a greater increase in delay than the two analytical 

methods and, 2) the observed delay during the delivery was much higher than what was predicted 

by the simulation or the two analytical models. In fact, the observed delay during the delivery, 

21.9 sec/veh, was 7.3 sec/veh greater than the observed baseline period delay of 14.6 sec/veh. 

Given that the baseline period had a significantly higher arrival flow rate, the observed delay 

value seems flawed. This underscores the findings of Section 2.3 that the observed delay values 

did not yield meaningful comparisons between baseline and delivery cases most likely due to an 

inability to isolate the effects of the delivery blockage using a manual observation process on a 

busy mutli-modal urban street facility.  

6.3 Analytical Model Application to 8th Ave: Delay vs. Delivery Location 

 

This section applies the Detailed and All-or-Nothing models to the segment of 8th Ave 

during lane blocking delivery events at a range of distances from the stop line.  Then the delivery 

simulation scenario from Section 6.2 is used to simulate deliveries at the same range of distances 

for a comparison of analytical and simulated delay on 8th Ave.  

A spreadsheet was created to calculate the signalized control delay of the 8th Ave 

approach using either the All-or-Nothing model or the Detailed model. The spreadsheet assumed 

the saturation flow rates derived from the Case 2 baseline period where a known arrival rate 

produced an observed delay. The arrival rates were borrowed from delivery Case 2 to be 

consistent with the microsimulation. The spreadsheet included a procedure for balancing the 

arrival volumes to the lanes that included the effect of delivery location on saturation flow rate 

and lane arrival allocation as described in Section 4.1. Using the spreadsheet, the uniform and 
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incremental control delays were calculated for a delivery blockage in the right lane which was 

placed at a range of distances from the stop line.  Figure 17 shows the results for the All-or-

Nothing model and the Detailed model.   

 

Figure 17: Delay vs. Delivery Distance in the Right Lane of 8th Ave for Two Modeling 

Methods  

Because xgmax is at a greater distance than the length of the street segment, this segment of 

8th Ave is treated as losing a lane for any location of a double-parked delivery vehicle according 

to the All-or-Nothing model. Like the example in Section 5.1, the Detailed model uniform control 

delay arrives at the same value as the All-or-Nothing model uniform control delay when the 

delivery is located at the stop line. The Detailed model uniform control delay nearly returns to the 

no delivery condition at the location xBQ, which was 54 ft for the through lane group in the 

unblocked condition.  
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The Detailed model total control delay trend resembles the example using the simple 

street from Section 5.2 generally. Figure 18 shows a plot of total signalized control delay for the 

8th Ave segment between 36th and 37th streets when delivery blockage distances were varied under 

a total approach arrival rate of 1096 veh/hr. 

 

Figure 18: Total Delay vs. Delivery Distance in the Right Lane of 8th Ave Using the 

Detailed Model 

At the stop line, the total control delay exceeds the All-or-Nothing model. However, as 

discussed in Section 5.2, the All-or-Nothing model total control delay is the practical upper limit 

because vehicles cannot use the lane at less than one vehicle length. The location where the 

Detailed model and All-or-Nothing model intersect corresponds to the assumed vehicle length in 

the jam density, kj, of the calculations. The Detailed total control delay tapers gradually but does 

not return to baseline levels because xgmax is at a greater distance than the street length.  
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6.4 Simulation of 8th Ave: Delay vs. Delivery Location 

 

The microsimulation scenario from Section 6.2 was also used to plot the relationship 

between delivery distance from the stop line and signalized control delay. The calibration settings 

from delivery Case 2 scenario were retained. The only parameter that varied for a set of new 

scenarios was the distance of the delivery blockage from the stop line. One scenario extended the 

length of the lane blockage to encompass the whole right lane of 8th Ave. This was done to 

simulate the All-or-Nothing concept of a double-parked delivery. At each delivery distance, a 15-

minute simulation was run with the lane blockage present the whole time and twenty replications 

were run for each scenario. The results of aggregate intersection approach delay for each right 

lane delivery location scenario are shown in Figure 19. The confidence interval bars displayed are 

for the 95 percent confidence level. 

 

Figure 19: Total Delay vs. Delivery Distance in the Right Lane of 8th Ave Using 

Simulation 

 In the results of the microsimulation, the magnitude of the delivery impact on total 

approach delay was greater than predicted by the Detailed model, 2.3 seconds when the delivery 
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was located at the stop line vs. 0.8 seconds for the Detailed model. However, the trend of the 

delivery delay with respect to distance from the stop line does resemble the Detailed model total 

control delay in Figure 18. Like Figure 18, the simulation delivery delay descends toward but 

does not quite reach the baseline delay level at 175ft. It should be noted however, that the 

confidence interval bars between the delivery delay and the baseline delay begin to overlap 

between 50 and 75 ft, meaning that beginning in that range and further upstream, the difference 

between the two trend lines could possibly be statistically insignificant at the 95% level.   

 Like Figure 18, the delivery simulation scenario delay intersects the removed lane 

scenario delay. However, the cause of the two delay plots crossing is believed to be different in 

the simulation as compared to the analytical model application. The simulation output attributes 

on the modeled network give a single value of total delay for a network link that includes all 

delay experienced by vehicles traveling on the link. In addition to signal control delay, vehicles in 

the microsimulation experience running delay and delay resulting from lane changes made to 

avoid the double-parked delivery. It is posited that these additional sources of delay on the link 

have added a positive vertical offset to each delivery delay data point. If signal control delay 

could be isolated in the microsimulation or if the other sources of delay normalized for, it is 

suspected that the signalized control delay during the delivery scenarios would merge with the 

removed lane scenario at a location point near one vehicle length upstream of the stop line. The 

additional sources of delay captured in the microsimulation are likely also contributing to the 

difference in delay impact magnitude between the Detailed model and the simulation results. 

 The application of the analytical models and microsimulation to 8th Ave in Manhattan 

showed encouraging initial results that the Detailed model does a reasonably good job of at least 

emulating the phenomenon of the impact trend that double-parked deliveries will make on 

signalized control delay at a range of distances from the downstream intersection.  This was 

important to verify before further refinements to the Detailed model can be made.   
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 Even from these initial results, two relevant findings for urban freight policy appear to 

emerge: 1) double-parked delivery vehicles impact signalized control delay on an urban arterial 

less when located at a greater distance upstream from the downstream segment intersection, and 

2) double-parked vehicles at the intersection stop line have the biggest impact on delay. It would 

be incorrect however, to conclude that the furthest upstream end of the street segment is the ideal 

location for a double-parked delivery to occur. This is because a double-parked vehicle at the 

very rear of a street segment happens to be very near the stop line of the upstream street segment. 

For this reason, the middle of the street segment is a location that decreases delay impact on the 

street segment where the delivery is taking place, while also moderating the blockage impact on 

the stop line discharge of the upstream segment. For a planning scenario in which double-parked 

vehicles must be tolerated for lack of an alternative, policy that advises delivery makers to 

prioritize blocking a lane in the mid-block area of the street could minimize delivery delay impact 

on signalized control delay for other vehicles in traffic.  

 Furthermore, any program that seeks to identify high impact candidate freight receivers 

for mitigation, such as an off-hour delivery program should, consider the location on the street 

where the candidate tends to receive freight. Receivers who routinely attract double-parked 

deliveries near the stop line of an intersection should be prioritized due to the likelihood that the 

location of lane blockages caused by the deliveries they receive is most detrimental to the 

signalized control delay experienced by traffic on the subject arterial.  
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CHAPTER 8 

CONCLUSION 

 

7.1 Summary of Main Findings 

 

Urban freight deliveries are a growing concern in cities around the world as increasing 

demand for goods deliveries results in increased truck traffic and blockages caused by double-

parked delivery vehicles. This study addresses the problem of double-parked urban freight 

deliveries in urban areas blocking traffic, which reduces street capacity and imposes delays on 

vehicles. Although urban freight is gaining increasing attention in the literature, there remains a 

need for methods to quantitatively assess the impact of double-parked delivery vehicles on the 

performance of signalized arterials. 

Currently, the HCM6 does not have any specific recommendations for accounting for 

urban freight except to account for the heavy vehicle percentage in the traffic stream. The nearest 

traffic impact that is presented in the HCM6 is to account for lanes that are blocked by buses that 

stop for passengers. Downstream lane blockage effect on upstream intersections and work zone 

lane restriction effect on downstream intersections were included in the HCM6 but still leave 

unanswered questions about double-parked delivery vehicles, particularly regarding the dynamics 

of traffic flow around them. 

A method is developed along the same lines as existing methodology in the HCM6 called 

the All-or-Nothing model. However, we show that this provides only a coarse accounting of the 

impact of the freight delivery on capacity and delay.  

Video data from a short segment of 8th Ave in Manhattan was shared with the authors by 

the NYCDOT Office of Freight Mobility2. The data captured abundant urban freight activity in a 

                                                      
2 http://www.nyc.gov/html/dot/html/motorist/trucks.shtml 
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six-hour period and confirmed that vehicles will indeed use open downstream lane space in front 

of double-parked delivery vehicles. Attempts at empirical quantification of the impact on 

signalized control delay of observed double-parked deliveries were not successful because of the 

difficulty in isolating the impacts of the deliveries from the dynamic traffic multi-modal 

environment.  

An approach that is consistent with the dynamics of queuing on a street segment is 

presented as the Detailed model. This model is a little more complex than the All-or-Nothing 

approach, but it still results in closed form analytical formulas for capacity and delay. The results 

show that the Detailed model can account for characteristics of urban freight deliveries that were 

observed in the field but not accounted for with the coarse All-or-Nothing model. 

Simulation increased the credibility of the proposed Detailed model. Specifically, the trend 

of signalized control delay in microsimulation looks more like the Detailed model than the All-or-

Nothing model as the delivery vehicle double-parked at increasing distances away from the stop 

line.  

The purpose of this paper is to draw attention to the problem of double-parked urban 

freight deliveries and propose an initial model to quantify the impacts of deliveries on signalized 

control delay. This model is important, because we need to be able to quantify the effect of 

freight deliveries on traffic to design appropriate policies and management strategies to deal with 

the problem. Quantifying the delay impacts of regularly occurring events that may have small 

individual impacts is important, because these types of events often have a larger impact on 

annual delay than infrequent events that have large individual delay impacts.  

Two policy implications are highlighted at the conclusion of the results: 1) that double-

parked deliveries located mid-block on a segment are likely less impactful on the signalized 

control delay of the subject segment and the upstream segment since mid-block is the most 

distant location from both upstream and downstream stop lines, and 2) frequent receivers of 
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double-parked freight deliveries located near an intersection stop line on an arterial should be 

prioritized as candidates for policies, such as off-hour delivery programs, that seek to mitigate the 

impacts of urban freight delivery.  

7.2 Remaining Questions and Future Applications 

Many questions remain concerning refinement of the technical approach of the Detailed 

model, the application of this research, and validation through empirical data. More extensive 

analysis with microsimulation and field data collection are necessary to assess how well these 

theoretical models represent real delay impacts on real city streets. 

The Detailed model needs refinement and calibration to address discontinuity when the 

delivery vehicle is within one vehicle length from the stop line. Additionally, the examination of 

a frictional effect which may reduce flow through the bottleneck is needed, particularly since the 

HCM6 now includes frictional modifiers for downstream lane restriction and work zone 

bottlenecks. The exact definition of the bottleneck width is also a matter needing more research. 

Also, there may be a need to adjust how much of the available space in front of the delivery 

vehicle drivers are likely to use.  The Detailed model does not include provisions for 

simultaneous deliveries on a street segment. While the HCM6 now includes a procedure for 

penalizing the capacity of an upstream intersection when there is a downstream lane blockage, it 

does not delve into the dynamics of the distance of that blockage to the upstream intersection. 

The Detailed model could be expanded to find the signalized control delay impacts on two 

consecutive urban street segments and identify the location of minimum impact on the two-

segment system. Based on the results of this research, it is believed that mid-block double-parked 

deliveries may minimize delay on a two-segment system. 

A refined Detailed model could find numerous applications including: signal retiming to 

optimize control performance during a delivery, safety analyses of double-parked deliveries, the 

evaluation of curbside delivery location policy, the quantification of double-parked delivery cost 
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to other road users, the environment, and public health, and reliability analysis for urban street 

facilities.  

A specific example of how a refined Detailed model could be useful in the policy realm is 

some researchers have investigated the potential of shifting deliveries to off-hours when traffic 

volumes are lower. The Detailed model could be useful in helping to quantify the value of 

making that shift in addition to the more often cited impacts of delivery vehicles on congestion 

during their travel. This technical addition to macro-scale estimates of delivery cost could 

enhance the ability to identify how much it is worth incentivizing carriers or receivers to change 

their behavior or identifying which locations and times of day should be targeted for such a 

program.  

To better isolate the delay of a double-parked freight deliveries during empirical data 

collection, a location with relatively few other traffic perturbations is needed that can be observed 

for a greater length of time. Alternatively, an automated monitoring solution could analyze 

dynamic field data and normalize the results to isolate the impact of delivery delay. It’s plausible 

this could be achieved via some combination of delivery vehicle tracking and automated arterial 

performance monitoring detection.  
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